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Résumé

La prévision des prix de l’électricité est une tâche difficile pour les décideurs sur les

marchés de l’électricité déréglementés en raison des caractéristiques inhérentes aux prix de

l’électricité, par exemple, la fréquence élevée et la volatilité. Par conséquent, une prévision

précise des prix de l’électricité peut aider les participants au marché à maximiser leurs

bénéfices. En conséquence, nous avons proposé un nouveau modèle hybride d’apprentissage

profond pour prévoir les prix de l’électricité en Ontario à un, deux et trois pas à l’avance, basé

sur un réseau neuronal convolutif (CNN) et une unité récurrente à grille (GRU). Notre modèle

se compose de trois modèles CNN-GRU consécutifs combinés en parallèle avec différentes

données d’entrée. Nous avons sous-échantillonné les données d’entrée via des couches de mise

en commun au début de deux flux du modèle afin de capturer simultanément différentes

fréquences de modèles de prix. En outre, un ensemble de variables externes, y compris

les prix précédents, la charge électrique, la production, l’importation et l’exportation, et

les données météorologiques, ont été prises en compte dans nos modèles de prévision pour

vérifier si ces caractéristiques améliorent l’efficacité des modèles. Enfin, trois expériences

portant sur différentes semaines de 2022 ont été réalisées sur le marché de l’électricité de

l’Ontario afin d’évaluer le modèle proposé. Les résultats montrent que le modèle proposé a

réduit de manière significative l’erreur de prévision de 63,3 % dans la première expérience, de

41,8 % dans la deuxième et de 28,22 % dans la troisième, en moyenne. En outre, le modèle

proposé a été comparé à plusieurs modèles de base, notamment des modèles statistiques de

séries chronologiques, d’apprentissage automatique et d’apprentissage profond. En outre, la

comparaison des résultats dans des contextes univariés et multivariés a indiqué que l’ajout

de variables aux modèles de prévision ne permettait pas de réduire les erreurs de prévision.

Mots-clés : Prévision des Prix de l’électricité, Apprentissage Profond, Apprentissage Au-

tomatique, Modèle Hybride, Marché de l’électricité de l’Ontario



Abstract

Electricity price forecasting is a challenging task for decision-makers in deregulated power

markets due to the inherent characteristics of electricity prices, e.g., high frequency and

volatility. Therefore, accurate forecasting of electricity prices can assist market participants

in maximizing their profit. Accordingly, we proposed a novel hybrid Deep Learning model to

forecast one-step, two-step, and three-step ahead Ontario electricity prices based on a Con-

volutional Neural Network (CNN) and Gated Recurrent Unit (GRU). Our model consists

of three consecutive CNN-GRU models combined in parallel with different input data. We

downsampled input data via pooling layers at the beginning of two streams of the model to

capture different frequencies of price patterns concurrently. Also, a set of external variables,

including previous prices, electricity load, generation, import and export, and weather data,

were considered in our forecasting models to test whether these features improve the effi-

ciency of the models. Finally, three experiments in various weeks of 2022 were carried out in

the Ontario electricity market to assess the model. The results indicate that the proposed

model reduced the forecasting error significantly by 63.3% in the first experiment, 41.8%

in the second, and 28.2% in the third, on average, with respect to a Root Mean Square

Error (RMSE). Also, the proposed model was compared with outperformed several baseline

models, including statistical time-series, Machine Learning, and Deep Learning models. Fur-

thermore, the comparison of results in univariate and multivariate settings indicated that

adding variables to forecasting models did not help reduce forecasting errors.

Keywords : Electricity Price Forecasting, Deep Learning, Machine Learning, Hybrid Model,

Ontario Electricity Market
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1. Introduction

In all competitive markets, prices are defined by supply and demand. Over decades,

electricity markets globally are under reformation which resulted in deregulated markets.

This has led to the establishment of electricity power exchanges, e.g., independent elec-

tricity system operator (IESO) and Alberta electric system operator (AESO) in Canada;

Pennsylvania-New Jersey-Maryland interconnection (PJM) and New York independent sys-

tem operator (NYISO) in the USA; and the National Electricity Market (NEM) in Australia,

enabling competitive trading in the electricity market (Maciejowska et al., 2021). The elec-

tricity market differs from other commodity markets because both the demand and supply

sides are more complex than in most markets. On the demand side, consumers have a

relatively inelastic demand, which follows time patterns. Therefore, the demand must be

carefully balanced in order to prevent blackouts or overloading of the network infrastruc-

ture. On the supply side, a combination of inflexible, flexible, intermittent, and potentially

continuous electricity generation facilities are used, leading to an increase in the complexity

of the energy supply (Lehna et al., 2022).

Furthermore, despite recent developments in storage, substantial quantities of electricity

cannot be stored at a reasonable price in contrast to other commodities, e.g., natural gas

and oil (Park et al., 2006). The lack of resources for storing electricity makes prices highly

sensitive to shocks in demand and supply (Ioannidis et al., 2021). Notably, some shocks

result from power plant outages and instability in the electricity generation of power plants.

Therefore, demand and supply shocks result in the phenomena of negative prices (Atănăsoae

et al., 2020) and extremely high prices, called spikes, which do not usually occur in other

commodity markets. For instance, although negative prices followed a decreasing trend in

North American electricity markets from 2016 to 2020, negative prices were still a sensible

percentage of the hourly price (Rafizadeh, 2022), as shown in Figure 1.
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Figure 1: Percentage of hours with negative prices in North American electricity markets

Nowadays, prediction and analysis based on historical data play a critical role in energy

decision-making. In electricity markets, data analyses help decision-makers tackle several

issues, including system reliability by predicting equipment failures and maintenance needs,

price forecasting by helping market participants in trades, demand forecasting by ensuring

that the generated electricity can meet the demand, and market monitoring by finding

market manipulations (vom Scheidt et al., 2020).

In terms of electricity price forecasting, it can help energy decision-makers balance supply

and demand throughout the day to control the sporadic collapse in prices, decrease the

occurrence of negative prices, and maintain the electric grid reliably (Benini et al., 2002). In

addition, from the supplier’s side, generators can benefit from the price forecast, illustrating

the price trend in subsequent hours, by optimizing their offering strategy (Pourdaryaei et al.,

2019). Concerning the demand side, the price projections help energy traders find lucrative

opportunities (Dagoumas et al., 2017). To be specific, some consumers, e.g., dispatchable

loads, in the market use the forecast to find the future price trend, playing a pivotal role in

their bidding strategy in the auction.

Regarding the electricity price forecast, there are two major reasons complicating it in

both the long and short terms (Yang and Schell, 2022b), elaborated in the following:
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Abbreviation
AESO Alberta electric system operator LR linear regression
ANN artificial neural network LSTM long short-term memory
AR autoregressive MAE mean absolute error
ARIMA autoregressive integrated moving average MCP market clearing prices
Att attention mechanism ML machine learning
CNN convolutional neural network MSE mean squared error
DL deep learning NEM National Electricity Market
DT decision tree NYISO New York independent system operator
EPF electricity price forecasting PCC Pearson correlation coefficient
GARCH generalized autoregressive conditional heteroskedasticity PJM Pennsylvania-New Jersey-Maryland Interconnection
GHG greenhouse gases ReLU rectified linear unit
GRU gated recurrent unit RF random forest
HO hyper-parameter optimization RNN recurrent neural network
HOEP hourly Ontario energy price SVR support vector regression
IESO independent electricity system operator VAR vector autoregression
KNN k-nearest neighbors XGB extreme gradient boosting
⋆ Comprehensive List of Abbreviations with their Full Forms in the Article

1. Uncertainty : Temporal variability in the electricity market causes uncertainty in prices.

The effective factors can be grouped into two categories: technical issues, e.g., grid

outages, and economic uncertainties, e.g., fluctuations in fuel prices (Ehsan and Yang,

2019).

2. Volatility : The volatility of prices is another major challenge in real-time price fore-

casting. As discussed before, price spikes and negative prices occur sporadically due to

the demand and supply shocks inherent in the electricity market, making the market

volatile. Furthermore, regarding renewable energies aiming at reducing greenhouse gas

(GHG) emissions (Liu et al., 2011), they affect supply offers and have a fundamental

effect on electricity price distribution (Mulder and Scholtens, 2013; Rintamäki et al.,

2017), including average and standard deviation throughout time. For example, as

shown in Figure 2, almost 33% of the electricity in the Ontario electricity market was

generated by renewable energy, and the trend of electricity generated by solar and wind

plants increases gradually, leading to more price volatility.
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(a) Percentage of each generators in 2021 (b) Generation trend of electricity by wind and solar

Figure 2: Renewable energy generation in Ontario electricity market

Regarding the aforementioned challenges in electricity price forecasting and the signifi-

cance of price forecasting for market participants, electricity price models are required for

the reliable operation of the power grid (Zarnikau et al., 2019). As the main contribution

of this work, we propose a novel Deep Learning (DL) model that can capture different price

patterns with its multiple streams, to forecast the electricity prices in the Ontario electricity

market and compare it with commonly used Machine Learning (ML) and statistical models.

Also, the effect of external variables, particularly renewable energies, as a driving force of

price volatility was considered in our research.

1.1. Background

1.1.1. Background in Ontario Electricity Market

There are two separate pricing mechanisms in deregulated electricity markets. The first,

known as the intra-day market, allows for the buying and selling of electricity on the same

trading day (Terlouw et al., 2019). The second mechanism, known as the day-ahead market,

establishes prices for next-day delivery through a day-ahead auction exchange (Lehna et al.,

2022). In terms of the Ontario electricity market, the electricity is traded through the intra-

day electricity market, and the real-time prices are determined by the following steps (IESO,

2014). Note that market participants in the Ontario electricity market are dispatchable and

non-dispatchable.
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First, dispatchable suppliers, including nuclear, large natural gas, hydroelectric, and

coal-fired facilities, and dispatchable consumers, e.g., some large consumers, send their offers

and bids to provide enough electricity to meet Ontario energy needs every five minutes.

Simultaneously, non-dispatchable suppliers, e.g., self-scheduling and intermittent generators,

and non-dispatchable consumers, e.g., local distribution companies (LDC), submit their

schedules for electricity generation and consumption at each time step, respectively, and

cannot submit any bids or offers in the market. The supplier’s offers indicate the amount

of electricity they can produce and at what price, whereas the consumer’s bids indicate the

amount of electricity they need and at what price. Afterwards, the offers are reviewed and

arranged in ascending order according to the prices obtained through the auction. Second,

non-dispatchable electricity, including the electricity generated by non-dispatchable suppliers

and consumed by non-dispatchable customers, is allocated at the beginning. Third, the bids

and offers are matched, starting with the lowest-cost options, until enough energy is secured

to meet the dispatchable consumer’s needs.

The process sets a new market clearing price (MCP) every five minutes. Thereafter,

an hourly Ontario energy price (HOEP) is computed by taking the weighted average of

the twelve MCPs that are established during each hour.1 HOEP is considered the target

variable for forecasting in our research because it depicts the price trend, which is useful for

dispatchable participants in their bidding and offering strategies. The IESO provides one-

hour, two-hour, and three-hour ahead price forecasts to help market participants optimize

their trading strategies.2 Hence, our study uses a forecasting horizon of three steps, which

aligns with the range of forecasts provided by the IESO.

Aside from the pricing mechanism in the Ontario market, there are two types of demand

in the market: market demand which is calculated by adding all output from registered

generators in the market and all scheduled imports to the province, and Ontario demand

1https://www.ieso.ca/power-data/price-overview/hourly-ontario-energy-price
2http://reports.ieso.ca/public/PriceHOEPPredispOR/
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which is calculated by subtracting scheduled exports from market demand.3

1.1.2. Background in Forecasting Models

In this section, a brief description of the base forecasting models used in the electricity

market is presented.

AutoRegressive (AR): In time-series forecasting, an AR method is a prevalent tech-

nique that models the variable by a linear formulation of the historical values of the variable.

The basic idea behind this method is that there is a pattern in the data that can be captured

using a set of parameters that can be used to forecast future values (De Alba, 1993). The

basic equation for an AR model is represented as:

yt = c+ ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p + ϵt (1)

where yt represents the price at time t, c represents a constant, ϕ1, ϕ2, · · · , ϕp are co-

efficients, and ϵt represents white noise term. The p is referred to as the order of the AR

model. Note that the AR coefficients are generally computed using the least squares tech-

nique, which minimizes the sum of the squared differences between the real and forecasted

values.

AutoRegressive Integrated Moving Average (ARIMA): An ARIMA method is

another statistical model commonly used for forecasting time series data. It builds upon the

principles of both the AR and moving average (MA) methods, integrating them to produce

a more effective forecasting tool. The fundamental concept behind ARIMA is to model the

differences between consecutive values in a time series instead of the actual values. This is

referred to as the integrated part of the model, and it helps to make the time series stationary

(Zhang, 2003). The AR and MA components of the model are employed to identify patterns

in differences. The basic equation for an ARIMA model is represented as:

y′t = c+ ϕ1y
′
t−1 + ϕ2y

′
t−2 + ...+ ϕpy

′
t−p + θ1ϵt−1 + θ2ϵt−2 + · · ·+ θqϵt−q + ϵt (2)

3https://www.ieso.ca/en/Power-Data/Demand-Overview/Real-time-Demand-Reports
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where y′t represents the differenced value at time t, c represents a constant, ϕ1, ϕ2, · · · , ϕp

are coefficients of the AR part, θ1, θ2, · · · , θq are the moving average coefficients, and ϵt

represents a white noise term. The values of p, d, and q are referred to as the order of the

ARIMA model, where p, d, and q represent the order of the AR part, integrated component,

and the MA component, respectively. Specifically, p represents the number of past time

steps that are used as predictors in the model, d represents the number of times the data

has been differenced to make it stationary, and q represents the number of lagged forecast

errors that are used as predictors in the model

Vector AutoRegressive (VAR): Another statistical model, called a VAR model, is

an improvement of the univariate AR that can be used to model multiple related time series.

The fundamental principle of a VAR model is that each time series is expressed as a linear

combination of the historical values of all other time series in the model. This allows the

model to learn the interdependencies between several time series (Canova, 1999). The basic

equation for an AR model is represented as:

yt = A1yt−1 + A2yt−2 + · · ·+ Apyt−p + et, (3)

where yt is a vector of current values for all time series, A1, A2, ..., Ap represent the VAR

coefficients and et is a vector of error terms. Similar to the AR model, the number of lags (p),

which defines how far back in past values the model will consider, needs to be determined.

Linear Regression (LR): An LR assesses the impact of independent variables on a

dependent variable. The ordinary least squares method is employed to estimate the rela-

tionship between variables.

y = β0 + β1X1 + β2X2 + · · ·+ βnXn + ϵt (4)

where y is the forecasted price, X1, X2, · · · , Xn are independent variables, β1, β2, · · · , βn

are the estimated coefficients of LR, and ϵt is an error term.

The ordinary Least Squares (OLS) method is typically utilized to determine the optimal

coefficient values. The OLS method minimizes the sum of squared differences between actual

7



and predicted values of the dependent variable.

Support Vector Regression (SVR): An SVR is a variation of the Support Vec-

tor Machine (SVM) algorithm, which is typically utilized for solving classification problems.

SVR works by determining the optimum decision function (regression line or curve) to suit

the provided data points while balancing model complexity and error tolerance. The funda-

mental concept is to establish a margin around the decision function, such that most of the

data points fall inside this margin (Smola and Schölkopf, 2004). The objective is to decrease

the model complexity by maximizing the margin width while penalizing data points that are

outside the margin.

K-Nearest Neighborhood (KNN): A KNN algorithm is a non-parametric ML model

that can be applied to the task of regression. The concept of prediction is based on the KNN,

which first finds the K-nearest data points within the feature space using a distance metric

such as Euclidean distance and then averages the target variable values (Cover, 1968). The

number of nearest neighbors (K) is an important hyperparameter that should be defined first.

The value of K greatly influences the forecasting result. A larger K leads to a smoother,

more generalized forecast, whereas a smaller K produces a more complex forecast that is

sensitive to outliers. Aside from the high interpretability and simplicity of the KNN model,

it can be affected by the curse of dimensionality, and the performance of KNN algorithms

decreases as the number of feature variables increases (Marimont and Shapiro, 1979).

Decision Tree (DT): A DT is a technique that can be applied to both regression and

classification problems. The data is divided into smaller subgroups in the DT based on the

values of the input features. It should be noted that the process of creating a decision tree

entails identifying the optimal feature and threshold for splitting the data at each node.

Data splitting starts at the root node and progresses via a branched tree to a leaf node that

represents the forecasts or the final outcomes (Quinlan, 1996).

Random Forest (RF): Similar to DT, an RF algorithm is a model that is utilized

for both classification and regression problems. The RF is based on an ensemble method

8



that utilizes multiple decision trees to make predictions (Abellán et al., 2017). In other

words, RF comprises a set of DTs, each of which is trained on a randomly selected bunch

of the data. Finally, each tree in the RF algorithm generates a prediction, and the final

prediction is calculated by taking the average of the predictions generated by decision trees.

The utilization of predictions from multiple trees helps mitigate the overfitting problem

commonly encountered in the DT model (Li et al., 2018).

Artificial Neural Network (ANN): An ANN, called a Neural Network (NN) alter-

natively, is an ML model that seeks to replicate the structure of the human brain. The model

is designed to process and transmit information and is composed of layers of interconnected

neurons (Divina et al., 2019). Each neuron within the model receives input from other neu-

rons. Then, it performs a mathematical calculation on that input. Finally, it transmits the

output to other neurons within the next layer. This process continues until the final output

is generated. Note that the final output is dependent on the activation function utilized

within each neuron, which can capture non-linearity.

One of the common types of ANN is the feedforward neural network, in which the flow

of information from the input layer to the output layer is unidirectional with no feedback

loops (Gardner and Dorling, 1998). Feedforward neural networks comprise several layers of

artificial neurons, called hidden layers, as shown in Figure 3. Similar to the ANN architecture,

the input is fed to several layers of neurons, called hidden layers, before reaching the output

layer. These layers process the input data by applying a set of learned parameters, including

weights and biases. The weights and biases are learned during the training process by

minimizing a loss function between the forecasted value and the actual one.

Recurrent Neural Networks (RNN): An RNN is a type of ANN that is designed

to process sequential data. It is called recurrent because it utilizes sequential information

by incorporating the data and hidden state from the previous time step in its processing

(Sutskever et al., 2011). As shown in Figure 4, RNNs consist of a series of interconnected

units, which are organized into layers. Each unit receives input from the data at the current

9



Figure 3: Architecture of an ANN network with two hidden layers (Gardner and Dorling, 1998)
I = [i1, i2, i3] is an input vector and O = [O1, O2] is an output vector

time step and the hidden state at the previous time step (Xia et al., 2018) and generates an

output and a new hidden state. The hidden state represents past information that the RNN

has processed and functions as a type of memory within the network. As seen in Figure 5,

the process of generation of the hidden state and the output at each time step is as follows:

ht = tanh(Wh [ht−1, xt] + bh) (5)

yt = tanh(Wyht + by) (6)

where xt is the input data at time t; Wh and Wy are the weight matrices for the hidden

state and the output, bh and by are the bias terms for the hidden state and the output; ht is

the hidden state at time t; and tanh is the hyperbolic tangent activation function.

A Long Short-Term Memory (LSTM) network is a specific type of RNN that can learn

long-term dependencies, proposed by Hochreiter and Schmidhuber (1997). One key difference

between LSTMs and traditional RNNs is the inclusion of gates within LSTMs to control the

flow of information, as shown in Figure 6. An LSTM network has three gates: an input gate,

an output gate, and a forget gate. The input gate controls the flow of data into the cell,

10



Figure 4: A sequence of RNNs
(Source: https://www.javatpoint.com/training-of-rnn-in-tensorflow/)

Figure 5: Architecture of an RNN
(Source: http://dprogrammer.org/rnn-lstm-gru/)

11

https://www.javatpoint.com/training-of-rnn-in-tensorflow/
http://dprogrammer.org/rnn-lstm-gru/


the output gate regulates the flow of data out of the cell and back into the network, and

the forget gate manages the flow of data from the previous state of the cell into the current

state (Salman et al., 2018). Gates are neural networks that control the flow of information

through a sequential chain. In other words, these gates allow LSTMs to selectively retain or

discard information, which helps to avoid the vanishing gradient problem that can occur in

the vanilla RNN (Le et al., 2015). Thus, LSTMs are more effective at handling long-term

dependencies than traditional RNNs, but they also require more computational resources

and can be more challenging to train.

A gated recurrent unit (GRU) was proposed by Chung et al. (2014) to reduce the compu-

tational complexity. Similar to the LSTM, it addresses the issue of the vanishing gradient,

which arises when gradient propagation fails in long-term dependencies. However, the GRU

has fewer parameters compared to the LSTM. In the GRU architecture, two gates including

a reset gate and an update gate, as illustrated in Figure 7, are utilized for information trans-

fer, in contrast to the LSTM architecture that uses three gates (Hossain et al., 2021b). Thus,

the GRU needs fewer trainable parameters, resulting in training the model in a shorter time

period in comparison to LSTM (Elsayed et al., 2018). Eqs. 7 and 8 represent the mathe-

matical formulation of update and reset gates. The reset gate in a GRU determines which

information from the previous time step to keep and which to discard, while the update gate

determines what information to store in the current time step. The final output and hidden

state of a GRU at time t are obtained by combining the output of the reset and update

gates with the input data and hidden state from the previous time step, expressed in Eqs.

9 and 10. In the formulations, the hidden state at time t is based on the previous hidden

state and the candidate hidden state, where the contribution of the candidate hidden state

is controlled by the update gate. The candidate hidden state is derived by combining the

previous hidden state, which is weighted by the reset gate, and the input data.

zt = σ(Wz · [ht−1, xt] + bz) (7)

12



Figure 6: Architecture of LSTM network
(Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Figure 7: Architecture of GRU network (Hossain et al., 2021b)
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Figure 8: The architecture of the CNN network (Zhao et al., 2019)

rt = σ(Wr · [ht−1, xt] + br) (8)

ĥt = tanh(W · [rt · ht−1, xt] + b) (9)

ht = (1− zt) · ht−1 + zt · ĥt (10)

where rt is the reset gate at time t; zt is the update gate at time t; ht is the hidden state

at time t; xt is the input data at time t; Wr and Wz are the weight matrices for the reset

and update gates; br, bz and b are the bias vectors for the reset and update gates; ĥt is the

candidate hidden state at time t; and σ is the sigmoid and tanh is the hyperbolic tangent

activation function.

Convolutional Neural Network (CNN): A CNN is typically designed for grid data

to identify all local relations that are invariant among different dimensions (LeCun et al.,

1998). CNN can also be applied to one-dimensional data, e.g., time-series data. In the

context of a time-series study, a one-dimensional CNN can be employed to extract important

features of non-linear relationships in electricity prices. A typical CNN consists of convolution

layers, pooling layers, and fully connected layers, and it is capable of identifying complex

patterns in data (Hossain et al., 2021b). The structure of a typical CNN is illustrated in

Figure 8.

The convolution layer, which is the first step in the process, receives the input data

from the data stream and applies its kernel function to extract features from the input

data, by sliding a kernel (filter) over it, as illustrated in Figure 9. Mathematically speaking,

the convolution layer employs a mathematical convolution operator, rather than matrix

multiplication (Hossain et al., 2021a). The convolution operation is defined as follows:

14



Figure 9: The illustration of a kernel operation (Baldominos et al., 2018)

cli = f

(
n∑

i=1

xi ∗ wl
i + bj

)
(11)

where cli is the ith element of lth feature graph in the convolution layer determined by

convolution operation, xi the ith element of the input graph, wl
i the ith element of lth convo-

lution kernel, bj a bias, ∗ convolution operation and f an activation function, e.g., rectified

linear unit (ReLU), as the highly used activation function in the CNN structure because it

can significantly accelerate the training process and improve the model performance. The

ReLU activation function is defined as f(x) = max(0, x), which means that the output of

the ReLU function is the maximum value between 0 or the input value x (Agarap, 2018).

In the second step, pooling layers are another key component of convolutional neural

networks. They reduce the spatial dimensions of the feature maps produced by convolution

layers through a process called down-sampling. This enhances the efficiency of the CNN by

decreasing the computational requirements of subsequent layers and helps prevent overfitting

by requiring the model to utilize more general and abstract features instead of highly specific

ones that may only be present in the training data. Two commonly used types of pooling are

max pooling and average pooling.4 In max pooling, the maximum value within a small spatial

window is selected and the remaining values are discarded, resulting in a lower-resolution

output with increased contrast. In contrast, average pooling calculates the average of all

values within a small spatial window, leading to a lower resolution output with decreased

contrast. The distinction between max and average pooling is illustrated in Figure 10 with

an example. In summary, the use of pooling layers in a CNN enables the preservation of

4https://medium.com/@sdoshi579/convolutional-neural-network-learn-and-apply-3dac9acfe2b6/
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Figure 10: Comparison between the average and max pooling layers
(Assume the 1D pooling size is 2, the stride is 1, and padding is not considered)

spatial information in the input data while simultaneously decreasing dimensionality and

computational demands (Szegedy et al., 2015). In the final step, the fully connected layer is

employed to convert the output of pooling to the desired output size.

1.2. Literature Review

The literature on the subject of electricity price analysis is commonly classified into five

areas: multi-agent models, fundamental methods, reduced-form models, statistical models,

and ML and DL methods (Weron, 2014).

Multi-agent models typically focus on qualitative outcomes rather than quantitative ones.

The Nash-Cournot framework (Borenstein et al., 1999), the supply function equilibrium

(Baldick et al., 2004), strategic production-cost models (Batlle and Barqúın, 2005), and

agent-based simulation models (Guerci et al., 2010) are among the main sub-models within

the multi-agent models category. These models, which are based on game theory, can pro-

vide insight into whether prices will exceed marginal costs and how this may impact the

players’ outcomes. However, they may encounter difficulties when more precise quantitative

conclusions are required, such as when power price forecasts need to be made with a high

degree of accuracy, stated in Weron (2014).

The fundamental method takes into account physical and economic factors that have an

effect on electricity prices, e.g., demand and supply and weather conditions, and models their

impact on prices based on mathematical equations. Two types of fundamental models are

parameter-rich model (Johnsen, 2001) and parsimonious structural models (Eydeland and

Wolyniec, 2002). The primary benefit of the method discussed in Weron (2014) is its high
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interpretability. However, it is important to note that there are two significant challenges

that may arise from this method. Firstly, these models are primarily designed for medium-

term forecasting rather than short-term forecasting. Secondly, the models perform optimally

under specific physical and economic conditions.

Reduced-form models, as discussed in Weron (2014), offer a simplified and salient rep-

resentation of key features of daily electricity prices, i.e., marginal distributions and price

fluctuations. These models can be broadly categorized into two main areas: Jump-diffusion

models, as outlined in Albanese et al. (2012), and Markov regime-switching models, as dis-

cussed in Janczura and Weron (2010). Like fundamental models, these models are not

intended for forecasting short-term prices and are more suitable for medium-term forecast-

ing.

Statistical and ML models have captured researchers’ attention in recent years because

they are able to make short-term forecasts. Moreover, statistical and ML models have

been replaced with fundamental, reduced-form, and multi-agent models in recent research.

According to Weron (2014), a significant proportion of publications in the field of EPF utilize

either time series models or neural network models because statistical and machine learning

methods have been demonstrated to produce the most favorable results.

Specifically for the class of time series and ML models, the class can be categorized

into univariate and multivariate forecasting settings. According to Gürtler and Paulsen

(2017), in the context of statistical time-series modelling, the most widely employed models

in a univariate setting are the AR, the Auto-Regressive Moving Average (ARMA), and the

ARIMA model. An ARMA is the ARIMA model without the integrated part, and it models

the actual values rather than differences. Also, as seen in numerous pieces of electricity

price forecasting research, AR and ARIMA were employed as baseline models in the model

comparison (Xie et al., 2013; Weron and Misiorek, 2008; Peng et al., 2018). Along with

considering univariate time-series models in various electricity markets, e.g., AR in Lebanon

(Saab et al., 2001), ARMA in New England (Liu and Shi, 2013) and in Australian and PJM
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markets (Yang et al., 2017), and ARIMA in Spanish and Californian markets (Contreras

et al., 2003; Zhou et al., 2004), the ARIMA model was used in the Ontario electricity market

either on its own (Zareipour, 2012) or hybridized with other models (Conejo et al., 2005).

Regarding time-series models in the multivariate setting, the univariate time-series mod-

els were developed, and exogenous variables were incorporated into the models to improve

the forecasting result. Among them, the vector autoregressive model (VAR) captured the

EPF researcher’s attention, e.g., Haldrup et al. (2010) in the Nord Pool grid, Ziel and Weron

(2018) in European electricity markets, and Paschen (2016) in the German electricity mar-

ket, showing the superiority of the VAR model compared with AR.

A limitation of statistical models is that they tend to be linear forecasters and they may

not perform well with high-frequency data, i.e., hourly electricity price data with fluctuations

(Lago et al., 2018). Statistical models tend to perform well when data frequency is low, i.e.,

monthly and weekly data. However, when the data frequency is high, e.g., hourly prices,

the complexity of nonlinear behavior becomes difficult to predict (Amjady and Hemmati,

2006). To predict the nonlinear relationship of price data, various ML models have been

proposed. For example, KNN, DT, RF, SVR, and ANN are widely used for electricity

price forecasting. In terms of the application of DT in EPF, Fragkioudaki et al. (2015)

concluded that the DT model captured price spikes and predicted day-ahead electricity

prices in European electricity markets. RF, known as an ensemble DT, was compared with

the ARMA model by Mei et al. (2014) in the NYISO and RF improved error metrics.

Additionally, Sansom et al. (2003) found that the SVR model requires less time to train

than ANN and performs a more accurate forecast in the New South Wales market. Also,

in the Ontario electricity market, the study conducted by Intan Azmira et al. (2020) found

that a developed SVM model called the least square support vector machine (LSSVM)

outperformed ANN, DT, and ARIMA models. On the other hand, by increasing the number

of hidden layers of ANN, electricity price forecasting can be drastically improved compared

with SVM, ARIMA, and VAR (Panapakidis and Dagoumas, 2016). The same result was
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obtained in Pourdaryaei et al. (2019), representing the superiority of ANN compared to

SVM in the Ontario market. They also enhanced the model performance using optimization

techniques for hyperparameter tuning. To deal with the problem of time series forecasting,

some structures of ANN models were extended and tailored for time series forecasting to

capture patterns by considering data as a sequence.

DL models have been shown to be highly effective in addressing sequence modelling

problems, e.g., computer vision, audio signal processing, and natural language processing

(Zhang et al., 2019). DL model is an ANN model, consisting of multiple recurrent layers

of neurons capable of learning sequential data. While data is considered in a sequence in

which one data point is reliant on the previous data point, the structure of ANN should

be modified to learn the dependencies between data points. For modelling sequential data,

RNN is the most widely used method. RNNs utilize the concept of memory to store the

information from previous inputs, which is then used to generate the next output of the

sequence (Schuster and Paliwal, 1997).

Although the RNN model outperforms ARIMA for modelling unstable sequences with

large volatility (Jetcheva et al., 2014), gradient vanishing and explosion problems can easily

occur because it employs recursion to extract the information from a sequence and it forgets

the information as the sequence length increases (Pascanu et al., 2013). To cope with the

issue of missing important information in long sequences, GRU and LSTM were proposed

(Chung et al., 2014; Hochreiter and Schmidhuber, 1997). Hence, these models can help solve

the gradient vanishing and explosion problems of standard RNNs. In the comparison between

GRU and LSTM models, GRU converges faster because of a lower number of parameters,

but both tend to reach the same level of accuracy (Rahman et al., 2018; Wang et al., 2021).

RNN-based models, including RNN, LSTM, and GRU, are widely used in electricity price

forecasting. In a comparison between GRU and LSTM for a day-ahead electricity forecast

in the Turkish market, it was found that GRU slightly reduced the error compared to LSTM

(Ugurlu et al., 2018). Also, in the European electricity market, the GRU model outperformed
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the LSTM (Lago et al., 2018). However, LSTM hybridized with an attention mechanism

outperformed GRUs in the Danish market (Meng et al., 2022). Additionally, both LSTM

and GRU provide better results compared with SL and ML time series models (Lago et al.,

2018; Peng et al., 2018).

CNN offers an alternative to RNN-based models for modelling sequential data. CNN

extracts features through a pair of convolution and pooling operations (Sezer et al., 2020).

CNN is widely utilized for feature extraction in recent price and load forecasting research in

electricity markets, combined with other methods. Notably, employing only a convolutional

layer may not improve the efficacy of a model or outperform RNN-based models (Ugurlu

et al., 2018; Son, 2021) but it is faster at converging. However, building the complex model

structure based on CNN layers by stacking them and using dilated convolutional layers can

enhance the forecasting result in the Ontario market (Deng et al., 2021).

Additionally, hybrid models are becoming increasingly prevalent. Among these hybrid

models, architectures that incorporate both CNN and RNN models are particularly popular.

CNN layers extract spatial features, while RNN layers extract temporal features from input

data; thus, the hybrid model can capture both temporal and spatial patterns in sequences

(Chung et al., 2022). There are two ways for the hybridization of CNN-based and RNN-based

models, including serial and parallel. In a serial way, the CNN layers capture the price data

at the beginning, then the CNN output is flattened to be input into the RNN model (Chung

et al., 2022). The price is subsequently forecasted through fully connected dense layers.

Most of the serial hybridization models were implemented in forecasting electricity load, e.g.,

CNN-LSTM (Guo et al., 2020; Rick and Berton, 2022), CNN-Bi LSTM (Khan et al., 2021),

and only one study, based on CNN-GRU, proposed the method for the EPF problem. The

serial hybridization of CNN and GRU layers in Yang and Schell (2022a) demonstrated the

improvement in forecasting volatile price spikes in the New York electricity market compared

to ARIMA, LR, CNN, and GRU.

A demerit of serial hybridization is that the extracted features from the structure of con-
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volutional layers may affect the training of RNN layers. Then, the extraction of temporal

features from spatial patterns may not be implemented properly. To solve the training prob-

lem, the parallel hybridization of the aforementioned models was proposed by Farsi et al.,

2021 in electricity load forecasting. Although most of the research was carried out in elec-

tricity load forecasting (Li et al., 2022a; Chung et al., 2022), Lehna et al., 2022 employed the

parallel CNN-LSTM model in EPF and proposed Naive-CNN-LSTM by averaging the result

of CNN-LSTM and the naive results. The result showed a stark improvement compared

with LSTM, VAR, and ARIMA in the German market.

Along with various forecasting models, two critical factors, including exogenous variables

and target electricity markets, affect the forecasting result and make the comparison between

studies complicated. Considering various electricity markets, prominent markets in the USA,

e.g., New York, California, and New Jersey; Canada, e.g., Ontario and Alberta; and Europe,

e.g., Spain, Germany, Nord Pool, and the UK, considered various pricing methodologies

based on their national regulations (Gürtler and Paulsen, 2017). In terms of independent

variables, together with the price of electricity, electricity demand, equal to electricity load, is

the highly chosen variable in the literature (Gürtler and Paulsen, 2017). Other independent

variables used in the EPF problem include the import and export of electricity (Fragkioudaki

et al., 2015; Paschen, 2016), weather data, e.g., temperature, humidity, and precipitation

(Lehna et al., 2022; Yang and Schell, 2022a; Haldrup et al., 2010), and calendrical data,

e.g., hour, day, month, and season (Haldrup et al., 2010; Panapakidis and Dagoumas, 2016).

Due to recent expansions of renewable energies, the impact of renewable energy sources

on electricity prices was examined by considering the generation data from each type of

electricity producer (Meng et al., 2022; Fragkioudaki et al., 2015). However, considering

all variables in the EPF problem does not always improve the forecasting power, and it

may reduce the performance of the model (Rodriguez and Anders, 2004), leading to only

considering previous prices and proposing univariate forecasting models (Peng et al., 2018).
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1.3. Contribution

Through the recent advancements in predictive models for the EPF problem, we tackle

the EPF problem by providing a comprehensive analysis of time-series forecasting models,

including statistical, ML, and DL models. As mentioned in the literature, DL models offer an

acceptable result for forecasting problems in the electricity market. Now, the first research

question is: Does ensembling DL models improve price forecasting in the Ontario electricity

market, compared to basic DL, ML, and statistical models? To deal with the problem,

a tri-head parallel CNN-GRU (TriConvGRU-TCG) with various input time-series data is

proposed. The raw data is input into the model concurrently through three streams. The

first stream processes the raw data directly using a parallel CNN-GRU, while the other two

streams first apply average pooling layers to downsample the input data. Therefore, each

stream, consisting of a parallel CNN-GRU, receives input data with different frequencies.

Also, the second research question is whether incorporating independent variables into our

model is effective on the forecasting power or not. To answer the question, all baseline models

as well as the proposed model are assessed in two settings: multivariate and univariate

settings. The contributions of this paper can be summarized as follows:

1. The TriConvGRU (TCG) model is proposed to forecast short-term electricity prices

in Ontario electricity market. The proposed model uses the structure of both parallel

and consecutive hybrid models, based on CNN and GRU.

2. To verify the effectiveness of the proposed model, it is compared with statistical models,

including AR, ARIMA, and VAR, ML models, including LR, SVR, KNN, and DT, and

DL models, including CNN, LSTM, GRU, Parallel CNN-GRU, and consecutive CNN-

GRU. Note that our study assesses the efficiency of baseline models in the Ontario

electricity market, used to forecast electricity markets, along with our proposed model.

The performance of various models was evaluated by calculating Root Mean Squared

Error (RMSE) and Mean Absolute Error (MAE) metrics. The results show that the

forecasting performance of the proposed model for electricity price forecasting tasks is
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greatly improved.

3. Aside from the models mentioned before, the result of the proposed model is compared

with the forecasted prices provided by IESO. The comparative result illustrates that

the model can easily outperform multi-step ahead projections of the IESO company.

4. In our study, the proposed model as well as other forecasting models are evaluated in

univariate and multivariate settings. Exogenous variables, including demand, import

and export, generation, and meteorological data, are gathered with electricity prices

for comparison. The final comparisons demonstrate the superiority of the univariate

setting over the multivariable condition, particularly for the proposed model.

The remainder of the paper is structured as follows. Section 2 introduces mathematical

notations and describes the proposed model, along with the datasets used. Section 3 assesses

the capability of our model to forecast the IESO electricity market price and compares the

model with baseline models. Finally, Section 4 summarizes the results and explains potential

ways for future research.
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2. Methodology

This section presents the dataset and its descriptive statistics, followed by an explanation

of the preprocessing steps. Next, the proposed forecasting model is explained and visualized.

Lastly, the optimal parameters for the model are determined, and the evaluation metrics used

in the study are outlined.

2.1. Dataset

In this analysis, we choose the hourly Ontario electricity price as our target variable,

considering the hourly price series from 1st of January 2021 to 31st of June 2022 for analysis

purposes, as shown in Figure 11. It is important to note that the market operates 24 hours

a day and 7 days a week, which contributes to the continuous nature of the data. The

principle objective of this work is to forecast one-hour, two-hour, and three-hour ahead

electricity prices for three separate weeks in 2022, considering the hourly price from the

previous year (2021). Note that in our research, the word ’step’ is used interchangeably with

the word ’hour’. For this purpose, the training, validation, and test set data are required to

make the model effectively workable. Therefore, three weeks in the first six months of 2022

were selected randomly as the test set required to assess the model in time periods. In order

to find the optimal values for hyperparameters and avoid overfitting problems in training

our models, the last 20% of the dataset, corresponding to 2021, is allocated to the validation

set. The different forms of datasets with statistical analysis for the target variable and how

they are used in the forecasting process are shown in Table 2.

In addition to the hourly Ontario electricity price (HOEP), several exogenous variables

were selected to determine whether these variables enhance the forecasting performance or

not. The summary of variables is in Table 3. In terms of independent variables, the electricity

demand, the import and export of electricity, weather data, as well as generation data,

were taken into account after reviewing studies in the literature. To consider the electricity

demand, we decided to include the market demand and Ontario electricity demand variables.
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Table 2: Statistical analysis of electricity prices in the datasets

Summary of Statistical Analysis of Electricity Prices
Data set Time Period Mean Min Max Std Count
Train set Jan 1st 2021 - Oct 20th 2021 24.34 -3.94 1660.80 33.27 7066

Validation set Oct 21st 2021 - Dec 31st 2021 35.78 -0.11 190.88 17.76 1766
Test set-week 1 Jan 27th 2022 - Feb 2nd 2022 42.48 0 73.84 16.81 168
Test set-week 2 Feb 28th 2022 - Mar 7th 2022 34.20 0 68.11 17.24 168
Test set-week 3 May 12th 2022 - May 19th 2022 52.49 0 108.29 28.49 168

⋆ Note: The unit of prices are $/MWh

Table 3: Statistical analysis of variables

Summary of Statistical Analysis of Variables
Type Features Mean Std Min Max Source
Price Electricity price ($/MWh) 29.53 31.90 -4.43 1660.8 IESO data directory 5

Meteorological
Dew point (°C) 1.47 11.21 -29.85 23.1

Canada Weather Stats 6Temperature (°C) 7.32 11.79 -23.8 32.7
Relative humidity (%) 69.34 17.10 16.5 100

Demand /
Import and Export

Ontario demand (MW) 15408.49 2294.69 10426 22906
IESO data directory 5

Market demand (MW) 15479.86 2294.15 10595 22909

Generation

Nuclear (MW) 9328.30 884.88 5893 10864

IESO data directory 5

Gas (MW) 1500.79 1465.68 68 7107
Hydro (MW) 4024.39 775.24 2269 6345
Wind (MW) 1482.92 1113.05 6 4586
Solar (MW) 79.76 117.95 0 433
Biofuel (MW) 35.38 33.35 0 233

Note that the effect of exported amounts of electricity is considered in the Ontario demand

and the imported amount is considered in the market demand, as explained in Section 1.1.1.

As the second group of variables, the effect of various kinds of electricity generators on price,

including hydroelectric, nuclear, bio-fuel, solar, wind, and gas producers, was considered

based on the amount of electricity produced by each plant. By including the variables, the

direct impact of renewable electricity production on the hourly price data is considered in

our study. Aside from the demand and generation data, the previous price of electricity is

included in the variables to better capture the trends. All data corresponding to electricity

demand, price, and generation are gathered from the IESO data directory.5 Finally, in the

case of meteorological data, the dew point, temperature, and relative humidity are gathered

from Canada Weather Stats.6

5https://www.ieso.ca/en/Power-Data/Data-Directory
6https://www.weatherstats.ca/
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Figure 11: Hourly electricity price over time in Ontario Province from January 2021 until June 2022

2.2. Data Preprocessing

The first data preprocessing step in our study is to find the most relevant and important

variables from the dataset, described in Section 2.1, for the reduction of the modelling

complexity of time-series forecasting. Therefore, the complexity of our problem can be

reduced by employing feature selection techniques. The Pearson correlation coefficient (PCC)

is a classical method for measuring the linear correlation between two variables (Niu et al.,

2022). The value of PCC ranges from +1 to −1, with a greater absolute value indicating a

stronger correlation. The correlation between variables X and Y is represented as PCCX,Y

and calculated as follows:

ρX,Y =
cov(X, Y )

σXσY

=
E [(X − µX)(Y − µY )]√

DX

√
DY

(12)

where cov(X, Y ) is the covariance of the variables X and Y ; σX and σY are the standard

deviations of X and Y . The mean of X and Y are represented by µX and µY , and the

variances of X and Y are represented by DX and DY , respectively.
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Table 4: Interpretation of a size of the PCC (Mukaka, 2012)

Correlation size Explanation
0.9 – 1 or -0.9 – -1 Very strong positive/negative correlation
0.7 – 0.9 or -0.7 – -0.9 Strong positive/negative correlation
0.5 – 0.7 or -0.5 – -0.7 Moderate positive/negative correlation
0.3 – 0.5 or -0.3 – -0.5 Weak positive/negative correlation
0 – 0.3 or 0 – -0.3 Very weak positive/negative

The strength of the PCC correlation can be classified into different tiers, from very

weak to very strong (Mukaka, 2012; Akoglu, 2018), as shown in Table 4. As observed in

Figure 12, the PCC calculation result reveals that the correlation between the electricity

price and features is not significantly strong because all variables are less than 0.5, which

is the threshold for a strong correlation. However, in this study, variables with correlations

greater than 0.2 are considered features in our analysis because boundaries are not strict

and may vary a bit, involving Ontario demand, market demand, Hydro, Gas, and pricet−1.

Moreover, the meteorological data, as well as Nuclear, Solar, and Biofuel are eliminated

because they have a very weak correlation with the target variable. Therefore, our study

considered both multivariate and univariate forecasting to determine whether incorporating

variables improved the forecasts or not.

In the second step, to handle inputs of varying magnitudes and dimensions, the data

must be normalized. The normalization in our study was conducted column-wise, which

means that data per each feature is normalized. The input data was normalized using Eq.

13:

xk
n =

xk
o − xk

min

xk
max − xk

min

(13)

where xk
n represents the normalized data in kth feature, xk

o represents the original datum

in kth feature, xk
max represents the maximum datum in kth feature, and xk

min represents the

minimum datum in kth feature.

In the next step, to process time series using DL models, it is necessary to create time

windows during the preprocessing stage (Hossain et al., 2021b). Figure 13 illustrates how
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Figure 12: PCC between the Ontario electricity price and different features

the sliding window approach is then employed to construct the inputs and outputs of the

DL models. In this approach, the window size is represented by W , the forecasting horizon

is represented by H, the input sequence is represented by X, and the output data at each

time step is represented by y. The time-series data is partitioned into windows of size W ,

with each window serving as input and the data within the forecasting horizon serving as

output. The time-series data is divided into chunks of size W , with each chunk serving as

input and the data within the forecasting horizon serving as output. The window is then

advanced by one step and the process is repeated to generate time sequences for each time

step.

As it is shown in Figure 14a, the way for building time sequences/windows for univariate

time-series forecasting is presented. Each time window includes data corresponding to the

previous T time periods for predicting the desired horizon, considered the next three hours

in our study. In other words, the model uses price data from time zero to time T to indicate
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Figure 13: The sliding window approach for data preparation (Hossain et al., 2021b)

the electricity price for time T +1, T +2, and T +3. On the other hand, the sequencing for

multivariate time-series forecasting is quite different due to exogenous variables, as shown

in Figure 14b. In the multivariate problem, the other four variables along with the previous

price data are incorporated for the input, and the output remains untouched.

2.3. Proposed Model

The proposed model is inspired by the ensemble of RNNs and CNNs models mentioned in

Section 1.1.2 which are designed to solve the EPF problem. The proposed model comprises

two major parts, as depicted in Figure 15:

• A convolution section, including 1D CNN layers with 1D kernels, 1D pooling layers,

and the ReLU activation function which are illustrated in orange, red, yellow, and

green, respectively, to extract important spatial features from the input price data

• A recurrent section with GRU units, situated after the convolution section, to encode

the sequence and extract the temporal features which are illustrated in purple

In the first step, the preprocessed data is entered into each stream of the model concur-

rently. In the first stream (T ), the raw data is modelled directly by a CNN but in the other

two streams (T
4
and T

8
), the input data (P) are first downsampled by average pooling layers
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(a) Time sequencing for the univariate problem

(b) Time sequencing for the multivariate problem

Figure 14: The illustration of time sequences

with different kernel/filter sizes of 4 and 8, resulting into generating two input series (P ′

and P ′′). The pooling process is depicted in Figure 10. Thus, three sets of input sequential

data of various lengths are generated, as described in Eqs 14a – 14c. This method allows the

convolution layer to have multiple frequencies of price patterns during the learning process.

P = {p1, p2, p3, · · · , pT} (14a)

P ′ =
{
p′1, p

′
2, p

′
3, · · · , p′T/4

}
=

{
p1 + p2 + p3 + p4

4
, · · ·

}
(14b)

P ′′ =
{
p′′1, p

′′
2, p

′′
3, · · · , p′′T/8

}
=

{
p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8

8
, · · ·

}
(14c)

where P , P ′, and P ′′ are downsampled input sequences and P ∈ RT×v; R donates all

time-series input sequences generated in the preprocessing phase; T refers to the initial

input sequence length; and v refers to the number of variables used in the sequence. After
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Figure 15: Illustration of the proposed model architecture
P shows the raw price data. First, we downsample the raw price data to generate P ′ and P ′′ as inputs for
the second and third streams. The downsampled data, along with raw data, are fed into the convolution
part. Outputs of convolution parts (C, C ′, and C ′′) are then entered into the recurrent part. Afterwards,
the results of the three recurrent parts (h, h′, and h′′) are concatenated. Finally, the concatenated result
passes through the fully connected layer and the output (O) is obtained.
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downsampling, three data streams are fed into convolution layers with the ReLU activation

function. To reduce the number of parameters for the convolution section, a downsampling

technique is employed to preprocess the input data rather than using a convolution with a

wider receptive field and stride. Following Eq 11, the output of the CNN part of each stream

is as follows:

C = ReLu (W ∗ P + b) (15a)

C ′ = ReLu (W ′ ∗ P ′ + b′) (15b)

C ′′ = ReLu (W ′′ ∗ P ′′ + b′′) (15c)

where C, C ′, and C ′′ refer to the outputs of convolution layers with different lengths that

capture multiple frequencies of patterns; W and b are the weights and biases of the CNN

layer, respectively.

In the second step, each convolution output is fed to a separate GRU network to encode

the important features. The hidden state of GRU is formulated by Eq 10, mentioned in Eqs

16a – 16c.

ht = GRU (ht−1, ct) (16a)

h′
t = GRU

(
h′
t−1, c

′
t

)
(16b)

h′′
t = GRU

(
h′′
t−1, c

′′
t

)
(16c)

where ht, h
′
t, and h′′

t refer to the hidden states of GRU layers at each time step.

At the final step, the last hidden states of GRU outputs are concatenated at time t and

the concatenated output passes through a fully-connected linear model to obtain the desired

output shape, which is our forecasting horizon (ot). The dimension of tensors at each step

is calculated in Table 5.

ot = Wt [ht, h
′
t, h

′′
t ] + bt (17)

2.4. Baseline Models

To thoroughly evaluate the proposed model, a set of baseline models were constructed and

a comprehensive analysis of the performance of each model was carried out for comparison.

The baseline models include statistical time series models, such as AR, ARIMA, and VAR;
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Table 5: Dimensions of tensors in each step

Step Layer Name Dimension
0 Input data P [Batch size, Seq length, N features]
0 Pooling layer (4) P ′ [Batch size, Seq length/4, N features]
0 Pooling layer (8) P ′′ [Batch size, Seq length/8, N features]
1 CNN output (stream 1) C [Batch size, Seq length, Hidden size CNN1]
1 CNN output (stream 2) C ′ [Batch size, Seq length/4, Hidden size CNN2]
1 CNN output (stream 3) C ′′ [Batch size, Seq length/8, Hidden size CNN3]
2 GRU hidden (stream 1) h [Num layer, Batch size, Hidden size GRU1]
2 GRU hidden (stream 2) h′ [Num layer, Batch size, Hidden size GRU2]
2 GRU hidden (stream 3) h′′ [Num layer, Batch size, Hidden size GRU3]
3 Concatenation - [Batch size, Hidden size GRU1+ Hidden size GRU2+ Hidden size GRU3]
3 Output O [Batch size, Horizon size]

⋆ Guide: Batch size: the size of batches, Seq length: the length of a sequence, N features: number of features, Hidden size:
the hidden size of layers (CNN or GRU), Num layer: the number of GRU Layers, and Horizon size: the forecasting horizon

ML models, such as SVR, KNN, LR, and DT; and DL models, such as CNN, LSTM, GRU,

and hybrid CNN-GRU (consecutive and parallel). These models are introduced in Section

1.1.2.

Regarding the hybrid models mentioned in Section 1.2, the convolutional layer is used in

the consecutive CNN-GRU architecture to derive important features from the input data.

The GRU layers are then employed to extract long-term dependencies. (Alhussein et al.,

2020), as demonstrated in Figure 16.

In contrast, the parallel CNN-GRU architecture uses a dual pathway, where the input

price data is first directed into two streams for processing. The GRU and CNN pathways

independently extract features present in the data and prepare the input for the final forecast,

as illustrated in Figure 17. Notably, the performance of all baseline models as well as the

proposed model heavily relies on the hyper-parameter tuning, considered in Section 2.5.

2.5. Hyperparameter Optimization

The performance of statistical, ML, and DL models is greatly influenced by hyperpa-

rameters, thus it is of utmost importance to set them correctly. In this study, a grid search

algorithm was used with the aforementioned models. The approach evaluates all possible

combinations of values within the defined range, in order to identify the model with the
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Figure 16: Representation of consecutive CNN-GRU model architecture

Figure 17: Representation of parallel CNN-GRU model architecture

35



Table 6: Summary of tuned hyperparameters for univariate forecasting models

Model Optimal Hyperparameters
AR p = 25
ARIMA p = 2, d = 1, q = 1
SVR C = 0.1, epsilon = 0.01, kernel size = rbf
DT max depth = 5
KNN leaf size = 30, n neighbours = 20, p = 2, weight = distance
LSTM LR = 0.001, hidden layer = 16, optimizer = Adam
GRU LR = 0.001, hidden layer = 16, optimizer = Adam
CNN LR = 0.001, hidden layer = 16, kernel size = 5, optimizer = Adam
CNN-GRU(Parallel) LR = 0.001, hidden layer(CNN) = 32, hidden layer(GRU) = 64, Kernel size = 5, Optimizer = Adam
CNN-GRU(Consecutive) LR = 0.0001, hidden layer(CNN) = 64, hidden layer(GRU) = 128, Kernel size = 9, Optimizer = Adam
TriConvGRU(Proposed) LR = 0.001, hidden layer(CNN) = 128, hidden layer(GRU) = 128, Kernel size(head1) = 9,

Kernel size(head2) = 7, Kernel size(head3) = 5, Optimizer = Adam

Table 7: Summary of tuned hyperparameters for multivariate forecasting models

Model Optimal Hyperparameters
VAR p = 25
SVR C = 0.1, epsilon = 0.02, kernel size = linear
DT max depth = 50
KNN leaf size = 30, n neighbours = 20, p = 2, weight = distance
LSTM LR = 0.001, hidden layer = 128, optimizer = Adam
GRU LR = 0.001, hidden layer = 32, optimizer = Adam
CNN LR = 0.001, hidden layer = 16, kernel size = 9, optimizer = Adam
CNN-GRU(Parallel) LR = 0.0001, hidden layer(CNN) = 128, hidden layer(GRU) = 128, Kernel size = 9, Optimizer = Adam
CNN-GRU(Consecutive) LR = 0.001, hidden layer(CNN) = 16, hidden layer(GRU) = 16, Kernel size = 7, Optimizer = Adam
TriConvGRU(Proposed) LR = 0.001, hidden layer(CNN) = 16, hidden layer(GRU) = 32, Kernel size(head1) = 9,

Kernel size(head2) = 7, Kernel size(head3) = 5, Optimizer = Adam

lowest validation error. Note that the metric to calculate errors is a root mean square error

(RMSE). The range for the hyperparameters used in the search was mentioned in Table

A.15. Tables 6 and 7 show the optimization search results of multivariate and univariate

forecasting for each model, respectively.

2.6. Evaluation Criteria

A systematic comparison of the forecasting performance of various models is conducted by

utilizing multiple evaluation metrics. The most widely used metrics, root mean square error

(RMSE) and mean absolute error (MAE), are implemented to demonstrate the forecasting

accuracy of the different models. A summary of the definitions and formulas of these metrics

is provided in Table 8. Furthermore, it is important to consider the stability of the models

to ensure their resilience to external shocks in real-world applications (Zhang et al., 2022).

The stability of the models is evaluated in this study by utilizing the variance of forecasting

errors (var), as defined in Equation 18.
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var =
1

T

T∑
1

(et − ē)2 (18)

where et shows the forecasting error at time t, and ē shows the average of errors. Note

that et is the squared difference between yt and ŷt.

Also, the model confidence set (MCS) method, proposed by Hansen et al. (2011), is

employed to evaluate the forecasting capabilities of various predictive models. By removing

weaker models from the starting set, M0, the MCS technique determines a superior set

of models, M⋆. Two components comprise the MCS method: an equivalence test and an

elimination rule (eM). The equivalence test examines the null hypothesis, H0,M , in contrast

to the alternative hypothesis, HA,M , at a specific significance level α.

H0,M : cij = 0 for all i, j = 1, 2, · · · ,m

HA,M : cij ̸= 0 for some i, j = 1, 2, · · · ,m
(19)

where ci,j = E(di,j) is assumed be not time dependent; dij is defined as the difference

between the losses of model i and model j, dij,t = li,t − lj,t; li,t is the loss function of model

i at time t, li,t = l(yt, ŷi,t).

If the null hypothesis, H0,M , is not rejected, it leads to the termination of the MCS

procedure; in this case, M⋆
1−α = M . Conversely, if H0,M is rejected, the elimination rule

is applied to remove a weak model from the model set before reinitiating the equivalence

test process (Li et al., 2022b). Through the repetition of the procedure, the MCS test

will ultimately yield a superior set of models (M⋆
1−α) and a model with a greater p-value

demonstrates superior forecasting accuracy.
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Table 8: Summary of the evaluation metrics.

Evaluation metric Description Formula
RMSE The square root of the average of the squared differences

between T forecasted and actual values. (Weron, 2014)

√
1
T

∑T
t=1 (yt − ŷt)

2

MAE The average of the absolute errors between T

forecasted and actual values.
1
T

∑T
t=1 |yt − ŷt|

⋆ Note: T is the number of samples. yt shows the real value at time t, and ŷt represent the forecasted value
at time t

3. Empirical Results

In order to test the efficiency of the proposed model and compare it to the baseline models,

we carried out a comparative analysis in three test sets representing three different weeks in

2022. We considered the comparison between univariate and multivariate settings, as well as

between single-step ahead and multi-step ahead forecasting to evaluate the proposed model.

Additionally, we performed the MCS statistical test to rank the forecasting models. Finally,

we analyzed the stability of the proposed model, as well as the results of an ablation study,

in our research.

3.1. Aggregated Univariate and Multivariate Forecasting

• The proposed model outperforms the IESO forecasts, which were used as the primary

baseline, in both univariate and multivariate settings. As observed in Figure 18, the

proposed model improved the IESO error noticeably by 63.7% in the first, 43% in the

second, and 28.2% in the third week. It is worth noting that all DL models outperform

the IESO baseline in univariate settings, and most DL models in multivariate settings

do the same, with the exception of a few models in the third week. Our conclusion

is that DL models, particularly in univariate settings, demonstrate significantly better

results than the IESO forecasting model.

• We observe that when exogenous variables are used in DL models, results deteriorate

except for some DL models in the first week. The result deterioration can be more

visible in the third week when it has the most fluctuations compared to other weeks.
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Although the result of the statistical model is not better than the proposed model,

it is notable that adding independent variables helps improve the statistical models.

As observed in Section 2.2, the previous price variable has the highest correlation

with the current price, and other independent variables have low positive or negative

correlations with the target. Thus, the inclusion of low-correlated features may lead

to an overfitting problem in most cases for ML and DL models because the models

perform poorly on test sets, particularly in the fluctuating test set.

• Based on the results shown in Table 9, our proposed model (TriConvGRU) in the

univariate setting outperforms other models, including statistical, ML, and DL mod-

els. The improvement rate of our proposed model compared to other models in the

univariate setting is represented in Figure 18. As observed in Table 10, GRU in the

first week, LSTM in the second week, and LR in the third week outperform others

in the multivariate setting. Although our proposed model in multivariate forecasting

could not outperform others, the univariate TriConvGRU model still has the lowest

forecasting error compared to all multivariate models. Therefore, we conclude that the

univariate TriConvGRU outperforms all models in both settings.

3.2. One-step ahead Forecasting

The results of the one-step ahead comparison between the forecasted and actual values

of baseline and proposed models are reported in the first rows of each model in Table 11 and

12. Important comparative points for the one-step ahead forecasting are listed below:

• Compared to the forecast made by IESO, the proposed model in the univariate setting

reduced the RMSE error by 74.4% and the MAE error by 66.8% in the first week,

57.3% and 50.9% in the second week, and 33.2% and 26.1% in the third week. The

sensible improvement can be observed in Figures 20a – 20c, which show the proposed

model captures the ups and downs in test sets.
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Figure 18: Improvement rates of the RMSE metric of the proposed model compared to the baselines in the
univariate setting

Table 9: Average results of univariate forecasting models over forecasting horizons

27 Jan 2022 - 2 Feb 2022 28 Feb 2022 - 7 Mar 2022 12 May 2022 - 19 May 2022
Type Model

RMSE MAE RMSE MAE RMSE MAE
IESO forecast 31.527 17.573 20.629 11.774 27.149 17.201
AR 15.423 13.815 13.067 11.141 26.675 24.303

S
ARIMA 15.151 9.872 13.549 9.380 25.685 23.215
LR 13.817 10.560 13.453 9.780 20.316 17.048
SVR 14.739 12.134 13.236 10.169 28.228 23.688
DT 14.593 10.656 15.603 10.839 27.557 22.613

ML

KNN 17.306 13.799 15.781 12.320 26.627 24.354
LSTM 12.119 9.310 12.316 8.443 19.719 15.198
GRU 12.908 9.483 12.550 8.723 19.706 15.117
CNN 14.218 10.404 12.391 8.544 21.687 17.323
CNN-GRU
(Consecutive)

13.657 10.402 12.462 8.759 20.689 15.930

CNN-GRU
(parallel)

12.636 9.347 12.333 8.351 20.802 15.984
DL

TriConvGRU
(Proposed)

11.434 8.102 11.768 7.961 19.496 15.072

⋆ Note: A univariate forecasting model refers to the use of only the price feature for forecasting. Also, Green
and Bold numbers indicate the minimum RMSE error.
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Table 10: Average results of multivariate forecasting models over forecasting horizons

27 Jan 2022 - 2 Feb 2022 28 Feb 2022 - 7 Mar 2022 12 May 2022 - 19 May 2022
Type Model

RMSE MAE RMSE MAE RMSE MAE
IESO forecast 31.527 17.573 20.629 11.774 27.149 17.201

S VAR 12.920 11.033 12.399 9.609 25.069 22.491
LR 13.039 10.322 13.574 10.623 22.103 19.505
SVR 14.629 11.636 19.358 16.355 24.982 22.611
DT 21.527 13.482 21.010 12.450 51.908 34.698

ML

KNN 14.827 10.477 15.382 12.325 42.975 36.675
LSTM 12.363 9.762 12.360 9.418 24.431 21.536
GRU 12.120 9.303 12.531 9.590 23.938 20.921
CNN 14.155 11.383 14.645 11.248 34.498 28.284
CNN-GRU
(Consecutive)

13.239 10.768 13.443 10.384 32.363 27.214

CNN-GRU
(parallel)

13.882 11.094 14.195 11.406 37.261 30.715
DL

TriConvGRU
(Proposed)

12.465 9.705 12.985 9.797 25.860 21.458

⋆ Note: A multivariate forecasting model refers to the use of features mentioned in Section 2.2 for forecasting.
Also, Green and Bold numbers indicate the minimum error.

• In terms of one-step ahead forecasting comparison for ML and DL models, we saw

that univariate forecasting is better than multivariate ones based on RMSE and MAE

metrics in three sample weeks for each DL and ML model. Similar to the result of

Section 3.1, we conclude that adding variables to ML and DL models deteriorates the

one-step ahead results because it encountered the overfitting problem while the model

complexity is increased.

• Regarding the comparison between DL models and ML and statistical models in the

univariate setting, the improvement of results by DL models is discernible, as illus-

trated in Figure 19. Based on the RMSE metric, the best model for one-step ahead

forecasting is the proposed model except for the third week. However, the proposed

model outperforms others in all weeks based on the MAE metric. For multivariate

one-step ahead forecasting, DL models follow a similar pattern. This indicates that

DL models, particularly in the univariate setting, outperform ML and statistical mod-

els in one-step ahead forecasting.

• Although the proposed complex hybrid model improves the MSE or MAE metrics,

the simple consecutive and parallel hybrid model did not outperform basic DL models,
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Table 11: Experimental results of univariate forecasting models

27 Jan 2022 - 2 Feb 2022 28 Feb 2022 - 7 Mar 2022 12 May 2022 - 19 May 2022
Type Model

RMSE MAE RMSE MAE RMSE MAE
T+1 32.010 16.244 19.006 10.334 26.482 16.073
T+2 33.690 19.1375 20.550 11.792 27.465 17.536IESO forecast
T+3 28.881 17.338 22.331 13.196 27.501 17.995
T+1 12.177 10.633 10.399 8.555 21.718 19.284
T+2 16.002 14.340 13.564 11.583 27.600 25.157AR
T+3 18.089 16.472 15.239 13.285 30.706 28.468
T+1 12.332 8.037 10.971 7.550 21.448 18.958
T+2 15.789 10.297 14.120 9.763 26.698 24.147

S

ARIMA
T+3 17.331 11.282 15.556 10.826 28.910 26.541
T+1 11.688 8.849 11.106 8.069 18.100 14.989
T+2 14.381 11.043 14.069 10.199 21.079 17.726LR
T+3 15.382 11.789 15.183 11.071 21.770 18.430
T+1 13.172 10.516 10.611 8.099 26.483 22.072
T+2 14.808 12.192 13.537 10.371 28.475 23.911SVR
T+3 16.237 13.695 15.561 12.036 29.726 25.080
T+1 13.875 9.881 13.652 9.508 26.520 21.349
T+2 14.406 10.471 15.942 11.036 27.597 23.412DT
T+3 15.498 11.616 17.214 11.973 28.555 23.078
T+1 15.788 12.758 14.294 11.180 25.743 23.488
T+2 17.791 14.065 16.001 12.473 26.790 24.493

ML

KNN
T+3 18.339 14.573 17.049 13.307 27.347 25.082
T+1 9.089 6.142 8.518 5.538 17.287 12.223
T+2 12.965 10.965 13.207 9.111 20.540 16.160LSTM
T+3 14.303 10.822 15.224 10.679 21.329 17.210
T+1 9.983 7.049 8.847 6.052 17.516 12.925
T+2 13.893 10.293 13.601 9.460 20.378 15.509GRU
T+3 14.848 11.107 15.202 10.657 21.225 16.918
T+1 11.430 8.147 8.744 5.729 18.625 14.249
T+2 15.296 10.965 13.288 9.265 22.619 18.141CNN
T+3 15.924 12.101 15.141 10.638 23.816 19.579
T+1 10.076 7.227 8.802 5.784 17.957 12.770
T+2 14.090 10.873 13.206 9.374 21.173 16.462

CNN-GRU
(Consecutive)

T+3 16.804 13.106 15.378 11.120 22.936 18.559
T+1 9.760 6.581 8.357 5.340 18.518 12.938
T+2 13.059 9.858 13.183 9.093 21.357 16.839

CNN-GRU
(parallel)

T+3 15.089 11.601 15.459 10.619 22.532 18.175
T+1 8.177 5.393 8.106 5.070 17.676 11.879
T+2 12.091 8.581 12.663 8.721 19.658 15.559

DL

TriConvGRU
(Proposed)

T+3 14.033 10.333 14.534 10.093 21.153 17.778
⋆ Note: T + 1, T + 2, and T + 3 represent one-step, two-step, and three-step ahead forecasting, respectively.
Green and Bold numbers indicate the minimum error.
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Table 12: Experimental results of multivariate forecasting models

27 Jan 2022 - 2 Feb 2022 28 Feb 2022 - 7 Mar 2022 12 May 2022 - 19 May 2022
Type Model

RMSE MAE RMSE MAE RMSE MAE
T+1 32.010 16.244 19.006 10.334 26.482 16.073
T+2 33.690 19.137 20.550 11.792 27.465 17.536IESO forecast
T+3 28.881 17.338 22.331 13.196 27.501 17.995
T+1 10.036 8.470 9.535 7.562 20.436 17.950
T+2 13.241 11.357 12.895 9.906 25.576 23.012S VAR
T+3 15.482 13.271 14.768 11.360 29.195 26.512
T+1 11.969 9.498 11.297 8.905 19.174 16.750
T+2 13.012 10.289 13.961 10.970 22.938 20.172LR
T+3 14.136 11.179 15.465 11.993 24.198 21.594
T+1 14.430 11.270 18.171 15.384 23.742 20.857
T+2 14.353 11.511 19.729 16.804 25.294 23.079SVR
T+3 15.103 12.127 20.173 16.878 25.911 23.896
T+1 18.201 11.458 15.595 9.549 41.538 28.788
T+2 22.800 14.340 21.982 12.825 60.810 38.633DT
T+3 23.579 14.647 25.454 14.977 53.377 36.673
T+1 12.993 10.360 14.952 11.921 42.416 36.175
T+2 13.148 10.439 15.422 12.379 43.035 36.760

ML

KNN
T+3 18.339 10.632 15.773 12.674 43.475 37.090
T+1 10.187 7.839 9.146 6.829 22.909 19.683
T+2 13.065 10.385 13.193 10.132 25.082 22.277LSTM
T+3 13.838 11.062 14.742 11.293 25.303 22.649
T+1 10.082 7.481 10.189 7.777 19.412 16.238
T+2 12.849 10.139 12.744 9.786 25.023 22.045GRU
T+3 13.430 10.288 14.661 11.206 27.379 24.479
T+1 12.862 10.304 12.763 10.311 37.161 30.345
T+2 13.880 11.534 14.296 10.675 33.146 26.950CNN
T+3 15.722 12.310 16.875 12.759 33.188 27.557
T+1 12.078 9.956 11.688 9.125 27.762 23.098
T+2 12.954 11.178 13.591 10.446 32.265 27.317

CNN-GRU
(Consecutive)

T+3 14.686 11.170 15.051 11.581 37.062 31.226
T+1 13.330 11.129 12.390 10.145 30.149 23.638
T+2 13.866 11.054 14.599 11.702 37.832 31.506

CNN-GRU
(parallel)

T+3 14.451 11.100 15.597 12.371 43.801 37.001
T+1 10.428 7.854 10.099 7.608 24.600 17.712
T+2 12.806 10.147 13.122 9.817 26.431 23.317

DL

TriConvGRU
(Proposed)

T+3 14.162 11.115 15.733 11.965 26.548 23.345
⋆ Note: T + 1, T + 2, and T + 3 represent one-step, two-step, three-step ahead forecasting, respectively. Green
and Bold numbers indicate the minimum error.
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Figure 19: Comparison of RMSE metrics for univariate one-step forecasting

including LSTM and GRU. This finding implies that a hybrid model with more param-

eters is needed to improve the prediction result. So, we came up with a hybrid model

with three different streams to capture various price patterns. Section 3.4 explains why

our proposed model outperforms others.

• In the one-step ahead forecasting comparison between statistical models, the ARIMA

model outperforms the AR model in a univariate setting. Also, the VAR results showed

us that adding independent variables made the AR model better at making forecasts.

Regarding ML models, LR outperforms other models in both univariate and multivari-

ate settings.

3.3. Multi-step ahead Forecasting

Along with one-step ahead forecasting, results for two-step and three-step ahead fore-

casting are presented in the second and third rows of each model in Tables 11 and 12,

respectively. Obviously, the more the number of forecasting horizons, the more forecasting

errors increase. Significant findings of comparison are listed in the following:

• Compared to the IESO forecast, the univariate proposed model, as the model with the

best result, reduced the RMSE error dramatically by 64.11% and 51.41% in the first

week, 33.37% and 34.9% in the second week, and 28.42% and 23.08% in the third week
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(a) One-step hour forecast for the first week

(b) One-step hour forecast for the second week

(c) One-step hour forecast for the third week

Figure 20: One-step ahead comparison of the TriConvGRU with the IESO forecast and the real price
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for two-step and three-step ahead forecasting, respectively. The sensible improvement

can be observed in Figures 22a - 22c and Figures 23a - 23c, which show the proposed

model captures the ups and downs in sample weeks.

• In two-step and three-step ahead univariate forecasting, better results are obtained by

the DL models compared to the statistical and ML models, as depicted in Figure 21.

Among DL models, the proposed model represents the best result based on RMSE and

MAE metrics. Thus, it is concluded that DL is the best choice for univariate multi-step

forecasting. Although all DL models in multi-step forecasting were not outstanding

among models in the multivariate setting, some of them, including LSTM and GRU,

performed well compared with other models.

• As observed in the results of two-step and three-step ahead forecasting, incorporating

variables in most DL and ML models reduced RMSE and MAE errors in the first and

second weeks. However, the result for the third week deteriorates while variables are

added. For those weeks when the price has fewer fluctuations, the variables help to

decrease the error. On the other hand, the week with drastic fluctuations did not

reduce the error. It means that the models are more sensitive to fluctuations or noises,

and it represents the overfitting problem in these models. However, our proposed

model did not show this behavior. We conclude that for multi-step ahead forecasting,

adding variables may not help improve the forecasting power. Also, the multi-step

ahead result of the proposed model for univariate forecasting is better than the best

results of multivariate forecasting, obtained by LSTM, GRU, and LR.

• Similar to one-step ahead, although the proposed complex hybrid model improves the

MSE or MAE metrics for two- and three-step ahead forecasting, the simple consecutive

and parallel hybrid models did not impact the results of basic DL models, including

LSTM and GRU, and thus a network with more parameters is required.
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(a) Two-step ahead forecasting (b) Three-step ahead forecasting

Figure 21: Comparison of RMSE metrics for univariate multi-step forecasting

3.4. Ablation Study

To illustrate the effectiveness of the TriConvGRU-TCG Model, a thorough ablation study

was carried out. The study involves removing a component of a DL architecture to assess

its effect on the overall network, proposed by Meyes et al. (2019). In this study, one stream

or component of the model was removed at a time and the performance of the model was

evaluated without that stream. The specific ablated models used in this study are as follows:

• Model A: One-head ConvGRU without down-sampling

• Model B: One-head ConvGRU with a 1
4
down-sampling

• Model C: One-head ConvGRU with a 1
8
down-sampling

• Model D: Two-head ConvGRU with no and 1
4
down-samplings

• Model E: Two-head ConvGRU with no and 1
8
down-samplings

• Model F: Three-head GRU without convolution layers

Table 13 provides a summary of the findings of the ablation study. All comparisons were

carried out using univariate forecasting methods because of their superiority, as mentioned

in previous sections. Models A, B, and C pertain to each head of the proposed model. The

comparison of these models illustrates that while the kernel size of average pooling layers

increases in downsampling, the result worsens because the downsampled input data with

larger kernel size learn longer-term trends or the lower frequency of price patterns.
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(a) Two-step hour forecasting for the first week

(b) Two-step hour forecasting for the second week

(c) Two-step hour forecasting for the third week

Figure 22: Two-step ahead comparison of the TriConvGRU with the IESO forecast and the real price
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(a) Three-step hour forecasting for the first week

(b) Three-step hour forecasting for the second week

(c) Three-step hour forecasting for the third week

Figure 23: Three-step ahead comparison of the TriConvGRU with the IESO forecast and the real price
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Furthermore, by comparing the proposed model with models D and E, removing one

of the three heads of the TriConvGRU-TCG architecture and considering just two heads

worsen the model performance. it is notable, the largest deterioration of performance in

T+1 and T+2 forecasts occur when a 1
4
down-sampling head is removed because a 1

4
down-

sampling head concentrates on shorter trends of input price data. Also, by comparing the

results of hybrid consecutive and parallel CNN-GRUmodels with models D and E, we found a

noticeable reduction in the errors. In addition, models D and E in most cases outperform the

simple GRU and LSTM whereas hybrid consecutive and parallel CNN-GRU models can not

outperform them before. Thus, this result confirms the inclusion of pooling layers in a hybrid

model architecture could be effective to reduce errors and learn price patterns because the low

frequency of price trends can be captured and incorporated into forecasts, leading to being

less sensitive to noises and more concentrated on price trends. As seen in our proposed model,

the multiple frequencies of price patterns are learned together, resulting in a superior output.

Also, based on model F, removing the CNN layers from the architecture of TriConvGRU-

TCG increases the errors in all forecasted results, demonstrating the importance of the CNN

layer in extracting the most valuable time features.

3.5. Model Confidence Set Test

In this section, we assess the forecasting accuracy of models statistically, including our

proposed model (TriConvGRU) and baseline models, in the univariate setting. The result

of the MCS test is reported in Table 14. Notably, we assume that α equals 5% and the loss

function used in the test is the MAE. We reject the null hypothesis if the p-value of the

model comparisons is less than α (p < α) at the given significance level. Subsequently, we

remove weak models from the model set using the elimination rule. This process is repeated

until the null hypothesis cannot be rejected, leading to the creation of a superior set of

models.

With respect to Table 14, during the first week, only our proposed model was retained in

the superior set, while other models were eliminated in the MCS procedure. In the second
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Table 13: Experimental results of the ablation study

27 Jan 2022 - 2 Feb 2022 28 Feb 2022 - 7 Mar 2022 12 May 2022 - 19 May 2022
Model

RMSE MAE RMSE MAE RMSE MAE
T+1 9.750 6.825 8.842 5.771 17.442 12.599
T+2 13.575 9.942 13.443 9.228 20.795 16.395
T+3 15.378 11.545 15.156 10.593 21.947 18.079

Model A

Average 12.901 9.437 12.480 8.531 20.061 15.691
T+1 11.940 8.934 11.211 7.605 18.285 11.920
T+2 14.314 10.902 13.901 9.867 20.771 16.188
T+3 16.414 12.464 15.489 10.965 21.741 17.460

Model B

Average 14.223 10.767 13.534 9.479 20.266 15.189
T+1 15.760 11.485 14.209 10.349 24.824 20.776
T+2 16.261 11.938 15.238 11.097 24.979 20.899
T+3 16.324 11.944 16.041 11.404 24.147 20.516

Model C

Average 16.115 11.789 15.163 10.950 24.650 20.730
T+1 8.236 5.527 8.583 5.267 17.931 11.688
T+2 12.171 8.675 13.300 9.258 20.747 16.164
T+3 14.167 10.273 15.477 10.671 21.615 17.530

Model D

Average 11.525 8.158 12.453 8.399 20.098 15.127
T+1 8.547 5.696 8.747 5.357 18.952 13.361
T+2 12.285 9.029 13.285 9.345 21.673 16.969
T+3 13.989 10.351 14.649 10.058 22.559 18.492

Model E

Average 11.607 8.359 12.227 8.253 21.061 16.274
T+1 8.768 5.811 8.772 5.696 17.002 11.962
T+2 12.501 9.297 13.154 9.099 20.343 15.993
T+3 14.439 11.293 15.339 10.811 21.765 18.002

Model F

Average 11.903 8.800 12.422 8.535 19.703 15.319
T+1 8.177 5.393 8.106 5.070 17.676 11.879
T+2 12.091 8.581 12.663 8.721 19.658 15.559
T+3 14.033 10.333 14.534 10.093 21.153 17.778

Proposed

Average 11.434 8.102 11.768 7.961 19.496 15.072
⋆ Note: T + 1, T + 2, and T + 3 represent one-step, two-step, three-step ahead forecasting, respectively. Green
and Bold numbers indicate the minimum error.
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Table 14: Result of the MCS test for all forecasting models

Model
Week 1 Week 2 Week 3

p value Rank p value Rank p value Rank
AR x x x x x x
ARIMA x x x x x x
LR x x x x x x
SVR x x x x x x
DT x x x x x x
KNN x x x x x x
LSTM x x 1.0000 3 1.0000 1
GRU x x 0.0510 6 1.0000 3
CNN x x 0.8166 4 x x
CNN GRU C x x 0.1342 5 0.1208 5
CNN GRU P x x 1.0000 2 0.4306 4
TriConvGRU 1.000 1 1.0000 1 1.0000 2

Number of
eliminated models

11 6 7

⋆ Note: The symbol x shows that a model was eliminated via the MCS procedure, and bold numbers indicate
that a model achieved the first rank in the superior model set.

week, all DL models remained in the model set, and our proposed model was ranked first in

the set. Similarly, in the third test set, all DL models except for the CNN model remained

in the superior model set, and our proposed model was ranked second in the set. The results

from the second and third weeks indicate that DL models outperform ML and statistical

models.

3.6. Stability Test of the Proposed Model

In electricity markets, prices are prone to significant fluctuations because of market fac-

tors. Thus, models that exhibit a high level of stability are considered capable of providing

accurate forecasting (Sun and Li, 2020). Hence, the variance of forecasting errors is utilized,

Eq. 18, to measure the stability of our proposed model (TriConvGRU), as well as baseline

models. Because of the superiority of the average error for the univariate setting, stability

test results for univariate models are depicted in Figure 24. Clearly, the TriConvGRU-

TCG model yields the lowest variance of forecasting errors compared to baseline models and

demonstrates superior robustness in comparison with the other models. Additionally, the
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variance value tends to increase since the forecasting horizon increases in all models.

(a) For the first week (b) For the second week (c) For the third week

Figure 24: Stability test results
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4. Conclusion

In our study, a novel DL model, called TriConvGRU, based on GRU and CNNmodels, has

been designed and assessed empirically using Ontario electricity market prices. Also, a com-

parative study among statistical, ML, and DL models was conducted to evaluate forecasting

methods in Ontario Market. The proposed model is composed of three consecutive hybrid

CNN-GRU models, combined in parallel with different input data generated by average

pooling layers at the beginning of each stream, except for the first stream. We implemented

models in two different settings, including univariate and multivariate with various external

variables. Previous prices, electricity load, generation, import and export, and weather data

are considered exogenous variables in our study to determine whether independent variables

improve forecasts or not.

Based on the performance metrics results, the proposed model in the univariate setting

shows promising results. In terms of multivariate and univariate settings, we conclude that

incorporating variables into models does not improve forecasting results of DL and ML

models because the inclusion of low-correlated features increases the complexity of models

and thus overfitting problems happened. Another finding of the research relates to the

superiority of DL models compared with statistical and ML models in two different settings.

However, similar to the result concluded by Lehna et al. (2022), employing the simple hybrid

DL models, both parallel and consecutive, did not enhance the forecasting efficacy, and it

is concluded that the hybrid network with more parameters is required to improve the

results of simple DL models, e.g., LSTM and GRU. As the final finding, our proposed model

outperforms IESO forecasts in both univariate and multivariate settings, and it represents the

least error compared with baseline models because the model can learn multiple frequencies

of price patterns concurrently by including pooling layers.

In future research, it may be beneficial to integrate the use of filter decomposition tech-

niques, e.g., variational mode decomposition (VMD) (Dragomiretskiy and Zosso, 2013) and

empirical mode decomposition (EMD) (Flandrin et al., 2004), into a DL model for the EPF
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problem. This could potentially improve the efficiency of the forecasting model. One ap-

proach to implementing this hybridization method could be based on the work of Zhang et al.

(2022). They propose a hybrid LSTM-Attention model with the VMD filter for forecast-

ing coal prices. State-of-the-art forecasting models relying on attention mechanisms could

also provide gains for the time-series forecasting problems (Du et al., 2020). For instance,

transformer-based models can be considered either on their own (L’Heureux et al., 2022) or

hybridized with CNN layers (Shen and Wang, 2022) to further improve forecasting power.

55



Table A.15: Parameter spaces tuned with a grid search for mentioned models

Algorithm Parameter Parameter Space

ARIMA
p 1, 2, 3
d 0, 1
q 0, 1, 2, 3

SVR
C 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
epsilon 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1
kernel ’linear’, ’rbf’

DT max depth 5, 10, 20, 30, 50, 100

KNN

n neighbors 5, 10, 15, 20
weights ’uniform’, ’distance’
leaf size 30, 60, 90, 120
p 1, 2

Deep Learning
models

hidden layer 16, 32, 64, 128
Kernel size 5, 7, 9
LR 0.001, 0.0001
Optimizer ’Adam’, ’SGD’

Appendix A. Hyperparameter Spaces
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