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Résumé 

Un des principaux objectifs des compagnies d’assurance automobile est d’estimer le risque que 

représentent leurs assurés sur la route; le suivi télématique est un bon exemple de stratégie 

employée pour estimer ce risque. Néanmoins, cette pratique laisse place à l’amélioration. Ce 

mémoire envisage la possibilité de pouvoir concevoir des outils simples à implémenter qui 

pourraient améliorer la capacité de prédiction du risque au volant grâce à la mesure de la 

propension au risque. Une étude en laboratoire a été effectuée afin d’évaluer le pouvoir prédictif 

de différentes mesures de propension au risque pour la prise de risque au volant dans une 

simulation de conduite. Des données neurophysiologiques ont également été collectées pendant la 

simulation pour déterminer la mesure dans laquelle la prédiction du comportement de conduite 

pourrait être corroborée par l’activité cérébrale oscillatoire reliée à la prise de risque au volant. Les 

résultats de l’analyse impliquant le comportement de conduite révèlent que le score global d’un 

questionnaire mesurant la propension au risque dans différents types de situation a une certaine 

valeur prédictive pour la prise de risque au volant. Cependant, cette valeur prédictive n’a pas été 

corroborée par l’activité cérébrale mesurée dans cette expérience. De plus, les mesures objectives 

de propension au risque (provenant de tâches interactives) n’ont pas démontré de valeur prédictive 

pour la prise de risque pendant la simulation. Nos résultats suggèrent que, pour la prédiction de la 

prise de risque au volant, les mesures autodéclarées de propension au risque sont de meilleurs 

candidats que les mesures objectives du même construit; ce type de mesure présente donc un 

potentiel intéressant pour le domaine de l’assurance automobile. 

● Mots clés : prise de risque, propension au risque, prédiction du risque, risque au volant, 

assurance automobile, télématique, électroencéphalographie, simulation de conduite 
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Avant-propos 

Ce mémoire en expérience utilisateur a été soumis avec l’autorisation de la direction administrative 

du programme de la Maîtrise ès Science en Gestion. 

Le projet de recherche lié à ce mémoire a été approuvé par le comité d’éthique en recherche (CER) 

de HEC Montréal le 20 février 2019. Un article issu du projet est inclus dans ce mémoire avec le 

consentement des coauteurs.  

L’article est actuellement en préparation pour soumission au journal Frontiers in Psychology. Il 

explore la relation entre la propension au risque, la prise de risque dans un simulation de 

conduite et ses corrélats neurophysiologiques. 

Une partie du projet de recherche a également fait l’objet de la présentation d’une affiche à la 

conférence annuelle de la Society for Neuroeconomics en octobre 2020 (voir Annexe 1). 
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Chapitre 1: Introduction 

1.1 La télématique et l’assurance auto 

Au sens large, la télématique fait référence à la combinaison des télécommunications et de 

l’informatique. Plus couramment, il est question de télématique lorsqu’un système permet 

d’acquérir des données générées par un véhicule et de transmettre celles-ci par l’entremise d’un 

réseau de télécommunications. La télématique dans le contexte des transports est donc une matrice 

de capteurs, d’instrumentation, de communication sans fil et de technologies GPS qui est employée 

dans plusieurs domaines d’affaires tels que la gestion de flotte et l’assurance automobile (Handel 

et al., 2014; Mikulski, 2010; Zhao, 2002). 

Dans le domaine de l’assurance auto, des données télématiques concernant la conduite d’un client 

sont parfois utilisées pour personnaliser l’assurance en fonction des habitudes de conduite. La 

prime d’assurance est alors périodiquement ajustée en fonction de facteurs de risque tels que la 

distance parcourue, le moment de la journée où la conduite a habituellement lieu, et la façon dont 

les freinages et accélérations sont faits (Nedić et al., 2014). Ce concept est généralement appelé « 

assurance en fonction de l’usage » (usage-based insurance ou UBI en anglais), « assurance 

télématique » ou « suivi télématique ». 

Typiquement, les données concernant la conduite sont acquises de l’une ou l’autre de deux façons. 

Dans certains cas, un appareil de type boîte noire est installé sur le véhicule, et cet appareil récolte 

des données pour ensuite les envoyer à l’assureur. Cependant, cette méthode est de plus en plus 

abandonnée par les compagnies d’assurance; dans la plupart des cas, il n’est plus nécessaire 

d’installer de tel équipement sur la voiture, car le téléphone intelligent des clients peut jouer un 

rôle très similaire. Les téléphones intelligents dotés d’un GPS, d’un accéléromètre et d’un 

gyroscope (donc la plupart d’entre eux) sont en mesure de collecter en continu des données sur la 

position et la vitesse du véhicule ainsi que son accélération longitudinale (permettant de jauger la 

façon d’accélérer et de freiner) et latérale (permettant de jauger la façon d’effectuer un virage), en 

plus de permettre de synchroniser ces données avec l’heure et les conditions de météo et de 

circulation (Handel et al., 2014). Avec ces données, ces applications peuvent généralement aussi 

détecter l’utilisation du téléphone mobile au volant (Guillen et al., 2021). 
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Les compagnies offrant l’assurance en fonction de l’usage ont donc généralement une application 

mobile qui sert principalement à acquérir et transmettre ces données, mais qui peut aussi offrir 

d’autres services aux clients tels qu’un tableau de bord sur les habitudes de conduite et des 

recommandations personnalisées visant une conduite plus sécuritaire (Handel et al., 2014). Les 

clients inscrits à un tel service obtiennent un ajustement de leur prime d’assurance, soit sous la 

forme de rabais associés avec de bonnes habitudes de conduite, soit sous la forme de pénalités 

associées avec une conduite dangereuse (Ma et al., 2018). 

1.2 L’assurance télématique au Québec 

À l’échelle mondiale, le concept de l’assurance télématique a d’abord été inventé et breveté en 

1996 par la compagnie américaine Progressive, qui a ensuite graduellement introduit sa première 

police d’assurance télématique avec le projet pilote “snapshot” en 1998. En 2016, plus de 2 

millions de véhicules étaient assurés à travers “snapshot”, et un total de 3.3 millions de couvertures 

d’assurance télématique étaient en vigueur aux États-Unis. Les autres pays dominant ce marché 

sont principalement l’Italie et le Royaume-Uni, qui, en 2016, avaient respectivement 6.3 et 0.6 

millions de polices d’assurance télématique en vigueur (Eling & Kraft, 2020).  

Au Québec, la première forme d’assurance télématique documentée fut le programme Mobiliz 

instauré en 2012 par Industrielle Alliance (Bergeron, 2014). Dans ce programme (seulement 

disponible aux 16-24 ans), une boîte noire était installée à l’intérieur du véhicule, et celle-ci 

mesurait 4 indicateurs de conduite : le kilométrage, la vitesse, les freinages brusques et les 

accélérations rapides. À chaque renouvellement de contrat, la prime était déterminée en fonction 

de certaines limites que le client acceptait de respecter (Radio-Canada, 2015). Il est intéressant de 

noter que, à cette période, la conseillère aux affaires publiques au Bureau d’assurances du Canada 

(BAC) avait affirmé : « Ce n'est pas très bien accueilli de mettre un mouchard sur la voiture ». 

Certains considéraient le procédé comme une atteinte à la vie privée (Templier, 2012). Mobiliz fut 

le premier programme d’assurance au Québec à exploiter des données sur plusieurs mesures 

comportementales de la conduite des clients inscrits. Étrangement, le programme fut abandonné 

en 2017, la compagnie affirmant se donner jusqu’à 2018 pour repenser la formule (McKenna, 

2017). À ce jour, le programme n’est toujours pas disponible chez Industrielle Alliance.1  

 
1 https://ia.ca/assurance-auto 
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En 2013, Desjardins a inauguré son programme Ajusto, qui à l’époque nécessitait aussi 

l’installation d’une boîte noire branchée à l’ordinateur du véhicule (McKenna, 2017). Cet appareil 

télématique fut remplacé par une application mobile en 2015 (McQuigge, 2015). En 2017, un 

sondage effectué par Desjardins auprès des participants au programme a révélé que 75% d’entre 

eux avaient amélioré leurs habitudes de conduite et que 76% ont dit être d’avis que le programme 

contribue à l’amélioration de la sécurité routière (McKenna, 2017). 

En ce qui a trait au régime public d’assurance auto, la Société de l’assurance automobile du Québec 

(SAAQ) a exprimé en 2015 l’intention de mettre à l’essai un outil télématique qui permettrait aux 

conducteurs volontaires de visualiser et d’adapter leur comportement de conduite, en plus 

d’éventuellement voir le coût de leur permis et de leur immatriculation diminuer en fonction de 

celui-ci (Radio-Canada, 2015). Cependant, le projet a été annulé l’année suivante par peur de 

manquer de volontaires (Morin, 2016). 

 Au fil des années, à Ajusto se sont ajoutés les programmes automérite de belairdirect (en 2013) et 

Ma Conduite d’Intact (en 2014) (Bergeron, 2014). Ces 3 programmes sont donc à ce jour les seuls 

au Québec à employer la télématique dans un contexte d’assurance automobile. Le tableau suivant 

(Tableau 1) fait le sommaire des caractéristiques de ces programmes. 
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Tableau 1. Sommaire des 3 programmes d’assurance télématique actuellement disponibles au Québec 

 Méthode 

d’acquisition 

de données 

 

Mesures comportementales 

 

Ajustement du tarif 

 

 

 

 

 

 

Ajusto 

(Desjardins 

Assurances) 

 

 

 

 

 

 

 

 

 

Application 

mobile 

nécessitant 

un iPhone 

version iOS 

12 ou plus 

récente, ou 

un téléphone 

Android 

version 7.0 

ou plus 

récente 

Un score de conduite (entre 0 et 

100) est calculé après 6 mois et au 

moins 1000 km. Ce score est 

calculé en fonction de 4 critères : 

la distraction causée par le 

cellulaire, la vitesse, les 

accélérations rapides et les 

freinages brusques. Le score 

prend également en compte les 

habitudes de conduite : la 

distance parcourue, les heures 

de déplacement et la routine 

quotidienne. Un nouveau score 

est calculé à chaque 

renouvellement. 

• 10% de rabais pendant 

les 6 premiers mois 

 

• Un score en haut de 60 

peut entraîner une baisse 

de prime pouvant aller 

jusqu’à 25%, alors qu’un 

score en bas de 60 peut la 

faire augmenter jusqu’à 

20%. 

 

• La prime est ajustée à 

chaque renouvellement du 

contrat d’assurance. 

 

 

Ma Conduite 

(Intact) 

 

 

Les mesures suivantes sont prises 

en compte après au moins 500 km 

de conduite: la vitesse, la fluidité 

(des freinages et accélérations), 

la vigilance (l’utilisation du 

téléphone au volant), la distance 

parcourue, le moment de la 

journée, l’endroit et la 

fréquence de conduite. Ces 

mesures sont prises en compte à 

chaque renouvellement de contrat. 

• 10% de rabais jusqu’au 

prochain renouvellement 

de contrat (seulement pour 

les nouveaux clients) 

 

• Le comportement de 

conduite peut mener à une 

baisse de prime allant 

jusqu’à 25%, ou une 

augmentation pouvant 

aller jusqu’à 25%.  

 

• La prime est ajustée à 

chaque renouvellement du 

contrat d’assurance. 

 

 

automérite 

(belairdirect) 

Sources: https://www.desjardins.com/qc/fr/assurances/auto/ajusto.html, 

https://www.desjardins.com/qc/fr/assurances/faq/ajusto.html, https://www.intact.ca/fr/assurance-

particuliers/services-en-ligne/ma-conduite.html, https://www.intact.ca/qc/fr/assurance-

particuliers/services-en-ligne/ma-conduite/faq.html, https://www.belairdirect.com/fr/app/automerite.html, 

https://www.belairdirect.com/fr/app/faq.html?region=qcfr 

https://www.desjardins.com/qc/fr/assurances/auto/ajusto.html
https://www.desjardins.com/qc/fr/assurances/faq/ajusto.html
https://www.intact.ca/fr/assurance-particuliers/services-en-ligne/ma-conduite.html
https://www.intact.ca/fr/assurance-particuliers/services-en-ligne/ma-conduite.html
https://www.intact.ca/qc/fr/assurance-particuliers/services-en-ligne/ma-conduite/faq.html
https://www.intact.ca/qc/fr/assurance-particuliers/services-en-ligne/ma-conduite/faq.html
https://www.belairdirect.com/fr/app/automerite.html
https://www.belairdirect.com/fr/app/faq.html?region=qcfr
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1.3 L’estimation du risque au-delà de l’assurance télématique 

L’évolution du marché de l’assurance télématique au Québec démontre que de nombreuses 

compagnies se tournent vers le téléphone mobile comme outil d’acquisition et de transmission de 

données sur le comportement de conduite d’utilisateurs assurés. En plus d’être simple, peu 

coûteuse et facile à personnaliser comparée à l’utilisation d’un appareil de type boîte noire, cette 

formule permet d’exploiter les nombreuses fonctionnalités d’une application mobile, comme la 

présentation d’un tableau de bord pouvant informer l’utilisateur sur sa conduite et faire des 

recommandations pour la rendre plus sécuritaire. Néanmoins, cette formule comporte aussi des 

limites. D’un point de vue technologique, il est difficile d’assurer la précision et l’intégrité de 

données télématiques provenant d’un téléphone intelligent (Handel et al., 2014); un bref coup 

d’oeil aux commentaires écrits sur Google Play Store par les utilisateurs d’applications 

d’assurance télématique en fonction au Québec révèle qu’un grand nombre d’entre eux rapportent 

des difficultés quant à l’acquisition de données (p.ex. la conduite n’est pas toujours détectée et 

suivie automatiquement), le signalement erroné de manœuvres dangereuses et la consommation 

excessive de la batterie du téléphone. De plus, il semblerait qu’un grand nombre d’individus soient 

réticents à l’idée d’être constamment suivis par leur assureur lorsqu’ils sont au volant, comme le 

suggère le motif du recul de la SAAQ quant à son projet pilote de télématique (Morin, 2016). 

Un besoin important auquel répond l’assurance télématique est celui des compagnies d’assurance 

de pouvoir estimer dans une certaine mesure la probabilité qu’un client soit impliqué dans un 

accident de la route. L’assurance télématique, qui de plus en plus s’appuie sur le téléphone 

intelligent, comporte des limites importantes qui restreignent sa capacité à répondre à ce besoin 

pour un grand nombre de clients. Le projet présenté dans ce mémoire envisage la possibilité de 

pouvoir concevoir des outils simples à implémenter pouvant aider à répondre à ce besoin. Par 

exemple, serait-il possible de concevoir des applications qui estiment adéquatement la propension 

au risque au volant de sorte à pouvoir mieux prédire ce risque? 

1.4 Questions de recherche et sommaire de l’article 

Plusieurs outils de mesure du risque ont été développés dans les dernières décennies, et leur succès 

porte à croire qu’il pourrait être possible d’employer un tel outil pour améliorer notre capacité à 

prédire le potentiel de prise de risque au volant. Ce projet vise donc à tester cette idée; nous 
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mesurons la capacité prédictive de certains outils de mesure du risque par rapport à la prise de 

risque au volant dans un simulateur de conduite en laboratoire. Nous mesurons donc la 

performance et le score à certains outils de mesure du risque, ainsi que certaines composantes du 

comportement de conduite pendant la simulation. De plus, dans le but de fournir un support 

théorique à notre analyse, nous mesurons également l’activité neurophysiologique (par 

électroencéphalographie) pendant les moments risqués de la simulation de conduite pour 

déterminer la mesure dans laquelle le pouvoir prédictif potentiel de ces outils se reflète dans 

l’activité cérébrale reliée à la prise de risque au volant. 

Ce mémoire répond donc à deux questions de recherche. D’une part, l’analyse comportementale 

répond à la question suivante: Dans quelle mesure est-il possible de prédire la prise de risque dans 

une simulation de conduite à l’aide d’outils mesurant la propension au risque2? Pour se faire, la 

prise de risque pendant la simulation est opérationnalisée à l’aide de plusieurs variables relatives 

au comportement de conduite des participants; ces variables sont très similaires aux mesures 

employées par les programmes d’assurance télématique présentés dans ce chapitre. Des modèles 

de régression multivariée sont ensuite employés pour déceler de potentielles associations entre les 

scores provenant des outils de mesure du risque et le comportement de conduite. D’autre part, 

l’analyse impliquant les données neurophysiologiques répond à la question suivante: Dans quelle 

mesure est-il possible de prédire l’activité cérébrale oscillatoire reliée à la prise de risque dans 

une simulation de conduite à l’aide d’outils mesurant la propension au risque? Pour isoler des 

signaux neurophysiologiques reliés à la prise de risque pendant la simulation, les signaux 

provenant des sections définies comme risquées dans le trajet de la simulation sont normalisés 

avec ceux provenant des sections impliquant un minimum de risque. Des modèles de régression 

multivariée sont ensuite employés pour déceler de potentielles associations entre les scores 

provenant des outils de mesure du risque et les moyennes obtenues suite au traitement, à 

l’agrégation et à la normalisation de ces signaux neurophysiologiques. 

Ce mémoire comprend un seul article qui présente en détail l’expérience en laboratoire brièvement 

décrite ci-dessus—une expérience ayant eu lieu au Tech3Lab et impliquant 18 participants 

 
2 Dans ce mémoire, la propension au risque et la préférence face au risque sont utilisées de façon interchangeable. 

Elles représentent la propension à effectuer des choix ou des actions considérées comme risquées, peu importe la 

nature des risques impliqués. 
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volontaires. Cet article est en préparation pour soumission au journal Frontiers in Psychology. La 

première partie de celui-ci fait le sommaire d’une revue de littérature sur la mesure de la 

propension au risque (et la préférence face au risque) ayant été effectuée dans le but de déterminer 

quels outils de mesure sont les meilleurs candidats pour la prédiction de la prise de risque au volant. 

La deuxième partie de l’article présente en détail la méthodologie employée et les résultats 

obtenus. Ces résultats sont ensuite interprétés et discutés en fonction de la littérature académique 

concernée. Finalement, la dernière partie de l’article ainsi que la conclusion du mémoire présentent 

les implications pratiques et théoriques des résultats de ce projet.  

En outre, une analyse préliminaire des données collectées dans le cadre de ce projet a fait l’objet 

de la présentation d’une affiche (poster presentation) par l’auteur de ce mémoire lors de la 

conférence annuelle (virtuelle) organisée par la Society for Neuroeconomics en octobre 2020. Cette 

affiche présente seulement l’analyse des données comportementales et neurophysiologiques de la 

Iowa Gambling Task et de la simulation de conduite (voir Annexe 1).   

1.5 Contributions et responsabilités individuelles 

Le tableau suivant (Tableau 2) rapporte les contributions de l’auteur tout au long du processus 

menant à la réalisation de ce mémoire. Pour chaque étape du projet, la ou les tâches effectuées sont 

présentées avec la contribution (en pourcentage) de l’auteur de ce mémoire. 

Tableau 2. Tableau des contributions 

Activité Contribution 

Définition de 

l’objectif de recherche 

Définir l’objectif de l’étude et les questions de recherche associées - 

60% 

Les questions de recherche sont issues de nombreuses 

discussions avec l’équipe de recherche. 

Revue de littérature Faire d’abord un survol de la littérature, puis une recherche 

approfondie sur les différentes méthodes de mesure du risque - 100% 

Conception du design 

expérimental et 

préparation de l’étude 

Choisir les outils de mesure du risque employés dans l’étude - 100% 

 

Choisir le logiciel de simulation de conduite approprié, ainsi que les 

paramètres à utiliser dans celui-ci - 70% 

Ce choix fut effectué en collaboration avec l’équipe de 
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recherche. 

 

Effectuer la demande au CER - 100% 

Un membre de l’équipe d’opération du Tech3Lab s’est assuré 

que le formulaire était adéquat. 

Concevoir les tâches de prise de risque dans le logiciel E-Prime et 

programmer la synchronisation en temps réel des données avec le 

logiciel d’électroencéphalographie - 90%  

L’équipe de recherche a aidé l’auteur de ce mémoire à régler 

certains problèmes rencontrés lors de tests sur la 

synchronisation des données. 

 

Concevoir la tâche de conduite de sorte à ce qu’elle permette de 

répondre aux questions de recherche - 60% 

Cette tâche fut conçue en collaboration avec l’équipe de 

recherche. 

 

Concevoir et rédiger le protocole de l’expérimentation - 100% 

Un membre de l’équipe d’opération du Tech3Lab s’est assuré 

que le protocole expérimental était adéquat. 

 

Collecte de données Installer l’équipement dans la salle de collecte - 80% 

Un membre de l’équipe d’opération du Tech3Lab a aidé 

l’auteur de ce mémoire à installer le matériel de collecte. 

 

Effectuer des prétests pour s’assurer du bon fonctionnement de tous 

les outils, de la bonne synchronisation des données, de la fluidité de 

l’expérience et de la qualité des données - 100% 

Un assistant de recherche du Tech3Lab a contribué à la 

collecte de données pendant tous les prétests. 

 

Élaborer et rédiger le questionnaire de recrutement - 100% 

 

Recruter les participants et gérer les prérequis avant chaque collecte - 

80% 

Le recrutement fut en partie effectué par l’entremise du Panel 

HEC Montréal.  

 

Collecter les données - 100% 

L’auteur de ce mémoire fut présent à chaque collecte de 

données. Un assistant de recherche du Tech3lab fut également 

toujours présent pour aider et veiller au bon fonctionnement 

des outils de collecte de données. 
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Extraction et 

transformation des 

données 

Extraire les données comportementales des tâches de prise de risque 

et de la tâche de conduite, ainsi que les données neurophysiologiques 

- 100% 

 

 

Élaboration d’un script Python pour extraire et faire les moyennes 

des données comportementales de conduite provenant des moments 

clés de la tâche - 100% 

 

Nettoyage, agrégation, traitement et transformation des données 

neurophysiologiques - 100% 

L’équipe de recherche a formé l’auteur de ce mémoire sur 

l’utilisation de l’outil Brainstorm, ainsi qu’aidé à l’élaboration 

d’un protocole de nettoyage des données neurophysiologiques 

et d’une stratégie de normalisation de ces données.  

 

Création d’une base de données commune - 100% 

Analyse et 

interprétation des 

données 

Effectuer les analyses statistiques sur les données comportementales 

et neurophysiologiques - 100% 

L’équipe de recherche a aidé l’auteur de ce mémoire à 

déterminer les modèles statistiques appropriés pour ces 

analyses. 

 

Interpréter les résultats - 100% 

Rédaction Écrire l’article du mémoire - 100% 

L’article a été écrit avec les commentaires et conseils des 

coauteurs. 
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Chapitre 2: Article  

Exploring the relationship between risk preference, risky driving in a 

simulator and the associated oscillatory brain activity3 

Éric De Celles, Alexander Karran, Jared Boasen, Pierre-majorique Léger, Sylvain Sénécal 

Abstract 

Risky driving represents a major public safety concern and has been associated with psychological 

traits such as risk preference. To further our understanding of this behavior as well as our ability 

to prevent it, this study aimed to investigate the predictive validity of three psychological 

instruments for risk preference with respect to risky driving in a simulator and the associated 

oscillatory brain activity. The trait was measured by having participants complete two standardized 

risk-taking tasks—the Iowa Gambling Task (IGT) and the Balloon Analogue Risk Task (BART)—

in addition to the Domain-Specific Risk-Taking (DOSPERT) scale. Risky driving was 

operationalized using four behavioral measurements in a driving simulation task that encouraged 

subjects to take risks at the wheel. Electroencephalography was employed to observe neural 

correlates of risk preference in the oscillatory brain activity of participants during specific parts of 

the driving task. We found that the DOSPERT scale as a whole predicted risky driving behavior 

to a significant extent, but that the individual DOSPERT subscales, the IGT and the BART did 

not. The association between the global DOSPERT score and risky driving was not supported by 

neurophysiological evidence. Together, our results support the idea that risk preference 

measurements based on self-reports do not measure the same components of risk-taking as those 

based on objective assessments, and suggest that the components they measure more closely mirror 

those involved in risky driving. While more research is needed to investigate this proposition and 

to uncover the neurophysiological manifestation of risk preference in a driving context, these 

findings have significant implications for both future research and organizations concerned with 

the prediction and prevention of risky driving. 

 
3 Cet article est en préparation pour soumission au journal Frontiers in Psychology. 
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● Keywords : Risk taking, Risk preference, Risky driving, Driving simulation, Spontaneous 

EEG, Balloon Analogue Risk Task, Iowa Gambling Task, Domain-Specific Risk Taking 

scale 

2.1 Introduction 

While modern advancements in technology have allowed us to make cars safer than ever before 

(thanks to systems such as automatic emergency braking, pedestrian detection and blind spot 

warning), they also take forms that can be detrimental to driving safety; smartphones, 

smartwatches and certain infotainment systems such as Mazda Connect or Ford Sync are notable 

examples that can lead to distracted driving (Brodeur et al., 2021; McEvoy et al., 2005; Strayer et 

al., 2017), a behavior that kills about 8 people every day in the United States (National Center for 

Statistics and Analysis, 2020). 

The issue of distracted/risky driving through the use of technology is multi-faceted; aside from the 

possession of technology itself, various factors can contribute to an individual’s tendency to use 

distracting devices while driving.  

One common trait that has been associated with instances of risky driving is a preference for risk. 

In psychology, risk preference is usually studied as risk-taking propensity—the propensity to 

engage in potentially rewarding behaviors or activities despite a potential for loss (Mata et al., 

2018). A high preference for risk has been associated with risky driving behaviors such as mobile 

phone use at the wheel (Sween et al., 2017), more frequent drink-driving amongst older males 

(Hatfield & Fernandes, 2009), and a higher frequency of speeding in drivers aged 17-20 (Machin 

& Sankey, 2008). Certain risk preference measurements thus have predictive validity for risky 

driving behavior, and could potentially serve not only public safety through the implementation of 

personalized risk countermeasures, but also any organization interested in predicting or preventing 

risky driving.  

However, in both academic and nonacademic sectors, risk preference is rarely assessed to forecast 

risky driving and its likelihood; in the scientific literature, very few studies have investigated the 

predictive validity of risk preference for objective measures of real-world outcomes (Mata et al., 

2018), and, to our knowledge, the practice is far from prevalent in organizations concerned with 



 

12 

the incidence of risky driving such as insurance companies and public safety agencies. The main 

underlying causes are presumed to be the following. Risk taking itself is not a single trait but an 

exceptionally complex behavior modulated by a variety of factors, and can thus be exhibited in 

numerous different ways and contexts (Figner & Weber, 2011). This idea is substantiated by the 

fact that established measures of risk preference have relatively low convergent validity (Mata et 

al., 2018), meaning that what they measure does not often seem to capture a common underlying 

characteristic or trait. In addition, little is known about how all the cognitive processes involved in 

risk taking interact to form a person’s propensity for risk on the road. It is thus not surprising that 

a psychological instrument with significant predictive validity for objective measures of risky 

driving remains unheard of. The present study’s main objective was to find such an instrument, 

and investigate its relationship with risky driving objectively assessed in a simulated driving task.  

One way to provide support for the predictive validity of a measure (or a construct) is to find 

neurophysiological evidence of the involvement of at least one relevant cognitive process in 

mediating a correlation between the measure and a behavior of interest. Such evidence can then 

be used to formulate a theoretical account of the correlation that is consistent with prevailing 

theories of cognition and that hopefully generalizes to most healthy individuals. This study draws 

upon this idea by employing electroencephalography to find such evidence. Therefore, its goal was 

to find a risk preference instrument with predictive validity for risky driving behavior in a 

simulator, in addition to neurophysiological evidence that supports this validity. 

Our study thus investigated potential associations between three measures of risk preference, risky 

driving behavior in a simulator, and the associated oscillatory brain activity. Risky driving 

behavior was operationalized using 4 behavioral variables assumed to be significantly associated 

with an increased risk of accident. To determine the most appropriate psychological instruments 

for the purposes of this study, a review of the literature pertaining to the measurement of risk 

preference was carried out—it is summarized in the next section. During the experiment, subjects 

first completed the Iowa Gambling Task (IGT) and the Balloon Analogue Risk Task (BART), after 

which they performed a short driving simulation that encouraged risky driving behavior. At the 

end of the experiment, the Domain-Specific Risk-Taking (DOSPERT) scale was filled out. EEG 

signals from specific segments of the driving simulation were captured, normalized to isolate 

activity specific to risky driving, and time-frequency decomposed in the theta, alpha and beta 
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frequency bands. The resulting data was analyzed in an exploratory manner to find associations 

between the measures of risk preference and oscillatory patterns of brain activity—during 

driving—that are consistent with risk-taking behavior, which would further support the predictive 

validity of said measures. 

2.2 Risk preference and predictive validity for risky driving 

In the early days of modern psychology, most studies fell into one of two research streams 

originally identified as experimental and correlational psychology (Cronbach, 1957). While the 

former put emphasis on rigorously investigating the influence of controlled variables on behavior, 

cognition and emotion, the latter instead focused on observing and assessing already existing 

variations in these capacities across individuals and situations. This distinction was often reflected 

in the measures employed in research; experimental psychology studies usually relied on objective 

measures as outcomes of interest, whereas correlational psychology studies tended to acquire data 

in the form of self-reports.  

Several decades later, this partition of psychology into two research streams is still discernible 

(Tracy et al., 2009), but particularly evident in research on risk preference (Appelt et al., 2011; 

Frey et al., 2017; Hertwig et al., 2019). On one hand, a behavioral stream of research focuses on 

elucidating the cognitive or neural correlates of risk preference; this work usually investigates the 

psychological processes underlying choices in very specific behavioral paradigms that tend to feel 

factitious and hardly naturalistic. The assessments of risk preference derived from such paradigms 

are often referred to as revealed measures of risk preference. One the other hand, a large body of 

research instead builds upon findings from self-reports related to either risk preference (or 

propensity) in response to hypothetical scenarios or general questions, or the frequency of actual 

risky activities such as gambling. The resulting assessments are thus commonly referred to as 

stated risk preference measures.  

A persistent concern in the field is that the behavioral and self-report approaches to assessing risk 

preference have seen very little theoretical and even empirical integration, despite both being 

widely used to this day (Frey et al., 2017). In addition, recent analyses have shown that stated risk 

preference measures, when compared to behavioral paradigms, appear to have higher test-retest 

reliability, higher convergent validity, and even higher predictive validity for certain behaviors 
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(Frey et al., 2017; Hertwig et al., 2019; Mata et al., 2018). While this trend could warrant the use 

of only stated measures in this study, it does not for two reasons. First, while supported by 

compelling evidence, this trend has yet to be empirically confirmed across a variety of contexts, 

as well as integrated with current theories of decision making. Second, and more importantly, the 

fact remains that there is substantial evidence in the literature that supports the predictive validity 

of revealed measures of risk preference for a variety of risky behaviors (Schonberg et al., 2011). 

The present study being mainly concerned with the predictive validity of risk preference measures, 

both types described here were considered. In the rest of this section, we thus provide a brief 

overview of both revealed and stated measures of risk preference used in behavioral research, and 

discuss their relevance to the purposes of this study in order to select the most appropriate few. 

2.2.1 Revealed risk preference measures  

The assessment of revealed risk preference is achieved using behavioral paradigms that involve 

making choices or decisions in specific scenarios comprising risk that is usually economic in 

nature. Such paradigms often take the form of gamble-like games or tasks that have specific 

incentive structures and choice architectures. In the last two decades, numerous paradigms have 

been used to measure revealed risk preference with some degree of success, characterized either 

by predictive validity for risky behavior, correlations with traits associated with risk preference or 

propensity, and/or consistency with prevailing theories of risky decision making.  

Our review revealed that the most widely used measures of revealed risk preference, which all 

involve monetary gambles, are the Balloon Analogue Risk Task (BART) (C. W. Lejuez et al., 

2002), the Iowa Gambling Task (IGT) (Bechara et al., 1994), the Columbia Card Task (CCT) 

(Figner et al., 2009), the Cambridge Gambling Task (CGT) (Rogers, 1999), the Holt-Laury (HL) 

measure of risk aversion (Holt & Laury, 2002), the Gneezy and Potters elicitation method (Gneezy 

& Potters, 1997), and the Eckel and Grossman elicitation method (Eckel & Grossman, 2002). 

While all of these decision-making tasks allow the assessment of revealed risk preference, the 

purposes for which they were created vary. For example, the IGT was created as a clinical 

instrument to assess decision making in patients with prefrontal lesions; the BART was specifically 

designed to measure individual differences in general risk-taking propensity; and the HL task was 

developed within the economics literature to estimate the risk aversion of economic agents as well 
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as risk parameters of utility functions. Nevertheless, the purpose of the present study being the 

prediction of risky driving, behavioral measures were only further reviewed for their relevance to 

this behavior. A revealed risk preference measure was considered a good candidate for this study 

if it has been shown to correlate with both psychological determinants of risky driving as well as 

self-reports or observations of risky driving behavior. 

The psychological determinants of risky driving have been studied extensively (Tao et al., 2017). 

While a large number of traits have been linked to various risky driving behaviors (e.g. speeding, 

aggressive driving, accident involvement), there is considerable support for associations between 

risky driving and sensation seeking, impulsivity, driving anger, neuroticism, and agreeableness 

(Akbari et al., 2019; Bıçaksız & Özkan, 2016; Brown et al., 2016; Tao et al., 2017).  

Among the measures of revealed risk preference mentioned in this section, two are considered to 

be good candidates for the prediction of risky driving in this study: the Balloon Analogue Risk 

Task and the Iowa Gambling Task. The number of pumps on the BART was found to be associated 

with objective measures of risky driving in a simulator (Ba, Zhang, Salvendy, et al., 2016), 

multiple self-reports of risky driving (Ba, Zhang, Peng, et al., 2016; Piccardi et al., 2021; Vaca et 

al., 2013), as well as having a history of traffic offenses on a motorcycle (Cheng et al., 2012). The 

same score was also found to be correlated with psychological traits related to risky driving such 

as sensation seeking, impulsivity, and neuroticism (Grover & Furnham, 2021; Lauriola et al., 

2014). Regarding the IGT, the number of advantageous decisions was found to be associated with 

objective measures of risky driving in a simulator (Farah et al., 2008), self-reports of driving 

violations (Ba, Zhang, Peng, et al., 2016), and having a history of traffic offenses (Brown et al., 

2016; Lev et al., 2008). Performance on the IGT is also known to be linked to sensation seeking, 

impulsivity and neuroticism (Buelow & Suhr, 2013; Denburg et al., 2009; Sweitzer et al., 2008). 

To our knowledge, performance on the other tasks listed in this section has not been linked to risky 

driving behavior.  

For this study, we chose to include both the BART and the IGT as measures of revealed risk 

preference, mainly because they are both good candidates for the prediction of risky driving, but 

also because they have been shown to measure different aspects of decision making based on a 

factor analysis performed by (Buelow & Blaine, 2015), which could make a difference in their 
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ability to predict risky driving behavior in this study—a difference that could potentially provide 

insights on the predictors of risky driving. 

2.2.2 Stated risk preference measures 

The assessment of stated risk preference relies upon people’s introspective abilities rather than 

observable behavior. There are three main types of stated risk preference measures: those based 

on self-reported risk preferences in response to hypothetical or real-world behaviors and scenarios, 

those based on responses to general questions about people’s risk propensity, and those that inquire 

about the actual frequency of specific risky activities in the life of individuals (Hertwig et al., 

2019). The latter, commonly referred to as frequency measures of risk, tend to be used in clinical 

and epidemiological studies interested in the long-term effects of risky behaviors (Frey et al., 

2017), and are mostly absent in the literature related to the construct of risk preference because 

they generally do not determine an individual’s overall risk preference. For this reason, the 

following review covers only the first two types of stated risk preference measures. 

While a large number of self-reported measures have been used to assess risk preference and 

propensity in the last 50 years, our review focused on the more recent ones that have been validated 

and correlated with risky behaviors and traits related to risk taking. The most widely used measures 

of stated risk preference that fit this category are the Domain-Specific Risk-Taking (DOSPERT) 

scale by (Weber et al., 2002), the Risk Taking Index by (Nicholson et al., 2005), the Risk 

Propensity Scale by (Meertens & Lion, 2008), the general and domain-specific risk items used in 

the German Socioeconomic Panel (Dohmen et al., 2011), and the more recent General Risk 

Propensity Scale (GRiPS) by (Zhang et al., 2019). 

The above list comprises two main types of measures: domain-specific and domain-general 

measures. While a domain-general risk-taking measure aims to assess risk preference as one 

general dispositional trait, domain-specific risk measures are instead designed to assess risk 

preference in multiple domains. This distinction is the object of a long-standing debate in the field. 

Traditionally, many researchers considered risk preference to be domain-specific (Figner & 

Weber, 2011, p. 20; Hanoch et al., 2006), which is reflected in how individuals vary in their 

perceived risk and benefit in different domains of situations (e.g. social, financial, health), and 

have different subjective values on the outcomes. However, recent studies have since challenged 
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this idea by showing that, despite domain differences in risk preference, a general risk factor exists 

and accounts for variance that is shared across domains (Frey et al., 2017; Highhouse et al., 2017). 

To this day, no consensus has been reached regarding which theory prevails and yields the most 

accurate measures of risk preference; the answer likely depends on the context and the purpose of 

the measurement (Zhang et al., 2019). The present study being exploratory in nature, it was deemed 

relevant to obtain both domain-general and domain-specific measures of stated risk preference. 

Regarding the potential predictive validity of stated measures of risk preference for risky driving, 

only one was considered to be a good candidate: the Domain-Specific Risk-Taking scale. This 

scale’s global score (all domains combined) was found to be associated with risk taking in a 

motorcycle simulation (Baltruschat et al., 2020). In addition, scores for individual domains such 

as health/safety, recreational, ethical and gambling were associated with having a history of traffic 

offenses (Padilla et al., 2018), in addition to self-reports of speeding, seat belt non-use, and mobile 

phone use at the wheel (Brailovskaia et al., 2018; Sween et al., 2017; Szrek et al., 2013). To our 

knowledge, no other measure of stated risk preference mentioned in this section has been linked 

with self-reports or observations of risky driving. 

The DOSPERT was thus selected as the stated risk preference measure of choice for this study 

because it has been associated with risky driving behavior in several studies, and because it 

provides a domain-general measure as well as domain-specific measures of risk preference. 

2.3 Materials and methods 

2.3.1 Experimental design 

This laboratory experiment employed a correlational design to investigate the relationship between 

risk preference—measured through different means—and both behavior and brain activity 

associated with decision making under risk while driving. Risk preference was quantified using 

two computerized tasks as well as a psychometric scale. Naturalistic decision making under risk 

was manifested in a driving simulation task that was specifically designed to encourage risky 

driving; it motivated risk-taking behavior by offering financial rewards for achieving increasingly 

difficult task goals that ultimately required faster driving. Brain activity during risky portions of 

the driving task was recorded, along with driving telemetry. Telemetry was used to operationalize 
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risky driving behavior, and neurophysiological data allowed for an exploratory analysis aimed to 

investigate the extent to which potential associations between risk preference and driving behavior 

were reflected in brain activity. 

2.3.2 Participants 

Eighteen right-handed participants (aged 20-39, 𝑥 = 24.6, SD = 4.0; 6 females) were recruited for 

the study through our university’s research panel. In addition to having no history of neurological 

disorders, as well as normal or corrected-to-normal vision, all participants were required to hold a 

valid driver’s license and to wear appropriate driving footwear on the day of their participation. 

This project was approved by our institution’s ethics committee (project # : 2019-3443). 

Participation was thus voluntary, and written informed consent was obtained from all participants 

before the experiment. Regardless of whether participants successfully achieved the 

aforementioned difficult driving task goals, all ultimately received a monetary compensation in 

the form of a $50 gift card from the university’s bookstore. 

2.3.3 Experimental tasks - Iowa Gambling Task 

 

Figure 1. Single IGT trial timeline (Bechara et al., 1994). The task was translated into French. 
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The first computerized risk task, the Iowa Gambling Task, consisted in a slightly modified version 

of the original IGT from (Bechara et al., 1994). It differed from the original in that it was adapted 

for computer presentation, comprised fewer trials (75 instead of 100) to accommodate time for the 

other tasks of this experiment, and was translated into French. The IGT’s goal is to maximize the 

profit from an initial loan of $2000 through gambling, which requires a long series of selections 

from four decks of cards—each card draw resulting in monetary gain or loss.  

During this portion of the experiment, participants were thus presented with 4 computerized decks 

of cards (labeled A, B, C and D), from which they were required to successively choose cards—

one at a time—using a mouse. Each selection was immediately followed by a display of a monetary 

reward (win) or a penalty (loss), below an updated loan balance gauge. This choice feedback 

display stayed on the screen for 2 seconds. It was next replaced by a 1-second fixation cross, which 

preceded every trial. Decks then reappeared, and participants could make another pick. The whole 

task was self-paced and only ended once 75 selections were made.  

Throughout the IGT, economic outcomes are predetermined: the schedule of rewards and penalties 

employed here reproduced the original gain-loss structure employed by (Bechara et al., 1994). In 

this structure, each deck is associated with a specific gain-loss frequency resulting in two main 

patterns of outcome: decks A and B yield immediate rewards but carry great economic losses in 

the long run, while decks C and D yield frequent small wins and smaller long-term penalties, 

resulting in long-term gain. Therefore, C and D are considered to be “advantageous” decks, while 

A and B are instead referred to as “disadvantageous” decks.  

As per the original instructions from (Bechara et al., 1994), participants were initially informed 

that they could choose freely from any decks as well as alternate among decks; they were also not 

told how many selections they would have to make. To ascertain a good understanding of the task, 

participants first went through a short 5-trial version that did not have a specific payoff schedule.  

The conventional behavioral metric derived from the IGT is the number of advantageous choices 

(draws from decks C and D) minus the number of disadvantageous choices (draws from decks A 

and B) over all 100 trials, also known as the IGT performance index (Bechara et al., 1994). 

However, recent studies suggest that only later selections (trials 40+) involve decisions under risk, 

and that early trials should be considered as involving ambiguity rather than risk, due to lack of 
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knowledge about task contingencies during so-called pre-learning trials (Brand et al., 2007; 

Gansler et al., 2011). In addition, previous studies focusing on the relationship between choice 

behavior in the IGT and a person’s propensity for risk only observed a link between the two after 

post-learning trials (40+) (Brand et al., 2007; Upton et al., 2011; Xu et al., 2013). For the above 

reasons, the IGT performance index over trials 40-75 was the chosen measure of risk preference 

for this portion of the experiment.  

2.3.4 Experimental tasks - Balloon Analogue Risk Task 

 

Figure 2. Single BART trial timeline (C. W. Lejuez et al., 2002). The task was translated into French. 

The second computerized risk task, the Balloon Analogue Risk Task, was designed based on the 

original version suggested by (C. W. Lejuez et al., 2002), and translated into French. The BART’s 

goal is to earn as much money as possible by inflating—one at a time—a series of balloons 

displayed on a computer screen (see Figure 2). The larger a balloon is inflated, the more money 

can be earned from it. Naturally, its probability to burst at the next inflation also increases with 

size. The reward associated with a balloon is only earned when the balloon hasn’t burst yet and 

the participant chooses to stop inflating it and collect the money. This implementation of the BART 

differed from the original in two aspects. First, the task contained only 30 trials of one “type” of 

balloon. (C. W. Lejuez et al., 2002) used three types of balloons (30 trials of each) characterized 

by different average bursting points. Yet, only the data from the balloons with the highest average 

bursting point (i.e. the “blue” balloons) was used to develop their primary dependent measure, as 
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they presumed that this balloon type was likely to capture the greatest amount of individual 

variability in task performance. The present implementation was thus based only on their blue 

balloon type, which had an average bursting point of 64 pumps. However, the second difference 

from the original task was that this average bursting point was lowered to 37.5 for all 30 balloons 

to accommodate time for the other tasks of the experiment, while still capturing significant 

individual variability in task performance. 

During this portion of the experiment, participants were repeatedly presented with an uninflated 

balloon, which they were instructed to inflate by repeatedly pressing the right arrow on the 

keyboard. The balloon stimuli was an image of a blue balloon, next to which was displayed the 

total amount of points earned as well as the amount won from the previous balloon. After each 

inflation (i.e. key press), an inflation sound effect was produced, the balloon image grew in size, 

and 50 points were added to a temporary bank. The content of this temporary bank was hidden 

from participants at this point; they were only told that the larger they inflated the balloon, the 

more points could be earned from it. The inflation continued until either a win or a loss event. The 

former occurred when a participant decided to stop inflating the balloon before it burst, and to 

collect the points associated with it by pressing the left arrow, which produced a cash register 

sound that accompanied a feedback display revealing the amount of points won from the temporary 

bank. The latter happened when a participant inflated the balloon past its break point, in which 

case the balloon image was replaced with one of an exploded balloon, a “pop” sound was produced, 

and no points were added to the total. The visual feedback indicating win or loss remained on the 

screen for 2 seconds, and was then followed by a 1-second fixation cross which preceded the 

appearance of a new uninflated balloon. The task ended once participants had gone through 30 

balloons. 

The bursting point of each balloon (i.e. the number of inflations/pumps that will pop a specific 

balloon) was determined by randomly selecting an integer between 1 and 75 for every balloon, 

and using it as its bursting point. This algorithm resulted in a 1/75 theoretical probability of a 

balloon bursting after the first inflation. If a balloon did not explode after the first pump, its 

probability to burst after the second one became 1/74; 1/73 after the third one, and so on until the 

75th pump, after which the probability of explosion was 1/1 (100%). As previously mentioned, 

this algorithm also resulted in an average bursting point of 37.5 pumps.  
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Importantly, participants were given no detailed information regarding the probability of a balloon 

exploding. All they were told was that, at some point, each balloon would explode, and that it 

could occur as early as the first pump all the way to the point at which the balloon scaled to the 

entire screen. In addition, participants first went through 3 practice trials to ascertain a good 

understanding of the task. Those included both win and loss events, which were forced by 

manually setting the bursting points of the practice balloons.  

As for the risk preference index derived from the BART, the average number of “adjusted pumps” 

was used, as originally proposed by (C. W. Lejuez et al., 2002). It refers to the average number of 

pumps across all balloons that did not burst. Numerous studies have shown that this number 

correlates with various other measures of risk preference (Giustiniani et al., 2019; C. W. Lejuez et 

al., 2002, 2003). 

Both the IGT and the BART were implemented in E-Prime 3.0.3.60 (Psychology Software Tools 

Inc., Pittsburgh, PA), and were displayed on the center screen. After these tasks, the mouse and 

keyboard were replaced with the racing wheel. 
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2.3.5 Experimental tasks - Driving simulation 

 

Figure 3. A. Apparatus used (details below). B. Project Cars 2 as simulation software, along with a third-

party telemetry application (not shown). C. Race track: Brno Circuit. 

The driving task consisted in completing five uninterrupted laps around a virtual race track, 

without any other cars present. At the end of each lap, an objective for the upcoming lap was 

verbally assigned as participants passed the finish line. For the first lap, the objective assigned 

simply consisted in getting accustomed to the driving of the car. Data from this lap was thus not 

considered in analysis. The objective associated with the second lap was to set a time, which served 

as a reference for the subsequent objective. For the third lap, we asked participants to try and beat 

their time by at least 10 seconds. Likewise, the objective associated with the fourth lap consisted 

in beating their previous time (from lap 3) by at least 10 seconds. Finally, for the fifth lap, the 

objective assigned was to beat the previous time (from lap 4) by at least 5 seconds, while not going 

off track more than 5 times. As mentioned above, these objectives were designed solely for the 
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purpose of motivating risky driving behavior by encouraging fast driving; success in reaching the 

objectives was thus not measured.  

The driving task was run using Project Cars 2 (Slightly Mad Studios Ltd., London, UK)—a highly 

realistic simulator often applied to professional training scenarios as well as scientific research. 

Ran on a Windows PC, this software allowed for the parallel use of a third-party application 

(pCARS Profiler by Tom Shane) that continuously recorded 173 measures of driving behavior 

(e.g. speed, lateral acceleration, steering), from which 4 were selected for the secondary analysis 

described below. 

The track around which the task revolved was the Brno Circuit, a 5.4 km-long motorsport race 

track paved with asphalt. It was selected for its numerous pronounced curves as well as long 

straight segments, which allowed for a clear distinction between the two types of track segments. 

Such a clear distinction was necessary for the analysis of brain activity specifically related to 

decision making under risk while driving (see section 2.3.8). As for the car used in the driving 

task, the Audi A1 quattro was the one driven by all participants. Being the least powerful available 

in the game, this vehicle most closely simulated the driving of a regular car, as opposed to most 

other cars available which were designed for racing, and are thus much more difficult to handle.  

During the whole experiment, participants sat on a fully adjustable stationary chair in front of three 

27-inch LED monitors producing a total resolution of 5760x1080 pixels. The center screen stood 

approximately 90 cm away from their eyes, and the lateral ones were positioned at a 55° angle, 

providing a 120° field of view. Participants were equipped with a keyboard, a mouse and a 

Logitech (Logitech International S.A., Lausanne, Switzerland) G920 racing wheel with force-

feedback steering and realistic pedal feel. Before the driving task, individual adjustments were 

routinely made to the pedal unit and the chair to ensure that all participants sat in a comfortable 

driving position. Throughout the experiment, sound was outputted at a comfortable volume 

through a set of Logitech X-240 stereo speakers and their dedicated subwoofer. 

The aforementioned analysis of car telemetry focused on 4 continuous variables employed to 

operationalize risky driving behavior: longitudinal speed (km/h), steering (a positive number 

proportional to the amount of steering in any direction), lateral acceleration (g) and engine speed 

(rpm). These measures are very similar to those used by insurance companies that employ 
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telematics to adapt their services (Tselentis et al., 2017). Under the fast driving conditions that 

were promoted, all 4 of these variables were assumed to be positively associated with an increased 

risk of accident. That is especially the case in curved sections of the track, where these variables 

vary greatly depending on the level of risk incurred throughout such sections. For this reason, only 

the telemetric data from curved segments (see Figure 4 below) was included in the analysis 

described in sections 2.3.9 and 2.3.10. 

 

Figure 4. Track breakdown in terms of straight and curved segments.  

2.3.6 Psychometry - Domain-Specific Risk-Taking scale 

The DOSPERT scale was designed to assess risk preference in five domains of everyday life: the 

financial, health/safety, recreational, ethical and social domains of risky decisions. In this scale, 

participants used an iPad to rate—on a 7-point Likert scale—the likelihood that they would engage 

in domain-specific risky activities. The global risk preference score was produced by averaging all 

responses, while domain-specific scores were produced by averaging responses associated with 

each domain. 
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2.3.7 Experimental procedure 

In the first half of the experiment, participants were asked to complete the two computerized risk 

tasks (IGT & BART) in an order that was counterbalanced per participant. These tasks involved 

simple economic decisions in a synthetic context, and served the purpose of objectively 

quantifying risk preference through behavior. The second half of the experiment consisted in the 

simulated driving task designed to elicit decisions under risk in a more naturalistic context. Before 

the driving task, participants watched a 5-minute video of nature scenery that was intended to 

return participants to a calm state of physiological arousal. After the driving task, the experiment 

ended with two questionnaires filled out on a tablet. The first one consisted in a very short 

sociodemographic assessment, which was followed by the 30-item French version of the Domain-

Specific Risk-Taking scale from (Blais & Weber, 2006). 

The study’s online description for recruitment indicated only a $40 gift card as compensation; the 

real amount was—purposefully—only revealed halfway through the experiment. At the very 

beginning of the driving task, participants were informed that, based on their success in reaching 

task objectives (see section 2.3.5), they could actually earn an additional compensation of up to 

$10 in value. This alleged bonus ultimately served to encourage participants to drive faster, which, 

considering the track’s pronounced curves, was assumed to create conditions conducive to 

significant levels of decision making under risk in certain parts of the track, which are specified in 

the next section. The full bonus amount was given to all participants. 

2.3.8 Neurophysiological measures 

Brain activity was recorded at 1000 Hz using a 64-channel EEG (Brain Products GmbH, Gilching, 

Germany) with a sensor layout based on the International 10-20 system. During the EEG setup, a 

CapTrak (Brain Products GmbH, Gilching, Germany) scanner was employed to digitize electrode 

positions, thereby permitting localization of the brain activity on the cortical surface. 

EEG signals were pre-processed and analyzed in Brainstorm (Tadel et al. 2011), which is 

documented and freely available for download online under the GNU general public license. The 

application was run in MATLAB R2018a version 9.4.0.813654. Components of physiological 

artifacts and periodic noise were isolated and removed using independent component analysis. The 
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segments with remaining artifacts larger than ± 100 μV were manually rejected. Signals were then 

downsampled to 500 Hz from 1000 Hz, after which a band-pass filter was applied from 5 Hz to 30 

Hz.  

Following pre-processing, the driving task EEG time series was then synchronized with the 

telemetry data through markers that were manually added to the EEG recording at the beginning 

of each lap during data collection. Next, the driving task EEG time series from laps 2 through 5 

were marked at one-second intervals, and markers were manually labeled—through a visual 

inspection of the car’s position in the telemetry software—based on whether the car was located 

on a “straight” or a “curved” segment of the track during the one second following the marker (see 

Figure 4 for the specific distinction on the track).  

The rationale behind this distinction stems from two assumptions that were made regarding the 

level of risk encountered in parts of these track segments. The first one is that, when driving 

through the beginning of straight segments (far from an upcoming curve), the level of risk is at its 

lowest as the driver needs to do nothing more than accelerate and keep the steering wheel straight. 

Therefore, there should not be any important motor decision to be made in order to drive as fast as 

possible through the beginning of straight segments. Conversely, the second assumption is that, 

when driving through the very end of straight segments as well as the beginning of curved 

segments, the level of risk is at its highest. This is because numerous motor decisions related to 

braking/acceleration and steering are required in a short amount of time, and if not executed well 

will adversely affect driving performance (e.g. going off road). In the later part of a curve, risk is 

still at play, but to a much lesser extent as most decisions necessary to successfully navigate the 

curve have arguably already been made. 

Based on the above logic, we decided to target brain activity during driving segments at the very 

end of straights and beginning of curves where the greatest amount of decision making under risk 

(DMUR) occurs (hereafter high DMUR segments). Manual inspection of driving telemetry 

revealed that a window of five seconds was sufficient to capture all high DMUR segments in all 

participants. Thus, the first five one-second markers within these segments were selected for 

epoching and further analysis. To capture brain activity related to DMUR and exclude brain 

activity related to driving in general, we decided that brain activity during high DMUR segments 
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should be normalized against brain activity during driving segments at the beginning of straights 

where the lowest amount of DMUR occurs (hereafter low DMUR segments). Manual inspection 

of driving telemetry revealed that a window of three seconds was sufficient to capture all low 

DMUR segments in all participants. Thus, the first three one-second markers within these 

segments were selected for epoching and further analysis. 

 

Figure 5. Track breakdown* for EEG analysis. *The actual length of each segment varies slightly for any given 

lap since it is determined by speed (e.g. lower speed leads to a shorter segment of the track). 

The pre-processed EEG signals were epoched around high and low DMUR markers using a 

window of -200 to +1700 ms with respect to markers. Next, an EEG-appropriate forward model 

was estimated based on the digitized electrode positions using OpenMEEG. Then, minimum norm 

estimation was used to calculate cortical currents without dipole orientation constraints for all 

epochs. Source-level brain activity in each epoch was then time-frequency (TF) decomposed in 

the theta (5-7 Hz), alpha (8-12 Hz) and beta (15-29 Hz) frequency bands using Morlet wavelets 

(with a central frequency of 1 Hz and a time resolution of 3 seconds). Next, source-level theta, 

alpha and beta activities were averaged separately across high DMUR and low DMUR epochs in 

each participant, and then averaged over time from 0-1 s. Mean high DMUR cortical activity was 

normalized using mean low DMUR cortical activity for each frequency band according to the 
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following equation: 

x_std = (x - μ) / μ * 100             

where x_std is normalized activity, x is mean high DMUR cortical activity, and μ is mean low 

DMUR cortical activity. 

Finally, the cortex was divided into 62 brain areas according to the Mindboggle brain atlas, which 

is included in Brainstorm software. Normalized brain activity from each participant from each 

brain area in each frequency band was then extracted for statistical analysis. 

2.3.9 Telemetry processing 

For each of the four variables selected (longitudinal speed, steering, lateral acceleration and engine 

speed), the time series associated with all curved segments of laps 2 through 5 were averaged both 

across the segments themselves and over time, producing 4 values per participant (one per 

telemetry variable). 

2.3.10 Statistical analyses 

For analysis purposes, the IGT was divided into 4 blocks: block 1 (trials 0-20), block 2 (trials 21-

40), block 3 (trials 41-60) and block 4 (trials 61-75). To assess the progression of decision patterns 

of participants over the course of this task, a 1-way repeated measures ANOVA was first 

performed for each deck to assess the effect of block on the selection of cards from each deck. 

These ANOVA comprised block as a 4-level within-subjects factor, and the proportion of selection 

from the deck in question as the dependent variable and repeated measure. 

Next, to assess whether learning of the payoff contingencies led to more advantageous choices 

later in the task, the effect of block on the proportion of advantageous selections was examined. A 

1-way repeated measures ANOVA was thus performed again with block as a 4-level within-

subjects factor, and the proportion of advantageous selections as the dependent variable and 

repeated measure. 

For the driving simulation, the relationships between risk preference (from the IGT, BART and 

DOSPERT) and normalized high DMUR brain activity were assessed through repeated measures 
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multivariate linear regression separately for each frequency band and for each risk preference 

assessment task, with brain activity in each of the 62 brain areas as dependent variable and repeated 

measure. A total of 24 models were thus run for this portion of analysis, since 3 frequency bands 

were considered and 8 measures of risk preference were analyzed: the IGT index, the BART index, 

and the 6 DOSPERT scores (one for each of the 5 risk domains and the global score). In cases 

where a significant interaction between brain area and risk preference was observed, simple main 

effects testing was performed to assess the relationship within each brain area separately. 

Meanwhile, the relationships between risk preference measures and driving behavior were also 

assessed through repeated measures multivariate linear regression separately for each measure of 

risk preference, with mean telemetric measurement for each of the 4 variables as dependent 

variable and repeated measure. A total of 8 models were thus run for this portion of analysis (one 

per risk preference measure). When a significant interaction between telemetry measure and risk 

preference was observed, simple main effects testing was performed to assess the relationship for 

each telemetry variable separately. All statistical analyses were performed using SPSS version 25 

(IBM Corp., Armonk, NY). The threshold for significance was set at p ≤ 0.05. 

 

 

 

 

 

 

 



 

31 

2.4 Results 

2.4.1 Descriptive statistics - Iowa Gambling Task 

The breakdown of deck selections for each block as well as for the whole task is shown in figures 

6 and 7.  

 

Figure 6. IGT deck selections across blocks 

 

Figure 7. IGT deck selections over 75 trials. Error bars represent standard deviations. 
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The standard deviation bars in Figure 7 indicate a very high variability in deck selections among 

participants, suggesting a high variability in patterns of decision making or strategies employed. 

 

Figure 8. Proportion of advantageous IGT selections across blocks. Error bars represent standard 

deviations. 

The proportion of advantageous selections for each block is depicted in Figure 8. This chart 

indicates two notable trends: on average, participants exhibited a pattern of decisions that did not 

progress towards advantageous choices over the course of the task, and the high variability 

observed previously is more pronounced in the last two blocks.  

The post-learning performance index (from trials 41-75) across all participants presented an 

average of -3.24 and a standard deviation of 16.42. The latter indicates that participants did exhibit 

a wide range of performance outcomes in the relevant part of the task, which suggests that there 

were important differences in decision strategies and/or experience-based learning across 

participants. While potentially useful for our purposes, such a large range of performance 

outcomes is unusual in healthy populations. The potential reasons underlying this discrepancy are 

expanded upon in section 2.5.1. 
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2.4.2 Descriptive statistics - Balloon Analogue Risk Task 

Likewise, participants exhibited a wide range of performance outcomes in the BART; behavioral 

risk-taking measures were characterized by a mean of 27.4 adjusted pumps and a standard 

deviation of 10.5. The average number of adjusted pumps observed is in line (less than one 

standard deviation away) with what was observed in previous studies (C. W. Lejuez et al., 2003; 

Xu et al., 2013). 

2.4.3 Descriptive statistics - Driving behavior 

Table 3. Mean telemetric measurements in curved segments of laps 2-5 

Telemetry variable 
Mean measurement 

across curved segments 

 of laps 2-5 

S.D. 

Longitudinal speed (km/h)  98.22 7.59 

Steering 3.47 1.84 

Lateral acceleration (g) -0.10 0.21 

Engine speed (rpm) 5179.46 85.98 

 

The mean telemetric measurements and the standard deviations shown above indicate significant 

variability across participants in terms of steering and lateral acceleration during curves. 

Considering the aforementioned assumption of a link between these variables and risky driving 

under the fast driving conditions promoted, this data suggests that participants have exhibited a 

relatively wide range of riskiness during the relevant portions of the driving simulation. 
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2.4.4 Descriptive statistics - Domain-Specific Risk-Taking scale 

Table 4. Mean DOSPERT scores across risk dimensions 

DOSPERT score 

(7-point scale) 

Overall 

(n = 18) 

Risk dimension Mean S.D. 

Global 4.04 0.49 

Ethical 2.58 0.86 

Financial 3.30 1.23 

Health/Safety 3.57 0.75 

Recreational 5.04 0.89 

Social 5.70 0.82 

 

The mean DOSPERT scores shown above are in line with what should be expected from a healthy 

population; the mean score for each dimension is fairly close (less than a standard deviation away) 

to what was observed in previous studies (Blais & Weber, 2006; Hu & Xie, 2012). 

2.4.5 Performance - Iowa Gambling Task 

No main effect of block was found for the selection proportions of decks A(𝐹(3,48) = 0.508, 𝑝 =

0.679), B(𝐹(3,48) = 1.332, 𝑝 = 0.275), C(𝐹(3,48) = 0.318, 𝑝 = 0.812), and D(𝐹(3,48) =

0.836, 𝑝 = 0.481). Decision patterns of participants thus did not change significantly over the 

course of the task. Similarly, regarding the proportion of advantageous selections, the repeated 

measures ANOVA revealed no effect of block on this proportion (𝐹(3,48) = 0.634, 𝑝 = 0.597). 

Therefore, on average, participants did not exhibit a pattern of decisions that progressed towards 

advantageous choices over the course of the task.  
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2.4.6 Driving brain activity & IGT performance 

In the regression models pertaining to the IGT index of risk preference, brain area was found to 

have a significant main effect on normalized high-DMUR brain activity for all frequency bands 

tested: theta (𝐹(61,915) = 19.430, 𝑝 < 0.000), alpha (𝐹(61,915) = 7.324, 𝑝 < 0.000) and beta 

(𝐹(61,915) = 3.541, 𝑝 < 0.000). In addition, the IGT index did not have a significant effect on 

normalized high-DMUR brain activity for all frequency bands tested: theta (𝐹(1,15) = 0.330, 𝑝 =

0.574), alpha (𝐹(1,15) = 0.023, 𝑝 = 0.881) and beta (𝐹(1,15) = 0.001, 𝑝 = 0.978). More 

importantly, no significant interaction was found between brain area and the IGT index of risk 

preference, regardless of frequency band: theta (𝐹(61,915) = 1.088, 𝑝 = 0.304), alpha (𝐹(61,915) =

0.480, 𝑝 = 1.000) and beta (𝐹(61,915) = 0.973, 𝑝 = 0.536). Therefore, the relationship between 

the IGT index of risk preference and high-DMUR brain activity did not differ according to brain 

area. 

2.4.7 Driving brain activity & BART performance 

In the models pertaining to the BART index of risk preference, brain area was found to have a 

significant main effect on normalized high-DMUR brain activity for the theta (𝐹(61,915) =

2.878, 𝑝 < 0.000) and alpha (𝐹(61,915) = 1.538, 𝑝 = 0.006) bands. This effect did not reach 

significance for the beta band (𝐹(61,915) = 0.756, 𝑝 = 0.916). In addition, the BART index did not 

have a significant effect on normalized high-DMUR brain activity for all frequency bands tested: 

theta (𝐹(1,15) < 0.001, 𝑝 = 0.996), alpha (𝐹(1,15) = 0.079, 𝑝 = 0.783) and beta (𝐹(1,15) =

0.270, 𝑝 = 0.611). As with the IGT, no significant interaction was found between brain areas and 

the BART index of risk preference, regardless of frequency band: theta (𝐹(61,915) = 1.088, 𝑝 =

0.304), alpha (𝐹(61,915) = 1.039, 𝑝 = 0.398) and beta (𝐹(61,915) = 0.393, 𝑝 = 1.000). Therefore, 

the relationship between BART performance and driving brain activity did not differ according to 

brain area. 
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2.4.8 Driving brain activity & DOSPERT scores 

In the models pertaining to the global DOSPERT score, brain area was found to have a significant 

main effect on normalized high-DMUR brain activity in the beta band only (𝐹(61,915) = 1.812, 𝑝 <

0.000). This effect did not reach significance for the theta (𝐹(61,915) = 1.019, 𝑝 = 0.438) and 

alpha (𝐹(61,915) = 1.031, 𝑝 = 0.414) bands. In addition, the global score did not have a significant 

effect on normalized high-DMUR brain activity for all frequency bands tested: theta (𝐹(1,15) =

0.619, 𝑝 = 0.444), alpha (𝐹(1,15) = 0.526, 𝑝 = 0.480) and beta (𝐹(1,15) = 0.128, 𝑝 = 0.725). 

More importantly, a significant interaction was found between brain areas and the global 

DOSPERT score for the alpha (𝐹(61,915) = 1.336, 𝑝 = 0.047) and beta (𝐹(61,915) = 1.969, 𝑝 =

0.000) frequency bands. Yet, within those bands, parameter estimates revealed no significant 

relationship between brain activity in any specific area and the global DOSPERT score (p > 0.05). 

The same interaction did not reach significance for the theta frequency band (𝐹(61,915) =

1.185, 𝑝 = 0.163). Therefore, while the relationship between the DOSPERT scale as a whole and 

brain activity related to risky decision making during the driving task did differ according to brain 

area for the alpha and beta bands, this relationship was not found to be significant in any brain 

area. As for the theta frequency band, this relationship did not significantly differ according to 

brain area. However, individual dimensions of the DOSPERT questionnaire yielded disparate 

results. 

In the models pertaining to the ethical dimension of risk, brain area was found to have a significant 

main effect on high-DMUR brain activity in the theta frequency band (𝐹(61,915) = 2.458, 𝑝 <

0.000). This effect did not reach significance in the alpha (𝐹(61,915) = 1.026, 𝑝 = 0.423) and beta 

(𝐹(61,915) = 1.049, 𝑝 = 0.377) bands. In addition, the ethical score did not have a significant effect 

on normalized high-DMUR brain activity for all frequency bands tested: theta (𝐹(1,15) =

0.080, 𝑝 = 0.781), alpha (𝐹(1,15) < 0.001, 𝑝 = 0.990) and beta (𝐹(1,15) = 0.019, 𝑝 = 0.892). 

More importantly, the interaction between brain areas and the ethical risk score was statistically 

significant for the theta band (𝐹(61,915) = 1.667, 𝑝 = 0.001). However, parameter estimates 

revealed no significant relationship between theta brain activity in any specific area and the ethical 

DOSPERT score (p > 0.05). The same interaction did not reach significance for the alpha 
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(𝐹(61,915) = 1.090, 𝑝 = 0.302) and beta (𝐹(61,915) = 0.698, 𝑝 = 0.962) bands. Therefore, while 

the relationship between the ethical DOSPERT score and brain activity related to risky decision 

making during the driving task did differ according to brain area for the theta frequency band, this 

relationship was not found to be significant in any brain area. As for the alpha and beta bands, this 

relationship did not significantly differ according to brain area. 

In the models pertaining to the financial dimension of risk, brain area was found to have a 

significant main effect on high-DMUR brain activity in the theta (𝐹(61,915) = 2.920, 𝑝 < 0.000) 

and alpha (𝐹(61,915) = 1.624, 𝑝 = 0.002) frequency bands. This effect did not reach significance 

in the beta band (𝐹(61,915) = 1.101, 𝑝 = 0.283). In addition, the financial score did not have a 

significant effect on normalized high-DMUR brain activity for all frequency bands tested: theta 

(𝐹(1,15) = 0.836, 𝑝 = 0.375), alpha (𝐹(1,15) = 0.433, 𝑝 = 0.520) and beta (𝐹(1,15) = 0.013, 𝑝 =

0.912). More importantly, the interaction between brain areas and the financial risk score did not 

reach statistical significance, regardless of frequency band: theta (𝐹(61,915) = 0.814, 𝑝 = 0.844), 

alpha (𝐹(61,915) = 0.569, 𝑝 = 0.997) and beta (𝐹(61,915) = 0.678, 𝑝 = 0.972). Therefore, the 

relationship between the financial DOSPERT score and brain activity related to risky decision 

making during the driving task did not differ according to brain area.  

In the models pertaining to the health/safety dimension of risk, brain area was found to have a 

significant main effect on high-DMUR brain activity in all frequency bands tested: theta 

(𝐹(61,915) = 0.929, 𝑝 = 0.631), alpha (𝐹(61,915) = 0.309, 𝑝 = 1.000) and beta (𝐹(61,915) =

0.188, 𝑝 = 1.000). In addition, the health/safety score did not have a significant effect on 

normalized high-DMUR brain activity for all frequency bands tested: theta (𝐹(1,15) = 0.015, 𝑝 =

0.903), alpha (𝐹(1,15) = 0.252, 𝑝 = 0.623) and beta (𝐹(1,15) = 0.044, 𝑝 = 0.837). More 

importantly, the interaction between brain areas and the health/safety risk score was statistically 

significant for the theta band (𝐹(61,915) = 1.348, 𝑝 = 0.043). However, parameter estimates 

revealed no significant relationship between theta brain activity in any specific area and the 

health/safety DOSPERT score (p > 0.05). The same interaction did not reach significance for the 

alpha (𝐹(61,915) = 0.670, 𝑝 = 0.975) and beta (𝐹(61,915) = 0.177, 𝑝 = 1.000) bands. Therefore, 

while the relationship between the health/safety DOSPERT score and brain activity related to risky 

decision making during the driving task did differ according to brain area for the theta frequency 
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band, this relationship was not found to be significant in any brain area. As for the alpha and beta 

bands, this relationship did not significantly differ according to brain area. 

In the models pertaining to the recreational dimension of risk, brain area was found to have a 

significant main effect on high-DMUR brain activity in all frequency bands tested: theta 

(𝐹(61,915) = 1.670, 𝑝 = 0.001), alpha (𝐹(61,915) = 2.492, 𝑝 < 0.000) and beta (𝐹(61,915) =

1.405, 𝑝 = 0.025). In addition, the recreational score did not have a significant effect on 

normalized high-DMUR brain activity for all frequency bands tested: theta (𝐹(1,15) = 2.312, 𝑝 =

0.149), alpha (𝐹(1,15) = 0.252, 𝑝 = 0.623) and beta (𝐹(1,15) = 0.857, 𝑝 = 0.369). More 

importantly, the interaction between brain areas and the recreational risk score was statistically 

significant for all bands: theta (𝐹(61,915) = 1.416, 𝑝 = 0.022), alpha (𝐹(61,915) = 3.491, 𝑝 <

0.000) and beta (𝐹(61,915) = 2.021, 𝑝 < 0.000). Parameter estimates indicated significant 

relationships between brain activity in numerous areas and the recreational risk score. The 

significant relationships are listed in Table 5 below. The recreational DOSPERT score was thus 

significantly associated with brain activity related to risky decision making during the driving task. 

Table 5. Significant relationships between normalized high-DMUR brain activity in specific brain areas 

and frequency bands, and the mean recreational DOSPERT score  

Dependent variable 

(brain area) 

Frequency 

band 

Independent 

variable 

Beta 

estimate 

Standard 

error 

t Sig. 

Right fusiform 

Theta 

(5-7 Hz) 

 

 

 

 

 

Mean 

recreational 

risk score 

 

 

 

 

 

 

 

11.775 4.943 2.382 0.031 

Left lateral occipital 11.516 4.535 2.540 0.023 

Left lingual 14.704 4.664 3.153 0.007 

Right lingual 10.111 4.414 2.291 0.037 

Left pericalcarine 12.018 3.971 3.027 0.008 

Right fusiform 

Alpha 

(8-12 Hz) 

23.249 10.430 2.229 0.042 

Right inferior parietal 16.944 4.899 3.459 0.004 

Right inferior temporal 20.579 9.404 2.188 0.045 

Left lateral occipital 16.833 6.344 2.654 0.018 
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Right lateral occipital  

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean 

recreational 

risk score 

13.362 4.722 2.829 0.013 

Left lingual 21.192 8.055 2.631 0.019 

Right lingual 18.840 7.205 2.615 0.020 

Right middle temporal 16.811 7.041 2.388 0.031 

Left pericalcarine 18.834 5.968 3.156 0.007 

Right pericalcarine 14.313 4.968 2.881 0.011 

Left superior parietal 7.987 3.504 2.280 0.038 

Right superior temporal 13.414 6.151 2.181 0.046 

Right supramarginal 14.181 5.505 2.576 0.021 

Right transverse temporal 12.675 5.761 2.200 0.044 

Left cuneus 

Beta 

(15-29 Hz) 

10.2902 4.2741 2.4075 0.0294 

Right cuneus 9.8478 4.3242 2.2774 0.0378 

Right inferiorparietal 17.2043 4.7968 3.5866 0.0027 

Right lateral occipital 14.9975 5.5155 2.7191 0.0158 

Right lingual 15.6437 6.6637 2.3476 0.0330 

Left pericalcarine 20.6456 8.6223 2.3944 0.0302 

Right pericalcarine 15.6788 5.9748 2.6241 0.0192 

Right superior parietal 8.6302 3.9002 2.2128 0.0428 
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Figure 9. Anatomical representation of the brain areas listed in Table 5. 

In the models pertaining to the social dimension of risk, brain area was found to have a significant 

main effect on high-DMUR brain activity in the beta frequency band (𝐹(61,915) = 2.242, 𝑝 <

0.000). This effect did not reach significance in the theta (𝐹(61,915) = 0.959, 𝑝 = 0.566) and alpha 

(𝐹(61,915) = 0.928, 𝑝 = 0.633) bands. In addition, the social score did not have a significant effect 

on normalized high-DMUR brain activity for all frequency bands tested: theta (𝐹(1,15) =

0.014, 𝑝 = 0.906), alpha (𝐹(1,15) = 0.484, 𝑝 = 0.497) and beta (𝐹(1,15) = 3.878, 𝑝 = 0.068). 

More importantly, the interaction between brain areas and the social risk score was statistically 

significant for the beta band (𝐹(61,915) = 1.667, 𝑝 = 0.001). Parameter estimates indicated 

significant relationships between brain activity in numerous areas and the social risk score. The 

significant relationships are listed in Table 6 below. The same interaction did not reach 

significance for the theta (𝐹(61,915) = 0.522, 𝑝 = 0.999) and alpha (𝐹(61,915) = 0.718, 𝑝 = 0.948) 

bands. The social DOSPERT score was thus significantly associated with beta brain activity 

related to risky decision making during the driving task. However, the relationship between the 

social DOSPERT score and brain activity related to risky decision making during the driving task 

did not differ according to brain area for the theta and alpha frequency bands. 
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Table 6. Significant relationships between normalized high-DMUR beta brain activity in specific brain 

areas, and the mean social DOSPERT score.  

Dependent variable 

(brain area) 

Frequency 

band 

Independent 

variable 

Beta 

estimate 

Standar

d error 

t Sig. 

Left caudal middle frontal 

Beta 

(15-29 Hz) 

Mean social 

risk score 

-17.607 6.622 -2.659 0.018 

Right caudal middle 

frontal 

-17.290 6.884 -2.511 0.024 

Left insula -18.801 6.269 -2.999 0.009 

Left pars opercularis -30.928 9.420 -3.283 0.005 

Right pars opercularis -23.026 7.872 -2.925 0.010 

Left pars orbitalis -23.744 7.418 -3.201 0.006 

Left pars triangularis -28.550 8.814 -3.239 0.006 

Right pars triangularis -16.092 7.004 -2.298 0.036 

Left post-central -15.398 5.181 -2.972 0.009 

Right post-central -18.681 8.507 -2.196 0.044 

Left pre-central -18.128 5.938 -3.053 0.008 

Right pre-central -22.818 8.666 -2.633 0.019 

Left rostral middle frontal -17.322 6.443 -2.688 0.017 

Right rostral middle 

frontal 

-13.956 6.452 -2.163 0.047 

Left superior temporal -14.614 6.680 -2.188 0.045 

Left supramarginal -21.050 7.095 -2.967 0.010 

Left transverse temporal -14.918 6.420 -2.324 0.035 

Right transverse temporal -18.197 8.021 -2.269 0.038 
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Figure 10. Anatomical representation of the brain areas listed in Table 6.  

2.4.9 Driving behavior (telemetry) & IGT performance 

In the model pertaining to the IGT index of risk preference, telemetry variable was found to have 

a significant main effect on the values of the telemetric measurements considered (𝐹(3,45) =

58935.282, 𝑝 < 0.000), while the IGT index did not have a significant effect on those values 

(𝐹(1,15) = 1.056, 𝑝 = 0.320). In addition, no significant interaction was found between telemetry 

variables and the IGT index of risk preference (𝐹(3,45) = 1.251, 𝑝 = 0.303). Therefore, the 

relationship between risk preference exhibited in the IGT and driving behavior in risky portions of 

the driving task did not differ according to the telemetric measurement considered. 

2.4.10 Driving behavior (telemetry) & BART performance 

In the model pertaining to the BART index of risk preference, telemetry variable was found to 

have a significant main effect on the values of the telemetric measurements considered (𝐹(3,45) =

56374.116, 𝑝 < 0.000), while the BART index did not have a significant effect on those values 

(𝐹(1,15) = 0.310, 𝑝 = 0.586). In addition, no significant interaction was found between telemetry 

variables and the BART index of risk preference (𝐹(3,45) = 0.539, 𝑝 = 0.658). Therefore, the 

relationship between risk preference exhibited in the BART and driving behavior in risky portions 

of the driving task did not differ according to the telemetric measurement considered. 

2.4.11 Driving behavior (telemetry) & DOSPERT scores 

In the model pertaining to the global DOSPERT score, telemetry variable was found to have a 

significant main effect on the values of the telemetric measurements considered (𝐹(3,45) =

794.577, 𝑝 < 0.000). The global score also had a significant effect on those values (𝐹(1,15) =
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5.392, 𝑝 = 0.035). A significant interaction was found between telemetry variable and the global 

DOSPERT score (𝐹(3,45) = 3.974, 𝑝 = 0.014). Parameter estimates indicated a significant 

positive relationship between the global score and 2 telemetry variables: speed in curves (𝐵 =

12.847, 𝑡 = 4.709, 𝑝 < 0.000) and steering in curves (𝐵 = 2.305, 𝑡 = 2.696, 𝑝 = 0.017). In 

other words, higher risk preference in everyday life—as measured by the DOSPERT questionnaire 

as a whole—was associated with driving behavior presumed as more risky, i.e. higher speed as 

well as more steering in the curves of the driving simulation (on average).    

In the model pertaining to the ethical DOSPERT score, telemetry variable was found to have a 

significant main effect on the values of the telemetric measurements considered (𝐹(3,45) =

7154.603, 𝑝 < 0.000). The ethical score also had a significant effect on those values (𝐹(1,15) =

5.076, 𝑝 = 0.040). A significant interaction was found between telemetry variable and the ethical 

risk score (𝐹(3,45) = 5.168, 𝑝 = 0.004). Parameter estimates indicated a significant positive 

relationship between the ethical risk score and engine speed in curves (𝐵 = 50.458, 𝑡 =

2.276, 𝑝 = 0.038). In other words, higher risk preference in the ethical domain of everyday life—

as measured by a subscale of the DOSPERT questionnaire—was associated with an increased (on 

average) engine speed in curves of the driving simulation, which was also presumed as evidence 

of taking more risks while driving. 

In the model pertaining to the financial DOSPERT score, telemetry variable was found to have a 

significant main effect on the values of the telemetric measurements considered (𝐹(3,45) =

5425.568, 𝑝 < 0.000), while the financial score did not have a significant effect on those values 

(𝐹(1,15) = 0.427, 𝑝 = 0.523). In addition, no significant interaction was found between telemetry 

variable and the financial risk score (𝐹(3,45) = 0.163, 𝑝 = 0.921). Therefore, the relationship 

between the financial DOSPERT score and behavioral features of risky driving in the simulation 

did not differ according to the telemetric measurement considered. 

In the model pertaining to the health/safety DOSPERT score, telemetry variable was found to have 

a significant main effect on the values of the telemetric measurements considered (𝐹(3,45) =

2343.386, 𝑝 < 0.000), while the health/safety score did not have a significant effect on those 

values (𝐹(1,15) = 0.861, 𝑝 = 0.368). In addition, no significant interaction was found between 
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telemetry variable and the health/safety risk score (𝐹(3,45) = 0.581, 𝑝 = 0.631). Therefore, the 

relationship between the health/safety DOSPERT score and behavioral features of risky driving in 

the simulation did not differ according to the telemetric measurement considered. 

In the model pertaining to the recreational DOSPERT score, telemetry variable was found to have 

a significant main effect on the values of the telemetric measurements considered (𝐹(3,45) =

1691.418, 𝑝 < 0.000), while the recreational score did not have a significant effect on those 

values (𝐹(1,15) = 2.542, 𝑝 = 0.132). In addition, no significant interaction was found between 

telemetry variable and the recreational risk score (𝐹(3,45) = 2.191, 𝑝 = 0.102). Therefore, the 

relationship between the recreational DOSPERT score and behavioral features of risky driving in 

the simulation did not differ according to the telemetric measurement considered. 

In the model pertaining to the social DOSPERT score, telemetry variable was found to have a 

significant main effect on the values of the telemetric measurements considered (𝐹(3,45) =

1119.214, 𝑝 < 0.000), while the social score did not have a significant effect on those values 

(𝐹(1,15) = 0.115, 𝑝 = 0.740). In addition, no significant interaction was found between telemetry 

variable and the social risk score (𝐹(3,45) = 0.093, 𝑝 = 0.964). Therefore, the relationship between 

the social DOSPERT score and behavioral features of risky driving in the simulation did not differ 

according to the telemetric measurement considered. 

2.5 Discussion 

A better understanding of the psychological and neurophysiological factors associated with risky 

driving is essential for the development of experimental measures with predictive validity 

regarding this behavior. The goal of this study was to find such a measure—of the chosen 

psychological trait, i.e. risk preference—while using electroencephalography to investigate 

potential neurophysiological factors supporting any association found between a risk preference 

measure and risky driving behavior in a driving simulation.  

In terms of behavioral results, the risk preference indices derived from the IGT and the BART 

were not associated with the measures of risky driving behavior from the driving simulation. 

However, the global DOSPERT score was associated with higher speed as well as more steering 
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in the track’s curves. The ethical score from the same scale was associated with higher engine 

speed in the curves. As for the neurophysiological data, significant associations were only found 

between two DOSPERT scores (social and recreational) and brain activity during the risky portions 

of the driving simulation. Therefore, no neurophysiological support was found for the associations 

observed between DOSPERT scores and risky driving behavior. 

This research indicates that, despite a lack of neurophysiological evidence to support it, the 

DOSPERT scale as a whole (i.e. the global score) appears to have predictive validity with respect 

to risky driving behavior in a simulator, while the standardized behavioral risk-taking tasks that 

were considered (the IGT and the BART) do not. These findings contribute to the assessment of 

drivers’ propensity for risk on the road (including distracted driving) by evaluating different risk 

preference measurement tools and their potential to act as predictors of risky driving. In addition, 

this work informs future research interested in either operationalizing risky driving behavior in a 

laboratory environment and/or studying brain activity associated with risky driving by attempting 

both using a simple driving task paradigm and an analysis method designed to isolate EEG signals 

specific to risky driving. In the rest of this section, each risk preference instrument is discussed, 

and the implications and limitations of this research are explored. 

2.5.1 Iowa Gambling Task 

Performance results from the IGT show a large range of decision outcomes—larger than what 

would theoretically be expected from a healthy population. The main reason for this variability is 

that 8 participants out of 18 made more selections from the disadvantageous decks than the 

advantageous ones, similarly to what was observed in patients with damage to the ventromedial 

prefrontal cortex (Bechara et al., 1994).  

Poor IGT performance from healthy participants is not unheard of. In a meta-analysis, 

(Steingroever et al., 2013) concluded that the poor performance of many healthy participants seems 

to be the result of them having difficulty figuring out that deck B is a bad deck, and two potential 

underlying causes are put forward. The first one is that deck B is very similar to decks C and D in 

terms of net losses calculated for each trial, as opposed to deck A; decks B, C and D all yield either 

no or very few net losses, while deck A yields frequent and large net losses. Deck B thus might be 
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too similar to decks C and D in terms of net outcomes (see (Lin et al., 2007) for a detailed 

explanation). The second potential cause is that, for each deck, losses vary across trials while 

immediate rewards do not and are completely predictable. This could result in participants 

focusing more on immediate losses to adapt their decision strategy rather than long-term gains, 

thereby favoring deck B which is more predictable than deck C and yields greater immediate gains 

than deck D. In the present study, it is possible that this “deck B phenomenon” was responsible 

for some participants’ poor performance, since deck B was chosen relatively frequently in the 

second half of the task, as shown in Figure 6. However, it does not explain why deck A was also 

selected frequently in later trials, while A is considered to be the most obvious choice to avoid 

(Steingroever et al., 2013).  

While a lack of motivation has been proposed as another possible explanation for poor 

performance in healthy participants, (Fernie & Tunney, 2006) have shown that increasing 

motivation by using real money instead of facsimile money did not lead to better performance 

across the board. Instead, they found that healthy participants improved when they were given 

more information about the task in the instructions (e.g. some decks are better than others). 

Therefore, while motivation does not seem to explain the poor performance of healthy individuals, 

the difficulty of the task probably does, and the amount of information provided in the instructions 

is more important than previously thought. Since our version of the IGT employed the same 

instructions as the original one, which contain relatively little information, it is possible that the 

difficulty of the task (when no additional information is provided) is what was responsible for the 

poor performance of certain participants. 

Another possible explanation for poor performance in healthy individuals is that the number of 

trials could be too low and insufficient to learn about the particularities of each deck. (Wetzels et 

al., 2010) showed that healthy participants are actually able to learn to prefer the good decks over 

the bad decks, but that they require at least 100 trials to do so. Their reasoning behind this slow 

learning process is that the frequency of losses in decks B and D is too low (i.e. once in 10 cards), 

which provides too little information about those decks to quickly learn to avoid deck B. In the 

present study, this conjecture could also explain the unusually high preference for deck B 

compared to deck D in later trials (see Figure 6), especially considering that we had to cut down 

the number of trials from the original 100 to 75. 
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Finally, (Caroselli et al., 2006) studied the IGT paradigm applied to young and healthy university 

students and, similarly to the present study, observed an overall preference for the decks 

considered to be disadvantageous by (Bechara et al., 1994) (i.e. decks A and B). They even noted 

that the card selection preferences of their undergraduates were more similar to those of (Bechara 

et al., 1994)’s frontal-lobe-damage patients than to those of their healthy controls. In addition, their 

analysis highlighted a “frequency-of-reinforcement” effect, by which participants chose decks B 

and D more often than A and C simply because they yield a net gain on 90% of trials compared to 

50% for the latter two, regardless of whether decks were advantageous or disadvantageous in the 

long term. Moreover, since it has been shown that 1) IGT choices that offer larger immediate 

rewards or losses were associated with stronger anticipatory skin conductance responses (SCRs) 

irrespective of long-term consequences (Tomb et al., 2002), and that 2) high SCRs, in some 

circumstances, may indicate approach behavior rather than avoidance behavior (Damasio et al., 

2002), (Caroselli et al., 2006) posited that university students could be particularly aroused by the 

higher stakes associated with decks A and B, and could thus favor them over the long term benefits 

of the advantageous decks. Therefore, according to the authors, it is likely the interaction between 

the aforementioned frequency-of-reinforcement effect and this physiological arousal effect that 

led university students to prefer deck B, creating another “deck B phenomenon” resembling what 

(Steingroever et al., 2013) observed. In addition, the arousal effect associated with decks A and B 

could explain why our participants showed a disproportionate preference for those decks. 

(Caroselli et al., 2006) also point out the importance of the complexity and relative “open-

endedness” of the paradigm. They speculate that these characteristics of the task, combined with 

a low level of information in the instructions, could lead to a disregard of the instructions, in which 

case participants who perform poorly could simply be disregarding the instructions and playing to 

maximize the number of net gains.  

Our unusual IGT performance results were presumably the by-product of a combination of many 

of the possible explanations presented above, which all challenge basic assumptions of the task 

and its validity as a research tool when used to measure risk preference.  

The Iowa Gambling Task was selected for this experiment in part because it has been shown to be 

associated with self-reports and observations of risky driving behavior. However, when such links 

were observed, a tendency to learn to choose more advantageous decks was observed in most 
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participants; these studies had participants that showed significant improvement in choosing more 

advantageous decks over the course of the task. As made clear by our own results as well as most 

studies referenced in this section, healthy participants often fail to learn to choose the more 

advantageous decks over time, which calls into question the validity of the IGT score as a measure 

of risk preference. We believe that the lack of learning from many of our participants during the 

IGT prevented us from obtaining accurate objective assessments of risk preference from this task, 

and could potentially explain why no significant associations were found between IGT-derived 

risk preference and both driving behavior and brain activity. Because the present study failed to 

do so, it has yet to be determined whether the Iowa Gambling Task, when correctly understood by 

participants, has predictive validity with respect to objective measures of risky driving.  

Nonetheless, it is worth noting that our results are consistent with those from (Le Bas et al., 2015), 

who did not find any link between IGT selections and self-reported risky driving. However, in 

their study, all IGT trials were included in the score calculation, and learning was not accounted 

for. It is thus not clear whether their subjects were able to learn the contingencies of the task and 

if that could have explained their result.  

2.5.2 Balloon Analogue Risk Task 

The BART, as opposed to the IGT, appears to have been well understood and executed by all 

participants; performance results showed that, in our sample, the average number of adjusted 

pumps and its variability are typical of what has been observed in previous studies with healthy 

participants (C. W. Lejuez et al., 2003; Xu et al., 2013). Therefore, the validity of this BART score 

as a risk preference index cannot be as easily questioned as the IGT’s. 

Nonetheless, no association was found between the BART score and risky driving during the 

simulation. This result is consistent with that of (Gordon, 2007) and (Le Bas et al., 2015), who 

found that performance on the BART did not predict self-reports of risky driving, but not with the 

numerous studies that did observe a link between BART performance and self-reports of risky 

driving (Ba, Zhang, Peng, et al., 2016; Cheng et al., 2012; Piccardi et al., 2021; Vaca et al., 2013). 

The main strength of the BART is its ecological validity, which is supported by numerous studies 

that found a positive association between the average number of adjusted pumps and reports of 
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substance abuse and general risk-taking behaviors (Aklin et al., 2005; Fernie et al., 2010; Hopko 

et al., 2006; C. Lejuez et al., 2003; C. W. Lejuez et al., 2002, 2003; Mishra et al., 2010). The task 

has also been shown to have good test-retest reliability (White et al., 2008), and was linked to 

scores on risk-related constructs (i.e. sensation seeking and impulsivity)(C. W. Lejuez et al., 2002). 

However, the BART has more recently received notable criticism by researchers who consider the 

task’s ability to measure risk preference limited by design (De Groot, 2020; Groot, 2018; Gu et 

al., 2018; Schmidt et al., 2019; Schonberg et al., 2011). The issues pointed out by those researchers 

concern three specific characteristics of the task. 

First, the BART comprises uncertainty in addition to risk. Because participants are not given 

“detailed information about the probability of an explosion” (as per the original instructions from 

(C. W. Lejuez et al., 2002)), it can be assumed that, at least during early trials, participants make 

their decisions under uncertainty rather than risk (Groot, 2018). That alone raises concern as 

uncertain and risky decisions involve different mental processes (Volz & Gigerenzer, 2012).  

Moreover, similarly to the IGT, as participants observe the outcomes of early trials in the BART, 

they develop a better sense of the probabilities of the task, and gradually make decisions under 

more risk than uncertainty as the task progresses. This shift from uncertain to risky decisions 

entails a process of learning the task probabilities based on experience in previous trials—a type 

of learning that has been shown to lead to different decisions than learning from a description 

(Rakow & Newell, 2010). The main issue with all of the above is that it is in fact impossible to 

determine which trials happened under uncertainty, experience-based risk or description-based risk 

for reasons expanded upon by (De Groot, 2020). As a result, BART scores calculated over the 

whole task (which is typically the case) are not only influenced by risk preference, but also one’s 

attitude towards uncertainty, the ability to update one’s knowledge of the probabilities and the 

ability to remember previous events. In the context of measuring preference for risk, the same 

criticism applies to the IGT as well, as it requires similar experience-based learning of probabilities 

(Groot, 2018). 

Second, the BART’s design censors high risk preference, and thus skews scores downwards. When 

a balloon explodes, the trial ends and is excluded from any analysis based on the average number 

of adjusted pumps, which is the recommended metric for this task (C. W. Lejuez et al., 2002). 
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Therefore, the more risk someone is willing to take, the more likely it is that balloons burst (simply 

because they will pump them more), and that high-risk trials are excluded from data analysis. In 

such a case, an individual’s high preference for risk would not be fully reflected in their score 

which would be biased downwards (De Groot, 2020). 

Third, the BART confounds risk with expected value. The task’s structure is made so that, within 

a trial, both the balloon value (the amount of points/money accumulated in the temporary bank) 

and the probability of explosion increase with every pump. Therefore, a balloon’s expected value 

changes across a trial (Schmidt et al., 2019). As a result, both risk and expected value may 

influence the decisions of participants during the BART, which limits its ability to measure risk 

preference (De Groot, 2020). 

In sum, certain researchers have recently argued that, for the above reasons, the typical metric 

derived from the BART (the number of adjusted pumps averaged over the whole task) cannot be 

interpreted as a straight-forward measure of risk preference. While supposedly assessing a single 

cognitive construct (risk preference), the task manipulates other, potentially confounding 

constructs (e.g. uncertainty and expected value), in addition to having a bias against risk takers 

(De Groot, 2020). It is thus possible that the BART did not allow us to accurately measure risk 

preference in our sample, which could explain the lack of association between task performance 

and risky driving behavior in the simulation. Along with the research cited in (De Groot, 2020), 

our results highlight the need for more research on what the BART actually measures, and on its 

ability to predict naturalistic risky behavior in a controlled environment. 

2.5.3 Domain-Specific Risk-Taking scale 

The global score from the DOSPERT scale was significantly associated with higher speed as well 

as more steering in the track’s curves, which were both operationalized as risky driving behavior. 

These associations corroborate a recent finding that risk-prone individuals—assessed using the 

DOSPERT—took more risks during a motorcycle simulation that consisted of urban road 

scenarios (Baltruschat et al., 2020). They are also consistent with studies that found a link between 

DOSPERT scores and self-reports of risky driving (Padilla et al., 2018; Sween et al., 2017). 
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Together, these results suggest that the DOSPERT scale as a whole has predictive validity with 

respect to risky driving behavior.  

However, this predictive validity remains limited by a lack of neurophysiological support; the 

global DOSPERT score was not significantly associated with driving brain activity specific to 

decision making under risk. While neurophysiological correlates of DOSPERT scores have been 

captured in various contexts (Azanova et al., 2021; Barkley-Levenson et al., 2013; Lee & Jeong, 

2013; Lee & Young Park, 2011), these studies had their participants remain mostly still (either in 

resting state or immobilized in a scanner). The present study’s driving simulation required 

participants to regularly make both fast and slow movements with their head and limbs, which can 

generate artifacts to EEG signals that can be challenging to manage. Despite such difficulties, 

many studies have successfully identified patterns of brain activity while subjects were moving 

substantially by employing advanced artifact correction methods such as independent component 

analysis (ICA), canonical correlation analysis (CCA) and the wavelet transform (Urigüen & 

Garcia-Zapirain, 2015).   

While it is possible that, in the present study, movement artifacts and/or their filtering interfered 

enough with the signals of interest to blur detectable neural correlates of risk preference, the EEG 

data normalization could also have been responsible for producing signals that lack features 

associated with the psychological trait. The normalization of high DMUR data with low DMUR 

data was performed to isolate brain signals specific to the process of decision making under risk 

that occurred over certain parts of the track. It is however possible that, in doing so, cortical signals 

resulting from cognitive processes associated with preference for risk were canceled out. This 

normalization method should thus be further tested for its ability to isolate neurophysiological 

signals that embody complex psychological traits such as risk preference.   

The ethical DOSPERT score was associated with higher engine speed in the curves. This telemetry 

variable (engine speed in the curves) was included in the analysis because a high value is indicative 

of aggressive driving that, in most cases, significantly increases the risk of accident due to the high 

longitudinal acceleration (and thus speed) it is usually associated with. However, the significance 

of this result is not clear-cut for three reasons. First, the association only involves one out of the 

four risky driving variables, and excludes both longitudinal speed and lateral acceleration, which 
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suggests that the level of risk incurred in the curves by participants prone to ethical risk was not 

particularly high compared to those prone to risk in general (i.e. with a high global DOSPERT 

score). Second, the predictive validity of the ethical subscale observed here loses plausibility to 

the fact that risky driving alone on a race track hardly involves any ethical consideration. Third, 

an alternative explanation could be that participants prone to ethical risk did not care as much 

about task objectives and had a tendency to mindlessly floor the throttle during curves, which very 

few would attempt with a real car. It is thus unlikely that the association between ethical risk 

preference and risky driving behavior would generalize to instances of real-world driving.  

A higher score on the recreational DOSPERT subscale was associated with increased normalized 

high DMUR brain activity in the theta, alpha and beta frequency ranges in various brain regions 

(see Table 5 and Figure 9). Most notably, a higher recreational risk preference was associated with 

higher normalized high DMUR theta activity over the left occipital cortex; alpha activity over the 

bilateral occipital, right parietal and right temporal cortices; and beta activity over the occipital 

and parietal cortices of the right hemisphere. However, since recreational risk preference was not 

associated with risky driving behavior in the simulation, these neurophysiological correlates of the 

recreational DOSPERT score are likely to be unrelated to the predictive validity of this score with 

respect to risky driving behavior. 

Lastly, a higher social DOSPERT score was associated with increased normalized high DMUR 

beta activity over the bilateral middle and inferior frontal gyri, the bilateral pre- and postcentral 

gyri, and the left superior temporal gyrus. Electrophysiological studies on humans and monkeys 

generally confirmed the idea that beta rhythm is associated with preparation and inhibitory control 

in the motor system: beta power is decreased at the onset of movement execution and increased 

when a response is withheld (Wang, 2010). Beta power has also been associated with high 

cognitive task demands and higher neurophysiological function (Baumeister et al., 2008). 

Nonetheless, since social risk preference was not associated with risky driving behavior in the 

simulation, these neurophysiological correlates of the social DOSPERT score are likely to be 

unrelated to the predictive validity of this score with respect to risky driving behavior. 

It is also worth noting that the DOSPERT scale items that involve risky driving are part of the 

health/safety domain of risk taking (Blais & Weber, 2006), the score of which should thus be 
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expected to have predictive validity with respect to risky driving behavior. However, this 

association was not expected in this experiment because participants drove without there being 

any risk for their health or safety. For many studies of risk-taking that simulate real-life conditions 

that do involve safety risks (such as this one), this ethical requirement can unfortunately limit the 

extent to which natural levels of risk preference are expressed in a laboratory environment, and, to 

our knowledge, nothing can be done to compensate for this shortcoming. 

2.5.4 Limitations 

One evident limit of this study is the size of the sample used; a sample of 18 university students 

with valid driving licenses might be too small and narrow to allow generalization of the present 

findings to the much larger population of drivers of all ages and socioeconomic backgrounds. In 

addition, it is possible that our sample size led to a statistical power that was sufficient to reveal 

associations such as between the DOSPERT and risky driving behavior, but insufficient to reveal 

the more subtle neurophysiological evidence supporting this association as well as potential trends 

such as between BART performance, risky driving and brain activity. 

A second limit of this experiment is the fact that participants completed a total of three different 

risk-taking tasks in the same session (i.e. IGT, BART & driving task), while a reward was only 

directly associated with the last one of them. It seems possible that motivation to perform well on 

these tasks was thus not constant throughout the experimental session, and that certain participants 

put a different level of effort toward each task, thereby potentially blurring associations of interest. 

A reward was only tied to performance in the driving task due to limited funds and to the decision 

to prioritize motivation for this task, which was made because the driving task is not standardized 

and allows a broad range of behavior that does not involve risk (e.g. driving mindlessly around the 

track because it is fun). Future studies that employ multiple risk-taking tasks should therefore pay 

particular attention to how the experimental design accounts for motivation levels throughout the 

experiment. 

The driving simulation task also presents an important limitation in terms of the behavior it 

promoted. The task objectives and the associated reward encouraged participants to drive fast 

around the track to improve their lap times and gain additional compensation. While the task was 
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designed this way to bring about risky driving on the track, it also possibly limited the natural 

expression of risk preference to some extent. By encouraging all participants to essentially drive 

as fast as possible to complete the objectives, the sample’s natural variability in the tendency to 

drive fast might have been constrained. Participants who normally never take risks at the wheel 

might have felt pressured to take more risks than their natural risk preference would normally lead 

them to. As a result, the range of risky driving behavior exhibited on the race track might have 

been constrained and particularly biased toward more risk taking. This phenomenon could be 

related to the lack of association between BART performance and risky driving behavior in this 

experiment. Future driving simulation studies of risk preference should thus adapt their driving 

task so that its design, context and objectives generate less incentive to take risks and leave more 

room for the expression of the full natural range of risk preference, as measured by the DOSPERT 

scale. 

2.5.5 Implications & future work 

This study indicates that the global DOSPERT score—a subjective measure of risk preference—

has predictive validity with respect to risky driving behavior in a simulator, but that BART 

performance—an objective measure of the same trait—does not. A possible implication of these 

results is that risk preference instruments based on self-reports do not measure the same 

components of risk taking as those based on objective assessments, and that the components they 

measure more closely mirror those involved in risky driving. The idea that different risk preference 

instruments measure different components of risky behavior has already been put forward by many 

researchers (Frey et al., 2017; Hertwig et al., 2019; Mata et al., 2018; Mishra & Lalumière, 2011). 

Of particular interest is one study from (Mishra & Lalumière, 2011), who found that the DOSPERT 

was strongly associated with the risky personality component of risk taking, while the BART was 

much more associated with variance preference. Here, risky personality refers to personality traits 

associated with risk taking, while variance preference refers to a preference for choices that present 

ambiguous probability information, which people tend to associate with a high outcome variance 

(Rode et al., 1999). The present study’s driving task involved risky motor decisions associated 

with fast driving around the track (e.g. braking or turning the wheel at a specific moment). These 

decisions can be influenced by a risky personality, because the associated traits such as high 

impulsivity, high sensation-seeking and low self-control can evidently lead one to take more risks 
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in a task that involves driving fast for a potential reward. However, this study’s driving task did 

not comprise choices with particularly ambiguous probability information; for the vast majority of 

the risky motor decisions required, the probability information associated with each decision’s 

outcome was hardly ambiguous, because participants were used to driving the car (and cars in 

general) and were thus intuitively aware of the possible outcomes of their risky motor decisions, 

i.e., either the car keeps its adherence to the road and keeps moving in the intended direction, or 

adherence is lost, the car drifts, and control is lost to some extent. Our study’s results are thus 

consistent with the aforementioned findings from (Mishra & Lalumière, 2011); the BART score, 

which they found to be related to variance preference, did not predict risky driving in a task in 

which risk-taking is not (or very weakly) associated with variance preference, while the global 

DOSPERT score, which they found to be related to a risky personality, did predict risky driving 

in a task in which risk-taking is associated with a risky personality. Together, these results suggest 

that risk preference instruments based on self-reports have more predictive validity with respect to 

risky driving than those based on objective assessments. A natural progression of this work would 

be to confirm or disprove this idea. The present study should thus be repeated with the main goal 

of comparing these two types of risk preference instruments, both in terms of their predictive 

validity with respect to risky driving and in terms of the neurophysiological correlates of their 

scores in a driving context. In addition, as mentioned previously, the IGT should be included in 

such a study, its instructions should be modified to ascertain an adequate understanding of the 

tasks by all subjects, and motivation levels across the entire experimental session should be 

properly maintained or controlled for. 

The results of this study also have practical implications. The finding that the global DOSPERT 

score was associated with risky driving is promising for organizations interested in predicting 

and/or preventing instances of risky driving. In addition to public safety agencies, a notable 

example is that of insurance companies; the predictive validity of measurable psychological factors 

associated with risky driving behaviors such as distracted driving could be highly useful to car 

insurers, who could then adapt their services based on predictions of the likelihood of insured 

customers to carry out undesirable behavior. While they already adapt their services based on 

personal characteristics such as past driving record, location, age and car driven, to our knowledge, 

insurance companies do not consider psychological traits that are not the result of a mental disorder 
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in the appraisal of customers seeking insurance. Ethical considerations aside, car insurers could 

thus greatly benefit from tools—such as the DOSPERT scale—that could provide objective 

measures with predictive validity regarding their customers’ driving behavior. However, for this 

application to be realistically possible, this predictive validity should be objectively shown to 

generalize to driving in the real world. To investigate this possibility, a similar study could be 

repeated in a context closer to real-world driving, which should at least include the presence of 

other cars and a driving environment that simulates public roads instead of a race track. 

Finally, the lack of neurophysiological evidence for the association between the DOSPERT score 

and risky driving behavior in this study emphasizes the need for more research on the neural 

correlates of risk preference in ecologically valid contexts, how they could be integrated to current 

theories of decision making under risk, and how they might explain the low predictive validity of 

certain risk preference measures with respect to risky driving in a laboratory environment. 

Importantly, future investigations with this neurophysiological focus should invest a great deal of 

effort toward handling muscle artifacts in EEG signals, which tend to become increasingly 

complex as the experimental conditions become closer to the real world.    

2.6 Conclusion 

The present study investigated the relationship between risk  preference—as measured through 

different means—and risky driving in a simulator, as well as the associated oscillatory brain 

activity. The DOSPERT scale’s global score was found to be significantly associated with risky 

driving behavior in the risky portions of the simulation, while the scores of individual DOSPERT 

subscales were not. However, no links were found between performance on the risk-taking tasks 

(the IGT and the BART) and risky driving behavior. The EEG analysis also did not reveal 

significant oscillatory neural correlates of risk preference in the driving task.  

The main theoretical implication of this research is that risk preference instruments based on self-

reports appear to differ from those based on objective assessments in the risk-taking components 

that they measure—as has been suggested in the literature. Results from the driving simulation 

support the idea that the DOSPERT scale is more strongly associated with risk attitudes such as 

those involved in driving than the BART, which has been associated with variance preference 
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(Mishra & Lalumière, 2011) and shown to comprise several methodological problems when used 

to measure risk preference (De Groot, 2020).  

This study also has practical implications; the observed predictive validity of the DOSPERT scale 

to risky driving is evidence that the prediction and prevention of risky driving in the population 

could be facilitated by the use of risk preference instruments based on self-reports of risk attitudes, 

a finding from which organizations such as public safety agencies and insurance companies could 

benefit from. Moreover, the lack of neurophysiological evidence in this study despite the 

methodological efforts deployed exposes some of the challenges associated with isolating neural 

correlates of complex psychological traits such as risk preference in naturalistic contexts, 

especially those involving movement.  
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Chapitre 3: Conclusion 

3.1 Rappel des questions de recherche et principaux résultats 

Le principal objectif de ce mémoire était d’évaluer dans quelle mesure il est possible de prédire la 

prise de risque au volant dans une simulation de conduite à l’aide de différentes mesures de 

propension au risque. Le deuxième objectif avait comme but de potentiellement supporter de façon 

théorique les résultats du premier grâce à la neurophysiologie. Il consistait à déterminer dans quelle 

mesure il est possible de prédire l’activité cérébrale oscillatoire reliée à la prise de risque au volant 

dans une simulation de conduite à l’aide des mêmes mesures de propension au risque.  

Pour répondre à ces objectifs, une étude en laboratoire a été effectuée auprès de 18 participants qui 

ont complété deux tâches permettant de mesurer la propension au risque (la Balloon Analogue Risk 

Task [BART] et la Iowa Gambling Task [IGT]), un questionnaire mesurant le même construit 

(l’échelle Domain-Specific Risk Taking [DOSPERT]), ainsi qu’une tâche de simulation de 

conduite dans laquelle la prise de risque fut mesurée de façon objective. L’électroencéphalographie 

fut employée pour capturer l’activité cérébrale oscillatoire des participants pendant certains 

moments risqués de la simulation. 

Les résultats de l’analyse comportementale démontrent que seulement le score global de l’échelle 

DOSPERT a eu un pouvoir prédictif pour la prise de risque pendant la simulation, soit pour la 

haute vitesse et les virages brusques. Les scores aux dimensions individuelles de l’échelle 

DOSPERT ainsi que les scores aux tâches BART et IGT n’ont pas dévoilé d’associations avec la 

prise de risque au volant. L’analyse des données neurophysiologiques n’a révélé aucune 

association entre les scores aux différentes mesures de propension au risque et l’activité cérébrale 

oscillatoire des participants pendant les moments risqués de la simulation.  

Les résultats de cette étude suggèrent principalement que des mesures de la propension au risque 

prenant la forme de questionnaire (donc des mesures subjectives et autodéclarées) ont plus de 

potentiel prédictif pour la prise de risque au volant que des mesures objectives prenant la forme de 

tâche interactive. 
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3.2 Contributions de l’étude 

Cette étude permet d’éclaircir davantage les déterminants psychologiques de la prise de risque au 

volant en démontrant que ceux capturés par une mesure subjective de la propension au risque sont 

plus significativement associés à ce comportement que ceux capturés par deux mesures objectives 

du même construit. Plus spécifiquement, les composantes psychologiques que capture l’échelle 

DOSPERT dans son ensemble semblent être d’importants déterminants de la prise de risque au 

volant. La section 2.5.5 de ce mémoire explique en détail comment cette idée s’inscrit dans la 

littérature sur la prise de risque et la propension au risque. 

D’un point de vue méthodologique, cette étude souligne le défi que représente la capture de 

corrélats neurophysiologiques d’un comportement complexe comme la prise de risque au volant. 

Ce comportement implique une multitude de processus cognitifs et requiert des mouvements 

importants—deux éléments qui compliquent de façon significative une analyse 

neurophysiologique telle qu’effectuée dans ce mémoire. 

Dans un contexte de prédiction de la prise de risque au volant, les résultats de cette étude suggèrent 

qu’un outil de mesure simple tel qu’un questionnaire sur la propension au risque dans différents 

domaines possède une valeur prédictive significative. Une compagnie d’assurance automobile 

désirant estimer la probabilité que ses clients soient impliqués dans un accident pourrait donc tirer 

profit de cette valeur prédictive. Par exemple, puisque la plupart de ces compagnies emploient déjà 

une application mobile utilisée par leurs clients, l’intégration d’un simple questionnaire à celle-ci 

serait envisageable. Pour les clients réticents au concept de l’assurance télématique, cette approche 

pourrait être une alternative intéressante, alors que pour les programmes d’assurance télématique 

déjà en vigueur, cette approche pourrait représenter un complément intéressant pouvant augmenter 

la capacité d’estimation du potentiel de risque des clients assurés. L’avantage d’un questionnaire 

comme l’échelle DOSPERT est que c’est un outil de mesure facile à implémenter et peu coûteux 

comparé à une tâche interactive. De plus, les instructions d’un questionnaire sont faciles à 

comprendre comparées à celles de certaines tâches comme la IGT (voir section 2.5.1 pour plus de 

détails).    

Finalement, la valeur prédictive de l’échelle DOSPERT pour la prise de risque au volant pourrait 

également servir des agences de sécurité publique, qui pourraient employer un tel questionnaire 
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pour cibler les individus plus enclins à prendre des risques sur la route et ainsi mieux mobiliser 

leurs efforts de sensibilisation. 

3.3 Limites et pistes de recherches futures 

Bien que cette recherche ait décelé un potentiel prédictif de l’échelle DOSPERT pour la prise de 

risque au volant, certaines limites pourraient avoir restreint la portée des résultats obtenus. 

D’abord, l’échantillon de participants était constitué de 18 jeunes universitaires; il est donc 

possible que nos résultats ne se généralisent pas à l’ensemble de la population de conducteurs. Il 

serait donc souhaitable d’effectuer une étude similaire avec un échantillon plus volumineux et plus 

représentatif de la population dans son ensemble.  

De plus, la tâche de conduite développée pour cette expérience a été conçue de sorte à ce qu’elle 

encourage la prise de risque tout en étant assez simple pour permettre d’isoler des moments clés 

durant lesquels la prise de risque a lieu (si un participant décide bel et bien de prendre des risques). 

Cependant, il est possible que, en encourageant la prise de risque, nous ayons limité l’expression 

naturelle de la propension au risque sur la route, et que la simplicité de la simulation de conduite 

ait limité la généralisation des résultats à une conduite impliquant d’autres automobiles et un code 

de la route à respecter. Il serait donc pertinent de reproduire une étude similaire avec une tâche de 

conduite dont les objectifs laissent davantage place à l’expression naturelle de la propension au 

risque au volant, et dont les conditions reflètent davantage celles qu’on retrouve sur les routes. 

Finalement, puisque cette étude suggère que les mesures subjectives de la propension au risque 

sont de meilleurs candidats pour la prédiction du risque au volant que les mesures objectives, il 

serait intéressant d’étudier le potentiel prédictif d’autres questionnaires mesurant la propension au 

risque en général, ainsi que de plusieurs combinaisons de ce type de questionnaire.  
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Annexes 

Annexe 1. Affiche présentée à la conférence annuelle de Society for Neuroeconomics  en 2020 

 




