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Résumé

Pendant la pandémie de COVID-19, les organisations de soins de santé ont souffert d’une

pénurie de fournitures médicales essentielles telle que les équipements de protection in-

dividuelle, ce qui a eu de graves conséquences. L’objectif de cette étude est d’évaluer

l’impact d’un facteur potentiel de cette pénurie, à savoir le manque de visibilité sur la

consommation d’équipements de protection individuelle. Pour ce faire, différentes méth-

odes de prévision combinées à un système de gestion des stocks à révision périodique

sont testées sur des données semi-simulées qui incluent divers problèmes de visibilité.

Les méthodes de prévision sont classées en fonction des données utilisées. Les méthodes

Holt et naïve sont sélectionnées comme méthodes de prévision basées sur la demande et

un modèle épidémiologique compartimental modifié est exploré pour son utilisation des

données pandémiques pour prévoir la demande. Trois des problèmes les plus courants

concernant la visibilité des données sont étudiés dans cette étude. Des scénarios spé-

cifiques ont été développés pour analyser l’impact (1) des données retardées, (2) des

données agrégées dans le temps et (3) des données erronées sur la performance du sys-

tème. Nos résultats indiquent que, dans la plupart des cas, les problèmes de visibilité

des données influencent directement la chaîne d’approvisionnement des soins de santé et

diminuent la performance du système. Cependant, lorsque ces problèmes de visibilité en-

traînent des surestimations de taille exponentielle, nous observons une amélioration des

performances du système. Ceci est particulièrement vrai pour un système qui utilise le

modèle épidémiologique compartimental comme méthode de prévision tout en utilisant

des données décalées.
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Abstract

During the COVID-19 pandemic, healthcare organizations suffered a shortage of essen-

tial medical supplies, such as personal protective equipment, which resulted in severe

consequences. This study aims to assess the impact of one potential factor for this short-

age, i.e., the lack of visibility over the consumption of personal protective equipment. To

do so, different forecasting methods combined with a periodic review inventory system

are tested on semi-simulated data that includes various visibility issues. The forecast-

ing methods are categorized based on the data used. The Holt and naïve methods are

selected as demand-based forecasting methods, and a modified compartmental epidemi-

ological model is explored for its use of pandemic data to forecast demand. This paper

studies three of the most common data visibility problems. Specific scenarios have been

developed to analyze the impact of (1) delayed data, (2) temporally aggregated data, and

(3) erroneous data on the performance of the system. Our findings indicate that, in most

cases, data visibility issues directly influence the healthcare supply chain and diminish

the performance of the system. However, when these visibility issues result in exponen-

tially large over-forecasts, we observe a performance improvement in the system. This

phenomenon is particularly true for a system that uses the epidemiological compartmental

model as its forecasting method while using lagged data.
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General introduction

The first case of coronavirus disease 2019 (COVID-19) was identified in Wuhan, China,

in December 2019 (Basavaraju et al., 2021), and it only took three months to spread across

the globe. March 11th, 2020 marks an important date in recent history; not only COVID-

19 was declared a global pandemic on that date by the World Health Organization (WHO)

(World Health Organization, 2020) but also because it set the events where we faced the

limits of our modern lives both socially and economically. COVID-19 is the event we

were warned about but hoped never happened; in the end, our experience was perhaps the

worst-case scenario. Over five million people have died globally (Johns Hopkins Univer-

sity, 2022), one of the biggest human loss events in the past century. Not to hinder its

catastrophic mortality rate, but the global economy felt the devastating effects of COVID-

19 to the fullest extent. In comparison, the financial crisis of 2008 (Vereckey, 2020) looks

like child’s play. Faced with unseen and unexpected situations, most countries imposed

strict social distancing and lockdowns to control the spread of the virus. Moreover, the

COVID-19 pandemic crushed the stock market, with share prices free-falling daily, fur-

ther deteriorating the already fragile economy. With millions of people without jobs or

any source of income and dwindling supplies of primary goods, the COVID-19 pandemic

brought the world government to the brink of economic collapse. Furthermore, the global

supply chain was also impacted heavily by the COVID-19 pandemic, where significant

disruptions were experienced in almost every industry (Cappelli & Cini, 2020; McMahon,

Peters, Ivers, & Freeman, 2020; Shuman, Fox, & Unguru, 2020; Singh, Kumar, Panchal,

& Tiwari, 2021; Udmale, Pal, Szabo, Pramanik, & Large, 2020). To control the spread



of COVID-19, major lockdowns were enforced in most cities. The industrialized regions

were not exempt from the lockdowns, and factory shutdowns (Chatterjee, 2020; Reuters,

2021) led to limited production and, consequently, long lead times (Biswas & Das, 2020;

Oeser & Romano, 2021); the smallest gap in production could potentially disrupt the en-

tire supply chain, let alone weeks of interruption in the manufacturing lines. Even when

the factories were re-opened, the fear of upcoming shortages resulted in export restrictions

(Congressional Research Service, 2021; Hoekman, Fiorini, & Yildirim, 2020). Further-

more, the behaviour of the product’s demands had become too erratic and unpredictable

(del Rio-Chanona, Mealy, Pichler, Lafond, & Farmer, 2020; Okorie et al., 2020) for any

planning to work properly; every section of the global supply chain was under the negative

impacts of the pandemic.

However, it was perhaps in the healthcare supply chain (HSC) where we truly ob-

served the deficiencies of our existing systems and the grave consequences that came

with them. The coronavirus is more contagious, causes more severe illnesses, and has a

longer recovery period (Centers for Disease Control and Prevention, 2022) than the flu,

all of which caused an unforeseen rapid growth of the infected population. As a con-

sequence, the hospitalization of COVID-19 patients was increasing at an alarming rate,

and soon the medical systems were at the limits of their capabilities both in staffing and

supplies (Canadian Institute for Health Information, 2021). COVID-19 completely over-

whelmed the hospitals and medical centers, to the point where unnecessary activities were

halted, and in some extreme cases, even providing intensive care was prioritized based on

the higher likelihood of recovery (Shaun Lintern, 2020). In these situations, losing med-

ical frontliners, even for a day, can have disastrous consequences, and it is imperative to

provide them with whatever means necessary to protect them against the infection. The

spread of COVID-19 occurs through respiratory droplets and aerosols when an infected

person is in close contact with others (Government of Canada, 2021). Since social distanc-

ing was not possible for the medical workers when treating the patients, the most effective

method of prevention from contracting the COVID-19 virus is the use of personal protec-
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tive equipment (PPE) (World Health Organization, n.d.). The demand for PPE was on the

rise, and the PPE itself became a true commodity during the initial stages of the pandemic.

The shortages of PPE in the most crucial areas of our society, the hospitals, were not a

possibility anymore; it was a reality that the healthcare system was facing (Ranney, Grif-

feth, & Jha, 2020). In response, some countries implemented “crisis capacity strategies”

where the reuse of PPE was recommended (Centers for Disease Control and Prevention,

2020). Moreover, in many countries, the fear of shortages forced government officials to

impose restrictions on the export of essential products, which put additional stress on the

already trembling global supply chain.

HSCs should have been better prepared, especially with our vast knowledge of pre-

vious pandemics. Our experience dealing with the 2002-2004 SARS outbreak (Centers

for Disease Control and Prevention, 2013) has provided us with ample warnings about

future pandemics and the guidelines on measures that must be taken before such events.

Unfortunately, these lessons have largely been ignored. Numerous areas within the entire

HSC require detailed analysis and a complete overhaul if we wish to avoid experiencing

the events of COVID-19 again in future pandemics. However, in this study, we focus

on the downstream processes of HSCs, particularly the factors that can potentially im-

pact the system’s performance. By identifying the limitations and shortcomings of the

current system, the supply chain managers, hereafter the managers, can minimize the

negative impacts of the pandemic. The first step is to prioritize the objectives of the sys-

tem. As mentioned previously, due to reports of PPE shortages in hospitals, the system

with the highest service level, the lowest shortages, is preferable to others regardless of

its monetary costs. A cost-benefit analysis of the monetary aspects of the system can

later be applied for comparison purposes among the proposed solutions. The next step

is to locate the vulnerable areas of the system that have been impacted the most by the

pandemic. Data visibility has always been one of the most controversial areas within the

supply chain, not only during the pandemic but also when global trade was in normal

state. Data visibility issues (DVIs) can potentially be amplified by the pandemic, and the

3



extent of their impacts on the performance of the system should be fully understood by

the managers.

Even before the pandemic, data visibility has long been a hot topic among academia

and professionals. Data visibility is defined as information sharing among individuals

within the supply chain, which likely contributes to performance enhancement in the

system (Barratt & Oke, 2007). Data visibility is beneficial to both the upstream and

downstream of the supply chain; for instance, a manufacturer can further optimize the

production capacity planning if the behaviour of the demand is known in advance, or a

manager can establish an effective replenishment planning if the daily inventory level at

all locations under supervision is readily available. Unfortunately, the lack of data visi-

bility has been a major problem in HSCs even before the pandemic. Snowdon and Forest

(2021) noted that the Canadian healthcare system has minimal data visibility among its

different sectors. As a result, the system is highly fragmented, which makes it even more

inefficient (Smeltzer & Schneller, 2006). Considering the fact that the pandemic has neg-

atively impacted the overall activities within the supply chain, it should not be a surprise

that the lack of data visibility is further intensified during this period (Dai, Bai, & An-

derson, 2020; Snowdon, Saunders, & Wright, 2021). Within the existing data visibility

infrastructure, some specific areas are more prone to be negatively affected by the pan-

demic than others. For instance, amidst the tremendous influx of patients, recording the

daily consumption of PPE might not be the highest priority for hospitals. Hence, the

daily demand data might never be available, and the managers will only have access to

the aggregated data; even worse, the level of aggregation might vary within each entry,

creating more complexity for replenishment planning. The delay in data transmission

from hospitals to those in charge of HSC is another area where the pandemic could am-

plify any existing issue. Since the state of a pandemic is progressing rapidly, any data

delay could potentially postpone subsequent adjustments to the system. Finally, due to

the threat of shortages in the hospitals or incorrect assumption of the upcoming demand,

erroneous data within the system caused by over- or under-reporting of the demand is

4



a real possibility, and the managers should be aware of how this behaviour will impact

the performance of the system. These problems could ultimately hinder our efforts in

managing the limited resources that are available during situations such as pandemics.

One of the direct consequences of DVIs is how we perceive the pandemic behaviours

and, subsequently, our future plans. Understanding the demand behavior, trends, and sea-

sonality is vital for predicting the products’ demand on which the entire supply chain

system will be based. Unfortunately, the demand during a pandemic does not follow its

historical trends as the outbreak has caused major disruptions in purchasing and consump-

tion norms of most products and, more importantly, in the PPE segment. Therefore, the

impact of different types of DVIs on the system in the context of the pandemic should

be analyzed since the current HSC is unlikely to change in time to prepare for the next

pandemic. The classical forecasting methods analyze the demand’s historical data to cap-

ture its trends and seasonality, among other factors. We categorized these methods as

demand-based methods. The naïve and Holt methods are some of the best examples for

this category and are widely used within the supply chain industries. However, the de-

mand of products during the pandemic neither possesses any historical data nor follows

any particular trend. An alternative approach is to employ forecasting methods that are

based on the pandemic’s behaviours, specifically the epidemiological data. This proposal

considers the pandemic as the driving mechanism behind the erratic behaviour of demand.

Hence, by forecasting the population of infected individuals in different sectors of society,

one could theoretically forecast the demand for products in that specific sector. We have

categorized these methods as pandemic-based methods. There exists an immediate need

to examine the functionality of both categories of forecasting methods in the presence of

DVIs. Our analyses focus on the impact of various DVIs on the performance of a system

that employs different forecasting methods in the context of a pandemic. In addition, the

pandemic is in a constant state of change which makes the demand fluctuation even more

unpredictable. The next step in the inventory management of any product, let alone the

medical supplies, is the incorporation of demand forecasts into a control system capa-

5



ble of reacting quickly to the latest situation, which is dependent on the pandemic. We

employed the periodic review system since it can easily be implemented into any system

with minimal modern infrastructure. In addition, the periodic review system is flexible

enough to react to the evolving conditions of the pandemic.

Even though the performance of forecasting methods that were mentioned earlier has

been analyzed in other studies, their performance within the context of the pandemic

needs to be clearly understood. In addition, due to specific conditions during the pandemic

where the lowest shortage level is of utmost priority, the comparison of forecasting meth-

ods is required to be made for both the forecasting performance and the resulting inven-

tory management performance. Moreover, the awareness regarding the impact of DVIs

on the performance of the system has been high in recent years. However, it still needs

to be determined how the system would perform in the presence of DVIs in the specific

context of a pandemic. Hence, this thesis provides the following contributions. We com-

pare two distinct categories of forecasting methods within the context of the pandemic.

For the demand-based methods, we select two widely used forecasting models within the

professional communities, the Holt and the naïve methods. An epidemiological compart-

mental model is selected for the pandemic-based methods. The epidemiological model in

this thesis is a modified version of a classical SIR (susceptible-infected-recovered) com-

partmental model and includes a separate compartment for medical centers to analyze

the influx of patients through such locations. The comparison consists of the analysis

of both forecasting performances as well as the performance of the resulting inventory

management system. In addition, we identify the common issues regarding the visibil-

ity or lack thereof within the HSCs and analyze their impacts on the performance of the

system within the context of the pandemic. Data delay, temporally aggregated data, and

erroneous data are the DVIs investigated in this thesis. Each DVI is analyzed through

a separate scenario where the magnitude of the DVI is fixed and is gradually increased

to observe its true impacts; the results are then compared to the benchmark scenario,

the scenario where the data does not possess any DVI. In each scenario, the impact of

6



the DVI is analyzed on all forecasting methods. To address the unpredictable nature of

DVIs, randomized data delay and temporally aggregated data are also analyzed. Finally,

for the erroneous data scenario, since the data has the possibility of being either over- or

under-reported, the analysis is performed for both cases.

In the next chapter, we present our paper, including the methodologies, findings, and

discussion. Then we present the general conclusion to this thesis.
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Chapter 1

The effect of visibility on forecast and

inventory management performance

during the COVID-19 pandemic

Abstract

During the COVID-19 pandemic, healthcare organizations suffered a shortage of essen-

tial medical supplies, such as personal protective equipment, which resulted in severe

consequences. This study aims to assess the impact of one potential factor for this short-

age, i.e., the lack of visibility over the consumption of personal protective equipment. To

do so, different forecasting methods combined with a periodic review inventory system

are tested on semi-simulated data that includes various visibility issues. The forecast-

ing methods are categorized based on the data used. The Holt and naïve methods are

selected as demand-based forecasting methods, and a modified compartmental epidemi-

ological model is explored for its use of pandemic data to forecast demand. This paper

studies three of the most common data visibility problems. Specific scenarios have been

developed to analyze the impact of (1) delayed data, (2) temporally aggregated data, and

(3) erroneous data on the performance of the system. Our findings indicate that, in most



cases, data visibility issues directly influence the healthcare supply chain and diminish

the performance of the system. However, when these visibility issues result in exponen-

tially large over-forecasts, we observe a performance improvement in the system. This

phenomenon is particularly true for a system that uses the epidemiological compartmental

model as its forecasting method while using lagged data.

Keywords: inventory management, forecasting, visibility, healthcare, disruption, pan-

demic

1.1 Introduction

In March 2020, the coronavirus disease 2019 (COVID-19) was declared a global pan-

demic by the World Health Organization (WHO) (World Health Organization, 2020).

With over 5 million deaths as of February 2022 (Johns Hopkins University, 2022), COVID-

19 has been one of the deadliest events in recent human history. Its economic impact is

nothing short of a catastrophe. Not only has bankruptcy become a constant threat, but

it also brought the world governments to the brink of an economic collapse compara-

ble to the economic shock of the 2008 financial crisis (Vereckey, 2020). Moreover, the

global supply chain has experienced significant disruptions in almost every industry (Cap-

pelli & Cini, 2020; McMahon, Peters, Ivers, & Freeman, 2020; Shuman, Fox, & Unguru,

2020; Singh, Kumar, Panchal, & Tiwari, 2021; Udmale, Pal, Szabo, Pramanik, & Large,

2020). Factory shutdowns (Chatterjee, 2020; Reuters, 2021), uncertain and lengthy lead

times (Biswas & Das, 2020; Oeser & Romano, 2021), export restrictions (Congressional

Research Service, 2021; Hoekman, Fiorini, & Yildirim, 2020), and fluctuating demand

(del Rio-Chanona, Mealy, Pichler, Lafond, & Farmer, 2020; Okorie et al., 2020) are just

a few contributing factors to the inadequacy of the supply chain during the COVID-19

pandemic era, and healthcare supply chains (HSCs) are no exception. During the initial

stages of the pandemic and in the absence of a viable vaccine, a sudden increase in hos-

pitalizations pushed the healthcare facilities to their limits (Canadian Institute for Health

Information, 2021). Since this virus spreads mostly via airborne particles and droplets,

10



the most effective prevention methods of transmission are social distancing and the use

of personal protective equipment (PPE) (World Health Organization, n.d.). Protecting the

frontline health workers was the obvious and utmost priority. The skyrocketing demand

for PPE resulted in severe shortages within healthcare facilities. Reports of PPE short-

ages (Ranney, Griffeth, & Jha, 2020) were alarming and led to the implementation of

“crisis capacity strategies” where extreme measures such as the reuse of N95 masks were

suggested (Centers for Disease Control and Prevention, 2020).

The COVID-19 pandemic has exposed deficiencies in current HSCs. Warnings about

the upcoming pandemics (Institute of Medicine, 2004) following the 2002-2004 SARS

outbreak (Centers for Disease Control and Prevention, 2013) have largely been ignored,

which left HSCs unprepared to face such an event, failing to perform adequately when it

was needed the most. There is thus an urgent need to revitalize the existing supply chain,

at least within the healthcare industry. Generally, the supply chain can be divided into

two main sections: upstream and downstream. In this paper, we focus on the downstream

processes, particularly the factors that can directly impact the flow of products. Supply

chain managers, hereon managers, generally have little to no control over the production

line of their suppliers, and it was even less the case during the pandemic. Therefore, their

focus must be on downstream activities such as inventory and data management. Most

importantly, they should consider the impact of supply chain visibility, or lack thereof, on

the performance of the system should it require further enhancement.

Barratt and Oke (2007a) define supply chain visibility as “the extent to which actors

within a supply chain have access to or share the information which they consider as key

or useful to their operations and which they consider will be of mutual benefit”. The

ability to track demand, replenishment, and inventory within the system could potentially

be vital to the system’s performance. In Canada, the operations and processes of the

healthcare supply chain fall under the provincial jurisdictions (Government of Canada,

2022a) with highly diverse strategies about their inventory and data management systems,

and with minimal visibility on the various segments of the supply chain (Snowdon &

11



Forest, 2021), which makes it fragmented and inefficient (Smeltzer & Schneller, 2006).

The lack of visibility in the system is further intensified when encountering a crisis as

critical as the COVID-19 pandemic (Dai, Bai, & Anderson, 2020; Snowdon, Saunders, &

Wright, 2021). In the absence of proper data management infrastructures that can provide

timely and reliable reports on the status of the supply chain, managers are forced to rely

on their intuitions, which could negatively impact the overall system performance.

Demand forecasting is an integral part of any inventory system. Understanding the

limitations and capabilities of forecasting methods becomes even more crucial for a suc-

cessful manager considering that the potential data visibility issues (DVIs) within the

system might have been amplified due to the pandemic. Therefore, there exists an imme-

diate need to examine the functionality of common forecasting methods in the presence of

DVIs. Our analyses focus on the impact of various DVIs on the performance of a system

that employs different forecasting methods in the context of a pandemic.

The contributions of this paper are as follows. First, we compare two widely used

forecasting methods within professional communities (i.e., the naïve and Holt methods)

to an epidemiological compartmental model. This comparison is made both on the fore-

casting performance and the performance of the resulting inventory management system.

Second, we investigate common issues associated with the visibility or lack thereof in the

HSCs and analyze their impacts on the system’s performance in the specific context of a

pandemic. In particular, the examined DVIs are data delay, temporally aggregated data

and erroneous data. We present a separate scenario for each DVI and assess its direct

impact on the performance of the system. In addition, to replicate real-world situations,

we analyze a randomized delay data scenario as well as a randomized temporally aggre-

gated data scenario. In the scenario that analyzes the erroneous data, both under- and

over-reporting within the data are considered, and their impacts on the performance of the

system are analyzed.

This paper is organized as follows. The related literature is presented in Section 1.2.

Section 1.3 describes the problem. Section 1.4 describes the general solution approaches
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for this problem. Section 1.5 presents the numerical study and the associated results.

Finally, Section 1.6 provides our conclusions.

1.2 Literature review

In this section, we review two research streams relevant to this paper, i.e., (1) demand

forecasting and (2) supply chain visibility, with a specific focus on the context of a pan-

demic. Then, our paper is positioned with respect to this literature.

1.2.1 Demand forecasting

Managing the inventory of PPE during a pandemic is a challenging task. Most inventory

management systems perform as expected when the demand is stable. However, when

the demand experiences high levels of volatility, such as in the context of a pandemic,

the impact of the forecasting process on the system’s performance becomes more promi-

nent since it directly affects decision-making. Forecasting the demand for PPE during a

pandemic is complicated. First, the new demand is often drastically different from past

demand patterns. Second, demand patterns are challenging to predict as they are often

linked to many factors (e.g., panic buying and hoarding behaviours observed during the

COVID-19 pandemic (Cohen & van der Meulen Rodgers, 2020; Tsao, Raj, & Yu, 2019)),

which are, in turn, difficult to anticipate.

Several forecasting methods exist to predict demand during a pandemic. These meth-

ods can be grouped into two categories. In the first one, the forecast is directly based on

the demand data. These methods include classical statistical methods that are used exten-

sively within the scientific communities and the industry. Forecasting methods such as

naïve forecast (Nikolopoulos, Punia, Schäfers, Tsinopoulos, & Vasilakis, 2021), simple

exponential smoothing (Petropoulos & Makridakis, 2020), Holt-Winters (Lynch & Gore,

2021), regression models (Ogundokun, Lukman, Kibri, Awotunde B., & Aladeitan, 2020),

and autoregressive integrated moving average (ARIMA) models (Benvenuto, Giovanetti,
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Vassallo, Angeletti, & Ciccozzi, 2020; Güngör, Ertuğrul, & Soytaş, 2021; Malki et al.,

2021), to name a few, are mainly based on the historical data of the time series that is

being predicted.

In the second category, the demand is predicted through the utilization of epidemi-

ological data along with the pandemic’s behaviour. This is a two-tier method, where

forecasting the pandemic’s consequences (e.g., infected population, hospitalizations) are

considered as trigger parameters in the forecast of excess demand (i.e., demand above

the average due to the pandemic) for medical supplies such as PPE. In this case, the

same methods mentioned in the first category can also be employed to predict the pan-

demic behaviour (Soebiyanto, Adimi, & Kiang, 2010). As an example, Sun (2021) pro-

poses a modification to the ARIMA model to forecast the dynamics of the pandemic.

Swapnarekha, Behera, Nayak, Naik, and Kumar (2021) rather use the multiplicative Holt-

Winters model and observe that it produces good forecasts of the number of confirmed

infected cases. However, a more detailed interpretation of the pandemic behaviour can

be produced using the well-established compartmental epidemiological model, first in-

troduced by Kermack, McKendrick, and Walker (1927). In its simplest form, the model

places each member of the population in different compartments (i.e., susceptible, in-

fected, and removed) based on their status and uses a series of differential equations to

explain the interactions between them. Hence, the name SIR is appointed for the proposed

model. Extensive studies using a compartmental model have been done on past (Dimitrov

& Meyers, n.d.; Osthus, Hickmann, Caragea, Higdon, & Del Valle, 2017) and current

pandemics (L.-P. Chen, Zhang, Yi, & He, 2021; Cooper, Mondal, & Antonopoulos, 2020;

Liu, Fong, Dey, Crespo, & Herrera-Viedma, 2021; Yang et al., 2020).

The SIR model can also be extended to study the pandemic under external factors

such as social distancing. Gounane et al. (2021) develop a nonlinear SIR model to incor-

porate the effect of social distancing. To study the effect of lockdown on the pandemic,

Ianni and Rossi (2020) propose a time-dependent SIR model. Furthermore, researchers

have modified the SIR model to include additional compartments that represent specific
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population segments. The exposed compartment is the most common addition to the

original model, hence “E” in SEIR. It represents the latency between the contraction of

disease and the ability to transmit the infection by an individual (Brauer, Castillo-Chavez,

& Feng, 2019). Moreover, to investigate the population at healthcare facilities at any

given time, the “Hospitalized” compartment can be added to the model (Leontitsis et al.,

2021; Shin et al., 2021). Once the required pandemic parameters are predicted, the data is

used to forecast the excess demand (again, the demand above the average). In the case of

HSCs, the number of required units per patient can represent the excess demand. Lum et

al. (2020) propose a mathematical model that employs the daily average number of con-

tacts between infected patients and healthcare workers as a coefficient which is multiplied

by the projection of hospitalization to forecast the PPE demand. Several proposals have

transformed daily pandemic data, such as daily infections and hospitalizations, into PPE

demand in any region. Furman et al. (2021) propose using a queueing model to predict

the required PPE during the COVID-19 pandemic. Nikolopoulos et al. (2021) employ

the growth rate of COVID-19 incidents in conjunction with a parameter that can capture

the effect of the pandemic. Yom-Tov and Mandelbaum (2014) propose a time-varying

queueing model to determine the required unit per patient.

1.2.2 Supply chain visibility

Supply chain visibility is a critical component in a system’s performance, especially

within the healthcare industry, where any deficiency might result in grave consequences.

The COVID-19 pandemic has again shown a lack of resiliency and robustness in the sup-

ply chain industry. Data visibility remains one of the biggest challenges for managers, as

shown during the initial stages of the pandemic (Gao, Tao, Huang, & Shu, 2020; Mitchell,

2021). With increasing capabilities in the information-sharing systems provided by mod-

ern information technologies, the effect of data visibility on the supply chain industry

has been investigated more prominently (Barratt & Oke, 2007b; Ketikidis, Koh, Dimi-

triadis, Gunasekaran, & Kehajova, 2008; Kyu Kim, Yul Ryoo, & Dug Jung, 2011; Roy,
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Gilbert, & Lai, 2019; Sahin & Robinson, 2005; Subramani, 2004; Swaminathan & Tayur,

2003). There are numerous factors contributing to data visibility problems within the

supply chain industry. In general, and even more during a pandemic, three of the most

common issues regarding data visibility are: (1) erroneous data, (2) delay in data, and (3)

temporally aggregated data.

Since the late 1950s, the bullwhip effect has been associated with a lack of data vis-

ibility. Many scholars point out the importance of information sharing and its impact on

reducing the amplified demand throughout the value chain (Forrester, 1958; Lee, Pad-

manabhan, & Whang, 1997; Towill, Naim, & Wikner, 1992). Information inaccuracies

and errors are among the contributing factors to the bullwhip effect, which might result

in under- or over-reporting demand within a system. Lu, Feng, Lai, and Wang (2017)

provide two primary sources of data inaccuracy and their impact on the system’s per-

formance with regard to the bullwhip effect. They mention that the errors might occur

either during the information delivery to the next level (from downstream to upstream) or

during the collection of data from the customers. Their study concludes that data shar-

ing has contrasting beneficial values for the manufacturers depending on the source of

the error. Kwak and Gavirneni (2015) further outline the negative impact of errors on

the value of information sharing, where it is best to assume the information is not avail-

able if the variance of information errors outweighs that of the end-customer demands.

Under- and over-reporting are also potential sources of errors within the data. Multiple

studies have been conducted on under-reporting of the number of infected cases and how

it might lead to ineffective preventive policies during the COVID-19 pandemic (do Prado

et al., 2020; Lau et al., 2021). In addition, threats of shortages could result in a significant

over-reporting of demand which is a major problem for a supply chain manager.

Another major contributing factor to DVIs is the information delay (Nguyen, Adulyasak,

& Landry, 2021). It is possible to quantify the cost of information delay and the value

of the most recent demand data. Munoz and Clements (2008) find that the disruption in

the flow of information has a more obstructive effect on revenue than the product delay.
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Moreover, F. Chen (1999) provides a comparative analysis of production lead times and

information delays within different stages of a supply chain that entirely belongs to a sin-

gle firm. He concludes that within such settings, data lags are less costly than production

lead times. The results also show that, data delays in the upstream supply chain are less

detrimental than in the downstream supply chain. Hoberg and Thonemann (2014) analyze

the effect of the information delay on echelon stock policies. They conclude that the pres-

ence of information delay deteriorates the system’s performance. However, increasing

the length of delay does not automatically translate into a further decline in performance.

Hosoda and Disney (2012) explore a similar problem on a linked two-level supply chain

and find that not all levels benefit from shorter delays. In the context of the COVID-19

pandemic, Sarnaglia, Zamprogno, Fajardo Molinares, de Godoi, and Jiménez Monroy

(2022) recognize the existence of data delay and propose a methodology for a forecasting

model to correct the notification delay. Closer to our study, Tucker and Wang (2021) ana-

lyze the impacts of homogeneous and heterogeneous delay in data on preventive policies

in the United States. Their results indicate that data delay could lead decision-makers to

misinterpret these policies.

Temporal aggregation of data is another potential supply chain visibility issue. The

manager might receive the demand data aggregated and transmitted at lower frequencies

than initially collected. Temporal aggregation is defined as the process of transforming

high-frequency time series (e.g., daily) into a low-frequency time series (e.g., weekly)

(Nikolopoulos, Syntetos, Boylan, Petropoulos, & Assimakopoulos, 2011). It is estab-

lished that data aggregation results in information loss (Rossana & Seater, 1995) and vari-

ance reduction (Hotta, Pereira, & Ota, 2004). In the supply chain context, the aggregation

of data is associated with “risk-pooling” to reduce the demand uncertainty and improve

the planning and forecasting (Dekker, van Donselaar, & Ouwehand, 2004). Rostami-

Tabar, Babai, Syntetos, and Ducq (2013) conclude that the performance improvements

through data aggregation are a function of the aggregation level, among others. Yet, the

aggregated data may not always be beneficial, as shown by Gfrerer and Zäpfel (1995),
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where robust production planning requires the disaggregation of the aggregated produc-

tion plan into a feasible detailed plan. However, in most inventory management systems,

the managers do not have access to the detailed demand; hence, the evolution of the de-

mand is unknown to the system. Jin, Williams, Tokar, and Waller (2015) observe that

beneficial impacts of the data aggregation on the forecast depend on the demand signal’s

autocorrelation, which does not necessarily hold for all cases.

1.2.3 Positioning of the paper

As previously highlighted, several methods can be applied to forecast the product’s de-

mand. However, firstly, it is not completely clear how these methods perform and compare

to each other in the context of a pandemic, both for the forecasting performance and for

the resulting inventory management performance. In addition, while the compartmental

model has been used extensively to predict pandemic behavior, the information provided

by this model is not generally used to predict demand. We believe that relying on such

information in the context of a pandemic could potentially improve forecasts and lead to

better performances.

Therefore, the first contribution of our paper is to analyze and compare different fore-

casting methods using various types of data and assess their performance. In particular,

we compare two classic forecasting models (i.e., the naïve and Holt methods) and a fore-

casting model based on an epidemiological model. In addition to the traditional statistical

performance (e.g., root mean square error), we also compare these methods with respect

to their performance within an inventory management system since a good forecasting

performance may not necessarily result in a good inventory management system. This

comparison provides a better understanding of how the forecasting process impacts the

decision-making process and, consequently, the performance of the system.

We also previously highlighted that data visibility is a challenge that has been studied

for quite some time. While it is known that data visibility influences performance, it is not

clear how visibility affects performance in the specific context of a pandemic. The HSC
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has suffered tremendously from the lack of visibility in recent years, particularly during

the pandemic. Therefore, there exists an urgent need to increase our knowledge in this

domain.

The second contribution of this paper is the study of different DVIs’ impact on in-

ventory management performance during a pandemic. We analyze the information delay

in two distinct formats: fixed and random lags. This approach enables us to analyze the

impacts of lag elongation as well as real-world situations where lag lengths are random.

Similar to data delay, we investigate the performance of the system under the influence

of aggregated data in two formats: fixed and random. Finally, we test the impact of both

under- and over-reporting of demand (i.e., erroneous data). To the best of our knowl-

edge, this is the first study that investigates the impact of DVIs (i.e., data lag, aggregated

data, and erroneous data) on the performance of an inventory management system in the

context of a pandemic.

1.3 Problem description

The inventory management problem under study is an inventory management problem

of medical supplies in healthcare facilities. In this problem, a manager controls the re-

plenishment of a single product (e.g., N95 respirators) for a specific region (e.g., country,

province, city). Furthermore, since we assume that facilities within this region can redis-

tribute supplies among themselves as needed, we only consider the aggregated demand

for the region. The entire time horizon (i.e., the duration of the pandemic wave) is divided

into a series of decision epochs with a constant interval of R days (i.e., R is the review

period of the system). At each decision epoch, after observing the current and previous

states of the system (e.g., inventory), the manager decides the quantity of the product that

needs to be ordered (if any) while minimizing the cumulative costs of the system.

The cost definition depends on the objective(s) to achieve. The costs can be defined

as the monetary value of the ordering and holding processes as well as the associated
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costs related to the shortages. In practice, however, the focus was on the minimization

of the shortages while avoiding too much left-over inventory at the end of the wave. We

now further describe the different components of this dynamic system in the rest of this

section. It is important to note that the demand in this study is perishable; thus, the

unfulfilled demand is considered to be lost.

1.3.1 State

At the beginning of each decision epoch k ∈ K = {1,2, . . . ,K + 1} with fixed intervals

(i.e., one week), the system is in the state sk:

sk = (dk−1,qk, pk,uk) (1.1)

where dk−1 denotes the total demand during epoch k − 1, qk denotes the state of the

inventory, pk denotes the state of the pandemic, and uk denotes the state of the supplier.

The state of the inventory is given by qk =
(
qa

k ,q
t
k

)
where qa

k is the available inventory

level of the region and qt
k is the in-transit inventory vector. Note that the sign of qa

k

indicates a shortage or surplus of inventory, with a negative value indicating the former.

The in-transit inventory consists in a vector tracking the remaining units to be delivered

according to how many epochs ago they were ordered. This vector has a length of Lmax,

which is the maximum lead time for the ordered items rounded up to the nearest multiple

of the fixed interval.

The state of the pandemic pk at the beginning of epoch k includes information on the

daily number of infections and hospitalizations since the previous decision epoch. It also

contains information about the government protocol that outlines the consumption of PPE

per hospitalized patient, CCk, at healthcare facilities.

Finally, the state of the supplier uk provides information regarding the lead time, the

lot size as well as the supplier’s upper and lower limits regarding the quantity of products

in each order.
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1.3.2 Action

At each epoch k ∈ K \ {K + 1}, the manager takes an action ak ∈ A (sk), which is a

feasible placement of an order to a supplier; note that, at the epoch K + 1, the manager

observes the state, but takes no action. If there is no need for an order at epoch k, the

action is ak = 0. This action is mainly restricted by the state of the supplier uk, e.g.,

the supplier’s upper and lower limits regarding the quantity of products in each order.

Constraints such as the budget, storage space, or political aspects are not considered in

this study.

The quantity of the order at epoch k, ak, is generally defined by a policy π which

requires the full history of states, i.e., ak = π(s1:k) where s1:k denotes the history of states

up to epoch k, i.e., s1:k = (s1,s2, . . . ,sk). Note that the policy is assumed to be stationary.

Moreover, the policy is history-dependent since the manager needs to have some knowl-

edge of the historical data in order to make a decision (e.g., to know whether we are in an

increasing or decreasing trend in terms of the number of infections). While it is possible

to increase the state dimension to capture previous states and recover a Markovian policy,

this leads to the curse of dimensionality.

Through these actions, the manager tries to minimize the costs, which are described

next.

1.3.3 Cost function

Generally, for a particular state sk and action ak, the manager incurs a cost C(sk,ak) at the

end of the epoch k, which can be a combination of the ordering, holding, and shortage

costs. In particular, it can be defined as

C(sk,ak) = c f1ak>0 + cuak + chqa,+
k + csq

a,−
k (1.2)

where c f denotes the fixed ordering cost, 1 denotes the indicator function, cu denotes

the variable (or unit) ordering cost, ch denotes the unit holding cost, cs denotes the unit
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shortage cost, and qa,+
k and qa,−

k denote respectively the positive (i.e., inventory) and

negative (i.e., shortage) parts of qa
k .

1.3.4 Transition function

Once the manager takes an action ak, the system transitions into the next state sk+1 =

(dk,qk+1, pk+1,uk+1). The state components can be categorized as being independent or

dependent of the agent’s action. On the one hand, it is assumed that the components dk,

pk+1 and uk+1 do not depend on the agent’s action and are updated solely based on the

evolution of the pandemic and the characteristics of the supplier; the manager receives

these data from external sources. Thus, we assume that the agent’s action (i.e., the replen-

ishment decision) does not influence the pandemic’s evolution or the suppliers’ available

inventory.

On the other hand, the inventory qk+1 = (qa
k+1,q

t
k+1) is directly impacted by the action

ak. Let yk+1, j denote a quantity that was ordered j epochs ago where j ∈ {1,2, . . . ,Lmax}

and delivered at the beginning of the epoch k+1. We assume yk+1, j is 0 when k+1− j <

1; in other words, we assume no orders are passed before epoch 1. Then, the available

inventory is updated as

qa
k+1 = qa,+

k +
Lmax

∑
j=1

yk+1, j −dk. (1.3)

Yet, it should be noted that in this paper, the demand of medical supplies is assumed

to be perishable and cannot be back-ordered. Finally, each element j of the in-transit

inventory vector is updated as

qt
k+1, j =

ak − yk+1,k if j = 1,

qt
k, j−1 − yk+1,k+1− j if j = 2, . . . ,Lmax.

(1.4)

where qt
k+1, j is the quantity that was ordered j epochs prior to epoch k+1.

22



1.3.5 Objective function

The objective of this problem is to determine an optimal policy π∗ that minimizes the

total expected cost over the (finite) time horizon, i.e.,

π
∗ = argmin

π∈Π
E

[
K

∑
k=1

C (sk,π(s1:k))

∣∣∣∣∣ s1

]
(1.5)

where Π is the set of all feasible policies and s1 is the initial state of the system.

Note, however, that even a single shortage may result in deaths within the context

of medical equipment. Hence, associating a specific cost to an equipment shortage (i.e.,

cs) is extremely difficult. Therefore, in this study, our primary measure to compare the

different solution methods is the total number of shortages (i.e., the service level) over

the time horizon. As additional measures, we consider two types of inventory costs: the

left-over inventory at the end of the time horizon (hereon, LOI) and the average inventory

cost (i.e., holding costs). Due to the high purchase cost of PPE during the pandemic, we

believe that the LOI has a more profound impact on the overall cost of the system than the

holding costs. For this reason, we selected the LOI as a secondary measure in this study.

We do provide, however, an analysis of the average inventory cost as well.

1.4 Solution methods

In this section, we provide methods that aim to approximate the optimal policy π∗ of

Section 1.3.5. In contrast to more advanced methods, these methods seek to mimic

approaches that can be easily used in practice, which can be greatly beneficial during

fast-evolving situations such as pandemics where the required data is scarce at best. In

addition, since one objective of this work is to evaluate the impact of data visibility on

the performance of inventory management, these methods differ in the type of data they

use. In the rest of this section, we describe forecasting methods and the inventory control

method used in the decision-making process.
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1.4.1 Forecasting methods

The forecast of the demand is an essential part of the policy π , directly affecting the

decision-making process. Without such methods, the managers are forced to use their

gut feelings to place an order, which can be improved upon. In this section, we present

three demand forecasting methods, which can be grouped into two categories based on

the types of data they require to make a forecast. The first category consists in forecasting

methods that employ demand data to develop a forecast. Most of the classical statistical

forecasting methods fall into this category. In the second category, the forecasting method

employs epidemiological data of the pandemic as well as government protocols concern-

ing the consumption of PPE. These two categories of methods have distinct methodolo-

gies in the forecasting process, which is of importance for the results section. We employ

the following forecasting methods to estimate the demand during the first wave of the

pandemic.

Methods using demand data

Numerous forecasting methods employ demand data as the primary source of information

in their forecasting process. However, a simple model such as the naïve method often

performs reasonably well in the absence of reliable historical data (i.e., the context of a

pandemic) (Nikolopoulos et al., 2021), while being more practical than more advanced

methods. We now describe two simple methods in more detail.

Modified naïve forecasting method Based on interviews with managers, a simple fore-

casting method consists of identifying the maximum daily demand of the previous two

epochs (here, two weeks) in order to use it as the average daily demand over the fore-

casting period. This is an adaptation of the naïve method (Hyndman & Athanasopoulos,

2018) that takes the current epoch consumption as the consumption in the next epoch. In

particular, in this modified naïve method (hereon, the naïve method), the forecast at epoch
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k of the total demand is given by

d̂Naïve
k = fk max

{
ddk−1,ddk−2

}
(1.6)

where fk is the forecast horizon (i.e., the length of forecast) in days at epoch k, and ddk−1

and ddk−2 are respectively the maximum daily demand during epoch k − 1 and k − 2.

Note that the forecast d̂Naïve
k can go beyond the epoch k if fk is longer than one epoch.

This method is the benchmark for the computational study.

Holt forecasting method The second forecasting method using demand data is the

well-established Holt method (Hyndman & Athanasopoulos, 2018). It is widely used

in the industry due to its relative ease of use and ability to capture the demand’s trend. In

the context of a pandemic, capturing the demand’s trend is essential. However, it is not

necessarily useful to model seasonality; we only model one wave of a pandemic in this

work. The forecast at epoch k is given by

d̂Holt
k =

fk

∑
h=1

(lk×R +hbk×R) (1.7)

where lk×R and bk×R denote respectively the estimates for the daily level and trend of the

series on day k×R, and R is the review period in days. They are obtained with

lt = α ddt +(1−α)(lt−1 +bt−1) (1.8)

bt = β (lt − lt−1)+(1−β )bt−1 (1.9)

where ddt is the daily demand on day t, and 0 < α < 1 and 0 < β < 1 are smoothing

parameters for, respectively, the level and trend.

Method using epidemiological data – the SEIRHD model

To be able to use epidemiological data for inventory management, we adapt the

susceptible-exposed-infected-removed-hospitalized-discharged (SEIRHD) model (see

Figure 1.1). In addition to the typical setup in the SEIR model (Brauer, van den Driess-

che, & Wu, 2008), the SEIRHD model includes a path where subjects may be hospitalized
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and then discharged. There are two types of subjects visiting healthcare facilities during

a pandemic, i.e., the infected and non-infected subjects. For the sake of this work, it is

assumed that the majority of PPE consumption within healthcare facilities occurs during

the handling, treatment, and discharge of infected subjects. Note that this paper analyzes

specific types of PPE, such as N95 respirators, which are recommended for utilization

only during exposure to infected subjects (Possamai, 2020). Hence, the SEIRHD model

only tracks the number of hospitalizations of the infected population in the hospitalized

compartment, which is later used for forecasting purposes.

Susceptible
S

Exposed
E

Infected
I

Hospitalized
H

Discharged
D

Removed
R

Figure 1.1: The SEIRHD model

Furthermore, since the primary focus of this work is the demand for PPE within

healthcare facilities, infected subjects that do not visit these facilities are removed from

the system and placed into the removed compartment. Using the same analogy, the in-

fected subjects discharged from the healthcare facilities are moved into the discharged

compartment. For the purpose of this work, we do not distinguish between the recov-

ered and dead population for both of these compartments. A description of the typical

assumptions associated with such a compartment model is provided in Appendix 1.A.

Specification of the SEIRHD model Kermack et al. (1927) formulated the initial SIR

model as a series of differential equations. The adaptation of these equations to our com-
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partment model is as follows

dS
dt

=−βSI
N

, (1.10)

dE
dt

=
βSI
N

−σE, (1.11)

dI
dt

= σE − pHγHI − (1− pH)γRI, (1.12)

dR
dt

= (1− pH)γRI, (1.13)

dH
dt

= pHγHI − γDH, (1.14)

dD
dt

= γDH, (1.15)

where S,E, I,R,H,D denote the population in each respective compartment (see Fig-

ure 1.1). The other parameters are described in Table 1.1.

Table 1.1: Parameters of the SEIRHD model

Parameter Description

N Total population
β Number of contacts per unit time, multiplied by the probability of

transmission in a contact between a susceptible and an infected subject
σ Per-capita incubation rate, i.e., transition rate of exposed subjects to the

infected class
pH Probability of hospitalization of infected subjects
γR Per-capita rate of recovery and death of non-hospitalized subjects
γH Per-capita rate of hospitalization
γD Discharge rate of hospitalized subjects (dead and recovered)
R0,1 Initial R0
R0,2 Final R0
t0 Midpoint of the logistic function
κ growth rate of the logistic function

With the addition of the hospitalized compartment, the proposed model can predict

the disease’s behavior during an outbreak and, more importantly, the number of hospital-

izations at healthcare facilities. However, to do so, the model requires correct parameter

values. First, several parameters can be assumed as fixed through time and can be deter-

mined a priori by using data from various sources. In particular, the total population N of
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the region can be retrieved from governmental data. In addition, since the inverse of the

parameter σ corresponds to the incubation period, it is possible to compute this parameter

value as σ = 1/tincubation, where tincubation corresponds to a commonly agreed incubation

period (in days) for COVID-19; as explained in Appendix 1.A, we don’t stratify this in-

cubation period by, for example, age groups since this additional complexity would not

lead to additional insights in the case of this study. Furthermore, the hospital’s discharge

rate can be estimated as γD = 1/tALOS, where tALOS is the average length of stay in days.

The probability of hospitalization of infected subjects pH can be computed as the ratio

between the total number of hospital admissions of infected subjects and the total number

of infected subjects.

Then, the parameter β is linked to the basic reproduction number R0, an important

parameter in epidemiological studies which was first introduced by Macdonald (1952).

R0 describes the intensity of disease transmission, which may change over the course

of a pandemic depending on the evolution of disease characteristics (e.g., variants), as

well as public and government preventive actions. Hence, similarly to other studies (De

la Sen & Ibeas, 2020; Saito & Shigemoto, 2020) that use the logistic function within

epidemiological models, we model a varying R0 that transitions between two values, i.e.,

from an initial value R0,1 to a final value R0,2, according to a logistic function, and we

estimate the varying β from these R0,1 and R0,2 values using Lemma 1. The proof of

Lemma 1 is provided in Appendix 1.B.

Lemma 1. For the SEIRHD model, the parameter β can be computed as

β =

[
R0,1 −R0,2

1+ e−κ(t0−t)
+R0,2

]
(pHγH +(1− pH)γR) (1.16)

where t denotes the time at which β is estimated, t0 and κ denote the logistic function’s

midpoint and growth rate, respectively. The other parameters are defined in Table 1.1.

Finally, the remaining parameter values, γR,γH ,R0,1,R0,2 and t0, are obtained by fitting

the curves of the SEIRHD model to longitudinal data, which includes the daily number of
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infections, of hospital admissions, of hospitalizations, and of hospital discharges. Further

details on the fitting process are provided in Section 1.5.

Demand forecasting with the SEIRHD model Once a forecast of the hospitalizations

is established, it is possible to forecast the consumption of PPE with the government pro-

tocol observable in the element pk of the state sk. Each Canadian province mandates

a specific set of recommendations in dealing with COVID-19-related patients (Infection

Prevention and Control Canada, n.d.). These government protocols detail the consump-

tion of PPE for all healthcare workers, even those not in close proximity to COVID-19

patients. Assuming that there is always an active protocol and that it is closely respected,

it is possible to estimate the consumption of PPE based on the daily number of hospital-

izations of the SEIRHD model as

d̂SEIRHD
k = H( fk)CCk (1.17)

where H( fk) denotes the total number of hospitalization days over the forecast horizon

of epoch k, and CCk denotes the coefficient of consumption observed at the beginning of

epoch k, i.e., the daily number of PPE per hospitalized COVID-19 patient as outlined in

the government protocol. Note again that the forecast horizon fk can be longer than one

epoch.

It is important to highlight that this method only predicts the consumption of PPE

associated with infected patients in healthcare facilities. Yet, during the height of the

pandemic, many healthcare facilities shut down most of their daily routine operations

to attend to COVID-19 patients. Therefore, the majority of patients at any given time

in these centers were COVID-19-related. In addition, note that some PPE, such as N95

respirators, may be used exclusively with infected patients.

1.4.2 Inventory control – periodic review system

Once a forecast is made, the next step within the policy π is the computation of the quan-

tity to order. The manager must minimize the cost function while respecting the system’s
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constraints. The inventory control method also impacts the system’s performance; hence

advanced methods such as robust optimization may be envisioned. However, to be repre-

sentative of actual methods used in practice, we use the popular periodic review system

(Wensing, 2011) that is well-known for its efficiency and ease of use.

By using the forecasting methods described in Section 1.4.1, the manager obtains the

predicted demand over the forecast horizon fk at each epoch k. It is then possible to

compute the reorder point (ROP) in the context of uncertain demand as

ROP = d̂R+L + zRMSE
√

R+L (1.18)

where R denotes the review period in days, L denotes the lead time in days, d̂R+L denotes

the total predicted demand over the R+L period, z denotes the factor associated with the

(1−α) service level, and RMSE denotes the root mean square error of the forecast in

the last review period. We refer the reader to Section 2.10 of Axsäter (2015) for details

on how to use the forecast errors to determine the safety stocks. It is important to note

here that the forecast horizon fk may be longer than R+L, since the forecast may take

into account days before the current epoch in the case of the lagged data scenario (see

Section 1.5.2). Thus, we omit the quantity before the current epoch when computing

d̂R+L. With this method, the ROP’s value is dynamic and re-calculated at each epoch.

Finally, the quantity ordered ak is given by ROP−qa,+
k subject to the supplier’s min-

imum and maximum order quantities and rounded to the upper lot size. In particular, if

ROP−qa,+
k is above the supplier’s maximum order quantity or below the minimum order

quantity, then ak equals this supplier’s maximum or minimum order quantity, respectively.

1.5 Computational study

This section presents different scenarios designed to address a specific visibility issue

within the healthcare supply chain. In Section 1.5.1, the simulation process of the de-

mand, as well as the required parameters, are described. The detailed description of each
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scenario and their relevant results are then presented in Section 1.5.2. Finally, in Sec-

tion 1.5.3, we provide a discussion.

1.5.1 Data and parameters

Tracking PPE inventory is a difficult task, if at all possible. These types of equipment

are often located at multiple (official and unofficial) locations within a healthcare facility,

which prevents a physical inventory count. As a consequence, daily consumption data

of PPE is generally not available. Furthermore, even in the rare cases where this daily

consumption data may be available (e.g., due to strict control measures for the allocation

of PPE), it generally does not necessarily correspond to the daily demand data. In the

particular case of the COVID-19 pandemic, healthcare workers often had to reuse their

PPE due to major PPE shortages. The daily demand data is, thus, severely censored.

For these reasons, this study relies on simulated data, which is based on the pandemic

data. Similarly to Lum et al. (2020), we assume that the major driving force behind

the high demand for PPE is the pandemic, i.e., we assume there exists a strong positive

association between the demand and the pandemic-related variables such as the number

of infections and hospitalizations because of the government protocols that enforced the

number of PPE consumption per patients. While we acknowledge the existence of other

factors that influence demand data, these are omitted in this study since the objective is to

understand the effect of data visibility and not to reproduce exactly demand data during a

pandemic.

This paper employs the data for the Canadian province of British Columbia (BC).

In particular, the population of the region consists of 5,147,712 inhabitants (Statistics

Canada, 2021). The number of infections is obtained through the daily government up-

dates (Government of Canada, 2022b), see Figure 1.5a in Appendix 1.C. Furthermore,

data from the Canada Institute for Health Information (CIHI) (Canada Institute for Health

Information, 2020) provides the COVID-19-related daily hospital admissions, discharges,

deaths, and the average length of stay (e.g., see Figure 1.5b in Appendix 1.C for trend
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of the number of hospitalized patients in BC). The daily number of hospitalizations is

acquired by subtracting the daily discharges and deaths from the daily hospital admis-

sions. In addition, the incubation period, tincubation = 5.1 and the average length of stay

tALOS = 12.2 in Section 1.4.1 are derived from this CIHI data.

We then multiply the number of hospitalizations by the coefficient of consumption

(i.e., a factor associated with the government protocol prescribing the number of PPE

to use per hospitalization) to simulate the number of PPE that are used. As previously

discussed, this study assumes these protocols are followed closely. We believe this is a

proper method to simulate the demand associated with a pandemic since, during the first

wave of the pandemic, due to shortage concerns, some specific types of PPE, such as the

N95 respirators, were prescribed to be used only for the handling of COVID-19 patients.

Therefore, employing hospitalization as a trigger for the demand seems reasonable. To

create a more realistic setting where some divergences from the government protocol are

to be expected, we assume that the consumption coefficient CCsim is a normally distributed

random variable, resampled daily, with mean µCC and standard deviation σCC, i.e.,

CCsim ∼ N (µCC,σ
2
CC). (1.19)

Furthermore, we control the signal-to-noise ratio (SNR) (i.e., the inverse of the coefficient

of variation) of this distribution throughout the different iterations to control the mean

relative to the spread. The SNR is defined as

SNR =
µCC

σCC
. (1.20)

Note that CCsim is the consumption coefficient used to generate the demand data and that

it can change from one day to the next. It differs from the previously discussed CCk,

which is the government protocol value. In particular, CCk is fixed to µCC in our first

three scenarios, while it differs from that value for the last scenario on erroneous data.

The decision epochs are seven days apart, as a weekly review of the system is a com-

mon practice. The additional parameters used in all scenarios of this study are the number

of units per case, the supplier’s order limits per case, the service level, and the lead time.
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Each parameter is uniformly sampled in each iteration from a continuous or discrete inter-

val defined in Appendix 1.C and is then kept fixed throughout the iteration; these intervals

are chosen to be as realistic as possible and to yield as many insights as possible. Overall,

1,000 iterations are executed for the base scenario using Python 3.7, and the obtained data

is reused in the other scenarios to improve comparability. For each individual iteration, at

every decision epoch, we observe the demand, make a forecast, take an action, record the

performance of the system, and then move to the next epoch. Also note that each iteration

is addressed by the three forecasting methods previously described.

Finally, the fitting process of the proposed epidemiological model (i.e., the SEIRHD

model) is done with the lmfit package in Python by performing a grid search and min-

imizing the least square error while searching within pre-specified ranges for these pa-

rameters. These ranges consist of realistic values for these parameters and are provided

in Table 1.11 of Appendix 1.C with the other parameter values. Note that we use this

curve fitting process to estimate the least number of parameters possible since this curve

fitting is complex and subject to multiple local optima, especially when trying to fit mul-

tiple parameters. This is why several parameters are estimated a priori from various data

sources.

1.5.2 Results

We study the following four settings: (1) a scenario without DVI as previously described

(i.e., the base scenario), (2) a scenario with lagged data, (3) a scenario with temporally

aggregated data, and (4) a scenario with erroneous data. The base scenario is assumed to

be the benchmark for the other scenarios since there is no modification to the simulated

data. For each scenario, the forecasting methods are evaluated on the percentage bias

(PBIAS), root mean square error (RMSE), and mean absolute percentage error (MAPE).
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For each iteration i, these measures are computed as

PBIASi =
100
K

K

∑
k=1

fk

∑
h=1

dd̂k,h −ddk,h

fkddk,h
, (1.21)

RMSEi =
1
K

K

∑
k=1

√√√√∑
fk
h=1(dd̂k,h −ddk,h)2

fk
, (1.22)

MAPEi =
100
K

K

∑
k=1

fk

∑
h=1

∣∣∣∣∣dd̂k,h −ddk,h

fkddk,h

∣∣∣∣∣ , (1.23)

where, with a slight abuse of notation, dd̂k,h is the h-step ahead forecast in epoch k of

iteration i, and ddk,h is the daily demand h days after the beginning of epoch k in iteration

i. Note that we observe the states of the epochs k = 1,2, . . . ,K + 1, which contain the

demand of the epochs k = 0,1, . . . ,K, but only forecast and take an action in the epochs

k = 1,2, . . . ,K. This explains the range of the summations of the previous and following

equations. We report the average of these measures over all iterations.

Furthermore, since the end goal is to analyze the performance of these forecasts with

respect to inventory management, we also evaluate the periodic review system perfor-

mance when using these forecasts. As discussed in Section 1.3.5, this is done by evaluat-

ing the shortages and left-over inventory at the end of the time horizon (LOI). In particu-

lar, to improve the comparability of the results across the different iterations, we evaluate

these methods on the relative shortage (RS) and relative left-over inventory (RLOI) mea-

sures, i.e.,

RSi =
∑

K+1
k=1 qa,−

k

∑
K
k=0 dk

×100, (1.24)

RLOIi =
qa,+

K+1

∑
K
k=0 dk

×100. (1.25)

Unless specified otherwise, we assume that the forecast horizon fk is constant through-

out the decision epochs k and that, for each iteration i, fk corresponds to a period that

includes the following epoch and the lead time used in iteration i, i.e., fk = R+L. Finally,

note that the naïve method is assumed to be the benchmark in each scenario since it is the

simplest forecasting method and is used commonly in practice.
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Scenario 1: Base scenario

As a benchmark for our study, we first create a scenario where the manager receives the

required data in an ideal setting. The data is updated daily and passes through the fore-

casting process and inventory control at each epoch. The results are provided in Table 1.2.

Table 1.2: Mean base scenario results over the 1,000 iterations

Method PBIAS RMSE MAPE RS RLOI

SEIRHD 372.39 717.45 388.02 5.65 35.80
Holt 73.3 222.6 156.49 11.08 36.13
Naïve 210.6 264.05 248.53 11.95 58.4

In this scenario, even though the Holt method has the best performance across the fore-

casting measures (i.e., PBIAS, RMSE, and MAPE), the SEIRHD method outperforms the

other methods on the RS and RLOI measures. To explain this counter-intuitive outcome,

we analyzed PBIAS before and after the maximum demand (i.e., the peak) in each iter-

ation, only for epochs in which the system placed an order. We refer to these periods as

the pre-peak and post-peak periods in Table 1.3. Note that the demand follows a similar

trend to the daily number of hospitalized patients (i.e., Figure 1.5b in Appendix 1.C).

Table 1.3: Mean base scenario percentage bias (PBIAS), before and after peak demand

Method Pre-peak Post-peak

SEIRHD 538.19 105.99
Holt 55.95 178.40
Naïve 13.49 512.43

During the pre-peak period, the SEIRHD method does not have access to enough data

to make accurate forecasts. As a result, the forecasts are over-estimated during this period,

which forces the system to place orders with higher quantities. This additional inventory

later helps the system when the supplier’s capacity is insufficient for the demand and,

hence, explains the better performance with respect to the relative shortage. This conclu-

sion holds regardless of the supplier’s capacity, where we observe similar trends when the

supplier’s capacity is not limited, albeit at lower RS levels for all methods. Furthermore,
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once the demand has plateaued, the SEIRHD method can capture the trend and obtains

the best forecasts on average in terms of the percentage bias. This performance in the

post-peak period leads the SEIRHD method to generate the best RLOI.

In contrast, the Holt method exhibits a much lower percentage bias in the pre-peak

period than the SEIRHD method, affecting its RS. Furthermore, the performance of the

Holt method declines in the post-peak period, which affects its RLOI. These explanations

also apply to the naïve method with an even greater effect on the RS and RLOI. Overall,

the SEIRHD and Holt methods perform better than the naïve method.

Scenario 2: Lagged data

An important aspect of data visibility is the delay in the data flow. In a supply chain,

managers are frequently deprived of the latest version of the data. In the particular case

of COVID-19, it often took several days to collect the data from the different hospitals.

In this scenario, we investigate this common phenomenon by analyzing two distinct lag

formats (i.e., fixed and dynamic lag) within the simulated data. The lag is defined as the

time in days between the date data is captured and when data is available to the managers.

In this scenario’s first version, the lag applied to the data is fixed for all iterations. We then

gradually increase the fixed lag to understand its impact on the system. It is important to

note that, since a forecast begins at the last known date of the data, the lag period is also

included in the forecast horizon fk; formally, fk = R+L+ lag. However, the forecasted

demand during the lag period is removed prior to applying the periodic review system

since this perishable demand has already been realized. The lag is applied to the data

from the base scenario. Figure 1.2 presents the results for the fixed lagged data.

The negative impact of the data delay on the system performance can clearly be estab-

lished in Figure 1.2 for the Holt and naïve methods. The gradual increase of the lag length

results in the continuous augmentation of the shortage level. In the extreme case of a fixed

lag of 14 days, the Holt method experiences 48% more RS than the case with no lag, i.e.,

the base scenario. A similar pattern is also observed for the naïve method. Furthermore,
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(a) Relative shortage

(b) Relative LOI

Figure 1.2: Relative shortage and LOI for the fixed lagged data. The shaded region rep-
resents the 95% confidence interval.

the SEIRHD method also follows this behavior, where the relative shortage measure has a

general upward trend. However, increasing the lag can also be beneficial for this method,

as shown with the various local minima of the SEIRHD method in Figure 1.2a. By in-

creasing the lag length, the forecast horizon fk has effectively been increased. Note that

the SEIRHD method tends to over-forecast during the early epochs and that these fore-
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casts are shaped as an exponential function. Hence, by increasing the lag, the magnitude

of these over-forecasts is increased, and if the supplier’s capacity is not binding, the rel-

ative shortages are reduced accordingly. Therefore, even though the SEIRHD method

generally follows a similar diminishing performance for the RS and RLOI measures, the

behaviour fluctuates with greater volatility toward the larger lag values. The rise in the

RLOI of both the Holt and naïve methods can also be observed, albeit to varying degrees,

caused by continuous over-forecasting, especially during the post-peak demand period.

In order to emulate real-world circumstances where the delay in the data might not be

fixed, dynamic lags are also generated. In particular, 1,000 (K + 1)-dimensional vectors

of lag values are sampled from the discrete uniform distribution W = {0,1, . . . ,14}; we

assume that the maximum delay within the data does not exceed 14 days (i.e., two weeks).

We then apply each of the 1,000 lag vectors to the 1,000 data sets from the base scenario

for a total of 1,000,000 iterations. Table 1.4 provides the results of the dynamic lag.

Table 1.4: Mean dynamic lag results over the 1,000,000 iterations

Method PBIAS RMSE MAPE RS RLOI

SEIRHD 5664.34 14901.77 5690.39 4.56 37.97
Holt 93.37 299.71 222.6 13.36 43.44
Naïve 221.48 301.14 285.49 14.96 62.07

Despite producing the worst forecasts, the SEIRHD method provides the best perfor-

mance on both the RS and RLOI measures. The delay in the delivery of the data interferes

with the forecast process, resulting in over-forecasts as shown in Table 1.5. As a result,

the system orders more products before the peak, which lowers the relative shortage com-

pared to the base scenario. In contrast, since the Holt and naïve methods considerably

under-estimate the demand in this scenario versus the base scenario, they obtain worse

relative shortages than in the base scenario.

An additional analysis of the PBIAS results reveals that the accuracy of the system is

better with the SEIRHD method than the other methods after epoch 10 (which is after the

peak demand). In particular, the PBIAS results of the SEIRHD, Holt and naïve methods
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Table 1.5: Mean dynamic lag percentage bias (PBIAS), before and after peak demand

Method Pre-peak Post-peak

SEIRHD 8201.85 3971.36
Holt 25.04 331.09
Naïve -27.14 592.28

are respectively 97.99%, 291.22% and 689.83%. This is caused by the random lag de-

laying the realization of the maximum demand. Therefore, having enough time to adjust

the inventory level after epoch 10, the SEIRHD method produces the lowest RLOI, com-

parable to that of the base scenario. In contrast, the over-forecasts in the Holt and naïve

methods appear to take place primarily after epoch 10, resulting in higher RLOI than the

SEIRHD method.

Scenario 3: Temporally aggregated data

Another potential problem with regard to the supply chain’s visibility is the granularity

of the data. In this scenario, the data is not reported on a daily basis, and only the total

sum of a specific variable (e.g., the demand) since the last report is available. Hence,

the evolution of the daily demand is unknown to the manager, which could hinder the

performance of the system.

For this scenario, we investigate aggregated data received at different frequencies,

hereon the period info. This aggregated data represents the total demand of PPE over

the period info. The daily behaviour of the demand is assumed to be unknown during

the forecasting process. However, the products are consumed based on the actual daily

demand. Moreover, we apply the same granularity to the pandemic data that is used by

the SEIRHD model.

Similar to Section 1.5.2, we analyze the impact of two distinct formats of temporally

aggregated data. We first apply a fixed period info on the data for all iterations during

the entire simulation and then vary its value based on the set PI = {1,2, . . . ,30}. This

setting analyzes the period info’s influence on the system’s performance. It is important
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to mention that since the data is aggregated and reported based on specific period info,

there exists the possibility of a lag within the system if the period info is not a multiple of

seven days (i.e., the duration of an epoch). The lag is defined here as the number of days

between the date of the last reported aggregated data to the date of the epoch that is being

analyzed. Figure 1.3 presents the results for this part.

(a) Relative shortage

(b) Relative LOI

Figure 1.3: Relative shortage and LOI for the fixed period info. The shaded region repre-
sents the 95% confidence interval.
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Figure 1.3a illustrates the negative impact of the temporally aggregated data on the RS

measure. The number of shortages increases as the data becomes coarser. The Holt and

naïve methods follow the upward pattern in their shortages, with the Holt method almost

matching the naïve method’s results for large period info due to the lack of proper data

for its fitting process. Additionally, even though the RS measure of the SEIRHD method

generally increases as the period info is increased, the SEIRHD method performs con-

siderably better than the other methods. However, the behaviour of the SEIRHD method

becomes unpredictable and erratic once the period info goes above the 20 days mark.

The greater temporal aggregation of data pushes the SEIRHD method to display substan-

tial over- or under-forecasts, resulting in fluctuating behaviour. The same behaviour is

observed for the RLOI results of the SEIRHD method, albeit with a slightly smoother

upward pattern. The results of the RLOI measure in Figure 1.3b provide an interesting

finding regarding the performance of the naïve method, which holds a relatively steady

level of RLOI, between 55% to 60%. An important observation is that the naïve method

outperforms both the Holt and SEIRHD methods on the RLOI measure when the period

info is large enough (i.e., around 30 days), indicating the reliability of the more advanced

methods is challenged as the data becomes coarser.

For the second part of this scenario, we investigate the effect of dynamic period info

on the system. This setting reflects real-world situations where the medical centers send

their total consumption data at random frequencies. To do so, we generate 1,000 vectors of

period info values, uniformly sampled from PI , and apply them to the 1,000 iterations

of the base scenario, leading to a total of 1,000,000 iterations. Table 1.6 presents the

results of the dynamic period info.

Table 1.6: Mean dynamic period info results over the 1,000,000 iterations

Method PBIAS RMSE MAPE RS RLOI

SEIRHD 11604.61 15878.67 11699.44 12.34 33.49
Holt 159.35 293.56 250.48 17.69 59.93
Naïve 117.68 267.25 215.09 18.53 58.08
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As with the fixed period info, the SEIRHD method outperforms the other two meth-

ods on the RS measure due to the over-forecasts in this method. The analysis of the

bias distribution in Table 1.7 provides additional explanations on the performance of the

system.

Table 1.7: Mean dynamic period info percentage bias, before and after peak demand

Method Pre-peak Post-peak

SEIRHD 19593.08 9518.87
Holt -56.50 485.89
Naïve -65.31 375.69

As a consequence of dynamic period info, the Holt and naïve methods experience

significant under-forecasts before the peak demand, resulting in large RS values. After

the peak demand, the Holt method exhibits over-forecasting, which forces the system to

place more orders for epochs with much lower demand, and as a result, its RLOI measure

is considerably higher than in Scenario 1. However, the results of the SEIRHD method

in Table 1.7 require further analysis since the over-forecasts, both before and after the

peak, still translate into the best RLOI value across the different scenarios. A detailed

explanation of this ambiguity is provided in Section 1.5.3.

Scenario 4: Erroneous data

In this scenario, we explore the impact of erroneous data on the performance of the sys-

tem. There exists a possibility of under- or over-reporting by healthcare facilities within

the input data, which influences the forecasting process and, consequently, the perfor-

mance of each method. To achieve the setting of this scenario, we multiply CCsim by a

deviation parameter, δCC, before generating the demand data for the naïve and Holt meth-

ods. For the SEIRHD method, the consumption coefficient CCk is instead adjusted to

CCk = δCCµCC.

In this scenario, we vary the deviation parameter, δCC, in the range [0,7] by increments

of 0.25. Thus, the data is simulated to be under-reported when the deviation parameter is
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in the range [0,1). In particular, note that no data is reported with δCC = 0 and, hence,

the forecasts are null; yet, the system still orders due to the high resulting RMSE in Equa-

tion 1.18. In contrast, it is simulated to be over-reported when δCC ∈ (1,7]. Note that

δCC = 1 corresponds to the base scenario. The modified demand data is fed directly into

the forecasting model for the methods that use the demand data (i.e., the Holt and naïve

methods). For the SEIRHD method, it is assumed that the coefficient of consumption em-

ployed in the forecasting process (see Equation 1.17) is being reported by the healthcare

facilities; thus, it contains the same erroneous δCC as in the demand data. Moreover, the

data is assumed to be collected daily and provided to the system at each epoch, similar to

the base scenario. Figure 1.4 presents the results of this scenario.

It is clear from the results that δCC has an inverse effect on the RS measure. On the

one hand, increasing the level of under-reporting results in significant exponential growth

of the RS measure for all forecasting methods. On the other hand, even though over-

reporting the data improves the RS measure considerably at the beginning, the impact

becomes less significant as we continue increasing the over-reporting level. Note, how-

ever, that the shortages are never entirely eliminated. Furthermore, the SEIRHD method

consistently outperforms the other methods in the RS measure, primarily due to the over-

forecasts before the peak demand. Finally, the RLOI measure is also affected by δCC with

which it has a strong positive association; Figure 1.4b reveals that as δCC becomes larger,

the system experiences higher RLOI.

1.5.3 Discussion

The forecasting methods that are employed in this paper provide valuable insights into

the forecasting process of PPE demand during a pandemic. We conclude that in the ab-

sence of any historical data (e.g., in the first few epochs), the naïve method is the only

model that can produce reasonable forecasting results, which do not necessarily trans-

late into enhanced inventory management performance due to external factors such as the

supplier’s lead time and capacity. As more data is provided to the system, the epidemio-
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(a) Relative shortage

(b) Relative LOI

Figure 1.4: Relative shortage and LOI for the erroneous data

logical model produces more accurate results, as shown in Table 1.3. We also analyzed

the impact of DVIs on the performance of an inventory management system within the

context of the COVID-19 pandemic. We present a unique scenario for each DVI that

first quantifies the direct impacts of the issue when its magnitude is gradually increased.

In general, increasing the DVI magnitude diminishes the system’s performance albeit to
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varying degrees, which is evident from Fig 1.2 and Fig 1.3. Moreover, we randomize the

DVI of the delayed and temporally aggregated data scenarios to mimic real-world situa-

tions. For a system that experiences random temporal aggregation of data, a performance

deterioration in the RS measure is observed in comparison to the base scenario (see Ta-

ble 1.6). In contrast, the presence of a random lag causes the system to produce a lower

RS than the base scenario for the SEIRHD method (see Table 1.4). In Scenario 4 where

the system is dealing with erroneous data, it is observed that artificial augmentation of the

demand leads to improved performances, but at higher costs due to higher RLOI levels.

Additional analyses are, however, required. In particular, the scenario with the applied

randomized lags requires additional analyses, since it generates inconsistent results when

the system employs the SEIRHD method. The presence of DVIs in the first three scenarios

generally deteriorates the performance of the system for both the RS and RLOI measures.

However, the RS measure of the SERIHD method improves when the system is exposed

to randomized lags. These contradictory results can be explained through Table 1.8 that

characterizes the forecasts of the SEIRHD method for the different scenarios considered

in this study. When a system experiences a randomized DVI (i.e., dynamic lagged data

and dynamic temporally aggregated data), the SEIRHD method produces larger and more

frequent under-forecasts than in the base scenario. At the same time, the magnitude of

the over-forecasts is amplified exponentially. In the case of the dynamic lag, despite the

fact that the occurrence of the under-forecast portion is larger than the base scenario, both

measures of the over-forecast portion (i.e., the occurrence and the mean percentage) force

the system to place additional orders during the pre-peak epochs, which in turn assist the

system to have a lower RS value than the base scenario. In comparison, even though the

mean of the over-forecast portion for the temporally aggregated data is quite large, it is

not frequent enough to affect the RS measure.

We also perform a linear regression analysis on the RS results of both the lagged and

temporally aggregated data when the applied distortion is fixed throughout each itera-

tion. Table 1.9 presents the slope of the fitted lines for each method. We observe that the
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Table 1.8: Forecasting behaviour for SEIRHD method across the scenarios

Scenario Estimation Occurrence Mean
% %

Base
Under-forecast 16.7 -9.4
No bias 1.4 0.0
Over-forecast 81.9 380.9

Dynamic lagged data
Under-forecast 22.6 -31.4
No bias 1.3 0.0
Over-forecast 76.1 6309.8

Dynamic temporally aggregated data
Under-forecast 66.7 -67.1
No bias 0.5 0.0
Over-forecast 32.8 31818.2

SEIRHD method is the least affected by the gradual increase in the lag among all forecast-

ing methods since it has the smallest slope. On the other hand, if the system is expecting

an increase in the temporal aggregation of data, the naïve method produces more stable

results than the other methods. Finally, the Holt method exhibits mid-range performances

compared to other methods regardless of the source that causes the distortion. However, it

is not possible to directly compare these slopes across the two scenarios since increasing

the lag by one day is not necessarily equivalent to increasing the data aggregation by the

same amount. Therefore, we cannot firmly state that one type of DVI is worse than the

other. The analysis of each issue should be performed independently.

Table 1.9: Slopes of the fitted linear regressions on the relative shortages

Method Lagged data Temporally aggregated data

SEIRHD 0.08 0.44
Holt 0.36 0.36
Naïve 0.40 0.28

In Section 1.3.5, we provided our justification for the use of the LOI instead of the av-

erage inventory. Nonetheless, we also analyze the average inventory for the base scenario,

and the randomized lagged data and temporally aggregated data scenarios. Similarly to

Equation 1.25, the relative inventory (RI) is used to improve the comparability of the re-
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sults, i.e., RIi = 100×∑
K+1
k=1 qa,+

k /∑
K
k=0 dk. Table 1.10 presents the results of our analysis.

Table 1.10: Relative inventory

Scenario SEIRHD Holt Naïve
% % %

Base 416.65 244.54 309.78
Dynamic lagged data 421.47 265.69 309.7
Dynamic temporally aggregated data 306.51 293.14 282.08

The RI measure provides additional insights into the overall cost of the system in each

scenario. While the SEIRHD method generates the best results with respect to RS and

RLOI in scenarios 1 to 3, its RI is considerably inferior to the other methods particularly

for the base and dynamic lagged data scenarios. The RI results of the SEIRHD method are

linked to its significant over-forecasting behaviour during the pre-peak epochs resulting

in higher inventory and consequently higher holding costs than the other methods. Fur-

thermore, the performance of the Holt and naïve methods with respect to the RI appears

to be associated with their RLOI and follows a similar pattern.

In the case of Scenario 4, it is shown in Figure 1.4a that the RS measure never gets

to zero as δCC is increased, while the RLOI measure is increasing at a steady pace. The

supplier’s capacity is the main obstacle to the complete elimination of shortages. The

limitations imposed by the supplier’s capacity become more prominent in this scenario

since at high δCC values, the remaining shortages occur during the epochs where the

supplier’s capacity has already been reached. Hence, artificially increasing the demand

does not have an impact in these epochs. It should again be noted that while erroneous

data has a significant impact on the performance of the system, it can not be directly

compared with the other DVIs.

Even though none of the previous literature studied the impact of DVIs on inventory

management performance in the context of a pandemic, our results are aligned with sev-

eral previous studies. In particular, the analysis of the RS results for the Holt and naïve

methods are comparable to those acquired by Hoberg and Thonemann (2014), where the
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system’s performance deteriorates as the data lag increases. Yet, similar to the results

presented by Hosoda and Disney (2012), we also conclude that not all systems benefit

from shorter lags, as evident by the results of the SEIRHD method where, due to the over-

forecasting, the RS measure is improved with a dynamic lag over the base scenario that

has no lag. Regarding the data aggregation, there exist contrasting views among scholars

where both positive (Dekker et al., 2004; Rostami-Tabar et al., 2013) and negative (Jin

et al., 2015) impacts on the system have been observed depending on the settings of the

studies. Our results from Scenario 3 point toward the fact that the temporal aggregation

of data worsens the system’s performance. Finally, as presented by Kwak and Gavirneni

(2015), erroneous data can potentially hinder the performance of a system, which is sim-

ilar to our findings in Scenario 4 with under-reported data. Overall, our study confirms

that several previous findings still hold in the case of inventory management during a

pandemic.

Finally, our study brings practical insights for managers and their inventory planning

activities. For example, it is possible for the managers to observe the quantitative impact

of the lag on the system’s performance with the fixed lag results of Scenario 2. With these

results, the managers can perform a cost-benefit analysis to determine if reducing the

delay in the data is appropriate. Furthermore, as mentioned previously, the temporal ag-

gregation of data is a major DVI in the Canadian healthcare system, unlikely to be solved

in a timely manner. In that regard, our findings of Scenario 3 can assist policymakers in

estimating the potential level of reduction in shortages should future enhancements in the

healthcare system improve the granularity of the data. Moreover, Scenario 4 provides two

valuable practical insights to managers in different echelons of the decision-making pro-

cess. First, there exists a point for all forecasting methods from which a further increase

in over-reporting only results in higher inventory costs in the form of left-over inventory

and minimal to no improvements to the shortages. Hence, the results of Scenario 4 be-

come particularly useful to a cost-benefit analysis of the issue of over-reporting. Second,

we have observed the significant consequences of under-reporting, and even though it
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seems unlikely that such situations might occur, the managers should identify the poten-

tial sources of under-reporting in the system and act accordingly to prevent this behaviour.

Under-reporting could result from numerous sources within the data structures of HSCs.

For a system that employs a demand-based forecasting model, the lack of an adequate

inventory tracking system could be a potential source of under-reporting; whereas due to

limited testing capacities, the system with an epidemiological-based forecasting model

might receive under-reported data (do Prado et al., 2020; Lau et al., 2021). These are but

a few examples of areas where a manager should investigate. Once the under-reporting

is detected in the system, the manager can employ our analysis to indicate the additional

shortages imposed by this DVI, assuming the percentage of under-reporting can be esti-

mated. Lastly, it should be pointed out that the managers may not be in the exact same

context on which the results of this paper are based. However, by re-generating the pro-

posed simulation according to their region’s specific settings and parameters, the exact

impact of the DVIs could be examined.

1.6 Conclusions

Visibility is a major contributing factor to the performance of healthcare supply chains.

The COVID-19 pandemic further amplified the system’s shortcomings in this regard, both

in the upstream and downstream segments of the supply chain system. In this paper, we

analyzed the impacts of data visibility on the performance of an inventory management

system during a pandemic. We considered four scenarios where the first one contains

no DVI and is the base scenario. In the second scenario, the system experienced delays

in the flow of information. Then, the temporal aggregation of data was addressed in the

third scenario. Finally, the final scenario examined the under- and over-reported demand.

From these scenarios, we concluded that while the SEIRHD method is not producing the

best forecasts, its RS and RLOI results are often superior to those of the other methods.

The benchmark method, the naïve method, which is widely used in healthcare facilities,

has consistently performed worst in all categories. There are, therefore, areas for further
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enhancements. We also observed that, in most cases, the existence of DVIs diminished

the performance of the system.

In our study, it was assumed that the demand pattern follows the hospitalization curve

as was also theorized in other studies (e.g., (Lum et al., 2020)). We believe this assumption

is realistic since government protocols enforce the number of PPE consumed per patient.

However, other factors, such as panic purchasing behaviours, may cause some degrees

of deviation. We tried to alleviate this limitation by implementing random noise over

the data, but additional studies could analyze if our results still hold with these other

factors. Furthermore, our findings only hold for products that are required primarily in

the context of COVID-19-positive patients and may not be applicable to other types of

PPE, such as surgical masks, that are frequently distributed in other organizations and

among the general public. Then, the epidemiological data in this study is based on only

one Canadian province, which follows a pattern similar to those observed worldwide.

However, the timing of the peak hospitalization and the length of the wave, to name a

few, differ not only across different countries but also across different waves. Thus, our

results may not necessarily hold in all contexts. Future research could investigate our

results in different epidemiological settings, such as the occurrence of multiple peaks of

demand or elongated waves. For example, Perakis, Singhvi, Skali Lami, and Thayaparan

(2022) propose a forecasting method for multiple waves. We also encourage future studies

to investigate and include the baseline demand as well as the demand that stems outside of

the hospitals. The baseline demand is defined as the need for a product that is not caused

by the presence of COVID-19 patients in hospitals. Furthermore, combinations of DVIs

could also be part of future research where multiple DVIs are applied simultaneously to

the the system. A final interesting research avenue is to go beyond the periodic review

system and assess the impacts of data visibility when using optimization methods for

inventory management.
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1.A Assumptions of the SEIRHD model

The following five assumptions are implied by the SEIRHD model.

Assumption 1. The duration of the disease outbreak is short enough to exclude the nat-

ural births and deaths in the population of the studied region. This implies that the total

population, N, is constant during this study. Therefore, N can be formulated as

N = S+E + I +R+H +D. (1.26)

Assumption 2. The rate of transmission is proportional to the contact between the sus-

ceptible and infectious populations. In the SEIRHD model, this rate is assumed to be

constant.

Assumption 3. The demographics of the population are homogeneous enough so that the

rate of removal, either recovery or death, is constant. Even though the immune system of

different age groups varies significantly in regard to a specific type of disease, the average

transmission rate for the entire population is assumed to be relatively constant.

Assumption 4. In the SEIRHD model, the immunity achieved by the subjects who sur-

vived the outbreak is long enough that there will be no re-infection for the duration of the

study.

Assumption 5. The beginning of a possible outbreak is defined as the time when the first

infection is introduced to the model, denoted by t = 0.

1.B Proof of Lemma 1

Proof. Following the next generation method (Diekmann, Heesterbeek, & Metz, 1990;

Diekmann & Heesterbeek, 2000; Heffernan, Smith, & Wahl, 2005), we define the vector x

where each element xi denotes the number of subjects in the ith compartment. Let Fi(x) be

the rate of appearance of new infections in compartment i and let Vi(x) =V−
i (x)−V+

i (x),
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where V+
i (x) and V−

i (x) are respectively the rate of transfer of subjects into and out of the

ith compartment, by other means than infection.

Then, we can form the next generation matrix FV−1 where the matrices F and V are

constructed from the partial derivatives of Fi and Vi over the three compartments that con-

tain infected subjects (i.e., the exposed, infected and hospitalized compartments). Specif-

ically,

F =

[
∂Fi(x0)

∂x j

]
and V =

[
∂Vi(x0)

∂x j

]
,

where x0 is the disease-free equilibrium (i.e., S = N and the other compartments are

empty) and i, j refer alternatively to the exposed, infected and hospitalized compartments.

With Equations 1.11, 1.12 and 1.14, this translates to

F =


0 β 0

0 0 0

0 0 0

 , V =


σ 0 0

−σ pHγH +(1− pH)γR 0

0 −pHγH γD

 ,

and

FV−1 =


β

pHγH+(1−pH)γR

β

pHγH+(1−pH)γR
0

0 0 0

0 0 0

 . (1.27)

The basic reproduction number, R0, is then given by the spectral radius (i.e., the dom-

inant eigenvalue) of the matrix FV−1, i.e.,

R0 =
β

pHγH +(1− pH)γR
. (1.28)

Finally, to obtain Lemma 1, we replace R0 in Equation 1.28 with a varying basic

reproduction number, i.e.,

R0(t) =
R0,1 −R0,2

1+ e−k(t0−t)
+R0,2, (1.29)

where the various parameters are defined in Table 1.1. Solving for β results in

β =

[
R0,1 −R0,2

1+ e−k(t0−t)
+R0,2

]
(pHγH +(1− pH)γR) . (1.30)
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1.C SEIRHD and simulation parameters

Table 1.11 presents the value or range for the parameters of the SEIRHD model.

Table 1.11: Parameter values of the SEIRHD model

Parameter Value

N 5,147,712
β Computed with Lemma 1
σ 1/5.1
pH 18.88%
γR [0.1,0.7]
γH [0.1,0.7]
γD 1/12.2
R0,1 [1.5,10]
R0,2 [0,10]
t0 [50,120]

Table 1.12 outlines the value, interval or set employed for the different parameters of

the simulation.

Table 1.12: Simulation parameters

Parameter Value

Mean consumption coefficient (µCC), units per patient {3,3.5, . . . ,7}
Signal-to-noise ratio (SNR) [2,10]
Number of units per case 12
Supplier’s minimum order quantity, cases {1,2, . . . ,12}
Supplier’s maximum order quantity, cases {200,201, . . . ,400}
Service level (1−α), % {95,95.1, . . . ,99.9}
Lead time (L), days {5,6, . . . ,30}

Figure 1.5 presents some of the data from British Columbia that were used in the

simulation.
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(a) Daily number of new infections

(b) Number of hospitalized patients

Figure 1.5: British Columbia data
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General conclusion

The COVID-19 pandemic illustrated the fragility of our lives in dealing with major crises.

Our response to the outbreak is a testament to the presence of significant deficiencies

within the existing infrastructure, particularly in the global supply chain. Therefore, it is

crucial to understand the shortcomings of our systems and provide functional solutions

for upcoming crises. Within the supply chain industry, both upstream and downstream

sectors exhibited substantial issues concerning their operations during the pandemic. The

PPE shortages during the first wave of the pandemic, which resulted from the disruptions

in the supply chain, are perhaps the most controversial example of the problems we faced

during the COVID-19 pandemic. In this study, we analyzed the impact of data visibility

issues on the performance of an inventory management system within the context of the

pandemic. In particular, we have focused on medical centers and the activities of a sup-

ply chain manager. Considering the scarcity of data, particularly amidst the height of the

pandemic, we have explored the performance of two distinct forecasting methodologies

that use entirely different approaches in their prediction process. The Holt and the naïve

methods were selected for the demand-based forecasting category due to their high usage

rate within the professional communities. The SEIRHD epidemiological model, which

is based on the classical SIR model, represents the pandemic-based forecasting methods.

Furthermore, we explored the impacts of DVIs on the system through four scenarios. In

each scenario, the comparison analysis of all proposed forecasting methods has been con-

ducted. The first scenario is the benchmark in this study, where the simulated data does

not contain any DVI. The data delay was investigated in the second scenario. The simu-



lation was performed in two formats; controlled (fixed) and randomized lag in the flow of

information. In the third scenario, the inventory system received the simulated data that

was temporally aggregated. Similar to the previous scenario, we analyzed the DVI in both

controlled and fixed formats. The final scenario addressed the under- and over-reported

demand. Through our analysis, we have concluded that, despite being unable to pro-

duce the best forecasts, SEIRHD consistently outperformed the other methods in the RS

and RLOI measures. The exponential over-forecasting during the epochs leading to the

peak demand provided the system with a high level of inventory which in return lowered

the number of shortages. Furthermore, with the improved accuracy during the post-peak

demand period, the SEIRHD method was able to acquire the lowest RLOI, which is an

essential criterion for the performance of the system. Moreover, we determined that tem-

poral aggregation of data significantly deteriorated the system’s performance regardless

of the forecasting method, which is evident from the higher shortages compared to the

benchmark scenario. However, the impact of data delay on the performance of the sys-

tem was not consistent across the forecasting methods. While the delay in data transfer

resulted in an increased number of shortages for the forecasting models that are based on

the demand data, we observed a reduction in the RS of the SEIRHD method, which is

the consequence of massive over-forecasting caused by the presence of the random lag.

The results show that the over-forecasting behaviour alone does not reduce the number

of shortages, and the timing of over-forecasting is also an important factor. The over-

forecasting improves the performance only if the system experiences such behaviours

before the occurrence of maximum demand. In the erroneous scenario, we concluded that

demand augmentation (e.g., over-reporting) does not entirely eliminate shortages from the

system, even though the improvement is significant. Under-reporting, on the other hand,

increases the number of shortages exponentially. Therefore, in anticipation of misleading

data, we recommend that the managers adjust the data accordingly to accommodate the

negative impact the data might impose on the system.

Like other studies, this work is not without its limitations. In the absence of real data
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from reliable sources, it was assumed that the overall behaviour of the PPE demand fol-

lows that of the hospitalization curve. This assumption has previously been used in other

studies with similar limitations (Lum et al., 2020). Incorporating government protocols

and random noise into the data simulation process added extra layers of confidence to

this assumption. However, some degrees of deviation are to be expected, which could

potentially alter the results, and future studies should analyze the validity of our results

against other settings. Moreover, we have focused on a specific type of PPE, namely

N95 masks, for which it was assumed that the majority of the demand arises from the

interaction with the COVID-19 infected patients at hospitals. However, since other types

of PPE, such as surgical masks and gowns, have a broader application within the same

facilities, the demand curve of these PPEs might not necessarily follow that of the hos-

pitalization; therefore, our assumption and ultimately our findings might not be held for

them. Furthermore, the simulated data represents only the upsurge in consumption as a

result of the pandemic and does not include the baseline demand within these facilities.

The baseline demand is defined as the routine consumption of products regardless of the

pandemic and its impacts. In addition, since the available data only covers the hospitals,

other facilities with medical sites, such as long-term senior centers, have been excluded

from this study. This exclusion particularly limits the parameters of the SEIRHD model,

which are established on the data from the hospitals. Also, our assumption regarding

the demand pattern is based on the condition that the government’s protocols are being

followed closely. However, the inclusion of data from the senior centers could have po-

tentially interfered with our assumption since the protocols in these centers may not be

followed as closely as in hospitals. Another limitation of our study is associated with

the pandemic data employed in the forecasting model of the SEIRHD method. Our epi-

demiological model uses data from Canadian hospitals, which is ultimately based on the

region’s biological and environmental factors. Extending the results of this study to other

locations requires additional examinations and verifications. Additionally, a series of as-

sumptions were made regarding the behaviour of the pandemic, such as the exclusion of

re-infection and asymptomatic cases, due to the lack of proper data and also being outside
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of our study’s scope.

COVID-19 will not be the last pandemic, and the occurrence of another outbreak is

inevitable. We need to expand our understanding of the pandemic. The limitations of

this study have created enticing opportunities for future studies. We acknowledge the ex-

istence of the demand outside of hospitals, and future studies could employ the findings

of our work in the analysis of the demand throughout the entire region. In addition, the

baseline demand is another area that requires immediate attention, and we recommend

the continuation of our work with the inclusion of this demand, providing that additional

data is available. The PPE is not restricted to N95 masks and encompasses a wide range

of products that might exhibit divergent behaviour when compared to one another. Given

the history of shortages during the COVID-19 pandemic, we suggest a complete analysis

of the system for most categories of PPE. An important property of our study was the fact

that the demand was perishable. We recommend that future studies consider the inclu-

sion of products with the possibility of back-orders which could be beneficial, especially

for vaccine distribution. Future researchers could attach additional compartments to the

proposed epidemiological model that further outlines the behaviour of the pandemic. The

inventory management system in this study was selected based on its practicality, which

is being used widely within the supply chain industry. However, we suggest future studies

implement stochastic settings within the system and explore other optimization methods,

particularly robust optimization.
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Güngör, B. O., Ertuğrul, H. M., & Soytaş, U. (2021). Impact of COVID-19 outbreak on

turkish gasoline consumption. Technological Forecasting and Social Change, 166,

120637. doi: 10.1016/j.techfore.2021.120637

Heffernan, J. M., Smith, R. J., & Wahl, L. M. (2005). Perspectives on the basic re-

productive ratio. Journal of the Royal Society, Interface, 2(4), 281–293. doi:

10.1098/rsif.2005.0042

Hoberg, K., & Thonemann, U. W. (2014). Modeling and analyzing information delays

in supply chains using transfer functions. International Journal of Production Eco-

nomics, 156, 132-145. doi: 10.1016/j.ijpe.2014.05.019

Hoekman, B., Fiorini, M., & Yildirim, A. (2020). Export restrictions: A negative-

sum policy response to the COVID-19 crisis. SSRN Electronic Journal. doi:

10.2139/ssrn.3634552

Hosoda, T., & Disney, S. M. (2012). A delayed demand supply chain: Incentives for

upstream players. Omega, 40(4), 478-487. doi: 10.1016/j.omega.2011.09.005

Hotta, L. K., Pereira, P. L. V., & Ota, R. (2004). Effect of outliers on forecasting tempo-

rally aggregated flow variables. Test, 13(2), 371–402. doi: 10.1007/BF02595778

Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and practice.

Melbourne, Australia: OTexts.

Ianni, A., & Rossi, N. (2020). Describing the COVID-19 outbreak during the lockdown:

Fitting modified SIR models to data. European Physical Journal Plus, 135(11),

885–885. doi: 10.1140/epjp/s13360-020-00895-7

Infection Prevention and Control Canada. (n.d.). Coronavirus (COVID-19) Provincial

Guidance Documents. Retrieved 2022-02-14, from https://ipac-canada.org/

provincial-guidance-documents.php

Institute of Medicine. (2004). Learning from SARS: Preparing for the next disease out-

break: Workshop summary. National Academies Press.

Jin, Y. Williams, B. D., Tokar, T., & Waller, M. A. (2015). Forecasting With Tempo-

75

https://www.canada.ca/en/public-health/services/diseases/2019-novel-coronavirus-infection.html
https://www.canada.ca/en/public-health/services/diseases/2019-novel-coronavirus-infection.html
https://doi.org/10.1016/j.techfore.2021.120637
https://doi.org/10.1098/rsif.2005.0042
https://doi.org/10.1016/j.ijpe.2014.05.019
https://doi.org/10.2139/ssrn.3634552
https://doi.org/10.1016/j.omega.2011.09.005
https://doi.org/10.1007/BF02595778
https://doi.org/10.1140/epjp/s13360-020-00895-7
https://ipac-canada.org/provincial-guidance-documents.php
https://ipac-canada.org/provincial-guidance-documents.php


rally Aggregated Demand Signals in a Retail Supply Chain. Journal of Business

Logistics, 36(2), 199–211. doi: 10.1111/jbl.12091

Johns Hopkins University. (2022). COVID-19 Dashboard by the Center for Sys-

tems Science and Engineering (CSSE) at Johns Hopkins University (JHU).

Retrieved 2022-02-14, from https://www.arcgis.com/apps/dashboards/

bda7594740fd40299423467b48e9ecf6

Kermack, W. O., McKendrick, A. G., & Walker, G. T. (1927). A contribution to the

mathematical theory of epidemics. Proceedings of the Royal Society of London.

Series A, Containing Papers of a Mathematical and Physical Character, 115(772),

700–721. doi: 10.1098/rspa.1927.0118

Ketikidis, P., Koh, S., Dimitriadis, N., Gunasekaran, A., & Kehajova, M. (2008). The

use of information systems for logistics and supply chain management in south east

europe: Current status and future direction. Omega, 36(4), 592-599. (Special issue

on logistics: New perspectives and challenges) doi: 10.1016/j.omega.2006.11.010

Kwak, J. K., & Gavirneni, S. (2015). Impact of information errors on supply chain

performance. Journal of the Operational Research Society, 66(2), 288-298. doi:

10.1057/jors.2013.175

Kyu Kim, K., Yul Ryoo, S., & Dug Jung, M. (2011). Inter-organizational informa-

tion systems visibility in buyer–supplier relationships: The case of telecommunica-

tion equipment component manufacturing industry. Omega, 39(6), 667-676. doi:

10.1016/j.omega.2011.01.008

Lau, H., Khosrawipour, T., Kocbach, P., Ichii, H., Bania, J., & Khosrawipour, V. (2021).

Evaluating the massive underreporting and undertesting of COVID-19 cases in mul-

tiple global epicenters. Pulmonology, 27. doi: 10.1016/j.pulmoe.2020.05.015

Lee, H., Padmanabhan, V., & Whang, S. (1997). The bullwhip effect in supply chains.

Sloan Management Review, 38(3), 93–102.

Leontitsis, A., Senok, A., Alsheikh-Ali, A., Al Nasser, Y., Loney, T., & Alshamsi,

A. (2021). SEAHIR: A specialized compartmental model for COVID-19. In-

ternational journal of environmental research and public health, 18(5). doi:

76

https://doi.org/10.1111/jbl.12091
https://www.arcgis.com/apps/dashboards/bda7594740fd40299423467b48e9ecf6
https://www.arcgis.com/apps/dashboards/bda7594740fd40299423467b48e9ecf6
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1016/j.omega.2006.11.010
https://doi.org/10.1057/jors.2013.175
https://doi.org/10.1016/j.omega.2011.01.008
https://doi.org/10.1016/j.pulmoe.2020.05.015


doi.org/10.3390/ijerph18052667

Liu, X.-X., Fong, S. J., Dey, N., Crespo, R. G., & Herrera-Viedma, E. (2021). A

new SEAIRD pandemic prediction model with clinical and epidemiological data

analysis on COVID-19 outbreak. Applied Intelligence, 51(7), 4162–4198. doi:

10.1007/s10489-020-01938-3

Lu, J., Feng, G., Lai, K. K., & Wang, N. (2017). The bullwhip effect on inventory: A

perspective on information quality. Applied Economics, 49(24), 2322-2338. doi:

10.1080/00036846.2016.1237762

Lum, K., Johndrow, J., Cardone, A., Fuchs, B., Cotner, C. E., Jew, O., . . . Volpp, K. G.

(2020). Forecasting ppe consumption during a pandemic: The case of COVID-19.

medRxiv. doi: 10.1101/2020.08.20.20178780

Lynch, C. J., & Gore, R. (2021). Application of one-, three-, and seven-day fore-

casts during early onset on the COVID-19 epidemic dataset using moving aver-

age, autoregressive, autoregressive moving average, autoregressive integrated mov-

ing average, and naïve forecasting methods. Data in Brief , 35, 106759. doi:

10.1016/j.dib.2021.106759

Macdonald, G. (1952). The analysis of equilibrium in malaria. Tropical diseases bulletin,

49(9), 813–829.

Malki, Z., Atlam, E.-S., Ewis, A., Dagnew, G., Alzighaibi, A. R., ELmarhomy, G., . . .

Gad, I. (2021). ARIMA models for predicting the end of COVID-19 pandemic and

the risk of second rebound. Neural Computing and Applications, 33(7), 2929–2948.

doi: 10.1007/s00521-020-05434-0

McMahon, D. E., Peters, G. A., Ivers, L. C., & Freeman, E. E. (2020). Global resource

shortages during COVID-19: Bad news for low-income countries. PLOS Neglected

Tropical Diseases, 14(7), e0008412. doi: 10.1371/journal.pntd.0008412

Mitchell, S. (2021). Lack of improvement in supplier visibility could spell supply

chain disaster. Retrieved 2022-02-14, from https://www.reutersevents.com/

supplychain/supply-chain/lack-improvement-supplier-visibility

-could-spell-supply-chain-disaster

77

https://doi.org/doi.org/10.3390/ijerph18052667
https://doi.org/10.1007/s10489-020-01938-3
https://doi.org/10.1080/00036846.2016.1237762
https://doi.org/10.1101/2020.08.20.20178780
https://doi.org/10.1016/j.dib.2021.106759
https://doi.org/10.1007/s00521-020-05434-0
https://doi.org/10.1371/journal.pntd.0008412
https://www.reutersevents.com/supplychain/supply-chain/lack-improvement-supplier-visibility-could-spell-supply-chain-disaster
https://www.reutersevents.com/supplychain/supply-chain/lack-improvement-supplier-visibility-could-spell-supply-chain-disaster
https://www.reutersevents.com/supplychain/supply-chain/lack-improvement-supplier-visibility-could-spell-supply-chain-disaster


Munoz, A., & Clements, M. (2008). Disruptions in information flow: A revenue costing

supply chain dilemma. JTAER, 3, 30-40. doi: 10.3390/jtaer3010005

Nguyen, D. T., Adulyasak, Y., & Landry, S. (2021). Research manuscript: The bullwhip

effect in rule-based supply chain planning systems–a case-based simulation at a

hard goods retailer. Omega, 98, 102121. doi: 10.1016/j.omega.2019.102121

Nikolopoulos, K., Punia, S., Schäfers, A., Tsinopoulos, C., & Vasilakis, C. (2021). Fore-

casting and planning during a pandemic: COVID-19 growth rates, supply chain dis-

ruptions, and governmental decisions. European Journal of Operational Research,

290(1), 99-115. doi: 10.1016/j.ejor.2020.08.001

Nikolopoulos, K., Syntetos, A. A., Boylan, J. E., Petropoulos, F., & Assimakopoulos,

V. (2011). An aggregate–disaggregate intermittent demand approach (ADIDA)

to forecasting: An empirical proposition and analysis. Journal of the Operational

Research Society, 62(3), 544–554. doi: 10.1057/jors.2010.32

Oeser, G., & Romano, P. (2021). Exploring risk pooling in hospitals to reduce demand

and lead time uncertainty. Operations Management Research, 14(1-2), 78–94. doi:

10.1007/s12063-020-00171-y

Ogundokun, R. O., Lukman, A. F., Kibri, G. B., Awotunde B., J., & Aladeitan, B. B.

(2020). Predictive modelling of COVID-19 confirmed cases in nigeria. Infectious

Disease Modelling, 5, 543-548. doi: 10.1016/j.idm.2020.08.003

Okorie, O., Subramoniam, R., Charnley, F., Patsavellas, J., Widdifield, D., & Salonitis,

K. (2020). Manufacturing in the time of COVID-19: An assessment of barri-

ers and enablers. IEEE Engineering Management Review, 48(3), 167–175. doi:

10.1109/EMR.2020.3012112

Osthus, D., Hickmann, K. S., Caragea, P. C., Higdon, D., & Del Valle, S. Y. (2017).

Forecasting seasonal influenza with a state-space SIR model. The annals of applied

statistics, 11(1), 202–224. doi: 10.1214/16-AOAS1000

Perakis, G., Singhvi, D., Skali Lami, O., & Thayaparan, L. (2022). COVID-19: A

multiwave SIR-based model for learning waves. Production and Operations Man-

agement. doi: 10.1111/poms.13681

78

https://doi.org/10.3390/jtaer3010005
https://doi.org/10.1016/j.omega.2019.102121
https://doi.org/10.1016/j.ejor.2020.08.001
https://doi.org/10.1057/jors.2010.32
https://doi.org/10.1007/s12063-020-00171-y
https://doi.org/10.1016/j.idm.2020.08.003
https://doi.org/10.1109/EMR.2020.3012112
https://doi.org/10.1214/16-AOAS1000
https://doi.org/10.1111/poms.13681


Petropoulos, F., & Makridakis, S. (2020). Forecasting the novel coronavirus COVID-19.

PLOS ONE, 15(3), 1-8. doi: 10.1371/journal.pone.0231236

Possamai, M. (2020). A Time of Fear, How Canada failed our health care workers and

mismanaged COVID-19 (Tech. Rep.). Ottawa.

Ranney, M. L., Griffeth, V., & Jha, A. K. (2020). Critical supply shortages — the need

for ventilators and personal protective equipment during the COVID-19 pandemic.

New England Journal of Medicine, 382(18). doi: 10.1056/NEJMp2006141

Reuters. (2021). COVID-19 rattles major Chinese manufacturing province.

Retrieved 2022-02-14, from https://www.reuters.com/world/china/

production-suspensions-chinese-manufacturing-hub-amid-covid-19

-outbreak-2021-12-14/

Rossana, R. J., & Seater, J. J. (1995). Temporal Aggregation and Economic Time Series.

Journal of Business & Economic Statistics, 13(4), 441. doi: 10.2307/1392389

Rostami-Tabar, B., Babai, M. Z., Syntetos, A., & Ducq, Y. (2013). Demand forecasting

by temporal aggregation. Naval Research Logistics (NRL), 60(6), 479–498. doi:

10.1002/nav.21546

Roy, A., Gilbert, S. M., & Lai, G. (2019). The implications of visibility on the use of

strategic inventory in a supply chain. Management Science, 65(4), 1752-1767. doi:

10.1287/mnsc.2018.3033

Sahin, F., & Robinson, E. P. (2005). Information sharing and coordination in make-

to-order supply chains. Journal of Operations Management, 23(6), 579-598. doi:

10.1016/j.jom.2004.08.007

Saito, T., & Shigemoto, K. (2020). A logistic curve in the sir model and its application to

deaths by COVID-19 in japan. medRxiv. doi: 10.1101/2020.06.25.20139865

Sarnaglia, A. J., Zamprogno, B., Fajardo Molinares, F. A., de Godoi, L. G., &

Jiménez Monroy, N. A. (2022). Correcting notification delay and forecasting of

COVID-19 data. Journal of Mathematical Analysis and Applications, 514. doi:

10.1016/j.jmaa.2021.125202

Shaun Lintern. (2020). ‘We are making difficult choices’: Italian doc-

79

https://doi.org/10.1371/journal.pone.0231236
https://doi.org/10.1056/NEJMp2006141
https://www.reuters.com/world/china/production-suspensions-chinese-manufacturing-hub-amid-covid-19-outbreak-2021-12-14/
https://www.reuters.com/world/china/production-suspensions-chinese-manufacturing-hub-amid-covid-19-outbreak-2021-12-14/
https://www.reuters.com/world/china/production-suspensions-chinese-manufacturing-hub-amid-covid-19-outbreak-2021-12-14/
https://doi.org/10.2307/1392389
https://doi.org/10.1002/nav.21546
https://doi.org/10.1287/mnsc.2018.3033
https://doi.org/10.1016/j.jom.2004.08.007
https://doi.org/10.1101/2020.06.25.20139865
https://doi.org/10.1016/j.jmaa.2021.125202


tor tells of struggle against coronavirus. Retrieved 2022-02-14, from

www.independent.co.uk/news/health/coronavirus-italy-hospitals

-doctor-lockdown-quarantine-intensive-care-a9401186.html

Shin, H. H., Sauer Ayala, C., Pérez-Estigarribia, P., Grillo, S., Segovia-Cabrera, L.,

García-Torres, M., . . . et al. (2021). A mathematical model for COVID-19 with

variable transmissibility and hospitalizations: A case study in Paraguay. Applied

Sciences, 11(20). doi: 10.3390/app11209726

Shuman, A. G., Fox, E. R., & Unguru, Y. (2020). COVID-19 and drug shortages: A call

to action. Journal of Managed Care & Specialty Pharmacy, 26(8), 945–947. doi:

10.18553/jmcp.2020.26.8.945

Singh, S., Kumar, R., Panchal, R., & Tiwari, M. K. (2021). Impact of COVID-19 on

logistics systems and disruptions in food supply chain. International Journal of

Production Research, 59(7), 1993-2008. doi: 10.1080/00207543.2020.1792000

Smeltzer, L. R., & Schneller, E. S. (2006). Strategic management of the health care

supply chain. San Francisco, CA: Jossey-Bass.

Snowdon, A., & Forest, P.-G. (2021). “Flying Blind”: Canada’s supply chain infras-

tructure and the COVID-19 Pandemic. Healthcare Quarterly, 23(4), 12–16. doi:

10.12927/hcq.2020.26399

Snowdon, A., Saunders, M., & Wright, A. (2021). Key characteristics of a fragile health-

care supply chain: Learning from a pandemic. Healthcare Quarterly, 24(1), 36–43.

doi: 10.12927/hcq.2021.26467

Soebiyanto, R. P., Adimi, F., & Kiang, R. K. (2010). Modeling and predicting seasonal

influenza transmission in warm regions using climatological parameters. PLOS

ONE, 5(3), 1-10. doi: 10.1371/journal.pone.0009450

Statistics Canada. (2021). Population estimates, quaterly. Retrieved 2020-

06-20, from https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=

1710000901

Subramani, M. (2004). How Do Suppliers Benefit from Information Technology Use in

Supply Chain Relationships? MIS Quarterly, 28(1), 45. doi: 10.2307/25148624

80

www.independent.co.uk/news/health/coronavirus-italy-hospitals-doctor-lockdown-quarantine-intensive-care-a9401186.html
www.independent.co.uk/news/health/coronavirus-italy-hospitals-doctor-lockdown-quarantine-intensive-care-a9401186.html
https://doi.org/10.3390/app11209726
https://doi.org/10.18553/jmcp.2020.26.8.945
https://doi.org/10.1080/00207543.2020.1792000
https://doi.org/10.12927/hcq.2020.26399
https://doi.org/10.12927/hcq.2021.26467
https://doi.org/10.1371/journal.pone.0009450
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1710000901
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1710000901
https://doi.org/10.2307/25148624


Sun, J. (2021). Forecasting COVID-19 pandemic in Alberta, Canada using modified

ARIMA models. Computer Methods and Programs in Biomedicine Update, 1,

100029. doi: 10.1016/j.cmpbup.2021.100029

Swaminathan, J. M., & Tayur, S. R. (2003). Models for supply chains in e-business.

Management Science, 49(10), 1387-1406. doi: 10.1287/mnsc.49.10.1387.17309

Swapnarekha, H., Behera, H. S., Nayak, J., Naik, B., & Kumar, P. S. (2021). Multiplica-

tive holts winter model for trend analysis and forecasting of COVID-19 spread in

india. SN computer science, 2(5), 416–416. doi: 10.1007/s42979-021-00808-0

Towill, D. R., Naim, M. M., & Wikner, J. (1992). Industrial dynamics simulation models

in the design of supply chains. International Journal of Physical Distribution &

Logistics Management, 22(5), 3–13. doi: 10.1108/09600039210016995

Tsao, Y.-C., Raj, P. V. R. P., & Yu, V. (2019). Product substitution in different weights and

brands considering customer segmentation and panic buying behavior. Industrial

Marketing Management, 77, 209-220. doi: 10.1016/j.indmarman.2018.09.004

Tucker, C. E., & Wang, Y. (2021). The Role of Delayed Data in the COVID-19 Pandemic.

SSRN Electronic Journal. doi: 10.2139/ssrn.3867021

Udmale, P., Pal, I., Szabo, S., Pramanik, M., & Large, A. (2020). Global food security

in the context of COVID-19: A scenario-based exploratory analysis. Progress in

Disaster Science, 7, 100120. doi: 10.1016/j.pdisas.2020.100120

Vereckey, B. (2020). The coming wave of COVID-19 bankruptcies and how to

mitigate them. Retrieved 2022-02-10, from https://mitsloan.mit.edu/

ideas-made-to-matter/coming-wave-covid-19-bankruptcies-and-how

-to-mitigate-them

Wensing, T. (2011). Periodic review inventory systems : Performance analysis and op-

timization of inventory systems within supply chains. Berlin, Heidelberg: Springer

Berlin Heidelberg.

World Health Organization. (n.d.). Coronavirus disease (COVID-19). Retrieved 2022-

02-14, from https://www.who.int/health-topics/coronavirus

World Health Organization. (2020). WHO Director-General’s opening remarks

81

https://doi.org/10.1016/j.cmpbup.2021.100029
https://doi.org/10.1287/mnsc.49.10.1387.17309
https://doi.org/10.1007/s42979-021-00808-0
https://doi.org/10.1108/09600039210016995
https://doi.org/10.1016/j.indmarman.2018.09.004
https://doi.org/10.2139/ssrn.3867021
https://doi.org/10.1016/j.pdisas.2020.100120
https://mitsloan.mit.edu/ideas-made-to-matter/coming-wave-covid-19-bankruptcies-and-how-to-mitigate-them
https://mitsloan.mit.edu/ideas-made-to-matter/coming-wave-covid-19-bankruptcies-and-how-to-mitigate-them
https://mitsloan.mit.edu/ideas-made-to-matter/coming-wave-covid-19-bankruptcies-and-how-to-mitigate-them
https://www.who.int/health-topics/coronavirus


at the media briefing on COVID-19 - 11 March 2020. Retrieved 2022-02-

10, from https://www.who.int/director-general/speeches/detail/

who-director-general-s-opening-remarks-at-the-media-briefing-on

-covid-19---11-march-2020

Yang, Z., Zeng, Z., Wang, K., Wong, S.-S., Liang, W., Zanin, M., . . . He, J. (2020).

Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China

under public health interventions. Journal of Thoracic Disease, 12(3), 165–174.

doi: 10.21037/jtd.2020.02.64

Yom-Tov, G. B., & Mandelbaum, A. (2014). Erlang-r: A time-varying queue with reen-

trant customers, in support of healthcare staffing. Manufacturing & Service Oper-

ations Management, 16(2), 283-299. doi: 10.1287/msom.2013.0474

82

https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
https://doi.org/10.21037/jtd.2020.02.64
https://doi.org/10.1287/msom.2013.0474



	Résumé
	Abstract
	List of tables
	List of figures
	List of acronyms 
	Acknowledgements 
	General introduction
	The effect of visibility on forecast and inventory management performance during the COVID-19 pandemic
	Abstract 
	Introduction
	Literature review
	Demand forecasting
	Supply chain visibility
	Positioning of the paper

	Problem description
	State
	Action
	Cost function
	Transition function
	Objective function

	Solution methods
	Forecasting methods
	Inventory control – periodic review system

	Computational study
	Data and parameters
	Results
	Discussion

	Conclusions
	Acknowledgements
	Assumptions of the SEIRHD model
	Proof of Lemma 1
	SEIRHD and simulation parameters
	References
	General conclusion
	Bibliography




