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ABSTRACT 
 
The compound option pricing model derived by Geske (1979) is studied to identify 

whether incorporating leverage can improve the performance in call option pricing. The 

sample data consists of 188 firms listed on the NASDAQ-100 from 2001 to 2023. The 

implied volatility is calculated for both the compound option (CO) model and the Black 

Scholes (BS) model. The pricing improvements are analyzed with regards to moneyness, 

time to maturity and the debt-equity ratio. Overall, the compound option model performed 

better than the Black Scholes model.   

 

The compound option model contains two extra variables compared to the Black Scholes 

model. The two extra variables capture the leverage effect and the time to maturity of 

debt. The relationship between the implied volatility and the leverage ratio is observed, 

specifically for firms with higher leverage.   

 

The overall results indicate that the compound option model is better at pricing options 

than the Black Scholes model. The Black Scholes model has difficulty pricing the implied 

volatility for options with greater leverage, as evidenced by the greater percent error of 

implied volatility. The results observed show that the compound option model works better 

than Black Scholes because it can capture changes in equity volatility. The changes in 

equity volatility are captured because volatility varies with changes in leverage.  

 

 This research is an extension of the Geske, Subrahmanyam and Zhou (2016) paper, 

which evaluated the pricing performance of the compound option model.  

 

Keywords 
Compound option pricing, Black Scholes, Leverage 
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1. INTRODUCTION 

There are numerous theories and models that exist to price equity options. This 

inevitably leads to the question of whether there is a specific factor in a model that 

contributes to the accurate valuation of the option. Interest in the study of option pricing 

goes as far back as 1900, when Bachelier first introduced the concept of a stochastic 

process in option pricing (Wu et al., 2023). Samuelson (1973, 1965) then argued that the 

stock price depends on the real probability measure and that it can be simulated by a 

geometric Brownian motion (Wu et al., 2023). It was only later that Black and Scholes 

(1973), by employing the replication argument, derived a partial differential equation for 

derivative pricing. The equation yielded the eminent Black-Scholes (BS) option pricing 

formula. In the BS model, the stock price follows a geometric Brownian motion (Black & 

Scholes, 1973) and this led to the risk-neutral framework and the risk-neutral probability. 

In the risk-neutral framework, the investor’s concerns are embedded for risk in the 

probability distribution (Black & Scholes, 1973). Therefore, option pricing involves taking 

the expected value of the future payoff discounted at the risk-free rate under a risk neutral 

probability measure (Black & Scholes, 1973). This approach is central to the Black 

Scholes pricing model (Black & Scholes, 1973).  

 

Although the Black-Scholes model is widely used, it fails empirically. This is 

because to derive the BS formula, the model assumes several market conditions for both 

the stock and the option (Black & Scholes, 1973). Two examples of these assumptions 

are that i) a stock has a constant volatility, ii) the stock prices follow a lognormal 

distribution (Black & Scholes, 1973). Due to the fact that these conditions do not occur in 
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the market, discrepancies arise between the actual option prices and those predicted from 

the BS model. As a result, this incited research in option pricing to further evolve and 

include models with stochastic volatility, stochastic interest rates, jump risk (Bates, 2000) 

and compound options. 

 

The compound option (CO) model considers a stock to be an option on a levered 

firm, and therefore, an option on a stock is an option on an option (i.e. a compound option) 

(Geske et al., 2016). The value of a call option, as a compound option is derived as a 

function of the value of the firm, and the stock is viewed as an option on the value of the 

firm (Geske, 1979). Robert Geske derived the option pricing formula for compound 

options based on Merton’s application of the Black-Scholes model to price a call option 

on stock (Geske, 1979). What distinguishes the compound option model from the BS 

model is that the variance of the rate of return of the stock is not constant. The CO model 

manages to capture changes in the equity volatility because the model incorporates 

leverage (Geske, 1979). Research by Choi and Richardson (2016) determined that 

financial leverage does have an impact on equity volatility. Their study was able to control 

time-varying asset volatility through GARCH-type effects and to isolate the partial 

correlation between leverage and equity volatility (Choi & Richardson, 2016). 

Furthermore, the advantage of the compound option model (CO) is that unlike stochastic 

volatility models, it is less computationally demanding to implement. 

 

The following research examines the compound option pricing model and whether 

incorporating leverage can improve the performance in call option pricing. The analysis 

involves calculating the percent error of implied volatility for both the Black Scholes no 
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arbitrage model, and the CO model, and comparing their pricing performance. The 

research also analyses the option pricing performance of the firms that have a higher 

leverage ratio. The compound option pricing model (CO) is derived from the Merton 

(1973) model (Geske & al., 2016). Similarly, the model treats a stock as an option on a 

levered corporation, therefore following a nested sequence of options on options (Geske 

& al., 2016). 

 

 This research is inspired by the following papers: “Capital Structure Effects on the 

Prices of Equity Call Options” (Geske & al., 2016) and “The Effects of Leverage on the 

Pricing S&P500 Index Call Options” (Geske & Zhou, 2007). These studies measured 

asset returns, and estimated the volatility of a firm’s assets, to investigate the role 

leverage has on equity volatility (Geske & al., 2016). Similarly, I analyse and discuss the 

option pricing behaviour of the compound option model (CO) and its pricing performance, 

especially for the firms with greater leverage. Throughout this research paper, I analyse 

how the CO pricing model performs on the 188 firms in the data sample, which are all 

companies listed on the NASDAQ-100 between 2001 to 2023. The paper is organized as 

follows: in section IV, I present the results for the implied volatility error for both the BS 

model and CO model. In section V, I discuss the significance of the results obtained along 

with the limitations of the compound option model. Lastly, in section VI, I conclude the 

paper with the findings of the research regarding the pricing performance of the 

compound option model. 
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2. LITERATURE REVIEW 

The following research analyses the compound option pricing model and whether 

incorporating leverage can improve the performance in call option pricing. To appreciate 

the pricing improvements of an option model, it is important to understand what an option 

is. Black and Scholes (1973) define an option as a security giving the right, but not the 

obligation to buy or sell a stock, subject to predefined conditions and maturity. The term 

“strike price” defines the amount paid for the asset when it is exercised (Black & Scholes, 

1973). An “American option” is a contract that allows the holder to exercise the option at 

any time, up to the maturity date. On the contrary, a “European option” can solely be 

exercised at maturity (Black & Scholes, 1973).  

 

The following sections highlight the research in the field of option pricing that 

provided developments in the world of financial economics and offers context to the 

pricing dynamics of both the Black Scholes model and compound option model.  

 

2.1. Discrete time varying model 

The Binomial Tree is the most famous discrete time-varying model for option 

pricing (Boudreault & Renaud, 2019). The model assumes a frictionless market and is 

made up of only two assets, a risk-free asset, which evolves according to the risk-free 

interest rate, and a risky asset (Boudreault & Renaud, 2019). The Binomial Tree model 

is mainly used because of its versatility and ability to price American options (Chiarella et 

al.,2015). Research by Chiarella et al, (2015) states that the discrete-time approach is 

less accurate than continuous models, especially for options that are sensitive to small 
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changes in asset price. Rather, the discrete-time models are better for qualitative and 

statistical analysis (Chiarella et al., 2015). However, continuous time models are more 

convenient because they are stochastic and provide explicit solutions and formulas to 

price options (Yan, 2018). Interestingly, the Black Scholes partial differential equation, 

can be discretized to ultimately yield the binomial model (Chiarella et al., 2015). This 

implies that for the Binomial tree method, if the number of time steps increases, it will 

converge to a lognormal distribution (Boudreault & Renaud, 2019). However, in that case, 

the Binomial Tree model becomes less efficient at pricing long time to maturity options, 

therefore continuous time models are preferred (Chiarella et al.,2015). 

 

2.2. Black Scholes model 

In 1973, Fischer Black and Merton Scholes derived the renowned Black-Scholes 

formula, and their research did empirical tests on the valuation formula on call option data. 

The BS formula is structured around several ideal conditions. These ideal conditions 

include the assumption that the stock price follows a continuous path throughout time, 

and that the instantaneous volatility of the stock rate of return is not stochastic (Black & 

Scholes, 1973).  

 

Therefore, under the ideal assumptions made in the BS formula, an option’s value is 

dependent only on the price of the stock, time to maturity, strike of the option and on 

specific variables that are taken as constants (Black & Scholes, 1973). Their results show, 

that the actual price for which an option is bought or sold can deviate in certain systematic 

ways to the predicted price obtained by the BS formula (Black & Scholes, 1973). Black 
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and Scholes (1973) observed that option buyers pay more that the price predicted by the 

formula. The Black-Scholes model is widely used and studied because of its 

straightforwardness and computational ease, but there are other models available that 

are better at capturing option pricing dynamics.  

 

2.3. Compound Option model 

Robert Geske’s (1979) paper titled “The Valuation of Compound Options” developed 

the framework for deriving the compound option model as an extension of the Merton 

(1973) model. The difference between the compound option model and the Black Scholes 

model is that the CO formula accounts for the firm’s debt position (Geske, 1979). The 

advantage of compound options is that the variance of equity is not assumed to be 

constant, but instead depends on the firm’s leverage and the total value of the firm 

(Geske, 1979). This is a contradiction to the Black Scholes model, which assumes that 

the stock has a constant volatility (Geske, 1979). This implies that the CO model can 

correct biases set by the Black Scholes formulation (Geske, 1979). In addition, Geske 

(1979) proposes that a firm’s debt position alters the total risk or volatility of equity 

because the market reevaluates the cash flow of the firm. This indicates there is a 

relationship between leverage and the equity of a firm.  

 

Geske, Subrahmanyam and Zhou’s research (2016) explored the impact that a firm’s 

leverage has on pricing options and suggested that it is a vital factor in evaluating equity 

call options. Their research found that the CO model outperformed both in the money and 

out of the money options in comparison to the BS model (Geske, et al., 2016). The 

implication of their research is that incorporating the leverage in financial models 
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improves option pricing. Furthermore, Geske (1979) observed that changes in a firm’s 

equity value inherently influences leverage, and that the variance of the stock returns 

increases in a stable manner as the firm's leverage increases.  

 

There exists on average a negative relationship between the volatility of the rate of 

return on equity and the value of equity. Researchers like Christie (1982) have studied 

this relationship in order to provide an explanation for this behaviour. Christie (1982) 

studied the impact several variables have on the variance of equity returns and proposed 

that equity variances have a strong correlation with debt. His research implies that 

“volatility is an increasing function of financial leverage” and this can cause the volatility, 

with regards to the value of equity, to be negative under a range of conditions (Christie, 

1982).  

 

Consequently, if financial leverage has an impact on option pricing, it is important to 

understand what financial leverage is. Financial leverage is an investment strategy that 

involves using borrowed capital to expand a firm’s asset base and generate returns on 

risk capital (Adrian & Song Shin, 2010). The capital structure of a firm is the nature in 

which the firm funds its operations using both debt and equity. In addition, Geske et al. 

(2016) evaluated whether equity options traded for individual firms are impacted by the 

firm’s capital structure. They found that “a firm’s debt influences the values of securities 

held by the firm’s equity holders […] therefore debt must influence options on equity” 

(Geske, et al., 2016).  
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Moreover, the CO model for a call option implies that if the firm has debt obligations 

that are included in the pricing model, and the firm’s volatility is deterministic, the volatility 

of the stock will be greater than the volatility of the firm (Geske et al., 2016). This is 

because the stock volatility doesn’t only depend on the price of the stock but also on a 

stochastic pattern (Geske et al., 2016). This pattern is evident by the following behaviour; 

if the price of a stock falls, this will inevitably cause the debt-equity ratio to increase 

(Geske et al., 2016). This then increases the riskiness of the firm’s stock, which will be 

observable by the variance in the returns on the stock (Geske et al., 2016).  

 

The compound option pricing model is the focus of my research because of its ability 

to capture the changes in equity volatility through changes in leverage. Although, there 

are other option pricing models that capture equity volatility, however their variability is 

not attributed because the debt value is included as a parameter within the model. 

 

2.4. Stochastic volatility models 

As previously stated, the Black Scholes model make several ideal assumptions in 

their formula (Fouque et al., 2011). By relaxing these ideal assumptions and permitting 

volatility to vary randomly, the observed differences between the option prices obtained 

from the BS model and those observed in the market can be better explained using 

stochastic volatility models (Fouque et al., 2011). Stochastic volatility models account for 

the implied volatility skew, which allows volatility to fluctuate as opposed to remaining 

constant (Fouque et al., 2011). Stochastic volatility models can also explain the volatility 

smile and term structure effects to describe complex financial markets (Ben-Zhang et al., 

2020).  
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2.4.1. Single Factor Stochastic Volatility Models 

Single factor stochastic volatility models follow a one-dimensional Itô process, 

governed by a stochastic differential equation and driven by a second Brownian motion 

(Fouque et al., 2011). A one factor model is used for its mean-reversion properties 

(Fouque et al., 2011).  

 

The Heston model is an example of a stochastic volatility model. The Heston model 

is a bivariate system of stochastic differential equations (Rouah, 2015). The model follows 

a Black Scholes stochastic process for the underlying stock price, but with a stochastic 

variance that follows a Cox, Ingersoll and Ross process (Rouah, 2015). The Heston 

model is a stochastic volatility model known to provide the correct smile or skew for 

implied volatility (Choi & al., 2016). Furthermore, the benefit of the Heston model is that 

the option pricing formula is derived from a computable and explicit integral, which is 

suitable for calibration purposes (Choi & al., 2016).  

 

Anderson et al. (2002) state that a drawback of the Heston model is its inability to 

capture the full kurtosis (Jones, 2003). Single factor stochastic volatility models can 

provide the correct smiles and smirks. However, because the correlation between the 

variance and stock returns are constant overtime, the Heston model is unable to capture 

the time varying nature of the smirk (Christoffersen et al., 2009). This explains why the 

model does not capture the full dynamics of volatility (Christoffersen et al., 2009). This 

limitation is observed by the discrepancy between the predicted and market prices for 

certain moneyness options (Choi & al., 2016). Moreover, Mikhailov and Noegel (2003) 
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observe that in the Heston model, the implied volatility skew differs when compared to 

the implied volatility observed directly from the market, especially for short term maturities 

(Mikhailov & Noegel, 2003). As well, research by Jones (2003) states that because of the 

Heston model’s square root process, the model has difficulty capturing periods of high 

volatility.  

 

Stochastic volatility models can explain asymmetry and high kurtosis but, as 

mentioned by Cont and Tankov (2004), Brownian models with stochastic volatility, cannot 

explain jumps in price due to the continuous nature of the paths (Hainaut & Moraux, 

2019).  

 

2.4.2. Multi Factor Stochastic Volatility Models 

Multi factor stochastic volatility models, like the one proposed by Fouque et al. 

(2003), present volatility as a two factor mean reverting diffusion process. Christoffersen 

et al. (2009) developed a two-factor stochastic volatility model, referred to as a double 

Heston, which has two independent variance processes. They proposed to model 

fluctuations in the slope of the smirk using a two-factor stochastic model since the factors 

have distinct correlations with market returns (Christoffersen et al., 2009). The model 

generates a stochastic correlation between volatility and stock returns and provides more 

flexibility for the modeling of the time variation in the smirk (Christoffersen et al., 2009). 

Although, these models capture the behaviour of volatility, their mathematical complexity 

make them difficult to adopt.  
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It’s important to note, that nor the stochastic volatility models or the Black Scholes model 

mentioned above directly consider debt in their option pricing formula. Therefore, if debt 

is a relevant but omitted variable in option pricing, this can explain the pricing errors that 

are visible in other option pricing models (Geske et al., 2016).  

 

The following paper specifically analyses option pricing using the compound option 

model. The CO model is less complex to use than stochastic volatility models, however it 

is still capable of capturing the changes in equity volatility through the changes in the 

value of debt.  
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3. METHODS 
 
3.1. Overview of Compound option model 

 For the compound option pricing model (CO) a stock is an option on a levered 

company, and therefore an option on a stock is an option on an option (Geske et al., 

2016). The CO model involves two correlated options, one to repay the debt and the other 

to exercise the stock (Geske et al., 2016). 

 

 The firms observed in this research, all have debt that they use as working capital 

to invest in their future growth (Chen & Murry, 2022). In the CO model, the debt obligation 

is represented as the strike price of the firm’s option to default on its debt (Geske et al., 

2016). Furthermore, all 188 companies are financed by both debt and equity, therefore 

the model assumes that the total volatility for the firm is smaller and less volatile than the 

stock (Geske et al., 2016). The reason being is because debt offers a lower return on an 

investment and is less risky compared to a stock (Maverick & Catalano, 2021).  

 

The compound option model is derived from a partial equilibrium, self-financing 

and arbitrage free portfolio (Geske et al., 2016). This portfolio consists of the option, the 

firm and a risk-free bond (Geske et al., 2016). The formula for the value of the call option 

(C) in the compound option model is derived as a function of the firm value (V), and the 

firm’s stock is viewed as an option on the value of the firm (Geske, 1979). In the CO 

model, for each firm, their debt is considered a zero-coupon bond with time to expiration 

equal to the imputed duration of the firm’s debt (Geske et al., 2016). 
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The CO formula for a call option in continuous time assumes an environment 

where there is constant demand and trading available for the options, and that all markets 

are competitive (Geske, 1979). Furthermore, it assumes that the risk-free rate of interest 

is observable and constant over time (Geske, 1979). The model also assumes that trading 

is continuous and that a firm’s change in value follows a random walk in continuous time 

with a variance rate that is proportional to the square of the value of the firm (Geske, 

1979). The CO model captures that the volatility of the stock is time-varying without being 

a stochastic volatility model.  

 

Equation 1 below, is the formula stated by Geske (1979) to price a stock option 

using the compound option model: 

 

𝐶 = 𝑉𝑁!%ℎ"	 +	𝜎$!" , ℎ!%	 +	𝜎$!#	 	; 	𝜌- − 𝑀𝑒
&'!#()#&*)𝑁!(ℎ"	, ℎ!; 	𝜌) − 𝐾𝑒&'!"

()"&*)𝑁"(ℎ"	),    (1) 

 

Which can also be expressed as  

 

𝐶 = (𝑆 + 𝐷)𝑁!%ℎ"	 +	𝜎$!" , ℎ!%	 +	𝜎$!#	 	; 	𝜌- − 𝑀𝑒
&'!#()#&*)𝑁!(ℎ"	, ℎ!; 	𝜌) − 𝐾𝑒&'!"

()"&*)𝑁"(ℎ"	) 

 

where, 

ℎ"	 =	
ln(𝑉

𝑉∗8 ) + (	𝑟)" − 0.5𝜎
!
$!"(𝑇- − 𝑡)

𝜎$!"?(𝑇- − 𝑡)
 

ℎ!	 =	
ln(𝑉

𝑀8 ) + (	𝑟)# − 0.5𝜎
!
$!#(𝑇. − 𝑡)

𝜎$!#?(𝑇. − 𝑡)
 

 

𝜌 = 	@
(𝑇- − 𝑡)
(𝑇. − 𝑡)
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The input variables of the Geske (1979) compound option model are the following:  

C= stock option call value  

S= stock market value  

V= implied market value of a firm (S+D)  

V*= critical total market value of a firm  

M= face value of market debt 

K= strike price of the option  

𝑟)-= risk-free rates of interest to dates 𝑇- 

𝑟).= risk-free rates of interest to dates 𝑇. 

𝜎$!"= instantaneous firm volatility at 𝑇- 

𝜎$!#= instantaneous firm volatility at 𝑇. 

t= current time 

𝑇-= specific expiration date of option  

𝑇.= date of maturity of debt 

𝑁"= bivariate cumulating normal distribution 

𝑁!= bivariate cumulating normal distribution 

𝜌= correlation coefficient between the asset value at 𝑇- and 𝑇. 

 

For the compound option model, the boundary condition to exercise the call 

option depends on the value of the firm (V) and the critical total market value of a firm 

(V*) (Geske et al., 2016). The call option on equity expires at 𝑇-, however the debt option 

expires at 𝑇. 	(Geske et al., 2016). This suggests that all events that occur during the 

time between the expiration date of the call option but before the debt default option 

expires, can affect the value of the equity option (Geske et al., 2016).  
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To price a call option on a firm’s stock, the CO model needs to solve four unknowns 

(V, V*, 𝜎$!" and 𝜎$!# ) that are not readily observable in the market and need to be implied 

using an optimizer (Geske et al., 2016). The market value of the firm is referred to as V 

and it is the sum of the equity price (S) and the implied debt value (D) (Geske et al., 2016). 

The equity price (S) is observable in the market, unlike the implied debt (D) which needs 

to be solved (Geske et al., 2016). Furthermore, in the compound option model, the 

volatility of the stock is random and inversely related to the equity and leverage of the firm 

(Geske et al., 2016).  

 

The compound option model proposes an approach that allows for both the implied 

firm volatility and implied market debt to be observed from option and equity prices (Geske 

et al., 2016). The implementation of the model and the optimization of the four unknowns 

are detailed in the subsequent section.  

 

3.2. Implementation overview 

 The following research evaluates the improvements in option pricing between the 

Black Scholes model and the compound option model through the percent error of implied 

volatility. The percent error of implied volatility is the difference between the actual implied 

volatility from Optionmetrics and the one obtained by both the BS and CO models. I 

implement a similar approach as Geske et al. (2016) did in their research titled the “Capital 

structure effects on the prices of equity call options”, to analyse the option pricing 

improvements between the Black Scholes model and the compound option model.  
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3.2.1. KMV Merton Model  

 To determine whether the CO model can accurately price options when leverage 

is incorporated in the option pricing model, certain variables need to be inferred, since 

they are not observable from the dataset. More specifically, there are four unknown 

variables that need to be solved using optimization to solve the compound option model. 

These four unknowns are the implied debt value (D = V - S), the critical total market value 

of the debt (D*= V* - S*), instantaneous firm return volatility at 𝑇- 	(𝜎$!") and the 

instantaneous firm volatility at 𝑇. (𝜎$!") . 

 

The dataset is composed of daily security prices and debt. The CO model assumes 

that at any time, the market value of a firm’s debt (D) is less than the risk-free present 

value of the firm’s debt  D < M𝑒&')#. Therefore, the initial assumption for the implied 

market value of debt is D= M𝑒&')#, which makes the initial guess for the current firm value 

V=S + M𝑒&')#. I then use the KMV Merton model on each day and for each firm to 

determine the instantaneous firm return volatility at expiration 𝑇. (𝜎$!#).The results from 

the KMV model are used as initial values for two out of the four unknown variables in the 

CO model.  

 

According to the Black Scholes Merton model in Equation 2, there is a relationship 

between the volatility of a firm’s equity (𝜎/),	𝑎𝑛𝑑	𝜎$!# which is represented as follows:  

 

𝐸 = 𝑉	 × 	𝑁(𝑑") − 𝑒&'!# × 	𝑀	 × 𝑁(𝑑!).	 
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𝑑" =	
ln(𝑉

𝑀8 ) 	+ F𝑟)# + 0.5𝜎$!#
!G𝑇.

𝜎$!#?𝑇.
 

 

𝑑! =	𝑑" −	𝜎$!#?𝑇. 

 

Where the relationship between 𝜎/ 	𝑎𝑛𝑑	𝜎$!# 	is 

 

𝜎/ =	
0
/
	× 𝑁(𝑑") 	× 	𝜎$!#  (2) 

 

 

The data that is used as input variables in the KMV equation to solve for 𝜎$!#, are the 

value of the firm’s equity (𝐸), the face value of debt (𝑀) , the volatility of a firm’s equity 

(𝜎/), time to maturity of debt (𝑇.) and the risk-free interest at 𝑇. (𝑟)#) . 

 
 3.2.2. Implementation of the CO Model  

 The condition for which to exercise the option (𝑉	 ≥ 𝑉∗) is dependent on the value 

of the firm (𝑉) as well as the critical total market value of a firm (𝑉*). For the critical total 

market value of a firm, 𝑉* is represented as the sum of the 𝑆∗ (also known as the strike 

price of the option) and the 𝐷∗ (the critical market value of debt).  

 

The maturity of the debt (𝑇.) is calculated using the Macaulay duration formula. For 

each option observed, the specific expiration date of the option (𝑇-) is less than the date 

of the maturity of debt (𝑇.). Therefore, the debt expires after the option’s expiration date. 

This allows to observe the effect of debt on the calculation of the implied volatility of the 

call option value. There is also a correlation on whether the option is exercised and if the 
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firm defaults within the time to maturity of the option. Therefore, this correlation is 

represented by 𝜌 in the compound option model, to highlight that there exists two 

associated exercise opportunities.  

 

Since there are four unknowns to solve, (D, D*, 𝜎$!", 𝜎$!#), to be able to calculate the 

compound option model for a call option, four equations are used to infer them. Three of 

the equations are from the Geske’s (1979) compound option model (Equation 1). The 

equation uses options for a specific firm that are listed on the same day, with the same 

time to maturity, however, have different strike prices (K1, K2 and K3). I also apply 

Merton’s (1974) equation for stock (S) as an option on the assets of the firm V (Equation 

3 see below) . 

 

𝑆 = 𝑉	 × 	𝑁(𝑑") − 𝑒&'!# × 	𝑀	 × 𝑁(𝑑!)   (3) 

 

𝑑" =	
ln(𝑉

𝑀8 ) 	+ F𝑟)# + 0.5𝜎$!#
!G𝑇.

𝜎$!#?𝑇.
 

 

𝑑! =	𝑑" −	𝜎$!#?𝑇. 

 

To sort the dataset and run the optimization to solve for the four unknowns, I calculate 

for each option the difference between the strike price and price of the underlying stock, 

from data obtained from OptionMetrics and CRSP respectively. This allows to identify the 

options which are close to the at the money options (ATM). Then for each firm, on each 

day, for options with the same time to maturity (TTM), I group them together in my dataset. 

I then sort them to ensure that they are in order of the smallest “closest to atm”, and I then 
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select for each firm for each day and TTM, the three smallest “closest to atm ” options 

with different strike prices. Using the four equations (3x Equation 1, 1x Equation 3) with 

the four market prices (C1,C2,C3,S), I then run the model to solve for the four unknowns 

(D, D*, 𝜎$!", 𝜎$!#). This is done using a minimization optimizer with the SLSQP method, 

to minimize the difference in option prices.  

 

Once I obtain for each firm the values of D, D*, 𝜎$!", 𝜎$!#, I then assign those values 

to all the options with the same date and TTM. Then for each option, the compound option 

price from Equation 1 is calculated using the values (D, D*, 𝜎$!", 𝜎$!#) obtained from the 

optimization. Subsequently, the implied volatility for each option using the CO price is 

calculated. The calculated implied volatility from the CO model is then compared for each 

option with the implied volatility from OptionMetrics. The percent error is then calculated 

and used to compare the performance of the CO model to the BS model.  

 

To run the optimization in Python, there are certain constraints that are applied to the 

model. One being that the implied market value of debt is less than the present face value 

of debt. Another, is that the instantaneous firm volatility at 𝑇- is less than then the Black 

Scholes volatility, since there is the component of debt. It is also assumed that the 

instantaneous firm volatility at 𝑇. is less than the instantaneous firm volatility at 𝑇-. 

Furthermore, for each option (and their respective strike prices K1, K2, K3) the constraint 

𝑉 > 𝑉∗ is applied. 
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3.2.3. Black Scholes Model  

The Black-Scholes model is essentially a special case of the CO model that assumes 

that the firm’s debt value is negligible (M=0, V=S), and that the volatility of the firm is equal 

to the volatility of the stock (𝜎$ =	𝜎1 ) (Geske et al., 2016).  

 

By determining the percent error of the implied volatility for the Black Scholes model, 

and then comparing it to the compound option model, I was able to evaluate what the 

effect of adding leverage to option modeling can have on the ability to price options.  

 

The Black Scholes formula is the following (Equation 4):  

 

𝐶 = 𝑆	 × 	𝑁(𝑑") − 𝐾𝑒&'!"𝑁(𝑑!)   (4) 

 

𝑑" =	
ln(𝑆

𝐾8 ) 	+ F𝑟)" + 0.5𝜎2!"
!G 𝑇-

𝜎2!"?𝑇-
 

 

𝑑! =	𝑑" −	𝜎2!"?𝑇- 
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4. EMPIRICAL RESULTS 
 

4.1. Data Collection 

 The data collected consists of 188 firms listed on the NASDAQ-100 index from 

January 1st, 2001 to August 31st, 2023 and it is comprised of a total of 2,827,415 call 

options. The price of each security as well as the debt value from each firm’s balance 

sheet is gathered. Furthermore, call option prices for each firm are also collected, along 

with the continuously compounded zero-coupon interest rates that are obtained from the 

zero-coupon yield curve.  

 

 4.1.1. CRSP 

 Data is collected for each firm from the Center for Research in Security Prices 

(CRSP) database. Data consists of the i) Price or Bid/Ask Average (which is the closing 

price for a trading day), ii) the Volume ( which is the total number of shares of a stock sold 

on specific day, expressed in the units of one share). Furthermore, to be able to calculate 

the market capitalization of each firm, the iii) Shares Outstanding (the number of shares 

that are publicly held) are also collected.  

 

4.1.2. Compustat 

 Annual balance sheet information for each firm is collected from Compustat-

Capital IQ . This data is used to calculate the face value of debt for each firm. Compustat 

is also used to obtain data to calculate the Macaulay duration of debt, which I use as the 

maturity of debt (𝑇.).  
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The complete list of variables that are used to calculate the face value of debt are the 

following: i) the total current liabilities (LCT), ii) the debts that mature in year one through 

five. Furthermore, I gather the iii) total long-term debt (DLTT), which is the reported debt 

with a maturity longer than five years. I gather data for the iv) accrued expense and 

deferred income (AEDI), v) deferred charges (DC), vi) notes payable (NP), vii) the debt 

of the consolidated subsidiary (DCS), viii) the finance subsidiary (DFS), ix) notes debt 

(DN), x) other liabilities (LO), xi) debentures (DD), xii) contingent liabilities (CLG), xiii) 

mortgage debt and other secured debt (DM), xiv) long-term debt tied to the prime rate 

(DLTP), xv) total assets (AT). I also collect the data for xvi) the capitalized lease obligation 

(DCLO), which is due to expire in the seventh year, and xvii) the federal, foreign, and 

state deferred tax.  

 

Similar, to Geske et al. (2016), I refrain from using all data which has convertible debt 

(DCVT) with more than 3% of the total assets (AT). In addition, data which has finance 

subsidiary (DFS) greater than 5% of total assets is also excluded from the analysis 

(Geske et al, 2016). Furthermore, if the total long-term debt (DLTT) and the debt 

maturities from year one to five are not available, the data is omitted (Geske et al, 2016).  

 

4.1.3. OptionMetrics 

 Data on call options traded on each firm’s underlying assets is gathered directly 

from OptionMetrics. The information I incorporate in my dataset is the following, i) the 

date the option is traded on, ii) the expiration date of the option and the iii) option’s strike 

price (K). I also obtain the iv) closing bid price which is referred to as the best bid. 
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Furthermore, I gather v) the best offer, meaning the best closing ask price of the option, 

vi) the total volume of the option that is traded, vii) the open interest per day for each 

option, viii) the delta of the option and ix) the implied volatility of the option, which is 

calculated using the Black Scholes equation. 

 

I delete from the sample data all the options that are missing fields such as the 

expiration date or the open interest. I also include only options for which the bid price is 

positive and smaller than the offer price. In addition, if the volume of the option is zero, 

the options are also disregarded in the analysis. As well, like Geske et al. (2016), all 

options that violate the arbitrage condition C ≤ S – K𝑒&') are omitted.  

 

4.1.4. Yield curve 

 The continuously compounded zero coupon interest rates and the days to maturity 

are obtained from the OptionMetrics databased from January 1st 2001 to August 31st 

2023. Any missing interest rate are interpolated from the zero-coupon yield curve.  

 

4.2. Analysis of Data 

The results obtained from the 188 firms are analysed and compared according to 

the implied volatility obtained from the Black Scholes and Compound Option model. The 

interpolated implied volatility from the models is compared to the implied volatility from 

Optionmetrics (Market). The difference between the observed implied volatility and the 

market implied volatility is defined as the error and calculated as follows:  

 

𝐼𝑚𝑝𝑙𝑖𝑒𝑑	𝑣𝑜𝑙. 𝐸𝑟𝑟𝑜𝑟	𝐵𝑆	=	|(𝑀𝑎𝑟𝑘𝑒𝑡−𝐵𝑆)|
34'56*	
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𝐼𝑚𝑝𝑙𝑖𝑒𝑑	𝑣𝑜𝑙. 𝐸𝑟𝑟𝑜𝑟	𝐶𝑂	=	|	(𝑀𝑎𝑟𝑘𝑒𝑡−𝐶𝑂)|
34'56*	

	

 

To compare the pricing performance, the results obtained by each model are 

analysed in terms of specific factors. The factors used to analyse the improvement of the 

compound option model to the Black Scholes model are moneyness, time to maturity and 

the leverage ratio.  

 

Moneyness is the proportion of the strike price (K) to the stock market value of the 

underlying stock (S) and is classified in terms of ITM [0.89-0.95], ATM [0.96-1.05] and 

OTM [1.06-1.55]. Furthermore, the time to maturity (TTM) is the duration of time for which 

the option can be exercised. Lastly, since the objective of the paper is to observe whether 

incorporating the firm’s debt can improve the performance in call option pricing it is vital to 

observe the leverage ratio.  

 

Leverage	ratio	=	 7486	049:6	;<	=6>*
34'56*	049:6	;<	/?:-*@

	

 
The leverage ratio allows a better understanding of the capital structure of each 

firm being evaluated and how incorporating leverage in option pricing impacts the 

performance of the model. 
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4.3. Descriptive Statistics 
 

Table I 
Sample Composition 

 
 

The sample contains 2,827,415 observations on options for 188 firms between 2001 and 2023. The 
table represent summary information on relative option strikes (K/S), Compound Option implied 
volatilities (%), Black-Scholes implied volatilities (in %), as well as the number of available 
observations according to option types (Panel A), maturities (Panel B) and moneyness (Panel C). 
 

  

Panel A: All options    
Rel. Strike Impl. Vol. CO Impl. Vol. BS 

 

  Mon t Avg. Q05 Q95 Avg. Q05 Q95 Avg Q05 Q95 N 
Calls All All 1.06 0.91 1.34 36 20 58 35 20 57 2,827,415 

Panel B: By Maturity    
Rel. Strike Impl. Vol. CO Impl. Vol. BS 

 

  Mon t Avg. Q05 Q95 Avg. Q05 Q95 Avg Q05 Q95 N 
Calls All [0.25-0.50) 1.06 0.91 1.33 36 19 59 35 19 58 1,735,314 

All [0.50-0.75) 1.06 0.91 1.35 35 20 57 35 20 56 765,828 
All [0.75-1.00] 1.08 0.91 1.39 35 21 54 34 21 54 326,273 

Panel C: By Moneyness    
Rel. Strike Impl. Vol. CO Impl. Vol. BS 

 

  Mon t Avg. Q05 Q95 Avg. Q05 Q95 Avg Q05 Q95 N 
Calls ITM All 0.92 0.9 0.94 33 18 55 34 19 57 523,531 

ATM All 0.99 0.95 1.04 33 18 55 34 19 55 1,079,351 
OTM All 1.18 1.05 1.42 39 23 61 36 21 59 1,224,533 
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Table II 
Leverage Composition 

 
 
The sample contains 2,827,415 observations on options for 188 firms between 2001 and 2023. The 
table represent summary information such as the average and percentiles (5th, 25th, 75th, 95th) 
for the leverage ratio (%) of the sample data.  
 

Panel A : All options 

   Leverage Ratio  
 Mon. t Avg. Q05 Q25 Q75 Q95 N 

Calls All All 41.20 3.01 11.06 45.94 137.81 
 

2,827,415 
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Graph I 
Leverage Composition 

 
 

The graph represents a histogram of the leverage ratio from the dataset consisting of 188 firms 
and displays the frequency distribution of the leverage ratio. The histogram also includes the 
percentiles (5th, 25th, 75th, 95th).   
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Table III 
Top Ten Industries in Sample Data 

 
 

The sample data contains 188 firms on the NASDAQ between 2001 and 2023. The firms within the 
sample vary in industry. The following table identifies the top 10 industries in decreasing order 
within the sample data.  
 

SIC Industry 

7372 Prepackaged Software 

3674 Semiconductor, Related Device 

2834 Pharmaceutical Preparations 

7389 Business Services, N.E.C 

2836 Biological Products, Except Diagnostics 

7370 Computer Programming, Data Process 

4841 Cable and Other Pay TV Services 

7371 Computer Programming Service 

3572 Computer Storage Devices 

3576 Computer Communications Equipment 
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Table IV 
Summary Statistics 

 
The sample contains 2,827,415 observations on options for 188 firms between 2001 and 2023. The 
table represents the average implied volatility calculated using the compound option model and 
their standard deviations (SD) reported in percent and annualized. Sk denotes the coefficient of 
skewness. The time to maturity (TTM) is observed for options between [0.25-1.00]. In addition, 
the moneyness (K/S) for options between [0.89-1.50].  

 
Panel A: By Maturity 

  Call options  
Mon. t Avg. SD sk N 
All [0.25-0.50) 36 6.85 1.256      1,735,314  
All [0.50-0.75) 35 6.91 1.201          765,828  
All [0.75-1.00] 35 6.89 1.416          326,273  

Panel B: By Moneyness 
  Call options  

Mon. t Avg. SD sk N 
ITM All 33 6.94 1.296          523,531  
ATM All 33 6.70 1.208      1,079,351  
OTM All 39 6.98 1.277      1,224,533  
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4.4. Implied Volatility error of BS model and CO model by year 
 

Table V 
Mean Implied Volatility error for BS and CO by Year & TTM 

 
 

The sample contains 2,827,415 observations on options for 188 firms between 2001 and 2023. The 
following table reports the average percent implied volatility errors of Black and Scholes (BS) and 
compound option (CO) model valuations by calendar year from 2001 to 2023, as well as by time 
to expiration. The percent implied volatility error is defined as |(34'56*&3;.69	(BC	;'	DE)|

34'56*
.  

 

  

Panel A: Volatility error of BS model and CO model by year 
 Black-Scholes model Compound Option model  

Year [0.25-0.50) [0.50-0.75) [0.75-1.00] [0.25-0.50) [0.50-0.75) [0.75-1.00] N 
2001 3.46 2.55 1.88 1.11 1.27 1.22 14,040 
2002 5.79 4.69 4.73 1.33 1.79 2.09 9,788 
2003 6.11 5.23 3.85 1.54 1.87 2.21 17,689 
2004 5.75 5.09 5.04 1.53 1.68 1.86 32,146 
2005 5.09 4.27 4.16 1.64 1.66 1.83 39,810 
2006 4.84 3.97 4.12 1.61 1.58 1.80 57,174 
2007 4.84 4.32 4.30 1.56 1.58 1.87 74,431 
2008 4.70 4.12 3.90 1.56 1.61 1.71 45,948 
2009 5.26 4.34 4.12 1.58 1.63 1.72 57,750 
2010 6.09 4.93 5.59 1.57 1.61 1.92 95,446 
2011 6.18 5.16 5.24 1.60 1.66 1.90 127,199 
2012 6.26 5.26 5.57 1.86 1.89 1.93 128,982 
2013 4.72 4.14 4.42 1.83 1.72 1.94 134,332 
2014 4.71 3.70 3.40 1.78 1.60 1.71 151,884 
2015 5.50 4.82 4.79 1.68 1.62 1.82 131,744 
2016 6.15 5.44 5.31 1.75 1.78 1.87 123,100 
2017 5.26 4.64 4.75 1.72 1.58 1.83 187,360 
2018 5.42 4.35 4.56 1.67 1.50 1.73 210,582 
2019 5.40 4.61 4.61 1.61 1.50 1.83 193,987 
2020 4.62 4.05 4.09 1.61 1.51 1.80 290,156 
2021 5.12 4.17 3.82 1.63 1.45 1.75 324,308 
2022 5.50 4.79 4.73 1.43 1.49 1.81 235,269 
2023 6.36 5.82 5.31 1.51 1.54 1.68 144,290 
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Graph II 
Average Implied Volatility Error by Year  

 
 

The graph below shows the average percent error of implied volatility that is calculated using 
both the compound option model and the Black Scholes model 
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4.5. Implied Volatility error of BS model and CO model by leverage & TTM 
 

Table VI 
Mean Implied Volatility error for BS and CO by Leverage & TTM 

 
 

The sample contains 2,827,415 observations on options for 188 firms between 2001 and 2023. 
Panel A reports the mean percent volatility errors of Black and Scholes (BS) and the compound 
option (CO) model valuations by leverage ratio (sample data divide in quantiles), as well as by 
time to expiration (TTM) between three months and one year for all moneyness. The sample data 
leverage ratio by TTM was also observed by moneyness ITM (Panel B), ATM (Panel C) and OTM 
(Panel D). The percent implied volatility error is defined as |(34'56*&3;.69	(BC	;'	DE)|

34'56*
 . 

 
Panel A: All 

   Mean error  
Mon. t Leverage Quantiles Black-Scholes model Compound Option model N 
All All 0-25% 4.67 1.42 706, 874 
All All 26-50% 4.97 1.53 706, 847 
All All 51-75% 5.30 1.63 706, 873 
All All 76-100% 5.26 1.98 706, 821 
 

Panel B: By ITM 

 Mean error  
 Black-Scholes model Compound Option model  

Leverage 
Quantiles 

[0.25-0.50) [0.50-0.75) [0.75-1.00] [0.25-0.50) [0.50-0.75) [0.75-1.00] N 

0-25% 3.81 3.26 3.01 1.29 1.47 2.02           121,360  
26-50% 4.12 3.59 3.27 1.47 1.44 1.98           124,116  
51-75% 4.80 4.12 3.52 1.66 1.54 2.18           130,506  
76-100% 5.36 4.79 4.48 2.46 2.26 2.13           147,549  

Panel C: By ATM 

 Mean error  
 Black-Scholes model Compound Option model  

Leverage 
Quantiles 

[0.25-0.50) [0.50-0.75) [0.75-1.00] [0.25-0.50) [0.50-0.75) [0.75-1.00] N 

0-25% 1.18 0.95 0.90 0.80 0.92 1.09           242,562  
26-50% 1.32 1.06 0.94 1.03 1.11 1.50           262,587  
51-75% 1.59 1.27 1.02 1.25 1.27 1.56           279,386  
76-100% 1.85 1.49 1.29 1.79 1.72 1.77           294,816  
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Table VI (continued) 
Panel D: By OTM 

 
Mean error  

Black-Scholes model Compound Option model  
Leverage 
Quantiles 

[0.25-0.50) [0.50-0.75) [0.75-1.00] [0.25-0.50) [0.50-0.75) [0.75-1.00] N 

0-25% 8.16 6.85 6.34 1.80 1.77 1.87           342,952  
26-50% 9.14 7.60 7.23 1.91 1.78 1.91           320,144  
51-75% 10.15 8.45 7.53 1.98 1.83 1.96           296,981  
76-100% 9.82 8.52 8.03 2.07 1.88 1.92           264,456  
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Graph III 
Comparison of Leverage Quantiles and Mean Implied Volatility Error by Model 
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4.6. Implied Volatility error of BS model and CO model by moneyness & TTM 
 

Table VII 
Mean Volatility error for BS and CO by Moneyness & TTM 

 
 

The sample contains 2,827,415 observations on options for 188 firms between 2001 and 2023. 
Panel A reports the mean percent implied volatility errors of Black Scholes (BS) and the compound 
option (CO) model valuations by moneyness, as well as by time to expiration (TTM) between three 
months and one year. The percent implied volatility error is defined as |	(34'56*&3;.69	(BC	;'	DE)|

34'56*
 . 

 

  

Panel A: By All 

 Mean error  

 Black-Scholes model Compound Option model  
Mon. [0.25-0.50) [0.50-0.75) [0.75-1.00] [0.25-0.50) [0.50-0.75) [0.75-1.00] N 

ITM 4.58 3.97 3.58 1.76 1.69 2.08 523,531 

ATM 1.51 1.20 1.04 1.25 1.26 1.49 1,079,351 

OTM 9.25 7.79 7.25 1.93 1.81 1.92 1,224,533 
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4.7. Implied Volatility error of BS model and CO model by leverage & moneyness 
 
 

Table VIII 
Mean Volatility error for BS and CO by Leverage & Moneyness 

 
The sample contains 2,827,415 observations on options for 188 firms between 2001 and 2023. The 
table reports the mean percent volatility errors of Black and Scholes (BS) and the compound option 
(CO) model valuations by leverage quantiles as well as by moneyness across all time to maturities 
ranging from 3 months to one year. The percent volatility error is defined as 
|(34'56*&3;.69(BC	;'	DE)|

34'56*
 . 

 

Panel A: By All 

 
Mean error 

 

 
Black-Scholes model Compound Option model 

 
Leverage Quantiles ITM ATM OTM ITM ATM OTM N 

0-25% 3.58 1.09 7.59 1.42 0.87 1.80 706,874 

26-50% 3.89 1.21 8.47 1.52 1.10 1.88 706,847 

51-75% 4.47 1.44 9.31 1.68 1.29 1.94 706,873 

76-100% 5.14 1.71 9.28 2.38 1.77 2.01 706,821 
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5. DISCUSSION 
 
5.1. Empirical Findings 

The results from the sample data consisting of 2,827,415 options and representing 

188 firms listed on the NASDAQ-100 from January 2001 and August 2023, are observed 

in the various tables and graphs in section 4-Empirical Results of this research paper. 

The percent error of implied volatility of both the Black Scholes (BS) and the compound 

option (CO) model are analysed and compared.  

 

5.1.1. Sample Data Analysis  

Panel A: All options of Table I- Sample Composition, presents the average and the 

quantiles (5th and 95th) for the relative option strike prices (K/S) and the implied volatility 

obtained from both the CO model and BS model. The results infer that the average implied 

volatility is 36% for CO and 35% for BS with 5th and 95th percentiles of roughly 20% and 

58% respectively. Panel B, which analyzes the results by maturity and Panel C by 

moneyness, also show that the average implied volatility and percentiles for the two 

models are similar.  

 

 Table II- Leverage Composition shows that there is a diverse range of financial 

leverage among the firms, as evidenced by the varying leverage ratios. The mean 

leverage is 41.20%, indicating that on average the firms in the sample data have a market 

value of equity that is greater than the face value of debt. The 75th percentile is evaluated 

at 45.94%, indicating that three-quarters of the firms have a leverage ratio of that level or 

below. In contrast, at the 95th percentile there is an increase in the leverage ratio which 
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is 137.81%. The 95% percentile of the data point is a small portion of the sample that 

consists of highly levered firms in comparison to the average firms observed.  

 

Panel A of Table IV- Summary Statistics represents the summary statistics for call 

options categorized by time to maturity across all moneyness. The results show that there 

are stable standard deviations (6.85, 6.91, 6.89), revealing steady market conditions and 

pricing behaviors for the compound option model. The skewness values (1.256, 1.201, 

1.416) indicate an asymmetry, with a rightward skewness with a greater likelihood of 

significant positive price movements of the underlying stock as the maturity increases, 

particularly for options within the maturity range ([0.75-1.00]).  

 

Panel B of Table IV categorizes call options based on their moneyness—In-the-

Money (ITM), At-the-Money (ATM), and Out-of-the-Money (OTM) and presents data on 

the average implied volatility (Avg), Standard Deviation (SD), and Skewness (sk). It 

reveals that expected returns are relatively uniform across the different moneyness 

categories, which range from 33% and 39%. The OTM options are showing slightly higher 

average volatility. The standard deviation is also comparable across the categories, 

although slightly higher for OTM options at 6.98, versus 6.70 for ATM and 6.94 for ITM 

options, reflecting the increased risk and sensitivity of OTM options to price changes in 

the underlying asset. Skewness across all categories is positive, suggesting a rightward 

skew in the distribution. The ATM options showing the lowest skewness at 1.208, 

meanwhile, ITM and OTM options are indicating a higher probability of achieving 

significantly above-average volatility.  
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5.1.2. Pricing variation across time  

To observe the benefit of incorporating firm leverage in option pricing, the Black 

Scholes and compound option model are compared to each other by observing certain 

behaviours and patterns across the years. Table V reveals the implied volatility error for 

both the Black Scholes model and the compound option model by year and time to 

maturity (TTM). The data reveals that from 2001 to 2023, the CO model predicts the 

implied volatility more accurately, as indicated by the consistently lower percent errors. It 

is observed that over the years the CO model performs better for the shorter maturity 

buckets (0.25-0.50), in comparison to the longer time to maturities (0.75-1.0). Proposing 

that the improved model performance for shorter maturing options is due to less 

uncertainty for changes in the debt-equity levels in the short term, therefore they are less 

volatile.  

 

Furthermore, for the CO model the results show that there is no consistent pattern 

of increase or decrease of implied volatility error from one year to the next. Therefore, the 

accuracy for pricing may not vary specifically from one year to the other or in terms of 

time. However, it is observed that in the years for which there was financial distress (e.g. 

2002, 2003, 2008, 2020), the percent errors are greater during those periods. This is 

consistent with Graph II- Average Implied Volatility Year, which shows that the average 

implied volatility error during those specific years is higher. That greater variability can be 

the cause for the increase in percent error that is observed.  
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5.1.3. Economic events impacting price variation   

Between 2001 and 2023, there have been several economic events that have 

impacted the financial markets. Notably, in 2001, the dot-com bubble burst, which was a 

result of a decline in the linear relationship between earnings and stock returns for firms 

in the technology sector (Morris & Alam, 2012). During that period, there was an increase 

in IPOs for dotcom firms without much understanding of their debt equity structure and 

the viability of their businesses to generate profit (Magin & DeLong, 2006). The NASDAQ 

experienced substantial loss between February 2000 to October 2002, where it lost nearly 

three quarter of its value, resulting in one of the most significant declines in technology 

stocks (Magin & DeLong, 2006). This phenomenon can explain the results in Graph II, 

where we see an increase in the implied volatility error in 2002. The increase in implied 

volatility is more pronounced in the Black Scholes model whose recovery began only as 

of 2003. In addition, this noticeable implied volatility error is expected since the firms 

within the sample data are mainly technological companies, evident from Table II -Top 

Ten Industries in Sample Data.  

 

Furthermore, Graph II, shows that in 2012 there was an increase in the implied 

volatility error. This could be explained by the U.S fiscal cliff, which occurred during that 

period and threatened tax increases within the United States along with spending cuts, 

which caused uncertainty in the market (Brown, 2012). The fiscal cliff refers to the end of 

the Bush era tax cuts, the 2% reduction in payroll taxes, and other tax breaks that were 

coming to expiration during that period (Brown, 2012). During this time, fear of a recession 

https://www-sciencedirect-com.proxy2.hec.ca/science/article/pii/S1062976912000245#bib0075
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was looming which caused uncertainty in the US economy (Brown, 2012) and is evident 

from the increase in implied volatility error for both the BS and CO models.  

 

The compound option model results show that it is less impacted by the events 

mentioned above, primarily because both incidences revolve around debt. The firms 

mainly impacted tend to be those that are heavily levered. The CO model incorporates 

leverage, therefore, the model accounts for that uncertainty. The changes in the debt-

equity ratio alters the total risk and in turn it is reflected in the implied volatility results 

obtained from the CO model.  

 

5.1.4. The leverage effect in option pricing 

Graph I-Leverage Composition, illustrates debt-equity ratio among the firms from 

the data sample. Many of the firms have a leverage ratio below fifty percent. Furthermore, 

most of the firms are moderately levered, while a few outliers are highly levered, 

substantially inflating the average. The sample data supports the reality that there is 

significant variability in how firms manage their leverage from conservative to a highly 

levered approach.  

 

The 188 firms from the sample data represent 81 different industries according to 

their respective standard industrial classification (SIC) code. It is apparent in Table III- 

Top Ten Industries in Sample Data, which lists the top 10 industries from the data, that 

there is a large number of firms in the technology sector. Moreover, the results shows 

that 49.5% of the firms within the sample focus mainly on industries that are at the 
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forefront of technological advancements as well as in research and development. These 

results are to be expected, since the firms on the NASDAQ-100 are mainly in the 

technology sector.  

 

Panel A from Table VI reports the mean percent volatility errors for all options 

under both the Black and Scholes (BS) model and the compound option (CO) model 

valuations. The results observe the leverage ratios which are divided into quantiles. The 

results show that the CO model consistently has lower mean error values in comparison 

to the Black-Scholes model across the leverage quantiles. The results suggest that the 

compound option model is better suited at handling the sample data across the different 

leverage buckets. In addition, as the leverage quantiles increase from 0-25% to 51-75%, 

both models experience an increase in the percent error, suggesting that higher debt-

equity ratios cause more uncertainty for both option pricing models. For the CO model, 

the greater mean error is identified to be in the 75-100% percentile, suggesting the model 

is sensitivity to firms with very high leverage, although it is noticeable from the error values 

it is still significantly less than the BS model (the BS model error is on average 3.4% 

greater).  

 

Panel B of Table VI observes the mean percent implied volatility errors of the Black 

Scholes model and the compound option model by quantile leverage ratio, as well as by 

time to expiration (TTM) for ITM options. For the CO model, the results show that for the 

options in time buckets (0.75-1.0), the mean percent volatility errors are slightly greater 

than for shorter maturities, which was not the same behavior as the results for the implied 
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volatility errors from the Black Scholes model. Although, both models did show the pattern 

that as the leverage quantiles increased so did the implied volatility error. This indicates 

that both models are sensitive to firms with greater debt to equity ratios for ITM options. 

Although, the BS model implied volatility errors are nearly double those of the CO model. 

Therefore, the compound option model pricing performance is still better at pricing ITM 

options.  

 

The results for the out of the money (OTM) options that are in Panel D of Table VI, 

indicate that the compound option model consistently outperforms the Black Scholes 

model in terms of mean implied volatility error. The BS model has greater error for the 

mid to high leverage buckets. While the CO model maintains a more uniform error 

distribution.  

 

Panel C of Table VI shows the implied volatility errors of the Black Scholes (BS) 

model and the compound option (CO) model by leverage ratio quantiles, time to expiration 

(TTM) for at the money options (ATM). Both models perform best for ATM options 

because they are calibrated and optimized with these options. This explains the relatively 

low percent implied volatility error. Similarly, Panels B and D of Table VI, which are the 

results for the ITM and OTM options respectively, have higher degree of implied volatility 

error at higher leverage buckets. Overall, the results from Table VI show that based on 

the low implied volatility errors, that the CO model can capture leverage dynamics better 

than BS, in particular for the options of firms in the higher leverage quantiles. 
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5.1.5. Pricing variation by moneyness and TTM 

The results from Table VII, display the mean implied volatility error for both the 

Black Scholes model and compound option model by moneyness and time to maturity. It 

is observed that the compound option model performs better than the Black Scholes 

model across all moneyness and TTM. The Black Scholes model struggles at pricing 

options that are out of the money, evident by the greater implied volatility error. The BS 

model has greater, implied volatility error, specifically for options that are both in the 

money and at the money. Meanwhile, the CO model, generally has the same behaviour 

throughout the moneyness and TTM buckets, suggesting the model is not sensitive to 

these factors.  

 

Table VIII shows the results for the mean percent volatility errors for both the Black 

Scholes and the compound option model by leverage quantiles and by moneyness across 

all TTM. The Black Scholes model has a higher mean implied volatility error throughout 

but specifically for the heavily levered firms who have options that are OTM. The 

compound option model also displays greater error at the higher leverage quantiles (76-

100%), however the CO model has significantly less implied volatility error than the BS 

model, especially for OTM options.  
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5.1.6. Overall Summary of Results 

The overall results of my research imply that the compound option model is better 

at pricing options than the Black Scholes model. The CO model has lower implied volatility 

errors, especially when compared to the BS model in terms of moneyness, time to 

maturity and the leverage ratio quantiles.  

 

The results show that the compound option model works better than the Black 

Scholes model because it can capture changes in the equity volatility. The changes in the 

equity volatility are captured because it appears to vary with leverage. This is evident in 

both Tables VI and VIII. The Black Scholes model has difficulty pricing options for the 

firms with greater leverage, evidenced by the greater percent error of implied volatility. 

Meanwhile, the CO model has more stable errors throughout the leverage quantiles. The 

results obtained are in accordance with Geske, Subrahmanyam and Zhou’s (2016) 

research. Their results showed that the compound option model performed better at 

pricing over the Black Scholes model, especially for the firms with greater leverage ratios 

(151-200%) (Geske et al, 2016). Therefore, the improvement observed from the results 

of the compound option pricing model is the effect of incorporating leverage on asset 

prices as the strike price (Geske et al, 2016).  

 

The objective of the following research was to analyse the compound option pricing 

model and determine whether incorporating leverage can improve the performance in call 

option pricing. The results do suggest that the CO model captures the variance in equity 

better than the BS model especially for the firms with higher leverage. Moreover, what is 
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interesting is that the results show the compound option model’s pricing performance for 

firms that are mainly in the technology sector. These are firms that tend to have a lot of 

variation of leverage over time. The compound option model can capture the changes in 

equity volatility successfully because financial leverage alters the volatility of equity as the 

market attempts to continuously reevaluate the firm’s cash flow (Geske, 1979). 

 

5.2. Limitations of Compound Option Model 

 Overall, it is fair to state that the CO model is a reliable model that can be used to 

price options as it takes into account the leverage effect. However, one of the model’s 

weaknesses is the sensitivity of the optimizer with respect to the initial starting values for 

the four unknowns it is solving. If the starting values are too distant from the actual values, 

the solution generates a greater error. To mitigate this negative impact, the initial values 

are tested to ensure they reflect market conditions. Furthermore, another weakness is 

that the options from the dataset are American options, but the model treats them as 

European options.  

Another drawback of the compound option model is that it requires four additional 

parameters (D, D*, 𝜎$!", 𝜎$!#) to price the option. These parameters need to be implied 

and solved for in order to price the call option using the CO model. This is more complex 

and longer to compute in comparison to the more simplistic Black Scholes model. In 

addition, the extra parameters also make it easier to fit the options prices, therefore large 

data is required to avoid overfitting the sample.  
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The CO model solves the four unknowns (D, D*, 𝜎$!", 𝜎$!#) using a python optimizer. 

To solve the four unknowns, three closest to the ATM options are used. In some cases, 

within a certain time bucket, there are only a limited number of options for a firm. Hence, 

the model can optimize the four unknown values to those options better and therefore the 

error for those options is minimal.  

Furthermore, the volatility of the stock in the compound option model is time-varying, 

this is however not the same as for stochastic volatility models. This is because the 

volatility only depends on the leverage and the leverage in the end only depends on the 

value of the assets. This implies that volatility is a function of the assets and is driven by 

the same source of risk. This risk can only be hedged if the assets are sold, which means 

that it cannot really be hedged away. Therefore, it suggests that volatility is driven by a 

separate source of risk which is captured in stochastic volatility models and not in the CO 

model.  

To fully evaluate the option pricing performance of the compound option model in 

relation to the leverage effect, it would be more comprehensive if a stochastic volatility 

model is also considered.  

Previous studies have shown that the asset price volatility is stochastic, which 

suggests that the underlying forces for the return variation includes an unobservable 

shock (Veraart & Veraart, 2012).  

 

If the behaviour of a stock price satisfies a stochastic differential equation, then the 

stock price can be described by a stochastic model (Fouque & al, 2000) such as: 
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𝑑𝑋* = 	𝜇𝑋*𝑑𝑡 + 𝑓(𝑌*)𝑋*𝑑𝑊* 

𝑑𝑌* = 𝑏𝑌*𝑑𝑡 + 	𝜎𝑌*𝑑𝑍* 

 

The W and Z are Brownian motions, which are the components that the model changes 

randomly and continuously over very small intervals of time (Veraart & Veraart, 2012).  

 

To fully appreciate and evaluate the option pricing performance of the compound 

option model, it would be interesting to compare the CO model to a stochastic volatility 

model using the same sample set. A stochastic volatility model to consider would be the 

Heston model.  

 

5.2.1. The Heston model 
 

The Heston model is a stochastic volatility model which was presented in a research 

paper by Heston (1993) titled “A Closed-Form Solution for Options with Stochastic 

Volatility with Applications to Bond and Currency Options”. It is a commonly used 

stochastic volatility model, primarily because it allows for the random correlation between 

volatility and spot asset returns (Heston, 1993). As per Heston’s research, the correlation 

between the volatility and the spot asset price, is responsible for explaining return 

skewness and biases in the strike price from the Black Scholes (1973) model (Heston, 

1993).  
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The Heston model assumed that the stock price (𝑆*)	is lognormally distributed and that 

the volatility (𝑉*)	follows a Cox-Ingersoll-Ross process (CIR process) (Yang, 2013). The 

model is as follows (Yang, 2013):  

𝑑𝑆* = 	𝜇𝑆*𝑑𝑡 + ?𝑉*𝑋*𝑑𝑊* 

𝑑𝑉* = 𝑥(𝜃 − 𝑉*)𝑑𝑡 + 	𝜎?𝑉*𝑑𝑍* 

𝑑𝑊*𝑑𝑍* = 	𝜌𝑑𝑡 

The following parameters are used: 

 

𝜇 = 𝑑𝑟𝑖𝑓𝑡	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡	𝑓𝑜𝑟	𝑡ℎ𝑒	𝑠𝑡𝑜𝑐𝑘	𝑝𝑟𝑖𝑐𝑒 

𝜃 = 𝑙𝑜𝑛𝑔	𝑡𝑒𝑟𝑚	𝑚𝑒𝑎𝑛	𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

𝑥 = 𝑚𝑒𝑎𝑛	𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑜𝑛 

𝜎 = 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 

 
The Heston model also considers the leverage effect, for which the stock returns 

and implied volatility are negatively correlated (Yang, 2013). As well, the Brownian 

motions 𝑊* and 𝑍* are also correlated processes considered by the correlation coefficient 

𝜌	(Yang, 2013).  

 

The advantages of the Heston model is that it can better explain the stock price 

when it demonstrates a non-Gaussian distribution (Yang, 2013). Furthermore, it is better 

at fitting the implied volatility surface of option prices, and takes into account the negative 

correlation between stock price and volatility (Yang, 2013). Due to the component that 

considers stochastic leverage, it also incorporates an additional factor of randomness in 

the model to better predict market volatility (Yang, 2013).  
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 Furthermore, the Heston model also has its disadvantages. It is sensitive to the 

variations of its parameters, therefore the Heston model requires calibration (Yang, 2013). 

As well, for options with short maturity, the Heston model has difficulty capturing the skew 

that reflects the market (Mikhailov & Nogel, 2003). 

 

Inconclusion, all models, whether it be the Heston model or the compound option 

model, these models are not able to always perfectly capture the market behaviour and 

the option prices obtained may deviate from to the actual option prices. 
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6. CONCLUSION 
 

The following research analyses the compound option pricing model and whether 

incorporating leverage can improve the performance in call option pricing. This research 

paper collected data from 188 firms and analysed a total of 2,827,415 options between 

the years, 2001 and 2023. This research is inspired by the paper titled “Capital structure 

effects on the prices of equity call options” by Geske, Subrahmanyam and Zhou (2016), 

who also tested and analyzed the performance of the compound option model.  

 

What distinguishes the compound option model from the Black Scholes model is 

that the CO model accounts for debt and the expiration of debt obligations (Geske et al., 

2016). The Black Scholes model on the other hand, considers that the firm has no debt 

in its pricing model (Geske et al., 2016). For the purpose of this research, the analysis 

involves calculating the percent error of implied volatility for both the Black Scholes no 

arbitrage option pricing model and the compound option model and compares their pricing 

performance for firms listed on the NASDAQ-100.  

 

The percent error of implied volatility for both models are compared according to 

time in years, moneyness, time to maturity of the option and to the debt-equity ratio of the 

firms. Overall, the results show that there is an advantage in using the compound option 

model as it outperforms the Black Scholes pricing model, evident by the smaller percent 

error of implied volatility.  
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Furthermore, the results show that as the leverage ratio increases, the implied 

volatility error also increases. The results indicate that there is a relationship where the 

options of firms with a greater debt-equity ratio will have a greater variation in implied 

volatility, evident from the increase in percent error of the implied volatility. However, the 

compound option model performs overall better than the Black Scholes model, even for 

the higher levered firms. The reason for this improvement is that the compound option 

model can capture changes in equity volatility, which is not the case for the Black Scholes 

model. Also, an interesting observation from this research paper is the pricing 

performance of the compound option model on options of firms that are primarily in the 

technology sector. These firms are known to have a lot of variation in leverage over time, 

however the CO model can capture this behaviour well.  

 

The results obtained further supports that the improvement of the compound option 

model to price options is because the CO model includes financial leverage as the strike 

price in its pricing formula. The inclusion of the debt value allows to capture the time 

variation of the volatility of the firm (Geske et al., 2016) as seen from the performance of 

the model from the results.  

 

The implication of this research is that it supports the findings from other research 

papers on how the compound model’s pricing performance is better than the Black 

Scholes model. Furthermore, it shows how debt is an important variable to capture the 

stock’s stochastic process and if omitted can generate pricing errors (Geske et al., 2016). 
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