

HEC MONTRÉAL

Network Design Problem with Vulnerability and Budget Constraints

par

Jai Kumar Drave

Yossiri Adulyasak

HEC Montréal

Co-Directeur de recherche

Okan Arslan

HEC Montréal

Co-Directeur de recherche

Sciences de la gestion

(Spécialisation Global Supply Chain Management)

Mémoire présenté en vue de l’obtention

du grade de maîtrise ès sciences

(M. Sc.)

August 2024

© Jai Kumar Drave, 2024

Résumé

Étant donné un réseau et un ensemble de demandes de paires origine-destination (O-D) avec

des besoins de communication, le problème de conception de réseau avec contraintes de vul-

nérabilité consiste à sélectionner un sous-ensemble des arêtes à un coût minimal de manière

à ce que chaque demande soit connectée entre ses paires O-D par un chemin principal, et

qu’elle soit également connectée par un chemin de secours pour garantir la durabilité en cas

de défaillance simultanée d’un certain nombre d’arêtes dans le réseau. De plus, les chemins

principaux et de secours doivent satisfaire une exigence de qualité de service (QDS). Le

niveau de capacité de survie (NCS) du réseau est exprimé en nombre d’arêtes simultanément

défaillantes dans le réseau, et la QDS est exprimée comme le nombre d’arêtes sur les chemins

principaux et de secours utilisés pour connecter les paires O-D. Dans cette description clas-

sique du problème, le NCS du réseau et la QDS pour les chemins principaux et de secours de

chaque demande sont des paramètres du problème. Dans ce mémoire, nous les considérons

comme des variables et étudions le compromis entre la QDS et le NCS dans la conception du

réseau avec une contrainte budgétaire. À cette fin, nous créons une fonction de compromis

qui exprime les préférences du décideur entre la QDS et le NCS. Nous formulons le problème

comme un programme linéaire mixte basé sur le flux qui maximise la fonction de compro-

mis développée. Nous proposons ensuite une formulation alternative utilisant des « coupes

à longueur bornée » et nous développons un algorithme de branch-and-cut pour la résoudre.

Nous dérivons également différentes familles d’inégalités valides (IV). Nous réalisons une

étude computationnelle approfondie et nous comparons l’efficacité des deux formulations

pour résoudre le problème. Nous montrons également que les IV contribuent efficacement à

réduire les temps d’exécution, jusqu’à 20 %. Nous examinons le compromis entre la QDS et

le NCS et nous découvrons qu’une détérioration d’environ 8 % de la QDS peut améliorer le

NCS d’environ 24 %. Cependant, pour améliorer le NCS au même niveau, la QDS se détéri-

ore d’environ 14 %. En d’autres termes, nos résultats montrent que, lorsqu’un budget fixe est

utilisé, des niveaux élevés d’amélioration du NCS sont plus réalisables qu’une amélioration

en pourcentage comparable de la QDS.

i

Mots-clés

Programmation linéaire entière, Coupe limitée en longueur, Branchement et coupe, Concep-

tion de réseau, Résilience, Contraintes budgétaires, Contraintes limitant les sauts, Capacité

de survie, Vulnérabilité.

Méthodes de recherche

Modélisation mathématique, analyse exploratoire des données

ii

Abstract

Given a network and a set of origin-destination (O-D) pair demands with communication

needs, the Network Design Problem with Vulnerability Constraints selects a subset of the

edges at a minimum cost such that every demand is connected between their O-D pairs by a

primary path, and they are also connected by a backup path to ensure survivability when a cer-

tain number of edges simultaneously fails to operate in the network. Additionally, the primary

and back up paths should satisfy a quality-of-service (QoS) requirement. The survivability

level (SL) is expressed as the number of simultaneously failing edges in the network, and the

QoS is expressed as the number of edges on the primal and backup paths used to connect the

O-D pairs. In this classical problem description, the SL of the network and the QoS for the

primary and backup paths of every demand are parameters of the problem. In this thesis, we

consider them as variables, and study the tradeoff between the QoS and SL in network design

subject to a budget constraint. To this end, we devise a tradeoff function that expresses the

decision maker’s preferences between the QoS and SL. We formulate the problem as a flow-

based mixed-integer linear program that maximizes the tradeoff function developed. We then

provide an alternative formulation using length-bounded cuts, and develop a branch-and-cut

algorithm to solve it. We also derive different families of valid inequalities (VI). We carry

out an extensive computational study and compare the effectiveness of the two formulations

in solving the problem. We also show that the VIs effectively help in reducing the run times

additionally by up to 22%. We investigate the tradeoff between the QoS and the SL and find

that a deterioration of approximately 8% in the QoS can improve the SL by approximately

24%. However, to improve the SL by the same level, the QoS deteriorates by approximately

14%. In other words, our findings show that, when using a fixed budget, high levels of im-

provement in the SL is more achievable than a comparable percentage improvement in the

QoS.

Keywords

Integer linear programming, Length-Bounded Cut, Branch-and-cut, Network design, Re-

silience, Budgeting constraints, Hop-limiting constraints, Survivability, Vulnerability.

iii

Research Methods

Mathematical Modeling, Exploratory Data Analysis.

iv

Table of Contents

Résumé i

Abstract iii

List of acronyms ix

Acknowledgements x

1 Introduction 1

1.1 Literature review . 2

1.2 Scientific contributions and the organization of the thesis 7

2 Preliminaries 7

2.1 Metric definitions . 7

2.2 Notation . 8

2.3 Tradeoff functions between the QoS and SL 10

3 Problem Definition and Model Formulations 12

3.1 Model based on arc flows . 12

3.2 Model based on length-bounded cuts . 14

4 Model Enhancements 16

4.1 Lifting the length-bounded cut constraints 16

4.2 Variable elimination . 16

4.3 Knapsack-type valid inequalities . 18

4.4 Generalized knapsack-type valid inequalities 18

5 The Separation Problem 19

5.1 Length-bounded cuts for paths of at most three hops 20

5.2 Minimum cut heuristic . 20

5.3 An algorithm for identifying the length-bounded cuts of any hop-limit 20

5.4 An exact IP model for detecting length-bounded cuts 22

5.5 Strengthening the detected length-bounded cuts 23

v

5.6 The extended branch-and-cut framework . 24

6 Computational Study 26

6.1 Data . 26

6.2 Experimental design . 26

7 Results and Discussion 29

7.1 Key performance indicators . 29

7.2 Computational performance comparison of the models 29

7.3 The impact of valid inequalities on the computational performance of M2

model . 30

7.4 The evolution of various KPIs with respect to budget 36

7.5 Computational performance of the best performing algorithm on the com-

plete dataset . 39

7.6 The tradeoff mechanism . 41

8 Conclusion 46

Bibliography i

A Appendix for Nomenclature v

A.1 Sets . v

A.2 Parameters . vi

A.3 Variables . vii

B Dataset ix

C Appendix for the alternative form of the separation algorithm ix

vi

List of Tables

1 Minimum, average, and maximum number of edge sets of the networks of

"RE-1" considered in the problem for different values of ∆s and ∆b. 27

2 General parameter settings for the models in the experimental runs. 28

3 First group experiment results comparing the solution performance of M1

and M2 models without any valid inequality. 30

4 Second group experiment results comparing the solution performance of M2

model with different settings. 31

5 Second group experiment results of best performing M2 model (3rd setting)

for "RE-3" networks with different average budget levels and n settings. . . . 33

6 Second group experiment results of best performing M2 model (3rd setting)

for different ∆p, ∆b, ∆s and n settings on "RE-3" networks. 35

7 Second group experiment results of best performing M2 model (3rd setting)

for every "RE-3’" network for different values of n. 36

8 Values of different Metrics averaged across all the "RE-3" networks for dif-

ferent n values in the second group of experiments. 37

9 Values of different KPIs averaged across all the "RE-3" networks for different

budget levels in the Bset and n values in the second group of experiments. . . 39

10 Overview of the computational results of the best performing algorithm on

all 50 networks in the dataset in the third group of experiments. 40

11 Average percentage of the instances with "Optimal", and "Feasible" opti-

mization status when solved for different datasets of networks considered

in this study. 40

12 Detailed results of the best performing algorithm on all 50 networks in the

dataset in the third group of experiments. 41

13 Properties of Instance Sets. ix

vii

List of Figures

1 The tradeoff function Frhk in equation (1) for different values of n and k. . . . 11

2 The tradeoff between the backup QoS and SL of the network "D7x7-5-1_10_10_20-

1" for different combinations of (n,∆p,∆b) and ∆s = 3. 45

viii

List of acronyms

2CNBR: Two-Connected Network with Bounded Rings Problem

DND: Distribution Network Design

ERP: Enterprise Resource Planning

IP: Integer Programming

k-ESNDP: k-Edge-disjoint Survivable Network Design Problem

k-HSNDP: k-Hop-constrained Survivable Network Design Problem

KPI: Key Performance Indicators

lbcut: Length-bounded Cut

LP: Linear Programming

MIP: Mixed Integer Programming

NDPVC: Network Design Problem with Vulnerability Constraints

NDPVBC: Network Design Problem with Vulnerability and Budget Constraints

NDPVC-PER: Network Design Problem with Vulnerability Constraints and Probabilistic

Edge Reliability

O-D: Origin-Destination

FMCG: Fast Moving Consumer Goods

PWCE: Protected Working Capacity Envelope

QoS: Quality-of-Service

RNDP: Ring Network Design Problem

SL: Survivability Level

VI: Valid Inequalities

ix

Acknowledgments

I would like to take this opportunity to express my heartfelt gratitude to all those who have

supported and guided me throughout this journey of completing my thesis. Their unwavering

encouragement, assistance, and understanding have been instrumental in making this work

possible. First and foremost, I extend my deepest appreciation to my esteemed thesis advi-

sors, Professor Yossiri Adulyasak and Professor Okan Arslan, for their invaluable guidance,

insightful feedback, and patient mentorship. Their expertise and dedication have significantly

contributed to shaping this research and refining my academic abilities. I am truly indebted

for the time and effort they have invested in me, especially for recommending me as a MI-

TACS intern at Hydro-Québec. I want to thank Josée Deslongchamps and especially my

project manager Amira Dems for providing a flexible working environment and acknowledg-

ing and even incorporating my ideas in the Hydro-Québec project. I would like to express my

gratitude towards Abderrehman Bani, Mouad Morabit and Charlie Chang, who I have been

fortunate to have as research collaborators during my time at Hydro-Québec. I also want to

thank Amal Khabou for her extensive technical support to carry out the computations. Ko-

ray Yenal and Selami Khaled, thank you for providing the student company throughout our

time at Hydro-Québec. In addition to this, I am grateful for all the resources and facilities

provided by HEC Montréal, GERAD and the Digital Alliance Research of Canada that fa-

cilitated the smooth execution of this study. I also want to personally thank my great friend

during my undergraduate studies; a PhD student then and now a Professor, Ram Krishna Shah

as well as to Late Professor Sameer Khandekar, for their unwavering support for sharpening

my calibre and building my foundation in the realm of academia during my undergraduate

studies. Finally, a special note of thanks goes to my friends and family, especially my Aai

(Mother) Madhavi Arvind Kumar Drave, who has been the pillar of strength and encourage-

ment throughout my life. Aai, your unwavering belief in me, your encouragement, and your

love have always had an unmeasurable impact, giving me the motivation to overcome chal-

lenges and persevere. Without your unconditional love and support, I would not have been

here today. Thank you, for everything.

Snow, Mota, Brownie, Kallu, Kalli, your brothers and sisters, and Mani, I dedicate this

thesis to you.

x

1 Introduction

General network design problems aim to identify potential points from a given set of nodes

and establish links in the networks to facilitate the flow of entities among the same to opti-

mize a certain objective (Wong 1976; Contreras and Fernández 2012). In the context of sup-

ply chain management, this idea of network design extends to the distribution network design

(DND) problem, which is a prominent and well-studied problem in the Operations Research

community (see the comprehensive reviews of Vidal and Goetschalckx 1997; Beamon 1998;

Bilgen and Ozkarahan 2004; Meixell and Gargeya 2005). In DND, the potential points can

comprise the locations of suppliers, production plants, warehouses and retail stores, among

which the flow of several entities such as single or multi-products, information and cash, is

maintained, transferred and (temporarily) stored in the most efficient manner so that several

individual objectives can be met, that may include minimization of network design cost, en-

hancement of the quality-of-service (QoS) (e.g., product delivery), profit maximization or

even a multiobjective function (Mangiaracina et al. 2015). DND offers a balanced convolu-

tion of a multitude of decisions (e.g., the location, capacity and number of facilities to open,

transportation routing, and inventory management), which can yield a significant reduction

of 60% in the organization costs (Harrison 2005). This is essentially why DND can be crucial

to the overall profitability of a firm. With the rapid advancement in information technologies

(IT), companies are getting internationalized to expand their economic operations by exploit-

ing the comparative advantage (e.g., cheap labour) of developing nations. Consequently, the

distribution networks have essentially become complex, making them vulnerable to failures.

The recent COVID-19 pandemic is a prime example of how global supply chains ranging

from medical, fast fashion to even the fast-moving consumer goods (FMCG) sector, got dis-

rupted due to a shortage of essential supplies. Over the years, network design research has

expanded to incorporating survivability requirements that add a layer of resiliency to the

designed network so that the flow of the concerned entities remains undisrupted (see the

discussion on survivable network design problems in Kerivin and Mahjoub 2005).

The resilient or survivable network design problem has found numerous applications in

multiple domains, particularly the telecommunication and IT sector being the notable "cus-

tomers". It is well known that ERP systems have a crucial role in integrating supply chains

both internally and externally by facilitating seamless information transfer to ensure end-

1

to-end supply chain visibility, which ultimately gives companies the necessary competitive

advantage. This is due to the crucial role of high-speed internet, which has in fact become an

integral part of our society, all due to telecommunications networks, which are designed to

provide seamless data transferability among a predefined set of origin-destination (O-D) pairs

R (e.g., routers, switches) through transferable links (e.g., fibre optical cables). As networks

have a finite processing capacity, they are bound to suffer various levels of technical delays,

which eventually impact their connectivity performance. Designing networks with a certain

level of QoS, is, therefore, a necessary priority for the network managers for which they often

focus on reducing the jitter, which represents the time difference between the maximum and

the minimum delay among the flow of all packets of a data within a network, to tolerable

levels (see Chapter 17 in Resende and Pardalos 2008). Each data packet or signal while be-

ing routed, has to be queued, and processed before being forwarded to the next node (router)

or link, which aggravates the total delay in its propagation within the network. Since node

and queuing delays are the dominant components of delay, bounding the number of nodes

or equivalently the hops (links) that each data packet has to traverse through its routing path,

through hop-limiting constraints is a usual yet effective way to control the jitter. Moreover, it

helps in simplifying the network operations and significantly reduces the routing costs (Bal-

akrishnan and Altinkemer 1992; Wierzbicki and Burakowski 2011). Despite deploying the

best equipment, networks are susceptible to physical breakdowns (e.g., cable cuts); therefore,

a network’s capability to “survive” in order to secure connectivity among its nodes after any

failure is another critical criterion to be considered during its design.

1.1 Literature review

Two main survivability mechanisms that have been considered in the literature are the local

rerouting and the end-to-end rerouting (Kerivin and Mahjoub 2005; Gouveia et al. 2008).

In the local rerouting mechanism, the demand is rerouted on a new path, built across the

extremities of the failed link. On the other hand, end-to-end rerouting builds a completely

new path between the origin and destination, to reroute the demand. The literature mainly

focuses on the case of end-to-end rerouting. In this context, the k Edge-disjoint Survivable

Network Design Problem (k-ESNDP), identifes k edge (or vertex)-disjoint paths among all O-

D pairs by selecting a subset of edges (links) from a given network topology at the minimum

2

network cost possible. The polyhedral properties of k-ESNDP were studied by Stoer (1992)

and later investigated for any k values by Grötschel et al. (1995). Note that k-ESNDP may

result in longer connectivity paths due to the absence of hop-limiting constraints, which have

been studied in the context of closely related (sub)problems of minimum spanning and Steiner

trees by Gouveia (1996) and Gouveia (1998) and the shortest path problem by Dahl and

Gouveia (2004). Recently, two hop-indexed formulations, characterised by nodes and arcs

variables were presented and their linear programming (LP) relaxations were compared by

Fortz et al. (2022) for the Steiner problem with hop-limiting constraints. Fortz et al. (2000)

proposed and investigated the 2-connected network with bounded meshes problem which

involves hop-constrained cycles that guarantee undisrupted connectivity of every O-D pair

through two disjoint paths such that each edge must belong to at least one of the cycles in the

designed network configuration. A description of the polyhedron associated with the two-

connected networks with bounded rings can be found in articles of Fortz and Labbé (2002)

and Fortz et al. (2006).

In conjunction with hop-limiting constraints, the k-ESNDP extends to k-Hop constrained

Survivable Network Design Problem (k-HSNDP), which ensures that data signals can be

efficiently propagated in between an O-D pair through k possible disjoint paths of at most

h hops; characterizing the network’s QoS. We ask interested readers to refer to the articles

by Kerivin and Mahjoub (2005) and Bendali et al. (2010a) to get a comprehensive overview

of the k-ESNDP and the cutting plane algorithms for the same. The polytope of k-HSNDP

has been investigated in detail for a single O-D pair by Bendali et al. (2010b); as a result of

which a polynomial-solvable cutting plane algorithm was proposed for any k ≥ 2 when h =

2,3. Huygens and Mahjoub (2007) developed integer programming (IP) formulations for the

edge as well as vertex (involving vertex disjoint paths) variant of k-HSNDP when h = 4 and

k ≥ 2. k-HSNDP for multiple O-D pairs was investigated by Dahl and Johannessen (2004)

for which they introduced valid inequalities and developed a branch-and-cut algorithm. An

exact algorithm based on Benders decomposition was developed by Botton et al. (2013) by

capitalizing on the layered network flow formulation of Gouveia (1998); efficiently solving

k-HSNDP for k ∈ {1,2,3} with hop-limits h≤ 5 in graphs of up to 21 vertices. Very recently,

Diarrassouba and Mahjoub (2023) presented and studied the properties of several new classes

that are applicable to previously developed models by Diarrassouba et al. (2016) through their

3

polyhedral investigation of k-HSNDP.

Observe that k-HSNDP relies on the assumption that all the links on the k− 1 primal

paths connecting an O-D pair will simultaneously fail and so the kth backup path will keep

the communication intact in the same O-D pair, which is pretty conservative provided the

current generation of telecommunication equipments are highly reliable. Moreover, it can

lead to costly or even infeasible network designs even when k≥ 2. In fact, a primal path may

have only partial failures while a certain section of it may remain functional. Leveraging this

idea, Gouveia and Leitner (2017) introduced the Network Design Problem with Vulnerabil-

ity Constraints (NDPVC) that guarantees the existence of hop-constrained primal paths and

backup paths after the failure of k−1 edges in the network topology for all the O-D pairs. It

is important to highlight that the paths in NDPVC need not be disjoint as they can share links

and so the backup path has to reroute any signal only across the failed section of the primal

path via new nodes/links while it may utilise the working part of the same. Consequently,

NDPVC is less restrictive than k-HSNDP with the integer expression k−1, representing the

SL of a network, along with the requirement of hop-limits serving as the QoS of the pri-

mal and backup paths. The NDPVC can be naturally extended in several dimensions. Very

recently, Arslan and Laporte (2024) investigated the scenario of multiple links failing simul-

taneously according to their respective failure rates, for which the network configuration has

to be designed by considering a minimum reliability level. They proposed and described the

new variant as the Network Design Problem with Vulnerability Constraints and Probabilistic

Edge Reliability (NDPVC-PER) and showed that strict reliability requirements can have a

significant impact on the cost of the network to be designed.

While there is an incentive to opt for shorter hop-constrained routing paths to design a

multi-edge failure-resistant network, network managers often have a limited monetary bud-

get to fulfil QoS and SL requirements simultaneously. Due to the practical importance of

budget constraints in real-life situations, they certainly do have a rich literature. For in-

stance, Costa et al. (2009), studied the Steiner problem with revenues by combining both

hop-limiting and budgeting constraints. The authors proposed various formulations based on

Miller-Tucker-Zemlin, Dantzig-Fulkerson-Johnson subtour elimination constraints and hop-

indexed or arc-based variables, and developed their branch-and-cut algorithms, whose effec-

tiveness depended on the hop-limit. For the same problem, Sinnl and Ljubić (2016) strength-

4

ened the quality of root relaxation bounds through their proposed novel node-based layered

graph model, which compromises only node variables on the layered graph rather than the

arc variables. Their branch-and-cut algorithm developed for their compact model solved the

majority of the considered instances to optimality within seconds. The budget constraints

have found applications from the perspective of capacity or financial restriction in the design

of dynamic survivable networks such as the Protected Working Capacity Envelope (PWCE),

which accomplishes survivability through reserved sufficient slack on the directed p-cycles

consisting of at least three arcs. Similarly, in the Ring Network Design Problem (RNDP), the

size of the rings providing undisrupted connectivity through spare capacity can be controlled

via budgeting constraints. A comprehensive review of the role of budget constraints in PWCE

and RNDP can be found in Chapter 16 (and the references therein) of Resende and Pardalos

(2008).

In the majority of network design studies, the O-D pairs often have the same hop-limits

and survivability requirements and these are often known in advance or stated by the network

managers through their experience. Although, through a computational study involving real-

life network instances, Orlowski and Wessäly (2006) concluded that demand-dependent or

local-level hop-limits should be prioritised over a fixed global hop-limit for all O-D pairs as

it neglects information on network size/density and therefore, cost feasible designs of larger

networks may require larger hop-limits which will eventually deteriorate the QoS they offer.

Also, a larger survivability requirement may often result in very costly networks. In fact, the

extensive computational results of Arslan et al. (2020) show that only 16.67% of the tested

network configurations were feasible to be designed when k ≥ 6. Moreover, it is obvious

and can inferred from Arslan et al. (2020) that the cost of a NDPVC network is proportional

to k and it requires at least half of the budget of a single edge resistant network with every

unit increase in k. Note that the O-D pairs usually carry a distinct load of signal demands,

which implies the signal distribution is not uniform across the O-D pairs. Thus not all O-D

pairs contribute to signal propagation on equal terms and thereby, the resilience of O-D pairs

with the smallest shortest path connectivity should be prioritized. Also, since a major portion

of the budget is required for network construction (see Chapter 11 in Resende and Pardalos

2008), it will be therefore, more attractive to design a network with individual O-D pair SLs

rather than a fixed global SL, so that maintenance resources (and hence, maintenance budget)

5

can be meticulously invested to less resilient O-D pairs, which can’t sustain multiple edge

failures. However, coming up with an optimal configuration of (h,k) for every O-D pair in

a large network can itself be combinatorially challenging. It is therefore a requirement to

treat both h and k as variables in the network design models. To the best of our knowledge,

only the article of Almathkour et al. (2024), which deals with the edge-constrained survivable

network design problem (ESNDP) with non-uniform low connectivity requirements, involves

a varying number (k here) of connecting disjoint paths from O-D pair to another. However, the

study was restricted to a polyhedral point of view. Moreover, hop-limiting constraints were

not incorporated in the study. Overall, network design problems have never been investigated

under the simultaneous application of hop-limiting, survivability and budgeting constraints.

In addition to this, different network managers may have their distinct objectives of either

improving the QoS of the network or making the network more robust against multi-edge

failures. There is a void in the literature which lacks a discussion about any mechanism that

designs a network by considering the local level trade-off between QoS and SL of all O-D

pairs; which we will fill through our study in this thesis.

Being a closely related problem to the k-HSNDP, NDPVC is also a NP-hard problem.

Flow-based formulations have been proposed for the NDPVC in the literature (Gouveia and

Leitner 2017), which rely on constructing variables for each combination of edges, O-D pair

and hop-limit. Consequently, the LP relaxation bounds for such models were poor, which

were though successively improved through the development of branch-and-cut and Benders

decomposition algorithms by Gouveia et al. (2018); accelerating solution and computational

performance of the same. Unfortunately, as these models have a huge bottleneck of being

reliant on explicit enumeration of edge sets to reconstruct paths, they can quickly become

combinatorially complex in terms of variables and constraints. Arslan et al. (2020) observed

that it is sufficient that the existence of paths is ensured, while their explicit construction

is not necessary. Thus, they developed models based on the idea of length-bounded cuts

(lbcuts), which rather than enumerating the edge set, implicitly ensure that connecting paths

exist in the network. Moreover, these models do not suffer from intractability issues even for

higher values of k(≥ 3), unlike the former models. The lbcut based models proved to be very

efficient on a wide range of problem instances than the former models and therefore, we will

extend the same solution idea for the NDPVBC.

6

1.2 Scientific contributions and the organization of the thesis

The contibutions of the current study are manifold. First, we propose a new objective function

that captures the tradeoff between the edge survivability and quality-of-service per O-D pair

in a network. To this end, we generalize the NDPVC by considering these two measures as

variables and present the Network Design Problem with Vulnerability and Budget Constraints

(NDPVBC). We then develop enhancement mechanisms for our model formulations, which

involves utilizing the structural properties of lbcuts to expand their applicability for a wide

range of hop-limits and survivability requirements, which in turn strengthens and extends the

separation problem of the branch-and-cut framework of Arslan et al. (2020). Moreover, we

identify and derive three new families of valid inequalities (VIs). Through extensive compu-

tational experimentation, we demonstrate that incorporation of these VIs can accelerate the

optimization process by approximately 22%. Additionally, we provide managerial insights

and discuss in detail the mechanism offered by our new objective function, which quantifies

the network managers’ changing preferences between survivability and quality-of-service.

The thesis is structured as follows. Section 2 starts with the preliminaries, QoS and

SL metric definitions, tradeoff function between the two metrics, and the formal problem

definition. In Section 3, we present two mixed-integer linear formulations involving a model

based on arc flows and a model based on lbcuts. Section 4 is dedicated to several model

enhancement techniques. In Section 5, we discussed the separation problem and its solution

methods. Section 6 presents the data and the experimental design, followed by the results

and discussion in Section 7. The study concludes in Section 8.

2 Preliminaries

We now discuss the QoS and SL metrics in Section 2.1, present the notation in Section 2.2,

and the tradeoff function between the two metrics in Section 2.3.

2.1 Metric definitions

There are two key metrics in the network design, related to the survivability of the network,

and the quality-of-service provided to the demand.

7

• The Survivability Level (SL) measures the ability to maintain connectivity of an O-D

demand in the case of communication disruptions due to edge failures. It is expressed

as the number of edges simultaneously failing in the network. In the context of ND-

PVC, every O-D pair is required to be connected in case of simultaneous failure of any

k−1 edges, where k is a global parameter that states the survivability requirements of a

network. A higher value of k implies greater survivability. In the NDPVBC considered

in this study, we investigate the SL at a local level, i.e., per O-D demand. The SL per

O-D demand is a variable of the problem rather than a parameter.

• The Quality-of-Service (QoS) of a demand is measured by the number of edges on the

shortest path connecting the O-D pair (or alternatively referred to as "hops"). Having a

small number of hops implies a better QoS. In the context of survivable network design

problems, a QoS is associated with the primal path of a demand. After the disruption

of primal connectivity, the backup path restores the connection; however, the hop-limit

of the backup path is generally more relaxed (i.e., may have a higher hop-limit) than

that of the primal path.

In the NDPVC, the network infrastructure has to ensure for every demand that a primal

path connecting its origin to its destination exists. Additionally, it should ensure that a backup

path exists when every edge in any subset of the edge set with cardinality equal to k−1 fails.

These primal and backup paths must respect the primal and backup hop-limits dictated by

the QoS requirements. The parameter k as well as the hop-limit requirements of the demand

are assumed to be given by the decision makers apriori in the NDPVC. In our study, we relax

this assumption and determine the SL and QoS levels per demand for a given budget.

2.2 Notation

Let G = (V,E) be an undirected graph, where V is the set of vertices and E is the set of edges

e = [i, j] with i, j ∈V and i < j. Let ce = ci j be the non-negative cost of an edge e = [i, j]∈ E.

Consider the corresponding directed graph, G = (V,A), where the arc set A contains two

opposite arcs (i, j) and (j, i) for each edge e = [i, j] ∈ E. Let di j be the hop-distance, defined

as the minimum number of arcs connecting vertices i and j ∈ V . We define demand r by a

tuple ⟨or,dr,Hmin
r ⟩, where or and dr are origin and desination, respectively, and Hmin

r is the

8

minimum hop-distance between them, that is, Hmin
r = dordr . Let R be the set of all demands.

We define Hmin
R = maxr∈R{Hmin

r } as the global hop-distance in the network, representing the

maximum of the minimum hop-distances of all demand r∈R. Finally, parameter B represents

the total budget for the network design.

Let K = {κ,κ +1, . . . ,κ +∆s} be the set of survivability levels, where κ − 1 and κ +

∆s− 1 represents the minimum and maximum survivability levels, respectively and κ ≥ 2.

Let SLr be the survivability level of demand r ∈ R. Having SLr = k− 1 for k ∈ K implies

that the network should ensure the existence of a backup path when any k− 1 edges in the

network fails. Solving the NDPVBC will determine SLr for r ∈ R (note that survivability may

not be provided for some demands).

We also define Hp
r = {Hmin

r ,Hmin
r +1, . . . ,Hmin

R +∆p} to be the set of QoS levels of the

primal paths, where Hmin
r and Hmin

R +∆p represent the minimum and maximum hop-limits,

respectively, and solving the NDPVBC will determine a value in this set as the QoS of the

primal path of every demand. Similarly, the set Hb
r = {Hmin

r ,Hmin
r +1, . . . ,Hmin

R +∆b} is the

set of QoS levels of the backup paths, where Hmin
r and Hmin

R +∆b represent the minimum and

maximum hop-limits, respectively (note that backup connectivity may not be provided for

some demands).

Observe that, for demand r ∈ R and hop-limit h ∈ N, an arc (i, j) ∈ A can be used to

route the demand from its origin or to its destination dr if and only if dori +d jdr +1≤ h. We

therefore build a subgraph per demand to remove the superfluous arcs. For demand r ∈ R,

let Ap
rh = {(i, j) ∈ A | dori + d jdr + 1 ≤ h} for h ∈ Hp

r be the primal and Ab
rh = {(i, j) ∈ A |

dori + d jdr + 1 ≤ h} for h ∈ Hb
r be the backup arc sets. Let Vp

rh and Ep
rh be the vertex and

edge sets respectively induced by the primal arc set Ap
rh. Similarly, let Vb

rh and Eb
rh be the

vertex and edge sets respectively induced by the backup arc set Ab
rh. We refer to the graphs

Gp
rh = (Vp

rh,A
p
rh) and Gb

rh = (Vb
rh,A

b
rh) as the primary and backup graphs, respectively, induced

by hop-limit h, for each demand r ∈ R.

For r ∈ R,h ∈ Hb
r and k ∈ K, consider an edge set Ck ⊂ Eb

rh with cardinality k− 1. Let

Gb
rh(Ck) be the graph induced by the arcs Ab

rh(Ck) = {(i, j) ∈ Ab
rh : [i, j] ∈Ck}. When Ck has

only one edge, we write Ab
rh([i, j]) rather than Ab

rh[{[i, j}]. In other words, Ab
rh([i, j]) contains

both arcs (i, j) and (i, j) if exists in Ab
rh. Similarly, the set Ap

rh[{[i, j]}] is defined for the primal

path.

9

2.3 Tradeoff functions between the QoS and SL

When designing a network, a high level of QoS as well as a high SL for every O-D pair is

desired. To achieve this, we introduce the following function to capture the tradeoff between

the SL and the QoS:

Frhk =
k

(h−Hmin
r +1)n (1)

where, for r ∈ R, Frhk is the benefit collected from having a hop-limit of h for the backup

paths when the SL is k−1 (i.e., the communication can be maintained after the failure of any

k−1 edges). When k = 1, the Frh1 represents the benefit collected from having a hop-limit of

h for the primal path. The parameter n is a mechanism to prioritise the design of a network

towards either a better SL or a better QoS. From the QoS perspective, the higher the value of

the hop-limit h is, the smaller Frh1 and Frhk values are. From the SL perspective, the higher

the value of the k is, the higher the Frhk value is. The denominator has a value of 1 to avoid

division by zero.

Consider a demand r ∈ R. For the sake of a concise presentation, we define h′ = h−

Hmin
r +1. Figure 1 plots the function Frhk on the vertical axis with respect to h′ on the hori-

zontal axis. Figures 1a to 1c show the function with respect to h′ for different values of k as

n varies from 0.25 to 4.0. Observe that, in all three subfigures, the function value decreases

as h′ increases and as k decreases. The decrease is more pronounced particularly when h′ is

small and n is large. Observe that, having 0 < n < 1 prioritizes SL over QoS while n > 1

yields the opposite effect, reflecting the preferences of the decision makers.

Note that one can treat SL as a requirement (by incorporating it as a constraint in a math-

ematical model), while maximizing QoS in the objective function under a given budget for

edge selection. Alternatively, QoS can be treated as a requirement, with SL as the objective.

These special cases correspond to fixing one of the two measures in our function (i.e., either

the horizontal or vertical axis in Figure 1). Since both QoS and SL are impacted by edge

selection decisions, enforcing one of these two measures induces a certain level in the other

measure. Therefore, to allow greater flexibility in edge selection and to better capture the

tradeoff between these two metrics, we treat both QoS and SL as variables in our study. The

methods developed in this thesis are general and can be adapted to the aforementioned special

cases, where one measure is treated as a constraint and the other as the objective.

10

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

0.00

1.00

2.00

3.00

4.00

5.00

6.00

h′ = (h−Hmin
r +1)

F r
hk

k = 1
k = 2
k = 3
k = 4
k = 5
k = 6

(a) n = 0.25

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

0.00

1.00

2.00

3.00

4.00

5.00

6.00

h′ = (h−Hmin
r +1)

F r
hk

k = 1
k = 2
k = 3
k = 4
k = 5
k = 6

(b) n = 1.0

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

0.00

1.00

2.00

3.00

4.00

5.00

6.00

h′ = (h−Hmin
r +1)

F r
hk

k = 1
k = 2
k = 3
k = 4
k = 5
k = 6

(c) n = 4.0

Figure 1: The tradeoff function Frhk in equation (1) for different values of n and k.

11

3 Problem Definition and Model Formulations

We now present the NDPVBC and two mathematical models for it. The first model is based

on the notion of arc flows, which involves explicitly building paths for every edge failure,

while the second one relies on the idea of length-bounded cuts, implicitly ensuring that paths

exist without explicitly building them.

Definition 1. Given an undirected graph G = (V,E), a demand set R, a budget B and the pri-

mal ∆p and backup hop-limits ∆b respectively and survivability limit ∆s, the network design

problem with vulnerability and budget constraints (NDPVBC) is defined as finding a subset

of edges that ensures the connectivity of all demands from their origins to their destinations

respecting their primary hop-limits, and determining the SL and the QoS per demand by

maximizing the tradeoff function.

We next introduce the variables to be used in the models. For e ∈ E, let variable xe

equal 1 if edge e is selected and 0 otherwise. For every demand r ∈ R, let yrhk equal 1 if

a backup path with a minimum of h hops exists after the failure of any k− 1 edges, and 0

otherwise. Similarly, variable zrh equals 1 if a primal path of a minimum of h hops exists,

and 0 otherwise. Finally, the variable urh
i j equals 1 if the arc (i, j) is used in the primal path

of h hops from the vertex or to dr, and 0 otherwise. Similarly, the variable vrhCk
i j equals 1 if

and only if the arc (i, j) is used in the backup path of h hops from the vertex or to dr, after

the failure of any k−1 edges in the set Ck ⊂ Eb
rh.

3.1 Model based on arc flows

We now present the arc-based mathematical model that explicitly builds the paths for every

edge failure case in the network by enumerating apriori all the subsets of the edge set Ck for

k ∈ K. We refer to this model as M1, which is formulated as follows.

maximize ∑
r∈R

∑
h∈Hb

r

∑
k∈K

Frhk yrhk+ ∑
r∈R

∑
h∈Hp

r

Grh zrh (2)

subject to

12

∑
j:(i, j)∈Ap

rh

urh
i j − ∑

j:(j,i)∈Ap
rh

urh
ji =

zrh if i = or

−zrh if i = dr i ∈ Vp
rh,h ∈ Hp

r ,r ∈ R,

0 otherwise

(3)

∑
j:(i, j)∈Ab

rh

vrhCk
i j − ∑

j:(j,i)∈Ab
rh

vrhCk
ji =

yrhk if i = or

−yrhk if i = dr i ∈ Vb
rh,k ∈ K,h ∈ Hb

r ,r ∈ R,

0 otherwise

(4)

∑
(i, j)∈Ab

rh(Ck)

vrhCk
i j ≤

hyrhk if Ck ̸= /0

−yrhk if Ck = /0
Ck ⊂ Eb

rh,k ∈ K,h ∈ Hb
r ,r ∈ R, (5)

∑
(i, j)∈Ap

rh

urh
i j ≤ hzrh, h ∈ Hp

r r ∈ R, (6)

∑
(p,q)∈Ap

rh([i, j])

urh
pq ≤ xe e = [i, j] ∈ Ep

rh,h ∈ Hp
r ,r ∈ R, (7)

∑
(p,q)∈Ab

rh([i, j])

vrhCk
pq ≤ xe Ck ⊂ Eb

rh,e = [i, j] ∈ Eb
rh,h ∈ Hb

r ,r ∈ R, (8)

∑
h∈Hp

r

zrh = 1 r ∈ R, (9)

∑
h∈Hb

r

∑
k∈K

yrhk ≤ 1 r ∈ R, (10)

∑
e∈E

xece ≤ B (11)

Hmin
R +∆p

∑
h=Hmin

r

(
∑
k∈K

(Hmin
R +∆

p−h)yrhk+(h−1)zrh

)
≤ Hmin

R +∆
p−1 r ∈ R, (12)

xe ∈ {0,1} r ∈ R, (13)

yrhk ∈ {0,1} k ∈ K,h ∈ Hb
r ,r ∈ R, (14)

zrh ∈ {0,1} h ∈ Hp
r ,r ∈ R, (15)

urh
i j ∈ {0,1} (i, j) ∈ Ap

rh,h ∈ Hp
r ,r ∈ R, (16)

vrhCk
i j ∈ {0,1} (i, j) ∈ Ab

rh \Ab
rh(Ck),Ck ⊂ Eb

rh,h ∈ Hb
r ,r ∈ R. (17)

The objective function (2) maximizes the benefits collected from providing service to

the demand at a certain QoS and SL. Note that the objective function coefficients Frhk are

determined by the parameter n as in equation (1). Constraints (3) are balance equations,

13

which along with constraints (9) yield a primary path for every demand r ∈ R. Similarly, if

yrhk equals 1, the constraints (4) and (10) build a backup path for demand r ∈ R using at most

h edges hops after the simultaneous failure of edges in set Ck ⊂ Eb
rh. Constraints (5) and (6)

ensure that the primal and backup paths respect their respective hop-limits. To avoid having

yrhk = 1 when Ck = /0, we have −yrhk in RHS of the constraints (5). Constraints (7) and

(8) ensure that an arc can only be used on the primal and backup paths if the corresponding

edge is selected. Constraint (11) ensures that the budget is respected for the network design.

Observe that, if a better hop-limit QoS can be provided for a backup path, than this path

should be used as the primal path. In other words, the path with the best QoS should be

allocated to the primal path. This is guaranteed through the constraints (12) that the number

of edges in the primal path is at most as many as that of any backup path for every demand

r ∈ R. Finally, the constraints (13)−(17) define the domains of the variables.

3.2 Model based on length-bounded cuts

Observe that, for k ∈ K, h ∈ Hb
r and r ∈ R, the number of Ck ⊂ Eb

rh is
(Eb

rh
k−1

)
, as it consists of

all the subsets with cardinality k−1. The number of vrhCk
i j variables in M1 is |Ab

rh \Ab
rh(Ck)|×

|Ck|× |Hb
r |× |R|; exponential in size. Therefore, we now develop a new model based on the

notion of length-bounded cuts (lbcuts) without the need to enumerate the edge sets Ck, for

k ∈ K. We first formally define the length-bounded cut.

Definition 2. Given a directed graph G = (V,A), a demand r ∈ R with its O-D pair (or,dr),

and a positive integer h, a set of arcs S ⊆ A is called a length-bounded cut (lbcut), if all the

paths of at most h arcs connecting or and dr in G can be destroyed by the deletion of arcs in

S from G.

Observe that every graph cut disconnecting or and dr (including minimum cuts) in G is

essentially a lbcut. Additional lbcuts may be present in graph G. Consider the set of edges

S ⊆ E induced by the corresponding arcs in S, which defines the lbcut that disconnects the

O-D pair in the corresponding undirected graph G. Let Γ
p
rh be the set of all such edge sets

S⊆ Ep
rh corresponding to the lbcuts S⊆ Ap

rh of length bound h in Gp
rh. Similarly, Γb

rh is defined

as the set of all edge sets S ⊆ Eb
rh corresponding to the lbcuts S ⊆ Ab

rh of length bound h in

Gb
rh. The lbcuts help ensure the existence of hop-constrained primal and backup paths in case

14

of simultaneous failure of any k -1 edges. We now repeat the Proposition 1 and Theorem 1

in Arslan et al. (2020) for the sake of completeness and refer the reader to the same reference

for the proofs.

Proposition 1. For a given graph G, a demand r ∈ R with its O-D pair (or,dr) and a hop

bound h, there exists a path of length at most h from or to dr if and only if every lbcut contains

at least one edge of the path.

Theorem 1. For a given r ∈ R, an integer k≥ 2, and a binary vector x∈ {0,1}|E|, there exists

a hop-constrained backup path of length at most h after the failure of any k-1 edges in the

graph if and only if ∑e∈E xe ≥ k for all lbcuts S ∈ Γb
rh.

The alternative formulation we present next, implicitly ensures the existence of paths via

lbcuts, while avoiding the need for exponentially many variables. We refer to this model as

M2.

(M2) maximize ∑
r∈R

∑
h∈Hp

r

Frh1 zrh+ ∑
r∈R

∑
h∈Hb

r

∑
k∈K

Frhk yrhk (2)

subject to

(9)−(15)

∑
e∈S

xe ≥ zrh S ∈ Γ
p
rh,h ∈ Hp

r ,r ∈ R, (18)

∑
e∈S

xe ≥ ∑
k∈K

k yrhk S ∈ Γ
b
rh,h ∈ Hb

r ,r ∈ R. (19)

The objective function of the model is the same as M1. The existence of the paths are

implicitly ensured through (18) and (19). Constraints (9) and (18) together guarantee that

only a single hop-bounded primal path of size h ∈Hp
r is constructed for each O-D pair r ∈ R.

Constraints (10) and (19) together ensure that, demand r ∈ R can restore connectivity using

backup paths of length at most h ∈ Hb
r , after the failure of any k− 1 edges in the network.

The rest of the constraints are as in model M1.

15

4 Model Enhancements

We will now discuss mechanisms that enhance the computational performance of our formu-

lations. All the improvements reported in this section are novel and apply to NDPVBC.

4.1 Lifting the length-bounded cut constraints

For a hop-limit h, a lbcut destroys all paths of at most h hops. Observe that a lbcut of a hop-

limit h is also a lbcut for any hop-limit g ∈ {1,2, ...,h−2,h−1}. We then have Γ
p
rg ⊆ Γ

p
rh for

0 ≤ g ≤ h. Similarly, we have Γb
rg ⊆ Γb

rh for 0 ≤ g ≤ h. Therefore, constraints (18) and (19)

can be strengthened as follows:

∑
e∈S

xe≥
h

∑
g=Hmin

r

zrg S ∈ Γ
p
rh,h ∈ H p

r ,r ∈ R. (20)

∑
e∈S

xe≥
h

∑
g=Hmin

r

∑
k∈K

k yrgk S ∈ Γ
b
rh,h ∈ Hb

r ,r ∈ R. (21)

Note that variables zrg for g = Hmin
r , . . . ,h−1 are added to the right-hand-size of constraints

(18) in order to obtain constraints (20). Similarly, k yrgk terms are added to constraints (19)

to obtain constraints (21). With the lifted constraints, we introduce model M2 as follows:

(M2) maximize ∑
r∈R

∑
h∈Hp

r

Frh1 zrh+ ∑
r∈R

∑
h∈Hb

r

∑
k∈K

Frhk yrhk (2)

subject to

(9)−(15), (20)−(21).

4.2 Variable elimination

The number of yrhk variables in M2 model can grow very large. However, some of these

variables can be eliminated by exploiting the network topology and the available budget. To

this end, we need the following definitions. Let Pb
rh to be the set of edges on the minimum cost

path connecting the O-D pair of demand r and β b
rh = ∑e∈Eb

rh
ce be total the cost of selecting

all the edges in graph Gb
rh. We also define Eb

rh(i) as the set of edges e ∈ Eb
rh that are incident

to vertex i ∈ Vb
rh.

16

Lemma 1. Consider an optimal solution (x∗,y∗,z∗) of M2. For demand r ∈ R, there exists

some k∗r ∈ K for which ∑e∈S x∗e ≥ k∗r for all S ∈ Γb
rh with at least one lbcut Ŝ ∈ Γb

rh with

∑e∈Ŝ x∗e = k∗r .

Proof. The result follows directly from the objective function (3) of model M2 and the con-

straints (21).

Observe that, in Lemma 1, the value of k∗r is induced by the values of y∗ variables in the

solution. Therefore, we have SLr = k∗r −1. In the sequel, we build bounds on this k∗ value.

Remark 1. Due to Menger’s theorem (Menger 1927), the k∗r in Lemma 1 represents the

maximum number of edge-disjoint paths that can exist between the O-D pair of demand r.

Note that these paths are not constrained by any hop limit. □

Lemma 2. For r ∈ R, we have k∗r ≤
⌊

β b
rh

∑e∈Pb
rh

ce

⌋
.

Proof. Since Pb
rh represents the set of edges on the minimum cost path connecting the O-D

pair of demand r and β b
rh represents the total the cost of selecting all the edges in graph Gb

rh,

the result follows.

This upper bound can be improved as follows:

Lemma 3. For r ∈ R, we have k∗r ≤ min
{
|Eb

rh(or)|, |Eb
rh(dr)|,

⌊
min{B,β b

rh}
∑e∈Pb

rh
ce

⌋}
.

Proof. The edge sets Eb
rh(i)(or) and Eb

rh(i)(dr) are lbcuts in Γb
rh since their removal destroys

all connectivity between the O-D pair for demand r∈R. Therefore, k∗r ≤min{|Eb
rh(or)|, |Eb

rh(dr)|}.

Additionally, observe that the maximum cost of edges selected in graph Gb
rh is min{B,β b

rh}.

The result then follows with Lemma 2.

Lemma 3 leads to the following proposition.

Proposition 2. We have

yrhk = 0 for all r ∈ R,h ∈ Hb
r ,k ∈ K : k > min

{
|Eb

rh(or)|, |Eb
rh(or)|,

⌊
min{B,β b

rh}
∑e∈Pb

rh
ce

⌋}
.

(22)

Proof. The result directly follows from Lemma 3.

To facilitate the presentation, we refer to (22) as VI-1.

17

4.3 Knapsack-type valid inequalities

Observe that when eliminating variables using Proposition 2, we explicitly consider the edges

on the minimum cost paths in a graph Gb
rh of demand r ∈ R. In the next valid inequality, we

also account for the edges that are not considered in Proposition 2.

Proposition 3. The following is a valid inequality for M2 formulation.

∑
e∈E \Eb

rh

cexe + ∑
k∈K

πrhk yrhk≤ B h ∈ Hb
r ,r ∈ R. (23)

where

πrhk =

k ∑

e∈Pb
rh

ce, k ≤ min

{
|Eb

rh(or)|, |Eb
rh(dr)|,

⌊
min{B,β b

rh}
∑e∈Pb

rh
ce

⌋}

M, otherwise

and M is a big number.

Proof. Due to Proposition 2 and Pb
rh⊂Eb

rh, we have ∑k∈K πrhk yrhk≤∑e∈Eb
rh

cexe for r∈R and

h∈Hb
r . Since ∑e∈E cexe = ∑e∈Eb

rh
cexe+∑e∈E\Eb

rh
cexe, we have ∑e∈E cexe ≥∑k∈K πrhk yrhk+

∑e∈E\Eb
rh

cexe. As ∑e∈E cexe ≤ B, the result follows.

We refer to (23) as VI-2.

4.4 Generalized knapsack-type valid inequalities

The constraints (23) can be generalized as in the following proposition.

Proposition 4. The following is valid for M2 formulation:

∑
e∈E \(

⋃
h∈Hb

r
Eb

rh)

cexe + ∑
h∈Hb

r

∑
k∈K

πrhk yrhk≤ B r ∈ R. (24)

Proof. Recall that the constraints (10) ensure that the backup paths for demand r are built

for a single hop value h ∈ Hb
r . Therefore, the second term in the constraint will utilise a part

of the budget B and give the same value as in the second term of the constraint (23). As the

second term involves edges from ∪h∈Hb
r
Pb

rh and Pb
rh ⊂ Eb

rh for all h∈Hb
r , the remaining budget

can be invested on the edges that are disjoint to the minimum cost paths of the second term.

This generalizes the constraints (23) and hence, the validity of (24) holds.

We refer to (24) as VI-3.

18

5 The Separation Problem

Consider a given solution vector x̂ ∈ R|E|, ŷ ∈ R|R|×|Hb
r |×|K| and ẑ ∈ R|R|×|H

p
r | of NDPVBC.

Then the separation problem for the constraints (20) and (21) either identifies a lbcut of a

given weight in the subgraph induced by the solution vector (x̂, ŷ, ẑ), or concludes that none

exist. We will carry out the separation in the following ways:

• For r ∈ R and h ∈ Hp
r \Hb

r , the constraint (20) is separated by a lbcut S ∈ Γ
p
rh with

∑e∈S x̂e< ∑
h
g=Hmin

r
ẑrg.

• For r ∈ R, h ∈ Hb
r \Hp

r and k ∈ K, the constraint (21) is separated by a lbcut S ∈ Γb
rh

with ∑e∈S x̂e< ∑
h
g=Hmin

r
∑k∈K k ŷrgk.

• For r ∈ R, h ∈Hp
r ∩Hb

r and k ∈ K, the constraints (20) and (21) are simultaneously sep-

arated by a lbcut S ∈ Γ
p
rh ∪Γb

rh with ∑e∈S x̂e< max{∑h
g=Hmin

r
ẑrg,∑

h
g=Hmin

r
∑k∈K k ŷrgk}.

In this case, the lbcut has to be detected only once for both primal or backup graphs.

It is obvious ∑
h
g=Hmin

r
ẑrg < ∑

h
g=Hmin

r
∑k∈K k ŷrgk, if the constraints (10) are binding at

optimality. Thus, adding a violated constraint (21) implies that the constraint (20) is

also respected in the model M2. Hence, we consider the maximum of
(

∑
h
g=Hmin

r
ẑrg
)

and
(

∑
h
g=Hmin

r
∑k∈K k ŷrgk

)
. Additionally, since primal lbcuts are limited in number, so

during separation, it is possible that the size of the lbcut may exceed the minimum of

RHS of constraints (20) and (21), but it may be less than the maximum of RHS of con-

straints (20) and (21). This justifies the use of the maximum operator in the separation.

We call this separation as "common" separation.

In the subsequent sections, we discuss an integer programming (IP) model and various

algorithms to find the minimum-weight lbcut, followed by the details on the implementation

of the separation algorithm in our branch-and-cut framework.

Note that the separation problem involves detecting a lbcut with the smallest weight pos-

sible. Since finding lbcuts is NP-hard when hop-limit h≥ 4, the separation problem is itself

NP-hard. Thus, the separation is carried out in a heuristic fashion, by prematurely terminat-

ing a lbcut detection technique. This yields a lbcut of a suboptimal weight. On the other

hand, exact separation will involve running a model or an algorithm without any time-limit.

This exact separation is essential as it will guarantee the optimality of the separation problem

when heuristic algorithms fails to detect any cuts.

19

5.1 Length-bounded cuts for paths of at most three hops

Paths of at most three hops have a unique structure such that all the vertices are always

incident to either the origin or destination vertices of a connected O-D pair. Exploiting this

trait, Mahjoub and McCormick (2010) built a linear-time network transformation procedure

in which an application of the maximum flow minimum cut theorem on the transformed graph

condenses to finding a minimum weight lbcut in the original graph. Note that as the identified

cut is a lbcut, this method provides an exact separation for the constraints (20) and (21) when

the hop-limit is at most 3 hops, otherwise it is a heuristic in the separation problem, which

has been briefly described in the next section. We refer to this technique as lbcut3(Ĝ), when

solved on an input directed graph Ĝ.

5.2 Minimum cut heuristic

In a graph, all the minimum-weight cuts are essentially the lbcuts. Therefore, a lbcut can

be identified by running any classical minimum graph cut finding algorithm as a heuristic to

detect the violations in constraints in both fractional and integer separation.

5.3 An algorithm for identifying the length-bounded cuts of any hop-

limit

In a given directed graph, the algorithm of Golovach and Thilikos (2011) can detect a lbcut

of at most a given size or conjecture that no such cut exists. In this section, we will present

and discuss the weighted version of their algorithm with certain modifications to suit our

requirements. Consider a graph Ĝ = (V̂ , Â), an O-D pair r, an integer hop-limit h, a set

of arcs X and the vectors x̂|Â|, ẑ|H
p
r | and ŷ|H

b
r |×|K|, representing the edge, primal graph and

backup graph weights respectively. Then a lbcut S ⊂ Ĝ can be identified that can destroy

all the paths of at most h arcs connecting r such that the total weight of edges in S, w(X) is

strictly less than Rcut , where Rcut represents the RHS of the constraints (20) or (21) and it

varies depending on the value of hop-limit h. The Rcut has to be computed as follows:

20

Rcut =

Hmin
R +∆p

∑
g=Hmin

r

ẑrg, h ∈ Hp
r \Hb

r

Hmin
R +∆b

∑
g=Hmin

r

∑
k∈K

k ŷrgk, h ∈ Hb
r \Hp

r

max

{
Hmin

R +∆b

∑
g=Hmin

r

∑
k∈K

k ŷrgk,
Hmin

R +∆p

∑
g=Hmin

r

ẑrg

}
, h ∈ Hp

r ∩Hb
r

The details of the algorithm have been presented as a pseudo-code in Algorithm 1. The

algorithm initiates by computing w(X), followed by the value comparison between w(X)

and Rcut and terminates if w(X) is at least Rcut . Otherwise, the shortest path connecting r

is computed in the subgraph Ĝ\X , which is devoid of any edges in X . In case the length of

the path is at most h hops, it implies that X is not a feasible lbcut since by Proposition 1, a

lbcut must contain at least one edge of the path sp. Therefore, the arcs of sp are iteratively

appended to the set X until the value Rcut exceeds the set’s weight w(X) and thereby, making

set X a feasible lbcut. As the set is finite, the algorithm converges. Observe that the separation

problem for the O-D pair r is solved via a single call of lbcutA(Ĝ,r,h,φ , x̂, t). Note that we

have made two modifications to the original algorithm. First, similar to Arslan et al. (2020),

the weight w(X) of set X is compared with Rcut rather than its cardinality (line 2). Secondly,

in addition to the set X , our algorithm returns the set’s weight w(X) (lines 2, 8 and 10).

Particularly, when h∈Hp
r ∩Hb

r and if a lbcut is identified, then w(X) has to be compared with

the summation of both primal (ẑ) weights across h ∈ Hp
r \Hb

r and the summation of backup

weights (ŷ) across h ∈ Hp
r \Hb

r and k ∈ K; separately to identify potential violations of both

the constraints (20) and (21).

Additionally, in the cases of networks having multiple zero-weight arcs represented by the

set X0, calling lbcutA(Ĝ,r,h,X0,(x̂, ẑ, ŷ), t), is more computationally effective in identifying

lbcuts due to no contribution of those zero-weight arcs to the total cut weight w(X). Despite

being a fully polynomial time algorithm, the algorithm may stuck in case of higher hop-limits

h (Arslan et al. 2020) and therefore, we will run it during the heuristic separation only within

a certain time limit t (line 8). For simplicity, we will call our algorithm as lbcutA(Ĝ, t).

21

Algorithm 1 lbcutA(Ĝ,r,h,X , x̂,Rcut , t) Algorithm
Input: r, h, x̂, Rcut , t

Output: An lbcut S ⊇ X of weight, w(X)< Rcut , destroying paths of length h or false if no

such lbcut exists.

1: w(X)← ∑(i, j)∈X x̂i j

2: if w(X)≥ Rcut then return (NULL,NULL)

3: Let sp be the shortest path for r in Ĝ\X

4: if |sp| ≥ h+1 then return (X ,w(X))

5: else

6: for (i, j) ∈ sp do

7: Let Trun be the algorithm’s current running time

8: if Trun > t then return (NULL,NULL)

9: Y,w(Y) =lbcutA(Ĝ,r,h,X ∪ (i, j), x̂,Rcut , t)

10: if Y ̸= NULL then return (Y,w(Y))

11: return (NULL,NULL)

5.4 An exact IP model for detecting length-bounded cuts

We now present a mathematical model to compute a minimum-weight lbcut. For a given

directed graph Ĝ = (V̂ , Â) with its vertex and arc sets of V̂ and Â respectively, a positive

integer length bound h and an O-D pair (or,dr), consider each arc (i, j) ∈ Â has a unit length

x̄i j ∈ [0,1] and an associated binary variable fi j. Ĝ equals Gp
rh and Gb

rh when finding a lbcut

in a primal and backup graph induced by the hop bound h ∈ Hp
r \Hb

r and Hb
r , respectively,

for every r ∈ R. For every arc (i, j) ∈ Â, fi j = 1 if and only if the arc (i, j) is an element of

the minimum lbcut and arc weights x̄i j takes values from the corresponding edge variables in

either the fractional or integer solution of x̂i j ∈ x̂ in the separation problem. In addition, con-

sider the integer variable ωi as the shortest path from the vertex i∈ V̂ to the destination vertex

dr if and only if it will not constitute any arc, which is an element of the lbcut. Otherwise, ωi

is a large number M.

(lbCutM) minimize ∑
(i, j)∈A

x̄i j fi j (25)

22

subject to

ωdr = 0 (26)

ωi ≤ ω j +1+M fi j (i, j) ∈ Â, (27)

ωor ≥ h+1 (28)

ωi ≥ 0 i ∈ V̂ , (29)

fi j ∈ {0,1} (i, j) ∈ Â. (30)

The objective function (25) minimizes the total weight of the lbcut. Constraints (26) and

(27) ensure that shortest paths from every vertex i ∈ V̂ to dr are correctly computed by the ωi

variables. Constraint (28) restricts the O-D pair distance to at least h+ 1 hops. Constraints

(29) and (30) define the domain space for the variables. We refer to this mathematical model

as lbcutM(Ĝ, t), where t is the time-limit, and it will be used during both heuristic and exact

separation to detect lbcuts in the graph Ĝ. In comparison to the other discussed algorithms

in the Section 5.1−Section 5.3, the lbcutM(Ĝ, t) contributes the highest number of cuts per

instance in the separation problem as showcased by Arslan et al. (2020).

5.5 Strengthening the detected length-bounded cuts

Note that the lbcuts identified through the exact model or the algorithms are potentially vul-

nerable to including many zero-weight arcs. Koch and Martin (1998) has demonstrated that

the cardinality of the minimum weight cuts can be effectively minimized, by assigning a

very small ε value to zero-weight arcs at the cost of very little optimality spoilage and addi-

tional computational time. We will thus refer the techniques: lbcut3 and minCut as ε-lbCut3

method and ε-MinCut heuristic respectively. Although for the lbcuts derived from the lb-

cutM model and lbcutA algorithm, a modified version of the lbcutM model was developed in

which the objective function coefficients of the arc variables available in the generated lbcut

are equated to one, while the rest of the coefficients are assigned a large number. Solving this

model, for a small time-limit of 0.1 seconds has been proven to be very effective in strength-

ening the lbcuts (Arslan et al. 2020). We call this technique as CutEnhancer(Cutset), where

Cutset contains the identified lbcuts in the separation problem and t is the time-limit.

23

5.6 The extended branch-and-cut framework

Our framework is an extended version of the branch-and-cut framework, developed by Arslan

et al. (2020), which was applicable for |Hp
r |= |Hb

r |= |K|= 1 only. The pseudo-code for the

separation algorithm to detect any violated solutions in a node in the branch-and-bound tree

is presented in Algorithm 2.

In every callback, the constraints (20) or (21) are dynamically separated by identifying

cuts (LHS of constraints (20) or (21)) and detecting their violations for any potential inte-

ger solution for every hop-limit h ∈ Hp
r ∪Hb

r . When h ≤ 3, the computationally effective

lbcut3 provides an exact separation (lines 13−15), while for h > 3, heuristic separation (lines

16−22) is achieved via the implementation of the ε-MinCut along with the hybrid applica-

tion of the model lbcutM and algorithm lbcutA with their respective time-limits of 0.1 s and

0.016 s (Arslan et al. 2020). Due to the existence of potentially many fractional solutions, the

separation of the fractional solutions was carried out only at the root node until the improve-

ment in LP relaxation is at least the tailing-off threshold of 0.01% (Sherali and Driscoll 2000)

in the last three callbacks. Otherwise, we resort to branching when any algorithm gets stuck.

Moreover, the violated constraints (20) or (21) added at the root node will be applicable

throughout the branch-and-bound tree. As Hp
r ⊆ Hb

r , so when h ∈ Hp
r ∩Hb

r , every algorithm

will be executed only once as indicated in line 9, in which c stands for common separation;

rather than separately for primal (‘p’) and backup (‘b’) graphs and thus, every algorithm or

model can yield at most two cuts in a single callback. Finally, as the exact separation (lines

24−29) when h > 3 is NP-hard, we exit the loop (lines 25−29) as quickly as a violation is

detected since the identification of cuts for the remaining O-D pairs for the hop-limit h can

be carried out within the heuristic separation (lines 16−22) in the next callback. Note that

the separation algorithm can be modified to identify primal and backup cuts separately as

summarized in the Algorithm 3 in the Appendix C.

24

Algorithm 2 Separation Algorithm

Input: Demand Set R, the limits (∆p, ∆b, ∆k), κ , primal ẑrh and backup ŷrhk weights during

a callback

Output: A set of violated constraints

1: H←{Hmin
R +∆b,Hmin

R +∆b−1, . . . ,minr∈R{Hmin
r }}

2: for h ∈ H do
3: for r ∈ R do

4: if h≥ Hmin
r and h > Hmin

r +∆p then
5: irh← b // Identify Cut for backup (‘b’) path(s) only

6: Grh← Gb
rh // Utilise backup graphs for backup (‘b’) cuts only

7: Rirh
cut ← ∑

Hmin
R +∆b

g=Hmin
r

∑
κ+∆k

k=κ
k ŷrhk // Get the RHS value of the Cut

8: else if h≥ Hmin
r and h ∈ Hb

r ∩Hp
r then

9: irh← c // Identify Cuts (if possible) for both ‘p’ and ‘b’ paths

10: Grh← Gb
rh // Here, Gb

rh = Gp
rh, so ‘b’ graphs used for both ‘p’ and ‘b’ cuts

11: Rirh
cut ←max

{
∑

Hmin
R +∆p

g=Hmin
r

ẑrh,∑
Hmin

R +∆b

g=Hmin
r

∑
κ+∆k

k=κ
k ŷrhk

}
12: if Rirh

cut > 0 then // Cuts with Rirh
cut = 0, are satisfied by default

13: if h≤ 3 then

14: /* Exact Separation */

15: CutSet irh += ε-lbcut3(Grh) // Section 5.1

16: else
17: /* Heuristic Separation */
18: CutSet irh += ε-minCut(Grh) // Section 5.2

19: tempCutSet irh += lbcutA(Grh,0.016) // Section 5.3

20: tempCutSet irh += lbcutM(Grh,0.1) // Section 5.4

21: tempCutSet irh ← CutEnhancer(tempCutSet irh,0.1) // Section 5.5

22: CutSet irh ←CutSet irh ∪ tempCutSet irh

23: /* Exact Separation */
24: if

⋃
irh∈{c,b}CutSet irh = NULL then

25: for r ∈ R do

26: if h≥ Hmin
r and h > 3 then

27: if Rirh
cut > 0 then // Cuts with Rirh

cut = 0, never violates

28: CutSet irh += lbcutM(Grh,10800) // Section 5.4

29: CutSet irh ← CutEnhancer(CutSet irh) // Section 5.5

30: return CutSetc∪CutSetb

25

6 Computational Study

We now present the data in Section 6.1, the experimental design in Section 6.2, and the results

in Sections 7. All the models and algorithms have been implemented using Python 3.11 and

Gurobi 11.0.0 (Python API) in a Linux environment. All the experiments are conducted on

the Béluga cluster of the Digital Research Alliance of Canada, using a single thread and 20

GB of RAM. A three-hour time limit is set for every experiment conducted.

6.1 Data

We use the NDPVC instances created by Gouveia and Leitner (2017). There are a total of 50

instances and the details are presented in Appendix B. Each dataset belongs to one of the 4

groups C, D, E and RE. The C and D groups have a grid structure while the remaining two

are randomly generated. Each group has a distinct way of selecting O-D pairs and assigning

costs to the edges. We refer the reader to Gouveia and Leitner (2017) for the generation

scheme of these group instances.

6.2 Experimental design

Our experimental design consists of three groups of experiments, totaling 94,932 instances.

The first group of experiments consists of the five networks in the "RE-1" group to com-

pare the computational performances of models M1 and M2. We have the primal hop-

limit range as Hp
r = {Hmin

r ,Hmin
r +1, . . . ,Hmin

R +∆p}, the backup hop-limit range as Hb
r =

{Hmin
r ,Hmin

r +1, . . . ,Hmin
R +∆b} and the survivability set as K = {κ,κ +1, . . . ,κ +∆s}, for

every problem instance.

For every network topology, we determine a minimum and a maximum budget level and

for a given parameter settings. Let B0 be the network design cost of servicing only the primal

paths for every demand r ∈ R. The minimum budget level of B0 implies that the correspond-

ing NDPVBC instance is feasible. In order to determine a maximum budget level, we first

consider that the budget is infinite (i.e., all the edges in the network can be selected). Solving

the corresponding model for a given n value yields a unique network configuration that has

the maximum level of service that can be provided per demand for a given n parameter. This

maximum level of service can be either the best QoS or SL or their balanced mix depending

26

on the value of n. Observe that not all the edges are required when providing this service. So,

let Bmax
n be this minimized cost of providing this maximum service level for a given n value

(Note that the optimal solution will not change beyond this budget level of Bmax
n). We then

define Bmax = maxn∈{0.25,1.0,4.0}{Bmax
n }, as the universal maximum network design cost of

providing the maximum level of service. Let ∆B be the required number of budget levels be-

tween B0 and Bmax which is used to generate the budget set: Bset = {B0,B1,B2, . . . ,B(∆B+1)}

of equally spaced budget levels. Note that B(∆B+1) = Bmax and |Bset | = ∆B + 2. Each bud-

get level in Bset represents a unique NDPVBC instance, which is solved for any parameter

settings chosen for a given network topology.

Due to the enumerative nature of model M1, the number of variables can grow very large.

Table 1 presents the minimum, average and maximum number of edge sets associated with

the "RE-1" networks for different values of ∆b and ∆s. As variables vrhCk
i j in model M1 grow

proportionally to the size of these edge sets, so, for testing purposes, the survivability set

K was defined for ∆s ≤ 1 and we set the highest primal and backup limits as ∆p ≤ ∆b ≤ 1

respectively, to define the hop-limit ranges Hp
r and Hb

r . The networks were designed for all

values of n across a total of ∆b + 2 budget levels. This resulted in a total of 6 parameter

settings per NDPVBC instance with ∆B = 10, ∆p ∈ {0,1}, ∆b ∈ {0,1}, ∆s ∈ {0,1} and n ∈

{0.25,1.0,4.0}. Consequently, 1,146 experiments per model, were carried out over the "RE-

1" network topologies to do the performance testing of both M1 and M2.

Table 1: Minimum, average, and maximum number of edge sets of the networks of "RE-1"

considered in the problem for different values of ∆s and ∆b.

∆b

∆s 0 1 2

0 (101, 632.8, 1450) (371, 1,288.4, 2,442) (914, 2,206.6, 3,574)

1 (530, 15,357.8, 47188) (4,815, 41,619.6, 97,859) (20,472, 87,210.2, 162,733)

2 (2049, 317,377.2, 350,425) (49,233, 1,074,770.20, 262,2544) (35,0425, 2,622,544, 5,339,733)

3 (6,203, 5,696,759.2, 23,595,962) (414,344, 22,961,378.8, 67,966,639) (4,811,708, 63,216,803.4, 136,718,994)

4 (14,960, 90,096,126.4, 402,115,777) (2,920,892, 416,012,472.6, 1,322,169,428) (54,708,766, 1,263,966,742.2, 2,860,503,126)

The second group of experiments were conducted on the "RE-3" networks to determine

the best valid-inequality (VI) setting for the model M2 using the parameters in Table 2. With

∆p ≤ ∆b, both the primal ∆p and backup limits ∆B were tested from 0 to 2, while ∆s varied

up to 4. Parameters ∆B and n had the same values as in the first group of experiments. This

27

resulted in a total of 90 parameter settings per NDPVBC instance, which along with 8 VI

settings yielded a total of 42,624 runs for the second group of experiments.

Table 2: General parameter settings for the models in the experimental runs.

Parameter Possible values

∆B 10

∆p {0, 1, 2}

∆b {0, 1, 2}

∆s {0, 1, 2, 3, 4}

n {0.25, 1.0, 4.0}

Finally, using the best valid-inequality setting and the 90 parameter settings of Table 2,

a total of 53,208 experimental runs were conducted over the remaining 40 networks in the

third and final group of experiments.

28

7 Results and Discussion

We first present the mathematical definitions of the key performance indicators (KPIs) char-

acterising the metrics of network design. We then present the computational results and

discuss the role of budget over and the tradeoff between the QoS and the SL.

7.1 Key performance indicators

Let (x∗,y∗,z∗) be the optimal solution vector of a NDPVBC instance. Then for an r ∈ R the

following local-level KPIs can be defined as an output of the optimal solution of our model:

SLr = ∑
r∈R

∑
h=Hb

r

∑
k∈K

(k−1) y∗rhk (31)

QoSb
r = ∑

r∈R
∑

h∈Hb
r

∑
k∈K

h y∗rhk (32)

Here, SLr represents the SL of an O-D pair r. Note that SLr indicates that r can survive the

failure of at most (κ +∆s−1) edges if the backup paths are constructed for a given budget.

Otherwise, it will lose connectivity as soon as an edge fails. Thus, SLr can range from 0 to

(κ +∆s−1) and a higher value of SLr implies a better survivability level of an O-D pair r.

Similarly, the size of the backup paths for demand r is defined as QoSb
r . Since it is not

necessary to have backup paths, particularly when the budget is very tight, it can also vary

between 0 and Hmin
R +∆b. However, a smaller value implies a better QoS.

With the local-level definitions, the metrics can be defined for the given network at a

global level:

SLR =
∑r∈R SLr

|R|
(33)

QoSb
R =

∑r∈R QoSb
r

|R|
. (34)

The global level metrics are the averages of their local counterparts.

7.2 Computational performance comparison of the models

Table 3 presents the experimental results of the first group comparing the solution perfor-

mance of the M1 and M2 models. The first column represents the setting number, and the

second column reports the model solved. Setting number 0 corresponds to solving the M1

29

with default Gurobi settings while setting number 1 corresponds to the M2 without any VIs.

The third column reports the status of the solution. The status "Optimal" implies that the

model is solved to optimality, the status"Memory/Feasible" signifies that the model found

a feasible solution but it was terminated prematurely due to a memory problem. "Mem-

ory/Unknown" is similar to "Memory/Feasible" except that no feasible solution was found.

Note that there is no "Infeasible" status since within the budget Bset , the NDPVBC is always

feasible. The fourth and fifth columns report the average solution time in seconds and the

average optimality gap (%) as reported by Gurobi. The last two columns provide information

on the number and percentage of instances solved under each optimization status for each

setting. Among the 1,146 instances, model M1 can solve 685 instances to optimality, while it

encounters memory problems in the remaining 428 instances. On the other hand, M2 gener-

ates and solves all of the instances to optimality within an average of 4.9 seconds. Therefore,

we conclude that M1 is computationally inferior to model M2.

Table 3: First group experiment results comparing the solution performance of M1 and M2

models without any valid inequality.

Setting Model Optimization Status Avg. Time (s) Avg. Gap (%) # Instances

0 M1

Optimal 121.0 0.00 685

Memory/Feasible 908.0 21.29 33

Memory/Unknown 538.2 - 428

1 M2

Optimal 4.9 0.00 1,146

Memory/Feasible 0.0 0.00 0

Memory/Unknown 0.0 0.00 0

7.3 The impact of valid inequalities on the computational performance

of M2 model

The second group of experiments is designed to measure the impact of VIs on the com-

putational performance of the M2 model. The results of the eight different VI settings are

reported in Table 4. With the first column representing the setting number, the next three

columns indicate whether VIs of various forms have been incorporated in the model M2 or

30

not. The fifth and sixth columns show the total number of instances and the percentage of

instances solved to optimality respectively. The seventh column reports the maximum opti-

mality gap in percentage. Finally, the average solution times in seconds are reported in the

eighth column. Setting 3, which involves VI-2 only (constraints (23)), provides an average

computational improvement of 21.64% with respect to setting 1, which corresponds to model

M2 without any VIs, and setting 3 is the best-performing setting among the eight options. As

such, setting 3 is used in the rest of the experimental runs.

Table 4: Second group experiment results comparing the solution performance of M2

model with different settings.

Solved Maximum Average

Setting VI-1 VI-2 VI-3 # Instances Instances (%) Optimality Gap (%) Time (s)

1 0 0 0 5,328 100.00 0.00 29.2

2 1 0 0 5,328 99.98 1.71 30.1

3 0 1 0 5,328 100.00 0.00 22.9

4 0 0 1 5,328 99.98 0.79 28.1

5 1 1 0 5,328 100.00 0.00 23.7

6 0 1 1 5,328 100.00 0.00 26.0

7 1 0 1 5,328 100.00 0.00 26.3

8 1 1 1 5,328 99.98 1.71 27.0

Table 5 presents the results of the second group experiments conducted on "RE-3" net-

works with the best performing M2 model (3rd setting) for different n values and average

budget levels. In general, the problem takes longer times to solve when n < 1. The average

solution times are 55.0 s, 9.6 s and 4.0 s for n = 0.25, n = 1.0, and n = 4.0 respectively,

which showcases that it grows exponentially as n decreases. Moreover, computational times

vary in a concave fashion with respect to increasing budget levels. Excluding the budget

B0 in the case of n = 0.25, the computational time can nearly double from an average of

66.1s to 120.4 s, to solve an instance to optimality, until the threshold average budget range

of [1051.78,1216.95] is hit, which is at least [2.7,3.1] times the minimum budget B0. This

can be explained as follows. Recall that a backup path is not always required as per the

constraints (10). So, when the budget is very tight, the constraints (10) remain non-binding

31

for most of the demands, leaving O-D pairs connected through primal paths only, which are

easier to identify as there are limited primal graph lbcuts to separate in comparison to backup

lbcuts. Although, as the budget is relatively increased, the survivability aspect of the network

can be prioritised and therefore, the network topology is designed to be robust against a larger

number of edge failures. This leads to a larger value of k in the RHS of the constraints (21),

which in turn increases the number of constraints to separate; yielding higher solution times.

Beyond the threshold budget range of [1051.78, 1216.95], the solution time can sharply drop

by a minimum factor of 1.6. This is also expected since the budget constraint (11) becomes

increasingly redundant with increasing budget levels; thereby relaxing the formulation M2.

This concave nature of solution time with respect to increasing average budget levels is also

consistent for both n = 1.0 and n = 4.0. However, the instances in these cases are relatively

solved faster due to diminishing prioritization of survivability as n increases.

32

Table 5: Second group experiment results of best performing M2 model (3rd setting) for

"RE-3" networks with different average budget levels and n settings.

Average Time (s)

Average n

Budget Levels # Instances 0.25 1.0 4.0 Average Time (s)

B0 = 391.93 444 4.0 3.6 3.4 3.7

B1 = 556.53 444 66.1 13.5 5.1 28.2

B2 = 721.62 444 104.0 17.6 5.1 42.2

B3 = 886.71 444 97.0 16.5 4.6 39.4

B4 = 1051.78 444 120.4 14.9 4.2 46.5

B5 = 1216.95 444 117.4 12.1 3.9 44.5

B6 = 1381.92 444 74.2 8.6 3.9 28.9

B7 = 1547.09 444 41.8 7.4 4.0 17.7

B8 = 1712.16 444 16.4 6.3 3.9 8.9

B9 = 1877.25 444 8.6 5.7 3.8 6.0

B10 = 2042.34 444 6.3 5.2 3.6 5.1

B11 = 2207.82 444 4.4 3.5 3.1 3.7

Average/Total 5,328 55.0 9.6 4.0 22.9

The primal and backup hop-limits, ∆p and ∆b, and the survivability limit ∆s have a sig-

nificant impact on solution efficiency. Table 6 presents the results of the second group of

experiments with the best performing M2 model for different ∆p, ∆b and ∆s settings on "RE-

3" networks across different values of n. The maximum average time for ∆s = 4 is 311.7

s. Clearly, the average time increases as ∆s takes higher values since there will be multiple

edge failure instances to consider. The same scenario exists for larger values of ∆b, which

expands the hop-limit range set Hb
r . As finding a lbcut becomes increasingly harder due to

its NP-hard nature for h≥ 4, eventually the solution time increases significantly. In fact, the

solving instances with ∆b = 2 and ∆s = 4 on average can take a minimum of 180.2 s which

is at least a 450 times multiplier of the average time of 0.4 s in the case of (∆b,∆s) = (0,0).

Another inference can be drawn that when ∆p = ∆b, there can be some minor dampening

33

effect since in such cases the detected lbcuts are applicable to both primal and backup paths.

For example, the instances with settings n = 0.25, ∆s = 3 and ∆b = ∆p have average solu-

tion times as {1.0,19.8,102.2} as ∆p takes values from {0,1,2}. As soon as there is a gap

between ∆b and ∆p, the average solution time can increase significantly to 219.6 s, which

occurs when ∆b−∆p = 1 and ∆p = 1. This pattern is consistent for all n and ∆b = ∆p values,

with an exceptional case when (∆p,∆b,∆s) = (2,2,4) takes more time to solve than instances

with setting (∆p,∆b,∆s) = (0,2,4) for n = 0.25.

34

Table 6: Second group experiment results of best performing M2 model (3rd setting) for

different ∆p, ∆b, ∆s and n settings on "RE-3" networks.

Average Time (s)

n

∆p ∆b ∆s # Instances 0.25 1.0 4.0 Average Time (s)

0 0 0 180 0.4 0.3 0.2 0.3

0 0 1 180 0.7 0.4 0.4 0.5

0 0 2 180 0.9 0.4 0.3 0.6

0 0 3 180 1.0 0.5 0.3 0.6

0 0 4 180 1.2 0.5 0.3 0.6

0 1 0 180 1.6 1.2 0.9 1.3

0 1 1 180 7.0 2.1 1.0 3.4

0 1 2 180 18.8 3.6 0.9 7.8

0 1 3 180 47.3 5.8 1.0 18.1

0 1 4 144 35.0 4.9 0.8 13.6

0 2 0 180 3.5 3.1 2.5 3.0

0 2 1 180 14.2 5.1 2.7 7.3

0 2 2 180 45.2 7.7 2.6 18.5

0 2 3 180 122.5 13.3 2.5 46.1

0 2 4 180 180.2 22.3 2.4 68.3

1 1 0 180 5.3 4.3 3.2 4.3

1 1 1 180 9.0 5.0 3.6 5.9

1 1 2 180 12.6 7.0 4.2 8.0

1 1 3 180 19.8 8.6 4.1 10.9

1 1 4 180 47.7 11.7 4.3 21.2

1 2 0 180 15.9 7.8 4.6 9.5

1 2 1 180 35.3 9.0 4.8 16.3

1 2 2 180 97.8 16.1 5.7 39.9

1 2 3 180 219.6 21.5 5.4 82.1

1 2 4 180 311.7 29.0 5.1 115.2

2 2 0 180 28.5 13.1 10.4 17.3

2 2 1 180 30.2 15.4 11.6 18.7

2 2 2 180 49.4 17.9 12.5 26.6

2 2 3 180 102.2 22.7 11.8 45.6

2 2 4 144 214.8 29.9 12.1 85.6

Average/Total 5,328 55.0 9.6 4.0 22.9

35

Table 7 reports the results of the second group of experiments for each of the "RE-3"

networks separately. Clearly, solving the problem on some networks can be quite challenging.

In particular, network "RE50-5-0.2-4" yields the highest average solution time of 172.7 s

when n = 0.25. Note that the last four networks have Hmin
R = 3, while "RE50-5-0.2-1" has

Hmin
R = 2. As ∆p ≥ 1, identifying lbcuts for larger h is difficult and it even becomes NP-

hard since h≥ 4 in this case. Consequently, the last four networks performed poorly, solving

instances nearly 3−20 times the average computational speed of the first network, when

averaged across all n.

Table 7: Second group experiment results of best performing M2 model (3rd setting) for

every "RE-3’" network for different values of n.

Average Time (s)

n

Network # Instances 0.25 1.0 4.0 Average Time (s)

"RE50-5-0.2-1" 1,080 5.7 3.0 1.1 3.3

"RE50-5-0.2-2" 1,080 23.3 7.3 4.2 11.6

"RE50-5-0.2-3" 1,044 33.5 7.2 3.4 14.7

"RE50-5-0.2-4" 1,044 172.7 21.6 6.5 66.9

"RE50-5-0.2-5" 1,080 43.3 9.3 5.0 19.2

Average/Total 5,328 55.0 9.6 4.0 22.9

7.4 The evolution of various KPIs with respect to budget

The minimum and maximum network construction costs along with backup QoSb
R and SLR,

averaged across all the "RE-3" networks for different n values in the second group of ex-

periments have been reported in the Table 8. It can be observed that a network without any

survivability requirements can be constructed at nearly one-fifth the cost of the networks de-

signed to survive multi-edge failures and provide connectivity at a good QoS. It is clear that

when n = 0.25, the network comprises longer connecting paths of 3.24 hops, while O-D pairs

are connected through shorter paths consisting of an average of 2.27 hops when n = 4.0. A

reverse scenario exists for the SLR which decreases from 2.08 to 1.35 as n varies from 0.25

36

to 4.0. This is also reflected through the column "Avg. Connectivity (%)", which showcases

that a relatively large number of O-D pairs are connected through backup paths, in the case of

robust network configurations designed by n = 0.25 than tighter networks of n = 4.0. On the

other hand, n = 1.0 yields a balanced network design, intermediate to the designs of n = 0.25

and n = 4.0, with SLR = 1.68 and QoSb
R = 2.82. Interestingly, the design of the network

via n = 4.0, which provides the best QoS, requires a monetary budget of 2,158.33, which is

costlier1 than the most resilient networks of n = 0.25 built at the cost of 2,104.74. This is

most likely due to the involvement of costly links in the construction of shortest paths for the

O-D pairs. Furthermore, it can be even more costly to build networks when QoSb
R and SLR

have to be balanced. Additionally, it can be observed that a minor deterioration of 8% in the

backup QoSb
R can yield a significant improvement of 24% in the SLR as n is changed from

4.0 to 1.0. However, the deterioration rate has to be nearly doubled to 14% in QoSb
R to further

improve the SLR by the same amount of 24%, as n changed from 1.0 (balanced network) to

0.25 (more resilient networks).

Table 8: Values of different Metrics averaged across all the "RE-3" networks for different n

values in the second group of experiments.

n Avg. Bmin Avg. Bmax
n Avg. Connectivity (%) Avg. QoSb

R Avg. SLb
R

0.25 391.93 2,104.74 91.95 3.24 2.08

1.0 391.93 2,199.83 91.61 2.82 1.68

4.0 391.93 2,158.33 87.83 2.61 1.35

Average 391.93 2,154.33 90.50 2.88 1.82

Table 9 shows the averaged variation of the backup QoSb
R and the SLR across different

average budget levels for all the "RE-3" networks. Note that the budget level B0 is excluded

since it is not sufficient enough to provide the backup connectivity even for at least one de-

mand. In the case of n = 0.25, the backup QoSb
R initially has an incremental trend, increasing

1However, it depends on the network topology on how the costs are distributed across its edges. It is possible

that in some network configurations, the costs associated with O-D pair specific shortest paths are in fact cheaper

than the edges of relatively longer paths connecting those O-D pairs. However in the case of "R" group, a

reverse scenario exists such that longer connectivity paths are cheaper than the shortest paths, as confirmed

through experimental results.

37

from 1.95 to 3.45 hops when the average budget nearly doubled from 559.07 to 1051.78. In

the same budget range, the SLR nearly tripled up from 0.60 to 1.94. This implies that when

B ∈ [559.07,1051.78], the mechanism n = 0.25 sacrificed the QoS to strengthen the SL of

the network, which was expected as the objective function maintains the tradeoff between

h ∈ Hb
r and k ∈ K. However, as the budget was relaxed, there is an opportunity to improve

both the SLR and QoSb
R simultaneously. Consequently, both QoSb

R and SLR improved from

3.45 to 2.97 hops and 1.94 to 2.72 edges respectively. Similarly, in the design yielded by

n = 4.0, the value of QoSb
R and SLR also increased as the budget increased until B = 1216.95.

Although, the best SLR in the case of n = 4.0 is around 2.11 edges which is 22% poorer than

its value in the network design of n = 0.25. Although, the QoSR of n = 4.0 networks are

maintained at levels 16−38% lower than the same in the case of n = 0.25. Again, n = 1.0

provides a balancing effect between the two metrics as evident from the averaged values of

QoSb
R and the SLR, which are 2.83 hops and 1.68 edges and are in between the average values

of their counterparts in the cases of n = 0.25 and n = 4.0. Note that a certain deterioration

in the backup QoS is necessary to develop robustness in the network. The objective function

will always try to strengthen both the QoS and SL for any budget level. It is the mechanism n

that decides the importance of one network metric over another. Therefore, the QoSb
R cannot

be enhanced beyond a certain level.

38

Table 9: Values of different KPIs averaged across all the "RE-3" networks for different

budget levels in the Bset and n values in the second group of experiments.

n

Average 0.25 1.0 4.0

Budget Levels Avg. QoSb
R Avg. SLR Avg. QoSb

R Avg. SLR Avg. QoSb
R Avg. SLR

B1 = 559.07 1.95 0.60 1.74 0.55 1.20 0.42

B2 = 721.62 2.95 1.11 2.56 0.91 1.94 0.72

B3 = 886.71 3.31 1.56 2.78 1.19 2.21 0.91

B4 = 1051.78 3.45 1.94 2.78 1.41 2.42 1.11

B5 = 1216.95 3.42 2.24 2.75 1.61 2.55 1.31

B6 = 1381.92 3.34 2.49 2.74 1.82 2.50 1.40

B7 = 1547.09 3.21 2.62 2.70 2.01 2.50 1.57

B8 = 1712.16 3.06 2.67 2.69 2.16 2.50 1.70

B9 = 1877.25 2.93 2.69 2.67 2.31 2.49 1.82

B10 = 2042.34 2.86 2.71 2.63 2.38 2.48 1.97

B11 = 2207.82 2.97 2.72 2.56 2.43 2.47 2.11

Average 3.24 2.08 2.82 1.68 2.61 1.35

7.5 Computational performance of the best performing algorithm on

the complete dataset

The previous experiments were all executed on "RE-1" and "RE-3" networks from the "R"

group. The third group of experiments are conducted on the complete set of 50 networks

for different n, B, ∆b, ∆p, ∆b and ∆s settings, yielding a total of 53,208 instances. Table 10

shows the average solution time in seconds, the number of solved instances, the percentage

of solved instances and the average gap per optimization status. Almost all instances were

solved to optimality, with only 224 instances having feasible status. This yielded a total

of 99.57% solved instances. The average solution time of all instances is 100.1 seconds

and the average gap is 0.03%. Detailed computational results categorized by n for every

SubGroup of networks are presented in Table 11. In general, the networks from the "R" group

39

are difficult to solve, in terms of computational time. The same results are categorized for

different averaged budget levels B and n values in Table 12. Note that the algorithm performs

better for smaller n values and when B ≤ 240.23 or B ≥ 776.79 as no feasible instances are

found in this budget range.

Table 10: Overview of the computational results of the best performing algorithm on all 50

networks in the dataset in the third group of experiments.

Optimization Status Average Time (s) # Solved Instances % Solved Instances Average Gap (%)

Optimal 54.0 52,084 99.57 0.00

Feasible TL (10800) 224 0.43 7.27

Average/Total 100.1 52,308 100.00 0.03
* Abbreviation: TL, time limit.

Table 11: Average percentage of the instances with "Optimal", and "Feasible" optimization

status when solved for different datasets of networks considered in this study.

Optimization Status

Optimal Feasible

Dataset Avg. Time (s) Instances (%) Avg. Gap (%) Avg. Time (s) Instances(%) Avg.Gap (%)

D-1 4.2 100.00 0.00 - 0.00 -

D-2 38.4 99.97 0.00 TL (10800) 0.03 4.35

E-1 8.7 100.00 0.00 - 0.00 -

E-2 136.6 99.53 0.00 TL (10800) 0.47 4.57

E-3 22.9 100.00 0.00 - 0.00 -

RE-1 12.1 100.00 0.00 - 0.00 -

RE-2 261.2 96.25 0.00 TL (10800) 3.75 7.77

RE-3 22.9 100.00 0.00 - 0.00 -

Average/Total 54.0 99.57 0.00 TL (10800) 0.43 7.27

Abbreviation: TL, time limit.

40

Table 12: Detailed results of the best performing algorithm on all 50 networks in the dataset

in the third group of experiments.

Average n

Budget Levels Optimization Status 0.25 1.0 4.0 Total

B0 = 240.23
Optimal 1,453 1,453 1,453 4,359
Feasible 0 0 0 0

B1 = 305.03
Optimal 1,418 1,450 1,453 4,321
Feasible 35 3 0 38

B2 = 371.03
Optimal 1,396 1,443 1,453 4,292
Feasible 57 10 0 67

B3 = 448.01
Optimal 1,411 1,453 1,453 4,316
Feasible 42 1 0 43

B4 = 552.48
Optimal 1,413 1,453 1,453 4,319
Feasible 40 0 0 40

B5 = 604.58
Optimal 1,424 1,453 1,453 4,330
Feasible 29 0 0 29

B6 = 694.64
Optimal 1,447 1,453 1,453 4,346
Feasible 7 0 0 7

B7 = 776.79
Optimal 1,453 1,453 1,453 4,359
Feasible 0 0 0 0

B8 = 853.52
Optimal 1,453 1,453 1,453 4,359
Feasible 0 0 0 0

B9 = 930.23
Optimal 1,453 1,453 1,453 4,359
Feasible 0 0 0 0

B10 = 1006.95
Optimal 1,453 1,453 1,453 4,359
Feasible 0 0 0 0

B11 = 1084.10
Optimal 1,453 1,453 1,453 4,359
Feasible 0 0 0 0

Total 17,436 17,436 17,436 52,308

7.6 The tradeoff mechanism

We will now discuss how our new objective function can capture the tradeoff between QoSR

and SLR of a network. As discussed in Section 7.4, when n = 0.25, the network’s QoSb
R is

consistently sacrificed to maintain a high level of resiliency in the network as long as the

increasing budget levels are below a threshold budget level. This scenario also exists in the

case of n = 4.0, but the deterioration in QoSb
R is almost stagnant, which is achieved at the

cost of lower edge failure resiliency (though it improves at a very slow rate with increasing

41

budget levels) in the network. Overall, this results in longer (or shorter) paths leading to poor

(or better/stagnant) QoSb
r of larger (or smaller/constant) values while making O-D pairs r ∈ R

more (or less) survivable against multiple-edge failures as reflected by larger (or smaller)

values of SLr in a network when n = 0.25 (or 4.0). In other words, both QoSb
R and SLR have

opposite behaviours for smaller budgets (below a threshold budget level), even though, in

terms of magnitude both QoSb
R and SLR are increasing with the budget. As a larger QoSb

R

implies a poor network connectivity, we will define the following new KPI:

QoSb
R = Hmin

R +∆
b−QoSb

R (35)

Note that in any instance with a particular setting (∆p,∆b,∆s), the size of the largest

backup path connecting an O-D pair r ∈ R will be Hmin
R +∆b, which represents the poorest

QoS offered by the network in that particular setting. This is reflected as a value of 0 in

Equation 35, which is basically the opposite of QoSb
R. This implies, that the higher (or lower)

the value of QoSb
R, the better (or poorer) the backup QoS. We will use QoSb

R and SLR to show

the tradeoff between the backup QoS and SL of a network.

We consider the dataset "D7x7-5-1_10_10_20-1" to show the QoS and SL tradeoff for the

parameter settings presented in Table 2, when the survivability limit ∆s = 3 which implies that

the designed network configuration may survive the failure of at most any 4 edges. In a total

of 18 subplots, Figure 2 shows the variation in the QoSb
R, and SLR along the y-axis with

respect to different budget B levels represented on the x-axis. In Figure 2 each row represents

a particular (∆p,∆b) setting, with subfigures showing a tradeoff plot for n = 0.25,1.0 and 4.0

respectively as one move from left to right. For instance, Figures 2a to 2c are the tradeoff

plots for n = 0.25,1.0 and 4.0 respectively when ∆p = ∆b = 0.

The scale of SLR is fixed in the range [0, 4], while the range of QoSR depends on ∆b

and can vary from 0 to 6−8 units when ∆b is changed from 0−2. The budget B has a range

of [80, 550]. The first observation is that a clear tradeoff exists between QoSb
R and SLR

for the network design irrespective of the value n, indicating that one requirement improves

at the expense of the other. Secondly, as ∆b increases, which implies longer connectivity

paths are allowed, then there is an improvement of 40% in SLR from 2 (Figure 2a) to 2.5

(Figures 2d, 2g, 2j, 2m and 2p) edges as when n = 0.25 and the budget is high with B = 550.

Although, this effect is less pronounced when n > 1.0 and it even depends on the value of ∆b,

but this strengthens the observation that n = 0.25 prioritises the survivability aspect of the

42

network. However, Figures 2a, 2d, 2g, 2j and 2m shows that the backup QoS can deteriorate

significantly by a minimum of 25% as QoSb
R drops from 3−4 units to close to 1−3 units.

This pattern is also consistent for all (∆p,∆b) combinations when n = 0.25. On the other

hand, network configurations designed by the mechanism n = 4.0 have poor SLR < 1.5, yet,

the QoS offered by these networks is relatively better than the network of n= 0.25 as reflected

through high values of QoSb
R, staying close to 5−7 units when the budget is low, while never

dropping below 1.5 units, which is evident from the Figures 2c, 2f, 2i, 2l, 2o and 2r. Also,

observe that the deterioration in QoS is delayed as n increases. Note that QoSb
R is close to 4

units for the budget B≤ 170 when n = 0.25, while n = 4.0 maintained the same level until B

crosses 268 (a minor exception in the case of Figure 2c), which further indicates that n = 4.0

focuses on preserving the QoS over SL of a network, making it less resilient to multi-edge

failures, while n= 0.25 does the opposite. Focusing on n= 1.0 highlights that the two metrics

are well balanced as evident by their curves which are nearly stacked near each other in the

Figures 2b, 2e, 2h, 2k, 2n and 2q. The mechanism n = 1.0 tried to construct a network that

can survive the simultaneous failure of at most 2 edges, which is in between the SLR of 1.5

edges and 2.5 edges for n = 4.0 and n = 0.25 respectively. Also, it controls the value of QoSb
R

around an average of 2−4 units across all budget levels and all possible parameter settings.

It can also be inferred that once SLR and QoSR crosses their paths, the QoS may also slowly

improve along with SL, particularly when n = 0.25. In the case of n ≥ 1.0, the QoSR will

remain almost stable, which comes at the cost of slowing down the growth of SLR. In addition

to this, it can be noted that the values of ∆b can impact the network design cost for any n. At

∆b = 0, the minimum cost of construction was 125 (close to the average of 80 and 174), but it

gradually shifts to 80 as ∆b increases to 2 which allows relatively longer paths in comparison

to the case of ∆b = 0. This implies that the cost of constructing longer paths is cheaper than

establishing the O-D pair specific shortest paths, which contributes to the reduction of overall

network cost. Finally, it is also important to highlight that while SLR changed from 0 to at

most 3.5 edges, the QoSR never dropped to 0, which represents the worst QoS for a particular

∆b setting. As discussed in Section 7.3, once a sufficient budget is allocated, both QoS and

SL can be improved simultaneously. Hence, there is no incentive for the objective function

(2) to yield lengthy connectivity paths when the budget is high.

Similar findings can be derived for different datasets and different values of ∆s ∈{0,1,2,3,4},

43

although the discussed effects of changing ∆b or n will be more pronounced in the case of

larger ∆s as it will incorporate multiple edge failures. The given configuration of the network

also plays a crucial role in deciding the level of tradeoff. The inherent topology may poten-

tially prevent O-D pairs from surviving multi-edge failures even if the budget B or ∆s or ∆b

are set to higher values. Overall, these observations demonstrate the power of our proposed

objective functions, which can capture the tradeoff between backup QoSb
R and SLR, and can

shift the tradeoff to design the network in favour of one requirement over another.

44

80 174 268 362 456 550

0.0

1.2

2.4

3.6

4.8

6.0

Q
oS

b R

0.0

1.0

2.0

3.0

4.0
QoSb

R

SLR

(a) (0.25,0,0)

80 174 268 362 456 550

0.0

1.2

2.4

3.6

4.8

6.0

0.0

1.0

2.0

3.0

4.0
QoSb

R

SLR

(b) (1.0,0,0)

80 174 268 362 456 550

0.0

1.2

2.4

3.6

4.8

6.0

0.0

1.0

2.0

3.0

4.0

SL
R

QoSb
R

SLR

(c) (4.0,0,0)

80 174 268 362 456 550

0.0

1.4

2.8

4.2

5.6

7.0

Q
oS

b R

0.0

1.0

2.0

3.0

4.0
QoSb

R

SLR

(d) (0.25,0,1)

80 174 268 362 456 550

0.0

1.4

2.8

4.2

5.6

7.0

0.0

1.0

2.0

3.0

4.0
QoSb

R

SLR

(e) (1.0,0,1)

80 174 268 362 456 550

0.0

1.4

2.8

4.2

5.6

7.0

0.0

1.0

2.0

3.0

4.0

SL
R

QoSb
R

SLR

(f) (4.0,0,1)

80 174 268 362 456 550

0.0

2.0

4.0

6.0

8.0

Q
oS

b R

0.0

1.0

2.0

3.0

4.0
QoSb

R

SLR

(g) (0.25,0,2)

80 174 268 362 456 550

0.0

2.0

4.0

6.0

8.0

0.0

1.0

2.0

3.0

4.0
QoSb

R

SLR

(h) (1.0,0,2)

80 174 268 362 456 550

0.0

2.0

4.0

6.0

8.0

0.0

1.0

2.0

3.0

4.0

SL
R

QoSb
R

SLR

(i) (4.0,0,2)

80 174 268 362 456 550

0.0

1.4

2.8

4.2

5.6

7.0

Q
oS

b R

0.0

1.0

2.0

3.0

4.0
QoSb

R

SLR

(j) (0.25,1,1)

80 174 268 362 456 550

0.0

1.4

2.8

4.2

5.6

7.0

0.0

1.0

2.0

3.0

4.0
QoSb

R

SLR

(k) (1.0,1,1)

80 174 268 362 456 550

0.0

1.4

2.8

4.2

5.6

7.0

0.0

1.0

2.0

3.0

4.0

SL
R

QoSb
R

SLR

(l) (4.0,1,1)

80 174 268 362 456 550

0.0

2.0

4.0

6.0

8.0

Q
oS

b R

0.0

1.0

2.0

3.0

4.0
QoSb

R

SLR

(m) (0.25,1,2)

80 174 268 362 456 550

0.0

2.0

4.0

6.0

8.0

0.0

1.0

2.0

3.0

4.0
QoSb

R

SLR

(n) (1.0,1,2)

80 174 268 362 456 550

0.0

2.0

4.0

6.0

8.0

0.0

1.0

2.0

3.0

4.0
SL

R
QoSb

R

SLR

(o) (4.0,1,2)

80 174 268 362 456 550

0.0

2.0

4.0

6.0

8.0

Budget (B)

Q
oS

b R

0.0

1.0

2.0

3.0

4.0
QoSb

R

SLR

(p) (0.25,2,2)

80 174 268 362 456 550

0.0

2.0

4.0

6.0

8.0

Budget (B)

0.0

1.0

2.0

3.0

4.0
QoSb

R

SLR

(q) (1.0,2,2)

80 174 268 362 456 550

0.0

2.0

4.0

6.0

8.0

Budget (B)

0.0

1.0

2.0

3.0

4.0

SL
R

QoSb
R

SLR

(r) (4.0,2,2)

Figure 2: The tradeoff between the backup QoS and SL of the network

"D7x7-5-1_10_10_20-1" for different combinations of (n,∆p,∆b) and ∆s = 3.

45

8 Conclusion

We have introduced, modeled and solved the network design problem with vulnerability and

budget constraints (NDPVBC). This problem is a natural extension of the NDPVC by consid-

ering local-level survivability and quality-of-service for every O-D pair subject to a budget.

The network is designed with the objective of either ensuring the existence of longer backup

paths in the scenario of multi-edge failures to keep undisrupted yet poor connectivity or sac-

rificing the resilience to be built in the network, to enhance the connectivity among O-D

pairs.

In this study, we proposed a new objective function that can establish the tradeoff between

the Quality-of-Service (QoS) and Survivability Level (SL) of a network. A naive model was

built that explicitly constructs paths for all the demands through the enumeration of multiple

edge failure scenarios. We also developed a model that avoids the enumeration of edge sets

and involves building length-bounded cuts (lbcuts), which destroys all the paths of certain

length bound connecting a given O-D pair. By exploiting their structural properties, we

generalised the applicability of a lbcut detected for a hop-limit over a range of smaller hop-

limits. We have presented this strengthened version of the separation problem (Arslan et

al. 2020) for our model and we have solved it through several heuristic algorithms while

guaranteeing an exact separation via the solution of a mathematical model.

We have also derived three families of valid inequalities that have been extensively tested

and demonstrated to improve the computational performances of the model by up to 22%,

using 94,932 instances. We have identified the best performance settings for our algorithm

and solved the problem for a large variety of input parameters. We also show that networks

can be designed in favour of one objective of enhancing the robustness over tightening the O-

D pair connectivity or vice-versa through our new objective function. Our findings show that

for the graphs and settings we have considered, a degradation in the backup QoS by 8% can

yield an improvement of 24% in the SL while improving it further by another 24%, requires

the deterioration rate in QoS to be nearly doubled to 14%.

46

Bibliography

[1] Fatmah Almathkour, Youcef Magnouche, Ali Ridha Mahjoub, and Raouia Taktak.

“Design of survivable networks with low connectivity requirements”. In: International

Transactions in Operational Research (2024).

[2] Okan Arslan, Ola Jabali, and Gilbert Laporte. “A flexible, natural formulation for

the network design problem with vulnerability constraints”. In: INFORMS Journal

on Computing 32.1 (2020), pp. 120–134.

[3] Okan Arslan and Gilbert Laporte. “Network design with vulnerability constraints and

probabilistic edge reliability”. In: Networks 84 (2024), pp. 181–199.

[4] Anantaram Balakrishnan and Kemal Altinkemer. “Using a hop-constrained model to

generate alternative communication network design”. In: ORSA Journal on Computing

4.2 (1992), pp. 192–205.

[5] Benita M Beamon. “Supply chain design and analysis: Models and methods”. In: In-

ternational Journal of Production Economics 55.3 (1998), pp. 281–294.

[6] Fatiha Bendali, Ibrahima Diarrassouba, Ali Ridha Mahjoub, M Didi Biha, and Jean

Mailfert. “A branch-and-cut algorithm for the k-edge connected subgraph problem”.

In: Networks 55.1 (2010), pp. 13–32.

[7] Fatiha Bendali, Ibrahima Diarrassouba, Ali Ridha Mahjoub, and Jean Mailfert. “The k

edge-disjoint 3-hop-constrained paths polytope”. In: Discrete Optimization 7.4 (2010),

pp. 222–233.

[8] Bilge Bilgen and Irem Ozkarahan. “Strategic tactical and operational production-distribution

models: a review”. In: International Journal of Technology Management 28.2 (2004),

pp. 151–171.

[9] Quentin Botton, Bernard Fortz, Luis Gouveia, and Michael Poss. “Benders decom-

position for the hop-constrained survivable network design problem”. In: INFORMS

Journal on Computing 25.1 (2013), pp. 13–26.

[10] Ivan Contreras and Elena Fernández. “General network design: A unified view of com-

bined location and network design problems”. In: European Journal of Operational

Research 219.3 (2012), pp. 680–697.

i

[11] Alysson M Costa, Jean-François Cordeau, and Gilbert Laporte. “Models and branch-

and-cut algorithms for the Steiner tree problem with revenues, budget and hop con-

straints”. In: Networks 53.2 (2009), pp. 141–159.

[12] Geir Dahl and Luis Gouveia. “On the directed hop-constrained shortest path problem”.

In: Operations Research Letters 32.1 (2004), pp. 15–22.

[13] Geir Dahl and Bjarne Johannessen. “The 2-path network problem”. In: Networks 43.3

(2004), pp. 190–199.

[14] Ibrahima Diarrassouba, Virginie Gabrel, Ali Ridha Mahjoub, Luıs Gouveia, and Pierre

Pesneau. “Integer programming formulations for the k-edge-connected 3-hop-constrained

network design problem”. In: Networks 67.2 (2016), pp. 148–169.

[15] Ibrahima Diarrassouba and Ali Ridha Mahjoub. “Polyhedral investigation of k edge-

connected l-hop-constrained network design problem”. In: hal-04051494 (2023).

[16] Bernard Fortz, Luis Gouveia, and Pedro Moura. “A comparison of node-based and arc-

based hop-indexed formulations for the Steiner tree problem with hop constraints”. In:

Networks 80.2 (2022), pp. 178–192.

[17] Bernard Fortz and Martine Labbé. “Polyhedral results for two-connected networks

with bounded rings”. In: Mathematical Programming 93 (2002), pp. 27–54.

[18] Bernard Fortz, Martine Labbé, and Francesco Maffioli. “Solving the two-connected

network with bounded meshes problem”. In: Operations Research 48.6 (2000), pp. 866–

877.

[19] Bernard Fortz, Ali Ridha Mahjoub, S Thomas McCormick, and Pierre Pesneau. “Two-

edge connected subgraphs with bounded rings: Polyhedral results and Branch-and-

Cut”. In: Mathematical Programming 105 (2006), pp. 85–111.

[20] Petr A Golovach and Dimitrios M Thilikos. “Paths of bounded length and their cuts:

Parameterized complexity and algorithms”. In: Discrete Optimization 8.1 (2011), pp. 72–

86.

[21] Luis Gouveia. “Multicommodity flow models for spanning trees with hop constraints”.

In: European Journal of Operational Research 95.1 (1996), pp. 178–190.

ii

[22] Luis Gouveia. “Using variable redefinition for computing lower bounds for minimum

spanning and Steiner trees with hop constraints”. In: INFORMS Journal on Computing

10.2 (1998), pp. 180–188.

[23] Luis Gouveia, Martim Joyce-Moniz, and Markus Leitner. “Branch-and-cut methods

for the network design problem with vulnerability constraints”. In: Computers & Op-

erations Research 91 (2018), pp. 190–208.

[24] Luis Gouveia and Markus Leitner. “Design of survivable networks with vulnerability

constraints”. In: European Journal of Operational Research 258.1 (2017), pp. 89–103.

[25] Luis Gouveia, Pedro Patricio, and Amaro de Sousa. “Hop-constrained node surviv-

able network design: An application to MPLS over WDM”. In: Networks and Spatial

Economics 8 (2008), pp. 3–21.

[26] Martin Grötschel, Clyde L Monma, and Mechthild Stoer. “Design of survivable net-

works”. In: Handbooks in Operations Research and Management Science 7 (1995),

pp. 617–672.

[27] Terry P Harrison. The practice of supply chain management: where theory and appli-

cation converge. Springer Science & Business Media, 2005.

[28] David Huygens and Ali Ridha Mahjoub. “Integer programming formulations for the

two 4-hop-constrained paths problem”. In: Networks 49.2 (2007), pp. 135–144.

[29] Hervé Kerivin and Ali Ridha Mahjoub. “Design of survivable networks: A survey”.

In: Networks 46.1 (2005), pp. 1–21.

[30] Thorsten Koch and Alexander Martin. “Solving Steiner tree problems in graphs to

optimality”. In: Networks 32.3 (1998), pp. 207–232.

[31] Ali Ridha Mahjoub and S Thomas McCormick. “Max flow and min cut with bounded-

length paths: complexity, algorithms, and approximation”. In: Mathematical Program-

ming 124 (2010), pp. 271–284.

[32] Riccardo Mangiaracina, Guang Song, and Alessandro Perego. “Distribution network

design: a literature review and a research agenda”. In: International Journal of Physi-

cal Distribution & Logistics Management 45.5 (2015), pp. 506–531.

iii

[33] Mary J Meixell and Vidyaranya B Gargeya. “Global supply chain design: A literature

review and critique”. In: Transportation Research Part E: Logistics and Transportation

Review 41.6 (2005), pp. 531–550.

[34] Karl Menger. “Zur allgemeinen kurventheorie”. In: Fundamenta Mathematicae 10.1

(1927), pp. 96–115.

[35] Sebastian Orlowski and Roland Wessäly. The Effect of Hop limits on Optimal cost

in Survivable Network Design. Ed. by S Raghavan and G Anandalingam. Vol. 33.

Springer, Heidelberg, 2006, pp. 151–166.

[36] Mauricio GC Resende and Panos M Pardalos. Handbook of Optimization in Telecom-

munications. Springer Science & Business Media, 2008.

[37] Hanif D Sherali and Patrick J Driscoll. “Evolution and state-of-the-art in integer pro-

gramming”. In: Journal of Computational and Applied Mathematics 124.1-2 (2000),

pp. 319–340.

[38] Markus Sinnl and Ivana Ljubić. “A node-based layered graph approach for the Steiner

tree problem with revenues, budget and hop-constraints”. In: Mathematical Program-

ming Computation 8 (2016), pp. 461–490.

[39] Mechthild Stoer. Design of survivable networks. Vol. 1531. Berlin Heidelberg: Springer,

1992.

[40] Carlos J Vidal and Marc Goetschalckx. “Strategic production-distribution models: A

critical review with emphasis on global supply chain models”. In: European Journal

of Operational Research 98.1 (1997), pp. 1–18.

[41] Andrzej P Wierzbicki and Wojciech Burakowski. “A conceptual framework for multiple-

criteria routing in QoS IP networks”. In: International Transactions in Operational

Research 18.3 (2011), pp. 377–399.

[42] Richard T Wong. A survey of network design problems. Massachusetts Institute of

Technology, Operations Research Center, 1976.

iv

A Appendix for Nomenclature

A.1 Sets

N= Set of natural numbers

V = Set of vertices

E = {[i, j] | Set of edges formed between two vertices i, j where i, j ∈V}

G = (N,E), An undirected graph

A = {(i, j),(j, i) | Set of two opposite arcs [i, j] ∈ E}

R = {(or,dr,Hmin
r) | Set of O-D pairs in a network}

Hp
r = {Hmin

r ,Hmin
r +1, . . . ,Hmin

r +∆p | The primal hop-limit range set}

Hb
r = {Hmin

r ,Hmin
r +1, . . . ,Hmin

r +∆p | The backup hop-limit range set}

K = {κ,κ +1, . . . ,κ +∆s | The survivability set}

Ap
rh = {(i, j) ∈ A | dori +d jdr +1≤ h;h ∈ Hp

r ,r ∈ R}

Ab
rh = {(i, j) ∈ A | dori +d jdr +1≤ h;h ∈ Hb

r ,r ∈ R}

Vp
rh = {i | Vertices induced by arcs in Ap

hr}

Vb
rh = {i | Vertices induced by arcs in Ab

hr}

Ep
rh = {[i, j] | Edges induced by arcs in Ap

hr}

Eb
rh = {[i, j] | Edges induced by arcs in Ab

hr}

Eb
rh(i) = {[i, j] | Set of edges e ∈ Eb

rh that are incident to the vertex i ∈ Vb
rh in the backup

graph Eb
rh}

Gp
rh = (V p

hr,A
p
hr), a directed primal graph where hop-limit is h for a O-D pair r ∈ R

Gb
rh = (V b

hr,A
b
hr), a directed backup graph where hop-limit is h for a O-D pair r ∈ R

Sh = {S ∈ A | Set of edges of a lbcut that destroys all paths of length at most h edges}

Γ
p
rh = {Sh | Set of lbcuts of length bound h in the primal graph Gp

rh}

Γb
rh = {Sh | Set of lbcuts of length bound h in the backup graphGb

rh}

Ck = Set of all possible combinations of k−1 edges derived from Eb
rh

v

Ab
rh(Ck) = {(i, j) ∈ Ab

rh : [i, j] ∈Ck}

V b
rh = {i | Vertices induced by arcs in Ab

rh}

Gb
rh = (V b

rh,A
b
rh)

Gb
rh = (V b

rh,A
b
rh)

Pb
rh = {[i, j] | Set of edges that are required to construct the minimum cost-weighted

shortest path connecting r ∈ R in the graph Gb
rh induced by the hop-limit h ∈Hb

r }

Bset = {B | The set of budget levels determined for a particular parameter setting and

dataset}

A.2 Parameters

or = The origin vertex of a demand r ∈ R

dr = The destination vertex of a demand r ∈ R

Hmin
r = The minimum hop-distance to ensure connectivity of a demand r ∈ R

Hmin
R = maxr∈R{Hmin

r | The minimum global hop-distance required to connect all the O-D

pairs R in a network}

∆b = A non-negative constant that quantifies the extent of deterioration in the QoS offered

by the backup paths for the demand set R

∆p = A non-negative constant that quantifies the extent of deterioration in the QoS offered

by the primal paths for the demand set R

∆s = A non-negative constant that describes the extent of improvement in the SL of de-

mand set R

∆B = Number of budget levels to consider for a network

κ = The smallest non-negative integer-based constant which signifies that an O-D pair r

can have a minimum SL of κ−1 edges

ε = A very small number

t = Time limit assigned to the models or separation algorithms

B = A non-negative Budget assigned for the construction of a network

vi

n = A non-negative decimal number that controls the trade-off between QoS and SL

Bmin = The minimum non-negative integer Budget required to construct the a network with

primal paths only

Bmax
n = The minimum non-negative integer Budget that is required to construct the “Maxi-

mum Cost Network” for a particular n

β b
rh = Construction cost of graph Gb

rh

A.3 Variables

x̂i j = Edge weights detected during integer/fractional separation for the edge (i, j) ∈ E

ẑrh = Primal weight detected during integer/fractional separation for the O-D pair r in the

graph Gb
rh

ŷrhk = Backup weight detected during integer/fractional separation for the O-D pair r in the

graph Gb
rh for any k ∈ K

h = A strictly positive integer that signifies the number of hops in a path connecting an

O-D pair

h′ = (h−Hmin
r +1)

k = A non-negative integer that signifies an O-D pair can survive the failure of any k−1

edges

xe =

1, if the edge e ∈ E is selected,

0, otherwise.

yrhk =

1, if edge connectivity of demand r ∈ R is maintained using h edges after

the failure of any k−1 edges,

0, otherwise.

zrh =

1, if edge connectivity of demand r ∈ R is maintained using h edges with-

out any failure of edges,

0, otherwise.

vii

urh
i j =

1, if arc (i, j) ∈ Ap

rh for every r ∈ R is on the path of hop-limit h from or

to dr,

0, otherwise.

vrhCk
i j =

1, if arc (i, j) ∈ Ab

rh(Ck) for every r ∈ R is on the path of hop-limit h from

or to dr when any k−1 edges in Ck fails,

0, otherwise.

fi j =

1, if arc (i, j) belongs to the minimum weighted lbcut detected during int-

eger/fractional separation,

0, otherwise.

SLr = ∑h∈Hb
r

∑k∈K(k− 1)y∗rhk, A non-negative integer that signifies the SL of an O-D pair

in terms of number of edges it can survive

SLR = ∑r∈R SLr
|R| , The average SL of a network

QoSb
r = ∑h∈Hb

r
∑k∈K(h)y∗rhk, A non-negative integer that signifies the QoS of the backup

path(s) connecting an O-D pair in terms of the number of hops or edges

QoSb
R =

QoSb
R

|R| , The average backup QoS of a network

QoSb
R = Hmin

R +∆b−QoSb
R, The opposite of QoSb

R

viii

B Dataset

Table 13 provides the details of instances considered in this study, with the first two columns

reporting the Group and their corresponding SubGroup sets. The next 4 columns show the

sizes of vertex, edge and demand sets and the total number of instances associated with each

(Group, SubGroup) combination. Finally, the minimum, average and maximum values of

the parameter Hmin
r have been provided in the rightmost columns. There are a total of 350

networks, but for the current study, only 50 networks were considered.

Table 13: Properties of Instance Sets.

Hmin

Group SubGroup |V | |E| |R| Number Minimum Average Maximum

D
D-1 25 72 10 10 3 3.8 4

D-2 49 156 10 10 4 5.2 6

E

E-1 50 122 10 5 6 7.6 9

E-2 50 122 45 5 7 8.6 11

E-3 50 245 10 5 4 4.6 6

R

RE-1 50 122 10 5 3 4.6 6

RE-2 50 122 45 5 4 5.2 6

RE-3 50 245 10 5 2 2.8 3

C Appendix for the alternative form of the separation algo-

rithm

Note that Algorithm 2 is based on common separation such that it can yield up to two cuts,

one for each primal and backup graph when h ∈ Hp
r ∩Hb

r . However, these cuts can be de-

termined exclusively during primal and backup cut separation as described in the following

Algorithm 3.

ix

Algorithm 3 Algorithm for Independent Primal and Backup Cut Separation

Input: Demand Set R, the limits (∆p, ∆b, ∆k), κ , primal ẑrh and backup ŷrhk weights during

a callback

Output: A set of violated constraints

1: for i ∈ {p, b} do

2: H i←{Hmin
R +∆i,Hmin

R +∆i−1, . . . ,minr∈R{Hmin
r }}

3: for h ∈ H i do

4: Gi← Gi
rh

5: for r ∈ R do

6: if h≥ Hmin
r then

7: if i = p then

8: Rirh
cut ← ∑

Hmin
R +∆p

g=Hmin
r

ẑrh // Get the RHS value of ‘p’ graph Cut

9: else if i = b then

10: Rirh
cut ← ∑

Hmin
R +∆b

g=Hmin
r

∑
κ+∆k

k=κ
(k)ŷrhk // ‘b’ graph Cut’s RHS value

11: if Rirh
cut > 0 then // Cuts with Rirh

cut = 0, never violates

12: if h≤ 3 then
13: /* Exact Separation */
14: CutSet i += ε-lbcut3(Gi) // Section 5.1

15: else
16: /* Heuristic Separation */
17: CutSet i += ε-minCut(Gi) // Section 5.2

18: tempCutSet i += lbcutA(Gi,0.016) // Section 5.3

19: tempCutSet i += lbcutM(Gi,0.1) // Section 5.4

20: tempCutSet i← CutEnhancer(tempCutSet i,0.1) // Section 5.5

21: CutSet i←CutSet i∪ tempCutSet i

22: /* Exact Separation */
23: if CutSet i = NULL then

24: for r ∈ R do

25: if h≥ Hmin
r and h > 3 then

26: if Rirh
cut > 0 then // Cuts with Rirh

cut = 0, never violates

27: CutSet i += lbcutM(Gi,10800) // Section 5.4

28: CutSet i← CutEnhancer(CutSet i,0.1) // Section 5.5

29: return CutSet p∪CutSetb

x

	Résumé
	Abstract
	List of acronyms
	Acknowledgements
	Introduction
	Literature review
	Scientific contributions and the organization of the thesis

	Preliminaries
	Metric definitions
	Notation
	Tradeoff functions between the QoS and SL

	Problem Definition and Model Formulations
	Model based on arc flows
	Model based on length-bounded cuts

	Model Enhancements
	Lifting the length-bounded cut constraints
	Variable elimination
	Knapsack-type valid inequalities
	Generalized knapsack-type valid inequalities

	The Separation Problem
	Length-bounded cuts for paths of at most three hops
	Minimum cut heuristic
	An algorithm for identifying the length-bounded cuts of any hop-limit
	An exact IP model for detecting length-bounded cuts
	Strengthening the detected length-bounded cuts
	The extended branch-and-cut framework

	Computational Study
	Data
	Experimental design

	Results and Discussion
	Key performance indicators
	Computational performance comparison of the models
	The impact of valid inequalities on the computational performance of M2 model
	The evolution of various KPIs with respect to budget
	Computational performance of the best performing algorithm on the complete dataset
	The tradeoff mechanism

	Conclusion
	Bibliography
	Appendix for Nomenclature
	Sets
	Parameters
	Variables

	Dataset
	Appendix for the alternative form of the separation algorithm

