
HEC MONTRÉAL

affiliée à l’Université de Montréal

Forecasting the Intraday Trading Volume of
Stocks

par

Alireza Fallahi

Vincent Grégoire

HEC Montréal

Directeur de recherche

Saad Ali Khan

HEC Montréal

Codirecteur de recherche

Sciences de la gestion

Spécialisation Applied Financial Economics

Mémoire présenté en vue de l’obtention

du grade de mâıtrise ès sciences

(M. Sc.)

August 2023

© Alireza Fallahi, 2023

Resume

Cette étude offre une analyse comparative exhaustive des différentes méthodologies de

prévision, visant à prédire le volume de trading intrajournalier pour les actions dans le

contexte de l’indice S&P 100. En exploitant le vaste ensemble de données Trade and

Quote (TAQ), nous évaluons de manière critique le potentiel des modèles économétriques

traditionnels et des techniques d’apprentissage automatique, découvrant leurs capacités

et leurs limites.

En commençant par le modèle Autoregressive Moving Average (ARMA), nous établissons

une référence pour la comparaison avec les méthodologies suivantes. Sur cette base, nous

nous aventurons dans le domaine de l’apprentissage automatique avancé, examinant les

réseaux neuronaux Long Short-Term Memory (LSTM) et les Temporal Convolutional Net-

works (TCN), connus pour leur compétence à gérer les dépendances à long terme dans les

données séquentielles. Notre analyse est de plus enrichie par l’exploration des méthodes

d’apprentissage en ensemble telles que le Gradient Boosting et la Random Forest.

Une évaluation approfondie révèle le potentiel remarquable des techniques d’apprentissage

en ensemble, spécifiquement la Random Forest, qui affiche la plus faible Erreur Quadra-

tique Moyenne (MSE) parmi les modèles étudiés. Les caractéristiques uniques du modèle,

telles que sa nature d’apprentissage séquentiel, sa manipulation habile des types de

données mixtes, et sa flexibilité dans l’optimisation d’une fonction de perte différentiable

arbitraire, contribuent à ses performances supérieures.

Mots-clés: Volume de trading intrajournalier, Prévision, ARMA, LSTM, TCN, Gra-

dient Boosting, Random Forest, Analyse des séries chronologiques, Ensemble de données

TAQ, Erreur Quadratique Moyenne (MSE), Apprentissage en ensemble, Marchés financiers,

Indice S&P 100.

ii

Abstract

This study provides an exhaustive comparative analysis of various forecasting methodolo-

gies, aimed at predicting intraday trading volume for stocks within the context of the S&P

100 index. Leveraging the vast Trade and Quote (TAQ) dataset, we critically assess the

potential of traditional econometric models and machine learning techniques, unearthing

their capabilities and limitations.

Starting with the Autoregressive Moving Average (ARMA) model, we set a bench-

mark for comparison with subsequent methodologies. Building upon this, we venture

into the realm of advanced machine learning, examining the Long Short-Term Memory

(LSTM) neural networks and Temporal Convolutional Networks (TCN), known for their

proficiency in handling long-term dependencies in sequential data. Our analysis is further

enriched with the exploration of ensemble learning methods like Gradient Boosting and

Random Forest.

A thorough evaluation reveals the remarkable potential of ensemble learning tech-

niques, specifically Random Forest, which yields the lowest Mean Squared Error (MSE)

among the models studied. The model’s unique features, such as its sequential learning

nature, adept handling of mixed data types, and flexibility in optimizing an arbitrary

differentiable loss function, contribute to its superior performance.

Keywords: Intraday trading volume, Forecasting, ARMA, LSTM, TCN, Gradi-

ent Boosting, Random Forest, Time-series analysis, TAQ dataset, Mean Squared Error

(MSE), Ensemble learning, Financial markets, S&P 100 index.

iii

Acknowledgements

My deepest appreciation extends to my thesis supervisors, Prof. Vincent Grégoire and

Prof. Saad Ali Khan. Their insightful guidance, unwavering support, and continuous en-

couragement have been instrumental in the fruition of this research and in the completion

of this thesis. Their expertise and dedication have significantly enriched my academic

journey, and for this, I remain deeply grateful. I feel fortunate to have been under their

exceptional mentorship and I wholeheartedly thank them for their invaluable assistance

and support.

I am also immensely grateful to Prof. Sihem Taboubi, our MSc Academic Director,

whose guidance and wisdom have greatly influenced my academic journey.

I am deeply grateful to my family. To my parents, thank you for your belief, dedication

to my education, and financial support. To my little sister, your encouragement have been

invaluable. This achievement is a reflection of our collective effort and love. Thank you

for being there for me.

Finally, I’d want to express my unending thanks to Yasmin, my wonderful, loving wife,

who has never left my side no matter what has come our way and who has always pushed

me towards greater things.

iv

Contents

Resume ii

Abstract iii

Acknowledgements iv

List of Figures vii

List of Tables viii

List of Acronyms xi

1 Introduction 1

1.1 Literature Review . 3

2 Data Collection 10

2.1 Trade and Quote Database . 10

2.2 Centre for Research in Security Prices Database 11

2.3 Merging Datasets . 11

2.4 Exploratory Data Analysis . 12

2.4.1 Data Normalisation: Adjusting for Individual Stock Differences . . 12

2.4.2 Data Segmentation Through Progressive Temporal Intervals 12

2.4.3 Autocorrelation Function (ACF) Analysis 14

3 Methods 17

3.1 Autoregressive Moving Average (ARMA) Model 18

3.1.1 Autoregressive (AR) Component 18

3.1.2 Moving Average (MA) Component 18

3.1.3 ARMA Model . 19

3.2 Long Short-Term Memory networks . 20

3.2.1 Regularization Techniques . 22

3.2.2 Early Stopping . 23

v

3.2.3 Adam Optimizer . 23

3.3 Temporal Convolutional Network (TCN) 24

3.4 Gradient Boosting . 26

3.5 Random Forest . 28

3.6 Mean Squared Error (MSE) . 30

4 Empirical Results 31

5 Conclusion 44

References 48

vi

List of Figures

1 The heatmap representation of the average trading volume at five-minute inter-

vals (9:30 AM to 4:00 PM Eastern Time) over the trading year of 2020. The

data covers 78 time buckets per trading day, with distinct columns for open-

ing and closing auctions. The series facilitates an in-depth analysis of intra-day

trading volume dynamics and their correlation with pivotal auction moments.

A maximum lag of 252 trading days is considered for analysis. 15

2 Schematic depiction of an LSTM (Long Short-TermMemory) unit’s single timestep.

The diagram illustrates the path of input values xt−2, xt−1, and xt, processed

via weight matrices Ui and Wi, activated through a sigmoid function (σ), which

subsequently generate the hidden state ht and output yt 21

3 Illustration of a Temporal Convolutional Network (TCN) block: A single-layer

architecture with a kernel size of 2. The convolution operation (Conv) utilizes

inputs from three time-steps (xt−2, xt−1, and xt) to produce the output yt. . . . 25

4 Representation of the gradient boosting algorithm. Each weak learner, denoted

by hm, receives input xi and contributes to the cumulative strong learner, rep-

resented by Fm, at stage m. The final prediction is given by the aggregation of

all Fm learners as F (x). 26

5 Illustration of the random forest algorithm with three depicted decision trees.

Each tree in the diagram is an individual decision tree that contributes to the

ensemble within the forest. 28

vii

List of Tables

1 In this table, we present a snapshot of trading data specific to Amazon, col-

lected from our dataset. This data is structured to represent trades at 5-minute

intervals, detailing the timestamp, volume of trades, sequence numbers, and the

associated stock symbol. The segment aims to provide a concise view into the

trading dynamics of Amazon within a short duration. 11

2 The table summarizes the average parameters and performance metrics of the

ARMA model used for forecasting the trading volume of individual stocks in the

S&P 100 index, calculated across 100 stocks. The ARMA model, with an autore-

gressive (AR) component of 1.33 and a moving average (MA) component of 2.39,

was selected based on the Akaike Information Criterion (AIC), Bayesian Infor-

mation Criterion (BIC), and the Hannan-Quinn Information Criterion (HQIC).

The model’s accuracy was evaluated using the Mean Squared Error (MSE), while

the Wald test was used to test the statistical significance of the coefficients. . . . 32

3 The table illustrates the average configuration and performance metrics of the

LSTM model used for forecasting the trading volume of individual stocks in the

S&P 100 index, calculated across 100 stocks. The model was implemented using

the Keras library with 4 LSTM units and an Adam optimizer, trained for a

total of 50 epochs with a batch size of 1. The model performance was evaluated

using the Mean Squared Error (MSE), a common metric used for assessing the

precision of forecasting models. A lower MSE denotes a more accurate model

prediction. 34

viii

4 The table shows the average configuration and performance metrics of the LSTM

model with L1L2 regularization, used for forecasting the trading volume of in-

dividual stocks in the S&P 100 index. These averages are calculated across 100

stocks. The model was implemented with the Keras library, using 4 LSTM units

and an Adam optimizer, and trained 50 epochs with a batch size of 1. The

regularization parameter was set to 0.001. The performance of the model was

assessed with the Mean Squared Error (MSE), a standard metric for gauging the

accuracy of forecasting models. A lower MSE indicates a more precise model

prediction. 35

5 The table summarizes the average parameters and performance metrics of the

Temporal Convolutional Network (TCN) model used for forecasting the trading

volume of individual stocks in the S&P 100 index. These averages are calculated

across 100 stocks. The TCN model parameters include 10 filters, a kernel size of

2, 1 stack, and uses the Rectified Linear Unit (ReLU) activation function. The

model’s accuracy was evaluated using the Mean Squared Error (MSE). 37

6 The table illustrates the average optimal parameters and performance metrics

of the Gradient Boosting model, used for forecasting the trading volume of in-

dividual stocks in the S&P 100 index. These averages are calculated across 100

stocks. The model’s optimal hyperparameters, attained via a comprehensive

grid search, were a max depth of 7.70, a minimum samples split of 3.68, and

10 estimators. The Mean Squared Error (MSE), a prevalent metric for gauging

the precision of a forecasting model, was used to assess the performance of this

model. Lower MSE values denote more accurate model predictions. 39

ix

7 The table outlines the average optimal parameters and performance metrics

of the Random Forest model, employed for forecasting the trading volume

of individual stocks in the S&P 100 index. These averages are calculated

across 100 stocks. The model’s optimal hyperparameters, achieved through

extensive tuning, were a max depth of 6.81, a minimum samples split of

5.95, and 2.90 estimators. The Mean Squared Error (MSE), a common

metric for evaluating the accuracy of a forecasting model, was used to

assess the performance of this model. Lower MSE values denote more

precise model predictions. 40

8 This table presents a detailed comparison of various forecasting models, each

evaluated based on their average Mean Squared Error (MSE), for predicting

the top 10% of trading volumes in the S&P 100. The results indicate varied

performances across models with the Random Forest showcasing the lowest MSE. 43

9 Performance Evaluation of Different Models for Forecasting S&P 100 Stock Trad-

ing Volume for the 10% Lowest Trading Volumes. The performance of each model

was evaluated using the average Mean Squared Error (MSE). The Random For-

est model again delivering the most favorable outcome. 43

x

List of Acronyms

WRDS Wharton Research Data Services

TAQ Trade and Quote

CRSP Center for Research in Security Prices

PERMNO Permanent Stock Identifier

NASDAQ National Association of Securities Dealers Automated Quotations

MDH Mixture of Distribution Hypothesis

VWAP Volume Weighted Average Price

DVWAP Dynamic Volume Weighted Average Price

HVWAP Historical Volume Weighted Average Price

SVM Support Vector Machine

ACF Autocorrelation Function

AR Autoregressive

MA Moving Average

ARMA Autoregressive Moving Average

LSTM Long Short-Term Memory

RNNs Recurrent Neural Networks

ReLU Rectified Linear Unit

xi

TCN Temporal Convolutional Networks

BIC Bayesian Information Criterion

AIC Akaike Information Criterion

HQIC Hannan-Quinn Information Criterion

MSE Mean Squared Error

xii

1 Introduction

Financial markets are complex systems influenced by a variety of factors, including asset

prices and trading volumes. Traders frequently use tools like the Volume Weighted Av-

erage Price (VWAP), and VWAP is one of the most widely used trading algorithms by

institutional investors. Understanding VWAP could potentially lead us to identify trad-

ing by institutional investors. The significance of understanding daily trading volumes

extends well beyond this application. Accurate predictions facilitate better trading strate-

gies, benefiting not just traders but also a wider audience such as individual investors and

fund managers. Moreover, improved forecasts can aid in risk management by providing

a clearer picture of market liquidity and volatility, and can assist regulatory bodies in

market surveillance to identify irregular trading patterns.

We start our research using the Autoregressive Moving Average (ARMA) model, a

well-known method in the field. It’s simple yet effective in understanding patterns in

data over time. This gives us a good starting point to measure how other, more complex

methods perform.

After setting our foundation with the ARMA, we move on to more advanced methods

used in machine learning. These methods include things like Long Short-Term Memory

(LSTM) neural networks and Temporal Convolutional Networks (TCN), which are known

to be very good at recognizing patterns in series of data. We also looked at techniques like

Gradient Boosting and Random Forest that blend multiple models for better predictions.

Our work was influenced by various studies that have explored different aspects of

market behavior. Some studies, like Kercheval and Zhang [2015], helped us understand

certain trading methods. We also used ideas like the “trade information matrix” from

Dixon [2018] to check out how trades are executed. Other research, such as Holden and

Jacobsen [2014] and Bogousslavsky and Muravyev [2022], gave us insights into trading

volumes and the effects of passive investing. With these studies, we’re trying to improve

our predictions on trading volumes.

Using the Trade and Quotation (TAQ) data for our research, which has lots of trading

data for the S&P100 symbols. We aim to predict daily trading volumes. The TAQ dataset

1

offers detailed trading and pricing information, making it helpful for those who want to

understand market trends better. This information is especially useful for our project,

where we’re trying to predict daily trading volumes.

In our study, we’re comparing different methods to see which one works best for

predicting daily trading volumes. We’re also using ideas from Kercheval and Zhang [2015]

and Dixon [2018] to improve our predictions. To check how good our predictions are, we

use the Mean Squared Error (MSE) measure. So far, methods like Gradient Boosting and

Random Forest appear to be the most accurate.

In the subsequent sections, the paper will explain how the models were set up and

tested. Additionally, the study examined how order imbalances might influence daily

trading volume predictions, drawing on ideas from Bogousslavsky and Collin-Dufresne

[2022]. The primary objective is to enhance understanding of daily trading volumes and

contribute to the improvement of trading strategies.

2

1.1 Literature Review

Predicting daily trading volumes for stocks and ETFs is a challenging job, and it’s cru-

cial for methods like the VWAP trading strategies. To get a handle on this challenge,

it’s important to understand the various theories that explain the workings of financial

trading. One research that stands out is by Andersen [1996]. Andersen studied how

trading volumes might be affected by things like the spread of new information and the

immediate need to buy or sell assets. In his work, Andersen builds upon what’s called the

microstructure theory. This theory suggests that the amount of trading activity is heavily

influenced by the gaps in information between traders and their immediate needs to buy

or sell. This means is that when traders have different bits of news or information, and

they need to act quickly, this can drive up the number of trades in a day. A central part of

Andersen’s work is his take on the “Mixture of Distribution Hypothesis” (MDH). While

the usual idea of MDH links the amount of new information directly to changes in prices,

Andersen offers an alternate explanation or modification to the MDH. He posits that the

flow of this new information, which can vary in its intensity, is a major factor affecting

how much trading takes place. This new angle, different from many traditional views,

could offer a deeper insight into how markets move and can be very useful for predicting

trading volumes. One of the key findings from Andersen’s study is that his approach

can better explain real-world trading behaviors than the original MDH approach. This

suggests that his model has significant practical use, especially for those attempting to

foresee trading volumes.

In their research, Gourieroux, Jasiak, and Le Fol [1999] examined trading patterns

throughout a single trading day and introduce duration-based measurements for individ-

ual stocks and portfolios. Central to these measurements are “weighted durations,” which

refer to the time needed to sell (or purchase) a specified number of shares at a consistent

price. These weighted durations can be seen as liquidity indicators, capturing the inter-

actions among intra-trade durations, transaction volumes, and stock prices. By exploring

how assets might substitute for one another and by observing the interconnectedness of

trading activities within portfolio components, a multivariate approach becomes instru-

3

mental. This approach provides clarity on the liquidity of portfolio assets - how swiftly

they can be traded. Moreover, Gourieroux et al. [1999] not only discussed liquidity costs

and volatility but also ranked liquidity across different assets. They used multivariate

metrics to examine relationships between assets, showing if assets can replace one an-

other or if they complement each other. In addition to these insights, the study also

presented an alternative to the conventional ARCH specification, for a more integrated

modeling of duration, volume, and price processes.

Lobato and Velasco [2000] investigated the estimation of trading volume and volatility

of stock market activities over long periods without removing trend patterns from the

data. Instead of traditional methods, this study uses a frequency domain approach with

tapering. This offers a fresh way to understand the patterns of stock market activity. This

study introduces a formula for estimating the memory attributes of a non-stable vector

process. This new method helps in analyzing trading volume and volatility, which are

both seen as non-stable vector processes in this research. This method is useful because

it gives a deeper understanding of financial market movements, especially when common

time-focused analyses might fall short. Lobato and Velasco [2000] took a closer look at

the patterns of trading volumes for stocks in the Dow Jones Industrial Average index.

The findings show that stock market activities tend to repeat over time. This suggests

that trading patterns are consistent, which is important for those involved in market

predictions and risk evaluations. An interesting finding from this study is that while both

volatility and trading volume have patterns that persist over time, these patterns aren’t

the same for both. This finding challenges the idea that these two key market factors are

driven by the same things. Therefore, this study highlights the need to see volume and

volatility as different when trying to predict or understand market movements.

Understanding the effectiveness of trading methods is essential for comprehending

market dynamics. Madhavan [2002] discussed the application of volume-weighted average

pricing (VWAP) as a metric for evaluating traders. Though VWAP is commonly used,

Madhavan [2002] suggested that its performance can vary based on factors such as the cho-

sen benchmark, the duration of trading, and the place of execution. In Madhavan [2002]’s

findings, these variables can significantly impact aspects like transaction costs, associated

4

risks, and potential returns. This study questions the validity of a uniform approach

to assess trading strategies, highlighting the factors that might affect trading outcomes.

While methods like VWAP can appear straightforward, their practical application can be

challenging due to inherent market complexities. For instance, a VWAP strategy might

reduce transaction costs but could introduce heightened market risks or lead to smaller

returns. Madhavan [2002]’s research underscores the need for a thorough evaluation of

trading techniques, emphasizing the importance of balancing theoretical understanding

with real-world dynamics. It also highlights the need to tailor trading approaches based

on individual objectives, market conditions, and the specific trading context.

Bia lkowski, Darolles, and Le Fol [2008] provided an approach to model intraday vol-

ume dynamics, significantly lowering execution risk in VWAP (volume weighted average

price) orders. The models are based on separating the total volume of trades into two com-

ponents: one that accounts for fluctuations in volume due to general market movements

and another that describes the volume pattern for a certain stock. In this case, Bia lkowski

et al. [2008] used a cross-historical average for the first component of volume and ARMA

and SETAR models to illustrate the dynamics of the second component. These forecasts

are then integrated into a pricing structure that tracks market benchmarks. Additionally,

Bia lkowski et al. [2008] showed that simple time-series models can be useful for predicting

volume. Their method can also be applied to VWAP strategies to reduce the difference

from the actual VWAP. This can help in reducing the risk and cost related to using these

orders. The decrease can be over 10%, and in some cases, even up to 50% for certain

companies, based on how they handle the data.

Bouchaud, Farmer, and Lillo [2009] discussed the microstructure approach to how

prices are set, adding to our understanding of market behavior. They introduced the

concept of order fragmentation, where large buy and sell orders are divided into smaller

parts because of limited market liquidity. This leads to a persistent pattern in order

flow that influences market outcomes and price changes. Bouchaud et al. [2009] suggested

that market participants often work with partial information, which can cause unintended

price effects. Instead of focusing on external news, they emphasize the influence of supply

and demand.

5

Manchaldore, Palit, and Soloviev [2010] applied wavelet decomposition to study past

intraday volume. Their model has two main components: diffusion and jumps, using

data processed with wavelets. They started with a simple constant volatility model and

attribute volume signal changes to the absence of a regular daily pattern. The volume

consists of regular background noise and occasional large jumps. The average noise over

many days often forms a U-shaped pattern. Interestingly, there’s no consistent pattern

for large changes in volume. Their results show familiar patterns like the U-shape and

frequent volume changes. Manchaldore et al. [2010] suggest their model might help im-

prove various trading strategies. For instance, it can give brokers a sense of additional

costs from unexpected volume changes, which can affect trading fees.

Dealing with noise during intraday VWAP trading can be a challenge often over-

looked in algorithmic trading systems. However, Humphery-Jenner [2011] addressed this

issue with a new approach. They introduced the Dynamic VWAP (DVWAP) to help

traders adjust to unexpected news, especially given the rapid spread of information in

volatile markets. Unlike the more traditional Historical VWAP (HVWAP), the DVWAP

adjusts trading frequency based on market volume. It trades more when the volume is

high and less when it’s low. This approach makes DVWAP more adaptable with daily

volume changes compared to HVWAP, aiming to minimize errors and enhance trading

effectiveness.

Brownlees, Cipollini, and Gallo [2011] introduced a dynamic model designed to capture

the behavior of trading volumes relative to outstanding shares. This model incorporates

both daily and intraday perspectives. Using the Generalised Method of Moments, the

model’s parameters are effectively estimated. Upon testing with three primary ETFs,

Brownlees et al. [2011] found that both consistent and adaptive VWAP strategies are

more predictive than a basic rolling mean approach for intraday volume forecasts.

Taking into account daily and (periodic and nonperiodic) intra-daily time perspectives,

Holden and Jacobsen [2014] provided a dynamic model with various components reflecting

the behavior of traded volumes (relative to outstanding shares). The Generalized Method

of Moments is used to estimate the parameters of this Component Multiplicative Error

Model with a single calculation. In an out-of-sample forecasting exercise, the applica-

6

tion to three major ETFs demonstrates that the static and dynamic VWAP replication

strategies often outperform a regularly used naive method of rolling means for intra-daily

volumes.

Kercheval and Zhang [2015] explored the dynamics of high-frequency limit order books

in financial equity markets, aiming for real-time predictions of metrics like mid-price

movement and price spread crossing. The study employed multi-class support vector

machines to derive a model from limit order book data characterized by attributes such

as price and volume. The application of multi-class Support Vector Machine (SVM)

algorithms for short-term predictions represents a notable contribution to the field. By

analyzing real data from the NASDAQ, Kercheval and Zhang [2015] found that their

models demonstrate reliable predictive accuracy. Additionally, trading strategies based

on these predictions have shown promising results in simulations.

Wang and Wang [2016] investigated volatility forecasting, given its relevance to deriva-

tive pricing and risk management. While prior research suggests that implied volatility

from option pricing serves as a robust predictor of future volatility, Wang and Wang [2016]

focused on intraday patterns of implied volatility informed by high-frequency data. The

research raises the possibility that intraday implied volatility, rather than daily closing

levels, may offer a more precise prediction of future volatility. This emphasis on the intra-

day dynamics of trade provides a nuanced perspective on volatility forecasting, challenging

the reliance on end-of-day data.

Intraday stock price curves and intraday volatility curves are two examples of the

types of curves often used to represent financial data, both of which may be examined

sequentially through time. These curves may be interpreted as a sequence of functions over

time, and their behavior can be studied using dense, regularly spaced grids. The nature

of high-dimensional data presents challenges from a statistical viewpoint because of the

so-called curse of dimensionality; however, it also provides opportunities to analyze a rich

source of information, allowing for a better grasp of the rapid changes that occur over

relatively brief periods. Shang [2017] took a time series forecasting approach, proposing

many statistical techniques that may predict intraday market returns one day in advance.

An analysis of intraday S&P 500 index returns, measured every 5 minutes, was conducted

7

to validate the effectiveness of these forecasting methods.

After decomposing trade volume percentages into two primary components—namely,

the regular intraday volume pattern and the residual term (which accounts for outlier fluc-

tuations)—Liu and Lai [2017] proposed a dynamic model for intraday volume percentage

forecasting. The study finds that the regular component can be anticipated using a mov-

ing average of the prior day’s volume percentage. Meanwhile, for the residual component,

a support vector machine (SVM) proves effective, especially when the input pattern is

binary. This prediction incorporates both current and previous day volume percentages

spanning identical time intervals. An out-of-sample test on gold and S&P 500 futures

indicates that this dynamic methodology outperforms the benchmark approach, which

relies on historical averages. This method demonstrates an accuracy improvement of up

to 14%, underlining the validity of the volume decomposition and emphasizing the distinct

nature of its components. Furthermore, employing a dynamic SVM for volume percent-

age predictions bolsters the efficacy of the VWAP strategy, leading to enhanced forecast

precision.

In the context of tick-level predictive classifiers, Dixon [2018] introduced the ”trade

information matrix” as an innovative tool to assess potential gains or losses. This matrix

considers execution constraints, including the likelihood of order fill and position-based

trade rules, to attribute projected profit and loss values to both correct and incorrect

forecasts. To construct this matrix, Dixon [2018] employed Level II E-mini S&P 500

futures performance data. This matrix serves as a data-driven evaluation framework

for market-making strategies aimed at refining trading tactics. Moreover, the study in-

troduces a trade execution model resembling exchange matching engines. This model

estimates an order’s position in the queue, accounting for incoming market orders and

departing limit orders. The model’s predictive efficacy is enhanced by embracing actual

exchange dynamics, aligning it more closely with real-world trading scenarios.

In Bogousslavsky and Muravyev [2022], the final auction’s importance is mentioned,

focusing on the rise of passive investing and its potential effects. Passive investing might

affect asset values in different ways, leading to changes in market behavior. A main

point in this research is the link between the volume at the close and the closing prices.

8

The author found that ETF ownership and institutional rebalancing mainly drive the

closing volume. Interestingly, the study reveals that the closing price doesn’t give much

information about the earlier midquote, but instead adds confusion. This suggests that

we might need to reconsider the traditional importance of closing prices. Bogousslavsky

and Muravyev [2022] highlighted concerns about relying too much on closing prices and

points out issues with indexing. This adds to the ongoing discussion on passive investing,

emphasizing the role of closing volumes and prices.

Using a large dataset from U.S. equities after decimalization, Bogousslavsky and

Collin-Dufresne [2022] looked into liquidity patterns. The study uses a measure of or-

der imbalance changes to get a sense of how liquidity providers might be at risk. This

measure is based on a model that helps understand these risks more deeply. The findings

highlight that quick changes in order imbalances are crucial for liquidity. The study also

considers the effects of order imbalance changes on stock returns, helping us see their

broader influence on the stock market.

The rest of the thesis is organized as follows: Section 2 describes the data collection

adopted in the present study, section 3 describes the methodologies adopted in the present

study, including Autoregressive Moving Average (ARMA), Long Short-Term Memory net-

works (LSTM), Temporal Convolutional Network (TCN), Gradient Boosting, and Ran-

dom Forest, section 4 details the empirical results, and section 5 concludes.

9

2 Data Collection

In this section, we discuss the data collection and preprocessing procedures we conduct to

pursue our research goal - forecasting the intraday trading volume for stocks. We collect

the data for our analysis from two reputable databases: the Trade and Quote (TAQ)

dataset and the Center for Research in Security Prices (CRSP).

2.1 Trade and Quote Database

The TAQ (Trade and Quote) database is a comprehensive repository that encapsulates

historical intraday trade and quotation data, timestamped to the millisecond, for all

securities listed and traded on various platforms. This includes data from the New York

Stock Exchange, the Nasdaq Stock Market, and other stock markets in the United States

that make up the National Market System. The TAQ database contains all trade and

consolidated quotes from US public exchanges.

For our study, we utilize the TAQ Daily Product from the Trade and Quote (TAQ)

database for the year 2020. This database includes flags that specify opening and closing

auction trades. The data covers trading activities from 9:30 AM to 4:00 PM (Eastern

Time). We source our data from the Wharton Research Data Services (WRDS) Cloud

server. Our chosen dataset provides accurate timestamps, which is crucial for our interval-

based analysis.

Specifically, for our analysis, we extracted trade data at 5-minute intervals. The

relevant columns from the TAQ Daily Product’s trade files are:

• “Date” - Date of the trade.

• “Time” - Exact time of the trade, often in milliseconds from the start of the day.

• “Size” - Number of shares traded.

• “tr seqnum” - Unique identifier for the trade.

10

Table 1 showcases a segment of our extracted data for Amazon, summarized at 5-

minute intervals:

Table 1: In this table, we present a snapshot of trading data specific to Amazon, collected

from our dataset. This data is structured to represent trades at 5-minute intervals, detailing the

timestamp, volume of trades, sequence numbers, and the associated stock symbol. The segment

aims to provide a concise view into the trading dynamics of Amazon within a short duration.

Timestamp Size tr seqnum Symbol

2020-01-02 9:30 366,158 259,267,208 AMZN

2020-01-02 9:35 104,856 316,013,429 AMZN

2020-01-02 9:40 78,865 359,074,139 AMZN

2020-01-02 9:45 59,485 419,532,793 AMZN

2020-01-02 9:50 71,287 571,326,630 AMZN

2.2 Centre for Research in Security Prices Database

To complement our TAQ dataset, we utilize the CRSP (Centre for Research in Security

Prices) database. CRSP offers extensive information on securities, but for the purpose of

our research, we specifically tap into its data on the number of outstanding shares, known

as “shrout”. This allows us to normalize trading volume and calculate turnover. A key

feature of CRSP is its unique identifiers for each security. We employ the CRSP Per-

manent Stock Identifier (PERMNO) to maintain consistency and accuracy when merging

data, especially crucial when handling vast datasets over multiple time frames.

2.3 Merging Datasets

The TAQ and CRSP datasets were merged to create a uniform dataset with trading

volume and shrout for each stock. This merge facilitated the computation of the mean

shrout, derived solely from the test data.

11

2.4 Exploratory Data Analysis

The key facets of the exploratory process include the normalisation of the data, the

segmentation of the data into progressive temporal intervals, and the autocorrelation

function (ACF) analysis. These elements, described in the following sections, ensure

our data is consistent across different stocks, organized in time order, and analyzed to

highlight key time-related patterns.

2.4.1 Data Normalisation: Adjusting for Individual Stock Differences

For the normalization of trading volumes, Shares Outstanding (SHROUT) is involved in

the process. Specifically, for each stock, we retrieve the average SHROUT value from

the CRSP dataset. We then take the average trading volume for each time bin over our

sample period and divide this by the average SHROUT value to obtain a normalized

trading volume. This can be expressed as:

Normalized Volume =
Volume time bin , specific day

TSA × Average SHROUT

Where TSA is the time-specific average calculated as:

Time-specific Average (TSA) =

∑n
i=1 Volume time bin ,i

n

This method helps reduce differences caused by different trading volumes in stocks. It

makes sure the data is consistent across stocks so our model isn’t overly affected by stocks

with large volumes and can recognize patterns in all trading volumes.

2.4.2 Data Segmentation Through Progressive Temporal Intervals

In the context of our study, we employ a unique technique to segment the data using a pro-

gressive temporal intervals approach. This method, while drawing from the conventional

rolling window technique, distinguishes itself in how it is applied.

Let N be the total number of data points in the time series dataset. Our approach

segments the data into successive temporal intervals, each spanning an equivalent length

of a month. For a given time series dataset represented as d1, d2, d3, ..., dN , and a temporal

12

interval size, T , similar to a month’s duration, the segmentation process is outlined as

follows:

For i = 1 to N − 2T + 1:

• 1. The training phase is performed on the temporal interval, [di, di+1, ..., di+T−1].

• 2. The testing phase is conducted on the subsequent temporal interval,

[di+T , di+T+1, ..., di+2T−1].

Consequently, we generate training and testing intervals that mirror monthly spans:

• Interval 1: Training Interval d1, d2, ..., dT , Testing Interval: dT+1, dT+2, ..., d2T .

• Interval 2: Training Interval dT+1, dT+2, ..., d2T , Testing Interval: d2T+1, d2T+2, ..., d3T .

• ...

• Interval N − 2T : Training Interval dN−2T+1, dN−2T+2, ..., dN−T , Testing Interval:

dN−T+1, dN−T+2, ..., dN .

We carry out this sequence of advancing temporal intervals throughout the whole

dataset. This method maintains an environment where the model is trained and tested

on separate, non-overlapping temporal subsets, thereby preserving the temporal sequence

and homogeneity in the data.

This is crucial, as temporal continuity requires an orderly progression of data points.

Any disruption may distort the intrinsic patterns that the model attempts to learn. More-

over, the division into non-overlapping intervals guarantees a degree of independence be-

tween the training and testing sets, mitigating the risk of overfitting and data leakage.

Therefore, through the implementation of our progressive temporal intervals method,

we not only preserve the temporal structure of the dataset, but also enhance our model’s

robustness by minimizing the potential for overfitting and data leakage. This places our

model in a strong position to accurately predict intraday trading volumes, underpinning

the analytical depth and significance of our study.

13

2.4.3 Autocorrelation Function (ACF) Analysis

The Autocorrelation Function (ACF) is a tool that calculates the autocorrelation between

values in a time series at various points in time. ACF is used in time series analysis to

measure the linear predictability of the current value based on its past values. The ACF

of a time series Yt is defined as:

ρk =
Cov (Yt, Yt−k)√

Var (Yt) · Var (Yt−k)

Where ρk is the autocorrelation function at lag k, Cov(Yt, Yt−k) is the covariance between

the time series and its lag k, and V ar(Yt) and V ar(Yt−k) are the variances of the time

series and its lag k respectively.

Given the time-structured nature of our dataset, where observations from each sym-

bol’s intraday trading volume are collected at 5-minute intervals, an ACF analysis is

particularly relevant.

14

Figure 1: The heatmap representation of the average trading volume at five-minute intervals

(9:30 AM to 4:00 PM Eastern Time) over the trading year of 2020. The data covers 78 time

buckets per trading day, with distinct columns for opening and closing auctions. The series

facilitates an in-depth analysis of intra-day trading volume dynamics and their correlation with

pivotal auction moments. A maximum lag of 252 trading days is considered for analysis.

op
en

in
g_

au
ct

io
n 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

cl
os

in
g_

au
ct

io
n

Time of Day

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250

La
g

Autocorrelation Heatmap

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Each data entry contains the average trading volume for all symbols on a specific time

bucket, recorded at five-minute intervals from 9:30 AM to 4:00 PM Eastern Time (78

buckets), corresponding to the normal U.S. stock market trading days. This allows for

granular analysis of the intra-day trading volume dynamics.

Additionally, the data set includes separate columns for the opening and closing auc-

tions. Opening and closing auctions are key moments in the trading day when market

participants can submit orders to be executed at the market opening or closing. By in-

cluding these in the data set, it is possible to analyze how trading volumes at these pivotal

moments correlate with past trading volumes.

15

The time series data spans a period of one year, giving a maximum lag of 252 days for

analysis. The lag value of 252 days corresponds to the number of trading days in a year,

assuming a five-day trading week and excluding public holidays.

16

3 Methods

The selection of methods in this study is motivated by the need for a comprehensive eval-

uation of predictive accuracy in intraday trading volumes. ARMA serves as the baseline

model, widely recognized for its reliability in time-series forecasting. However, its lim-

itations in capturing complex, non-linear relationships motivate the inclusion of neural

networks, we also consider neural networks, specifically Long Short-Term, as cited by Cao,

Li, and Li [2019]. Additionally, Temporal Convolutional Networks (TCN) are explored

due to their capacity to handle long sequences, positioning them as an alternative to

LSTMs, as described by Torres, Hadjout, Sebaa, Mart́ınez-Álvarez, and Troncoso [2021].

To offer a comprehensive perspective, ensemble methods, namely Gradient Boosting as

discussed by Papadopoulos and Karakatsanis [2015] and Random Forest as presented

by Srinu Vasarao and Chakkaravarthy [2022], are also incorporated. These methods are

renowned for their high accuracy and resistance to overfitting.

This section explains the strengths and weaknesses of our chosen methods as they deal

with the financial market. We use the detailed data from S&P100 symbols to accurately

predict intraday trading volume. We also evaluate how well each method works, looking

at their overall accuracy and effectiveness.

We examine the intraday dynamics of trade volume using a four-pronged strategy to

evaluate the accuracy of forecasts. The Autoregressive Moving Average (ARMA) is the

cornerstone of our work, the standard against which more complex models are compared.

We investigate neural networks using the memory-efficient Long Short-Term Memory

(LSTM), and further, we investigate the potential of Temporal Convolutional Networks

(TCN), which are well-known for their capacity to deal with long sequences. In order

to round up our comparison, we add two additional methods from the realm of robust

ensemble learning: Gradient Boosting and Random Forest.

Our study focuses on intraday trading volume, an important measure of market activ-

ity that guides investors and traders. Predicting these volumes accurately can help with

making informed decisions and finding trading opportunities.

Guided by robust metrics like the Mean Squared Error (MSE), we map the land-

17

scape of reliability and accuracy of these forecasts, parsing through the data’s underlying

characteristics.

In the following sections, we outline how we implement and assess each method. We

cover all steps, from data preprocessing and model training to hyperparameter tuning

and evaluation. By applying these methods to intraday trading volume data, we aim

to determine their accuracy in predictions, which is essential for making decisions in the

financial markets.

3.1 Autoregressive Moving Average (ARMA) Model

This study uses the Autoregressive Moving Average (ARMA) model, a cornerstone of

time series analysis in the field of econometrics, to analyse and forecast the financial

series of interest; Box, Jenkins, Reinsel, and Ljung [2015]. The ARMA model combines

the Autoregressive (AR) and Moving Average (MA) models, offering a powerful tool for

modelling and forecasting realizations of the time series.

3.1.1 Autoregressive (AR) Component

The AR component of an ARMA model is a parametric representation, whereby a variable

is regressed on its own lagged (i.e., previous) values. An AR(p) model, where p signifies

the order of the autoregressive process, can be formally described as:

Xt = c +

p∑
i=1

ϕiXt−i + εt, (1)

• Xt is the variable of interest at time t,

• c is a constant,

• ϕi represents the coefficients of the model,

• Xt−i is the value of X at a prior time period.

3.1.2 Moving Average (MA) Component

The MA component of an ARMA model is simply a model where the variable of interest

is regressed on the residual errors from prior predictions. Formally, an MA(q) model is

18

expressed as follows:

Xt = µ + εt +

q∑
i=1

θiεt−i, (2)

where:

• Xt is the variable of interest at time t,

• µ is the expectation of Xt,

• εt is the error term at time t,

• θi represents the coefficients of the model,

• εt−i is the error term at a previous time period,

• q is the number of lagged errors included in the model.

3.1.3 ARMA Model

An ARMA(p, q) model is created by combining the AR and MA components. It may be

formalised as follows:

Xt = c + εt +

p∑
i=1

ϕiXt−i +

q∑
i=1

θiεt−i (3)

To identify the optimal order for each component of our ARMA model, we employ

a systematic search over the model’s hyperparameters, choosing the combination that

minimizes the Bayesian Information Criterion (BIC). Formally, the BIC is calculated as:

BIC = ln(n)k − 2 ln(L), (4)

where:

• n is the number of observations,

• k is the number of parameters in the model,

• L is the model likelihood.

19

In addition to BIC, we also calculate the Akaike Information Criterion (AIC) and the

Hannan-Quinn Information Criterion (HQIC) for comparative purposes:

AIC = 2k − 2 ln(L) (5)

HQIC = −2 ln(L) + 2k ln(ln(n)) (6)

The Akaike Information Criterion (AIC) or the Bayesian Information Criterion (BIC)

are used to estimate the lag order p, depending on which offers a more frugal model that

nonetheless accurately captures the underlying structure of the data.

The MSE minimization implies the model has the highest prediction accuracy with

the lowest degree of error variance, hence the best ARMA model will be the one that

minimises the MSE on the out-of-sample data.

Finally, we utilize the Wald Test to check the statistical significance of our model’s

coefficients. The Wald Statistic is calculated as:

W =

(
β̂

se(β̂)

)2

, (7)

where β̂ is the estimated parameter and se(β̂)

The Wald Statistic follows a chi-square distribution, allowing us to test the null hy-

pothesis that a particular parameter is zero.

3.2 Long Short-Term Memory networks

After using the ARMA model as our initial benchmark for time-series forecasting, we

sought to investigate more sophisticated and powerful machine-learning models that could

outperform ARMA in predictive performance. This led us to explore Recurrent Neural

Networks (RNNs), specifically, Long Short-Term Memory networks (LSTMs).

The LSTM model, which Hochreiter and Schmidhuber [1997] initially presented in

1997, significantly improves temporal sequences’ modeling. LSTM networks’ unique ar-

chitecture was created to get over the long-term reliance issue that plagues traditional

RNNs. As the sequence becomes longer, this issue, also known as vanishing gradients,

20

often makes it challenging for RNNs to acquire and keep knowledge from previous time

steps. LSTMs are particularly derived to recall information for long periods of time and

can thus record patterns over a wide time range resulting from their distinctive structure,

which consists of a memory cell, which is a complex arrangement of four linked layers.

Figure 2: Schematic depiction of an LSTM (Long Short-Term Memory) unit’s single timestep.

The diagram illustrates the path of input values xt−2, xt−1, and xt, processed via weight matrices

Ui and Wi, activated through a sigmoid function (σ), which subsequently generate the hidden

state ht and output yt

xt−2

xt−1

xt σ

Wi

Ui

ht yt

The representation of an LSTM cell as shown above illustrates its operation and how

it mitigates the vanishing gradient problem endemic to traditional RNNs. The cell is

characterized by several components interacting together: xt denotes the input at time t,

and ht−1 signifies the prior hidden state. The weights W and U symbolize the input-to-

state and state-to-state transition matrices, correspondingly, for each gate.

The cell employs an input gate it, a forget gate ft, and an output gate ot, each

controlled by a sigmoid activation function (σ), to modulate information flow. The state

of the cell is updated via a hyperbolic tangent function (tanh), denoted by Ct, that

accounts for the influence of the input, forget, and output gates. The output at time t,

denoted as ht, is determined after the cell state has interacted with the output gate.

The recurrent nature of this architecture enables the LSTM to capture long-term

dependencies and sustain temporal information across periods, making it particularly

suitable for time-series forecasting.

21

3.2.1 Regularization Techniques

Regularization, which prevents overfitting by adding a penalty term to the loss function,

is a crucial part of efficient model training. By discouraging the model from keeping

unnecessary weights, the penalty term simplifies the model and improves its generalization

abilities; Neumaier [1998].

• L1 Regularization: L1 Regularization, commonly known as Lasso regularisation, in-

corporates an absolute-value-proportional penalty term into the loss function. This

can result in a sparse solution, which may be useful for feature selection because

many weights will be absolutely zero.

If L is the loss function, λ is the regularization parameter, and w represents the

model weights, the L1 regularized loss function is:

LL1 = L + λ
∑

|w|

In the above formula, λ is a hyperparameter that controls the strength of the reg-

ularization term. Larger values of λ lead to stronger regularization. The absolute

value operation on weights leads to sparsity, effectively performing feature selection.

• L2 Regularization: Also known as Ridge regularization, L2 regularization adds a

penalty term to the loss function that is proportional to the square of the weights.

This tends to distribute weights more evenly and leads to a more balanced model.

The L2 regularized loss function is:

LL2 = L + λ
∑

w2

In the above formula, λ is a hyperparameter that controls the strength of the reg-

ularization term. Larger values of λ lead to stronger regularization. The square

operation on weights encourages smaller and more evenly distributed weights, help-

ing the model to be more balanced and stable.

22

3.2.2 Early Stopping

Early stopping is a form of implicit regularization, introducing a complexity penalty to

the loss function that we aim to minimize. It prevents overfitting by stopping the training

process when the model starts to perform worse on the validation data, even though it

might still be improving on the training data; Yao, Rosasco, and Caponnetto [2007].

In the context of optimization, the inclusion of early stopping can be conceptualized

as adding a regularization term to the loss function:

L = LD(θ) + λΩ(θ)

In the formula, L signifies the total loss, LD(θ) represents the empirical loss on the

training data, and Ω(θ) is the regularization term. Here, θ symbolizes the parameters of

the model, and λ serves as a hyperparameter that determines the trade-off between the

empirical loss and the complexity penalty. The application of early stopping in training

effectively controls the complexity of the model and thus the Ω(θ) term, without the need

for explicit regularization.

3.2.3 Adam Optimizer

We develope our computational model by fine-tuning the LSTM network parameters. For

this, we used the Adam optimizer, an optimization method introduced by Kingma and

Ba [2014]. This algorithm is popular in the deep learning community because it’s efficient

and doesn’t require much manual adjustment of the learning rate.

At the core of Adam lies its capacity to calculate adaptive learning rates for individual

parameters. This capability is realized through the estimation of the first and second mo-

ments of the gradients, which serve as statistical measures to enhance parameter updates.

This technique combines features from two known extensions of stochastic gradient de-

scent: AdaGrad and RMSProp. These contribute to Adam’s efficacy, where AdaGrad is

recognized for its performance with sparse gradients and RMSProp excels in online and

non-stationary settings.

The Adam optimizer executes parameter updates as per the following procedure:

23

mt = β1 ·mt−1 + (1 − β1) · gt

vt = β2 · vt−1 + (1 − β2) · g2t

m̂t =
mt

1 − βt
1

v̂t =
vt

1 − βt
2

θt+1 = θt − α · m̂t√
v̂t + ϵ

where:

θt denotes the parameters under optimization, gt signifies the gradient at timestep t,

mt and vt are statistical estimates of the first moment (mean) and the second moment

(uncentered variance) of the gradients, respectively, m̂t and v̂t denote bias-corrected ver-

sions of mt and vt, α is the learning rate, β1 and β2 are exponential decay rates for the

moment estimates, ϵ is a scalar of a minimal value to prevent any division by zero. Adam,

an abbreviation of “adaptive moment estimation,” is characterized by its straightforward

implementation, computational efficiency, low memory requirement, and invariance to di-

agonal rescaling of gradients. It is optimally designed to handle large-scale problems with

substantial data or parameters.

3.3 Temporal Convolutional Network (TCN)

Temporal Convolutional Networks (TCN), proposed by Bai et al. Bai, Kolter, and Koltun

[2018], represent a class of deep learning models that capitalize on the 1-D convolution

operation for sequence processing. Our model employs a TCN for predicting stock market

behavior using historical data. The following elaborates the mathematical underpinnings

behind the implemented TCN model.

24

Figure 3: Illustration of a Temporal Convolutional Network (TCN) block: A single-layer ar-

chitecture with a kernel size of 2. The convolution operation (Conv) utilizes inputs from three

time-steps (xt−2, xt−1, and xt) to produce the output yt.

xt−2

xt−1

xt Conv

W

yt

The TCN model is defined in a sequential manner using Keras, with an architecture

primarily composed of a TCN layer followed by a dense layer. TCN can be seen as

a function f(x; θ), where x denotes the input sequence, and θ represents the set of all

learnable parameters in the model.

The most vital component of the TCN model, the TCN layer, leverages a series of

dilated convolutions that efficiently capture long-range dependencies. The dilated convo-

lution is formulated as:

y(t) =
k∑

i=0

f (x(t− d · i); θi) , (8)

where y(t) is the output at time t, f() represents the activation function (ReLU in our

case), x(t) is the input at time t, d is the dilation factor, i is the index of the kernel, k is

the kernel size, and θi denotes the trainable parameters of the kernel at index i.

The padding is set to “causal”, meaning the network is causal and the output at time

t is convolved only with elements from time t and earlier in the previous layer. Hence,

the output sequence does not peek into the future and respects the temporal order of the

data.

Following the TCN layer, we apply a dense layer, which performs the operation:

y = g(W · x + b)

where W is the weight matrix, b is the bias vector, and g() is the activation function (a

linear function by default), all of which are learned during training.

25

3.4 Gradient Boosting

Gradient boosting, introduced by Friedman [2001], is a machine learning technique for

regression and classification problems, which builds an ensemble model by optimizing a

loss function in a stage-wise manner. It is recognized for its effectiveness in dealing with

heterogeneous data and its inherent feature selection capability.

Figure 4: Representation of the gradient boosting algorithm. Each weak learner, denoted by

hm, receives input xi and contributes to the cumulative strong learner, represented by Fm, at

stage m. The final prediction is given by the aggregation of all Fm learners as F (x).

xi h1

h2

h3

hM

F1

F2

F3

FM

F (x)

Gradient boosting operates in the function space, treating function estimation as a

numerical optimization problem. This contrasts with traditional machine learning ap-

proaches that optimize in the parameter space. The algorithm leverages the concept of

steepest-descent minimization to construct an additive model, which consists of multiple

weak learners that contribute towards the final model’s decision-making process.

F̂ = arg min
F

Ey,xL(y, F (x)) = arg min
F

Ex [Ey(L(y, F (x)))|x] . (9)

Here, F is the final model composed of several weak learners, xi denotes the feature

vector for the i-th instance, yi is the corresponding target value, and L is a differentiable

loss function that measures the discrepancy between the target value yi and the model’s

prediction F (xi).

The weak learners are represented as hm(x; θm), where x denotes the input features

26

and θm represents the parameters for the m-th weak learner. In the context of gradient

boosting, these weak learners are generally decision trees, though they can be any model

that provides a good fit to the residuals.

In each iteration of the boosting process, a weak learner is fitted to the negative

gradient of the loss function with respect to the model’s prediction. For the m-th iteration,

this is expressed as:

rim = −
[
∂L (yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

(10)

Here, yi is the target value for the i-th instance, F (xi) is the current prediction for

the i-th instance, and L is a differentiable loss function that measures the discrepancy

between the target and the prediction.

The parameters θm for the m-th weak learner are obtained by solving the following

least-squares problem:

θm = argmin
θ

N∑
i=1

(rim − hm (xi; θ))2 (11)

In essence, this equation is fitting the m-th weak learner to the residuals, which rep-

resent the direction of steepest descent in the function space, and finding the parameters

θ that minimize the squared difference between the residuals and the weak learner’s pre-

dictions.

After fitting the m-th weak learner, its contribution is added to the current prediction,

weighted by a factor ρm:

ρm = argmin
ρ

N∑
i=1

L (yi, Fm−1 (xi) + ρhm (xi; θm)) (12)

The weight ρm is computed via line search, a numerical optimization technique, by

solving:

F (x) = F0(x) +
M∑

m=1

ρmhm (x; θm) (13)

In this equation, F0(x) is the initial prediction, and the summation represents the

cumulative contribution of all weak learners. Each weak learner is fitted to the residuals

of the previous stage and contributes to the final prediction according to the optimized

weight ρm.

27

In this manner, the gradient boosting algorithm successively improves its prediction

by adding new weak learners that focus on the most challenging instances. As such, it

can construct a powerful model from an ensemble of relatively simple and weak models.

3.5 Random Forest

Random forests, initially introduced by Breiman [2001], are another popular ensemble

learning method for both regression and classification tasks. They combine numerous

decision trees to generate more robust and accurate predictions. Despite their simplicity,

random forests have shown excellent performance on various machine learning tasks, often

comparable to or even surpassing more complex models.

Random Forests make use of a collection of decision trees, where each tree is indepen-

dently constructed via bootstrapping, i.e., resampling the data with replacement. Each

decision tree is built using a randomly selected subset of features at each split. This

results in an ensemble of trees that are uncorrelated with each other, making the model

less prone to overfitting.

Figure 5: Illustration of the random forest algorithm with three depicted decision trees. Each

tree in the diagram is an individual decision tree that contributes to the ensemble within the

forest.

Tree 1 Tree 2 Tree 3

This figure demonstrates a random forest composed of three trees, each of which

represents an individual decision tree within the forest. Every node in the tree signifies a

decision based on feature values, and every edge represents the outcome of a decision at

the parent node. Note that each tree is built independently, with different subsets of the

data and features.

Each decision tree in the forest is a function Tm(x; Θm) where x represents the feature

28

vector and Θm is the parameters of the m-th tree.

The final prediction of the Random Forests model is given by:

F (x) =
1

M

M∑
m=1

Tm (x; Θm) (14)

where M is the number of trees in the forest. For a regression problem, F (x) is the

average of the output of all trees. For a classification problem, each tree votes for a class,

and the class with the most votes is selected (i.e., mode of the outputs).

The randomness in the Random Forests algorithm comes from two sources:

• Bootstrap sampling: Each decision tree is built on a different sample of the data.

These samples are created by drawing n instances at random with replacement

from the original data, where n is the size of the original data. This process, known

as bootstrap sampling, means that each sample will likely contain some instances

multiple times and others not at all.

• Feature selection: At each split in each decision tree, a random subset of features is

selected as candidates for the split. This number of features, often denoted as d, is

typically much smaller than the total number of features. This process introduces

further variability into the model and helps to decorrelate the trees, making the

ensemble more robust.

When new data comes in, each tree in the forest generates a prediction independently.

The final prediction is made by averaging the predictions from all the trees for regression,

or by majority voting for classification.

This model is simple and interpretable, and yet it has been shown to perform very well

on a wide range of machine learning tasks, often outperforming more complex models.

Furthermore, it can handle large datasets with high dimensionality and missing values,

and it provides a built-in measure of feature importance.

The strength of a Random Forest is a measure of the accuracy of its individual classi-

fiers (the decision trees). It is defined as the expected value of the margin function, which

measures the difference between the probability that a Random Forest classifier is correct

29

and the maximum probability that it is incorrect:

s = E[mr(X, Y)], (15)

where:

mr(X, Y) = P (h(X,Θ) = Y) − max
j ̸=Y

P (h(X,Θ) = j) (16)

In this equation, h(X,Θ) is the classifier (a decision tree in the Random Forest), X

represents the input features, Y is the actual class, and Θ represents the parameters of

the classifier. The probability is estimated over the random draws Θ.

3.6 Mean Squared Error (MSE)

The Mean Squared Error (MSE) will serve as the primary metric for evaluating the

accuracy of our model’s predictions during out-of-sample validation.

MSE quantifies the average squared differences between observed and predicted data,

providing a clear indication of the model’s performance. It is expressed as:

MSE =
1

N

N∑
i=1

(
Yi − Ŷi

)2
, (17)

Where:

• Yi represents the actual observation.

• Ŷi denotes the predicted observation.

• N signifies the total count of observations.

This formula ensures that larger errors have a disproportionately bigger impact on the

overall error score, making it a robust measure for prediction accuracy.

30

4 Empirical Results

The results in this study are based on a detailed analysis of the S&P 100 symbols for

2020. We select the ARMA (AutoRegressive Moving Average) model as our benchmark

due to its proven efficacy in capturing the autocorrelation structure inherent in financial

time series data. The ARMA model’s ability to integrate both autoregressive (past val-

ues) and moving average (lagged forecast errors) components makes it especially suited

for modeling the temporal dependencies and inherent volatilities observed in financial

markets.

The results are the average performance metrics across all studied symbols, combining

data from various sources into one clear overview. By taking an average, we get a more

stable perspective because it considers the variations and common features of different

stock symbols.

It’s important to note that when we average data, we might average out stock-level

characteristics, potentially losing unique information that could enhance our forecast for

individual stock symbols. To address this, our model is adjusted for each stock symbol

using its unique ARMA parameters. This way, we can capture both the overall market

trends and the unique patterns of individual stocks, allowing our model to effectively

understand the diverse dynamics of the market.

Moreover, the computation of averaged performance metrics requires careful consid-

eration of the potential heteroscedasticity across different symbols. The variability of a

symbol’s performance metrics can potentially depend on its trading volume, which further

emphasizes the complexity of the S&P 100 financial ecosystem.

The parameters and performance metrics of the ARMA model, as shown in Table 2,

reinforce the promising results obtained during our empirical study.

31

Table 2: The table summarizes the average parameters and performance metrics of the ARMA

model used for forecasting the trading volume of individual stocks in the S&P 100 index, calcu-

lated across 100 stocks. The ARMA model, with an autoregressive (AR) component of 1.33 and

a moving average (MA) component of 2.39, was selected based on the Akaike Information Crite-

rion (AIC), Bayesian Information Criterion (BIC), and the Hannan-Quinn Information Criterion

(HQIC). The model’s accuracy was evaluated using the Mean Squared Error (MSE), while the

Wald test was used to test the statistical significance of the coefficients.

Model p (AR) q (MA) AIC BIC HQIC Avg MSE Wald Test

ARMA 1.33 2.39 -210556.80 -210516.50 -210543.00 1.87× 10−10 1.98× 1026

The Bayesian Information Criterion (BIC) favoured the ARMA model with the pa-

rameters autoregressive order (p) = 1.33 and moving average order (q) = 2.39. Important

in defining the temporal relationships recorded by an ARMA model are the orders (p and

q).

Within the ARMA model, p represents the order of the autoregressive component,

and q signifies the order of the moving average component. They represent the average

orders calculated across multiple models for the 100 stocks in the S&P 100 index.

Our empirical investigation follows a methodology that placed heavy focus on metrics

for selecting models. To find the sweet spot between model fit and complexity, many

information criteria are calculated, including the Akaike Information Criterion (AIC),

the Bayesian Information Criterion (BIC), and the Hannan-Quinn Information Criterion

(HQIC).

These information criteria are designed to avoid overfitting by adding penalties for

more complex models. Overfitting is a challenge in predictive modeling, where a model

might perform well on the training data but not on new data. By using these criteria, we

aim to strike a balance, ensuring our models are neither too simple nor overly complex.

In particular, the minimality of these measures is indicative of their optimality. An

improved trade-off between model fit and complexity is shown by smaller values of AIC,

BIC, and HQIC. Our ARMA model offers the optimal compromise between fit and com-

plexity when seen through the BIC lens, as indicated by its low value (-210516.50) in the

32

current analysis.

The BIC is a key component of the model, but it is not the only one. Consistently

strong model fit is also shown by the AIC and HQIC, with values that are both very

low. This consistency across different types of data strengthens the validity of our model

selection.

It’s important to mention that these criteria, while helpful, have their limitations.

They may favour too simple models and are susceptible to assumptions regarding error

distribution. Thus, model selection was informed by fundamental theoretical concerns

coming from the financial time series literature, as well as the findings of the Mean Squared

Error (MSE) and the Wald test. In the context of our analysis, the Wald test statistic,

1.98 × 1026, plays a noteworthy role. This metric, with its large value, suggests a strong

rejection of the null hypothesis that the coefficients of our ARMA model have no statistical

significance.

A large Wald statistic typically implies a greater reduction in squared errors, thereby

providing robust evidence against the null hypothesis of coefficient insignificance. Simply,

the AR(p) and MA(q) parameters in our model significantly affect the prediction of S&P

100 trading volumes.

While the ARMA model results revealed meaningful insights into the S&P 100 index

trading volume prediction, we acknowledged the necessity to leverage a more sophisticated

tool that could model non-linear dependencies, which are common in financial time series.

As such, we proceeded to employ a deep learning-based method, particularly the Long

Short-Term Memory (LSTM) model.

The LSTM is a type of Recurrent Neural Network (RNN) specifically designed to

tackle the vanishing gradient problem that plagues the conventional RNNs. It does this

by maintaining a “cell state” across iterations, enabling it to learn and remember over

long sequences, making it aptly suited for time series forecasting tasks.

For our LSTM model, we perform log transformations and scaling to normalise the

data before feeding it into the model. The LSTM was structured with 4 units, which

essentially indicates the dimensionality of the output space. Next, we utilize the Adam

optimizer for its computational efficiency and relatively low memory requirements. Adam

33

is an extension of stochastic gradient descent that updates network weights iteratively

based on training data. It computes adaptive learning rates for different parameters.

In addition to storing an exponentially decaying average of past squared gradients like

RMSprop, Adam also keeps an exponentially decaying average of past gradients similar

to momentum, making the updates more directed and hence speeding up the learning

process.

We train the LSTM model for 50 epochs, with a batch size of 1. In machine learning

parlance, an epoch is an entire pass through the entire training dataset, while a batch size

is the number of samples processed before the model is updated. A smaller batch size,

like 1, often provides a regularization effect, offering some level of resistance to overfitting.

The Average Mean Squared Error (MSE) of our model is 1.167 × 10−10, a metric

that quantifies the difference between the actual and predicted trading volumes, which

is slightly smaller than that obtained from our ARMA model, indicating that the LSTM

model might potentially outperform the ARMA model in predicting trading volumes; as

shown in table 3.

Table 3: The table illustrates the average configuration and performance metrics of the LSTM

model used for forecasting the trading volume of individual stocks in the S&P 100 index, cal-

culated across 100 stocks. The model was implemented using the Keras library with 4 LSTM

units and an Adam optimizer, trained for a total of 50 epochs with a batch size of 1. The

model performance was evaluated using the Mean Squared Error (MSE), a common metric used

for assessing the precision of forecasting models. A lower MSE denotes a more accurate model

prediction.

Model LSTM

Units

Optimizer Number of

Epochs

Batch Size Avg MSE

LSTM 4 Adam 50 1 1.167 × 10−10

Next, we take a further step to incorporate L1L2 regularization into our LSTM model.

Regularization techniques are commonly used in machine learning to prevent overfitting

by penalising the model complexity, thus helping the model generalize better to unseen

34

data. In this case, the L1L2 regularization is added to both the LSTM layer and the

Dense layer with a regularization factor of 0.001.

Incorporating this regularization has a negligible effect on the Average MSE, with a

slight increase to 1.170 × 10−10, as shown in table 4.

Table 4: The table shows the average configuration and performance metrics of the LSTM

model with L1L2 regularization, used for forecasting the trading volume of individual stocks in

the S&P 100 index. These averages are calculated across 100 stocks. The model was implemented

with the Keras library, using 4 LSTM units and an Adam optimizer, and trained 50 epochs with

a batch size of 1. The regularization parameter was set to 0.001. The performance of the model

was assessed with the Mean Squared Error (MSE), a standard metric for gauging the accuracy

of forecasting models. A lower MSE indicates a more precise model prediction.

Model LSTM

Units

Optimizer Epochs Batch

Size

Reg. Avg MSE

LSTM with

L1L2

4 Adam 50 1 0.001 1.170 × 10−10

This implies that both the LSTM layer and the Dense layer were regularized. Despite

this, the Average MSE was only marginally affected. This suggests that the model was al-

ready robust and not prone to overfitting. Consequently, the application of regularization

did not markedly improve the model’s generalization capabilities.

So, the use of an LSTM model for the prediction of the S&P 100 index trading volume,

employing advanced techniques like Adam optimization and L1L2 regularization, lead to

promising results, demonstrating that these complex, nuanced methods can be highly

effective in the challenging realm of financial time series forecasting.

Building on our findings from the ARMA and LSTM models, we next explore the

application of Temporal Convolutional Networks (TCN) to predict the S&P 100 stock

trading volume. It possesses a unique advantage over other neural network architectures:

it effectively captures long-term dependencies in sequence data, a critical attribute for

accurate time-series forecasting.

35

Temporal Convolutional Networks (TCNs) are a unique class of neural networks de-

signed to process sequential data. They offer two key advantages: causal convolutions and

dilated convolutions, which make them exceptionally suited to time series forecasting.

Causal convolutions refer to the network’s ability to maintain the temporal order of

events. Unlike in standard convolutional layers, where future data points can influence

the output at the current timestep, causal convolutions ensure that the model’s output at

each timestep is influenced only by data from that timestep or earlier. This not only helps

to preserve the chronological integrity of the data but also eliminates any “look-ahead”

bias, as future data is prevented from leaking into the past.

On the other hand, dilated convolutions allow TCNs to effectively aggregate and

process information across increasingly larger temporal contexts without increasing the

complexity of the model. By skipping input values with a certain step, these dilated

convolutions expand the network’s receptive field, allowing it to grasp longer-term depen-

dencies in the data. This feature is particularly valuable for predicting trends that span

large sequences, a common occurrence in many real-world time series data.

The implemented TCN model in this study employs 10 filters and a kernel size of

2. Filters in a convolutional network can be thought of as feature detectors. In this

case, having 10 filters means the model can detect 10 different types of features at each

layer. The kernel size is the size of the window that slides over the data to perform the

convolution operation. Here, a kernel size of 2 means that the model is looking at two

consecutive time steps at a time.

The use of a single stack in the TCN architecture implies that the model is relatively

shallow, potentially leading to faster training times but at the risk of oversimplifying

complex patterns. A deeper architecture with multiple stacks could potentially yield

more accurate predictions, especially for more complex datasets, but it would also be

more computationally expensive and could risk overfitting.

The Rectified Linear Unit (ReLU) activation function is utilized in the TCN. ReLU

is a commonly used activation function in neural networks due to its efficiency and per-

formance. It introduces non-linearity into the model, allowing the network to learn and

predict complex patterns. The use of ReLU also helps mitigate the vanishing gradient

36

problem common in deep learning models.

The model is trained over 50 epochs, which means the entire training dataset is passed

forward and backward through the neural network 50 times. The batch size is set to 1,

meaning that the model updates its parameters after each training sample. This approach

can make the training process more computationally intensive but can sometimes result

in a more refined model, as the network learns to adjust its parameters more frequently.

In our specific application, the TCN model demonstrates an impressive average MSE

of 1.11 × 10−10, outperforming both the ARMA and LSTM models, as shown in table 5.

Table 5: The table summarizes the average parameters and performance metrics of the Tem-

poral Convolutional Network (TCN) model used for forecasting the trading volume of individual

stocks in the S&P 100 index. These averages are calculated across 100 stocks. The TCN model

parameters include 10 filters, a kernel size of 2, 1 stack, and uses the Rectified Linear Unit

(ReLU) activation function. The model’s accuracy was evaluated using the Mean Squared Error

(MSE).

Model Filters Kernel

Size

Stacks Number

of Epochs

Activation Avg MSE

TCN 10 2 1 50 ReLU 1.11 × 10−10

There are several potential reasons for this improved performance. One is that the

TCN, with its extensive receptive field due to dilated convolutions, can effectively grasp

longer-term dependencies in the data that may be missed by other models. Second, the

TCN model’s causal convolutions help maintain the integrity of the time series data,

ensuring accurate predictions. Finally, unlike LSTMs, TCNs avoid issues with vanishing

or exploding gradients, resulting in more stable training and potentially more accurate

forecasts.

In pursuit of more accurate S&P 100 stock trading volume predictions, our research

further explores the Gradient Boosting methodology. Gradient Boosting is an ensemble

machine learning algorithm that relies on the idea of boosting, that is, converting a set

of weak learners into a strong learner. The algorithm operates by fitting new models

37

sequentially to the residuals of the previous ones to minimize the overall prediction error.

In the context of our model, the Gradient Boosting model serves as a regressor, pre-

dicting the trading volume as a continuous variable. This model’s strengths lie in its

flexibility and robustness, as it can effectively model complex non-linear relationships and

is relatively immune to overfitting due to the boosting mechanism.

The model architecture involves three main hyperparameters: n estimators, max depth,

and min samples split. n estimators corresponds to the number of boosting stages or

the number of sequential trees in the model. max depth regulates the maximum depth of

the individual trees, influencing the model’s complexity. min samples split represents

the minimum number of samples needed for a node to be split, which helps control the

tree’s growth and prevent overfitting.

Our Gradient Boosting model is constructed using a comprehensive grid search, which

is an exhaustive searching method for selecting the optimal hyperparameters. This

procedure iterates over a manually specified subset of the hyperparameter space of a

learning algorithm. With a range from 1 to 10 for n estimators, max depth, and

min samples split, we ensure an extensive exploration of the parameter space for the

optimal configuration.

This enhanced performance can be attributed to the Gradient Boosting model’s in-

herent attributes. The ability to capture complex non-linear relationships through a

combination of weak learners, the flexibility offered by tuning hyperparameters, and the

resistance to overfitting due to the boosting mechanism all contribute to this model’s

efficacy. Furthermore, Gradient Boosting can effectively capture various trends and pat-

terns, making it particularly suites to stock trading volume prediction tasks that often

encompass intricate and stochastic movements.

It’s also important to acknowledge that Gradient Boosting, while computationally

more expensive than some other models due to its iterative nature, can provide high-

accuracy results. It combines the power of numerous decision trees and leverages boosting

to minimize errors, making it an effective tool for time series forecasting tasks such as

ours.

In our experiments, the Gradient Boosting model has an average MSE of 9.94×10−11.

38

This performance is achieved using the optimal hyperparameters of max depth = 7.70,

min samples split = 3.68, and n estimators = 10. The results are shown in Table 6.

Table 6: The table illustrates the average optimal parameters and performance metrics of the

Gradient Boosting model, used for forecasting the trading volume of individual stocks in the

S&P 100 index. These averages are calculated across 100 stocks. The model’s optimal hyper-

parameters, attained via a comprehensive grid search, were a max depth of 7.70, a minimum

samples split of 3.68, and 10 estimators. The Mean Squared Error (MSE), a prevalent metric for

gauging the precision of a forecasting model, was used to assess the performance of this model.

Lower MSE values denote more accurate model predictions.

Model Max Depth Min Samples

Split

Number of Es-

timators

Avg MSE

Gradiant Boosting 7.70 3.68 10.0 9.94 × 10−11

Next, we examine the potential reasons for the superior performance of the Gradient

Boosting model. Primarily, it contrasts with the ARMA model, which assumes a linear

relationship between observations. The Gradient Boosting model algorithm, however, can

capture non-linear relationships present in the data. This attribute is extremely valuable

when dealing with complex data sets such as stock market data, where relationships

between variables are not always linear.

Moving forward, we then explore the application of the Random Forest model to pre-

dict the S&P 100 stock trading volume. The Random Forest model is an ensemble learning

method that operates by constructing a multitude of decision trees at training time and

outputting the mean prediction of the individual trees. It is particularly favored for its

ability to reduce overfitting and improve generalization compared to a single decision tree.

Random Forests have three key hyperparameters: the maximum depth of the trees,

the minimum number of samples required to split an internal node, and the number of

trees in the forest (or estimators).

In our implementation, we use Grid Search to find the optimal hyperparameters for

our Random Forest model. Grid Search is a hyperparameter tuning method where we

39

train a model for every combination of hyperparameters and select the set that yields

the best performance. The parameters we try for our model ranged from 1 to 10 for

both maximum depth and minimum samples split, and from 1 to 10 for the number of

estimators.

The best hyperparameters find from Grid Search for the Random Forest model are

an average maximum depth of 6.81, an average minimum sample split of 5.95, and an

average number of estimators of 2.90. These values suggest that the optimal Random

Forest model has relatively shallow trees, requires a modest number of samples to make a

split, and includes a small number of trees. This could indicate that the underlying data

distribution can be captured by relatively simple tree structures, and a small number of

trees are sufficient to reduce the variance of the model.

The Random Forest model demonstrates strong performance during testing, achieving

an average Mean Squared Error (MSE) of 4.08×10−11. This performance data is presented

in Table 7 for further reference.

Table 7: The table outlines the average optimal parameters and performance metrics

of the Random Forest model, employed for forecasting the trading volume of individual

stocks in the S&P 100 index. These averages are calculated across 100 stocks. The model’s

optimal hyperparameters, achieved through extensive tuning, were a max depth of 6.81,

a minimum samples split of 5.95, and 2.90 estimators. The Mean Squared Error (MSE),

a common metric for evaluating the accuracy of a forecasting model, was used to assess

the performance of this model. Lower MSE values denote more precise model predictions.

Model Max Depth Min Samples

Split

Number of Esti-

mators

Avg MSE

Random Forest 6.81 5.95 2.90 4.08 × 10−11

Random Forest model is equipped to handle intricate interactions between various

features, a capability not always directly addressed by the LSTM or TCN models. This

benefit lets the model understand how various variables together affect trading volume,

contributing to better prediction accuracy.

40

In terms of Random Forest performance, it’s important to note several attributes

that could explain its superior performance when compared to ARMA, LSTM, TCN, and

even Gradient Boosting in the context of our forecasting task for S&P 100 stock trading

volume.

• Ensemble Learning: Unlike Gradient Boosting where trees are grown sequentially

to correct errors, Random Forest builds each decision tree independently, using a

subset of the data. This characteristic allows the model to maintain robustness

against overfitting and could potentially explain why it performs better than Gra-

dient Boosting.

• Handling of Mixed Data Types: Stock market data often contains a mixture of

numeric and categorical variables (for example, the impact of specific news events).

Random Forest is adept at handling such mixed data types. While ARMA, LSTM,

and TCN are better suited for sequential numeric data, their performance may falter

when encountering mixed data types.

• Avoidance of Overfitting: Random Forest, by design, helps to prevent overfitting

that can be problematic in Gradient Boosting. By using a subset of data and

features for each tree, the model creates an ensemble that is, on average, less likely

to overfit to the training data.

• Model Complexity and Flexibility: Random Forest combines simple base learners

(decision trees) to build a complex model. This combination of simplicity and

complexity makes it a very flexible tool, capable of modeling complex nonlinear

relationships that could potentially be missed by ARMA, LSTM, TCN, and even

Gradient Boosting.

• Non-linear and Non-parametric Nature: The Random Forest model is non-parametric

and can capture complex non-linear relationships, which are common in financial

time-series data such as S&P 100 stock trading volume. ARMA, although effective

for certain stationary time-series data, can sometimes fall short in accurately mod-

eling the non-linear dynamics of financial markets. Even though the TCN model,

41

being a deep learning-based model, can handle non-linear relationships, it may not

be as effective as Random Forest when the dependencies are particularly complex

or when the available dataset is not sufficiently large to train such a complex model

effectively.

• Robustness to Noise: Financial data can often be noisy, with sudden jumps and

drops in trading volume. Random Forest, due to its inherent averaging process,

tends to be robust to such noise. In contrast, both ARMA and TCN, and even

Gradient Boosting, may be sensitive to these fluctuations, potentially leading to

less accurate predictions.

In our research, we gain a deeper understanding of stock trading volumes for the

S&P 100. A particular point of interest is examining the outliers: the highest 10% and

the lowest 10% of trading volumes. By focusing on these extremes, we hope to identify

patterns or unique characteristics that might not be evident when looking at average

trading volumes.

To achieve our goals, we use all mentioned methods on these subsamples. From our

analysis, the Random Forest model consistently delivers the best performance, based on

the Mean Squared Error (MSE) measure, both for the general dataset and for the subsets

representing the highest and lowest 10% of trading volumes.

Table 8 offers a comparative perspective for the 10% highest trading volumes. It is

evident that the Random Forest model, with an average MSE of 2.74×10−12, significantly

outperforms its counterparts. For instance, even the Gradient Boost, another ensemble

method, records an average MSE that is nearly an order of magnitude higher.

42

Table 8: This table presents a detailed comparison of various forecasting models, each evaluated

based on their average Mean Squared Error (MSE), for predicting the top 10% of trading volumes

in the S&P 100. The results indicate varied performances across models with the Random Forest

showcasing the lowest MSE.

Model Average MSE

ARMA 6.99 × 10−11

LSTM 6.76 × 10−11

TCN 7.13 × 10−11

Gradient Boost 1.55 × 10−11

Random Forest 2.74 × 10−12

Turning to the data on the 10% lowest trading volumes, the findings align with our

previous observations. As presented in table 9, the Random Forest model performs well

with an MSE of 7.44 × 10−11. Other models such as ARMA, LSTM, and TCN exhibit

higher error rates.

Table 9: Performance Evaluation of Different Models for Forecasting S&P 100 Stock Trading

Volume for the 10% Lowest Trading Volumes. The performance of each model was evaluated

using the average Mean Squared Error (MSE). The Random Forest model again delivering the

most favorable outcome.

Model Average MSE

ARMA 1.08 × 10−9

LSTM 1.57 × 10−9

TCN 2.26 × 10−9

Gradient Boost 2.13 × 10−10

Random Forest 7.44 × 10−11

43

5 Conclusion

In conclusion, our study embarked on a detailed exploration of multiple forecasting

methodologies for intraday trading volume, a critical component for the implementa-

tion of Volume Weighted Average Price (VWAP) trading algorithms. Drawing from the

intraday Trade and Quote (TAQ) dataset, our investigation traversed a broad spectrum

of financial instruments, scrutinizing the nuances of intraday trade volume through an

array of analytical lenses.

We began our study with the Autoregressive Moving Average (ARMA) model as

a benchmark and then ventured into advanced machine learning techniques like Long

Short-Term Memory (LSTM) neural networks, Temporal Convolutional Networks (TCN),

Gradient Boosting, and Random Forest. Each model was thoroughly evaluated for its

proficiency to encapsulate trends and unveil latent patterns in intraday trading volume

data. While seasonality is acknowledged to be an important factor in financial markets,

it was not the focus of this current study and remains an avenue for future research.

The insights gained from our study underscore the power and potential of the method-

ologies we explored, shedding light on their unique strengths and limitations in forecasting

intraday trading volume. Among these, ensemble learning techniques, notably Random

Forest, emerged as the most potent tools. Random Forest demonstrated exceptional per-

formance, achieving the lowest Mean Squared Error (MSE) among all the studied models,

a testament to its robust predictive capabilities.

Delving deeper into the factors contributing to its success, Random Forest stood out

due to its inherent averaging process, making it robust to noise, and its ability to handle

mixed data types, which accommodates the multifaceted nature of financial market data.

These unique features make Random Forest an incredibly robust and flexible tool, well-

suited for the complex task of forecasting in the unpredictable landscape of financial

markets.

Furthermore, our research draws upon several pioneering studies in the field, effectively

synthesizing diverse analytical perspectives to enhance the depth of our approach. The

work of Kercheval and Zhang [2015] and Dixon [2018] provided valuable insights into

44

the application of predictive classifiers and trade execution models, while Holden and

Jacobsen [2014] and Bogousslavsky and Muravyev [2022] enriched our understanding of

dynamic volume models and the impact of passive investing.

Our study offers a valuable contribution to the ongoing discourse on intraday trading

volume forecasting, paving the way for further research in this area. While our investi-

gation provides a comprehensive assessment of each model, future work can delve deeper

into the hyperparameter optimization of these models, potentially further enhancing their

performance. Moreover, the examination of other predictive metrics and variables could

be integrated to construct even more robust and accurate forecasting models. In the com-

plex, ever-evolving world of financial markets, the quest for the most accurate prediction

models remains a vital and challenging pursuit.

45

References

Torben G Andersen. Return volatility and trading volume: An information flow interpre-

tation of stochastic volatility. The Journal of Finance, 51(1):169–204, 1996.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of

generic convolutional and recurrent networks for sequence modeling. arXiv preprint

arXiv:1803.01271, 2018.

Jedrzej Bia lkowski, Serge Darolles, and Gaëlle Le Fol. Improving vwap strategies: A

dynamic volume approach. Journal of Banking & Finance, 32(9):1709–1722, 2008.

Vincent Bogousslavsky and Pierre Collin-Dufresne. Liquidity, volume, and order imbal-

ance volatility. Journal of Finance, Forthcoming, 2022.

Vincent Bogousslavsky and Dmitriy Muravyev. Who trades at the close? implications for

price discovery and liquidity. Implications for Price Discovery and Liquidity (October

25, 2022), 2022.

Jean-Philippe Bouchaud, J Doyne Farmer, and Fabrizio Lillo. How markets slowly di-

gest changes in supply and demand. In Handbook of financial markets: dynamics and

evolution, pages 57–160. Elsevier, 2009.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series

analysis: forecasting and control. John Wiley & Sons, 2015.

Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

Christian T Brownlees, Fabrizio Cipollini, and Giampiero M Gallo. Intra-daily volume

modeling and prediction for algorithmic trading. Journal of Financial Econometrics, 9

(3):489–518, 2011.

Jian Cao, Zhi Li, and Jian Li. Financial time series forecasting model based on ceemdan

and lstm. Physica A: Statistical mechanics and its applications, 519:127–139, 2019.

Matthew Dixon. A high-frequency trade execution model for supervised learning. High

Frequency, 1(1):32–52, 2018.

46

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. An-

nals of statistics, pages 1189–1232, 2001.

Christian Gourieroux, Joanna Jasiak, and Gaelle Le Fol. Intra-day market activity. Jour-

nal of Financial Markets, 2(3):193–226, 1999.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,

9(8):1735–1780, 1997.

Craig W Holden and Stacey Jacobsen. Liquidity measurement problems in fast, competi-

tive markets: Expensive and cheap solutions. The Journal of Finance, 69(4):1747–1785,

2014.

Mark L Humphery-Jenner. Optimal vwap trading under noisy conditions. Journal of

Banking & Finance, 35(9):2319–2329, 2011.

Alec N Kercheval and Yuan Zhang. Modelling high-frequency limit order book dynamics

with support vector machines. Quantitative Finance, 15(8):1315–1329, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

Xiaotao Liu and Kin Keung Lai. Intraday volume percentages forecasting using a dynamic

svm-based approach. Journal of Systems Science and Complexity, 30(2):421–433, 2017.

Ignacio N Lobato and Carlos Velasco. Long memory in stock-market trading volume.

Journal of Business & Economic Statistics, 18(4):410–427, 2000.

Ananth N Madhavan. Vwap strategies. Trading, 2002(1):32–39, 2002.

Jaisimha Manchaldore, Imon Palit, and Oleg Soloviev. Wavelet decomposition for intra-

day volume dynamics. Quantitative Finance, 10(8):917–930, 2010.

Arnold Neumaier. Solving ill-conditioned and singular linear systems: A tutorial on

regularization. SIAM review, 40(3):636–666, 1998.

47

Sokratis Papadopoulos and Ioannis Karakatsanis. Short-term electricity load forecasting

using time series and ensemble learning methods. In 2015 IEEE Power and Energy

Conference at Illinois (PECI), pages 1–6. IEEE, 2015.

Han Lin Shang. Forecasting intraday s&p 500 index returns: A functional time series

approach. Journal of forecasting, 36(7):741–755, 2017.

Parnandi Srinu Vasarao and Midhun Chakkaravarthy. Time series analysis using random

forest for predicting stock variances efficiency. In Intelligent Systems and Sustainable

Computing: Proceedings of ICISSC 2021, pages 59–67. Springer, 2022.

José F Torres, Dalil Hadjout, Abderrazak Sebaa, Francisco Mart́ınez-Álvarez, and Alicia

Troncoso. Deep learning for time series forecasting: a survey. Big Data, 9(1):3–21,

2021.

Yaw-Huei Wang and Yun-Yi Wang. The information content of intraday implied volatility

for volatility forecasting. Journal of Forecasting, 35(2):167–178, 2016.

Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping in gradient

descent learning. Constructive Approximation, 26:289–315, 2007.

48

	Resume
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Literature Review

	Data Collection
	Trade and Quote Database
	Centre for Research in Security Prices Database
	Merging Datasets
	Exploratory Data Analysis
	Data Normalisation: Adjusting for Individual Stock Differences
	Data Segmentation Through Progressive Temporal Intervals
	Autocorrelation Function (ACF) Analysis

	Methods
	Autoregressive Moving Average (ARMA) Model
	Autoregressive (AR) Component
	Moving Average (MA) Component
	ARMA Model

	Long Short-Term Memory networks
	Regularization Techniques
	Early Stopping
	Adam Optimizer

	Temporal Convolutional Network (TCN)
	Gradient Boosting
	Random Forest
	Mean Squared Error (MSE)

	Empirical Results
	Conclusion
	References

