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ABSTRACT

The compound option pricing model derived by Geske (1979) is studied to identify
whether incorporating leverage can improve the performance in call option pricing. The
sample data consists of 188 firms listed on the NASDAQ-100 from 2001 to 2023. The
implied volatility is calculated for both the compound option (CO) model and the Black
Scholes (BS) model. The pricing improvements are analyzed with regards to moneyness,
time to maturity and the debt-equity ratio. Overall, the compound option model performed
better than the Black Scholes model.

The compound option model contains two extra variables compared to the Black Scholes
model. The two extra variables capture the leverage effect and the time to maturity of
debt. The relationship between the implied volatility and the leverage ratio is observed,
specifically for firms with higher leverage.

The overall results indicate that the compound option model is better at pricing options
than the Black Scholes model. The Black Scholes model has difficulty pricing the implied
volatility for options with greater leverage, as evidenced by the greater percent error of
implied volatility. The results observed show that the compound option model works better
than Black Scholes because it can capture changes in equity volatility. The changes in

equity volatility are captured because volatility varies with changes in leverage.

This research is an extension of the Geske, Subrahmanyam and Zhou (2016) paper,
which evaluated the pricing performance of the compound option model.
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1. INTRODUCTION

There are numerous theories and models that exist to price equity options. This
inevitably leads to the question of whether there is a specific factor in a model that
contributes to the accurate valuation of the option. Interest in the study of option pricing
goes as far back as 1900, when Bachelier first introduced the concept of a stochastic
process in option pricing (Wu et al., 2023). Samuelson (1973, 1965) then argued that the
stock price depends on the real probability measure and that it can be simulated by a
geometric Brownian motion (Wu et al., 2023). It was only later that Black and Scholes
(1973), by employing the replication argument, derived a partial differential equation for
derivative pricing. The equation yielded the eminent Black-Scholes (BS) option pricing
formula. In the BS model, the stock price follows a geometric Brownian motion (Black &
Scholes, 1973) and this led to the risk-neutral framework and the risk-neutral probability.
In the risk-neutral framework, the investor’'s concerns are embedded for risk in the
probability distribution (Black & Scholes, 1973). Therefore, option pricing involves taking
the expected value of the future payoff discounted at the risk-free rate under a risk neutral
probability measure (Black & Scholes, 1973). This approach is central to the Black

Scholes pricing model (Black & Scholes, 1973).

Although the Black-Scholes model is widely used, it fails empirically. This is
because to derive the BS formula, the model assumes several market conditions for both
the stock and the option (Black & Scholes, 1973). Two examples of these assumptions
are that i) a stock has a constant volatility, ii) the stock prices follow a lognormal

distribution (Black & Scholes, 1973). Due to the fact that these conditions do not occur in



the market, discrepancies arise between the actual option prices and those predicted from
the BS model. As a result, this incited research in option pricing to further evolve and
include models with stochastic volatility, stochastic interest rates, jump risk (Bates, 2000)

and compound options.

The compound option (CO) model considers a stock to be an option on a levered
firm, and therefore, an option on a stock is an option on an option (i.e. a compound option)
(Geske et al., 2016). The value of a call option, as a compound option is derived as a
function of the value of the firm, and the stock is viewed as an option on the value of the
firm (Geske, 1979). Robert Geske derived the option pricing formula for compound
options based on Merton’s application of the Black-Scholes model to price a call option
on stock (Geske, 1979). What distinguishes the compound option model from the BS
model is that the variance of the rate of return of the stock is not constant. The CO model
manages to capture changes in the equity volatility because the model incorporates
leverage (Geske, 1979). Research by Choi and Richardson (2016) determined that
financial leverage does have an impact on equity volatility. Their study was able to control
time-varying asset volatility through GARCH-type effects and to isolate the partial
correlation between leverage and equity volatility (Choi & Richardson, 2016).
Furthermore, the advantage of the compound option model (CO) is that unlike stochastic

volatility models, it is less computationally demanding to implement.

The following research examines the compound option pricing model and whether
incorporating leverage can improve the performance in call option pricing. The analysis
involves calculating the percent error of implied volatility for both the Black Scholes no
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arbitrage model, and the CO model, and comparing their pricing performance. The
research also analyses the option pricing performance of the firms that have a higher
leverage ratio. The compound option pricing model (CO) is derived from the Merton
(1973) model (Geske & al., 2016). Similarly, the model treats a stock as an option on a
levered corporation, therefore following a nested sequence of options on options (Geske

& al., 2016).

This research is inspired by the following papers: “Capital Structure Effects on the
Prices of Equity Call Options” (Geske & al., 2016) and “The Effects of Leverage on the
Pricing S&P500 Index Call Options” (Geske & Zhou, 2007). These studies measured
asset returns, and estimated the volatility of a firm’s assets, to investigate the role
leverage has on equity volatility (Geske & al., 2016). Similarly, | analyse and discuss the
option pricing behaviour of the compound option model (CO) and its pricing performance,
especially for the firms with greater leverage. Throughout this research paper, | analyse
how the CO pricing model performs on the 188 firms in the data sample, which are all
companies listed on the NASDAQ-100 between 2001 to 2023. The paper is organized as
follows: in section 1V, | present the results for the implied volatility error for both the BS
model and CO model. In section V, | discuss the significance of the results obtained along
with the limitations of the compound option model. Lastly, in section VI, | conclude the
paper with the findings of the research regarding the pricing performance of the

compound option model.



2. LITERATURE REVIEW

The following research analyses the compound option pricing model and whether
incorporating leverage can improve the performance in call option pricing. To appreciate
the pricing improvements of an option model, it is important to understand what an option
is. Black and Scholes (1973) define an option as a security giving the right, but not the
obligation to buy or sell a stock, subject to predefined conditions and maturity. The term
“strike price” defines the amount paid for the asset when it is exercised (Black & Scholes,
1973). An “American option” is a contract that allows the holder to exercise the option at
any time, up to the maturity date. On the contrary, a “European option” can solely be

exercised at maturity (Black & Scholes, 1973).

The following sections highlight the research in the field of option pricing that
provided developments in the world of financial economics and offers context to the

pricing dynamics of both the Black Scholes model and compound option model.

2.1. Discrete time varying model

The Binomial Tree is the most famous discrete time-varying model for option
pricing (Boudreault & Renaud, 2019). The model assumes a frictionless market and is
made up of only two assets, a risk-free asset, which evolves according to the risk-free
interest rate, and a risky asset (Boudreault & Renaud, 2019). The Binomial Tree model
is mainly used because of its versatility and ability to price American options (Chiarella et
al.,2015). Research by Chiarella et al, (2015) states that the discrete-time approach is

less accurate than continuous models, especially for options that are sensitive to small
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changes in asset price. Rather, the discrete-time models are better for qualitative and
statistical analysis (Chiarella et al., 2015). However, continuous time models are more
convenient because they are stochastic and provide explicit solutions and formulas to
price options (Yan, 2018). Interestingly, the Black Scholes partial differential equation,
can be discretized to ultimately yield the binomial model (Chiarella et al., 2015). This
implies that for the Binomial tree method, if the number of time steps increases, it will
converge to a lognormal distribution (Boudreault & Renaud, 2019). However, in that case,
the Binomial Tree model becomes less efficient at pricing long time to maturity options,

therefore continuous time models are preferred (Chiarella et al.,2015).

2.2. Black Scholes model

In 1973, Fischer Black and Merton Scholes derived the renowned Black-Scholes
formula, and their research did empirical tests on the valuation formula on call option data.
The BS formula is structured around several ideal conditions. These ideal conditions
include the assumption that the stock price follows a continuous path throughout time,
and that the instantaneous volatility of the stock rate of return is not stochastic (Black &

Scholes, 1973).

Therefore, under the ideal assumptions made in the BS formula, an option’s value is
dependent only on the price of the stock, time to maturity, strike of the option and on
specific variables that are taken as constants (Black & Scholes, 1973). Their results show,
that the actual price for which an option is bought or sold can deviate in certain systematic

ways to the predicted price obtained by the BS formula (Black & Scholes, 1973). Black
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and Scholes (1973) observed that option buyers pay more that the price predicted by the
formula. The Black-Scholes model is widely used and studied because of its
straightforwardness and computational ease, but there are other models available that

are better at capturing option pricing dynamics.

2.3. Compound Option model

Robert Geske’s (1979) paper titled “The Valuation of Compound Options” developed
the framework for deriving the compound option model as an extension of the Merton
(1973) model. The difference between the compound option model and the Black Scholes
model is that the CO formula accounts for the firm’s debt position (Geske, 1979). The
advantage of compound options is that the variance of equity is not assumed to be
constant, but instead depends on the firm’s leverage and the total value of the firm
(Geske, 1979). This is a contradiction to the Black Scholes model, which assumes that
the stock has a constant volatility (Geske, 1979). This implies that the CO model can
correct biases set by the Black Scholes formulation (Geske, 1979). In addition, Geske
(1979) proposes that a firm’s debt position alters the total risk or volatility of equity
because the market reevaluates the cash flow of the firm. This indicates there is a

relationship between leverage and the equity of a firm.

Geske, Subrahmanyam and Zhou'’s research (2016) explored the impact that a firm’s
leverage has on pricing options and suggested that it is a vital factor in evaluating equity
call options. Their research found that the CO model outperformed both in the money and
out of the money options in comparison to the BS model (Geske, et al., 2016). The

implication of their research is that incorporating the leverage in financial models
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improves option pricing. Furthermore, Geske (1979) observed that changes in a firm's
equity value inherently influences leverage, and that the variance of the stock returns

increases in a stable manner as the firm's leverage increases.

There exists on average a negative relationship between the volatility of the rate of
return on equity and the value of equity. Researchers like Christie (1982) have studied
this relationship in order to provide an explanation for this behaviour. Christie (1982)
studied the impact several variables have on the variance of equity returns and proposed
that equity variances have a strong correlation with debt. His research implies that
“volatility is an increasing function of financial leverage” and this can cause the volatility,
with regards to the value of equity, to be negative under a range of conditions (Christie,

1982).

Consequently, if financial leverage has an impact on option pricing, it is important to
understand what financial leverage is. Financial leverage is an investment strategy that
involves using borrowed capital to expand a firm’s asset base and generate returns on
risk capital (Adrian & Song Shin, 2010). The capital structure of a firm is the nature in
which the firm funds its operations using both debt and equity. In addition, Geske et al.
(2016) evaluated whether equity options traded for individual firms are impacted by the
firm’s capital structure. They found that “a firm’s debt influences the values of securities
held by the firm’s equity holders [...] therefore debt must influence options on equity”

(Geske, et al., 2016).

13



Moreover, the CO model for a call option implies that if the firm has debt obligations
that are included in the pricing model, and the firm’s volatility is deterministic, the volatility
of the stock will be greater than the volatility of the firm (Geske et al., 2016). This is
because the stock volatility doesn’t only depend on the price of the stock but also on a
stochastic pattern (Geske et al., 2016). This pattern is evident by the following behaviour;
if the price of a stock falls, this will inevitably cause the debt-equity ratio to increase
(Geske et al., 2016). This then increases the riskiness of the firm’s stock, which will be

observable by the variance in the returns on the stock (Geske et al., 2016).

The compound option pricing model is the focus of my research because of its ability
to capture the changes in equity volatility through changes in leverage. Although, there
are other option pricing models that capture equity volatility, however their variability is

not attributed because the debt value is included as a parameter within the model.

2.4. Stochastic volatility models

As previously stated, the Black Scholes model make several ideal assumptions in
their formula (Fouque et al., 2011). By relaxing these ideal assumptions and permitting
volatility to vary randomly, the observed differences between the option prices obtained
from the BS model and those observed in the market can be better explained using
stochastic volatility models (Fouque et al., 2011). Stochastic volatility models account for
the implied volatility skew, which allows volatility to fluctuate as opposed to remaining
constant (Fouque et al., 2011). Stochastic volatility models can also explain the volatility
smile and term structure effects to describe complex financial markets (Ben-Zhang et al.,

2020).
14



2.4 1. Single Factor Stochastic Volatility Models

Single factor stochastic volatility models follow a one-dimensional It6 process,
governed by a stochastic differential equation and driven by a second Brownian motion
(Fouque et al., 2011). A one factor model is used for its mean-reversion properties

(Fouque et al., 2011).

The Heston model is an example of a stochastic volatility model. The Heston model
is a bivariate system of stochastic differential equations (Rouah, 2015). The model follows
a Black Scholes stochastic process for the underlying stock price, but with a stochastic
variance that follows a Cox, Ingersoll and Ross process (Rouah, 2015). The Heston
model is a stochastic volatility model known to provide the correct smile or skew for
implied volatility (Choi & al., 2016). Furthermore, the benefit of the Heston model is that
the option pricing formula is derived from a computable and explicit integral, which is

suitable for calibration purposes (Choi & al., 2016).

Anderson et al. (2002) state that a drawback of the Heston model is its inability to
capture the full kurtosis (Jones, 2003). Single factor stochastic volatility models can
provide the correct smiles and smirks. However, because the correlation between the
variance and stock returns are constant overtime, the Heston model is unable to capture
the time varying nature of the smirk (Christoffersen et al., 2009). This explains why the
model does not capture the full dynamics of volatility (Christoffersen et al., 2009). This
limitation is observed by the discrepancy between the predicted and market prices for

certain moneyness options (Choi & al., 2016). Moreover, Mikhailov and Noegel (2003)

15



observe that in the Heston model, the implied volatility skew differs when compared to
the implied volatility observed directly from the market, especially for short term maturities
(Mikhailov & Noegel, 2003). As well, research by Jones (2003) states that because of the
Heston model’s square root process, the model has difficulty capturing periods of high

volatility.

Stochastic volatility models can explain asymmetry and high kurtosis but, as
mentioned by Cont and Tankov (2004), Brownian models with stochastic volatility, cannot
explain jumps in price due to the continuous nature of the paths (Hainaut & Moraux,

2019).

2.4.2. Multi Factor Stochastic Volatility Models

Multi factor stochastic volatility models, like the one proposed by Fouque et al.
(2003), present volatility as a two factor mean reverting diffusion process. Christoffersen
et al. (2009) developed a two-factor stochastic volatility model, referred to as a double
Heston, which has two independent variance processes. They proposed to model
fluctuations in the slope of the smirk using a two-factor stochastic model since the factors
have distinct correlations with market returns (Christoffersen et al., 2009). The model
generates a stochastic correlation between volatility and stock returns and provides more
flexibility for the modeling of the time variation in the smirk (Christoffersen et al., 2009).
Although, these models capture the behaviour of volatility, their mathematical complexity

make them difficult to adopt.

16



It's important to note, that nor the stochastic volatility models or the Black Scholes model
mentioned above directly consider debt in their option pricing formula. Therefore, if debt
is a relevant but omitted variable in option pricing, this can explain the pricing errors that

are visible in other option pricing models (Geske et al., 2016).

The following paper specifically analyses option pricing using the compound option
model. The CO model is less complex to use than stochastic volatility models, however it
is still capable of capturing the changes in equity volatility through the changes in the

value of debt.
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3. METHODS

3.1. Overview of Compound option model

For the compound option pricing model (CO) a stock is an option on a levered
company, and therefore an option on a stock is an option on an option (Geske et al.,
2016). The CO model involves two correlated options, one to repay the debt and the other

to exercise the stock (Geske et al., 2016).

The firms observed in this research, all have debt that they use as working capital
to invest in their future growth (Chen & Murry, 2022). In the CO model, the debt obligation
is represented as the strike price of the firm’s option to default on its debt (Geske et al.,
2016). Furthermore, all 188 companies are financed by both debt and equity, therefore
the model assumes that the total volatility for the firm is smaller and less volatile than the
stock (Geske et al., 2016). The reason being is because debt offers a lower return on an

investment and is less risky compared to a stock (Maverick & Catalano, 2021).

The compound option model is derived from a partial equilibrium, self-financing
and arbitrage free portfolio (Geske et al., 2016). This portfolio consists of the option, the
firm and a risk-free bond (Geske et al., 2016). The formula for the value of the call option
(C) in the compound option model is derived as a function of the firm value (V), and the
firm’s stock is viewed as an option on the value of the firm (Geske, 1979). In the CO
model, for each firm, their debt is considered a zero-coupon bond with time to expiration

equal to the imputed duration of the firm’s debt (Geske et al., 2016).
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The CO formula for a call option in continuous time assumes an environment
where there is constant demand and trading available for the options, and that all markets
are competitive (Geske, 1979). Furthermore, it assumes that the risk-free rate of interest
is observable and constant over time (Geske, 1979). The model also assumes that trading
is continuous and that a firm’s change in value follows a random walk in continuous time
with a variance rate that is proportional to the square of the value of the firm (Geske,
1979). The CO model captures that the volatility of the stock is time-varying without being

a stochastic volatility model.

Equation 1 below, is the formula stated by Geske (1979) to price a stock option

using the compound option model:

C= VNZ(hl t Oppphay + Oy s P) - Me_TTd(Td_t)Nz(hl vha; p) — Ke_TTi(Ti_t)N1(h1), @
Which can also be expressed as
C=(S+D)Ny(hy + 0y oy + 0y 5 p) — Me e TN, (Ry, hy; p) — Ke T TON, (hy)

where,

In(v
"/ + (rr, = 0502, (T, — )

h.1 =
O-UTi \' (Tl - t)
In(V
o = )+ (g = 0500, (Ta =0

O-UTd (Td - t)

_|(Ti=t)
= [T -0
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The input variables of the Geske (1979) compound option model are the following:

C= stock option call value
S= stock market value
V= implied market value of a firm (S+D)
*= critical total market value of a firm
M= face value of market debt
K= strike price of the option
rr;= risk-free rates of interest to dates T;
rrq= risk-free rates of interest to dates T,
gy, = instantaneous firm volatility at T;
oy~ instantaneous firm volatility at T,
t= current time
T;= specific expiration date of option
T,= date of maturity of debt
N, = bivariate cumulating normal distribution
N,= bivariate cumulating normal distribution

p= correlation coefficient between the asset value at T; and T,

For the compound option model, the boundary condition to exercise the call
option depends on the value of the firm (V) and the critical total market value of a firm
(V*) (Geske et al., 2016). The call option on equity expires at T;, however the debt option
expires at T; (Geske et al., 2016). This suggests that all events that occur during the
time between the expiration date of the call option but before the debt default option

expires, can affect the value of the equity option (Geske et al., 2016).
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To price a call option on a firm’s stock, the CO model needs to solve four unknowns
(V, V¥, oy, and g, , ) that are not readily observable in the market and need to be implied
using an optimizer (Geske et al., 2016). The market value of the firm is referred to as V
and it is the sum of the equity price (S) and the implied debt value (D) (Geske et al., 2016).
The equity price (S) is observable in the market, unlike the implied debt (D) which needs
to be solved (Geske et al., 2016). Furthermore, in the compound option model, the
volatility of the stock is random and inversely related to the equity and leverage of the firm

(Geske et al., 2016).

The compound option model proposes an approach that allows for both the implied
firm volatility and implied market debt to be observed from option and equity prices (Geske
et al., 2016). The implementation of the model and the optimization of the four unknowns

are detailed in the subsequent section.

3.2. Implementation overview

The following research evaluates the improvements in option pricing between the
Black Scholes model and the compound option model through the percent error of implied
volatility. The percent error of implied volatility is the difference between the actual implied
volatility from Optionmetrics and the one obtained by both the BS and CO models. |
implement a similar approach as Geske et al. (2016) did in their research titled the “Capital
structure effects on the prices of equity call options”, to analyse the option pricing

improvements between the Black Scholes model and the compound option model.
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3.2.1. KMV Merton Model

To determine whether the CO model can accurately price options when leverage
is incorporated in the option pricing model, certain variables need to be inferred, since
they are not observable from the dataset. More specifically, there are four unknown
variables that need to be solved using optimization to solve the compound option model.
These four unknowns are the implied debt value (D =V - S), the critical total market value

of the debt (D*= V* - S¥), instantaneous firm return volatility at T; (o,,,) and the

instantaneous firm volatility at T, (a,,,) -

The dataset is composed of daily security prices and debt. The CO model assumes
that at any time, the market value of a firm’'s debt (D) is less than the risk-free present
value of the firm’s debt D < Me~"T4, Therefore, the initial assumption for the implied
market value of debt is D= Me~"T¢, which makes the initial guess for the current firm value
V=S + Me~"Ta, | then use the KMV Merton model on each day and for each firm to
determine the instantaneous firm return volatility at expiration T; (o). The results from
the KMV model are used as initial values for two out of the four unknown variables in the

CO model.

According to the Black Scholes Merton model in Equation 2, there is a relationship

between the volatility of a firm’s equity (oz), and o,,,, which is represented as follows:

E=V X N(dy) —e "Tax M X N(d,).
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ln(V/M) + (er + O.SO'dez) Td

d, =
' JUTd\/T—d

dy = dy — Ude\/T_d

Where the relationship between o and o, is

o5 = = X N(dy) X 0y, (2)

The data that is used as input variables in the KMV equation to solve for g, , are the

value of the firm’s equity (E), the face value of debt (M) , the volatility of a firm’s equity

(0g), time to maturity of debt (T,;) and the risk-free interest at T, (rr,) .

3.2.2. Implementation of the CO Model

The condition for which to exercise the option (V > VV*) is dependent on the value
of the firm (V') as well as the critical total market value of a firm (V*). For the critical total
market value of a firm, V* is represented as the sum of the $* (also known as the strike

price of the option) and the D* (the critical market value of debt).

The maturity of the debt (T,) is calculated using the Macaulay duration formula. For
each option observed, the specific expiration date of the option (T;) is less than the date
of the maturity of debt (T,;). Therefore, the debt expires after the option’s expiration date.
This allows to observe the effect of debt on the calculation of the implied volatility of the

call option value. There is also a correlation on whether the option is exercised and if the
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firm defaults within the time to maturity of the option. Therefore, this correlation is
represented by p in the compound option model, to highlight that there exists two

associated exercise opportunities.

Since there are four unknowns to solve, (D, D*, g, 0,..,,), to be able to calculate the
compound option model for a call option, four equations are used to infer them. Three of
the equations are from the Geske’s (1979) compound option model (Equation 1). The
equation uses options for a specific firm that are listed on the same day, with the same
time to maturity, however, have different strike prices (K1, K2 and K3). | also apply
Merton’s (1974) equation for stock (S) as an option on the assets of the firm V (Equation

3 see below) .

S=V X N(dy) —e "Tax M xXN(d;) (3)

ln(V/M) + (er + O.SO'dez) Td

d, =
' O-VTd\/T_d

dy = dy — Ude\/T_d

To sort the dataset and run the optimization to solve for the four unknowns, | calculate
for each option the difference between the strike price and price of the underlying stock,
from data obtained from OptionMetrics and CRSP respectively. This allows to identify the
options which are close to the at the money options (ATM). Then for each firm, on each
day, for options with the same time to maturity (TTM), | group them together in my dataset.

| then sort them to ensure that they are in order of the smallest “closest to atm”, and | then

24



select for each firm for each day and TTM, the three smallest “closest to atm ” options
with different strike prices. Using the four equations (3x Equation 1, 1x Equation 3) with
the four market prices (C1,C2,C3,S), | then run the model to solve for the four unknowns

(D, D*, 0y,,;» 0v,,)- This is done using a minimization optimizer with the SLSQP method,

to minimize the difference in option prices.

Once | obtain for each firm the values of D, D*, o,,.., 0, | then assign those values
to all the options with the same date and TTM. Then for each option, the compound option
price from Equation 1 is calculated using the values (D, D*, o, 0,,,) Obtained from the
optimization. Subsequently, the implied volatility for each option using the CO price is
calculated. The calculated implied volatility from the CO model is then compared for each
option with the implied volatility from OptionMetrics. The percent error is then calculated

and used to compare the performance of the CO model to the BS model.

To run the optimization in Python, there are certain constraints that are applied to the
model. One being that the implied market value of debt is less than the present face value
of debt. Another, is that the instantaneous firm volatility at T; is less than then the Black
Scholes volatility, since there is the component of debt. It is also assumed that the
instantaneous firm volatility at T; is less than the instantaneous firm volatility at T;.
Furthermore, for each option (and their respective strike prices K1, K2, K3) the constraint

V >V*is applied.
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3.2.3. Black Scholes Model
The Black-Scholes model is essentially a special case of the CO model that assumes
that the firm’s debt value is negligible (M=0, V=S), and that the volatility of the firm is equal

to the volatility of the stock (g, = o5 ) (Geske et al., 2016).

By determining the percent error of the implied volatility for the Black Scholes model,
and then comparing it to the compound option model, | was able to evaluate what the

effect of adding leverage to option modeling can have on the ability to price options.
The Black Scholes formula is the following (Equation 4):

C=S x N(dy) —Ke ""iN(d;) (4

ln(S/K) + (T‘Tl. + O'SO-STiz) Ti

1 =
O-STl-ﬂTi

d, = d; — UsT.\/Ti

4
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4. EMPIRICAL RESULTS

4.1. Data Collection

The data collected consists of 188 firms listed on the NASDAQ-100 index from
January 1%, 2001 to August 31%, 2023 and it is comprised of a total of 2,827,415 call
options. The price of each security as well as the debt value from each firm’s balance
sheet is gathered. Furthermore, call option prices for each firm are also collected, along
with the continuously compounded zero-coupon interest rates that are obtained from the

zero-coupon yield curve.

4.1.1. CRSP

Data is collected for each firm from the Center for Research in Security Prices
(CRSP) database. Data consists of the i) Price or Bid/Ask Average (which is the closing
price for a trading day), ii) the Volume ( which is the total number of shares of a stock sold
on specific day, expressed in the units of one share). Furthermore, to be able to calculate
the market capitalization of each firm, the iii) Shares Outstanding (the number of shares

that are publicly held) are also collected.

4.1.2. Compustat

Annual balance sheet information for each firm is collected from Compustat-
Capital 1Q . This data is used to calculate the face value of debt for each firm. Compustat
is also used to obtain data to calculate the Macaulay duration of debt, which | use as the

maturity of debt (T;).

27



The complete list of variables that are used to calculate the face value of debt are the
following: i) the total current liabilities (LCT), ii) the debts that mature in year one through
five. Furthermore, | gather the iij) total long-term debt (DLTT), which is the reported debt
with a maturity longer than five years. | gather data for the iv) accrued expense and
deferred income (AEDI), v) deferred charges (DC), vi) notes payable (NP), vii) the debt
of the consolidated subsidiary (DCS), viii) the finance subsidiary (DFS), ix) notes debt
(DN), x) other liabilities (LO), xi) debentures (DD), xii) contingent liabilities (CLG), xiii)
mortgage debt and other secured debt (DM), xiv) long-term debt tied to the prime rate
(DLTP), xv) total assets (AT). | also collect the data for xvi) the capitalized lease obligation
(DCLO), which is due to expire in the seventh year, and xvii) the federal, foreign, and

state deferred tax.

Similar, to Geske et al. (2016), | refrain from using all data which has convertible debt
(DCVT) with more than 3% of the total assets (AT). In addition, data which has finance
subsidiary (DFS) greater than 5% of total assets is also excluded from the analysis
(Geske et al, 2016). Furthermore, if the total long-term debt (DLTT) and the debt

maturities from year one to five are not available, the data is omitted (Geske et al, 2016).

4.1.3. OptionMetrics

Data on call options traded on each firm’s underlying assets is gathered directly
from OptionMetrics. The information | incorporate in my dataset is the following, i) the
date the option is traded on, ii) the expiration date of the option and the iii) option’s strike

price (K). | also obtain the iv) closing bid price which is referred to as the best bid.
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Furthermore, | gather v) the best offer, meaning the best closing ask price of the option,
vi) the total volume of the option that is traded, vii) the open interest per day for each
option, viii) the delta of the option and ix) the implied volatility of the option, which is

calculated using the Black Scholes equation.

| delete from the sample data all the options that are missing fields such as the
expiration date or the open interest. | also include only options for which the bid price is
positive and smaller than the offer price. In addition, if the volume of the option is zero,
the options are also disregarded in the analysis. As well, like Geske et al. (2016), all

options that violate the arbitrage condition C < S — Ke™"T are omitted.

4.1.4. Yield curve
The continuously compounded zero coupon interest rates and the days to maturity
are obtained from the OptionMetrics databased from January 1t 2001 to August 31

2023. Any missing interest rate are interpolated from the zero-coupon yield curve.

4.2. Analysis of Data

The results obtained from the 188 firms are analysed and compared according to
the implied volatility obtained from the Black Scholes and Compound Option model. The
interpolated implied volatility from the models is compared to the implied volatility from
Optionmetrics (Market). The difference between the observed implied volatility and the

market implied volatility is defined as the error and calculated as follows:

Implied vol. Error BS — |(Market—BS)|
Market
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Implied vol. Error CO — | (Market—C0)|
Market

To compare the pricing performance, the results obtained by each model are
analysed in terms of specific factors. The factors used to analyse the improvement of the
compound option model to the Black Scholes model are moneyness, time to maturity and

the leverage ratio.

Moneyness is the proportion of the strike price (K) to the stock market value of the
underlying stock (S) and is classified in terms of ITM [0.89-0.95], ATM [0.96-1.05] and
OTM [1.06-1.55]. Furthermore, the time to maturity (TTM) is the duration of time for which
the option can be exercised. Lastly, since the objective of the paper is to observe whether
incorporating the firm’s debt can improve the performance in call option pricing it is vital to

observe the leverage ratio.

Face Value of Debt
Market Value of Equity

Leverage ratio =

The leverage ratio allows a better understanding of the capital structure of each
firm being evaluated and how incorporating leverage in option pricing impacts the

performance of the model.
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4.3. Descriptive Statistics

Table I
Sample Composition

The sample contains 2,827,415 observations on options for 188 firms between 2001 and 2023. The
table represent summary information on relative option strikes (K/S), Compound Option implied
volatilities (%), Black-Scholes implied volatilities (in %), as well as the number of available
observations according to option types (Panel A), maturities (Panel B) and moneyness (Panel C).

Panel A: All options

Rel. Strike Impl. Vol. CO Impl. Vol. BS
Mon T Avg. Q05 Q95 Avg. Q05 Q95 Avg Q05 Q95 N
Calls All All 1.06 091 134 36 20 58 35 20 57 2827415
Panel B: By Maturity
Rel. Strike Impl. Vol. CO Impl. Vol. BS
Mon T Avg. Q05 Q95 Avg. Q05 Q95 Avg Q05 Q95 N

Calls All [0.25-0.50) 1.06 091 133 36 19 59 35 19 58 1,735,314
All  [0.50-0.75) 1.06 091 135 35 20 57 35 20 56 765,828
All  [0.75-1.00] 1.08 091 1.39 35 21 54 34 21 54 326,273

Panel C: By Moneyness

Rel. Strike Impl. Vol. CO Impl. Vol. BS
Mon T Avg. Q05 Q95 Avg. Q05 Q95 Avg QO05 Q95 N

Calls ITM All 092 09 094 33 18 55 34 19 57 523,531
ATM All 099 095 1.04 33 18 55 34 19 55 1,079,351
OT™M All 1.18 1.05 142 39 23 61 36 21 59 1,224,533
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Table 11
Leverage Composition

The sample contains 2,827,415 observations on options for 188 firms between 2001 and 2023. The
table represent summary information such as the average and percentiles (5th, 25th, 75th, 95")
for the leverage ratio (%) of the sample data.

Panel A : All options

Leverage Ratio
Mon. T Avg. Q05 Q25 Q75 Q95 N

Calls All All 41.20 3.01 11.06 45.94 137.81 2,827,415
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Graph 1
Leverage Composition

The graph represents a histogram of the leverage ratio from the dataset consisting of 188 firms
and displays the frequency distribution of the leverage ratio. The histogram also includes the
percentiles (5th, 25th, 75th, 95™).
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Table 111
Top Ten Industries in Sample Data

The sample data contains 188 firms on the NASDAQ between 2001 and 2023. The firms within the
sample vary in industry. The following table identifies the top 10 industries in decreasing order

within the sample data.

SIC Industry

7372 Prepackaged Software

3674 Semiconductor, Related Device
2834 Pharmaceutical Preparations
7389 Business Services, N.E.C

2836 Biological Products, Except Diagnostics
7370 Computer Programming, Data Process
4841 Cable and Other Pay TV Services
7371 Computer Programming Service
3572 Computer Storage Devices

3576 Computer Communications Equipment
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Table IV

Summary Statistics

The sample contains 2,827,415 observations on options for 188 firms between 2001 and 2023. The
table represents the average implied volatility calculated using the compound option model and
their standard deviations (SD) reported in percent and annualized. Sk denotes the coefficient of
skewness. The time to maturity (TTM) is observed for options between [0.25-1.00]. In addition,
the moneyness (K/S) for options between [0.89-1.50].

Panel A: By Maturity

Call options

Mon. T Avg. SD sk N
All [0.25-0.50) 36 6.85 1.256 1,735,314
All [0.50-0.75) 35 6.91 1.201 765,828
All [0.75-1.00] 35 6.89 1.416 326,273
Panel B: By Moneyness
Call options
Mon. T Avg. SD sk N
IT™M All 33 6.94 1.296 523,531
ATM All 33 6.70 1.208 1,079,351
OTM All 39 6.98 1.277 1,224,533
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4.4. Implied Volatility error of BS model and CO model by year

Table V
Mean Implied Volatility error for BS and CO by Year & TTM

The sample contains 2,827,415 observations on options for 188 firms between 2001 and 2023. The
following table reports the average percent implied volatility errors of Black and Scholes (BS) and

compound option (CO) model valuations by calendar year from 2001 to 2023, as well as by time
|(Market—Model (BS or CO)|

Market

to expiration. The percent implied volatility error is defined as

Panel A: Volatility error of BS model and CO model by year

Year
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023

Black-Scholes model Compound Option model
[0.25-0.50) [0.50-0.75) [0.75-1.00] [0.25-0.50) [0.50-0.75) [0.75-1.00] N

3.46 2.55 1.88 1.11 1.27 1.22 14,040
5.79 4.69 4.73 1.33 1.79 2.09 9,788

6.11 5.23 3.85 1.54 1.87 221 17,689
5.75 5.09 5.04 1.53 1.68 1.86 32,146
5.09 4.27 4.16 1.64 1.66 1.83 39,810
4.84 3.97 4.12 1.61 1.58 1.80 57,174
4.84 4.32 4.30 1.56 1.58 1.87 74,431
4.70 4.12 3.90 1.56 1.61 1.71 45,948
5.26 4.34 4.12 1.58 1.63 1.72 57,750
6.09 4.93 5.59 1.57 1.61 1.92 95,446
6.18 5.16 5.24 1.60 1.66 1.90 127,199
6.26 5.26 5.57 1.86 1.89 1.93 128,982
4.72 4.14 4.42 1.83 1.72 1.94 134,332
4.71 3.70 3.40 1.78 1.60 1.71 151,884
5.50 4.82 4.79 1.68 1.62 1.82 131,744
6.15 5.44 5.31 1.75 1.78 1.87 123,100
5.26 4.64 4.75 1.72 1.58 1.83 187,360
5.42 4.35 4.56 1.67 1.50 1.73 210,582
5.40 4.61 4.61 1.61 1.50 1.83 193,987
4.62 4.05 4.09 1.61 1.51 1.80 290,156
5.12 4.17 3.82 1.63 1.45 1.75 324,308
5.50 4.79 4.73 1.43 1.49 1.81 235,269
6.36 5.82 5.31 1.51 1.54 1.68 144,290
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The graph below shows the average percent error of implied volatility that is calculated using

Graph 11

Average Implied Volatility Error by Year

both the compound option model and the Black Scholes model
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4.5. Implied Volatility error of BS model and CO model by leverage & TTM

Table VI
Mean Implied Volatility error for BS and CO by Leverage & TTM

The sample contains 2,827,415 observations on options for 188 firms between 2001 and 2023.
Panel A reports the mean percent volatility errors of Black and Scholes (BS) and the compound
option (CO) model valuations by leverage ratio (sample data divide in quantiles), as well as by
time to expiration (TTM) between three months and one year for all moneyness. The sample data
leverage ratio by TTM was also observed by moneyness ITM (Panel B), ATM (Panel C) and OTM

(Panel D). The percent implied volatility error is defined as

|(Market—Model (BS or CO)|

Market

Panel A: All
Mean error
Mon. 1 Leverage Quantiles Black-Scholes model Compound Option model N
All Al 0-25% 4.67 1.42 706, 874
Al All 26-50% 4.97 1.53 706, 847
All - All 51-75% 5.30 1.63 706, 873
All All 76-100% 5.26 1.98 706, 821
Panel B: By ITM
Mean error
Black-Scholes model Compound Option model
Leverage  [0.25-0.50) [0.50-0.75) [0.75-1.00] [0.25-0.50) [0.50-0.75) [0.75-1.00] N
Quantiles
0-25% 3.81 3.26 3.01 1.29 1.47 2.02 121,360
26-50% 4.12 3.59 3.27 1.47 1.44 1.98 124,116
51-75% 4.80 4.12 3.52 1.66 1.54 2.18 130,506
76-100% 5.36 4.79 4.48 2.46 2.26 2.13 147,549
Panel C: By ATM
Mean error
Black-Scholes model Compound Option model
Leverage  [0.25-0.50) [0.50-0.75) [0.75-1.00] [0.25-0.50) [0.50-0.75) [0.75-1.00] N
Quantiles
0-25% 1.18 0.95 0.90 0.80 0.92 1.09 242,562
26-50% 1.32 1.06 0.94 1.03 1.11 1.50 262,587
51-75% 1.59 1.27 1.02 1.25 1.27 1.56 279,386
76-100% 1.85 1.49 1.29 1.79 1.72 1.77 294,816
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Table VI (continued)
Panel D: By OTM

Mean error
Black-Scholes model Compound Option model

Leverage  [0.25-0.50) [0.50-0.75) [0.75-1.00] [0.25-0.50) [0.50-0.75) [0.75-1.00] N
Quantiles

0-25% 8.16 6.85 6.34 1.80 1.77 1.87 342,952
26-50% 9.14 7.60 7.23 1.91 1.78 1.91 320,144
51-75% 10.15 8.45 7.53 1.98 1.83 1.96 296,981
76-100% 9.82 8.52 8.03 2.07 1.88 1.92 264,456
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Graph 111
Comparison of Leverage Quantiles and Mean Implied Volatility Error by Model
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4.6. Implied Volatility error of BS model and CO model by moneyness & TTM

Table VII
Mean Volatility error for BS and CO by Moneyness & TTM

The sample contains 2,827,415 observations on options for 188 firms between 2001 and 2023.
Panel A reports the mean percent implied volatility errors of Black Scholes (BS) and the compound
option (CO) model valuations by moneyness, as well as by time to expiration (TTM) between three

o s . Market—Model (BS or CO
months and one year. The percent implied volatility error is defined as | (Market—Model (B or CO)

Market

Panel A: By All

Mean error

Black-Scholes model Compound Option model

Mon. [0.25-0.50) [0.50-0.75) [0.75-1.00] [0.25-0.50) [0.50-0.75) [0.75-1.00] N
IT™M 4.58 3.97 3.58 1.76 1.69 2.08 523,531
ATM 1.51 1.20 1.04 1.25 1.26 1.49 1,079,351
OT™M 9.25 7.79 7.25 1.93 1.81 1.92 1,224,533
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4.7. Implied Volatility error of BS model and CO model by leverage & moneyness

Table VIII
Mean Volatility error for BS and CO by Leverage & Moneyness

The sample contains 2,827,415 observations on options for 188 firms between 2001 and 2023. The
table reports the mean percent volatility errors of Black and Scholes (BS) and the compound option
(CO) model valuations by leverage quantiles as well as by moneyness across all time to maturities

ranging from 3 months to one year. The percent volatility error is defined as
|(Market—Model(BS or CO)|

Market
Panel A: By All
Mean error
Black-Scholes model Compound Option model
Leverage Quantiles ™ AT™ OTM I™ ATM OT™M N

0-25% 3.58 1.09 7.59 1.42 0.87 1.80 706,874
26-50% 3.89 1.21 8.47 1.52 1.10 1.88 706,847
51-75% 4.47 1.44 9.31 1.68 1.29 1.94 706,873
76-100% 5.14 1.71 9.28 2.38 1.77 2.01 706,821
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5. DISCUSSION

5.1. Empirical Findings

The results from the sample data consisting of 2,827,415 options and representing
188 firms listed on the NASDAQ-100 from January 2001 and August 2023, are observed
in the various tables and graphs in section 4-Empirical Results of this research paper.
The percent error of implied volatility of both the Black Scholes (BS) and the compound

option (CO) model are analysed and compared.

5.1.1. Sample Data Analysis

Panel A: All options of Table |- Sample Composition, presents the average and the
quantiles (5" and 95™) for the relative option strike prices (K/S) and the implied volatility
obtained from both the CO model and BS model. The results infer that the average implied
volatility is 36% for CO and 35% for BS with 5" and 95" percentiles of roughly 20% and
58% respectively. Panel B, which analyzes the results by maturity and Panel C by
moneyness, also show that the average implied volatility and percentiles for the two

models are similar.

Table II- Leverage Composition shows that there is a diverse range of financial
leverage among the firms, as evidenced by the varying leverage ratios. The mean
leverage is 41.20%, indicating that on average the firms in the sample data have a market
value of equity that is greater than the face value of debt. The 75" percentile is evaluated
at 45.94%, indicating that three-quarters of the firms have a leverage ratio of that level or

below. In contrast, at the 95" percentile there is an increase in the leverage ratio which
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is 137.81%. The 95% percentile of the data point is a small portion of the sample that

consists of highly levered firms in comparison to the average firms observed.

Panel A of Table IV- Summary Statistics represents the summary statistics for call
options categorized by time to maturity across all moneyness. The results show that there
are stable standard deviations (6.85, 6.91, 6.89), revealing steady market conditions and
pricing behaviors for the compound option model. The skewness values (1.256, 1.201,
1.416) indicate an asymmetry, with a rightward skewness with a greater likelihood of
significant positive price movements of the underlying stock as the maturity increases,

particularly for options within the maturity range ([0.75-1.00]).

Panel B of Table |V categorizes call options based on their moneyness—In-the-
Money (ITM), At-the-Money (ATM), and Out-of-the-Money (OTM) and presents data on
the average implied volatility (Avg), Standard Deviation (SD), and Skewness (sk). It
reveals that expected returns are relatively uniform across the different moneyness
categories, which range from 33% and 39%. The OTM options are showing slightly higher
average volatility. The standard deviation is also comparable across the categories,
although slightly higher for OTM options at 6.98, versus 6.70 for ATM and 6.94 for ITM
options, reflecting the increased risk and sensitivity of OTM options to price changes in
the underlying asset. Skewness across all categories is positive, suggesting a rightward
skew in the distribution. The ATM options showing the lowest skewness at 1.208,
meanwhile, ITM and OTM options are indicating a higher probability of achieving

significantly above-average volatility.
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5.1.2. Pricing variation across time

To observe the benefit of incorporating firm leverage in option pricing, the Black
Scholes and compound option model are compared to each other by observing certain
behaviours and patterns across the years. Table V reveals the implied volatility error for
both the Black Scholes model and the compound option model by year and time to
maturity (TTM). The data reveals that from 2001 to 2023, the CO model predicts the
implied volatility more accurately, as indicated by the consistently lower percent errors. It
is observed that over the years the CO model performs better for the shorter maturity
buckets (0.25-0.50), in comparison to the longer time to maturities (0.75-1.0). Proposing
that the improved model performance for shorter maturing options is due to less
uncertainty for changes in the debt-equity levels in the short term, therefore they are less

volatile.

Furthermore, for the CO model the results show that there is no consistent pattern
of increase or decrease of implied volatility error from one year to the next. Therefore, the
accuracy for pricing may not vary specifically from one year to the other or in terms of
time. However, it is observed that in the years for which there was financial distress (e.g.
2002, 2003, 2008, 2020), the percent errors are greater during those periods. This is
consistent with Graph II- Average Implied Volatility Year, which shows that the average
implied volatility error during those specific years is higher. That greater variability can be

the cause for the increase in percent error that is observed.
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5.1.3. Economic events impacting price variation

Between 2001 and 2023, there have been several economic events that have
impacted the financial markets. Notably, in 2001, the dot-com bubble burst, which was a
result of a decline in the linear relationship between earnings and stock returns for firms
in the technology sector (Morris & Alam, 2012). During that period, there was an increase
in IPOs for dotcom firms without much understanding of their debt equity structure and
the viability of their businesses to generate profit (Magin & DeLong, 2006). The NASDAQ
experienced substantial loss between February 2000 to October 2002, where it lost nearly
three quarter of its value, resulting in one of the most significant declines in technology
stocks (Magin & DelLong, 2006). This phenomenon can explain the results in Graph II,
where we see an increase in the implied volatility error in 2002. The increase in implied
volatility is more pronounced in the Black Scholes model whose recovery began only as
of 2003. In addition, this noticeable implied volatility error is expected since the firms
within the sample data are mainly technological companies, evident from Table Il -Top

Ten Industries in Sample Data.

Furthermore, Graph I, shows that in 2012 there was an increase in the implied
volatility error. This could be explained by the U.S fiscal cliff, which occurred during that
period and threatened tax increases within the United States along with spending cuts,
which caused uncertainty in the market (Brown, 2012). The fiscal cliff refers to the end of
the Bush era tax cuts, the 2% reduction in payroll taxes, and other tax breaks that were

coming to expiration during that period (Brown, 2012). During this time, fear of a recession
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was looming which caused uncertainty in the US economy (Brown, 2012) and is evident

from the increase in implied volatility error for both the BS and CO models.

The compound option model results show that it is less impacted by the events
mentioned above, primarily because both incidences revolve around debt. The firms
mainly impacted tend to be those that are heavily levered. The CO model incorporates
leverage, therefore, the model accounts for that uncertainty. The changes in the debt-
equity ratio alters the total risk and in turn it is reflected in the implied volatility results

obtained from the CO model.

5.1.4. The leverage effect in option pricing

Graph I-Leverage Composition, illustrates debt-equity ratio among the firms from
the data sample. Many of the firms have a leverage ratio below fifty percent. Furthermore,
most of the firms are moderately levered, while a few outliers are highly levered,
substantially inflating the average. The sample data supports the reality that there is
significant variability in how firms manage their leverage from conservative to a highly

levered approach.

The 188 firms from the sample data represent 81 different industries according to
their respective standard industrial classification (SIC) code. It is apparent in Table IlI-
Top Ten Industries in Sample Data, which lists the top 10 industries from the data, that
there is a large number of firms in the technology sector. Moreover, the results shows

that 49.5% of the firms within the sample focus mainly on industries that are at the

47



forefront of technological advancements as well as in research and development. These
results are to be expected, since the firms on the NASDAQ-100 are mainly in the

technology sector.

Panel A from Table VI reports the mean percent volatility errors for all options
under both the Black and Scholes (BS) model and the compound option (CO) model
valuations. The results observe the leverage ratios which are divided into quantiles. The
results show that the CO model consistently has lower mean error values in comparison
to the Black-Scholes model across the leverage quantiles. The results suggest that the
compound option model is better suited at handling the sample data across the different
leverage buckets. In addition, as the leverage quantiles increase from 0-25% to 51-75%,
both models experience an increase in the percent error, suggesting that higher debt-
equity ratios cause more uncertainty for both option pricing models. For the CO model,
the greater mean error is identified to be in the 75-100% percentile, suggesting the model
is sensitivity to firms with very high leverage, although it is noticeable from the error values
it is still significantly less than the BS model (the BS model error is on average 3.4%

greater).

Panel B of Table VI observes the mean percent implied volatility errors of the Black
Scholes model and the compound option model by quantile leverage ratio, as well as by
time to expiration (TTM) for ITM options. For the CO model, the results show that for the
options in time buckets (0.75-1.0), the mean percent volatility errors are slightly greater

than for shorter maturities, which was not the same behavior as the results for the implied
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volatility errors from the Black Scholes model. Although, both models did show the pattern
that as the leverage quantiles increased so did the implied volatility error. This indicates
that both models are sensitive to firms with greater debt to equity ratios for ITM options.
Although, the BS model implied volatility errors are nearly double those of the CO model.
Therefore, the compound option model pricing performance is still better at pricing ITM

options.

The results for the out of the money (OTM) options that are in Panel D of Table VI,
indicate that the compound option model consistently outperforms the Black Scholes
model in terms of mean implied volatility error. The BS model has greater error for the
mid to high leverage buckets. While the CO model maintains a more uniform error

distribution.

Panel C of Table VI shows the implied volatility errors of the Black Scholes (BS)
model and the compound option (CO) model by leverage ratio quantiles, time to expiration
(TTM) for at the money options (ATM). Both models perform best for ATM options
because they are calibrated and optimized with these options. This explains the relatively
low percent implied volatility error. Similarly, Panels B and D of Table VI, which are the
results for the ITM and OTM options respectively, have higher degree of implied volatility
error at higher leverage buckets. Overall, the results from Table VI show that based on
the low implied volatility errors, that the CO model can capture leverage dynamics better

than BS, in particular for the options of firms in the higher leverage quantiles.
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5.1.5. Pricing variation by moneyness and TTM

The results from Table VII, display the mean implied volatility error for both the
Black Scholes model and compound option model by moneyness and time to maturity. It
is observed that the compound option model performs better than the Black Scholes
model across all moneyness and TTM. The Black Scholes model struggles at pricing
options that are out of the money, evident by the greater implied volatility error. The BS
model has greater, implied volatility error, specifically for options that are both in the
money and at the money. Meanwhile, the CO model, generally has the same behaviour
throughout the moneyness and TTM buckets, suggesting the model is not sensitive to

these factors.

Table VIII shows the results for the mean percent volatility errors for both the Black
Scholes and the compound option model by leverage quantiles and by moneyness across
all TTM. The Black Scholes model has a higher mean implied volatility error throughout
but specifically for the heavily levered firms who have options that are OTM. The
compound option model also displays greater error at the higher leverage quantiles (76-
100%), however the CO model has significantly less implied volatility error than the BS

model, especially for OTM options.
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5.1.6. Overall Summary of Results

The overall results of my research imply that the compound option model is better
at pricing options than the Black Scholes model. The CO model has lower implied volatility
errors, especially when compared to the BS model in terms of moneyness, time to

maturity and the leverage ratio quantiles.

The results show that the compound option model works better than the Black
Scholes model because it can capture changes in the equity volatility. The changes in the
equity volatility are captured because it appears to vary with leverage. This is evident in
both Tables VI and VIII. The Black Scholes model has difficulty pricing options for the
firms with greater leverage, evidenced by the greater percent error of implied volatility.
Meanwhile, the CO model has more stable errors throughout the leverage quantiles. The
results obtained are in accordance with Geske, Subrahmanyam and Zhou’s (2016)
research. Their results showed that the compound option model performed better at
pricing over the Black Scholes model, especially for the firms with greater leverage ratios
(151-200%) (Geske et al, 2016). Therefore, the improvement observed from the results
of the compound option pricing model is the effect of incorporating leverage on asset

prices as the strike price (Geske et al, 2016).

The objective of the following research was to analyse the compound option pricing
model and determine whether incorporating leverage can improve the performance in call
option pricing. The results do suggest that the CO model captures the variance in equity

better than the BS model especially for the firms with higher leverage. Moreover, what is
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interesting is that the results show the compound option model’s pricing performance for
firms that are mainly in the technology sector. These are firms that tend to have a lot of
variation of leverage over time. The compound option model can capture the changes in
equity volatility successfully because financial leverage alters the volatility of equity as the

market attempts to continuously reevaluate the firm’s cash flow (Geske, 1979).

5.2. Limitations of Compound Option Model

Overall, it is fair to state that the CO model is a reliable model that can be used to
price options as it takes into account the leverage effect. However, one of the model’'s
weaknesses is the sensitivity of the optimizer with respect to the initial starting values for
the four unknowns it is solving. If the starting values are too distant from the actual values,
the solution generates a greater error. To mitigate this negative impact, the initial values
are tested to ensure they reflect market conditions. Furthermore, another weakness is
that the options from the dataset are American options, but the model treats them as

European options.

Another drawback of the compound option model is that it requires four additional
parameters (D, D*, o,,., 0,,,) to price the option. These parameters need to be implied
and solved for in order to price the call option using the CO model. This is more complex
and longer to compute in comparison to the more simplistic Black Scholes model. In
addition, the extra parameters also make it easier to fit the options prices, therefore large

data is required to avoid overfitting the sample.
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The CO model solves the four unknowns (D, D*, g,,..., 0,,.,) using a python optimizer.
To solve the four unknowns, three closest to the ATM options are used. In some cases,
within a certain time bucket, there are only a limited number of options for a firm. Hence,
the model can optimize the four unknown values to those options better and therefore the

error for those options is minimal.

Furthermore, the volatility of the stock in the compound option model is time-varying,
this is however not the same as for stochastic volatility models. This is because the
volatility only depends on the leverage and the leverage in the end only depends on the
value of the assets. This implies that volatility is a function of the assets and is driven by
the same source of risk. This risk can only be hedged if the assets are sold, which means
that it cannot really be hedged away. Therefore, it suggests that volatility is driven by a
separate source of risk which is captured in stochastic volatility models and not in the CO

model.

To fully evaluate the option pricing performance of the compound option model in
relation to the leverage effect, it would be more comprehensive if a stochastic volatility

model is also considered.

Previous studies have shown that the asset price volatility is stochastic, which
suggests that the underlying forces for the return variation includes an unobservable

shock (Veraart & Veraart, 2012).

If the behaviour of a stock price satisfies a stochastic differential equation, then the

stock price can be described by a stochastic model (Fouque & al, 2000) such as:
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dY, = bY,dt + o¥,dZ,

The W and Z are Brownian motions, which are the components that the model changes

randomly and continuously over very small intervals of time (Veraart & Veraart, 2012).

To fully appreciate and evaluate the option pricing performance of the compound
option model, it would be interesting to compare the CO model to a stochastic volatility
model using the same sample set. A stochastic volatility model to consider would be the

Heston model.

5.2.1. The Heston model

The Heston model is a stochastic volatility model which was presented in a research
paper by Heston (1993) titled “A Closed-Form Solution for Options with Stochastic
Volatility with Applications to Bond and Currency Options”. It is a commonly used
stochastic volatility model, primarily because it allows for the random correlation between
volatility and spot asset returns (Heston, 1993). As per Heston’s research, the correlation
between the volatility and the spot asset price, is responsible for explaining return
skewness and biases in the strike price from the Black Scholes (1973) model (Heston,

1993).
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The Heston model assumed that the stock price (S;) is lognormally distributed and that
the volatility (V) follows a Cox-Ingersoll-Ross process (CIR process) (Yang, 2013). The
model is as follows (Yang, 2013):

dS, = pS.dt + [V X, dW;
dV, = x(8 — V)dt + o.\[V.dZ,
dW,dZ, = pdt

The following parameters are used:

u = drift coef ficient for the stock price
0 = long term mean variance
X = mean reversion

o = volatility of volatility

The Heston model also considers the leverage effect, for which the stock returns
and implied volatility are negatively correlated (Yang, 2013). As well, the Brownian
motions W, and Z, are also correlated processes considered by the correlation coefficient

p (Yang, 2013).

The advantages of the Heston model is that it can better explain the stock price
when it demonstrates a non-Gaussian distribution (Yang, 2013). Furthermore, it is better
at fitting the implied volatility surface of option prices, and takes into account the negative
correlation between stock price and volatility (Yang, 2013). Due to the component that
considers stochastic leverage, it also incorporates an additional factor of randomness in

the model to better predict market volatility (Yang, 2013).
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Furthermore, the Heston model also has its disadvantages. It is sensitive to the
variations of its parameters, therefore the Heston model requires calibration (Yang, 2013).
As well, for options with short maturity, the Heston model has difficulty capturing the skew

that reflects the market (Mikhailov & Nogel, 2003).

Inconclusion, all models, whether it be the Heston model or the compound option

model, these models are not able to always perfectly capture the market behaviour and

the option prices obtained may deviate from to the actual option prices.
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6. CONCLUSION

The following research analyses the compound option pricing model and whether
incorporating leverage can improve the performance in call option pricing. This research
paper collected data from 188 firms and analysed a total of 2,827,415 options between
the years, 2001 and 2023. This research is inspired by the paper titled “Capital structure
effects on the prices of equity call options” by Geske, Subrahmanyam and Zhou (2016),

who also tested and analyzed the performance of the compound option model.

What distinguishes the compound option model from the Black Scholes model is
that the CO model accounts for debt and the expiration of debt obligations (Geske et al.,
2016). The Black Scholes model on the other hand, considers that the firm has no debt
in its pricing model (Geske et al., 2016). For the purpose of this research, the analysis
involves calculating the percent error of implied volatility for both the Black Scholes no
arbitrage option pricing model and the compound option model and compares their pricing

performance for firms listed on the NASDAQ-100.

The percent error of implied volatility for both models are compared according to
time in years, moneyness, time to maturity of the option and to the debt-equity ratio of the
firms. Overall, the results show that there is an advantage in using the compound option
model as it outperforms the Black Scholes pricing model, evident by the smaller percent

error of implied volatility.
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Furthermore, the results show that as the leverage ratio increases, the implied
volatility error also increases. The results indicate that there is a relationship where the
options of firms with a greater debt-equity ratio will have a greater variation in implied
volatility, evident from the increase in percent error of the implied volatility. However, the
compound option model performs overall better than the Black Scholes model, even for
the higher levered firms. The reason for this improvement is that the compound option
model can capture changes in equity volatility, which is not the case for the Black Scholes
model. Also, an interesting observation from this research paper is the pricing
performance of the compound option model on options of firms that are primarily in the
technology sector. These firms are known to have a lot of variation in leverage over time,

however the CO model can capture this behaviour well.

The results obtained further supports that the improvement of the compound option
model to price options is because the CO model includes financial leverage as the strike
price in its pricing formula. The inclusion of the debt value allows to capture the time
variation of the volatility of the firm (Geske et al., 2016) as seen from the performance of

the model from the results.

The implication of this research is that it supports the findings from other research
papers on how the compound model’s pricing performance is better than the Black
Scholes model. Furthermore, it shows how debt is an important variable to capture the

stock’s stochastic process and if omitted can generate pricing errors (Geske et al., 2016).
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