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Résumé

Ce projet se concentre sur le probleme de I’optimisation des encheres dans le cadre
d’encheres en temps réel pour les publicités d’affichage en ligne, ol un annonceur ou
I’agent de ’annonceur a acces aux caractéristiques des utilisateurs et aux informations

sur les emplacements publicitaires et décide des prix d’encheres optimaux.

Dans cette these, nous proposons des modeles d’optimisation des encheres qui tient
compte du risque de dépassement de budget et qui exploite les données historiques. Dans
nos modeles, I’annonceur doit concevoir a I’avance une politique d’encheres, faisant cor-
respondre le type d’opportunité publicitaire a un prix d’enchere dans une période de temps
donnée avec un budget prédéterminé. Nous formulons le probleme de deux manieres, con-
sidérant soit la maximisation du profit ou des revenus comme objectif pour 1’annonceur.
Apres avoir employé une relaxation lagrangienne, nous développons de nouvelles straté-

gies d’encheres optimales a forme fermée en tenant compte du risque.

En revanche, nous proposons également deux modeles d’optimisation des offres neu-
tres vis-a-vis du risque qui maximisent respectivement le revenu et le profit sans tenir
compte du risque de violation de la contrainte budgétaire. Les expressions paramétrées
a forme fermée pour chaque stratégie d’encheres optimales neutres au risque sont égale-
ment dérivées dans cette these. Nous comparons la performance de nos quatre modeles,
ainsi que I’autre stratégie d’encheres tenant compte du risque dans la littérature récente.
Notre méthode d’aversion au risque permet de contrdler efficacement le risque de dé-
passement du budget pour une période de temps donnée en utilisant une mesure de risque

entropique. L’efficacité de ces modeles est mesurée sur un jeu de données réelles qui



contient les caractéristiques du trafic d’un site web et les cibles du prix de gain et des

informations sur les clics.

Mots-clés

Politique d’encheres, gestion des risques, optimisation, aversion au risque, apprentissage

profond, publicité par affichage.

Méthodes de recherche

Apprentissage machine, mesure de risque entropique, relaxation lagrangienne, régression

de moyenne et de variance.
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Abstract

This thesis focuses on the bid optimization problem in the real-time bidding setting for
online display advertisements, where an advertiser or the advertiser’s agent has access to

the features of the website visitor and type of ad slot, to decide the optimal bidding prices.

We propose two risk-aware data-driven bid optimization models that exploit histori-
cal data and where the advertiser needs to design upfront a bidding policy, mapping the
type of advertisement opportunity to a bidding price, to be applied in a given period of
time with a predetermined budget. Our two models respectively employ expected profit
or revenue as the objective to maximize for the advertiser. After employing a Lagrangian

relaxation, we derive a parametrized closed-form expression for the optimal bidding strat-

cgy.

By contrast, we also propose two risk-neutral bid optimization models that maximize
the revenue and profit respectively without considering the risk of violating the budget
constraint. Similar parametrized closed-form expressions for each risk-neutral optimal
bidding strategy are also derived in this thesis. Using a real world dataset that contains
features of website traffic and targets of winning price and click information, we compare
the performance of our four models, as well as the other risk-aware bidding strategy in the
latest literature. We demonstrate that our risk-averse methods can effectively control the
risk of spending over the budget of a period of time while achieving a competitive level of
profit or revenue compared with the risk-neutral models and the other risk-aware bidding

Strategy.
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Preface

Before enrolling in the Master in Data Science and Business Analytics program at HEC
Montreal, I was managing an e-commerce team in China and operating online stores
on Taobao.com ! and JD.com 2, the two largest e-commerce platform in China for a
local brand during the year 2016 and 2019. Since the brand was just established and no
awareness either online or offline, we had considered many approaches to marketing the
brand as well as products. One of the most important channels is directly marketing the
products through these e-commerce platforms’ online advertisement slots. At that time,
we were able to set the highest budget that we would like to pay for the different slots, and
the system provided by the platform bids automatically for different advertisers. As a new
brand, instead of restricting the risk of profit from this marketing approach, or aiming to
lower cost per click (CPC), we were more concerned that we did not gain enough exposure
for the brand and products within the given budget in a given time. Therefore, the models
in this thesis will focus on modeling the risk in the bid optimization problem for the online
advertisement setting. It will use the profit and revenue as the objective function yet put
a special emphasis on controlling the risk of incurring large expenses, hence propose two

risk-averse bidding strategies b'% and b respectively for profit or revenue maximizers.

"https://world.taobao.com/
’https://global. jd.com/
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Chapter 1

Introduction

In real-time bidding (RTB) online display advertisement settings, the advertiser is given
website traffic of clients and ad slots with many different features, including logs, re-
gions, ad slots format, etc., in order to decide the optimal bidding prices for ad potentially
displayed to a wide range of users. The bidding process in digital advertising (Ostrovsky
et al., 2007) is based on a Vickrey auction (also called second-price auction) model (Vick-
rey, 1961), where advertisers or their agents win the auction of a given opportunity if they
offer the highest bidding price among the competitors and pay the second-highest bid-
der’s bidding price. The bidders in the auction activities can be the advertiser themselves
or their agents, which we will refer to as the decision makers for the bidding policy.
These bidding policies typically need to be made with incomplete information about
the type of traffic and users’ profile, the potential click-through rate !, the winning price
(market price)?, the net value of each customer to the company etc. Instead, they resort
to historical data that could be shared by the advertisement platform or accumulated in-
ternally by advertisers themselves. The decision makers in this problem need to use these
historical data to estimate the click-through rate, winning price and value of customers

based on this data and then develop the optimal bidding policy for the forthcoming bid-

IThe click-through rate of an advertisement is the number of times a click is made on the advertisement,
divided by the number of times the ad is shown, which is also called the number of impressions: https:
//en.wikipedia.org/wiki/Click-through_rate

The winning price or the market price is the price that is paid for the ad spot.


https://en.wikipedia.org/wiki/Click-through_rate
https://en.wikipedia.org/wiki/Click-through_rate

ding opportunities.

This project is conducted from the perspective of decision makers in the bid optimiza-
tion problem. As bid optimization could be described in the form of static, multi-stage or
dynamic problems, this thesis will only focus on the static version of the problem. The
objective of this project is to explore a risk-aware bid optimization model that exploits
historical data, where the advertiser needs to design up-front a greedy bidding policy,
mapping the type of advertisement opportunity to a bidding price for a given number of
opportunities at one time, while effectively controlling the risk of violating the budget
constraint.

The proposed bidding strategy is implemented and evaluated on the open-source real-
world iPinyou dataset’. The empirical experiments show that our bidding policies effec-
tively control the risk of the expense going over the budget while outperforming other

state-of-the-art risk-aware strategies.

1.1 Motivation

Many companies around the world exploit online marketing, and in 2020, the total spend-
ing on the digital ad in Canada reached C$ 8.45 billion (Statista, 2021). Yet, effective use
of online marketing budgets requires robust statistical methods that identify key interac-
tions among a possibly biased historical dataset and efficient algorithms that efficiently
converge to optimal risk-aware bidding policies. Moreover, few of them considered the
risk in the bidding activity and none of them have explicitly addressed accounting for risk
aversion on total expense.

In reality, the marketing budget is determined ahead and depends on a certain period
of time. The budget is given at the beginning of the time and the decision-makers have
no knowledge about what opportunities will come next. If they do not consider the risk

of budget constraint, it is very likely to spend money on opportunities that appear earlier

3“iPinYou Global RTB Bidding Algorithm Competition Dataset”, access on https://contest.
ipinyou.com/


https://contest.ipinyou.com/
https://contest.ipinyou.com/

and miss the valuable opportunities that appear later. Therefore, the policy that controls
risk on total expense in the given time is of practical concern in the real world to prevent
spending over the total budget at the very beginning, and make sure that the budget can
cover the whole marketing period of time, which is essential for both marketing objective

and finance objective of the company.

1.2 Contributions

In this thesis, we propose a hybrid approach of empirical distribution and parametric
distribution to formulate the bid optimization problem. We develop novel closed-form
solutions of optimal risk-neutral and risk-aware bidding policies with objectives of ei-
ther maximizing revenue or profit. Profit maximization is a natural approach generally
applicable to mature companies. The revenue-maximizing models are developed for ad-
vertisers who prefer to attract as many clicks as possible within the budget constraint.
They may consider awareness and exposure are much more important than return on in-
vestment (ROI) or profit, especially when the product or company is in the early stage of
the life cycle.

The proposed bidding policies are easy to implement and interpret by being functions
of the predicted winning price distribution and click-through rate. The issue that arises
with such approaches is that in practice, the realized number of clicks and expenses might
differ significantly from their respective average, where we employ the expected utility
model that accounts for risk aversion.

Our risk-averse methods are able to control the risk of spending over budget by mod-
elling the expected utility of total expense. The proposed bidding strategies are imple-
mented and evaluated on the open-source real-world dataset. The empirical experiments
show that our bidding policy effectively controls the risk of the expense going beyond
the budget while outperforming other risk-aware strategies. We expect that the results of
this research project will motivate the use of new and more robust models, which will

help decision-makers who use algorithmic online marketing to make optimal decisions

3



on bidding prices under high frequency, large-scale data, and uncertainty about perfor-
mance. It will help businesses improve their key performance indicators while increasing

the chances of remaining within their allocated budget.

1.3 Outline

The rest of this thesis is organized as follows:

The literature review is presented in Chapter 2. The research methodology and the
problem descriptions are detailed in Chapter 3. The closed-form optimal bidding strate-
gies under the risk-neutral approach are derived in Chapter 4, while the risk-averse ap-
proach is in Chapter 5. Experiment design is conducted in Chapter 6, followed by the
numerical results of experiments presented in Chapter 7. Finally, we conclude our work

in the last Chapter 8.



Chapter 2

Literature Review

Our model for bid optimization is built on the estimation of the click-through rate and the
winning price of the bidding opportunity. We model the risk based on the expected utility

theory. Therefore, we explore the literature in these related aspects respectively.

2.1 Click-through Rate Prediction

The click-through rate (CTR) prediction is a binary classification problem and the most
commonly used estimator in computational advertising is the Logistic Regression (Richard-
son et al., 2007; Zhang et al., 2010; Graepel et al., 2010) based on a linear model. Non-
linear models can also be applied, such as tree-based Gradient Boosting Regression Tree
(Friedman, 2002), and many models have been developed based on the Factorization Ma-
chines (FM) (Rendle, 2010) for the CTR prediction problem (Ta, 2015): Sparse Fac-
torization Machines (SFM) (Pan et al., 2016), Field-aware Factorization Machines (FFM)
(Juan et al., 2017), and Field-Weighted Factorization Machines (FWFM) (Pan et al., 2018),
which can better fit the feature combination and sparse data often found in the display ad-
vertising dataset.

In recent years, with the development of deep learning research and recommendation
systems, many researchers have applied deep neural network based models on this CTR

prediction task. There are convolution neural network based (Liu et al., 2015), Product-



Based Neural Networks (Qu et al., 2018), Wide&Deep (Cheng et al., 2016), the FM based
neural network (DeepFM) (Guo et al., 2017). Built on the top of the DeepFM, the Feature
Importance and Bilinear feature Interaction NETwork (Huang et al., 2019) and Field-
Embedded Factorization Machines (Pande, 2021) were developed most recently. The
idea of combining the deep neural network and factorization machine is widely accepted

in the research and represents the leading performance in real-world usage.

2.2 Winning Price Prediction

The winning price prediction is also called the bid landscape problem. Cui et al. (2011)
uses the gradient boosting decision trees to model the market price. Wu et al. (2015)
proposed the censored regression model to deal with the problem when some historical
market prices are unknown to the advertiser.

The recent deep learning advancement also applies to the bid landscape problem. Wu
et al. (2018b) proposed the Deep Censored Learning model that uses the deep learning
model for click-through rate prediction to boost the prediction quality on the market price
and the distribution of market price also influences the learning result. Deep Landscape
Forecasting (DLF) (Kan et al., 2019) model combines deep learning for probability dis-
tribution forecasting and survival analysis for censorship handling based on a recurrent
neural network to model the conditional winning probability with respect to each bid

price.

2.3 Bid Optimization

Many models have been proposed to design efficient bid optimization policies based on
historical data. Typically, the purpose of bidding algorithms is optimizing advertisers’
Key Performance Indicator (KPI), such as the the number of clicks and conversion rate,
within a limited budget. In particular, many approaches build their bidding price depend-

ing on the click-through rate predictor and optimize a simple parametric bid policy based

6



on this prediction in order to maximize the expected number of clicks while respecting a
constraint on the average budget.

Ostrovsky et al. (2007) proposed truthful bidding which is based on the estimation of
the value of the click. Continued on the truthful bidding approach, Chen et al. (2011)
developed a bidding function with truthful bidding value minus a tuned parameter and
solves a bidding problem with multiple campaigns and from the perspective of the pub-
lisher using linear programming and duality. Another widely used linear bidding strategy
is calculating the bid price via the predicted click-through rate multiplied by a constant
parameter tuned according to the campaign budget and performance (Perlich et al., 2012).
There is also the bid optimization problem in sponsored search advertising where adver-
tisers bid on queries or keywords (Even-dar et al., 2009; Borgs et al., 2007; Zhang et al.,
2012; Yang et al., 2015).

Zhang et al. (2014) introduced a non-linear bidding model: Optimal Real-Time Bid-
ding (ORTB) strategy. Again, with the estimated click-through rate that depends on fea-
tures as the input of the bidding function which tries to bid more impressions rather than
focus on a small set of high-value impressions. In this paper, the bidding policy is cast as
a functional optimization problem with maximizing the expected total clicks within the
given total budget # in a total of N opportunities under the dependency assumptions: the
winning probability Qw depends on the bidding price b; the bidding price depends on the
observable features X.

Mathematically, the ORTB model can be represented by:

b(Jorrz =  argmax N / 6(X) 0w (b(X))px (X)dX @.1)
b() X

subject to N /X W(X) 0w (b(X)) px (X)dX < B,

where the px (X)) is the probability density function of features X.

They model the winning probability by:

Qw(b) = ; (2.2)



where c is a constant parameter tuned to fit the winning probability given different value
of bidding price compared with the winning price W in the dataset.
To solve the model (2.1), the author introduce A as a Lagrangian multiplier to approx-

imate the solution to the relaxation function:

2(b(x).2) = [ 8000w (b())px(X)ax 4 [ w<x>QW<b<x>>px<x>dx+x%,

where the parameter A is tuned to minimize the difference between the maximum total
expense and the given total budget % for N opportunities.

Since the bidding follows the second-price auction, the advertiser always pay the win-
ning price that is less than the bidding price. The upper bound of expense can be obtained

by using bidding price to multiply with the winning probability:

/ (X))px (X )dX<N/ X)Qw (b(X))px (X)dX.

Therefore, the optimal A is approximated by:
B 2
Af = argmmz (bx V0w (by (X)) — N)
i=1
As a result, an approximately optimal bidding policy with winning probability (2.2)

for problem (2.1) is obtained by:

by (X) =, /%G(X)—l—cz—c.

They also assume a different winning probability by:

P(X)

Qw (b(X)) =

Therefore, an approximately optimal bidding policy with the winning probability as-
sumption (2.3) can be obtained by:

0(X)+ /A2 +0(X)2. 1 cA
baX) = el( ch )3_<e<x)+ c2/12+9(x)2)

Fernandez-Tapia et al. (2016) solved the bid problem in cases where impressions gen-

W=

)l

erated by homogeneous Poisson processes and winning prices are independent and identi-

cally distributed (IID). While Ren et al. (2018) modelled CTR learning and winning price

8



estimation as part of bid optimization for campaign profit maximization as a whole and

performed a novel joint optimization.

There are also different objectives in bid optimization. Liu et al. (2017) suggested
a dual based bidding framework that is derived from a strict second-price auction as-
sumption and generally applicable to the multiple ads scenario with various objectives
and constraints. Besides the profit maximization objective, Yang et al. (2019) studied
the common case where advertisers aim to maximize the number of conversions, and set
cost-per-click (CPC) as a KPI constraint. They convert such a problem into a linear pro-
gramming problem and leverage the primal-dual method to derive the optimal bidding

strategy.

Researchers also consider the bid optimization in a multi-stage setting as a sequential
decision process, where the Reinforcement Learning (RL) approach plays an important
role. Typically, the bid optimization problem is formulated by Markov Decision Process
(MDP), where the bid prices are the actions to find, and the realized clicks are the rewards
to the RL problem. The budget constraint is treated differently in the previous research.
Cai et al. (2017) treated the budget as part of the state and derived the solution by dynamic
programming while Du et al. (2017) emphasized the budget constraint using the Con-
strained Markov Decision Process (CMDP) and solving it by linear programming. Wu
et al. (2018a) introduced the budget constraint into the reward by adding a linear penalty.
Adikari and Dutta (2019) considered the budget also as a decision to make where both
budget allocation and bidding price are optimized by dynamic programming. Researchers
also formulate it as a multi-agent RL problem. Jin et al. (2018) proposed a cluster-based
bidding strategy to achieve overall benefits among advertisers as multiple agents. Zhao
et al. (2018) also looked into the cooperative rewards and addressed the problem of the
environment changing by modelling the hourly transition probabilities. However, RL
approaches are generally more computationally expensive to solve compared with static

models.



2.3.1 Risk aware optimization

Since the bidding process can be modelled as a multi-stage problem, many researchers
looked into the feedback control problem during the bidding process (an overview can be
found in (Karlsson, 2020)), which control the risk of unstable performance and keep the
optimization process along the stages using a dynamic system. An approximate solution
proposed by Grislain et al. (2019) is based on a Recurrent Neural Network (RNN) archi-
tecture, which add the additional penalty to the objective function if the bidding policy
falls short of its KPI to improve the robustness of performance under uncertainty. Karls-
son (2016) introduced the bid randomization mechanism to help exploration in a partially

observed market and control the uncertainty in the auction-based bidding process.

RMP approach

Especially, Haifeng et al. (2017) proposed the risk management on profit (RMP) model
that also models the bidding process as a one-shot problem and modeling the risk of profit
directly. They adopt a Bayesian logistic regression model to predict the click-through rate
distribution because they are modeling the risk of profit, and they assume the risk of profit
comes from the uncertainty of the click-through rate. The proposed model introduces
the standard deviation of the predicted CTR distribution as a risk penalty added into the
bidding function.

For every opportunity, there is a risk of negative return whatever the positive bid price
when the advertiser pays for the impression but does not obtain the click. Namely, the
expected return R(b) can be modeled as:

R(b) = 0, b<W
v-0-W, b>W
where v is the value of click. 0 is the probability of a click for this opportunity, and W is

winning price, which are modeled as stochastic random variables with p.d.f. pg(6) and

pw(W).

10



The author defines the risk-controlled return by deducting a risk factor, which is the
standard deviation of the return. Therefore, the bidding policy choose the bid price that
could maximize the lower bound of return given certain risk. Their RMP strategy is

modeled as below:

brup(R(D)) = arg;nax E[R(b)] — aStd[R(b)], (2.4)

where the risk of profit R(b) is influenced by the hyperparamter & and the standard de-
viation of profit Std[R(D)], and this volatility of randomness come from 6 ~ pg(6) and
W~ py(w).

Another noticeable point is the RMP bidding model obtained without the budget in-
volved. The RMP approach only considers the risk of negative profit but not on the risk

of expense going over the budget.

Risk Aversion

Utility is a topic of economics that is typically used to model worth or value.! In the
display advertising field, the utility of bidding is often defined as the profit of clicks. The
papers (Chapelle, 2015; Vasile et al., 2017; Haifeng et al., 2017) define the value of click
v as the value of total winning price divided by total clicks and measures utility as the
profit of bidding which is the difference between the total value of clicks and the expense
paid. In these papers, the expected utility theory (Bernoulli, 1954; John von Neumann,
1944) considers risk in probability and the optimal decisions are the choices that provide
higher utility.

In the field of expected utility theory, the exponential utility function accounting for
a constant absolute risk aversion is the most commonly used utility function. Expected
utility theory with the exponential utility function can also be interprete as employing
an entropic risk measure (Rudloff and Wunderlich, 2008), which satisfies the axioms of

convex risk measures (Foellmer and Schied, 2010).

'https://en.wikipedia.org/wiki/Utility#cite_note-exputility-5

11


https://en.wikipedia.org/wiki/Utility#cite_note-exputility-5




Chapter 3
Research Methodology

In this project, we adopt the common assumptions about dependency relationships be-
tween variables from the other literature (Haifeng et al., 2017). For each bidding oppor-
tunity with an observable feature vector X that represents both user and ad information,
the bidding price depends on the click-through rate, and the realized click C represents if
the fact is that the ad gets clicked; the distribution of wining price W; and the net value
of this customer to the company V. Also, we assume these variables C, W,V are mutually

independent given X as we describe in the Assumption 1:

Assumption 1. The winning price W, realized C and net value of the customer V are

mutually independent given X.

Therefore, we model C,W,V separately for each given opportunity X.

In this thesis, we propose an approach in the real-time bidding (RTB) setting that opti-
mizes the bid policy over a batch of M opportunities, that are independent and identically
distributed drawn. This approach is designed to simulate the situation that the one-shot
decision of a bidding policy is made for a given period of time where the number of
advertisement display opportunities and the budget are fixed.

In order to evaluate the risk-averse bidding strategies that we propose, we apply the

performance metrics that account for risk aversion as well as the common metrics used



in the bid optimization problem. To be consistent with the modeling, all the metrics are

measured in every batch of opportunities.

3.1 Modeling Conditional Click-through Rate

In reality, the click-through rate is an indicator of the attractiveness of a display advertis-
ing opportunity. Therefore, the value of an advertising spot is higher when this spot has a
higher probability to be clicked.

We assume that the click-through rate, i.e. the probability of the opportunity getting

click, depends on the opportunity’s features X, and formally denote:
0(X):=P(CX).

In the context of this work, we will employ the DeepFM model (Guo et al., 2017) to
estimate 6(X). Besides, our optimal bidding policy can be easily incorporated with other
CTR prediction algorithms, and its performance can be further improved due to more
accurate predictions of these dependent variables.

The resource we use for CTR prediction is from the DeepCTR library (Shen, 2017) ,!
which provides a set of easy-to-use packages and models API for feature engineering and
deep learning models. By mainly using this DeepCTR Models API, we built the predictor
for CTR of each opportunity.

Common methods that model unstructured websites’ features usually have a strong
bias towards interactions between features or require expertise in feature engineering. The
DeepFM is an FM-based Neural Network that could emphasize both explicit and implicit
feature interactions behind user behaviours. The DeepFM consists of two components,
the FM component and the deep component, which share the same input and are jointly
trained. The Factorization Machines (FM) model the pairwise feature interactions as the
inner product of latent vectors between features. Although the FM model is designed for

better revealing proper combinations of basic features, it suffers from expensive compu-

'DeepCTR library https://github.com/shenweichen/deepctr
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tation costs when the order goes above two. Therefore, the DeepFM model is able to
combine the advantages of factorization machines for feature learning and a feed-forward
neural network for generalization, the model DeepFM has superior performance in deal-
ing with unstructured data and programmatic advertising and recommendation system

design.

Remark 1. Due to the advantages in modeling unstructured data as we explained above,
we estimate the click-through rate 6(X) using the DeepFM model while both ORTB (2.1)
and RMP (2.4) approaches are applying linear-based models: the ORTB method esti-
mates the 0(X) using the logistic regression, and the RMP approach uses the Bayesian

logistic regression.

3.2 Modeling Conditional Winning Price Distribution

We assume that conditional on observing X, the winning price W follows the normal
distribution:

W~ N(Ww(X),o(X)),

where the conditional standard deviation 6(X) also depends on the given opportunity’s
features X, so that we have the parametrized probability distribution function of the win-

ning price W modeled as follows:

1 _

Jwix(w) = o(X)van

Therefore, to model the distribution of winning price, we need estimators for the con-
ditional mean w(X) and the conditional standard deviation of the winning price ¢ (X).

Given a dataset containing observed (X, W) pairs, we can obtain an estimator of ex-

pected winning price, conditioned on X, by running the regression model:
W(X) := arg min E[(W —w(X))?],
wew

where # is the set of estimation functions modeled by a certain neural network architec-

ture, and where E refers to the expected value under the empirical distribution.
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The same dataset can also be used to train an estimator of ¢ (X) following a method
introduced in the paper (Fan and Yao, 1998). Conceptually, we consider the residual Z

defined as:

which depends on the estimator w, as well as the W. We can approximate the conditional

variance of the winning price 62(X) as the expected value of the residual Z.
£(X) := argminE[(Z — z(X))?],
€

where again 2 is the set of estimation functions modeled by a certain neural network
architecture. Finally, an estimator of the conditional standard deviation of winning price
o (X) can be obtained by:

o(X):=+/max(2(X),¢€),

for some small € > 0, which ensures that the variance estimate is always positive.
In the experiments, similar with the click-through rate estimator 0, the estimators of
mean of winning price w(X) and standard deviation of winning price o(X) are predicted

based on DeepFM models.

3.3 Modeling Conditional Winning Probability

In the RTB setting, the advertisers follow the second price auction (Ostrovsky et al., 2007)
process and win the ad spots only if they bid the highest price among all the advertisers,
and the winning price is the second highest price offered among the bidders and is the
price that winner needs to pay for the given ad display opportunity. Therefore, we assume
that the advertisers or their agents can win the bid if they offer a bid price that larger than
the winning price.

Since the expense only happens when the advertiser wins the bids, in order to model
uncertainty about expense, we need to model the probability of winning the bid which

depends on the bidding price and the winning price. For this purpose, we define a function
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that indicates whether the bidding price wins the auction:

1 b>W
s(b,W):=1{b>W} =

0 otherwise
where b is the bid price and W is the winning price. Hence the conditional winning
probability given X can simply be obtained from E[s(b,W)|X], which depends on both

the bid price b and the conditional winning price distribution given X.

Remark 2. Both the ORTB approach (2.1) and the RMP approach (2.4) assume the win-
ning price is a stochastic random variable that is independent with opportunity’s features
X. For the ORTB approach, the winning probability is obtained by certain reciprocal
functions specified in equations (2.2) (2.3), and tune the constant parameter c by fitting
the winning probability graph when varying the bid price. As for the RMP approach, the
winning probability is estimated using Monte Carlo Simulation.

However, we assume that the winning price W is conditional on the given opportunity
X and follows the Gaussian distribution, which is a more natural and logical assumption
as advertisers are willing to bid more for the more valuable opportunity if they can suc-
cessfully identify them through the observable features X. Based on this assumption, we
develop the winning probability conditional on X and further derive the winning proba-

bility in the latter section.

3.4 Modeling Conditional Value of Customer

Ideally, if the decision maker identifies a customer who could bring a higher value to
the company from the observable features vector X, they will be willing to bid at a higher
price to improve the probability of winning the auction. Therefore, we assume the bidding
price should depend on the value of customer V and we model this variable conditional

on the given opportunity X by:
V(X):=E[V|X].
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Yet, in our experiments, V will be considered independent of X and known for sim-

plicity.

3.5 Evaluation Metrics

Many evaluation metrics are relevant to the RTB setting. In reality, the marketing budget
is determined ahead and depends on a certain period of time. The number of ad display
opportunities is also fixed given a certain period of time since the number of ad spots is

usually fixed for a given period of time unless there is a change in website design.

Therefore, we propose a new evaluation approach in the RTB setting that all the met-
rics are measured in every batch of opportunities to simulate the number of ad display
opportunities that are certain and the budget is fixed for a given period of time. Here, we
introduce a batch containing M independent and identical distributed display opportuni-

ties:

Batch := {(X;,W;,C;, Vi)™,

In our research, our objective is to maximize profit for the given number of display
opportunities and lower the risk of spending over budget for a certain time. Thus, we not
only apply the common advertising metrics for a given time but also we see the batches

as experiment samples and apply the risk measures over the distribution of batches.

3.5.1 Batch revenue

We define the revenue of advertiser as the total value of clicks. Therefore, we can formu-

late the expected revenue by using the CTR and value per click:

M
Batch Revenue = )_ ViCis(b(X;), W).
=1

1=
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3.5.2 Batch expense

We define the expense as total amount of money paid if the bid price is higher than the
winning price:

M
Batch Expense = Z Wis(b(X;),W;).
i=1

3.5.3 Batch profit

We define the profit as revenue deduct profit:

Batch Profit = Batch Revenue — Batch expense.

3.5.4 Batch number of clicks

The number of clicks here is the realized clicks:

M
Batch number of clicks = Z Cis(b(Xi),W;).
i=1

3.5.5 Batch impression rate

The frequency of time when the bidding price is higher than the winning price among the
total opportunities for a given time. The probability that advertiser successfully expose
the ad to the customers, which is the realized winning rate:

Yot 1s(b(X:), W)
m :

Batch impression rate =

3.5.6 Sharpe ratio of batch profit or revenue

Sharpe ratio (Sharpe, 1994) is a common metric that measures the return given its risk.
We apply this concept to our setting, by the expected value of batch return dividing its
standard deviation from sample batches. The return is either batch profit or batch revenue

depending on the model:

E[Batch Profit|

arpe ratio of pro o (Batch Profit)’
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E[Batch Revenue]
o (Batch Revenue)

Sharpe ratio of revenue =

3.6 Variable table

In order to better display the problem in the following sections, we summarize the defini-

tion of our variables in table 3.1:

Variables | Description

Vv net value of customer for opportunity

V(X) the conditional net value of customer estimator given X

X observed features of opportunity

C indicates of click for opportunity

0(X) the conditional click-through rate estimator given X

b(X) bidding price for opportunity given X

w the winning price for opportunity

w(X) the conditional expected value of winning price for opportunity given X
s(b,W) indicates of winning the auction with bid » when winning price is W
o(X) the conditional standard deviation of winning price for opportunity given X
B average budget per opportunity

M the number of opportunities in a batch

N total number of opportunities in the dataset

Table 3.1: Variable definitions
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Chapter 4
Risk-neutral Approach

The goal of bid optimization is to maximize the return of advertising within a certain

budget for a given time.

As the common business problem, the profit of the bid optimization problem is the
difference between the revenue and the expense. The revenue here is the value of total
clicks, which relates to V and C. But the V and C are unrevealed to the advertisers and we

need to estimate both values.

The expense is the amount of expense paid for the winning opportunities. As we
introduced in the Chapter 1, the bidding process in the RTB setting follows the second-
price auction. Thus, the bidding price here is not the amount that advertiser paid but the
winning price, and the winning price W remains unrevealed to the advertisers until the

bidding event finishes. Therefore, we develop the estimator for the winning price.

As for the budget, we refer to the budget given for a certain period of time, such as the
daily budget or monthly budget that is predetermined by advertisers, which is a common
procedure for marketing budgeting practice. Since the number of ad slots during a certain
period of time is relatively consistent from time to time, the budget for a given time here

is the same as the budget for a given number of bidding opportunities.

We first construct two basic bidding policy models that impose that budget be satisfied

in expectation without consideration of risk of spending over budget: #™P will maximize



the expected profit while »™" will maximize the expected revenue. Chapter 5 will later

develop respective risk aware model in terms of the budget constraint.

Variables | Description
pP () risk-neutral bid policy that maximizes profit problem
pML () risk-neutral bid policy that maximizes revenue problem

Table 4.1: Risk-neutral models

4.1 Profit Maximization Problem Formulation

We first construct the »™P model, where the objective function is to maximize the ex-
pected profit subject to a budget constraint for a given batch of opportunities. As we
discussed in the Chapter 3, we consider a random batch of M 1.d.d. opportunities. We as-
sume that V, C, and W are mutually independent given X (see Assumption 1). We define
the predetermined average budget per opportunity is B:

_ Budget for the batch of opportunities
= M .

B:

Therefore, we describe the b™P as follows:

p™P(.):= argmax  E[(1/M)-Batch profit|
b:Z >Rt
subjectto  E[(1/M) - Batch expense| < B,

where b™0P(.) is the bid price that maximize the expected average profit from a batch of
M opportunities, while respect the constraint that the expected expense per opportunity in
the batch is within the predetermined budget per opportunity B.

The above model mathematically takes the form:

1 M
p™MP(.):= argmax  E[— ZWCis(b(Xi),W,-)] —E|
b: Z =Rt M,’:1

/-
N
=
=
=
=

1 M
subject to E[]\_4 Y Wis(b(X;),W;)] < B.
i=1
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Based on the linearity of expectation, these expressions can be simplified. For exam-
ple, we can simplify the batch revenue to the expected instantaneous value per opportunity

format by:

1
M !
1

Mx

M
E[Al/l ; ViCis(b(Xi), Wi)] = E[ViCis(b(Xi), Wi)] = E[VCs(b(X),W)];

1

Applying the same simplifying method, we can represent the batch expense using the

expected instantaneous expense per opportunity:
1 M
E[-7 ) Wis(b(X;), W] = E[Ws(b(X),W)];
i=1

Therefore, the batch profit can be simplified using the difference between expected in-

stantaneous revenue and expense:

Bl X ViCi(b00). W) Bl Y- Wi(b(). W)
— E[VCs(b(X),W)] — E[Ws(b(X),W)]

As a result, we obtain an equivalent policy for b™P using an expected instantaneous

profit maximization form:

pMP () = argmax E[VCs(b(X),W)] —E[Ws(b(X),W)] (4.1)
squect to E[Ws(b(X),W)] <B.

In order to obtain the closed-form functions of the objective and the constraint, we
need to first transform the model using the estimators defined in Chapter 3 and exploit the
conditional independent Assumption 1. We can start with the approximation for revenue
and expense. From there, we can easily obtain the profit by taking the difference between

revenue and expense.
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4.1.1 Reducing expected instantaneous revenue expression

We start by rewriting the expected instantaneous revenue expression as:

E[VCs(b(X),W)] = E[E[VCs(b(X),W)|X]]
=E[E[V|X]E[C|X]E[s(b(X),W)[X]]
=E[V(X)8(X)E[s(b(X),W)|X]],

where we exploited (see Assumption 1) the fact that V, C, and W are mutually independent
from each other given X.
The conditional winning probability E[s(b,W)|X)] can be further reduced since we

assume W is normally distributed conditionally on X:

Els(b, W)X = [ Sy (W)aw

_ 1 (W —w(X))?

— ng—o(x)\/ﬁexp( 70(X)? )dw

IR W
Wt Va2

b

_¢<W)a

where fiy x(w) is the probability density function of the winning price W given X, and
®(-) is the cumulative distribution function of a standard normal distribution.
Therefore, we can calculate the expected revenue given X using:

b—w(X)

E[Revenue|X] = V(X)6(X)d( o(X)

). 4.2)

4.1.2 Reducing expected instantaneous expense expression

Since advertisers only pay the bidding expense at the winning price W if they win the bid,
we exploit the assumption that the winning price follows a normal distribution conditional

on X.
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In the case of the budget constraint, we have that:

E[Expense|X] = E[Ws(b,W)|X]

= Joe W fwx (W)dW

= (oX)ws+ (X))o (o (X)ws +W(X))o(X)dw,

- / o (O (X))O (w)

— o (X) /w i WO 8wy 0 (X) / . 90w,

b—w)(X) b—Ww(X)

), (4.3)

where w; follows the standard normal distribution, and @(-), ®(-) are respectively the

density function and cumulative distribution function of a standard normal distribution.

4.1.3 Reducing expected instantaneous profit expression

According to the reduced forms of the expected instantaneous revenue (4.2) and expense
(4.3) we developed in the former sections, we can develop the reduced form of expected

instantaneous profit as:

E[Profit|X] = E[VCs(b(X),W)|X] — E[Ws(b(X),W)|X]
b—w(X) b

=VX0(= 5 o(X) o(X)

which is the objective function for profit maximizing model models.

4.2 Closed-form Optimal Solution of Lagrangian
Relaxation for RNP Model

After we derive the reduced profit (4.4) and expense (4.3) expressions, we can reformulate

the model for »'™P (4.1) using the reduced form:
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b™P(-) ;= argmax  E[V(X)6(X)D( o (%) ) —8(b(X),X)]
b: %4 —R+
subjectto  E[g(b(X),X)] <B,
where
g(b,X):=E[Ws(b,W)|X]
a0 2 oo i) @5)

In an attempt to solve this problem, one can introduce the Lagrangian coefficient A > 0

to obtain a relaxation of this risk-neutral profit maximizing problem:

PP () = argmax B[V (000" X)) o00) x)] - 2BL(b00) %) - B
b:Z —RT G(X)
= argmax E[G) (b(X),X)],
b:Z —RT
where
b—W(X)

G2 (b,X) =V (X)6(X)D( ) —g(b,X) —A(g(b,X) —B).

o (X)
The optimal bid price »"™P can be approximated using El;:p with A* as the smallest
value of A > 0 such that:

Elg(B;-"(X),X)] <B.

We next provide a closed-form solution for l;inp in the form of Lemma 1.

Lemma 1. For any A > 0, a maximizer of the Lagrangian relaxation takes the form:

E;an(X) ‘= arg max Gr(b,X),VX e 2.

be{o, "R )

Proof. We start by exploiting the interchangeability property of expected value (see (Shapiro,
2017)), which implies that the optimal bid price for the Lagrangian relaxation can be ob-

tained as the price, for each X, that maximizes the Lagrangian relaxation function G:

b—w b—w b—w

b32P(X) = argmax Gy (b,X) := V 6 D( —) = (A D )= 09(——)]+AB
beRT

:—(W-i—?LW—VQ)d)(b W)+(1+7L)G¢(b_w)+lB,

(4.6)
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where we dropped the relation to X for simplicity of presentation.
Since G, (b,X) is twice differentiable with respect to b, the maximizer for b is either

0,00 or at a value where the derivative is 0. For the latter case, we get that:

dGy(b,X) WA —vO  b—W b—w b—w
o, 0® o )+ A)——o(—

)=0.

Hence, we can conclude that the value of b where G, (b,X) has a derivative of zero is:

V(X)0(X)
A+1

4.3 Revenue Maximization Problem Formulation

This b™P (4.1) model can be easily transformed into a revenue maximizing model by
using revenue as the objective function. To be more specific, the objective function here
is maximizing the average expected revenue per batch of M opportunities while, once
again, satisfying the budget constraint per batch in expectation.
Therefore, the b can be described as:
™ () := argmax  E[(1/M) - Batch revenue]

b: ¥ R+
subjectto  E[(1/M) - Batch expense| < B,

where ™ (.) is the bid price that maximizes the expected average revenue from a batch
of M opportunities, while respecting the same constraint as in the expected profit maxi-
mization problem.
The above model mathematically takes the form:
1 M
P () := argmax  E[— Z ViCis(b(X;),W;)]
b: Z =Rt M i=1

1 M
subject to E[]\_l Y Wis(b(X;),W;)] < B.
i=1
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Based on linearity of expectation, it is again equivalent to model the expected instan-

taneous revenue problem:

P™M(.) ;= argmax  E[VCs(b(X),W)] 4.7)
b:Z —-R*
subjectto  E[Ws(b(X),W)] <B.

4.4 Closed-form Optimal Solution of Lagrangian
Relaxation for RNR Model

According to the reduced form of revenue (4.2) and expense (4.3), we can reformulate the

bI'IlI‘

risk-neutral revenue model using the reduced form:

(X) —w(X)

M) ;= argmax % b i
()i argmax BV (X0)0(0)@("S ) @8)
subject to E[W(X)@(%)—G(XW(%)] <B.

Similarly, in an attempt to solve problem (4.8), one can introduce the Lagrangian
coefficient A > 0 to obtain a relaxation function use the expense representation g(b,X) as

defined in (4.5):

B = argmax B7 (0002 Xy e, x) - B
b: 2 SR o(X)
— argmax  E[G, (b(X),X)],
b: 2 —Rt

where
b—w(X)

Gy(b,X):=V(X)0(X)D( oX)

) —A(g(b,X)—B).

The optimal bid price 4™ can be approximated using H§I" with A* as the smallest

value of A > 0 such that:

E[g(b3> (X), X)] < B.

We next provide a closed-form solution for 5™ in the form of Lemma 2.
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Lemma 2. For any A > 0, a maximizer of the Lagrangian relaxation takes the form:
P (X) == arg max Gr(b,X), VX € Z.
be{0, TR0 ooy

Proof. Again, we start by exploiting the interchangeability property of expected value,
which implies that the optimal bid price for the Lagrangian relaxation can be obtained as

the price, for each X, that maximizes the Lagrangian relaxation function G:

_ bW b—v b—
BT (X)) = argmax Gy (b, X) 1= VOD(———) — A (qu( Ty e (21 —B)
, b—v b—

where we dropped the relation to X for simplicity of presentation.
Since G, (b,X) is twice differentiable with respect to b, the maximizer for b is either

0,0 or at a value where the derivative is 0. For the latter case, we get that:

dg,(b,X) Aw-Ve b—w b—Ww b—Ww
Ve () tA———e(——)=0.

Hence, we can conclude that the value of b where G, (b, X) has a derivative of zero is:
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Chapter 5

Risk-averse Approach

The objective of risk-averse bid optimization model is to maximize the return of bidding

while controlling the risk of violating the budget constraint for a given time.

Similarly to the case of the risk-neutral models, we assume the value of customer
V, the fact that the ad is clicked C and the winning price W are mutually conditionally
independent given X (see Assumption 1). We also consider a similar per opportunity

budget B.

The distinguish point of the risk-averse approach is that we take the risk of going over
budget into consideration. In this chapter, we develop the risk-averse bid optimization
models for profit maximizing 5™, and revenue maximizing b'@, by applying the utility

function that considers the risk on the budget constraint.

Variables | Description
praP(.) risk-averse bid policy that maximizes profit problem
prat(.) risk-averse bid policy that maximizes revenue problem

Table 5.1: Risk-averse models



5.1 The Risk-averse Budget Constraint

We introduce the exponential utility function to model risk aversion in the budget con-
straint, where uq(y) := —exp(ay) is a concave utility function, where risk aversion is
controlled using the hyperparamter .

According to (Rudloff and Wunderlich, 2008), this risk-averse approach reduces to
the risk-neutral approach (4.1) when o¢ — 0 and can be considered as imposing an upper

bound of B on the entropic risk measure p of the per opportunity’s expense:
1 M
P57 L Ws(b(X),W)) <B,
i=1
where the entropic risk measure takes the form of
1
p(X):= aln(E[exp(aX)]). (5.1

The constraint in the batch of M opportunities can be represented by:

1
M !
1

IS

Elua(~ Y Wis(b(X;),W))] > uq(B). (5.2)

1

Then we can simplify the constraint based on the fact that the winning price W; and
features X; are independently and identically distributed variables:

1

77 2 Wis(b(X0), W))] = —E[e®(a ZWis(b(X). W)

M=

E[ug (
1

M
— _E[He(a/M)ms(b(Xi):Wi)]
i=1

M
i=1
_ _E[ea/MWs(b(X),W)]M

= Eug/m(Ws(b(X), W)™,

where the third equality is derived based on the independence assumption and the fourth

equality is derived based on the common distribution.
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It means that constraint (5.2) can be rewritten as:
Elute/r(Ws(b(X),W))] > ua(B)'/™ = ugy34(B).

In terms of simplification, we make

Therefore, the final constraint can be written as expected instantaneous format:

Elue:(Ws(b(X),W))] = uas (B)- (5.3)

5.2 Reducing the risk-averse budget constraint

We further simplify the constraint to obtain a closed-form representation. In doing so, we
start by dividing both side of constraint (5.3) by —uy/(B) > 0, given that B > 0 implies

that —uy/ (B) > 0, in order to normalize this constraint. This leads us to
—Elug (Ws(b(X),W))/ue:(B)] 2 —1.

We then exploit the Gaussian nature of W when X is known to obtain the following

reduction:
—Efuey(Ws(b(X),W))/uc (B)|X]

— ¢ B / exp(a’w)fW|X(w)dw+/ exp(a'-O)fW|X(w)dw>
w<b(X) w>b(X)

1 (w—w)2 b—Ww )
———toaw)d 1—®
<b G\/277:exp( 202 +aw)dw+ ( c )

w—(W+a'cd)?  (a)c? b—v
e Lal Nl )

(w—w—a'c?)? —W
—_eNn — —_el 2
=—¢ /ng G\/Eexp( 552 Ydw — e’ + e P( )
N / 2 7
_ _n 0 PX) =X —aO(X)Ty L g X W), (5.4)

o (X) o (X)

where we temporarily dropped the relation to X for simplicity and define:
n(X):= 12X +awX)-o/B &  p:=-aB.
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Overall, this allows us to capture the risk-averse budget constraint using:

where

. b—(X)
om T ey

) (5.5

5.3 Risk-averse Profit Maximization Model

The objective of risk-averse bid optimization h*@P model is maximizing the profit of bid-
ding while controlling the risk of violating the budget constraint for a given batch of
opportunities. Since we do not consider the risk on profit, the objective function is the
same with the model h™P. We consider the risk of spending over the budget by using the

risk-averse budget constraint (5.2):

M M
()i g [ Y VC(b(X), W) ~El Y Wis(b(%). W)
subject to E[ua(A% ﬁMs(b(X,-),Wi))] > ug(B). (5.6)

Following the reductions presented in Sections 5.1 and 5.2, we can reduce the problem
to the following risk-averse expected instantaneous profit maximization problem:
b'P () := argmax  E[VCs(b(X),W)] —E[Ws(b(X),W)]

b:Z —R*
subjectto  E[h(b(X),X)] > —1. (5.7)

In an attempt to solve this problem, one can again introduce the Lagrangian coefficient
A >0 to obtain a relaxation of this risk-averse profit maximizing problem:
~Ta
b, p() = argmax E[VCs(b(X),W)]—E[Ws(b(X),W)] —A(—1 —-E[h(b(X),X)])
b: 2 —R*
= argmax  E[G, (b(X),X)],

b: % —R+
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where

G2 (b, X) :=E[VCs(b(X),W)[X] - E[Ws(b(X),W)|X] — A(—1 - E[r(b(X),X)|X])

(5.8)
b—w(X)

=V(X)0(X)d( %)

) —8(b,X) +A(1 = h(b,X)),

following our definitions of g(b,X) and h(b,X) in (4.5) and (5.5) respectively.
The optimal bid price 5™ can be approximated using Elﬁp with A* as the smallest
value of A > 0 such that:

~rap

ER(BP(x),X)] > —1.

We next provide a closed-form solution for Eiap in the form of Lemma 3.

Lemma 3. For any A > 0, a maximizer of the Lagrangian relaxation takes the form:

E;ap(X) = arg max G,(b,X), VX e 2,

V Le2-Bya!y .
pefo, - WaaeVOTAE D) | o 316(x)1Aeh, oo}

o

where W is the Lambert W-function, i.e. the inverse function of f(x) := xe*.

Proof. Similar with the risk-neutral models, we also exploit the interchangeability prop-
erty of expected value, which implies that the optimal bid price for the Lagrangian relax-
ation can be obtained as the price, for each X, that maximizes the Lagrangian relaxation

function G, (b,X):

W N ;2
Eaa*p(x) = argmax G, (b,X) := (Ve_q_kei/z)q,(b W) —7Le71d>(w)
beR™ fol pe
F-ema— i) oo "))
J— n A_ / 2
:(‘A/e—l—leyz—ﬁ;)q)(b W)—ﬂ,e%CI)( w OCG)
o o
+(1—e72)l+o¢(b_w)

o

b—w b—c3 b—w

= Clq)( ) —C2¢)(
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where we drop the dependence of V, 6, #, and & to X for convenience and where we
use ¢y, c2, and c;3 to refer to ¢ (X) := V(X ) (X)+ Ae” —w(X), ca(X) := 1" and
c3(X) = w(X) +a'c(X)>.

Since G, (b,X) is twice differentiable with respect to b, the maximizer for b is either

0,00 or at a value where the derivative is 0. For the latter case, we get that:

dga(b,X)_O
b
W, ¢y b—cs. bV b—W
T (Lo IS+ Te =0
<:><c1—b+w>¢<”‘w>=c2¢<”;"3>
b p b—C3

< In((VO+Ae” —b))o(

A\2 R

S In((V0+Ae” —p)/vam) — & VZV) :1n(62/\/ﬁ)—%
<:>ZGzln(V6+)Le7’2—b)—(b—W) =20%[In(A) + 1] — ¢3 + 2bc3 — b?
&206°In(VO+Ae"” —b) — (b—w)> =262[In(A) + 1] — W+ ' 6?)> +2b(W+ /o) —

& 2In(VO + Ae” —b) =2[In(A) +0.5(a) 6> + a'w — o/ B] — (o' )> 6% — 2w + 2bal’

VO+Ae”2 —b
= 1n(++) =o' (b—B)

VO +Aer —b X
() - (Ve 4 At - B)a — (V64 Ae — b)a’

wewmm_b)a/ — o(Vo+Aen—B)a/
1 =
RN (V@ _’_keYZ )e (VO+Ae2—D)ox 7Le (VO+Ae2—B)o!
= (V@ +Ae” — b)(x’g (VO+Ae2—b)a' _ 3 o ,(VO+Ae2—B)o!
& (VO +Ae” —b)a' = W(ha'elVOrhe—B)a)
(V

(lae 0+Ae”2—B)a’ )
o

Sb=— +V6O+Ae",

where the W is the Lambert-W function. Hence, we can conclude that the value of b

where G, (b,X) has a derivative of zero is:

W(A o e(VO+Aer fB)(x’)

a/

b=— +V60+ Le.
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5.4 Risk-averse Revenue Maximization Model

This b'@P (5.7) model can be easily modified to a revenue maximizing model while re-
specting the risk-averse budget constraint, when advertiser is looking for maximizing the
expected click revenue while being risk-averse with respect to violating the budget con-

straint for a given period of time, captured by the batch size M. This is modeled using:

M=

1
() := argmax  [E|

— ) ViCis(b(X;), W;)]
b: % —R+ M,'

== 4
=

subjectto  Efug( Wis(b(X;),W;))] > ug(B).

1
Based on the derivation of the batch utility constraint in the earlier Section (5.3), it

is again equivalent to model the expected instantaneous value per opportunity, where we

l._ o.
denote o =

() := argmax  E[VCs(h(X),W)] (5.10)
b: X —R*
subjectto  Efug (Ws(b(X),W))] > ug (B).

Based on the normalized utility equation (5.4), we can reformulate the risk-averse

brar

revenue model as below:

() := argmax  E[VCs(b(X),W)]
b: X —R*
subjectto  E[a(b(X),X)] > —1.

As was done with b'@P, we introduce the Lagrangian coefficient A > 0 to obtain a
relaxation of this risk-averse revenue maximizing problem:
by := argmax  E[VCs(b(X),W)] = A(—1—-E[h(b(X),X)])
b: X —R*
= argmax  E[G, (b(X),X)],

b: 24 —R+
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where

Gy (b,X) == EIVCs(b(X), W)IX] - A(—1 —E[(B(X), X)X (.11)
— I 0000R(" D) 2.1 +4(b.))

The optimal bid price 5™ can be approximated using 552" with A* as the smallest

value of A > 0 such that:

E[n(BA(X),X)] > —1.

We next provide a closed-form solution for 53" in the form of Lemma 4.

Lemma 4. For any A > 0, a maximizer of the Lagrangian relaxation takes the form:

P (X) := arg ~ max Gr(b,X), VX e 2.
be{0, L in (ML texp(—a'B))+B, o}

Proof. According to interchangeability property of expected value, the optimal bid price
for the Lagrangian relaxation can be obtained as the price, for each X, that maximizes the

Lagrangian relaxation function G, (b,X), namely:

b—w b—w—-o'o

P (X) = argmax G (b, X) := (VO + Ae™)D(
beR+ c c

b_w)—c2¢(b_c3)+(l—e7'2)7t, (5.12)

= Clq)(

where we dropped the relation to X for simplicity of presentation, and where ¢;(X) =

A

V(X)0(X)+Ae”, c(X) = 2e"X) and c3(X) := w(X) + o/ o(X)2.

Since G, (b,X) is twice differentiable with respect to b, the maximizer for b is either
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0,0 or at a value where the derivative is 0. For the latter case, we get that:

—dglél’j’x) =0 —%¢(Z)ETW)+%2¢([9;C3) =0
s’ =029
b—w b—c3
& In(c10( )) =In(c29( )
—w)2 —c3)?
(:)ln(cl/\/ﬁ)—(bzgz) :ln(cz/\/ﬁ)_%

& (b—c3)?—(b—w)* =20%In(ca/cy)
& 2(W—c3)b=20%In(cy/c) +W? — 3
/62

2
sb=(1/d)In(VO/A+e”?)+B.

eb=(1/d)In(c1 /) + 22 4w

Hence, we can conclude that the value of b where G, (b,X) has a derivative of zero is:

b= (1/a')In(VO/A +e")+B.
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Chapter 6

Experiment Design

In the previous chapters, we have modelled the bid optimization problems that maximize
the expected profit or revenue while respecting the budget constraint with a risk-neutral
approach and the risk-averse approach. We obtained closed-form expressions of approx-
imately optimal bidding policies under each circumstances. In this Chapter, we design
the experiments to test the effectiveness of our bidding policies using the real-life iPinyou
Dataset. Besides, we present empirical experiments assumptions, implementation of the

batch evaluation approach, and parameters tuning algorithms.

6.1 iPinyou Dataset

The iPinYou dataset was released by iPinYou Information Technologies Co., Ltd (iPinYou)!
for the global RTB algorithm competition in 2013. The iPinyou Dataset includes logs
of ad biddings, impressions, clicks, and final conversions, and data are collected from
different industries of three seasons. Since our study requires the click, winning price
information for certain advertisers, we use the second and third seasons of data where
Paying Price and Advertiser ID are available. Even though the conversion may seem
more directly related to the advertiser’s goal, it is defined by each advertiser and different

between companies. For example, for an e-commerce company, the conversion has hap-

"http://www.ipinyou.com


http://www.ipinyou.com

pened when the user makes purchases but for a software company, they are looking for
the number of downloads. Therefore, we use the common target click C as an objective

to build our model.

Zhang et al. (2015) have analyzed the distributions of data from different industries
in this dataset, which are very different from every industry and relatively stable inside
of one industry. Since the bidding models that we designed are based on the assumptions
that the characteristics of each opportunity is independent and identically distributed, we

implement the experiments separately for the different industries.

In this thesis, we use one industry data: the Chinese vertical e-commerce industry

collected from Advertiser ID 1458, to demonstrate our experiment results.

6.1.1 Data format

The log data format can be seen from the table 6.1 where each row of this table repre-
sents a column/variable in the dataset (column with * means that the data in the column
is hashed or modified before the log is released.) and a detailed description for each vari-
able can be found in (Liao et al., 2014). Here, we only generally introduce the relevant

information.

For each observation in the dataset, the auction and ad slot features (all the columns
except the columns # 3, 20, and 21) are sent to the bidding engine, where the adver-
tiser propose the according to bidding price (column 21). If their bidding price is the
highest among the competitors, they win the auction for this ad slot and pay the second-
highest bidding price among the competition, which is the Paying Price (column 20).
Once the advertiser wins, their ad will be presented to the user captured by the obser-
vation at the specific ad slot that was won. The Log Type (column 3) indicates the user
response(impression: 1, click:2, conversion:3), which determines the performance that is

achieved for this observation if the bid is won.
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Column # Column Name Example

*] Bid ID 01530000008a77e7ac18823f5a4f5121

2 Timestamp 20130218134701883

3 Log Type 1

*4 iPinyou ID 35605620124122340227135

5 User-Agent Mozilla/5.0 (compatible; MSIE 9.0;
Windows NT 6.1; WOW64; Trident/5.0)

*6 1P 118.81.189.*

7 Region ID 15

8 City ID 16

9 ID Exchange 2

*10 Domain e80f4ec7f5bfbc9cad16a8c01cd1a049

*11 URL hz55b000008e5a94ac18823d6f275121

12 Anonymous URL  null

13 Ad Slot ID 2147689_8764813

14 Ad Slot Width 300

15 Ad Slot Height 250

16 Ad Slot Visibility SecondView

17 Ad Slot Format Fixed

18 Ad Slot Floor Price 0

19 Creative ID e39e178ffdf366606f8cab791ee56bcd

*20 Bidding Price 753

*21 Paying Price 15

*22 Landing Page URL a8bel78{fdf366606f8cab791ee56bcd

23 Advertiser ID 1458

*24 User Profile IDs 123,5678,3456

In our research, the auction and ad slot features are the observable features X (i.e. all
the columns except the column # 3, 20, and 21). In particular, columns # 14, 15, 18 are
numerical variables and all the others are categorical variables. Column # 21 and column
# 3, i.e. the Paying Price and Log Type, remain unobserved before the bidding and are
the dependent variables defined as W and C. Column # 20, Bidding Price is the decision
variable that we actually want to optimize. Therefore, all the estimators and bidding

policies that we designed are built on features X which are available to the advertisers

Table 6.1: Data Format

before the auction to be applied to real-world circumstances.
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6.1.2 Data split

The dataset is separated into Train, Valid and Test sets. The Train set contains 3,083,056
observations and are used to train estimators for 0,w, ¢ and optimize the Lagrangian re-
laxation parameter A. Both Valid and Test set contains 307,319 observations. We explore
the influence of hyperparameters and select the risk controlling factor & in the Valid for
the risk-averse models we proposed. The Test set is used to evaluate and compare differ-

ent bidding policies with performance metrics defined in the Section 3.5.

6.1.3 Descriptive statistics of the dataset
Winning price

Figure 6.1 presents the winning price distribution based on the train set (the test set applies
a similar distribution). More proportion of winning prices are distributed at the lower price
range than in the higher price range, with 83.4% percentage distributed within the price

of 100 and the mean of winning price W is 68.9 (all prices are in Chinese Yuan, CNY).
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Figure 6.1: Winning price distribution
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Clicks

Click events, i.e. C = 1, are very sparse in the dataset. Only 2,454 clicks in a total of
3,083,056 observations in the Train set, which is 0.080% of the dataset. Similar to the

test set, there are only 0.078% of observations are clicked.

Considering the sparsity of the click event, we design the batch size relatively larger to
make sure every batch contains the realized clicks. Since in the Train set, there are only
0.080% observations are clicked, we use the batch size M = 10,000 with an average of
8 clicks per batch. We assume that the distribution of the number of clicks in each batch

follows the normal distribution which could be identified from the Figure 6.2.

counts

20

25 5.0 715 10.0 125 15.0 17.5
number of clicks

Figure 6.2: Click distribution
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6.2 Experiment Assumptions

6.2.1 Budget setting

If the budget is large enough, a simple strategy of bidding at a very high price can win
all the bidding opportunities, all the clicks and achieve the maximum revenue. However,
it is more common that advertisers only have access to a limited budget and our models
are developed for this situation. Therefore, in the experiments, we set our predetermined
budget B lower than the historical total cost of 23,428,808 for 307,319 opportunities in
the Valid set. To be comparable with the RMP approach, we run the experiments under
1/64, 1/32, 1/16, 1/8, 1/4, 1/2, and 1 of the historical average cost, which is 1.19, 2.38,
4.76, 9.53, 19.06, 38.12, 76.24, respectively.

6.2.2 Value per click

Since the distribution of valuation is not available we could not model value depending on
features X. We assume the value of a click is equivalent to the empirical value per click v:

LoV

VX)=v= .
HoC

However, our approach could easily integrate an estimator of V (X) if the right type of
data was available. This could generate more efficient bidding price with consideration of

different value for different observations.

6.2.3 Early stop frequency

Bidding activity stops when the advertiser or their agents use up the budget. In other
words, when the advertisers or their agents try to bid on ad opportunities, they might have
to stop bidding before seeing all the ad opportunities for a given time because of running
out of budget. It is unwanted because there might be more valuable web traffic later on.

Therefore, it is considered as a risk measure, and we define it as Early Stopping Frequency
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in our setting:
Batch expense

Early Stop Frequency = P( [

Empirical early stop frequency

In the experiment, we simulate the situation of early stop as it happens when the algorithm
has an insufficient fund for the next bidding opportunity. We use the empirical early stop
event e to calculate the empirical early stop frequency on the samples of Valid set to search
the risk hyperparameter o and use samples of Test set to present the model performance.
To be more specific, the probability PP is estimated using observations among the sample
batches:

e := the number of early stop events,

e

Empirical early stop frequency := the number of sample batches’

where the number of sample batches of a dataset that contains N observations and uses

batch size of M can be obtained by [ |.

Batch performances when early stop happens

When early stop happens in the middle of a batch of opportunities, the algorithm will stop
bidding for any other left opportunities in the batch.

Mathematically, when the early stop happens, for a given batch of M opportunities
{(Xi, Wi, G, Vi) 1L

=

n:=min{n=1,....M|(1/M) Y Ws(b(X;),W;) > B}

j=1

~

Since the batch budget BM has been used up, the decision makers will stop bidding by
simply submitting the € > 0 which is a small value that left after paying all the expenses
before the 1-th opportunity in the batch, as the bidding price for the left opportunities in

the batch:

N b(X;) ifi<n
bl(X) = ,

€ otherwise
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where & = BM — Y Wis(b(X;), W;).

In the experiments, once &’ < b(Xp), it means the budget left is insufficient for bidding
and we define the early stop event happens. The algorithm will continue bidding for the
following opportunities at the price of € until it is spent or sees the whole batch of M
opportunities.

As aresult, with a small bid price €/, the conditional winning probability s(b;(X;), W;) ~
0 for the left opportunities unless there is no other bidder in auction and the ad exchange

platform accept the lowest payment as 0. So we have the empirical batch revenue as:

M
Early Stop Batch Revenue = Z ViCis(bi(X;), W;)
i=1

n—1 M
= Y ViGis(b(X;),Wi) + ) ViCis(0, W)
i=1 i=n

n—1
~ Y ViCis(b(X;),W;)
i=1

Similarly, the empirical batch performance for expense, profit, clicks, impression rate

with early stop can be defined as follows:

M
Early Stop Batch expense = Z WiCis(bi(X;), W)
i=1

n—1
~ ) Wis(b(X:),W:)
i=1

The batch profit is still the difference between batch revenue and batch expense.

M
Early Stop Batch number of clicks = Z Cis(bi(X;), W)
i=1

n—1
~ Y Cis(b(X;),W;)
i=1

48



Y s(bi(X), W)
M

X s(b(X), W)

- M

Early Stop Batch impression rate =

6.2.4 Implementation Detail

During the implementation, there is a numerical imprecision problem for the same term
of the Lagrangian relaxation function (5.9) and (5.12) that model the risk-averse models

RAP and RAR when % 1s small. This term is:

— W 2
b C3) :;Le%q)(bw—ac) 6.1)

CQCI)(
(03

The L’Hopital’s rule (Alaya, 2017) can be applied to improve the numerical precision

of this term. Where In(®(y)) is obtained, we use an approximation:
In(@(y)) ~ —In(v27) /2 —In(~y).

Applying this L’Hopital’s rule to the term (6.1), we define:

b—w— aoc?

y':Ta

therefore, the term (6.1) can be approximated by:

N 2
;Lei’lq)(w) — ,le}’lq)(y)

= Aexp (71 +In(D(y)))
~ A exp <}/1 —In(v2m) —y?*/2— ln(—y)) :

6.3 Experiment Steps

We explore the bid optimization problem by applying the following steps:
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6.3.1 Training estimators

The estimators are trained and cross-validated on the Train set. First, we obtain 6(X),
1.e. the estimators for the click-through rate. After we obtain the estimator of winning
price w(X), we then train the estimator of conditional standard deviation of winning price

o (X) using the approach we described in the Section 3.2.

6.3.2 Searching for optimal parameters

To better model the effect of expense and risk, we introduce two parameters as introduced

in the earlier Chapters and summarised in the following table 6.2:

Parameter | Description
A Lagrangian relaxation parameter
o risk controlling parameter

Table 6.2: Hyperparameter for 5'P, p™10 praP and prar

These two parameters are developed for the bid optimization models to solve two
different problems.

The parameter A is needed for both risk-neutral and risk-aware approaches. To ob-
tain the closed-form of bidding price, we introduce the Lagrange multiplier A > 0. It
represents the trade-off between maximizing the objective function, either revenue (4.2),
or profit (4.4) depending on the model; and respect to the budget constraint that expense
remain under the predetermined budget (4.3).

On the other hand, the parameter & > 0 indicates the extent of being risk-averse with
respect to the budget constraint, which applies in the risk-averse models. The ¢ is larger
when the decision-makers tend to be more risk-averse.

For both risk-neutral and risk-averse approaches, Lagrangian relaxation parameter A
is selected from the train set. As for risk-averse models, for each o, we have a optimal
A obtained from the Train set; then, the advertiser can select the o level using the per-
formance observed on the Valid set. In our experiments, we will select the ¢ that led to

the best performance in terms of the Sharpe ratio of the early stop batch revenue or batch
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profit depending on the model. One can also use the & as a subjective hyperparameter

selected by the decision makers depending on the their risk preference.

Explore the Lagrangian relaxation parameter A

The A is the Lagrange multiplier that we introduced into the model to integrate the con-
straint in the objective function of our model and make it amenable to optimization using
first order conditions.

Specifically, in our research as defined in objective function (4.6) and (5.9), the A can
be seen as a trade-off parameter that indicates the strength of constraint. When the A is
close to zero, the algorithm will maximize the objective function, either revenue or profit
and ignore the budget constraint, which leads to high bidding price and expenses; on
the other hand, when the A is large enough, the algorithm will only predict zero bidding
price to respect the strong constraint of budget, which causes the unwanted result of zero
bid, zero expense and zero value of the objective function. Therefore, the ideal A should
generate a non-zero bidding price that maximizes the objective function while respecting
the constraint.

In addition, we use the expectation approach to explore the optimal A. Under this
expectation approach, the A is conditional on winning price prediction w and the click-
through rate prediction 6. No matter the objective function is either revenue or profit,
the process of searching the optimal A is the same. This is because either the objective
function is maximizing the expected revenue or profit, the model is equivalent to capturing
as many click opportunities as possible, which means spending all the predetermined
budget to win every possible bid.

As the relationship between A and expected expense is monotonous, when the A in-
creases, the budget constraint will be stronger and leads to the bidding price decreases,
as in the Figure 6.3) and lower the expected expense as in the Figure 6.4. Both figures
are produced with B = 2.38 in the train set as an example, and the relationship between
A and the expected expense or bidding price remains the same monotonous given other

hyperparameters.
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Figure 6.3: Bidding price under different A
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Figure 6.4: Expected expense under different A
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Therefore, we use the bisection search method to find the optimal A that could spend
the expected expense for risk-neutral models, or the certainty equivalent CE measured
using the entropic risk measure (5.1) for risk-averse models, that is close to predetermined

budget B:

Algorithme 1 : Bisection search for the best Lagrangian relaxation parameter A

Input : tolerance € = le — 2, max A = 20 (the max A is larger when « is
smaller), Predetermined average budget B, trained w(X), 6(X), 5 (X)
Output : Best value of A *
Data : Training set
1 Apin <05
2 Apax < 1
3 while A,,,.x — Apin > € do
| A= Gt Rowin) /2
5 Evaluate model in the train set, calculate the expected expenses [E[expense]
6 (or the certainty equivalent CE for the risk-averse approaches)
7 Then, compared with budget B;

8 | if B> Elexpense|(or CE for risk-averse approaches) then

9 ‘ Amax = A3
10 end
11 if B < E[expense](or CE for risk-averse approaches) then
12 ‘ Amin = A3
13 end
14 end
15 A" = Anars

16 return A*;

Explore the risk controlling parameter o

The risk-neutral models without ¢, or o« — 0, are simply controlling the expected expense

without consideration of risk. The risk-averse models are using & as the risk controlling
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hyperparameter and controlling the entropic risk measure of expense. The extent of risk
aversion gets higher when the « is increasing.

In reality, when the decision-maker is more risk-averse, they tend to reduce the ex-
pense by bidding at the lower price so that they are certain that they will not pay over
the bidding price. Our model also demonstrates this monotonic relationship between risk
aversion level and bidding price. The Figure 6.5 is produced using the RAP approach
on the Valid set while the A is obtained using the Algorithm 1 from the Train set. From

there, we can clearly identify the bidding price is under more control when the « is higher.

140 4

130 4

100 4

mean of bid
&

20 4

0.a 01 0.2 03 0.4 05
alpha

Figure 6.5: Bidding price under different o

For the RAP model, if we select the hyperparameter & only based on the Sharpe ratio,
very often we will select a small alpha, which is very similar to directly use the RNP
model that maximize the profit without consideration of risk of running out of the budget.
The risk exposure is very similar. To better demonstrate our model’s advantage in risk
control on the budget constraint, we select the lowest ¢ that more than certain probability

of batches remain under the budget, and we define this probability as confidence level
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p- In the experiment, we use the number of early stop events e to represent whether the
algorithm goes over the budget or not.

In the experiment, the optimal o we use here is the one that produces the highest
Sharpe ratio, using the objective value as the return, and remains under the budget for at
least p =95% batches of Valid set. The detailed process for the RAP model is described
in the Algorithm 2:

Algorithme 2 : Exhaustive search for the optimal o of RAP model
Input : Predetermined average budget B, a list of &, batch size M, a confidence
level of p samples remain under the budget, trained w(X), 0(X), o (X),
calibrated optimal A
Output : Optimal o
Data : Valid set;
the Valid set contains N observations, | % | batches
1 The best Sharpe ratio s* = 0;
2 for each o do
3 Initial empirical Early Stop frequency given o is eq =0 ;
4 for each batch j in the Valid set do
5 Let objective function value for this batch obj; be the calculated Batch
profit ;

6 if batch budget run out then
7 ‘ eq=¢€q+1;
8 end
9 end
10 Mean of ob in batches given o: Ly = 0b] ;
11 Standard deviation of 0bj in batches given o: Gy = Oy ;
12 | Sharpe ratio given a: 5o = ’;—Z ;
13 | ifeq < (1—p)* || andsq > s* then
14 the optimal s* = s¢;
15 the optimal a* = «
16 end
17 end

18 return o;

This Algorithm 2 can be easily adapted to the RAR model. When searching for opti-
mal o of RAR model, the only difference compared to the Algorithm 2 is that we calculate

the Batch revenue as the objective function value obj instead of Batch profit.
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6.3.3 Model Evaluation and Comparison

The models’ performance is evaluated using the Test set and the detailed metrics are

described in the Section 3.5.

Among the bidding strategies in the latest literature, the RMP bidding strategy has a
similar setting by modeling as one-stage problem, and similar goal which is to control the
risk in the bidding while maximizing the profit. Our difference is that the RMP approach
targets to control the risk of negative profit while our RAP approach is controlling the risk
of violating the budget constraint. Therefore, we will also compare our bidding strategy

with the RMP approach in the Test set.

In order to better compare the strategy itself, we tried to use the same setting for both
approaches. All the comparisons we made using the same dataset, under the same budget
constraint; we both use the empirical value per click v in the experiments to represent V;
and assume the valuation of click is constant, independent from the distribution of features

X in the experiments.

Plus, when we replicate their approach on the dataset, we use a larger range of risk
control and bid scale ratio hyperparameters to make sure the result is comparable and
does not decline due to an insufficient search of hyperparameters. In addition, we apply
the same criteria to select hyperparameters. Instead of using the profit obtained from the
Valid set as RMP approach, we changed it to select the hyperparameters combinations
that more than the confidence level of p, remain under the predetermined budget in every
batch and gives the highest Sharpe ratio in the batches of Valid set. We also generate the
RMP_neutral model by removing its risk factor (when o¢ = 0) to compare with our RNP

model.

However, the RMP model considers the risk in profit coming from the uncertainty of
clicks and estimates their mean and standard deviation by Bayesian regression on Train
set, and W is a stochastic random variable independent given X. In comparison, we will
use the conditional mean estimators on the click-through rate and winning price, since we

mainly focus on the risk of expense going beyond the budget where the risk comes from
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the winning price distribution.
After we obtain all the bidding strategies, we compare the metrics performance in

batches of M opportunities using the empirical cumulative distribution of sample batches.
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Chapter 7

Numerical Results

In this chapter, we explore the behaviour of risk controlling parameter o with different
extents of risk aversions and the influence of different budget levels on the Valid set.
Then, we select the optimal & based on the Sharpe ratio for the RAP and RAR models

and compare the performance of different approaches on the Test set.

7.1 Level of Risk Aversion

In our risk-averse bidding models RAP and RAR, the level of risk aversion is controlled
by the a. The bidding price b™P and H™ are lower when increasing the value of o as we
discussed in the last Chapter 6 about the Figure 6.5. As a result, the model is less likely to
win the bid opportunities with less bidding price when competing with others, so the risk
of spending over the budget before seeing all the opportunities could be reduced by only
trying to win cheap bids that cost less. However, when the o¢ — 0, which represents the
decision maker is risk-neutral towards the expense, our risk-neutral bidding models RNP

and RNR can be applied.



7.1.1 Profit maximization models

First, we present the performance of profit maximizing models, the risk-averse model
RAP and risk-neutral RNP bidding strategies. The performance of the RNP model is

denoted as o = 0 in the figures.

We compare the model performance Batch profit, Batch expense, which represents
the model’s objective function value and constraint, using the empirical CDF graphs under
different levels of risk aversion, given the same average budget. For example, given the

budget level B = 38.12, we have:
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Figure 7.1: Empirical distribution of Batch profit under different risk level for the profit
model with B=38.12
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Figure 7.2: Empirical distribution of Batch expense under different risk level for the profit
model with B=38.12

The empirical CDF graphs of batch profit in Figure 7.1 and batch expense in Figure
7.2 demonstrate the similar behaviour given different levels of budget.

Our risk-neutral approach RNP outperforms the risk-averse RAP approach in terms
of the profit of each M = 10,000 opportunities batch. In Figure 7.1, the blue line that
represents the RNP where @ = 0 is on the right side, and dominates all the other RAP
models with o« > 0. Other than that, there is no clear dominance relationship between
lines of different ¢ > 0.3 using the RAP approach with this budget level, which means
when the « is relatively larger, the difference in profit has been reduced and even generate
similar profit that overlapping on the empirical CDF graph. If we look at the left tail of
the graph 7.1, the risk-averse policy with a larger &, or more risk-averse, have a lower
probability of getting negative profit, and we can identify the RNP model has a higher
probability of extreme negative profit.

On the other hand, the risk-averse approach RAP demonstrates effective control of
spending over budget. The bold black line in the right part of the Figure 7.2 represent
the predetermined batch budget. Since the algorithm stops when using up the budget in

the batch, there is no CDF line passing the budget black line. As we can see from the
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expense Figure 7.2, all the RAP models with positive & never use up the batch budget.
But the risk-neutral model RNP represented by the blue line uses up the budget 80% of
time, which can be identified by only 20% of RNP’s CDF line is shown on the left of the

budget line.

The Empirical early stop frequency is another main metric that demonstrates the per-

formance of risk control on the budget constraint:
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Risk aversion level (a)

Figure 7.3: Empirical Early stop frequency under different risk level for the profit model
with B=38.12

The Figure 7.3 shows a steep decline in the Empirical early stop frequency when we
increase the value of . If we have a much less budget, B = 2.38, we can have a more
clear view about how the & influences on Empirical early stop frequency, since the smaller

budget requires more risk control.
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Figure 7.4: Empirical Early Stop Frequency under different risk level for the profit model
with B=2.38

Combined the Figure 7.3 and Figure 7.4, we can conclude that a larger value of o does
effectively control the Early stop frequency from majority of batches to none. Especially
with a smaller budget B = 2.38, when a¢ — 0, the budget runs out before the last bidding
opportunity for every sample batch. Then, the early stop frequency drops quickly as o in-
creases and ends up with zero early stop frequency when « is greater than a certain value,
approximately 0.08 when B = 38.12 and 0.28 when B = 2.38. Therefore, by adjusting
the value of «, the RAP model can control the risk of spending over the budget given a
certain period of time.

One may notice that even though the model is more risk-averse when « is higher,
it still generates negative profit in the Figure 7.1. Again, our model controls the risk of
going over the budget, not directly on the risk of negative profit. Therefore the effect
of control negative profit is only marginal. When we experiment on batches, the model
is trying to capture all the opportunities by spending all the certainty equivalent amount
of the budget given the risk level o while maximizing the objective function but do not

account for it might end up with a negative profit.
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7.1.2 Revenue maximization models

The RAR and RNR models are aiming for maximizing the revenue of bidding, where
the risk-averse model RAR is presented by lines with o« > 0 and risk-neutral model RNR
is denoted as & = 0. We can draw a similar conclusion as we conclude for the profit

maximizing models in terms of performance with different risk levels.

Given the same average budget B = 38.12, we compare the model performance Batch
revenue, Batch expense, which represent the model’s objective function value and con-

straint under different levels of risk aversion:
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Figure 7.5: Empirical distribution of Batch revenue under different risk level for the rev-
enue model with B=38.12
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Figure 7.6: Empirical distribution of Batch expense under different risk level for the rev-
enue model with B=38.12

Again, the empirical CDF graphs of batch revenue in Figure 7.5 and batch expense in

Figure 7.6 demonstrate the similar behaviour given different levels of budget.

Both empirical CDF figures 7.5 and 7.6 show that there is a clear dominance relation-
ship between different &. The batch revenue and expense move in the same direction and
both of them are higher when the « is lower. Surprisingly, the risk-neutral model RNR 1is
stochastic dominated by the RAR model when o« = 0.1. This is due to when the model is
bidding with consideration of the risk of violating the budget constraint, the b'4T is higher
than ™ for opportunities that have a higher click-through rate 6 but bid less on the
opportunities with a lower click-through rate. Therefore, when the « is within a certain

range, the RAR outperforms the RNR by spending more on valuable opportunities.

Similarly, the risk-averse approach RAR demonstrates effective control on the risk of
spending over budget. First, the Figure 7.6 shows that all of the samples with our risk-
averse model do not run out of the batch budget and the more risk-averse, the expense is

more restricted.
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Figure 7.7: Empirical distribution of Early stop frequency under different risk level for
the revenue model with B=2.38

We use a smaller budget of B = 2.38 to better see the influence on the Empirical early
stop frequency. As seen from the Figure 7.7, a larger value of o does control the Early
stop frequency from running out of the budget for every sample batch to none of them.
Therefore, we have a similar conclusion that by adjusting the value of o, the model RAR

can control the risk of spending over the budget given a certain period of time.

7.2 Level of Budget

All of our models depend on the Lagrangian relaxation parameter A, which is optimized
using the algorithm 1 by restricting the expected expense, or certainty equivalent of ex-
pense within but close to the predetermined budget. Therefore, our models depend on the
budget level and we explore the influence of different levels of budget B on the model
performance.

Given the same o = 0.1, the model produces different bidding prices for the same
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set of opportunities according to the different budget levels, from a large average budget
when B = 76.24 to a small average budget B = 1.19. Here, we use the risk-averse with
profit objective model RAP as an example to present the influence, the same conclusion

can be drawn from other models.
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Figure 7.8: Empirical distribution of Batch revenue under different budget level for the
profit model
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Figure 7.9: Empirical distribution of Batch expense under different budget level for the
profit model

From the Figure 7.8 and 7.9, there are clear dominance relationship between the em-
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pirical CDF of different budget levels. In the Figure 7.9, the total budget lines are repre-
sented by the bold vertical lines with the same color of their batch expense lines, where
the CDF of batch expense is on the left side of its total budget line if the model remains
under the budget in the experiment batches. The @ = 0.1 provides enough control on the
budget constraint for B > 9.53 but requires a larger &, or say more risk-averse control, on
the smaller budgets, as the batch expense lines of B < 4.76 largely overlapping with their
total budget bold lines. We can conclude that given the same risk level when we have
more budget, our model can win more opportunities, therefore producing more revenue

but at the same time more expense.
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Figure 7.10: Empirical distribution of Batch profit under different budget level for the
profit model

Since both revenue and expense move in the same direction, the change in profit is
uncertain. If we look at the profit performance Figure 7.10, many empirical CDF graphs
are overlapping when B > 19.06. Part of the reason is that if we see the distribution of
the winning price from the Figure 6.1, the distribution is skewed with a long tail on the
right. Therefore, when we have a relatively sufficient budget, the budget is very likely
to cover most of the valuable opportunities, which leads to an overlapping performance.
Furthermore, the click distribution is very sparse and one can win many display oppor-

tunities but none contains the realized clicks. Every incremental of clicks can cost a lot
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more expenses, which also causes the overlapping on profit. Also, one could interpret
the budget level as a regularization parameter that concentrates on the most productive
opportunities. Thus, the batch profit given a smaller budget with a larger regularization
can have comparable performance.

However, the empirical CDFs of B = 19.06,9.53,4.76 stochastically dominates the
profit CDF of smaller budgets, as profit is higher when the budget is higher. The model
with a lower budget produces lower bidding prices, therefore it loses more distribution
of the opportunities and leads to a lower batch profit. But overlapping happens again
given B = 2.38 and B = 1.19, as the approach seems to have difficulty identifying cheap

profitable opportunities given the risk aversion level & = 0.1.

7.3 Model Comparison

In this section, we compare the different models in terms of metrics defined in 3.5 on the

out-of-sample Test set.

7.3.1 The profit models and revenue models

In this thesis, we propose both profit maximization models, RAP and RNP, and revenue
maximization models, RAR and RNR. Given the budget B = 38.12, we obtain the optimal
pair of A and « according to the Algorithm 2 for the risk-averse models RAP and RAR,;
and applying the Algorithm 1 to find the optimal A for the risk-neutral models, RNP and
RNR. Then, we use the optimal bidding prices obtained for each model to compare their
performance of Batch profit, Batch revenue, Batch expenses using the empirical CDF
graphs:

From the batch profit performance in the Figure 7.11, the empirical distributions of the
two profit-maximizing models dominate the two revenue-maximizing models. For the two
profit models, RNP and RAP are overlapping most of the time so there is no dominance

relationship, which is mainly due to the RNP model costs more while achieving higher
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Figure 7.11: Empirical distribution of Batch profit under different methods when B=38.12

revenue than the RAP model. One could interpret that the RNP model uses the in-sample
estimators to find the A that controls the expected expense according to the Algorithm 1,

and there is a difference between empirical results and expected values.
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Figure 7.12: Empirical distribution of Batch profit under different methods when B=38.12

When we look at the batch revenue performance in the Figure 7.12, we find out that the

70



1.04

o
®

o
o

= RAR
— RAP
= total budget

Cumulated probability
o
'S

o
N

0.0

260000 280000 300000 320000 340000 360000 380000
Batch Expense

Figure 7.13: Empirical distribution of Batch expense under different methods when
B=38.12

RAR and RAP models have very similar performance. However, the RNR unexpectedly
produce the worst revenue compared with other methods. This is because, with the RNR
approach, the model was trying to maximize the expected value of clicks by a higher
bidding price »™ without considering of risk of running over the budget. Therefore, the
RNR model runs out of the budget in every batch and loses the valuable opportunities
that happen after its early stop point. Even though the RNP approach also happens early
stop for every batch, aiming for maximizing profit is actually equivalent to adding an
additional penalty for the expense. Therefore, the RNP approach wins more opportunities
than the RNR model which can be identified by a higher impression rate per batch and

will be discussed later.

Both risk-averse approaches demonstrate effective control of the expense going be-
yond the budget. As we can identify from the Figure 7.13, Only RAR and RAP models’
expense CDF graphs can be found in the figure and more than 95% of probability that the
batch expense remains under the batch budget. On the contrary, the CDF graphs of both
risk-neutral approaches combine completely with the bold black line for the total batch

budget, which means the risk-neutral models run out of the budget for every batch.
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Performance on other metrics

Advertisers also look into metrics like the number of clicks and impression rate as their
KPI. In this section, we present the results given different levels of budget for other metrics
as stated in Section 3.5, as well as the Empirical early stop frequency as an indicator of

the probability of violating the budget constraint among the Test set.

As shown in the table 7.1, we present the results of Batch number of clicks, Batch
impression rate, Sharpe ratio of profit, Sharpe ratio of revenue, Early stop frequency
by keeping 4 significant figures:

First, all the risk-averse models demonstrate better control on the risk of violating the
budget constraint compared with the risk-neutral models, which can be concluded from

the number of Early stop frequency.

When the budget is relatively large B > 9.53, the risk-averse models generally outper-
form the risk-neutral models in terms of Sharpe ratio of profit, Sharpe ratio of revenue.
The profit models outperform the revenue models on Sharpe ratio of profit, Batch num-
ber of clicks. Even though the revenue model is targeted at maximizing revenue, which
is equivalent to maximizing the number of clicks, the algorithm does not always bet-
ter on Batch number of clicks, Batch impression rate, Sharpe ratio of revenue. We
have discussed earlier that this phenomenon is caused by revenue models tending to be
less conservative on expense and more likely to bid higher for the opportunity that has a
higher click-through rate, which leads to a higher expense and less capability of capturing

the profitable opportunities.

When the budget is relatively small B < 4.76, the risk-neutral models generally outper-
form the risk-averse models in terms of Sharpe ratio of profit, Sharpe ratio of revenue,
Batch number of clicks, whereas the risk-averse models have a better performance in the
Batch impression rate. This is because the bidding price is lower by risk-averse models,
it is less likely for the risk-averse models to win costly opportunities that could generate
more profit, but with the risk control on the budget constraint, the risk-averse models can

certainly win more opportunities overall which leads to a higher Batch impression rate.
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Budget Measures RAP RNP RAR RNR
Average batch number of clicks | 7.233 7.467 7.467 7.700

Average batch impression rate | 79.93% | 80.55% | 96.93% | 99.90%

B =176.24 Sharpe ratio of profit 1.005 1.024 | 0.02149 | -0.1987
Sharpe ratio of revenue 3.119 3.199 3.391 3.251
Early stop frequency 0 0 0 90%
Average batch number of clicks | 5.600 6.367 5.533 4.033

Average batch impression rate | 64.51% | 69.64% | 71.18% | 54.55%

B =38.12 Sharpe ratio of profit 1.083 | 0.8473 | 0.7699 | -0.1802
Sharpe ratio of revenue 2.678 2.749 2.604 1.961
Early stop frequency 0 100% | 3.333% | 100%
Average batch number of clicks | 5.067 3.300 3.500 2.567

Average batch impression rate | 47.08% | 34.81% | 42.26% | 30.02%

B =19.06 Sharpe ratio of profit 1.381 | 0.5946 | 0.9866 | 0.2364
Sharpe ratio of revenue 2.314 1.787 1.884 1.664

Early stop frequency 13.33% | 100% 0 100%

Average batch number of clicks | 2.633 1.700 1.833 1.700

Average batch impression rate | 28.85% | 18.35% | 26.52% | 18.34%

B=9.53 Sharpe ratio of profit 1.077 | 0.4297 | 0.8461 | 0.4297
Sharpe ratio of revenue 1.565 1.219 1.364 1.219

Early stop frequency 0 100% 0 100%
Average batch number of clicks | 0.9667 1.433 0.9667 1.433

Average batch impression rate | 19.36% | 11.06% | 19.11% | 11.02%

B=4.76 Sharpe ratio of profit 0.4970 | 0.7026 | 0.5452 | 0.7026
Sharpe ratio of revenue 0.8272 | 1.141 0.8954 1.141

Early stop frequency 0 100% 0 100%
Average batch number of clicks | 0.3333 | 1.267 | 0.4000 1.267

Average batch impression rate | 7.739% | 6.928% | 7.162% | 6.883%

B=12.38 Sharpe ratio of profit 0.4500 | 0.8018 | 0.5236 | 0.8018
Sharpe ratio of revenue 0.6202 | 1.024 | 0.6547 1.024

Early stop frequency 0 100% 0 100%

Table 7.1: Metrics results
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If we compare the performance between RAR and RAP, RNR and RNP, the metrics results
are similar in Batch impression rate, Batch number of clicks, and risk-neutral models
RNP and RNR have almost the same metrics. Under the limited budget, risk-averse mod-
els bid lower than the risk-neutral models with the same objective, which leads to a higher
impression rate and better control on the budget constraint but also lowers the probability
of winning the valuable opportunities that has a higher probability to get clicks. As for the
two risk-neutral models, the RNP model wins slightly more opportunities than the RNR
model thanks to more consideration of cost, but still, both #™™P and »™ are too low to

win more valuable opportunities.

7.3.2 Model comparison with the RMP approach

To compare with the RMP approach, we use the same budget amount and value of click
setting to make the result more comparable and apply the procedure specified in Section
6.3.3 to optimize the RMP hyperparameters.

Here, we present the out-of-sample performance for our risk-averse profit maximizing
model RAP and the RMP approach. Since the budget level could influence the model per-

formance as we discussed earlier, we present the results with two budget levels separately.

Model performance when budget is relatively large

With a relatively large average budget, B = 38.12, the batch profit empirical CDF of dif-
ferent models are overlapping. When looking at the left tail of the batch profit graph, our
pMp generates more loss than the other models and the RMP and RMP_neutral models
show a good performance on controlling the risk of negative profit.

From the batch expense’s empirical CDF graph 7.15, both the RMP and our RAP
models effectively control the risk of running out of budget. The RMP approaches cost
less than our approaches, even though they have no control over the risk of expense going
beyond the budget. However, our RNP model uses up the budget for every batch since its

CDF completely combines with the budget line.
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Figure 7.14: Empirical distribution of Batch profit compared with the RMP when
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Figure 7.15: Empirical distribution of Batch expense compared with the RMP when
B=38.12
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Figure 7.16: Empirical distribution of Batch revenue compared with the RMP when
B=38.12

However, our RAP and RNP models dominate the RMP approaches on the batch
revenue performance, which means our model produced more clicks than the RMP ap-

proaches.

Model performance when budget is relatively small

The results are different when using a relatively small average budget, B = 2.38. If we
look at the empirical CDF on batch profit graph 7.17, our risk-neutral RNP model dom-
inates all the other models; our risk-averse RAP model has similar results with the RMP

model.
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Figure 7.17: Empirical distribution of Batch profit compared with the RMP when B=2.38
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Figure 7.18: Empirical distribution of Batch expense compared with the RMP when
B=2.38

Both risk-neutral models fail to remain under the budget by completely integrating
with the black budget line on the right and both risk-averse models successfully control
the risk of violating the budget constraint, as seen from Figure 7.18. Two risk-averse

models have similar results batch expense, by overlapping with each other.
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Performance on other metrics

As for other metrics, our approaches provide competitive results compared with the RMP
approaches. Especially when the budget is relatively higher, our RAP model significantly
dominates the RMP and RMP_neutral models in terms of Batch number of clicks, Batch
impression rate, Sharpe ratios. When the budget is lower, the RAP model outperforms
the RMP on Batch impression rate by 2.7% and has comparable results to the best of
RMP and RMP_neutral models in the other three metrics. Perhaps the high profit op-
portunities are all quite homogeneous since we use the same empirical value of click v
to represent V(X). The RNP model performs the best among these four models on a

low budget but seems unstable in terms of performance with a high Empirical early stop

frequency.
Budget Measures RAP RNP RMP | RMP neutral
Average batch number of clicks | 5.600 6.367 3.867 3.700
Average batch impression rate | 64.51% | 69.64% | 41.5% 38.78%
B=38.12 Sharpe ratio of profit 1.083 | 0.8473 | 0.8915 0.9218
Sharpe ratio of revenue 2.678 2.749 1.938 1.947
Early stop frequency 0 100% 0 0
Average batch number of clicks | 0.3333 1.267 | 0.4333 0.5000
Average batch impression rate | 7.739% | 6.928% | 4.984% 7.285%
B =238 Sharpe ratio of profit 0.4500 | 0.8018 | 0.4867 0.3630
Sharpe ratio of revenue 0.6202 | 1.024 | 0.6056 0.8076
Early stop frequency 0 100% 0 100%

Table 7.2: Compare metrics results with RMP approach
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Chapter 8

Conclusion

In this thesis, we model the risk of spending over the budget given the number of bid-
ding opportunities by using the exponential utility function and entropic risk measures on
expense. We not only propose the risk-averse and risk-neutral model that maximizes the
profit, the model RAP and RNP, but also expand our approach to revenue maximization
problem, the model RAR and RNR. We derive closed-form solutions of optimal bidding
policies for each model, which are very easy to implement in reality. After training the
estimators and finding the optimal ¢ using the algorithm 2, the decision maker only needs
to input their predetermined average budget for a given period of time and risk preference,
and the model can predict the bidding price that controls the risk on expense going beyond

the budget while maximizing the objective function value, either profit or revenue.

The two risk-averse bidding policies, RAP and RAR can effectively control the risk
of spending over the budget for a given time. By adjusting the risk controlling parameter
o, the decision maker can control the model’s level of risk aversion according to their risk
preference. Larger ¢ leads to more risk aversion and less expense. We also propose the
algorithm of selecting the optimal o based on the Sharpe ratio of the objective function
value detailed in Algorithm 2. Or the decision maker can input their risk preference of
o and obtain a bidding policy with a customized level of risk aversion on the expense

control.



We propose the batch experiment scheme that is more applicable in reality. Advertis-
ers usually make their budget plan based on the period of time, like a monthly budget or
daily budget. The opportunities for online ad slots are a certain number until there is a
change in website design. Other bidding strategies do not consider the batch performance
but look at the overall opportunities in the dataset so that their bidding policies simply bid
until running out the budget. However, there is the risk that the bidding policy will miss
the valuable clicks that happened in the following opportunities when they have already
stopped bidding. Even if they lower the bidding price by adding a bid scaler hyperparam-
eter to reduce this risk, this bid scaler will largely depend on the number of opportunities
in the dataset. On the contrary, our batch experiment scheme considers the budget on
batches as subsets of the dataset and the risk hyperparameter selected over the batch per-
formances. Therefore, even though the hyperparameter performance might vary due to
the sparsity of clicked opportunities, the empirical result will converge when the dataset
is large enough and the number of opportunities in the dataset will have no influence on
the bidding price.

The proposed bidding policies are developed based on the static setting, which is less
computationally expensive to train compared with sequential models with the multi-stage
setting. The sequential models are often formed by complicated architectures such as neu-
ral networks or reinforcement learning as we discussed in Chapter 2, which requires the
decision makers with a high level of expertise to understand and implement. However, our
models demonstrate superior interpretability and feasibility as closed-form solutions de-
pend on predicted winning price distribution and click-through rate. Decision makers can
easily take advantage of continuously advancing models developed for these conditional
statistics. Also, if these predictions are available, our policies can be faster in solving the
problem on a large scale.

Our approach outperforms the RMP strategy when the budget is relatively large in our
batch experiment setting. The RMP approach controls risk over profit, where the risk is
considered using the mean-standard deviation approach on the click-through rate, while

our methods control risk over the expense and minimize the entropic risk by adjusting
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the exponential utility of the expense with a hyperparameter &. Also, when the budget
is relatively ample, our bidding policies generate more revenue/clicks given the budget
constraint for the advertiser, which is meaningful, especially for the brand or product in
their early life cycle.

Finally, there are many directions that we could continue to explore within the bid

optimization topic:

* In this thesis, we propose the risk control on expense going over the budget by
modeling the expected utility of expense and identifying there is less control on
the negative profit. We can consider risk aversion in objective by modeling the

risk-averse profit E[u(profit)].

* Other than the exponential utility, there are other methods available for risk model-

ing, for example, the CVaR and VaR;

* It is possible to consider modeling the risk over other objectives, like ROI, using

the utility approach with risk consideration;

* Our approach can be continuously improved by applying the dynamic system and

reinforcement learning models
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