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Résumé 

 

Les tendances idéologiques actuelles dans le secteur des affaires présentent les influenceurs 

d'affaires comme susceptibles de modifier les attitudes ESG des entreprises and de leurs dirigeants. 

Comprendre les affinités réelles des influenceurs d'affaires avec l'ESG nous permet de déterminer 

s'il y a une base à ces spéculations. Ce projet de recherche cherche à déterminer si les entités qui 

sont des vecteurs d'influence au sein d'un réseau sont effectivement liées à des attitudes ESG 

positives. Il le fait en cartographiant le réseau d'affaires sur un graphe bipartite, puis en identifiant 

des groupes d'influenceurs and en déterminant leurs scores ESG. La recherche s'appuie sur la 

science des réseaux and l'analyse de réseaux sociaux and réalise des analyses basées sur des 

graphes à un and deux modes, des mesures de centralité, des graphes aléatoires, la détection de 

communautés and des corrélations avec les scores ESG. Elle découvre que les entreprises qui sont 

des influenceurs ont effectivement des scores ESG plus élevés que le réseau dans son ensemble. 

Elle constate également que l'analyse offre moins de biais lorsqu'elle est effectuée sur le graphe 

bipartite que sur les projections. 

 

 

Mots-clés : Science des réseaux; Graphe bipartite; Réseau à deux modes; ESG; Analyse de 

réseaux sociaux; Centralité; Réseaux d'affiliation; Conseils d'administration interconnectés. 
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Abstract 

 

Current ideological trends in the business sector discuss business influencers as susceptible to alter 

the ESG attitudes of companies and business leaders. Gaining insights into the real affinities of 

business influencers with ESG enables us to determine whether there is a basis to those 

speculations. This paper seeks to find whether entities that are vectors of influence within a 

network are indeed tied to ESG attitudes. It does so by mapping the business network onto a 

bipartite graph, then identifying groups of influencers and determining their ESG scores. The 

research draws on network science and social network analysis and conducts analysis based on 

one- and two- mode graphs, centrality measures, random graphs, community detection, and 

correlations with ESG scores. It finds that companies which are influencers indeed have higher 

ESG scores than the overall network. It also finds that the analysis offers less bias when performed 

on the bipartite graph than the projections.  

 

Keywords: Network Science; Bipartite Graph; Two-Mode Network; ESG; Social Network 

Analysis; Centrality; Affiliation Networks; Interlocking Directorates. 
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Chapter 1: Introduction and Objectives 

 

1.1 Problem Description 

 

One of the current Republican runners for the 2024 presidential election of the United States, Vivek 

Ramaswamy, has become a vocal critique of the impact of an “ESG current” and what he calls 

“ESG advocates” within the business world, fervently admonishing their influence on other 

companies to make decisions oriented towards ESG (Ramaswamy, 2023). ESG stands for a set of 

standards used to measure a firm’s impact on “Environmental, Social, and Governmental” topics. 

By 2020, 90% of all S&P 500 companies (arguably industry leaders) had published a sustainability 

report (Governance & Accountability Institute, 2020). While most of the business world has 

accepted the need for ESG standards, a debate has spurred pitting together “pro-ESG” and “anti-

ESG” factions, both assuming that business influencers are indeed ESG proponents and use that 

influence to incentivize others into taking ESG-related actions (Smith Judd, 2023). This begs the 

question - do influential entities within the business world indeed have ESG affinities?  

 

In order to determine whether ESG affinities can travel through the business network, this paper 

sets out with the main objective of validating whether influencers who are vectors of attitudes 

within the business network tend to be associated to higher ESG scores. To accomplish this 

objective, this paper will draw on different disciplines to carry out the analysis, namely: network 

science, social network analysis, organizational management, and sustainability.  

 

The research question is separated in two sub-objectives which allow to answer the main objective, 

as explained in the following sub-sections.   

 

1.2 Identifying influencers 

 

First and foremost, the paper tasks itself with the sub-objective of identifying “meaningful groups 

of influencers”, that is, delimiting various potential groups of influencers, and establishing whether 
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the influence of those groups is sufficiently different from that of the entire business network in 

order to consider those groups meaningful. This subobjective is the most challenging aspect of the 

study.  

 

In order to identify influencers, this paper will make use of network science techniques. Network 

science allows to turn data into a network, effectively mapping the business network from a set of 

data in a way that makes it so structural patterns can be identified on said network, including the 

identification of important entities within the network, in a way that cannot be achieved through 

analysis of tabular data.  

 

This paper will use the definition of “influencers” as individuals who would have the capacity to 

spread an ESG attitude within the business network, that is, “vectors of influence”. This definition 

comes from social network analysis, aligned with Borgatti’s definition of what an important entity 

is in a network. In his famous classification of “network flows” and description of centrality 

measures Borgatti (2005) categorizes several measures of importance of entities that assess 

“attitudes”. Borgatti defines the category of attitudes as movements of “influence”; “Here, the 

notion is of an influence process in which, through interaction, individuals effect changes in each 

other’s beliefs or attitudes. […] The attitudes spread through replication rather than transfer (I do 

not lose my attitude the moment I infect you with it)” (Borgatti, 2005 : 58). 

 

At the cross between management studies and social or complex network analysis, influencers 

within a network are often taken to be board members (Conyon and Muldoon, 2004; Robins and 

Alexander, 2004; Vasques Filho and O'Neale, 2020). This research is aligned with the convention 

by using board members as influential entities within the network, however, this study will amplify 

the scope to include also key business executives. Indeed, there is increasing talk about executives 

deciding to be ESG leaders within their companies (Luthra and al., 2022; Smith Judd, 2023). In 

this sense, both board members and top executives can choose to adopt an attitude aligned with 

ESG expectations. Both board members and top key executives will therefore be considered as 

“business leaders”. The companies that those business leaders affiliate themselves with will also 

be considered potential business influencers, as oftentimes, it is the company as an entity which 

exercises said influence, and which of business leaders or companies are the main entities in a 
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network is not set in the literature (Opsahl, 2011 : 2). With regards to ESG, it is specifically 

companies that are considered to relay ESG attitudes (Ramaswamy, 2023).  

 

Therefore, influencers will include two categories of entities in this research: companies and 

individuals (also referred to as “business leaders”), the latter category being comprised of key 

executives and board members, which from henceforth will not be distinguished.  

 

1.3 Evaluating ESG affinities 

 

The second sub-objective is to establish whether influencers indeed have higher ESG scores than 

overall companies and individuals. The objective is not to identify the presence of influencers that 

actively try to “push” others towards ESG efforts (causation effect), rather to clarify whether or 

not companies and business leaders that are arguably network influencers have an affinity with 

ESG (correlation effect).  

 

As such, the proxy for “ESG affinity” will be the ESG score of the company, or in case of the 

business leaders, that of the companies they are affiliated with. By using ESG scores as proxies 

for ESG attitudes, this paper makes the assumption that having a high ESG score is related to 

having a positive attitude towards ESG. Potential impacts of this assumption are the following: 

- That some companies (or business leaders of said companies) with a high ESG score might 

actually have a negative attitude towards ESG and might not in reality contribute to the 

spread of ESG attitudes (which is reasonably improbable). 

- That some companies (or business leaders of said companies) with a low ESG score might 

actually have a positive attitude towards ESG and might in reality contribute to the spread 

of ESG attitudes (which is reasonably probable).  

 

1.4 Relevance of the study 

 

The relevance of the study can be qualified as practical pertinence, for multiple reasons; 
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1) The combination of i. ESG attitudes ii. for business leaders iii. within a bipartite network 

has seldom been studied. This paper will leverage and explore data in a novel way by: 

o Combining two datasets: ESG data and company – business leader relationship 

data. 

o Using said data for a network science approach, specifically for a bipartite 

network. 

2) This study will explore and validate less conventional methods for identifying influencers 

in bipartite graphs, that is, methods that require less computing power than conventional 

algorithms: 

o Identification through degree distribution of random graphs.  

o Hub dominance. 

o Assortativity. 
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Chapter 2: Dataset, Preparation, and NetworkX 

 

2.1 The Data 

 

The data used for the study is comprised of two datasets, one representing company – business 

leaders’ relationship, and the other ESG data for companies. Both are provided by S&P Global 

Market Intelligence and accessed through Wharton Research Data Services. S&P Global was 

chosen as a data provider for being recognized as a leader in providing alternative data and for the 

substantial sizes of its datasets (Wright, 2019). 

 

2.1.1 Professional Data 

 

The first dataset was built from S&P’s “Professional Data” package, part of S&P’s “People 

Intelligence” product. The package aggregates publicly available data about 4.5 million 

professional across the world (S&P Global 2019 : 3). The dataset was constructed through a query 

with the following variables: 

- “companyname”: Company name 

- “companyid”: Company identifier (used across many S&P’s packages) 

- “personid”: Individual identifier 

- “boardflag”: Binary variable that indicates if an individual is a board member on the 

company (1) or not (0) 

- “keyexecflag”: Binary variable that indicates if an individual is a board member on the 

company (1) or not (0) 

 

The data provided in this package is publicly available data, as indicated in the packages data 

collection methodology (Appendix A). While the data is of public domain, the names of the 

individuals were not used, nor are their identifiers conveyed in this paper. 
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2.1.2 ESG Data 

 

The second dataset was built from S&P’s “S&P Global ESG Scores” package, in which S&P 

provides sustainability ratings to companies based on their SAM Corporate Sustainability 

Assessment (CSA), one of the oldest and most sophisticated ESG scoring methodologies on the 

market (S&P Global 2021).  

The dataset was constructed through a query with the following variables: 

- “companyid”: Company identifier (used across many S&P’s packages) 

- “aspectname”: Indicates whether the score is an “S&P Global ESG Score” or another type 

of disaggregated score 

- “scorevalue”: Value of the ESG score 

- “csascoretypename”: Indicates whether a score is “Raw” or “Modeled”  

- “assessmentyear”: Year on which the ESG score was assigned 

 

 

2.2 Data Cleaning and Preparation 

 

The professional data was filtered in the following ways: 

1) Only individuals which were either board members or key executives were kept in the 

dataset. 

2) Only one row was kept per company – individual relationship. Whilst an individual may 

occupy various positions in a company, the position help in a company is not studied by 

this paper, rather the existence of a connection, which is conveyed by a single row. If 

multiple rows are kept, this would enter a bias in the degree of an individual’s node. 

 

The professional data was filtered in the following ways: 

1) Only the most recent year was kept (2022 or 2021). 

2) Only the scores where the “aspectname” was “S&P Global ESG Score” were kept, as the 

paper is interested in the overall company score, not disaggregated scores. 

3) Modeled scores were kept, and where unavailable, raw scores were used. Modeled scores 

represent scores where some data has been imputed by S&P, where raw data is unavailable, 
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so as not to introduce bias in their scores. Raw scores represent scores built exclusively on 

data reported by the company. Modeled scores were used first as their existence signifies 

that raw data was incomplete to compute a raw score.  

 

The result is one row per company – business leader and company – ESG score. The two datasets 

were then joined into one con “companyid”.  

 

2.3 NetworkX Package  

 

The NetoworkX Python package was used to transform the dataset into a graph and perform 

multiple operations on it. NetowrkX is a package built in 2008 for the exploration and analysis of 

networks, which contains many traditional algorithms used in network analysis implemented 

within its functions (Hagberg, Swart and Chult, 2008). The package has become reputed and 

widely used one, such as for social network analysis (Akhtar, 2014), complex systems (Hadaj and 

al., 2022), graph visualization, and many other uses (Hagberg and al., 2008). This paper will make 

use of it for the ease of construction of the network and use of certain readily available algorithms. 

The functions used will be indicated in the methodology section.  
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Chapter 3: Literature Review and Methodology 

 

3.1 ESG and Management Related Network Literature 

 

As previously mentioned, few studies cross ESG attitudes and business leaders from a network 

perspective. The related literature is dominated by: 

- Studies related to data science focus on the relationship between ESG and business leaders, 

yet not from a network perspective.  

- Studies of the spread of attitudes amongst business leaders from a network perspective, but 

unrelated to ESG.  

This subsection offers some insights into the latter as a basis for this research. The focus is due to 

the present study having networks as its main point of research, rather than ESG.  

 

Multiple studies have analyzed the structure of a business network, specifically at the level of 

boards. This concept is referred to as “interlocking directorates” in social network analysis. Davis 

and Greve have studied the spread of attitudes in the network of board members and have found 

that good governance practices spread through interlocking directorates. They concluded that 

board members serve as vectors of strategic information between companies, creating a diffusion 

effect (Davis and Greve, 1997). Robins and Alexander studied the structure of Australian and 

American interlocking directorates as bipartite networks and found that “structures tend to be 

influenced by the clustering of directors on boards” (2004). This is presents supporting information 

to the current research as it will help validate findings about the structure of the graph with respect 

to individuals.   The closest study to the current research examined the relationship between board 

network centrality and British firms’ ESG performance and found a positive impact (Harjoto and 

Wang, 2020).  This paper will use some of the same methods, specifically centrality methods, and 

compare results.  
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3.2 Methodological Approach 

 

This subsection will outline the methodological approach to the analysis, step by step, and serves 

to indicate the structure of the presentation and discussion around the results. It is followed by a 

subsection explaining the methodology with more detail. 

 

1) Creation of the main bipartite graph and its projections. 

a. Creation of the original graph and identification of main connected component.  

b. Initial analyses on the main connected component and Companies and Individuals 

projections which will serve as a basis for comparison with potential groups of 

influencers: 

i. Basic measures of size. 

ii. Insights into the structure of the graph and comparison of behaviour with 

the projections: degree distribution (also performed on top and bottom 

nodes), degree centrality, redundancy, transitivity, eigenvector centrality. 

iii. Insights into the ESG behaviour of the graph: ESG distribution and ESG 

assortativity. 

 

2) Analysis of the “most certain influencers”. 

a. Identification of the top 10 highest eigenvector centralities.  

b. Comparison of the behaviour of different measures with the results on the original 

graph and between the graph and its projections. This is done to identify expected 

behaviour for the groups of influencers. 

i. Eigenvector centralities. 

ii. Degree and ESG assortativity. 

 

3) Identification of potential groups of influencers: 

This sub-section will first make use different measures of importance of nodes. Then, for 

each measure, it will apply one or different cutoffs, to enclose the group of important 

influencers. For each potential group of influencers, the same analyses will be performed.  

a. Groups based on the eigenvector centrality on the graph and the projections. 
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i. Computing the cutoff at the knee of the distribution. 

ii. Computing the degree assortativity and the ESG assortativity.  

b. Groups based on the degree distribution on the graph. 

i. Computing the cutoffs of the distribution 

1. Two std deviations above the mean 

2.  𝑥𝑚𝑖𝑛  

ii. Computing the degree assortativity, the ESG assortativity, and the 

eigenvector distribution 

c. Groups based on the degrees higher than those of random graphs for graph and 

projections. 

i. Generation of random graphs based on the equivalent density and edge 

probability of the original graph 

ii. Cutoff at the maximum degree 

d. Identification of most important nodes within communities.  

i. Generation of communities with the Louvain algorithm.  

ii. Identification of dominant nodes through “hub dominance” 

iii. Computing the eigenvector centralities and the assortativities. 

 

4) Evaluation of the “meaningfulness” of the groups of influencers. 

a. Evaluation of group properties to confirm “meaningfulness” of groups.  

i. % of influencers 

ii. Comparison with the properties of the top 10 influencers and of the original 

graph. 

b. Mann-Whitney U tests between the eigenvector centrality distributions of the 

identified groups of influencers and the ones of the original graph. 

 

5) Determining correlation between the groups of influencers and ESG scores.  

a. Computing the Spearman correlation between the eigenvector centrality 

distribution and the ESG scores distribution of the original graph.  

b. Visualization of ESG scores of the groups of influencers against those of all 

companies.  
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3.3 Network Related Concepts 

 

This section of the paper will refer to literature related to network science and social network 

analysis. Specifically, this section will:  

- Explain important concepts to the research,  

- Outline their implications to this research and expected behaviour, 

- Relate to previous research. 

 

 

3.3.1 The Data as a Graph 

 

“Graphs” are mathematical representations of relations between entities (represented as a set of 

vertices V), whereby said relations are portrayed as a set of edges E connecting vertices, such as 

graph G = (V, E). Graphs are also called “networks”, where vertices are “nodes” and edges are 

“links” (Caporossi and Camby, 2021 : 1). “Graphs” are referred to in graph theory and “networks” 

in network science and specifically social network analysis yet refer to the same objects. Since this 

study is interdisciplinary, it will make use of these terms interchangeably, as is commonly accepted 

(Barabási and Márton, 2016 : 45). When operations are computed on a graph, they are truly 

computed on its “adjacency matrix” 𝐴𝑖𝑗, a square matrix where entities (vertices) are displayed in 

the rows i and columns j, and the existence of a relationship (or edge) is represented by a 1 and its 

inexistence with a 0 (Barabási and al., 2016 : 52). The “degree” 𝑘𝑖 of a node represents its number 

o links to other nodes, such as 𝑘𝑖 = ∑ 𝐴𝑖𝑗
𝑁
𝑗=1 . Relationships between nodes are often “undirected”, 

or symmetric, implying that there is no starting point or ending point to the connection (for 

example, two people knowing each other), resulting in a symmetric matrix such as 𝐴𝑖𝑗 =  𝐴𝑗𝑖 . The 

current graph G will assign individuals (business leaders) and companies to nodes V and the 

affiliation of an individual to a company and vice-versa as the relationship represented by the edges 

E, resulting in an undirected graph. The presence of two distinct entities (individuals and 

companies) as nodes in the graph will be discussed in the next sub-section.  

 

The network undergoes the removal of all nodes with connections to a single other node. This is 

done at the level of the dataset behind the construction of the graph, for which all rows with a non-
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duplicated company or individual are removed. This process is iterated through until removal of 

all nodes with a degree of 1. This is done for two reasons:  

 

1) The sheer size of the dataset would make the network too large to work with if it included 

all individuals holding only one position on a company. Since it is not recommended to 

study only a portion of a network, this approach was the best in reducing the size. 

2) As the research is interested in identifying influencers within a network of attitudes, nodes 

with a degree of 1 can neither represent an influencer, nor participate actively in the spread 

of said attitudes.  

 

Many networks are disconnected, that is, are composed of various components (clusters of nodes) 

that have no edges between them. This characteristic may introduce bias in the results of some 

operations. Social networks are generally composed of many components of evenly distributed 

sizes or of a “giant component” (largest connected component) flanked by many small components 

(Newman, Watts and Strogatz, 2002 : 2568). The presence of a giant component in a network 

greatly influences the spread of information in social networks, allowing broad communication 

between large groups. Conversely, without a giant component, communication is limited to smaller 

groups, restricting information flow to these clusters (Newman and al., 2002 : 2569).  

 

Early results (Chapter 4) showed that the network under consideration displays indeed a giant 

component. This giant component will be considered as the main graph on which all operations 

will be performed. This is a common practice in network science when the smallest components 

are of no research interest, as was demonstrated by Albert and al.’s famous study of the internet 

(1999). The results will delve deeper into the smallest connected components to demonstrate their 

little relevance to the rest of the business network.  

 

Converting the bipartite graph into projections 

 

The graph that is studied in the current paper is a “bipartite” graph. As bipartite graphs are a subset 

of graphs with properties specific to them, this section will offer more detail on the nature and 

behaviour of these networks. 
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Bipartite graphs (or “bigraphs”), as opposed to the most common “unipartite” graphs, are networks 

with two disjoint sets of nodes U and V, whereby the connections (or edges E) lie between those 

two sets. That is to say, no edges exist between nodes of the same set, but a relationship will be 

implied between two nodes 𝑢1 and 𝑢2 from one set that are connected to the same node 𝑣1 from 

the other set, thereby creating the network of connections and graph G=(U,V,E) (Barabási and al., 

2016).  

 

Some social networks represent “affiliations” under such relationships. Borgatti and Halgin 

indicate that “[in] social network analysis, the term “affiliations” usually refers to membership or 

participation data […]” between an individual and the subject of its participation (2011 : 417), 

such as exists in the network at hand where business leaders are “affiliated” to a company through 

their participation on its board of directors or as a top executive. This specific business leader – 

company affiliation has been previously studied in the form of bipartite graphs  (Borgatti and al., 

2011; Davis and al., 1997; Robins and al., 2004). In social network analysis, these bipartite graphs 

are referred to as “2-mode graphs” (or “two-mode graphs”) to emphasize the existence of two 

distinct types of entities U, V in the rectangular adjacency matrix A, represented as the columns 

and rows. 

 

While there are no direct links between the vertices of one set as stated, affiliation makes it so that 

social ties can be inferred between nodes of one set. In the current graph, if two business leaders 

work at the same company, they will have an inferred connection, as will the companies with 

business leaders in common. These inferred ties are called “co-affiliations” and can be represented 

on a “projection” of one set of nodes into a graph of its own (U-projection), where the edges 

represent a shared neighbour node in the original graph. Co-affiliation can highlight “[…] an 

observable manifestation of a social relation that is perhaps unobservable directly” (Borgatti and 

al., 2011 : 422). 

 

There is no consensus among scholars whether methods for analysis should be extended to the 

entire bipartite graph (the “direct” approach), or rather use standard techniques on the projections 

(the “conversion” approach) (Borgatti and al., 2011; Everett and Borgatti, 2013; Latapy, Magnien 

and Vecchio, 2008). This study will do both, converting the graph into the “Individuals” projection 
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and the “Companies” projection using the nx.bipartite.projected_graph() function. The triple 

graph analysis is conducted for the following reasons:  

 

Conceptual importance of both sets 

 

The current research is interested identifying influencers as potential spreaders of attitudes within 

networks flows. For this network flow, the relationship company – business leaders is important, 

and should be evaluated in the bipartite graph. Additionally, this research is interested in in 

identifying the most important groups of influencers, be they composed of companies or 

individuals. It is therefore important to conduct influencer detection analyses on the bipartite graph 

to identify if companies are more important than individuals, or vice-versa. Some techniques might 

perform better however in identifying influencers within their own set (see below), so they will be 

computed on projections for comparison (Nacher and Akutsu, 2011 : 4637). 

 

Technique performance 

 

Most graph analysis algorithms are made to be computed on unipartite networks with a square 

adjacency matrix. NetworkX does store the bipartite adjacency matrix as square one where rows 

and columns represent all nodes and are populated with 0 and 1, but this in and of itself can lead 

to issues such as inefficiency of matrix operations, time convergence, misrepresentation of 

connectivity between sets, spectral analysis, and others. It is expected that in these cases, analysis 

on projections perform better (Newman, 2010; Opsahl, 2011). On the other hand, projections can 

be overly densely connected due to induced edges in a projection, which can also lead to 

inefficiency of matrix operations (Borgatti and al., 2011; Latapy and al., 2008). Indeed, when 

converting links to the projection, each node of degree d in the bipartite graph induces (d(d-1)/2) 

links in the projection, inflating the number of links (Latapy and al., 2008 : 4). Another 

phenomenon, a high level of transitivity (global clustering coefficient), will also be present in a 

projection. This phenomenon is based on the presence of “six-cycles” which results in triangles 

formed in the projection than would exist in a real unipartite graph, increasing the density of the 

projection (Vasques Filho and al., 2020 : 3).  

 



23 
 

Loss and distortion of information 

 

When projecting one set of entities on a graph, the distinction is lost between the two sets, as are 

those relationships, leading to the loss of important structural data (Borgatti and al., 2011 : 204). 

One effect is that of redundancy, similar to transitivity, which measures the extent to which a node’ 

neighbours are connected. In a bipartite graph, neighbours are only connected to others from the 

other set. In a projection, nodes become directly connected, leading to an overlap in their 

neighbourhoods, and therefore a higher redundancy. Specifically, “four-cycles, that is, pairs of 

bottom nodes that share more than one (top node) common neighbor […] generate redundant links 

when creating a simple graph projection” (Vasques Filho and al., 2020 : 3). Redundancy, 

transitivity, and induced links can therefore heavily skew results in terms of centrality, 

downplaying the importance of certain connections, and inflating of certain connections, directly 

affecting centrality, assortativity, and community detection (Latapy and al., 2008 : 13).  

 

Use of the graph and its projections  

 

There will therefore be advantages and disadvantages to the application of most techniques to 

either the bipartite graph or its projections. However, this paper will follow the majority approach 

and consider the bipartite graph as the main object of analysis (Borgatti and al., 2011; Latapy and 

al., 2008). This approach has been adopted in a similar context by Robins and al. (2004). In their 

study, they used the entire two-mode graph, justified by their interest in the global structure of the 

interlocking directorship of boards within Australia and the USA, similarly to this paper. This 

technique will also be justified by the evaluation of redundancy and transitivity in the projections, 

to ascertain if edges have indeed been induced. In the present research, when results on the bipartite 

graph for a measure will indicate any bias due to the nature of the two-mode network, they will be 

discarded or evaluated on the projections.  

 

Therefore, all techniques (where pertinent and feasible in terms of complexity) will be applied to 

the bipartite graph, to the “Individuals projection”, and to the “Companies projection”. This will 

allow comparison and interpretation of results. Results within the section of the identification of 

potential groups of hubs will determine whether the groups of hubs constituted from projections 
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and the bipartite graph will be used. Statistical analysis techniques to identify meaningfulness of 

the groups and correlation with ESG scores will be applied to “top nodes” and “bottom nodes”, 

that is, nodes that represent individuals and companies within the structure of the bipartite graph 

and the groups of hubs. Where relevant, each method will be detailed in terms of expected 

behaviour on the bipartite graph and unipartite projections.  

 

 

3.3.2 Centrality 

 

One of the most fundamental concepts in the study of social networks are centrality measures 

(Borgatti, 2005; Freeman, 1978). They are quantitative node attributes which try to answer the 

infamous question: “Given a social network, which of its nodes are more central?” (Boldi and 

Vigna, 2013 : 1). Various centrality measures have been developed over the years to capitalize on 

different network properties in order to answer that question. Consequently, while all are indicative 

of nodes’ importance, they stress different “network flows” (movements or exchange that happens 

across the links of a network), and therefore point to different definitions “important nodes” 

(Borgatti, 2005). It is therefore important to choose the appropriate centrality measures in a way 

that reflects the desired interpretation of “important nodes”. The centrality measures that are 

applied in this study must highlight important nodes that can be defined as influencers that 

participate in the spread of attitudes.  

 

Borgatti classifies four measures as the most eminent in capturing those attitude flows: eigenvector 

centrality, betweenness centrality, closeness centrality, and degree centrality. Following are 

presented the retained centrality measures and the discarded ones.  

 

Eigenvector centrality 

 

As eigenvector centrality will be the most important measure of centrality in the graph, this section 

will explain its uses with more detail.  
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Eigenvector centrality has been determined as a particularly strong and pertinent centrality 

measure in the present case as it is highly effective in identifying influencers. The eigenvector 

centrality 𝐶λ of a node is computed by finding an eigenvector of the adjacency matrix of the graph 

that corresponds to its largest eigenvalue (Bonacich, 1987, 2007; Caporossi and al., 2021 : 42): 

 

 

 

It returns a score of influence because it measures the traffic flows via walks of a specific length 

from node i to node j (Borgatti, 2005 : 62), and this, for all neighbours. It is a recursive algorithm 

that reflects the node’s immediate connections and their significance of within the broader 

network, effectively making it both a local and a global descriptor of nodes. Put simply, a node’s 

eigenvector centrality will be determined by its neighbours’ centrality, and their neighbours’ 

centrality, and the following, with decreasing weight in the calculation.  

 

It must be noted that it is the distribution of the eigenvector centrality that will be analyzed due to 

the size of the network (as will be explained below). Its distribution will be computed on the 

bipartite graph, on the Companies projection, and on the Individuals projection and compared. 

Network science do not have a definitive response on whether eigenvector centrality is better 

computed on the graph or its projections (Everett and al., 2013; Yang and al., 2022). The expected 

differences are detailed as follows: 

 

Eigenvector centrality distribution on the bipartite graph 

 

On the bipartite graph, the eigenvector centrality of a company is based first on centrality of the 

individuals it pertains to, and those to that of the companies they belong to, etc., creating a feedback 

loop of importance. Computing the eigenvector centrality on the bipartite graph is particularly 

pertinent for this study because it allows for direct comparison. While it is true that companies and 

business leaders are different entities, for the purpose of this study, they are considered to play the 

same role in terms of spread of attitudes within the network, making comparison of their centrality 

a just one. A danger of computing the eigenvector centrality on the bipartite graph is that  the 

eigenvector centrality computed on the adjacency matrix considers every pair as a possible pair, 
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while that is not so for a bipartite graph where pairs are only possible between the two sets of 

nodes, leading to potential biases (Yang and al., 2022 : 6). To identify potential misleading results, 

the highest eigenvector centralities on the bipartite graph will be compared to those of the 

projections.  

 

Eigenvector centrality distribution on the projections 

 

Computing the eigenvector centrality on the projections allows to compare the centralities of the 

business leaders and individuals between themselves and to confirm the centralities of the bipartite 

graph. Redundancy however may overplay the influence of certain nodes and downplay that of 

others. Redundancy can make for dense overlapping parts of the graph, making it so influence 

does not circulate as well in the overall network, and therefore eigenvector centralities being less 

sensitive to the network structure (Latapy and al., 2008 : 13). Results will be compared to those 

of the bipartite graph to evaluate these differences in rank. 

 

Eigenvector centralities as influencers  

 

Two potential groups of influencers will be returned based on eigenvector centrality: 

1) The 10 nodes with the highest centralities will be returned for the bipartite graph. These 

will be considered the “most certain influencers” in the graph, due to this measure being 

considered the most robust for evaluating centrality. They will be compared to the top 10 

values of the projections to ensure there are no misleading results. 

2) The “knee” of the distribution will be computed as a cutoff. To detect the “knee” of the 

degree distribution, the Kneedle algorithm from the Python package “kneed” was 

computed on the distribution. The algorithm identifies the point of maximum curvature as 

the “knee” in a distribution. (Satopaa and al., 2011) 
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Use as a baseline 

 

The eigenvector centrality will be used as a baseline for comparison with other measures. The 

comparison will be done with the following centralities and in the following fashion: 

 

1) The original graph eigenvector centrality distribution. As other measures will be computed 

and influencer groups found with their distinct cutoffs, the eigenvector centrality 

distributions will be computed and compared to that of the original graph and projections, 

indicating whether the measure or the cutoff show enough meaningful difference with the 

eigenvector distribution of the initial graph. This will therefore serve as a way to evaluate 

the robustness of the various methods of identifying influencers. This is due to this measure 

being considered the most robust for evaluating centrality (Borgatti, 2005). 

2) The 10 nodes with the highest centralities will be returned for the bipartite graph. These 

will be considered the “most certain influencers” compared to the initial graph and the 

comparison will serve as a to garner insights into expected behaviour of other groups of 

influencers, which should situate between those “most certain influencers” and the 

behaviour of the original graph and projections. As other measures will be computed, they 

will be applied to these 10 centralities.  

3) Statistical tests will be performed using eigenvector centralities to identify meaningfulness 

of the groups (presented at the end of the chapter). Since the tests performed will be based 

on the median and on ranking the values of two groups and comparing them, the tests will 

be done separately on companies and individuals. This will be done due to different 

variances in the eigenvector centralities for the companies and individuals. Additionally, 

since some groups of hubs will contain more or fewer companies and individuals, results 

will be more easily interpreted if separated.  

 

Discarded methods 

 

Some centrality measures which are commonly used to identify influencers have been discarded 

due to their complexity. Indeed, while the complexity of the eigenvector centrality of has been 

demonstrated to be the centrality of choice for large networks due to its low computational 
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complexity of 𝑂(𝑚 + 𝑛), other measures identified by Borgatti (2005) are too computationally 

expensive to be computed on the current network (Lohmann and al., 2010; Wandelt, Shi and Sun, 

2020 : 68116). Relevant yet discarded methods are listed below with justification for discarding: 

 

- Betweenness centrality identifies important nodes through the number of shortest paths 

passing through them. Those nodes act as bridges within a network, facilitating transfer of 

information or influence (Borgatti, 2005; Freeman, 1978). Betweenness centrality could 

therefore capture another insightful aspect of a node’s influence. However, as it iterates 

through shortest paths, it is a computationally expensive method, of complexity 𝑂(𝑛𝑚) 

(Lohmann and al., 2010 : 2) 

- Closeness centrality also has a computational complexity of 𝑂(𝑛𝑚) as it is based on the 

average length of the shortest paths between nodes (Wandelt and al., 2020 : 68116). Here, 

most central nodes have shorter distances to others and can therefore receive and impart 

information sooner, effectively making them designated influencers for imparting attitudes 

(Borgatti, 2005 : 59). 

 

 

3.3.3 Assortativity measures  

 

The degree assortativity coefficient is used to measure the degree correlation, that is, the Pearson 

correlation between the degrees of paired nodes in a graph, from -1 to 1. Positive degree 

assortativity means that nodes with a high degree tend to connect to other nodes with a high degree, 

while negative degree assortativity means that nodes with a high degree tend to connect to nodes 

with a low degree (Barabási and al., 2016 : 236). In the context of this bipartite graph, a positive 

assortativity would indicate that companies tend to be connected to individuals who themselves 

are to be affiliated to many companies, and that highly connected individuals would lead 

companies which would have many board members or top executives. A negative assortativity 

would indicate that companies tend to be connected to individuals who themselves are to be 

affiliated to few companies, and that highly connected individuals would lead companies with few 

board members or top executives.  
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Most social networks tend to be assortative – that influencers tend to link to nodes who are also 

influencers (Barabási and al., 2016 : 234; Newman, 2003). However, the current graph might 

display different behaviour since the graph at hand is 1) a bipartite network, 2) focusing on 

attitudes as network flows. For exmaple, previous research on the Norwegian network of board of 

directors has returned lower degree assortativity than that of other social networks, due to 

transitivity (Vasques Filho and al., 2020 : 5). 

 

Numeric assortativity is similar to degree assortativity but instead of measuring the degree 

correlation, measures the correlation of a specific node attribute. In the case of the current graph, 

the node attribute is the ESG score of a company. High assortativity (close to 1) would indicate 

companies tend to connect with other companies of similar scores, and high disassortativity (close 

to -1) would indicate they tend to connect with companies of different scores. It is important to 

note that the ESG assortativity is not indicative of any preference of association by any company 

as there can be another z variable at play causing the correlation in ESG scores. 

 

Both degree and numeric assortativity are computed using existing functions in the NetworkX 

package, nx.degree_assortativity_coefficient and nx.numeric_assortativity_coefficient 

respectively, both based on Mark Newman’s work (2003). The ESG scores of companies and 

individuals are then tied to the nodes as nodes attributes. They are computed on the three graphs: 

the bipartite graph, the Companies projection, and the Individuals projection. Since the bipartite 

graph and the Individuals projection contain edges respectively companies-individuals and 

individuals-individuals, the ESG score assigned to individuals is the average ESG score of all the 

companies associated to said individual. However, the assortativities in the bipartite graph might 

be skewed towards higher results for individuals working at few companies (lower degree), 

whereby the ESG score of the company for which the assortativity is computed holds more weight. 

Therefore, ESG assortativity for the bipartite graph will be used rather as a basis for comparison 

rather than in and of itself, as opposed to the ones from the projections. 

 

Overall, the value for assortativity is double: 

- In and of itself, it offers insights into the graph and projections behaviour and can confirm 

or infirm expected behaviour. 
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- It serves also as a basis for comparison between assortativities of the graph and projections 

to the assortativities of the identified groups of influencers. 

 

3.3.4 Degree Distribution 

 

The degree distribution provides the probability that a node in graph G has degree k, normalized 

by G’s number of nodes N, resulting in 𝑝𝑘 =
𝑁𝑘

𝑁
 (Barabási and al., 2016 : 49). Its shape provides 

important insights into the nature of the network. Specifically, in their seminal article on “real 

networks”, Barabasi and al. (1999) found that large real networks are “scale free”, that is, that their 

degree sequence follows a power law distribution. Accordingly, many nodes have a small number 

of connections, while few nodes have a very high number of connections, which Barabasi and al. 

consider are “hubs” (1999), or influencers (terms to be used interchangeably throughout the paper). 

This is particularly true of social networks, where some individuals are more connected than others 

(Caporossi and al., 2021 : 15).   

 

Bipartite networks, by nature, display different degree distributions to those of unipartite graphs, 

whereby their distribution are highly dependent on two different distributions – that of the top 

nodes and that of the bottom nodes (Vasques Filho and O'Neale, 2018). Top degrees typically 

follow power laws, while bottom degrees can either follow a power law or a Poisson distribution 

(Guillaume and Latapy, 2004 : 218).  

 

The degree distribution will be computed for three main uses: 

 

1) The evaluation of the distribution on the network at hand permits to see whether the 

network’s connections are behaving as expected.  

2) It will also serve to identify potential groups of hubs, above the cutoffs of the knee of the 

distribution and the 𝑥𝑚𝑖𝑛 (see below). 

3) It will be compared to that of randomly generated graphs, which will point to specific 

degrees as potential cutoffs for identifying potential groups of hubs (to be explained in the 

following subsection). 
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In line with common practices, the degree distribution will be computed analyzed with the 

following considerations:  

1) The degree distribution will be computed on the bipartite graph and then separated between 

top and bottom nodes to visualize the two degree sequences, on which the analysis will be 

conducted. While centrality measures such as the eigenvector centrality cannot be 

computed separately on top or bottom nodes unless projections are created, the degree 

distribution allows for this separation of degree sequences (Guillaume and al., 2004). 

2) Python’s “powerlaw” package is used to identify whether the two distributions follow a 

power law one (Alstott, Bullmore and Plenz, 2014). This is particularly useful as all 

vertices in the network with a degree of 1 have been eliminated.  The algorithm returns α, 

the power law coefficient, which evaluates the fit of a distribution to a power law 

distribution by quantifying how quickly the tail of a distribution gradually decreases. In the 

case of a degree distribution, it indicates how rapidly the frequency of a nodes’ degrees 

decline as their value increases. Considering that the distributions hold a bias due to the 

removal of degrees of 1, a goodness of fit test will be conducted against an exponential 

distribution , which can occasionally approximate degree sequence distributions (Vasques 

Filho and al., 2018). For this reason, the Poisson distribution will also be tested for the 

nodes pertaining to individuals (which upon visual inspection and testing against a power 

law distribution returns less certain degrees than the companies’ distribution), through a 

Poisson probability mass function, using the average degree as the lambda parameter. 

3) The 𝑥𝑚𝑖𝑛, that is, the “minimal value […] at which the scaling relationship of the power 

law begins” (Alstott and al., 2014 : 5), similar to a knee, will be computed as a cutoff, and 

all nodes above will be considered a potential group of hubs, since it represents in the 

distribution the point at which the “heavy tail” starts. 

4) A cutoff will be made arbitrarily at two standard deviations above the mean. This is done 

to mimic and test the arbitrary approaches that scholars sometimes use to determine which 

nodes could be hubs. An example of such an approach is to set a threshold at 1%, 5%, or 

10% , as the nodes with the highest degrees.  

5) The degree distributions will also be computed independently on the projections, which 

will offer superficial insight into their connections’ behaviour, but will not be analyzed any 

further. While they propose new methods of analysis of projections’ degree distributions,  
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Vasques Filho and O’Neale also indicate; “To date, the interaction between the degree 

distributions of bipartite networks and their one-mode projections is well understood for 

only a few cases, or for networks that satisfy a restrictive set of assumptions” (Vasques 

Filho and al., 2018 : 022307). 

6) The degree centrality is also computed. It is similar to the degree distribution but 

normalized by the maximum possible degree of a graph. It reflects the importance of nodes 

in terms of their connections, and how said importance is distributed through a network 

(Freeman, 1978; Lizardo and Jilbert, 2023). It is a crude measure of centrality, which will 

be computed only in order to identify any major differences with other measures of 

centrality and the degree distribution.  

 

3.3.5 Random Graphs 

 

Real networks are complex networks modeled on connections between entities happening in real 

life, such as protein interactions, social networks, the internet, and such. Random graphs are 

models of graphs that are built to analyze some of their properties, based on the Erdos-Renyi model 

(Barabási and al., 2016 : 75; Erdős and Rényi, 1960). With respect to bipartite graphs, researchers 

adopt the technique of creating random graphs and comparing their structure to those of real graphs 

to see if certain properties appear by chance (randomly) or due to intrinsic network structures 

(Guillaume and Latapy, 2006; Raphaël, Guillaume and Tarissan, 2015). This has been extensively 

practiced on bipartite networks, including on networks studying boards of directors. Conyon and 

Muldoon specifically compare real networks of boards of directors to random graphs they create 

based on desired degrees distributions to determine whether their real networks display “small-

world” properties (Conyon and al., 2004). In the context of the present research, the specific 

property that will be studies is that of the presence of “hubs”. 

 

The Erdos-Renyi models posits that a graph can be built by connecting randomly assigning edges 

to vertices with the same probability, from which its qualification as a “random graph”. 

Accordingly, some nodes will gain numerous links, while others gain no links or very few links. 

For unipartite graphs, this results in a degree distribution of Poisson shape, much different from 

that of scale-free real networks. Barabasi and al. indicate that “in a large network the degree of 
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most nodes is in the narrow vicinity of <k>”, where <k> is the average degree (2016 : 81). They 

compare the degree distribution with that of real networks and indicate that influencers, “nodes 

with a very large degree”, are absent from random networks (Barabási and al., 2016 : 81). They 

point to the rewritten Poisson distribution 𝑃𝑘 =
𝑒−<𝑘>

√2𝜋𝑘
(

𝑒(𝑘)

𝑘
)

𝑘

 where for increasingly large k, k 

dependent terms decrease rapidly, predicting that “in a random network the chance of observing a 

hub decreases faster than exponentially” (Barabási and al., 2016 : 81).  

 

Since the degree distribution of the bipartite graph is composed of the distributions of both 

individuals and companies, the cutoffs will be evaluated for the projections as well as the bipartite 

graph. For a random bipartite graph, if one of the degree distributions follows a power law, so will 

that of the random bipartite graph (Guillaume and al., 2006 : 13). This paper will then evaluate the 

differences randomly generated bipartite graphs and observe any difference in maximum degree. 

 

This paper will use this consideration of hubs as potential influencers within the network, that is, 

it will consider that any nodes in the real graph with degrees higher than the maximum degree of 

a randomly generated graph are potential “hubs” and therefore potential influencers in a social 

network. The generation of random graphs will be done in a fashion as to replicate the size the 

graph, as opposed to Conyon and Muldoon who use the degree distribution, as this paper is 

specifically interested in studying the difference between the degree distributions of the random 

and real networks. Therefore, two methods of replicating the size of the network are used: 

- Number of nodes and density of the original graph; 

- Number of nodes and edge probability of the graph. Said edge probability is determined 

on the original graph by 𝑝 =  
2𝐿

𝑁(𝑁−1)
, that is, by the ratio of the actual number of edges to 

the total possible edges ( 
𝑁(𝑁−1)

2
 ). 

 

The random graphs are generated for both the bipartite graph and the projections. On the bipartite 

graph, the generation will be done through both unipartite and bipartite functions 

nx.fast_gnp_random_graph nd nx.bipartite.random_graph, both based on the aforementioned 

Erdos-Renyi random graph.   
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3.3.6 Additional discarded method 

 

Researchers rely on a variety of techniques to determine what are meaningful cutoffs influencers 

identification. The present paper has presented multiple methods which are tested to identify which 

meaningful influencers. As was explained with centrality measures, some of these performant 

methods cannot be applied to the present network due to their high complexity that would 

necessitate high computing power considering the size of the network. An important and relevant 

method that has been discarded is that of testing network robustness without influencers. In a 

seminal Nature article cited over 10,000 times published in the journal, Jeong and al. find that 

removing influencers from a network increases its diameter (longest shortest path in a network) 

(Jeong and al., 2001). This method is applied in an iterative way to identify which nodes are 

influential. This method is indeed widely used in influencers analysis, however, it is too 

cumbersome to use on on large graphs due to its complexity of 𝑂(𝑉 ∗ (𝑉 + 𝐸)).  

 

3.3.7 Community detection 

 

To identify important nodes in the network, central nodes within communities will also be 

identified. In a graph, nodes can be said to belong to a specific community of nodes, where a  

community is defined as a “locally dense connected subgraph in a network” (Barabási and al., 

2016 : 325). This approach has been tested by Mester and al. (2021), with positive results. They 

find that both centrality measures and community detection identify similar key nodes. This 

implies that there is a credible correlation between hub-dominant nodes, as identified by 

community detection, and nodes that rank highly on centrality measures. Their findings were 

conclusive especially for less complex, or "lightweight" network (Mester and al., 2021). Since the 

network at hand is found to be sparse, it is expected that using Mester and al’s approach would 

yield similar results in terms of identifying key nodes. The use of identifying key nodes based on 

communities and to evaluate their ESG scores is to understand whether nodes that are influential 

in their own communities, rather than on the overall graph, have higher ESG scores.  

 

The algorithm that will be used is the “Louvain” algorithm, which is based on modularity 

optimization, where modularity measures the quality of a partition, meaning that the Louvain 
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algorithm aims to find the optimal structure of communities inside a network (Barabási and al., 

2016 : 355). The algorithm will be run multiple times, as outputs can differ, and the output with 

highest modularity will be chosen. A high modularity will be aimed at, to validate the 

meaningfulness of the communities.  

 

The nodes with the highest “hub dominance” will be identified for each community. The hub 

dominance is defined as “the ratio between the degree of the largest hub of the component c and 

the size of the component c” (Diop and al., 2021 : 15). The hub dominance will be implemented 

for each community C as:  ℎ𝑢𝑏 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒(𝐶) =  
max (𝑘(𝑛))

𝑁−1
, where N is the number of nodes 

within the community. The implementation follows these steps, iterating over each community: 

1. Computing the inner degree of a node within community C 

2. Identifying the nodes with the highest degree 

3. Calculating the ratio of the hub’s inner degree to the size of the community – 1 (effectively 

the maximum possible degree) 

4. Returning the results on a scale of 0 to 1.  

 

The dominant hubs returned will thereafter be evaluated against their eigenvector centrality. The 

dominant hubs might be different than the nodes with the highest eigenvector centralities as they 

are ones whose centrality is 1) based on their degree and 2) reflective of the potential to spread an 

attitude within a community, as opposed to the entire graph.  

 

3.3.8 Mann-Whitney U test 

 

The Mann-Whitney U test will be used to quantify the “meaningfulness” of the groups of 

influencers. This will be done by comparing the eigenvector centralities of each group of 

influencers to the overall graph's eigenvector centrality, and evaluating if there is a meaningful 

difference, thereby confirming the pertinence of the groups of hubs. The Mann-Whitney U test is 

a non-parametric statistical test used to compare two independent samples, identifying whether the 

distributions of the two groups are statistically different (Mann and Whitney, 1947). The test ranks 

the eigenvector centralities from both distributions together and then evaluates if one distribution 

tends to have higher ranks than the other, essentially testing the medians of the two distributions 
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against each other. The Mann-Whitney U test will be used instead of other statistical tests as it 

does not require any distribution shape and does not require homogeneity of variance.  Two 

hypotheses are therefore tested: 

 

The null hypothesis 

𝐻0 = There is no difference between the eigenvector distribution of the bipartite graph and 

the eigenvector distribution of the group of influencers. 

The alternative hypothesis 

𝐻1 = There is a difference between the eigenvector distribution of the bipartite graph and 

the eigenvector distribution of the group of influencers. 

 

The test will follow these steps: 

1) The eigenvector centralities of the entire the groups of influencers will be isolated.  

2) As an iterative process, they will be removed from the eigenvector centrality distribution 

of the graph for every group before performing the test. 

3) The rank will be turned into a z-score for ease of interpretation of the ranks. 

4) The p-value will be evaluated for statistical significance, where any value above 0.05 will 

lead to the test being discarded for that possible group of influencers. 

5) Significance level will be set at α=0.05 (confidence level of 95%), for a critical z value of 

|1.96|.  

6) The null hypothesis will be rejected for any possible group of influencers if the z value is 

below -1.96 or above 1.96. Conversely, the alternative hypothesis will be accepted.  

 

It must be noted that a two-tailed Mann-Whitney test will be performed as the interest lies in the 

difference between the medians, not whether one is higher or lower, that is, whether the groups of 

hubs have higher or lower eigenvector centralities. A higher centrality would be represented by a 

lower z (indicating the median of the distribution of hubs is higher than that of the original 

distribution), as is expected. A negative z score however would point to lower eigenvector 

centralities in the groups, which is not expected but may happen for groups not created based on 

eigenvector centralities. 
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The test will be computed on the original graph and not on the projections, as the eigenvector 

centrality distribution has been determined too biased on the projections. Instead, the eigenvector 

centrality distribution of the original graph will be divided between the companies and the 

individuals, as will the nodes within the groups, and the test will be performed. This will be done 

due to the high differences between the values of the individuals and companies on the eigenvector 

centrality distribution. The test will be performed using the “mannwhitneyu” package in python. 

Interpretation of meaningfulness will also have been offered previously based on comparison with 

eigenvector centralities, assortativities, and other factors. Therefore, potential groups of 

influencers that would have already been deemed not meaningful will have been discarded.  

 

 

3.3.9 ESG Measures 

 

As a final step, the ESG scores of the groups of hubs identified as meaningful by the Mann-

Whitney U test will be compared to those of all companies. This is done in two ways: 

 

1) Visual comparison between ESG distributions. Assessment of the ESG distribution is made 

to understand whether influencers tend to have the same ESG scores as the rest of 

companies, or whether they tend to find themselves in an extreme or another.  

2) Spearman correlation test. The Spearman correlation test is computed to help determine if 

certain groups of hubs tend to have higher or lower ESG scores than the overall distribution 

of ESG scores of the companies in the graph. This will be done by comparing the 

eigenvector centrality distribution to the ESG one, for the top and bottom nodes of the 

overall graph. The Spearman rank-order correlation test therefore evaluates the strength 

and direction of the relationship between the two ranked sets of data. The test returns the 

coefficient 𝑟𝑠 between -1 and 1, where 1 signifies a perfect negative correlation and 1 a 

perfect positive correlation, whilst 0 indicates no correlation, as well as the p-value, which 

will be evaluated in the same way as for the Mann-Whitney U test. 
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Chapter 4: Results 

 

4.1 Preliminary Analysis of the Network 

 

The original network output is unconnected, with 81671 individuals, 12362 companies, 211079 

links. As expected, there is a giant connected component of 93850 nodes, and 12 other connected 

components of sizes below 20.  

 

 

 

 

 

 

 

Figure 1. Size of connected components. 

 

A visual inspection of the second largest component offers insight into why these unconnected 

components can be removed safely from the graph without bias.  

 

 

Figure 2.1. Bipartite structure of the 

second largest connected component. 

 

Figure 2.2. Second largest connected component 

under the Fruchterman-Reingold layout. 
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Indeed, as can be seen in Figure 2.2, this component is disconnected from the main business 

network as the individuals present in this component are exclusively affiliated to three companies, 

and all of them to the same two companies. Therefore, this structure has no individual-company 

relationship with the original network and can be safely removed. 

 

The Giant Component as Graph G and its projections 

 

The largest connected component is used for all subsequent analyses and will be referred to as 

graph G. Some initial statistics on size, structure, and ESG can be viewed in Table 1. 

 

  Bipartite Graph Companies projection Individuals projection 

# nodes 92143 11297 80846 

# edges 210929 165240 4702884 

Density 4.97E-05 2.59E-03 1.44E-03 

Median ESG score 30 30 41 

Average ESG score 32.96 32.96 44.04 

Degree assortativity -0.18 0.16 0.6 

ESG assortativity 0.55 0.21 0.42 

Redundancy 0.41 0.65  - 

Transitivity 0 0.12 0.52 

Table 1. Initial statistics on the largest connected component (graph G) and its projections 

 

The following subsections will discuss the three graph’s behaviour: 

 

4.1.1 Network Structure 

 

Bipartite graph  

- The network has an average redundancy of 0.41, which means that on average, 41% of the 

neighbours of a node are connected to each other – a moderate overlap in connections. In 

the context of the bipartite graph, those neighbours are from the opposite sets. The 

implication for the spread of attitudes is that companies and individuals can receive 
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overlapping information. In terms of ESG scores, since assortativity is moderately high, 

this indicates that nodes receive similar ESG attitudes from multiple neighbours.  

- As expected, its transitivity is of 0, as no triangles could and should be present in a bipartite 

graph. 

- Its density of 4.97E-05 qualifies it as a sparse graph (where the number of links L is 

qualified as 𝐿 ≪ 𝐿𝑚𝑎𝑥), in line with most real networks (Barabási and al., 2016 : 53). As 

density is measured from a scale of 0 to 1, where a density of 0 represents a graph without 

edges while a density of 1 indicates a graph where every pair of vertices is connected by a 

unique edge, it can be concluded that the network is sparse.  

 

Companies projection  

- As expected, the redundancy coefficient for the Companies projection is 0.24 higher than 

that of the bipartite graph, indicating that a high number of overlapping links have indeed 

been created during the creation of the projection, which will have implications for 

centrality measures and influencers based on degree distribution.  

- A global clustering coefficient of 0.12 indicates moderate level of clustering, where 12% 

of a randomly picked node’s neighbours will be connected. It was expected for the 

projections to have a certain level of transitivity, as they may share business leaders. 

- The Companies projection has the highest density of all three graphs. It is indeed to be 

expected behaviour that companies would be more connected overall to each other than 

individuals would be between each other, due to the nature of the entities and since 

individuals are many in the graph.   

- The implication of these results is that companies might act as hubs connecting diverse 

leaders.  

 

Individuals projection  

- The Individuals projection has a high global clustering, where 52% of a randomly picked 

node’s neighbours will be connected. In this case, transitivity indicates which leaders are 

linked by virtue of being associated with the same company. Considering that many 

business leaders serve on the board or as executives for multiple companies, they create 

links with other business leaders with whom they have an overlapping network. 
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Individuals’ transitivity is also higher than that of the Companies projection as there are 

many more business leaders than companies in the network. Redundancy was not 

computed due to time complexity, reflective of a high number of edges. 

- The implication is that the Individuals projection is sparse but clustered, meaning that the 

network of individuals might not be widely connected, rather there might be specific 

groups of business leaders who collaborate across multiple companies.  

 

These findings validate the approach of this use to use the bipartite graph as the main one for 

subsequent analyses. 

 

4.1.2 Assortativity 

 

Bipartite graph  

- The light degree disassortativity of the bipartite graph (-0.18) indicates that nodes with 

higher degrees have a slight tendency to tend to connect with nodes with lower degrees and 

vice-versa. That is, some companies have a slight tendency to connect to many individuals, 

who themselves are affiliated to few companies, and some companies have a slight 

tendency to few individuals who themselves are affiliated to many companies. This can be 

an indication that certain nodes act as influencers and connect to many lesser-connected 

nodes. These results are in line with those expected for a bipartite social network where the 

network flow is that of influence (Vasques Filho and al., 2020).  

- The fairly strong numeric assortativity (0.55) reveals ESG assortativity may be skewed 

towards higher results for individuals working at few companies (and vice-versa). This is 

particularly true given individuals have lower degrees, making the weight of the score of 

the company represented in the relationship a relatively higher one.  

 

Companies projection  

- The light degree assortativity (0.16) and ESG assortativity (0.21) reveal a light tendency 

for companies to affiliate with companies of similar degrees and ESG scores. This is at 

odds with the bipartite graph. In the case of degree assortativity, this can be explained by 

induced edges, redundancy, and transitivity. In this case, degree assortativity for the 
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Companies projection will be used only as a basis for comparison with groups of 

influencers.  

- With respect to the ESG assortativity being much lower than on the original graph, it is 

unclear in which proportion it is due to the ESG assortativity on the bipartite graph being 

indeed skewed or to induced links in the projection creating multiple links to certain 

companies. This is indicative of ESG assortativity not being a robust measure in this case. 

ESG assortativity should therefore be used rather as a baseline for comparison for groups 

of hubs, not for insights in and of itself. 

 

Individuals projection 

- The high degree assortativity (0.6) is a clear indication of the strong effects of induced 

links, transitivity, and redundancy, as for the Companies projection.  

- The same factor influence ESG assortativity. Additionally, in this case, the moderate effect 

of companies associating with others of similar ESG scores can also be due to the way in 

which ESG scores are computed for individuals (averages of the companies’ scores that 

individuals are affiliated with). Indeed, these are higher than those of companies. This is 

due to companies’ scores being duplicated in those averages – that is, the same company 

will appear in the scores of all the individuals it is affiliated to. The higher average ESG 

scores of individuals reflect that companies with higher ESG scores have more weight in 

those values, that is, that they have more connections to business leaders. This is also 

reflected in the more symmetric distribution of ESG scores of individuals (Figure 3.2), 

which resembles more a normal distribution, while the distribution of non-duplicate 

companies is positively skewed.  

 

4.1.3 ESG Distribution 

 

The ESG distribution is observed in Figure 3.1 skewed to the right shows that a portion of 

companies are outliers on the higher end of the distribution. This paper will seek to identify 

whether those companies are also influencers or not.  
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4.1.4 Degree distribution 

 

The degree distribution clearly shows it is built on a double distribution, whereby individuals have 

fewer connections than companies. The median degree is 2, which on a non-logarithmic graph can 

be seen to be caused by the individuals’ degree. 

 

 

 

 

 

Figure 4.1. Degree distribution on 

bipartite graph 

Figure 4.2. Degree distribution on 

bipartite graph (y-log scale) 

Figure 3.1: Distribution of ESG scores 

computed on the companies of graph G 

 

Figure 3.1. Distribution of ESG scores 

computed on the companies of graph G 

 

Figure 3.2. Distribution of ESG scores 

computed on individuals and companies 
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Figures 4.3 and 4.4 show on a log-log scale how the two distributions compose the first. The lack 

of degrees of 1 can be noted as expected. The two distributions were compared fitted against a 

power law distribution and an exponential one through a log likelihood ratio test. Companies’ α 

resulted in 3.8, whilst individuals’ is 5.74, which is indicative that companies’ distribution has a 

heavy tail typical of power law distributions and an overall higher fit with a power law distribution 

than individuals. The results of the log likelihood ratio test indicated the distributions followed 

more closely a power law distribution, whereby the result was of 51.58 for companies (with 

statistical significance of p = 0.000179) and of 16.51 for individuals (with low statistical 

significance of p = 0.26). A chi-square test was also performed against the individuals’ degree 

sequence to identify a potential Poisson distribution, refuting it (χ² of 6.61E+27 with p = 0). The 

individuals’ degree sequence is therefore considered rather an uncertain power law distribution.  

 

While the degree distributions of the projections are biased, their visualization is interesting as it 

permits to ese the effect of projecting edges, as a contrary effect of the distribution on the bipartite 

graph. Indeed, the distribution of the Companies’ projection reflects lower degrees as nodes’ 

connections reflect business leaders in common, whilst the Individuals’ one reflects higher degrees 

due to being connected to many individuals through common companies. 

Figure 4.3. Degree distribution on 

bipartite graph (log-log scale) 

Figure 4.4. Degree distribution by top and 

bottom nodes on bipartite graph (log-log scale) 
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The bias introduced by induced links, redundancy, and transitivity can be best visualized in the 

presence of degrees of 1 in the distributions, that had been removed in the original graph. 

Therefore, as has been discussed, the degree distribution of the bipartite graph will be utilized for 

analyses.   

 

The degree centrality distributions reflect the distributions without the removal of the degrees of 

1, as they have been normalized over the maximum degree of the graphs. 

 

 

 

 
 

Figure 6. Degree centralities on the bipartite graph, the Companies projection and the Individuals projection. 

 

Figure 5.1. Degree distribution on the 

Companies projection (log-log scale) 
Figure 5.2. Degree distribution on the 

Companies projection (log-log scale) 
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4.1.5 Eigenvector Centrality 

 

 

 

 

  

 

 

  

 

 

The eigenvector centrality distribution represented in figures 6.1 to 6.4 offer a few main insights: 

- Companies have proportionally higher centralities, pointing to companies as the 

influencers most indicated in spreading attitudes in the business network (figure 6.4). 

Figure 6.1. Eigenvector centrality of 

bipartite graph 

Figure 6.2. Eigenvector centrality of 

bipartite graph, on a y-log scale 

Figure 6.3. Eigenvector centrality of 

bipartite graph, separated by nodes 

Figure 6.4. Eigenvector centrality of 

bipartite graph, separated by nodes, on a 

y-log scale 
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- A small number of nodes have centralities an order of magnitude higher than the rest, 

shown by the sharp increase in figure 6.1.  

- Related to the abovementioned point, most nodes have a centrality between 10−7 and 10−3, 

distinguishing nodes above the latter centrality, pointing to potential influencers. This will 

be validated in the next sub-sections.  

- The eigenvector centrality shows that influencers can be both individuals and companies 

(nodes with high centralities), as opposed to the degree distribution, where the highest 

degrees belong to companies (figure 6.4). 

The sharp increase in eigenvector centrality is also observed on the projections, validating the 

findings on the bipartite graph.  

 

      

Figure 7. Eigenvector centrality distributions on projections 

 

Figure 8. Dispersion of ESG scores against eigenvector centrality values on the bipartite graph 

 

A first view of the eigenvector centralities against ESG scores point to nodes with higher values 

indeed displaying higher ESG scores.  
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4.2  Groups of Influencers 

 

4.2.1 All potential groups of influencers 

 

This chapter will indicate the results of the different outputs analyze the different possible groups 

of influencers, as presented in table 2 and table 3. Influencers identified through hub dominance 

within communities are not present in the table, as they are not part of continuous groups, and are 

discussed in the last subsection.  

  

Cutoff % hubs (nodes above the cutoff) 

Bipartite 

graph 

Companies 

projection 

Individuals 

projection 

Bipartite 

Graph 

Companies 

projection 

Individuals 

projection 

Hubs with the 10 highest eigenvector 

centralities - - - - - - 

Hubs with the 12 highest eigenvector 

centralities - - - - - - 

Hubs with the highest eigenvector 

centralities, with cutoff at the knee 0.0049 0.0078 0.0012 2.36 14.67 6.47 

Hubs with the highest degree, with cutoff 

at 2 Std Dev above the mean - - - 2.92 - - 

Hubs identified by random projections 

degree - 54 168 - 14.36 17.56 

Hubs identified by random bipartite 

graph degree generated with equivalent 

density 15 - - 5.04 - - 

Hubs identified by random unipartite 

graph degree generated with equivalent 

density 18 - - 4.16 - - 

Hubs identified by random bipartite 

graph degree generated with equivalent 

probability 13 - - 5.7 - - 

Hubs identified by random unipartite 

graph degree generated with equivalent 

probability 16 - - 4.75 - - 

  

Bipartite 

Graph 

Companies 

within 

graph 

Individuals 

within 

graph 

Bipartite 

Graph 

Companies 

within 

graph 

Individuals 

within 

graph 

Hubs with the highest degree, with cutoff 

at xmin - 60 7 - 4.06 0.87 

Table 2. All possible groups of hubs identified by their cutoffs.  
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Degree Assortativity ESG Assortativity 

Bipartite 

Graph 

Companies 

projection 

Individuals 

projection 

Bipartite 

Graph 

Companies 

projection 

Individuals 

projection 

Original graph -0.18 0.16 0.6 0.55 0.21 0.42 

Hubs with top 10 eigenvector centralities -0.92 -0.04 0.31 0.59 0.15 0.27 

Hubs with top 12 eigenvector centralities -0.91 - - 0.6 - - 

Hubs with the highest eigenvector 

centrality, with cutoff at the knee -0.28 - - 0.46 - - 

Hubs with the highest degree, with 

cutoff at 2 Std Dev above the mean -0.28 - - 0.58 - - 

Hubs identified by random projections 

degree - 0.13 0.59 - 0.19 0.42 

Hubs identified by random bipartite 

graph degree generated with equivalent 

density -0.22 - - 0.57 - - 

Hubs identified by random bipartite 

graph degree generated with equivalent 

probability -0.23 - - 0.57 - - 

Hubs identified by random unipartite 

graph degree generated with equivalent 

density -0.25 - - 0.57 - - 

Hubs identified by random unipartite 

graph degree generated with equivalent 

probability -0.24 - - 0.57 - - 

  

Bipartite 

Graph 

Companies 

within 

graph 

Individuals 

within 

graph 

Bipartite 

Graph 

Companies 

within 

graph 

Individuals 

within 

graph 

Hubs with the highest degree, with 

cutoff at xmin - -0.41 -0.43 - 0.28 0.28 

Table 3. Assortativities of all possible groups of hubs. 
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4.2.2 Top 10 Highest Eigenvector Centralities  

 

In this subsection, the 10 nodes highest eigenvector centralities are analyzed. This analysis is 

conducted on the bipartite graph and the projections. Since these influencers are taken as a baseline 

for analysis for other influencers, this analysis is conducted on the projections as well, which offers 

more insight into the difference in results. 

 

Bipartite Graph 

  

Eigenvector 

centrality rank 
Company Eigenvector Centrality ESG score 

1 Morgan Stanley 0.494 47 

2 Citigroup Inc. 0.291 55 

3 Deutsche Bank Aktiengesellschaft 0.259 59 

4 JPMorgan Chase & Co. 0.179 49 

5 Credit Suisse Group AG 0.106 53 

6 The Goldman Sachs Group, Inc. 0.098 46 

7 Blackstone Inc. 0.095 33 

8 UBS Group AG 0.093 79 

9 Bank of America Corporation 0.075 65 

10 The Carlyle Group Inc. 0.071 29 

Table 4. Eigenvector centralities of the nodes with the 10 highest values computed on the bipartite graph.  

 

The 10 highest eigenvector centralities display a significant dispersion in values, going from close 

to 0.5 to below 0.1 after the first five values. This suggests that first five values are significantly 

more influential than the others. It is interesting to note that the 10 highest eigenvalues all pertain 

to companies all from the financial sector. The fact that individuals are absent from the top could 

indicate that it is companies that are the most influential entities in the network. However, these 

results account only direct connections and no soft influence or intra-company influence.  

 

Thee ESG scores of these companies are also significantly higher than those of the rest of the 

companies, although they are not part of the outliers. While this might be due to ESG of the 

financial industry differing to that of other industries, this is aligned with the current management 
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literature that indicates that financial giants are the ones leading the ESG influence network 

(Ramaswamy, 2023).  

 

Figure 9. Distribution of ESG Scores of the influencers with the highest eigenvector centralities 

 

These companies have an assortativity of -0.92, exhibiting an almost entirely disassortative 

behaviour. Whilst very high, this result is in line with the of Vasques and O’Neale who had found 

an assortativity of -0.65 for the network of Norwegian board members (Vasques Filho and al., 

2020 : 5). Behaviour is expected to be exacerbated for the top influencers. Combined with the high 

eigenvalues, it can be inferred that these are companies that are led by individuals with few 

connections to other companies, indicating a potential concentration of power. The ESG 

assortativity is higher than that of the original graph, indicating that they tend to associate with 

individuals that themselves are affiliated to companies with similar scores.  

 

Companies projection 

 

Eigenvector 

centrality rank 
Company Eigenvector Centrality ESG Scores 

1 Citigroup Inc. 0.130 55 

2 Deutsche Bank Aktiengesellschaft 0.121 59 

3 Morgan Stanley 0.118 47 

4 Blackstone Inc. 0.111 33 

5 General Electric Company 0.110 46 

6 KKR & Co. Inc. 0.106 37 

7 JPMorgan Chase & Co. 0.105 49 
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8 The Goldman Sachs Group, Inc. 0.103 46 

9 The Carlyle Group Inc. 0.100 29 

10 International Business Machines Corporation 0.093 52 

Table 5. Eigenvector centralities of the nodes with the 10 highest values computed on the Companies projection  

 

 

7 out of the 10 companies with the highest eigenvector centralities in the Companies projection 

also have the highest centralities in the bipartite graph, confirming the results that those companies 

are indeed the top influencers in the network. It is possible that the three companies that were not 

part of the projection’s top values had their centrality in the overall network diluted due to 

redundancy, making it so that the 3 other companies have had their neighbourhood centrality 

inflated. The overall absolute lower eigenvalues in the projection are indicative of the presence of 

densely connected neighbourhoods, where the centrality of the most influential nodes is distributed 

evenly across the neighbourhoods but not across the graph, as per the high redundancy of the 

graph. The degree assortativity of -0.04 and the ESG assortativity of 0.15 being slightly lower than 

that of the original graph signifies that companies that are influencers have a lesser propensity to 

associate with similar companies and a more diverse assortativity. This is at odds with the findings 

for the influencers on bipartite graph, confirming a more random pattern of connections.  

 

Individuals projection 

 

Rank of individuals with highest 

eigenvector centrality 
Eigenvector centrality ESG Score 

1 0.059 55 

2 0.055 55 

3 0.055 55 

4 0.050 64 

5 0.048 25 

6 0.047 55 

7 0.046 48 

8 0.046 46 

9 0.046 37 

10 0.044 46 

Table 6. Eigenvector centralities of the nodes with the 10 highest values computed on the Individuals projection  
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The highest eigenvector centralities of the Individuals projection are significantly lower than in 

the bipartite graph and Companies projection. This might be due to high the high redundancy and 

transitivity in the projection, making influence more localized. If the structure of the graph is less 

distributed than that of the original graph, influencers in the projection might not have an overall 

influence as high as on the bipartite graph. Since eigenvector centrality extends the neighbourhood 

over the graph, the behaviour of lower scores is expected. Interestingly, the individual with the 

highest eigenvector centrality on the projection is affiliated to influencers from the financial 

industry from the other two groups of 10 highest eigenvector centralities (Citigroup Inc, Deutsche 

Bank Aktiengesellschaft, Morgan Stanley).  

 

4.2.3 Groups of potential influencers based on ESG assortativity   

 

After an exploration of the ESG assortativity, a sharp increase in assortativity was found up to the 

12th node of the bipartite graph, indicative that a distinctive group of influencers might rather be 

that of the 12 highest than only 10. The nodes up to the 12th are companies. Those comprised 

between the 13th node and the knee of the eigenvector distribution constitute another group which 

is composed mainly of individuals (to see in the next subsection). Figure 8 demonstrates that 

increase qualifying the first group, and then the decrease qualifying the second group.  

 

 

Figure 10. Cumulative ESG assortativity of influencers above the eigenvector centrality’s distribution knee, sorted by 

their eigenvector centrality 
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The two additional influencers compared to the top 10 values with the highest eigenvector 

centralities are also important financial institutions, indicative of the meaningfulness of the group 

of influencers. 

 

Eigenvector centrality rank Company Eigenvector Centrality ESG score 

1 Morgan Stanley 0.494 47 

2 Citigroup Inc. 0.291 55 

3 Deutsche Bank Aktiengesellschaft 0.259 59 

4 JPMorgan Chase & Co. 0.179 49 

5 Credit Suisse Group AG 0.106 53 

6 The Goldman Sachs Group, Inc. 0.098 46 

7 Blackstone Inc. 0.095 33 

8 UBS Group AG 0.093 79 

9 Bank of America Corporation 0.075 65 

10 The Carlyle Group Inc. 0.071 29 

11 HSBC Holdings plc 0.067 63 

12 Barclays PLC 0.064 68 

Table 7. Eigenvector centrality of 12 potential influencers based on ESG assortativity 

 

 

4.2.4 Groups of influencers based on eigenvector centrality  

 

As mentioned, another potential group of influencers is that above the knee of the eigenvector 

distribution pictured on figure 10. The knee is situated at the 0.0049 value, and the nodes above it 

to be considered part of the group of hubs represents 2.36% of all total nodes. The group would be 

composed 95.35% of individuals and 4.65% of companies, which is higher than the overall ratio 

of the bipartite graph of 86.85%. This reveals that there while the nodes with utmost centrality are 

companies, there is a large group of influencers who are individuals, as opposed to similar groups 

of influencers based on the degree distribution, where the nodes with the highest degrees will be 

companies. 
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Figure 11. Cutoff at the knee of the eigenvector centrality distribution 

 

The ESG assortativity in this group decreases as does the centrality, after which it will start to 

increase, making it so that this group of nodes has the lowest ESG assortativity (0.46) of all the 

groups of influencers. This is likely to be due to the higher presence of individuals in the mix, of 

which the ESG assortativity is more normally distributed. The degree assortativity is somewhat 

lower than that of the overall graph (-0.28 compared to -0.18), indicative of a sharp decrease in 

degree assortativity from the nodes with the highest 10 eigenvector centralities which, where the 

last 0.1 decrease in points are distributed across more than 97% of the graph. This may indicate 

that the highest degree disassortativity and the highest discrepancy in degree assortativity happens 

within this group.  

 

4.2.5 Groups of influencers based on the degree distribution 

 

Group of influencers based on 2 standard deviations above the mean 

 

Another group of influencers was identified as any nodes two standard deviations above the mean 

of the degree distribution of the bipartite graph. The standard deviation was found to be of 9.79, 

and the group of hubs to be of 2.92% of total nodes in the graph, similar to that of the knee of the 

eigenvector centrality. The composition however differs, by which all but 3 nodes are companies. 

Individuals will therefore not be considered in this group of hubs. The eigenvector centralities for 

these hubs does not lead to conclusive insights about those nodes’ centrality. The degree 

assortativity is the same as that of the influencers identified by the knee of the eigenvector 
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distribution, invoking a parallel behaviour between nodes with highest degrees or highest 

eigenvector centralities. 

 

 

     

Figure 12. Eigenvector centrality distribution of hubs 2 standard deviations above the mean of the degree distribution 

 

Group of influencers based on 𝑥𝑚𝑖𝑛 

 

The 𝑥𝑚𝑖𝑛 was computed on the bipartite graph’s degree distributions pertaining to the individuals 

and the companies, which found respectively degree 7 and 60 as cutoffs, above which the 

distributions are considered to take a power law shape. The individuals’ cutoff identifies 0.87% of 

individuals to be influencers (703) and to 4.06% of companies (459), arriving at similar numbers 

of influencers for each group. Interestingly, both groups sport the same ESG assortativity (0.28) 

and similar degree assortativity (-0.41 for companies and -0.43 for individuals). The degree 

assortativity is much lower than that of the original graph (more disassortative), closer to that of 

the 10 most influential hubs (quasi fully disassortative). The ESG assortativity however is more 

similar to the one computed on projections than on the bipartite. The ESG assortativity for this 

group was computed between entities in these groups and their neighbours within the graph.  

 

4.2.6 Groups of influencers based on random graphs’ maximum degrees 

 

Random bipartite graph  
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As mentioned in the methodology section, random graphs were generated as bipartite and 

unipartite graphs. The degree distribution of graphs generated with density and edge probability 

followed a similar shape. 

 

The graphs generated as a bipartite graph are seen to follow a power law distribution (figure 13), 

while the ones generated as unipartite follow a Poisson shape (figure 14), as expected. 

 

 

 Figure 13. Random bipartite graphs generated as bipartite graphs 

 

Figure 14. Random bipartite graphs generated as unipartite graphs 

 

Apart from the degree distribution, the results for all four randomly generated networks are similar. 

The graphs generated as bipartite have a maximum degree that is slightly lower than that of the 

graphs generated as unipartite. The highest maximum degree would be that of the random 

unipartite graph generated with equivalent density (degree of 18). If the influencers are to be any 

node above this cutoff of the degree distribution of the original bipartite graph, influencers 

represent 4.46% of the total nodes. The lowest maximum degree would be that of the random 

bipartite graph generated with equivalent edge probability (degree of 13) (figure 14). If the 

influencers are to be any node above this cutoff of the degree distribution, influencers represent 

5.7% of the total nodes. It must be noted that the random graphs do contain degrees of 1, which 
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will have an impact on the maximum degree of the random graphs, and their differences in 

distribution with the original graphs. 

 

      
Figure 15. Eigenvector centralities of influencers generated with the lowest and highest cutoff of the random bipartite 

graphs  

 

The maximum degree on these randomly generated graphs is much lower than that of the original 

graph which has a maximum degree of 557. The original graph therefore has a heavier right tail in 

its degree distribution, reflective of the nature of the nodes in that heavy tail, which can be 

considered as hubs. The degree assortativity of those hubs however is similar to that of the original 

graph (between -0.22 and -0.25 for all 4 graphs), indicating similar degree structure for most of 

that heavy tail as for the rest of the graph, as well as the ESG assortativity which is the same for 

all 4 graphs (0.57) and 0.02 points to that of that of the original graph. 

 

Random projections 

 

Random graphs were algo generated as equivalents of the projections. While still Poisson, the 

shape of the distribution has been affected by the number of nodes high density/edge probability 

provided, where for such dense graphs, the median degree has increased, resulting in no nodes 

with low degrees, and higher maximum degree. These distributions therefore reflect the effect of 

induced edges, redundancy, and transitivity in the original projections. The maximum degree of 

the random projections and the degree distribution of the random projections would therefore not 

be indicated for detecting meaningful groups of hubs, further reinforced by the % of resulting hubs, 

much higher than that of other methods (14.36% for companies and 17.56% for individuals). 
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Figure 16. Random Companies projection  

Figure 17. Random Individuals projection  
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4.3  Potential influencers based on hub dominance within communities 

 

 

Dominant hubs from the bipartite graphs 

 

On the entire bipartite graph, the Louvain algorithm found 34 communities of different sizes, as 

seen on figure 17, ranging from a size of 4 to 11099. As mentioned, the algorithm was run multiple 

times until reaching maximum modularity. The modularity returned was of 0.77, considered quite 

high. This suggests strong partitions between communities in the network, that is, that there 

significantly more edges within communities than between communities. This is indicative of 

meaningful communities as opposed to nodes groupings as an artifact of the partitioning process. 

 

 
Figure 18. Community sizes of random bipartite graph 

 

The nodes identified as the most dominant within their communities can be seen in table 8. Hub 

dominances are between 0 and 1, as expected. However, 23 out of 34 communities have a most 

dominant hub with a hub dominance of under 0.1, which is indicative of this measure being of 

mixed meaningfulness for identifying influencers. It is interesting to note that all the nodes with 

the highest hub dominance in the graph’s communities are companies, not individuals. 50% of the 

dominant influencers are in the 90th to 100th percentiles of highest eigenvector values. Since the 

modularity of the community is high, the communities are meaningful, however, most the hub 

dominances may not be.  
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Community Company with highest hub dominance Hub dominance 

Eigenvector centrality 

percentile 

1 Deutsche Bank Aktiengesellschaft 0.038 100.00 

2 PTT Public Company Limited 0.109 90.30 

3 Westpac Banking Corporation 0.026 96.52 

4 BNP Paribas SA 0.029 99.85 

5 Walmart Inc. 0.015 97.66 

6 Toyota Motor Corporation 0.015 95.98 

7 Novartis AG 0.015 96.43 

8 Commerzbank AG 0.03 97.71 

9 State Bank of India 0.022 87.18 

10 Orkla ASA 0.02 81.03 

11 Cisco Systems, Inc. 0.023 97.67 

12 Bank of China Limited 0.012 95.01 

12 Hotai Motor Co.,Ltd. 0.714 26.12 

13 Hotai Finance Co., Ltd. 0.714 2.43 

13 UniCredit S.p.A. 0.058 98.20 

14 Telecom Italia S.p.A. 0.058 96.54 

15 Industrias Bachoco, S.A.B. de C.V. 0.857 15.35 

16 Exelon Corporation 0.009 96.41 

17 Brookfield Corporation 0.063 99.25 

18 Anglo American Platinum Limited 0.061 92.50 

19 Mari Petroleum Company Limited 0.049 31.74 

20 Coca-Cola FEMSA, S.A.B. de C.V. 0.086 92.98 

21 Blackstone Inc. 0.117 99.99 

22 CapitaLand Limited 0.025 96.42 

22 Gulfstream Natural Gas System, L.L.C. 0.667 9.52 

23 Southeast Supply Header, LLC 0.667 9.52 

24 First International Bank of Israel Ltd 0.062 81.37 

25 HL Holdings Corporation 0.702 72.06 

25 TOKAI Holdings Corporation 0.955 61.44 

26 TOKAI Corp. 0.955 17.61 

26 RPC, Inc. 0.438 33.78 

27 Marine Products Corporation 0.438 33.78 

28 Mega Financial Holding Co., Ltd. 0.028 30.33 

29 Woori Financial Group Inc. 0.035 22.05 

30 Banco do Brasil S.A. 0.029 94.06 

31 Forterra, Inc. 0.191 40.64 

31 Japan Investment Adviser Co., Ltd. 0.909 3.71 

32 Japan Investment Adviser Co., Ltd., Investment Arm 0.909 3.70 

33 Ayala Corporation 0.084 90.97 

34 LifeVantage Corporation 0.5 34.29 

Table 8. Eigenvector centralities of influencers (companies) identified by hub dominance within the entire graph 
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The highest hub dominance (0.955) is that of TOKAI Holdings Corporation, a Japanese company 

engaged in five main business segments: oil and gas, real estate, cable television, information and 

communication services, and water manufacture (Financial Times, 2023). This may be indicative 

of this company being tied to business leaders affiliated to a wide array of companies in its market. 

Since its eigenvector centrality is at 61.44 percentile, its influence might be strong in its market, 

and less so in the overall business network. This is reflective of a property of the Louvain algorithm 

and hub dominance which identify influencers within communities and do not reflect influencers 

that bridge communities together. 

 

As of these findings, the meaningfulness of these influencers is uncertain, and will be further 

validated with statistical testing.  

 

Dominant hubs for the Companies projection 

 

16 communities were found on the Companies projection. The distribution of company 

communities’ sizes was also rightly skewed, as observed on the original graph, but less evenly 

distributed and with outliers with larger sizes. The presence of larger outliers in the Companies 

projection could indicate the existence of influential companies that form major hubs or have more 

widespread connections. The relatively high modularity of 0.62 also reflects meaningful partitions, 

albeit less so than on the original graph.  

 

 
Figure 19. Community sizes of Companies projection 
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The hub dominance values of most important hubs in the projection are between 0.08 and 0.35. As 

hub dominance has been calculated as the extent to which a hub node is interconnected within its 

own community, this would indicate that the connections are more evenly distributed, and while 

there are influencers, they do not differ so much from the rest of the graph. This is validated by 

the high density of the projection and the similar findings of the 10 highest eigenvector centralities 

of the projection.  

 

Community Company with highest hub dominance Hub dominance Eigenvector centrality percentile 

1 Morgan Stanley 0.132 99.98 

2 BRF S.A. 0.192 86.09 

3 Lloyds Banking Group plc 0.201 99.41 

4 Deutsche Bank Aktiengesellschaft 0.15 99.99 

5 Biogen Inc. 0.212 95.28 

6 AUO Corporation 0.15 37.03 

7 Bank Hapoalim B.M. 0.341 67.83 

8 China Merchants Bank Co., Ltd. 0.093 85.18 

9 ANZ Group Holdings Limited 0.224 96.62 

10 Telia Company AB (publ) 0.245 92.34 

11 Mitsubishi UFJ Financial Group, Inc. 0.085 96.31 

12 Brookfield Corporation 0.231 98.2 

13 ICICI Bank Limited 0.332 96.38 

14 CIMB Group Holdings Berhad 0.137 87.24 

15 Savola Group Company 0.156 62.39 

16 POSCO Holdings Inc. 0.119 53.47 

 Table 9. Eigenvector centralities of influencers identified by hub dominance on the Companies projection 

 

It must be noted while 75% of the dominant influencers are in the 90th to 100th percentiles of 

highest eigenvector values, only two companies have been identified as being the dominating 

influencers of their respective communities both for the communities created through the entire 

graph and through the Companies projection: 

- Deutsche Bank Aktiengesellschaft, which returns hub domination in graph’ community of 

0.038 and in the Companies projection’s community as 0.15.  

- Brookfield Corporation which returns hub domination in graph’ community of 0.063 and 

in the Companies projection’s community as 0.231. 

While their hub dominance is low, their presence as a dominating hub in both networks points to 

the importance of the node, as does their high eigenvector centrality. Indeed, these are nodes that 
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might belong to clusters where their influence does not spread so strongly as other dominant hubs 

in other communities, but that will have a higher influence over the overall graph. 

 

Dominant hubs for the Individuals projection 

 

The communities for the Individuals projection have first been computed on individuals. 

Thereafter, the companies associated to the individuals were identified, for comparison of 

community sizes with the Companies projection, which had outliers with larger sizes. The 

distribution of the sizes is therefore displayed sizing the companies. Modularity in this case is also 

slightly higher than that of companies – 0.67. In this case, the distribution is also rightly skewed 

but more evenly so, due to individuals tending to cluster more consistently within communities or 

having diverse affiliations with various companies.  

 

 
Figure 20. Community sizes of Individuals projection 

 

 

Community 

Individuals with highest hub 

dominance 

Eigenvector centrality 

percentile 

1 0.382 99.9 

2 1.262 94.34 

3 0.68 99.76 

4 0.675 96.38 

5 1.637 99.9 

6 0.534 99.24 

7 1.417 99.76 

8 1.539 99.76 
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9 0.465 99.94 

10 0.671 97.46 

11 0.618 99.9 

12 1.119 97.48 

13 0.361 88.23 

14 0.613 99.9 

15 2.787 79.89 

16 0.824 56.92 

17 0.31 94.4 

18 0.699 97.18 

19 1.821 95.02 

20 2.442 99.9 

21 0.556 72.2 

22 0.72 100 

23 12.111 39.29 

24 0.664 96.38 

25 1.919 62.26 

26 1.876 92.06 

Table 10. Eigenvector centralities of influencers identified by hub dominance on the Individuals projection 

 

 

The hub dominance of the Individuals projection denotes that some dominant influencers have a 

dominance that is orders of magnitude higher than the rest. Community 22 with its dominant hub 

with a dominance of 12.111 can illustrate this. A hub dominance of is exhibited when a node is 

connected to all other nodes, and a hub dominance over 1 suggests multi-link connections. A hub 

dominance of 12 would indicate that the node has many connections to the same other nodes. 

Community 22 is composed of 10 individuals that are associated to 164 companies. The dominant 

hub is an individual that works in two of those companies. While these are few companies, the 

number of edges might be explained by the fact that for one company, 75 individuals are part of 

the Community 22, and for the second company, there are 36. As those individuals have a presence 

in the other 10 companies represented by the community, it is reasonable to infer those two 

companies are strategically placed, which makes the community highly centralized around the 

dominant hub.  

 

Hub dominance in the case of the Individuals’ projection is therefore influenced by high 

transitivity, which has a high clustering effect around nodes. These results shed definitive light on 

the effect of transitivity of the Individuals’ projection, and reveal that influence metrics are be 
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overly affected by network structure and clustering, and cannot clearly define as to a node’s 

importance. This is in line with the findings of Conyon and Muldoon, who found exaggerate 

clustering on their board members projections (Conyon and al., 2004).  

 

4.5 Mann-Whitney U Test 

 

As presented in the last subsection, the potential groups of influencers that are build on projections 

present too heavy a bias as to be considered meaningful. Therefore, only groups of influencers 

based on the bipartite graph are considered for the Mann-Whitney U Test. The results from the 

Mann-Whitney U Test performed between the eigenvector centralities of companies within the 

bipartite graph and the eigenvector centralities on companies within the potential groups of hubs 

confirm that the groups are meaningful groups of hubs (table 11). The same can be said for the 

individuals (table 12). All results are deemed statistically significant (considering all p-values are 

below 0) and high absolute z-scores. The alternative hypothesis is therefore accepted for all groups 

of influencers: 

𝐻1 = There is a difference between the eigenvector distribution of the bipartite graph and the 

eigenvector distribution of the group of influencers. 

  

Mann-

Whitney 

U Statistic z score p-value 

Hubs with the 10 highest eigenvector centralities 99 -5.46 4.63E-08 

Hubs with the 12 highest eigenvector centralities 173 -5.98 2.21E-09 

Hubs with the highest eigenvector centralities, with cutoff at the knee 21543200 -38.11 0 

Hubs with the highest degree, with cutoff at 2 Std Dev above the mean 6473002 -46.3 0 

Hubs with the highest degree, with cutoff at xmin 381313.5 -31.02 2.48E-211 

Hubs identified by random projections degree 2660435 -46.29 0 

Hubs identified by random bipartite graph degree generated with equivalent 

density 14747300 -43.38 0 

Hubs identified by random bipartite graph degree generated with equivalent 

probability 17808438 -41.01 0 

Hubs identified by random unipartite graph degree generated with equivalent 

density 11115173 -44.99 0 

Hubs identified by random unipartite graph degree generated with equivalent 

probability 13476610 -44.14 0 

Hubs identified through hub dominance in communities based on the bipartite 

graph 145358 -3.9 9.63E-05 

Hubs identified through hub dominance in communities based on the 

Companies projection 23471 -5.12507 2.97E-07 

Table 11. Results from Mann-Whitney U test for the companies within the bipartite graph  
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Mann-

Whitney U 

Statistic Z score p-value 

Hubs with the highest eigenvector centralities, with cutoff at the knee 739444 -10.83 2.52E-27 

Hubs with the highest degree, with cutoff at 2 Std Dev above the mean 39854 -2.01 0.04 

Hubs identified by random projections degree 141921518 -143.25 0 

Hubs with the highest degree, with cutoff at xmin 9702030 -30.07 1.31E-198 

Hubs identified by random projections degree 1.42E+08 -143.25 0 

Hubs identified by random bipartite graph degree generated with 

equivalent density 128220 -4.09 4.36E-05 

Hubs identified by random unipartite graph degree generated with 

equivalent density 43891.5 -2.52 0.01 

Hubs identified by random bipartite graph degree generated with 

equivalent probability 314329 -7.03 2.13E-12 

Hubs identified by random unipartite graph degree generated with 

equivalent probability 92125 -3.88 1.05E-04 

Hubs identified through hub dominance in communities based on the 

Individuals projection 184364 -5.74 9.67E-09 

Table 12. Results from Mann-Whitney U test for the individuals within the bipartite graph  

 

Some remarks can be made about the results: 

- The high z scores are possibly due to the elimination of hubs (highest eigenvector 

centralities) from the original distribution before comparison, as all groups of hubs contain 

at least the 10 largest centralities, leading to large differences between the distribution of 

the hubs and that of the original graph. 

- Considering the large range of absolute z scores separately amongst companies and 

individuals, it is most possibly due to high difference in sample sizes, which makes 

comparison of differences between groups biased.  

- However, the individuals have lower z scores than companies and larger sample sizes in 

most cases, indicating that there may be higher differences with the median of the 

distribution for the companies’ hubs than the individuals. 

- The lowest p-values belong to those distributions with the largest number of nodes. It is 

possible s those distributions are removes from the original eigenvector centrality 

distribution, the distributions’ difference is clearer, and the test more significant. 

- The negative z for all scores indicates that the original eigenvector distribution has a lower 

rank sum (or median) than the groups of hubs, as expected.  
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4.6 ESG Results 

 

The Mann-Whitney test confirms that all groups of hubs are indeed meaningful as groups of 

influencers, therefore, the relationship between the eigenvector centralities and ESG scores will 

be evaluated for all groups.  

 

4.6.1 Spearman correlation 

 

A Spearman correlation was computed on the original bipartite graph, comparing the eigenvector 

centrality distribution to the distribution of ESG scores. The following correlation coefficients 

were found: 

- For the bipartite graph – 0.345, with a p-value of 0, indicating a moderate correlation of 

statistical significance. 

- For the companies within the bipartite graph – 0.4, with a p-value of 0, indicating a 

moderate correlation of statistical significance. 

- For the individuals within the bipartite graph – 0.337, with a p-value of 0, indicating a 

moderate correlation of statistical significance. 

- For the Companies projection – 0.418, with a p-value of 0, indicating a moderate 

correlation of statistical significance. 

- For the Individuals projection – 0.335, with a p-value of 0, indicating a moderate 

correlation of statistical significance. 

The test clearly indicates that as the eigenvector centrality increases, whether overall or solely for 

companies or individuals, so does the ESG score.  

 

4.6.2 Visual Exploration 

 

Visual explorations on different types of graphs confirm whether the ESG scores of those groups 

of influencers are higher than those of the rest of the entities. 
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1) The ESG distribution of the hubs with the 12 highest eigenvector centralities clearly 

indicates higher ESG scores than the original graph (figure 21).  

2) The ESG distribution of hubs with the highest eigenvector centralities with cutoff at the 

knee indicates clearly that companies have higher ESG scores. However, the average ESG 

scores of the companies related to the individuals within that group follow the same 

distribution as the original graph. This result may be due to those individuals being 

affiliated to a variety of companies, in sufficient proportion and with sufficiently low scores 

as to skew the distribution.   

 

Figure 21: ESG distribution of hubs with the 

12 highest eigenvector centralities 

 

Figure 22: ESG distribution of hubs with the highest 

eigenvector centralities, with cutoff at the knee 

 

 

Figure 23: ESG distribution of hubs with the 

highest degree, with cutoff 2 standard 

deviations above the mean 

 

Figure 24: ESG distribution of hubs with the 

highest degree, with cutoff at xmin 
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3) The ESG distribution of hubs with the highest degree, with cutoff 2 standard deviations 

above the mean clearly indicates higher ESG scores than the original graph (figure 23). 

4) The ESG distribution of hubs with the highest degree, with cutoff at xmin clearly indicates 

higher ESG scores than the original graph (figure 24), in the cases of both companies and 

individuals. As opposed to the individuals with the highest eigenvector centralities with 

cutoff at the knee, the individuals in this group have higher ESG scores, which may be due 

to smaller group size.  

 

Figure 25. ESG distribution of hubs identified by random bipartite graph projections 

 

   

Figure 26. ESG distribution of hubs identified by random graph generated with equivalent density 
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Figure 27. ESG distribution of hubs identified by random graph generated with equivalent edge probability 

 

5) All ESG distributions for groups of hubs based on cutoffs identified by random graphs 

point to companies that are hubs having higher ESG scores than the overall graph. With 

respect to the individuals, on the projection, they have lower ESG scores, for similar 

reasons as the hubs with the highest eigenvector centralities with cutoff at the knee. As for 

the individuals on the bipartite graphs, not enough individuals are present to draw a 

conclusion. 

 

 

Figure 28: ESG distribution of dominant hubs 

within communities on the bipartite graph 

 

Figure 29: ESG distribution within the 

bipartite graph 
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6) Most communities have a right skewed ESG distribution, similar to that of the original 

graph, whether for communities within the bipartite graph or the Companies projection. 

The hubs for on the bipartite graph do not have display a difference in ESG distribution 

than overall companies, whilst the ones within the Companies projection do. As the 

companies within the communities of the bipartite graph have been determined less biased 

due from transitivity, it can be inferred that hubs determined through communities will not 

necessarily display higher ESG scores than hubs identified on the overall graph. 

 

 

 

  

Figure 30: ESG distribution of dominant hubs 

within communities on the bipartite graph 

 

Figure 31: ESG distribution within the 

Companies projection 
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Chapter 5: Conclusion 

 

This paper has established that influencers who are vectors of influence within the overall business 

network indeed have higher ESG scores, specifically for companies. For the individuals, this is the 

case only for the ones with very highest degrees or eigenvector centrality. This has been 

determined by the Spearman correlation test and the ESG distributions for groups of hubs. 

Influencers within communities, however, do not have overall higher ESG scores. Further analysis 

on the structure of the communities is needed.  

 

Another important insight from this paper is that that groups of influencers are better detected on 

the bipartite graph than on the graph’s projections. Indeed, this study has found that due to induced 

links, transitivity, and assortativity, the structure of the bipartite projections has been heavily 

altered. This affects mostly groups of influencers that might be identified through eigenvector 

centrality of hub dominance. This is in line with the findings of other researchers who have also 

found bias in their business influencers’ networks (Conyon and al., 2004).  

 

 

Multiple factors may have however impacted the scope of the work or results:  

1) A main limitation of this study is that this paper tests only the most explicit influence an 

individual might have on a company – by sitting on the board or serving as a key executive. 

It does not test for influence outside of that explicit individual-company relationship, such 

as investments, shareholding, or any unofficial influence.  

2) The lack of weight on the graph means that it does not hold the information on the strength 

of a relationship between a company and individual, which can affect a node’s importance 

and potential influence.  

3) The paper used ESG scores for its analysis. However, it is possible that this may introduce 

a bias within ESG correlation as some industry might have higher or lower average ESG 

scores than others, as well as specific influence within the network. 

 

  



74 
 

 
Future work on the subject may involve the following topics: 

 

1) It would be interesting to study the positions of influence of financial industries within the 

network, as well as investment relationships to understand whether investments from 

influential financial companies with high ESG scores lead have an ESG impact on 

investees. 

2) The use of historical data could offer insights into the before a relationship with an 

influential entity with a higher ESG score. 

3) Propagation algorithms could be used to establish a causation effect between relationships 

with influential entities and ESG scores.  

4) Exploring the nature of communities with statistical tests could offer more insights into the 

structure of the communities (indicative of whether they are based on geography, industry, 

or others) and further analysis of communities could test whether companies and 

individuals tend to cluster around similar ESG scores.  
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