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Abstract 

Deep learning technics have noteworthy performance in today’s numerous applied 

science and technology domains. To have a deep learning model working very well, 

hyperparameters must get tuned which is done either manually, semi-manually or 

automatically. Additionally, this task is a challenging optimization problem, especially 

for non-experts who do not have a deep knowledge of this field. Various search algorithms 

exist to address this problem; however, they suffer from a compromise between intensity 

and diversity in a full automation. In this research, we exploit genetic algorithms to find 

a diverse and high-performance set of solutions. Genetic algorithms are derived from 

natural reproduction based on elite selection and randomness. We will investigate a fixed 

search space on the image classification benchmark MNIST datasets to serve the purpose 

of comparison with other works in the literature. The novelty of this algorithm lies in the 

crossover operators which bring diversity to the final set.  

Keywords: Hyperparameter tuning, genetic algorithm, evolutionary deep learning, 

diversity, crossover, convolutional neural networks  
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Chapter 1 
Introduction 

Deep learning techniques have noteworthy performances in today’s various applied 

science and technology domains. Medicine (Li et al., 2022), natural language processing, 

visual recognition (He et al. 2016, Krizhevsky et al. 2012, Redmon et al. 2016), speech 

recognition, object detection (LeCun et al., 2015), automatic game playing (Paduraru et 

al., 2021), recommendation systems (Dhelim et al., 2022) and many other problems are 

solved with the development of deep learning frameworks.  

On the other hand, these different deep learning models are most effective once their 

hyperparameter configuration is optimal (Lentzas et al. 2019, Yang & Shami 2020). The 

prediction of a learning algorithm depends on the values which we refer to as parameters. 

One type of parameter is conventionally initialized randomly and later updates throughout 

the progression of the model. These values are called model parameters. The other type 

are hyperparameters; values that are set before the training process begins. By tuning these 

hyperparameters we obtain control over the output (Goodfellow et al., 2016). This task is 

an important problem, and as such there are companies and cloud platforms that offer 

tools for it (Turner et al., 2021). 

One can tune hyperparameters manually for the user’s own benefit if the user starts from 

a reasonable point or if the model does not have more than a few hyperparameters. This 

reasonable point or value comes from the suggestions of others who have experience with 

the same architecture, neural network, or the same task. However, this starting point is 

not available in most cases (Goodfellow et al., 2016). Moreover, in the case of neural 

networks the number of hyperparameters is large and the model is complex, so the 

traditional way of tuning them may not be the best option (Olof, 2018). In case there is a 

few numbers of hyperparameters, for instance, support vector machines that has one or 

two hyperparameters, one can easily benefit from manual tuning. Aside from manual 

tuning, one can use an automatic conventional method such as grid search or a random 

search to obtain a faster convergence (Goodfellow et al., 2016). 
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Convolutional neural networks are neural networks with the key that they include at least 

one layer in which convolution is used instead of a simple matrix multiplication. 

Convolution is a mathematical operation that is best applied on grid-like data, such as 

images where you can move over the pixels using a filter as time passes. In fact, a 

convolution is a weighted average operation at every moment. A dot product 

multiplication happens between the weight array and the input image. The first argument 

is called “kernel” and the second argument is the input and the output of this multiplication 

is called “feature map”. The kernel has two dimensions at every moment as it is moving 

over the input image. This way allows us to detect object edges. After the convolution 

operator is performed, a nonlinearity e.g., rectified linear function is applied. In the end, 

a pooling function will execute. Pooling function summarizes the output in a statistical 

fashion. This function includes max pooling, min pooling and average pooling as three 

types. Pooling summarizes a rectangular neighborhood pixel with either their maximum, 

minimum or average values. Therefore, a single convolutional layer consists of a layer of 

convolutions, a nonlinearity after that, and finally a pooling layer. A convolutional neural 

network incorporates one or more of convolutional layers followed by one or more fully 

connected feedforward layers (Goodfellow et al., 2016). 

Convolutional Neural Networks (CNNs) are known as one of the most important research 

fields due to their application in computer vision (Li et al., 2022), document type 

classification (Silva et al., 2018), historic and environmental collections (Lin et al., 2019), 

climate analysis (Chattopadhyay et al. 2020, Rosentreter et al. 2020), agriculture 

(Kamilaris & Prenafeta-Boldú, 2018), recommendation systems (Li et al. 2022, Mittal et 

al. 2022, Lee & Kim 2022), modeling artificial organs (The lazy programmer, 2016), etc. 

Subsequently, successfully tuning hyperparameters of a CNN to obtain the highest 

accuracy for such a practical architecture is of high interest.  

Hyperparameter tuning is an optimization problem where hyperparameters are decision 

variables, and the validation error is the cost that we want to minimize. To estimate this 

cost, Bayesian regression is very often used. Model-based optimization indeed consists of 

a trade-off between exploitation and exploration (Goodfellow et al., 2016). Continuing 

onto gradient-based models, Nelder & Mead (1965) uses Gaussian method to create a new 
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optimization algorithm that outperforms Bayesian optimization for hyperparameter 

tuning. Another type of model-based optimization utilizes surrogate methods instead of 

gradient optimization (Nelder & Mead, 1965). In case that the objective function is not 

available or very costly to estimate, surrogate model defines few objective function 

evaluations to find a global minimum (Gutmann, 2001). To name two of this type of 

optimizations we have Tree-structured Parzen Estimator (Bergstra et al., 2011) and fully 

Bayesian treatment for EI (Snoek et al., 2012). Still, the disadvantage that Bayesian 

models have is that they are sequential, and so there only a small opportunity for 

parallelization (Loshchilov & Hutter, 2016). 

There is another model-based hyperparameter optimization called population-based 

optimizations. These models can be parallelized easily. For instance, particle swarm 

optimization (PSO) is a population-based ensemble learning technique inspired by a flock 

of fish or bird navigation. Each solution in this algorithm is a particle. An initial 

population of solutions or particles are created randomly and from there, all particles 

begin to move. This movement is based on the particle’s own information (personal best) 

but also its collective information (global best). All the particles store these two values 

and will move in a certain amount toward their personal best, then later in the same 

amount toward the population’s global best. This movement or the ‘velocity’ is calculated 

based on this information and it will be added to the current position of the particle for 

acquiring a new position. In the subsequent round, a global best is declared for all, the 

particles new velocity is calculated based on both their own personal best and global best 

until now, repeating this procedure until finding the global minimum (Eberhart et al., 

1995). Guo et al. (2021) has provided a distributed particle swarm optimization that 

outperforms the traditional PSO variant. Furthermore, in (Lorenzo et al., 2017) another 

distributed PSO algorithm is introduced and has proven to bring desirable results within 

a reasonable timeframe. On the contrary, a downside to PSO is that the convergence rate 

is slow and there is a high probability that the algorithm falls into a local optimum (Li et 

al., 2014). This happens when the initial population does not include proper solutions. 

This occurs when the hyperparameters are discrete (Yang & Shami, 2020).  
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As described previously, population-based algorithms benefit from the initial steps in 

genetic algorithms (Nalçakan & Ensari, 2018). Genetic algorithm (He et al., 2016), 

evolutionary strategy (Srinivas & Patnaik, 1994), genetic programming (Srivastava et al., 

2015) are well known evolutionary algorithms from which the GA’s (genetic algorithms) 

are mostly used due to its promising evidence (Davis, 1991). The most important feature 

of the genetic algorithms besides the fact that they can resolve different optimization 

problems (Goldberg & Holland 1988, Miller et al. 1995, Zhang et al. 2003, Anderson-

Cook 2005, Malik & Wadhwa 2014), is their ability to be parallelized (Xiang & Zhining, 

2019). Additionally, they are known for their bio-inspired operators such as selection, 

crossover, and mutation (Back, 1996). Based on the problem in hand, the operations need 

to be designed accordingly. This evolution over generations selects the best individuals to 

pass on their features to the next generation and removes low capability individuals within 

the same process. In the last generation the global optimum is found and the search for 

hyperparameters terminates (Yang & Shami, 2020). 

Among the population-based metaheuristics available, genetic algorithms do not 

necessarily require a good initial generation, simply because they will select the best 

individual within the population to pass onto the next generation (Yang & Shami, 2020). 

Note that, often, the operators in the algorithm steps makes this automatic search 

technique very useful. For instance, in several papers (Guo et al. 2021, Nag & Pal 2015, 

Sun et al. 2020, Xiang & Zhining 2019, Mattioli et al. 2019, Young et al. 2015, Wang et 

al. 2018), they have their own set of operators to succeed. On the other hand, one 

widespread problem within these proposed algorithms is the lack of diversity for the final 

generation (Xiang & Zhining, 2019): meaning that most of the individual architectures 

are alike each other. Genetic algorithms need diversity since it prevents premature 

convergence. Premature convergence refers to the situation where crossover and mutation 

operators can no longer create a better individual which surpasses their parents (Gupta & 

Ghafir, 2012).  

The novelty of our proposed algorithm is achieved in two parts. First one is full 

automation in hyperparameter tuning, meaning that there is no manual intervention from 

the beginning of the search until the end where we acquire a set of solutions. Second one 
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is mimicking the crossover operator exactly as it is in the human body. The contribution 

of this research is built upon the following: 

1. Where most peer competitor algorithms use blocks of architecture, especially for 

CNNs, which in practice become complex, ineffective and cannot be generalized. 

We instead deploy each layer’s hyperparameters from the search space therefore 

leading to no blocks of layers. 

2. Most of the genetic algorithms focus on mutation operators and leave the 

crossover operators as simple as possible. In this work, we introduce crossover 

operations that improves upon diversification. 

3. There are some papers that claim tournament selection mechanism outruns 

truncation (ranked) and random selection. Therefore, we decided to apply a 

comparative study on this matter from a point of view benefiting diversification. 

To claim that this algorithm is more diverse, we performed an attempt to compare 

the state-of-the-art proposed algorithm (Xiang & Zhining, 2019) and our 

algorithm. 

4. Many of the hyperparameter tuning technics are not fully automated, however we 

designed a search algorithm that needs no manual intervention. 

We begin the next chapter with a detailed description of proposals within the field of 

genetic algorithms for hyperparameter tuning. Chapter 3 documents the method we 

used to obtain this new algorithm and everything about it. Next, the findings and 

results of the comparisons are written in Chapter 4. Chapter 5 concludes and further 

suggests future work.    
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Chapter 2 
Literature Review on Genetic Algorithms for 

Hyperparameter Tuning 

A convolutional neural network architecture typically consists of convolutional layers 

followed by pooling layers, and finally fully connected layers (Wang et al., 2018). This 

mix of convolutional layers and pooling layers creates the first section of the architecture, 

and the follow up section are fully connected layers. In the convolutional layer, utilizing 

a filter which is a matrix, moving across the image from left to the right and subsequently 

downward. An elementwise multiplication is applied to this area covered by the filter on 

the image and the results are summed together in each input channel to create the final 

feature map. There are two distinct types of convolutions: ‘Valid’ which defines itself by 

framing the image with padding, and ‘Same’ that is an image lacking any paddings.  

The designing of convolutional neural networks is divided into two categories (Sun et al., 

2020). First is when the designer has knowledge and a little background regarding the 

CNN designing. This means that the expertise of designer can help manually tune 

hyperparameters and there will be some automatic tuning involved that is “automatic + 

manually tuning”. The other one is the automatic tuning which does not require any 

knowledge of the designer and all the process is done automatically (He et al. 2021, 

Srinivas & Patnaik 1994, Mattioli et al. 2019, Hawkins, 2014). Not to mention that the 

manually tuning is that leads to higher accuracies (Srivastava et al., 2014). On the other 

hand, the automatic search is for the ones without any expertise and since many CNN 

users are not professionals with tuning manually then this category might be of their 

interest.  

This automation sometimes is the automation of every aspect of machine learning 

workflow and sometimes is limited to hyperparameter tuning and sometimes will be 

neural architecture design or neural architecture search (NAS) (He et al., 2021). Every 

NAS is composed of three stages: search space, architecture optimization, and model 

evaluation methods. Search space examples are entire-structured, cell-based, hierarchical, 

and morphism-based.  
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In the entirely structured architectures, they first define the whole architectures possible 

in the set of search space. So, each member of the search space is in fact an architecture 

itself. Also, there can be arbitrary skipping in some layers in the architecture which is 

going to be a little more complex. On the other hand, searching for a cell structure is easier 

than looking for the whole structure. This introduces cell-based architectures where there 

are blocks that are being repeated.  

Hierarchical search tries to focus on the architecture of cells as well as the architecture 

within each cell. This way, it is possible to explore hyperparameters of channels, feature 

maps for each layer and allows more complex and flexible topologies. 

Identity morphism transformation is a function that operates between the layers of a 

network and is classified into two types: by width and by depth. Each IdMorph can be 

used as in width direction or depth direction. This will result in having an equal model but 

a deeper or wider version of it. An upgrade version of IdMorph is network morphism. In 

this method, a child can inherent all the information of the father. 

Looking for an architecture optimization that can provide the best architecture in the 

search space previously defined, the architecture of a network is a static set of 

hyperparameters, and its optimization proceeds with trial and error. However, there are 

ways to automatically find the best combination for the specific task and dataset. Paper 

(He et al., 2021) takes the NAS problem to be a subproblem of hyperparameter 

optimization. There are different examples of such methods namely evolutionary 

algorithms, reinforcement learning, gradient descent, Surrogate Model-based 

Optimization, Grid and Random Search, Hybrid Optimization Method. In this review we 

only focus on the evolutionary algorithm.  

From another point of view, aside from the evolutionary optimization techniques (Huang 

et al., 2017) such as EAS, there are reinforcement learning technics such as MetaQNN, 

Block-QNN-A (Liu et al., 2018) that are used to solve the architecture design problem. 

These algorithms add the feature of reward-punishing from the reinforcement learning. 

From the paper (E. Real et al., 2017) we know that reinforcement learning technics require 

more resources compared to the evolutionary algorithms such as Genetic CNN and CGP-
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CNN (Suganuma et al., 2017). In these experiments, the authors observe that for example 

a Genetic CNN used 17 GPUs for one day to converge and a NAS algorithm with 

reinforcement learning RNN unit called (NASCell) (V. Le & Baret, 2017) consumes 800 

GPUs in 28 days to converge the same accuracy. 

The evolutionary algorithms are inspired by biological evolutions, thus is a population-

based paradigm for optimization. For an evolutionary algorithm, the first task to do is 

defining an encoding scheme. There are two types of direct and indirect encoding 

schemes: Direct encoding refers to the static genotype construction. In (Xie & Yuille, 

2017), the authors define a fixed-length binary string encoded for architecture design. In 

this paper, each node has a binary value in the string. This means the computational 

complexity of this encoding can be two to the power of number of nodes. On the other 

hand, the implementation of such encoding is simple and easy. There are also variable 

length encodings technics such as DAG (Suganuma et al. 2017, Real et al. 2017, Liu et 

al. 2017) and Cartesian Genetic Programming (CGP) (Suganuma et al. 2017, Miller & 

Harding 2008, Milano & Nolfi 2018). Directed Acyclic Graph refers to a list of sub-

modules here. Likewise, in the paper from Real et al. (2017), a graph is used to encode 

the neural architecture. Each node represents a three-dimensional tensor, and each edge 

represents convolutions or identity connections; Indirect encoding means there is a rule 

to build a network. It takes architectures that are related to each other and put them in a 

set of labeled trees in a simple graph grammar. Furthermore, the most usage of this type 

of encoding is to define an operation for network morphism. This is helpful if one uses 

morphism-based search spaces. 

A conventional evolutionary algorithm has four stages according to the paper He et al. 

(2021). Selection, Crossover, Mutation, and Update. In the selection stage, the goal is to 

eliminate the weak individuals, and to maintain and proceed with the stronger individuals. 

There are different mechanisms when it comes to the selection phase. One is fitness 

selection, in which the probability of one individual to be selected is proportional to its 

fitness value. The second one is ranked selections, in which they rank the individuals in 

the generation based on the fitness values and select the top wanted proportion. The third 

one is tournament selection, in which k individuals are selected randomly and then sorted 
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by their fitness value, and then the best individual is selected with the probability of p, the 

second-based individual has the probability of being selected as p (1-p). This process will 

be repeated until they reach the maximum number of individuals desired and in addition 

when it is assured that the best individual of the generation is selected.  

In crossover phase, one will cross individuals to get newly built individuals. This newly 

built offspring has some information from each of its parents. This process imitates the 

genotype crossover within sex cells in human body. The operation for this crossover 

highly depends on the encoding scheme. Note that sometimes this operations make the 

genotypes damaged and taking care of that is more of an engineering and implementation 

matter. In cellular encoding, a random branch of the tree structured genotype will be 

selected for parental exchange.  

A typical gene mutation is an operation that will flip a bit. We select this bit point 

randomly and independently. For instance, papers (Suganuma et al., 2017) and (Xie & 

Yuille, 2017) apply a point mutation. In Real et al. (2017), mutation operations are of two 

types: one decides if there should be a connection between two layers, the other decides 

on the skip connections between two nodes or layers. Same paper introduces a set of 

mutation operations such as removing a skip connection or a change in the learning rate. 

Equally to the real gene mutation in human beings, this mutation can be either beneficiary 

to the individual or may cause damage to the crossed individual. What is important is that 

it creates diversity in the next population. Krizhevsky et al. (2012) provide a new mutation 

operation that works the best for network planning. Additionally, He et al. (2016) has also 

proposed a new variety of the genetic algorithm by proposing a new mutation operation. 

During update stage, the worst individuals are eliminated. For instance, in Real et al. 

(2017), two random individuals are selected and from those, the authors eliminate the 

individual with lower fitness. Another example is in the paper (Real et al., 2019) where 

the paper eliminates the oldest individuals. Other papers (Suganuma et al. 2017, Xie & 

Yuille 2017, Miikkulainen et al. 2019) have an interval to eliminate individuals based on 

it. In (Liu et al., 2017), the authors will not discard any individuals and allow the 

generation to evolve by itself. 
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Five papers are more relevant, and we will present them more deeply in the following. 

2.1. Xiang & Zhining, 2019 

Xiang & Zhining (2019) introduced an improved genetic algorithm from the original 

version that in 30 rounds of model training generations, it achieves 98.81% accuracy on 

MNIST data set. Note that the official sample model achieves the accuracy as large as 

98.4%. The hyperparameters correspond to the architecture of a fully connected 

traditional neural network, in fact, a multilayer perceptron (MLP). The final model is 

called ‘super hyperparameter model’ and so this algorithm solves super-parameter 

optimization problem. Using a genetic algorithm to search hyperparameters, there are a 

few stages of selection, crossover, a mutation and in the end, there will be a fitness 

function that evaluates the individuals; based on those scores the paper can perform the 

selection mechanism for the next generation. In each of these stages, the authors store the 

hyperparameters of a neural network as a set of integers called Integer Coding.  

1. Integer Coding: here the authors will optimize the hyperparameters of neural 

networks. However, there are many different architectures for various purposes in deep 

learning, our focus is on fully connected layers. A fully connected neural network or a 

multi perception neural network has at least one hidden layer and between the layers all 

nodes within each layer is connected to those of the previous and the next layers. The 

input and output layer of this neural network will differ from task to task, thus here the 

authors code the integers within the hidden layers only. The integer coding includes 

activation function, batch size, and number of epochs. The restriction sets are as follows: 

number of layers is between 1-7; number of neurons in each layer is between 1-1024; 

activation functions are ReLU, Tanh, PReLU, Leaky ReLU; optimization functions are 

SGD, RMSProp, Adagrad, Adadelta, Adam, Adamax, NAdam; and finally, batch size is 

between 1-256.  

To continue to represent these hyperparameters as a gene sequence the authors can either 

have a binary coding (one-hot encoding) or to have integer encoding which will be need 

less resources to store. Therefore, they decided to continue with integer coding.  
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2. Initialization Population: randomly initializing the first generation for iterative 

evolution can yield to get some individuals with low quality. Moreover, it will affect the 

convergence rate of the algorithm to the best solution. If one takes the optimization 

function to be a multimodal function, then the individuals within an initial poor population 

will be scattered around the local optima and to find a better direction toward the local 

optima one should carefully define the subsequent genetic operators so that the authors 

achieve such a direction. Introducing league competition mechanism, they managed to 

prevent premature individuals in the initial population using the following steps:  

A. Randomly initialize N individuals,  

B. Calculate individual fitness for all the N individuals and sort them based on 

their fitness value,  

C. Select the fittest individuals within the sorted list,  

D. Repeat the previous steps until there are N individuals in the initial population. 

The value of N is around 2-5. If one takes more, then the algorithm will degenerate 

to random search algorithm.  

3. Truncation Selection Mechanism: using the traditional roulette selection 

mechanism, combined with slight differences between the individual fitness in the 

population, leaves the selection mechanism baffled and inconvenient. Therefore, adding 

other supplementary methods to create more diversity is necessary. In the truncation 

selection mechanism, k % percent of the fittest individuals are selected, and it is crossbred 

with other individuals. Each individual has an equal chance to crossbreed with other 

individuals and both crossover and mutation operations will be done randomly. This is 

obvious that truncation selection mechanism has a more intense selection that the roulette 

mechanism so the authors make sure that all the good individuals will be used for the next 

generation production. In addition, when the gap between the fitness of individuals is 

exceedingly small, the authors do not use truncation mechanism. 
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4. Crossover Operators:  

A. Fusion crossover: In the fusion crossover calculation formula below, the authors 

observe that one of the gene strings (gene strand) of the crossed offspring will 

resemble more like the first paternal gene and the second crossed offspring will 

resemble the second paternal gene. As much as one crossed offspring resembles 

one parent, it will not resemble the other parent. This amount is randomly 

generated from a linear combination of an exploratory coefficient and a random 

number between 0 and 1.  

B. Single point crossover: choosing randomly a single point in the gene 

representation and then there will be head crossing from the chosen point.  

C. Mixed crossover: a mixed crossover is a two-point crossover where the authors 

choose two points randomly and exchange the tail and the head of strings from the 

two points mentioned. This happens as follows and the new individuals are 

selected with the probability p and (1-p). In the context of a CNN architecture, it 

is not possible to replace a head with a tail. Instead, one can only replace a head 

with a father’s head and replace the tail with a father’s tail. This will lead us to 

point fusion formula. 

D. Point fusion crossover: In the above-mentioned crossovers, the genes are only 

partially exchanged while the value of each coding elements remains the same. In 

point fusion crossover the value of the two points as crossover points will be 

calculated and replaced with something other than the previous value from the two 

parental individuals. In the following you will see the Crosspoint fusion formula.  

5. Mutation Operators:  

A. In the conventional genetic algorithm, the probability of an individual being 

mutated is fixed in the entire population. The fixed mutation probability comes 

with the problem of prematurity and poor stability and not good enough results 

after several experiments for a specific task. A variable probability amount is 

calculated using the following formula: 
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Pm = k1 * (fmax – f) / (fmax – favg)  if   f ≥ favg 

Pm = k2   if   f <favg 

Where Pm is the probability to get a mutation. k1, k2 ≤ 1.0, fmax is the highest fitness 

individual and favg is the average fitness in the population. 

B. According to this paper, in the initial stages of evolution, a large-scale variation 

should be used to keep the population diverse later in the next populations. 

However, in the later stages of evolution, the local intensity will gradually develop 

for fine-tuning. Introducing the following formula for mutation operation the 

authors ensure the fine-tuning and diversity of the population. 

Let individual X = x1, x2, x3, …, xk ,…, xn and xk ∈	[Lk, Uk] (lower and upper bounds 

in the hyperparameter range) be the mutation point. Replacing xk with a value from 

below calculated range Ω: 

Ω = [xk -s(t) (xk -Lk), xk +s(t) (Uk -xk)] 

S(t) = 1- 𝑟("#$/&)! 

T is the maximum number of iterations; t is the current iteration. C is a value 

between 2 and 4 and r belongs to the interval of [0,1]. 

6. Evaluation: An accuracy of classification on the test set is used to evaluate each 

one of the neural network individuals in the population. 

7. Update: In this stage, the authors want to keep individuals which have bigger 

fitness, and to eliminate the non-desired individuals. This process directs the search to 

achieve converge faster. Moreover, it ensures that the best individuals will be in the next 

population. However, this is probable that there exist the same identical individuals 

existing in one generation as a parent and the same individual as the offspring in the next 

generation. To cope with phenomena, the authors only keep one identical individual per 

population.  
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8. Domain Search: when the iteration remains still for a while in the algorithm this 

means that the algorithm is trapped in a local optimum. In particular, this means the 

individual is not changing over the iterations of population. Addressing this phenomenon, 

this paper adds 1 and subtracts 1 to the gene encoded and evaluate the newly created two 

individuals to see if the accuracy level will change. If this newly created individuals have 

higher accuracy, then they will be replaced with the stagnated gene. New individuals X’ 

and X “are defined in the following: 

For X’, when Uimin ≤ xi < Uimax 

X’ = (x1+1, x2+1, x3+1, …, xi+1, …, xn+1) 

When xi = Uimax 

X’ = (x1+1, x2+1, x3+1, …, xi, …, xn+1) 

For X”, when Uimin < xi ≤ Uimax 

X” = (x1-1, x2-1, x3-1, …, xi-1, …, xn-1) 

When xi = Uimin 

X” = (x1-1, x2-1, x3-1, …, xi, …, xn-1) 

9. Experimental Settings: The target dataset is MNIST, the total number of 

population generation is 30. The hyperparameters to be tuned are for fully connected 

neural networks. The size of initial population is 50. The number of epochs is a constant 

number equal to 20. In each truncation selection phase, the k value is 24%. The total 

running time of the algorithm is 144 hours. The k1 in formula for mutation probability is 

0.5, k2 is 0.5, and the c = 3, r = 0.2 in mutation formula. The number of individuals 

obtained by truncation selection is 12. The optimal individual coding of this generation is 

5-2-970-802-417-0-0-0-0-0-121. After decoding, it is a fully connected neural network 

with three layers (excluding the output layer). The number of neurons in the input layer 

was 970, the number of neurons in the first hidden layer was 802, and the number of 

neurons in the second hidden layer was 417. The optimizer function uses Adamax 
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function, the activation function uses PReLU function, and batch_size is 121. After 20 

rounds of training, the accuracy of the model is 98.56%. The fitness of all individuals 

selected in the first generation is above 0.982, which has a good fitness value. Moreover, 

the worst individual in the initial population has a fitness of 0.9733, which shows that the 

way of league competition initialization plays a role in improving the quality of the initial 

population. Among the 12 individuals selected in this generation, Admax is the dominant 

choice of optimizer function, followed by Adam function, Adagrad function, RMSProp 

function and Adadelta function. In terms of activation function, ReLU and PReLU are the 

two main activation functions. In terms of the number distribution of neurons in each 

layer, there was no obvious characteristic distribution of the number of neurons in each 

layer. In terms of network layer information, the number of individuals with one layer is 

the largest, reaching 3, followed by those with three, four and five layers, reaching 2, and 

the number of individuals with two, six and seven layers is the smallest, only one. From 

the above analysis, one can see that the genotype distribution of the selected population 

is scattered, and there is no obvious pattern characteristics.  

2.2. Mattioli et al, 2019 

Mattioli et al (2019) originally compares the different methods of tuning hyperparameters 

such as grid search, random search, and genetic algorithm. We have the following steps 

defined for the genetic algorithm process: 

1. Chromosomes: In this study, each chromosome is composed by two main 

descriptors. One for convolutional layers and the other for fully connected layers, each of 

these descriptors is a vector of strings and each string is a description of a layer. For 

convolutional layer, the description refers to activation function, number of filters, kernel 

size, stride, and pooling size. For fully connected layer there are the number of neurons 

and the dropout probability. 

2. Selection Mechanism: a standard roulette wheel is used to select the individuals 

for crossover phase. This means a selection of an individual with a probability 

proportional to its fitness value.  



 
 

17 

3. Crossover Operators: A random point is selected, and the operation is defined as 

swapping layers between parent individuals from that point. Two points are selected in 

the fully connected part and two points are selected in convolutional parts. The two points 

mentioned each are selected from one parent individual. Then swapping the tail of the 

individuals from those selected points separately in convolutional and fully connected 

parts.  

4. Mutation Operators: Just as in crossover phase, each part of convolutional part 

and fully connected layers are mutated independently. There is 50% chance for both 

mutation operations to be operated on each crossed individual. A random position will get 

picked and from there a layer will be added. This layer to add is built randomly.  

After mutation phase terminates, the authors evaluate the valid individuals, and discard 

invalid individuals.  

5. Evaluation: The fitness function is built upon the test accuracy of the individual. 

After the individual is being evaluated, the individuals will be stored with their fitness 

values to prevent re-evaluating an identical individual later in the next generations.  

6. Update: Taking only 10% of the top fittest individuals in the update stage.  

7. Experimental Setting: The dataset used in this paper is MNIST and CIFAR_10. 

We have an initial population of size 200. We continue the algorithm for 20 generations. 

There is a crossover probability of 70% and a mutation probability of 20%, meaning some 

of the individuals will not have crossover or mutation.  

8. Genetic Algorithm + Fitness Predictor: There is a strategy with by which the 

authors can predict if an individual worth evaluating on the test set, since evaluation on 

the test set is highly computationally expensive. To accomplish this prediction, this paper 

uses an artificial neural network using the data of the previous generations to predict the 

accuracy of the current individuals. This ANN is in fact a multi-layer perceptron having 

a fixed architecture of three dense layers, has 64 neurons per layer with a dropout 

probability of 0.4. The input of this MLP is a new gene descriptor of the previous 

generations containing their fitness value. This fitness predictor is trained for 100 epochs 
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with an early stopping of 10. The dataset is split 80%-20% for train and test datasets. 

Finally, the decision is made based on two factors: the performance of the classifier and 

the number of weights which implies the number of parameters. Going stepwise there will 

be: 

1. Randomly generating 10 initial individuals. 

2. Dominant solutions to be selected from these 10 individuals. 

3. Using the 10 solutions, the authors train the fitness predictor. 8 individuals for 

training set and 2 individuals for the test set. 

4. After repetitive randomly generation of individuals, a new generation of size 200 

will be achieved.  

5. Predicting the fitness of newly built generation. This fitness predicted combined 

with the number of parameters of one individual will determine whether to train 

the neural network corresponding to the individual.  

6. If the individual is worth evaluating, then there is a 90% probability that it will be 

evaluated, otherwise there is only 10% probability of it being evaluated. This 

ensures that only better solutions have access to the resources, resulting in 

prevention of unwanted computations.  

7. Now updating the predictor with newly evaluated dominant set.  

8. Now updating the set previously created in the 2nd stage with the dominant 

evaluated individuals. 

While not reached to twenty generations, continue the following steps: 

9.  Taking only top twenty individuals, 10% from the last generation.  

10. If these individuals have not already been trained, they will.  
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11. While not having 200 individuals, the authors select individuals using roulette 

selection mechanism.  

12. Crossing the individuals with a probability of 70% 

13. Mutation of the individuals with a probability of 20% 

14. Replacing the previous individuals with their mutated versions. 

As a conclusion from this paper, the genetic algorithm variation presented performs 

competitive with the grid and random search. The GA + fitness prediction has promising 

reduction in resources usage in one of the datasets.  

2.3. Sun et al., 2020 

Sun et al.’s (2020) novelty is the complete automation of the genetic algorithm proposed. 

A summary of innovation would be firstly this algorithm uses variable-length encoding 

that represent the individual’s architecture features. Secondly, to cope with the vanishing 

gradient problem with deep networks, this algorithm provides skipping connections. And 

thirdly, this algorithm uses asynchronized distribution of resources that leads to using less 

computational resources. 

1. Convolutional Neural Networks: These networks apply the filters on data so that 

one can extract features of input. In the convolutional layer, the filter slightly slides 

horizontally and then it slides vertically. The step by which this filter slides, is called 

“stride”. After this operation, the data becomes smaller in size, so it is easier to store and 

make use of it later since the images are large and hard to store all its information. This 

will keep only the most key features of the data compared to keeping all the pixels exists 

in the original image. These key features or filter outputs are converted as a new matrix 

namely feature map. In fact, the output of each filter is either the mean or the max value 

of the projection of the filter on the image.  

There is another parameter to set around the image that plays the role of padding around 

the image, this is to help extracting features of the borders of the image. Thus, for every 
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convolutional layer there are some hyperparameters; filter size or kernel size, stride, 

padding and number of features.  

After convolutional layer there is a pooling layer. The purpose of a pooling layer is firstly 

reducing the spatial size of the feature map so less amount of computation required later. 

There are various kinds of pooling such as max pooling, average pooling, and global 

pooling which down samples the entire feature map into only one single value. The 

hyperparameters to set in a pooling layer would be the size of its kernel which is referred 

to it as pooling size. 

2. Skip Connections: sometimes we want to skip some layers and to connect some 

layers that are not adjacent. Originally, this method has been introduced as a method to 

prevent gradient vanishing or gradient exploding in the deep recurrent neural network 

units such as long short-term memory (Srivastava et al., 2015). In fact, the superior 

performance of the ResNets, is again because of the skip connections.  

The genetic algorithm steps are descried as follows: 

1. Encoding: In this architecture there are convolutional blocks consisting of two 

layers, pooling layers, and skipping layers. For convolutional layer, its descriptor 

indicates the number of channels respectively for its two layers. For pooling descriptor, 

there is the type of pooling and for the skipping layer there is the string of the feature 

maps from the last convolutional layer. The code that represents the total individual is the 

concatenation of these descriptors mentioned earlier. A block of two convolutional layer 

in a row in a skip layer is firstly proposed in ResNet. It is proven that this block works 

very well and has promising result (Huang et al., 2017) (Liu et al., 2018) (E. Real et al., 

2017) (He et al., 2016). In Sun et al. (2020), the size of two convolutional layer in the 

same block can be unequal as opposed to the original version in ResNets. The stride, 

kernel size and convolutional operation are the same for all the convolutional layers. The 

attributes of the pooling layers are also the same in all the pooling layers. 

2. Selection Mechanism: a random number is generated to decide whether the pair 

selected individuals are going to cross or not. There is a predefined probability of crossing 
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defined earlier so that one can compare it to this random number generated between (0,1). 

If the random number is higher than the predefined crossing probability, the algorithm 

will not proceed with crossing those two individuals. A binary tournament selection is 

used in this paper to select the individuals for the crossover phase.  

3.  Crossover Operators: the crossover operation is a random split in each parent 

individual and swapping the tails to generate the offspring. This crossover operation is 

inspired by Srinivas & Patnaik (1994), with a difference of the ability of the new crossover 

to cross unequal length individuals. 

4.  Mutation Operators: Again, to decide whether and individual will mutate, a 

random number is generated in (0,1). If this number is below the predefined mutation 

probability, then there is the mutation performed on this individual. During the mutation, 

one point is selected randomly from the individual encoding, and the authors will select 

one mutation operation from the five different operations with a predefined probability 

for the mutation operations. The different mutation operations are as follows:  

A. Adding a skip layer with random settings,  

B. Adding a pooling layer with random settings,  

C. Removing a layer at the selected point,  

D. Randomly changing the value of the point selected in the encoded string.  

By having higher predefined probability for adding a layer in this phase and having 

removed a layer as one of the other operations, the authors ensure the achievement of 

optimal depth for our network individual.  

5.  Fitness Evaluation: here there is also a pool of individuals from the previous 

generations with their fitness value stored in this pool to prevent re-evaluating the same 

individual in the later generations. The criteria for calculating the fitness evaluation are 

the classification accuracy of the CNN individual. Also, allowing the algorithm to store 

the individual with the highest accuracy of all.  
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6. Update: this stage is the same as the selection phase described earlier, however, the 

authors also check if the best individual of all time is not in the selected pool, then the 

authors replace the best individual with the worst individual of the selected pool. This 

paper believes that only selecting the top best individuals will lead the optimization 

process to trap in the local optima (Davis 1991, Goldberg & Holland 1988). On balance, 

a good population will have to have good individuals as well as the bad individuals to 

ensure the diversity (Anderson-Cook 2005, Malik & Wadhwa 2014). Therefore, the 

authors use the binary tournament selection (Miller & Goldberg 1995, Zhang et al. 2003). 

This paper also claims that if they do not explicitly add the best individual to the 

population if it is not there by nature, then the algorithm will not converge.  

7. Experiment Setting: The dataset used in this paper is CIFAR_10 and CIFAR_100. 

The predefined probability of crossover mentioned before is 0.9 and the predefined 

probability of the mutation phase is 0.2 borrowed from (Thomas Bäck, 1996). The 

optimization in backpropagation is the stochastic gradient descent with a learning rate of 

0.1 with a learning rate decay of 0.1 in three chosen epochs: the 1st, the 149th, 249th. The 

momentum value used is 0.9 and the number of epochs is 350. Just like the state-of-the-

art versions of CNNs, the number of feature maps is selected to be {64, 128, 256}. The 

mutation probabilities for different mentioned mutation operations are 0.7, 0.1, 0.1, 0.1. 

Some papers believe that it is good to for the neural network architecture to not deploy 

any fully connected layers (Sun et al., 2020). They argue that the fully connected layers 

easily result in overfitting (Hawkins, 2004). This happens mostly because of all the edges 

existing between the nodes of each layer (Srivastava et al., 2014). To overcome this 

problem, a dropout technic has been introduced. This dropout probability is in fact a 

parameter added to the number of parameters which needs to be tuned. Additionally, there 

is number of neurons and the number of fully connected layers as hyperparameters to 

tune. Resulting in a larger search space which makes tuning harder.  

On the other hand, there are other papers (Basha et al., 2020) that has been carefully 

designed and performed experiments to see the impact of fully connected layers on the 

CNN efficiency and they are in fact very optimist about this kind of layers. If the CNN is 
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shallow, then the fully connected layers should have more neurons and more layers. If the 

CNN is deep, then the network requires few neurons in the fully connected layers 

notwithstanding what dataset is used. Overall, deep CNNs have better performance with 

deeper datasets, and once there is a small dataset, a shallow CNN performs better than a 

deep one. 

2.4. Young et al., 2015 

Young et al. (2015) apply genetic algorithm for neural network topology design. As a 

result, the genetic algorithms enhance optimization for hyperparameter tuning also 

provides a directed search when using the previous solutions. Now, the followings are the 

details of this algorithm: 

1. Encoding: there is a limited search space defined for each hyperparameter and 

there is a gene representation to describe an individual. Using a unified 

distribution, the authors randomly initiate the first generation just like a random 

search.  

2. Selection Mechanism: selecting only the individuals that have fitness value 

higher than the average of their generation will determine which individuals will 

be passed to the crossover and mutation phases.  

3. Crossover Operators: for each two consecutive individuals, the authors generate 

a random number. If this random number is higher than 0.6 then they cross the 

two consecutive individuals, otherwise, the paper will proceed to the next two 

consecutive individuals. The crossing point is uniformly and randomly selected 

between [0,6] and a simple tail swap will be operated as the crossover operation.  

4. Mutation Operators: again, the authors pick a random number between [0,1] and 

if this number is higher than 0.05, then they pull out randomly and uniformly from 

the search space and replace the corresponding gene encoding of the individual 

with our pick.  

5. Evaluation: a simple classification test accuracy is used to evaluate an individual. 
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6. Experimental Settings: There are 6 hyperparameters to tune. The algorithm will 

run for 35 generations. There are 500 individuals per generation. The probabilities 

of crossover and mutation are 0.6 and 0.05, respectively. There are some fixed 

parameters in all the individuals described as: base leaning rate equal to 0.001, 

momentum value of 0.9, weight decay of 0.004, the learning policy is fixed, 

maximum number of iterations equal to 4000. There is CIFAR_10 as the dataset 

used. The architecture consists of convolutional layers as well as pooling layers 

so the hyperparameters to tune are the kernel size with a range [1,8] and number 

of filters [16,126].  

2.5. Sun et al., 2019 

Sun et al. (2019) takes a close look at evolutionary algorithm on CNNs which is called 

EvoCNN. The details of the algorithm steps are as follows: 

1. Encoding: The first part of the gene representator describes the convolutional 

layer with hyperparameters of the filter width, the filter height, the number of 

feature maps, the stride width, the stride height, the convolutional type, the 

standard deviation, and the mean value of filter elements and then there is the 

pooling layers descriptor presenting the kernel width, the kernel height, the stride 

width, the stride height, and the pooling type (average pooling, max pooling) and 

the last is for the fully connection layers with hyperparameters of the number of 

neurons, the standard deviation of connection weights, and the mean value of 

connection weights. A variable-length encoding is applied here because it adds 

flexibility toward creating deeper networks which is desirable.  

2. Population Initialization: starting from the first part with one convolutional layer 

followed by the second part which is one fully connected layer. Two random 

numbers will decide upon the length of each of these two parts. Note that the 

convolutional part also includes pooling layers in it. Deciding on whether to add 

a pooling or a convolutional layer after the first convolution is obtained by binary 

coin random flip. The hyperparameters of each layer is chosen randomly.  
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3. Slack Binary Tournament Selection Mechanism: there are two different 

thresholds when it comes to decide upon the selection between two randomly 

chosen individuals; one for the mean value and the other for the number of 

parameters. If the mean value difference between two individuals is higher than a 

threshold, then the bigger one is selected. Otherwise, if the gap between the 

number of parameters of the two is higher than a threshold then the individual with 

smaller number of parameters is selected. Otherwise, an individual with smaller 

standard deviation is selected. If nothing worked, then they select one of them with 

the probability of 50%. 

4. Crossover Operators: in crossover operation the chromosome with the smaller 

length, will be fully exchanged with the same length from the longer chromosome. 

This process will be operated separately for each of the three convolutional layers, 

fully connected layers, and the pooling layers, then combining them to get the 

crossed offspring. 

5. Mutation Operators: there are three operations; adding, deleting, or modifying. 

First, a mutation point will be chosen from the chromosome length. In adding, a 

layer will be selected with a probability of one third from each of the three parts 

in a chromosome and will be added to the chromosome. In case of modifying, 

based on the selected point the authors will modify all the hyperparameters within 

that layer. Finally, for the deletion, the selected point will remove the layer. 

6. Evaluation Criteria: by these criteria there will be a quantitative measure to 

determine which individual qualifies as a serving parent. Fitness function is in fact 

the classification error as well as the number of connection weights. Training an 

entire population with each individual that has around 100 epochs to train, is very 

resource demanding. To handle this, the authors train each network with a small 

size of 5 to ten epochs, then a mean value and a standard deviation is calculated 

for on each batch. The bigger the mean value the better the individual, if they are 

the same in mean value then the bigger the standard deviation the better the 

individual. 
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7. Update: in this stage, the authors select a fraction of top best individuals within 

the mutated pool. After this the authors will continue to the binary tournament 

selection phase. 

8. Experimental Settings: there are nine benchmark datasets used in these set of 

experiments for EvoCNN. They are the Fashion (Lin et al., 2019), the Rectangle 

(Chattopadhyay et al., 2020), the Rectangle Images (RI) (Chattopadhyay et al., 

2020), the Convex Sets (CS) (Chattopadhyay et al., 2020), the MNIST Basic (MB) 

(Chattopadhyay et al., 2020), the MNIST with Background Images (MBI) 

(Chattopadhyay et al., 2020), Random Background (MRB) (Chattopadhyay et al., 

2020),  Rotated Digits (MRD) (Chattopadhyay et al., 2020),  and with RD plus 

Background Images (MRDBI) (Chattopadhyay et al., 2020) benchmarks. 

According to the experiments by Young et al. (2015), there are 100 generations 

where each generation has 100 individuals within. The elitism rate is 20% for the 

top individuals. Crossover probability is equal to 0.9 and the probability of 

mutation is 0.1. Layers from each three distinct types, can be as deep as 5 layers 

each at most. The train-test split in the datasets are different in each dataset. The 

filter width and heights are set to be equal for kernel, pooling filter, and stride. 

Therefore, there is only square filters. The value for kernel size and pooling size 

followed by it is the same. The algorithm is implemented using TensorFlow library 

in python. For each dataset, there are 30 different runs and the mean value for 

them are estimated to report as the results.  

All things considered, Young et al (2015) suggests using an asynchronous evolutionary 

algorithm for a better usage of all the resource available. Furthermore, the authors suggest 

adapting an early stop framework to spot the architectures that has deficient performance 

before evaluating them. 

Mattioli et al (2019) suggests putting effort on evaluation of the method proposed on, for 

instance, image regression problems. Additionally, enhancing the fitness predictor 

proposed in the paper. 
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From authors Sun et al (2019), we know that the bigger the dataset, the more reliable the 

results but one needs a more efficient fitness evaluation since it is computationally costly. 

Also, they consider using GA to tune hyperparameters of RNNs. 

In paper Sun et al (2020), it has been said that although there are two components 

proposed and deployed to reduce computation, more methods should develop to solve 

computationally expensive optimization problems. 

According to Xiang & Zhining (2019), with truncation selection or ranked selection 

comes the problem of diversity and the benefit of intensity. This phenomenon may root 

in distinct stages of a genetic algorithm besides selection mechanism (Gupta1 & Ghafir2, 

2012). In the next chapter we will continue with a new method to address this very gap. 
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Chapter 3 
Methodology 

As earlier mentioned in the literature review, there are factors contributing to a sacrifice 

of diversity for further intensity within optimization issues. This problem expressed itself 

specifically for metaheuristic algorithms. The following body of work will establish the 

introduction of a new version of genetic algorithm that addresses diversity problems and 

analyze with greater accuracy.  

We observed that previous works used varied selection mechanisms to cope with lack of 

diversity. In this work, on the other hand, we focus on crossover operators, and we think 

that to create diversity we need to modify the crossover operation by which we can create 

individuals that are different from each other and with their parents while using the 

solutions from previous generations to ensure a direct search. We also compare various 

selection mechanisms to see which one works better in terms of diversity. 

We use some classic mutation operators as well as some new ones. In each stage of an 

evolutionary algorithm, we made changes to create diversity. These changes altogether 

make a new algorithm that yields set of solutions that is demonstratively more diverse. 

This retains fitter individuals when compared to the previous algorithms. We extensively 

test our algorithm until we reach a better combination of phases of selection, crossover, 

and mutation operations which advances both accuracy and diversity. Having mutation 

operation and selection mechanism fixed, we then explore the difference between 

crossover operation results. To this end, we use the MNIST dataset, to compare with other 

papers. Note that this algorithm is semi-automatic, and it does not require human 

intervention for the most parts. 
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The diagram below shows the process of a genetic algorithm. First, we initialize a 

population randomly and we evaluate the individuals within that population.  

 

Figure 3.1: Algorithm Flowchart 

We then loop over selection operator, crossover operator, mutation operator, and the 

evaluation of the individuals obtained in this iteration until a certain number of 

generations defined by the user is explored.  

Algorithm 1 shows our algorithm below which has two main inputs: the input dataset and 

the number of generations or the number of algorithm iterations stored in a parameter 

called N. To start, we randomly generate the initial population called G0 and make a copy 

of it and store is as GlobalPool. The GlobalPool helps us not to evaluate the same 

individual repeatedly later. We then start a loop for N-1 times. In this loop, we first 

evaluate the individuals of the previous generation only if the individual is distinct 

(meaning that it is not found in the GlobalPool). Otherwise, instead of evaluating the same 

individual another time, we simply take its fitness (accuracy) from the GlobalPool. 

Second, we select the individuals that we want to pass to the next generation. Third, we 

select the exact two individuals for which we want to perform the crossover operation. 

Fourth, we cross the selected individuals. Fifth, we mutate the individuals that are out of 

crossover phase and put them in a set called Gn+1. We then pass Gn+1 to Elite Selection for 
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the next iteration. Sixth, we add valid mutated individuals to the GlobalPool. Once this 

loop is over, we return the individual with the highest fitness as our final designed neural 

network architecture for this supervised task. 

 

Figure 3.1.1: Algorithm 1 

In the following, we first explain how each of these steps of our proposed algorithm works 

in detail. Consequently, we explain the experiment settings and finally we will explain 

our strategy to develop all these operators within this algorithm obtained over time 

through careful sets of experiments.  

As we begin to write the first step of this algorithm, we must first think about how to 

describe individuals within a population. Each of these solutions is referred to as 

‘individual’ for this work retains a variety of distinctive features. These new features 

describe an architecture of the neural network we wish to build, accordingly, the name for 

that feature vector is encoding. 
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3.1. Encoding 

A convolutional neural network has three main layers: convolutions, pooling, and fully 

connected layers. Each of these layers has its own hyperparameters and the corresponding 

value of each hyperparameter is stored in an element of a list in the following order that 

makes the individual’s representation. The data structure used to restore this 

representation is a list of the following hyperparameters in order:  

1. Number of convolutional layers,  

2.  First convolutional layer’s kernel size,  

3.  First convolutional layer’s strid,  

4. Pooling kernel size,  

5. Activation Function,  

6. Second convolutional layer’s kernel size,  

7. Second convolutional layer’s stride,  

8. Third convolutional layer’s kernel size,  

9. Third convolutional layer’s strid,  

10. Number of fully connected layers,  

11. Number of neurons, dropout probability,  

12. Fourth convolutional layer’s kernel size,  

13. Fourth convolutional layer’s strid,  

14. Fifth convolutional layer’s kernel size,  

15. Fifth convolutional layer’s strid,  
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16. Number of epochs,  

17. Accuracy or fitness. 

Each of these hyperparameters has its own range. The Searching Space Restrictions is 

defined later in the experiment setting chapter. 

3.2. Population Initialization 

The first population is created randomly from the hyperparameter ranges. This way, a 

population with ten individuals is created. The first generation is devoid of any parental 

information for the individuals. They are distinguished as a unique orphan generation 

among all others. The next generations have individuals that hold data regarding both the 

parents and the individual itself. The value of accuracy or fitness remains a value of none, 

until we train and test the individual to store its fitness through its representation encoding.  

Some of the experiments are designed to have the same first initial population while others 

do not. We report both for fair comparison of the algorithms. The reason behind fixing 

exact values of hyperparameters for our first population when running disparate 

algorithms is to strictly evaluate performance. When randomly initiating the first 

population, we will sometimes start with highly accurate individuals, so it helps the 

algorithm converge faster on its conclusive results. However, if the other algorithm begins 

with individuals possessing low accuracy, then it is highly probable that the algorithm 

converges at a much slower pace.  

3.3. Elite Selection Mechanism 

There are three varied selection mechanisms used in this work and we intend to compare 

these selection mechanisms’ performance. 

- First one is “binary tournament selection” borrowed from Sun et al. (2020), 

where two individuals are randomly selected and the one with higher accuracy is 

taken.  
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- Second one is “ranked selection” that selects the top half of the generation within 

fitness ranking.  

- Last one is a “random selection”. A selection in where an individual is selected 

one at a time, until we have the same number of individuals that we possess inside 

the previous pool.  

3.4. Crossover Selection Mechanism 

For the crossover phase, we randomly select two parents from our so-called “good pool” 

we compiled through the elite selection phase. In this random selection, there is a 

randomness in which of these individuals will later crossover. Moreover, there is yet 

another mean for crossover selection, that is taking every two individuals in a row and 

subsequently progressing onto the pair alongside it. This way, we make sure that the 

chance of selection for a crossover among the individuals in the “good pool” remains 

equal. Therefore, each individual has the chance for selection at least once. However, for 

our intended algorithm to work, we choose to allow randomness to dictate this process, 

since we only wish for enhanced diversity. One downside to this process is that we may 

neglect the best individual in the pool, but after further experimentation we obtained our 

highest diversity yet through this random selection process.  

3.5. Crossover Operation 

Crossover is a phase in human body sex cells where the chromosomes cross to exchange 

genetic information between the parents, and it is a stage in genetic reproduction. In 

genetic algorithm is it normally defined as an operator that has two inputs as parents and 

has two or more outputs as crossed individuals. One type of crossover treats the encoding 

as an altogether single part, but some others break the encoding into two pieces according 

to the architecture of CNNs. In this chapter we will explain eight distinct types of 

crossovers. The goal is to find the crossover that yields into more diversity. Section 3.5.2 

is an adapted crossover from Xiang & Zhining (2019), and the rest of the crossovers are 

proposed to find the best. The winner of this comparisons explained in Section 3.5.8, 

begins with switching the fully connected parts between two parents. This then creates 
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two new individuals. From these two, we switch their respective tails for the convolutional 

parts from a certain random point. The ensuing results declare four new individuals. 

3.5.1 Fully Connected Exchange Crossover (FCE) 

In this operation the encodings are of two parts: convolutional and fully connected. 

Convolutional part consists of storage for the hyperparameters corresponding to the layers 

of convolutions followed by pooling. Fully connected part contains storing the 

hyperparameters of the last part of any convolutional neural network where we have one 

or more feed forward layers. After this layer, an activation function is used to obtain the 

probabilities of the image belonging to one of the classes. A Fully Connected Exchange 

simply means two individuals will exchange their fully connected layers with each other. 

An illustration of this operation is the following.  

 

Figure 3.2: Fully Connected Exchange Crossover. Let a and b be the parental individuals, we 

will have O1, O2 as our crossed offspring. 

From Figure 3.2, on the left side, we have a and b as parents encodings and graphically 

one of them is darker than the other. On the right side you see O1 and O2 are the outputs 
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of this crossover operation. In fact, O1 gets its convolutional part from a and its fully 

connected part from b which has the darker color. Moreover, O2 gets its convolutional 

part from b and its fully connected part from a with lighter color in the figure.  

Considering m be the length of encoding, a = (a1, a2, …, am-1, am) and b = (b1, b2, …, bm-

1, bm) are the parent individuals. Let c show convolutional part and f show fully connected 

part of these two individuals. Therefore, ac and bc are the convolutional parts and the af 

and bf are the fully connected parts and O1 and O2 are the offspring of this crossover then: 

O1 = ac + bf  

O2 = bc + af 

3.5.2 A Hybrid of Point Fusion and Mixed Crossover (HPF&M-R) (Xiang & Zhining, 
2019) 

In the paper (Xiang & Zhining, 2019), having two individuals, first two random points 

are picked in the information chain or encoding list. Then the middle part is exchanged. 

This operation is summarized in the illustration below.  

 

Figure 3.3: A Hybrid of Point Fusion and Mixed Crossover. Let a and b be the parental 

individuals, we will have O1 and O2 as our crossed offspring. 
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As you see in Figure 3.3, on the left side, a and b are the parents encodings and graphically 

one of them is darker than the other. On the right side you see O1 and O2 are the outputs 

of this crossover, and it shows that from the Point1 and Point2 their colors are different. 

That means they are exchanged. O1 gets its encoding from the top until Point1 from a and 

from Point1 to Point2 from parent b. Again, from Point2 until the end of the encoding 

comes from parent a. On the other hand, O2 obtains its encoding from the top until Point1 

from parent b, from Point1 to Point2 from parent a and finally the rest of its encoding 

from parent b. 

The intersection points hyperparameter value is calculated from the following formula. 

Let m be the length of an encoding, a = (a1, a2, …, am-1, am) and b = (b1, b2, …, bm-1, bm) 

be the parent individuals. Considering that r1 and r2 are random values between 0 and 1 

while p and t are the random points for crossover selected from the range [2, t-2] and [p+2, 

m-1] respectively, a′ and b′ be the pth and tth value, if the crossed offspring at the crossover 

intersection does not exceed the search space: 

a′ = r1 ∗	(ap − bp) + r2 ∗	ap + (1−r2) ∗	bp 

b′ = r1 ∗	(ap − bp) + r2 ∗	bp + (1−r2) ∗	ap 

c′ = r1 ∗	(at – bt) + r2 ∗	at + (1−r2) ∗	bt 

d′ = r1 ∗	(at – bt) + r2 ∗	bt + (1−r2) ∗	at 

otherwise: 

a′ = r1 ∗	ap + (1−r1) ∗	bp  

b′ = r1 ∗	bp + (1−r1) ∗	ap 

c′ = r1 ∗	at + (1−r1) ∗	bt 

d′ = r1 ∗	at + (1−r1) ∗	at 
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Now the offspring will be as follows: 

O1 = (a1, …, ap-1, a′, bp+1, …, bt-1, c′, at+1, …, am-1, am) 

O2 = (b1, …, bp-1, b′, ap+1, …, at-1, d′, bt+1, …, bm-1, bm) 

Note that these calculations and the choice of random r1 and r2 are borrowed from the 

paper (Xiang & Zhining, 2019) as a solution to the problem of using a coefficient which 

again requires tuning. In Section 3.7, we can find that the elements of the individuals are 

integers. 

3.5.3 A Hybrid of Point Fusion and Mixed Crossover – Collected (HPF&M-C) 

Keeping the hybrid of point fusion and mixed crossover operations borrowed from the 

paper Xiang & Zhining (2019) the as follows, 

O1 = (a1, …, ap-1, a′, bp+1, …, bt-1, b′, at+1, …, am-1, am) 

O2 = (b1, …, bp-1, a′, ap+1, …, at-1, b′, bt+1, …, bm-1, bm) 

We add two more simple operators referred to as fully connected exchange crossover, so 

instead of two offspring O1 and O2 we get two more crossovers O3, and O4 as follows: 

O3 = ac + bf  

O4 = bc + af 

Note that in O1 and O2 the encoding is one single part, however, in creating O3 and O4 

we are separating the fully connected part from the convolutional part in the encoding. 

The coding implementation will be affected this way.  

Figure 3.4 shows that, on the left side, a and b are the parents encodings and graphically 

one of them is darker than the other. On the right side you see O1, O2, O3, and O4 are the 

outputs of this crossover. For the first two outputs O1, O2 we are not separating the 

convolutional part from fully connected part. O1, O2 are obtained through the exchange 

of parents’ encodings from Point1 and Point2. Note that these points are randomly picked 

and can be anywhere in the encoding. In the illustration we picked Point1 and Point2 far 
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from each other, but they may be close based on randomness. Next, O3 and O4 are obtained 

by first separating the fully connected part from the convolutional part and then 

exchanging them from the parents a and b. In fact, O1 and O2 are obtained through the 

Hybrid of Point Fusion and Mixed Crossover while O3 and O4 are earned through Fully 

Connected Exchange Crossover. Therefore, it is a collection of two crossovers. That is 

why we named this crossover A Hybrid of Point Fusion and Mixed Crossover – Collected. 

 

Figure 3.4: A Hybrid of Point Fusion and Mixed Crossover - Collected. Let a and b be the 

parental individuals, we will have O1, O2, O3, and O4 as our crossed offspring. 

3.5.4 A Hybrid of Point Fusion and Mixed Crossover – Replacement (HPF&M-R) 

Based on the paper Xiang & Zhining (2019), sometimes the value of crossover 

intersection a’, b’, c’, and d’, obtained through its formula, does not fall in the search 

space restrictions. In this case, we replace the crossover operation with the fully exchange 

crossover. If a’, b’, c’, and d’, does not exceed the search space, we will have: 

a′ = r1 ∗	(ap − bp) + r2 ∗	ap + (1−r2) ∗	bp 

b′ = r1 ∗	(ap − bp) + r2 ∗	bp + (1−r2) ∗	ap 
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c′ = r1 ∗	(at – bt) + r2 ∗	at + (1−r2) ∗	bt 

d′ = r1 ∗	(at – bt) + r2 ∗	bt + (1−r2) ∗	at 

O1 = (a1, …, ap-1, a′, bp+1, …, bt-1, c′, at+1, …, am-1, am) 

O2 = (b1, …, bp-1, b′, ap+1, …, at-1, d′, bt+1, …, bm-1, bm) 

Otherwise, we replace O1 and O2 with the following formula: 

O1 = ac + bf  

O2 = bc + af 

Where ac is the convolutional part from parent a and af is the fully connected part from 

parent a. bc is the convolutional part from parent b and bf  is the fully connected part from 

parent b. The illustration below shows this crossover. Note that r1 and r2 are random 

numbers in [0,1]. 

 

Figure 3.5: A Hybrid of Point Fusion and Mixed Crossover - replacement. Let a and b be the 

parental individuals, we will have O1 and O2 as our crossed offspring. 



 
 

41 

Figure 3.5 displays that, on the left side, a and b are the parents encodings and graphically 

one of them is darker than the other. On the right side you see O1, O2, O3, and O4 are the 

outputs of this crossover. For the first two outputs O1, O2 we are not separating the 

convolutional part from fully connected part. O1, O2 are obtained through the exchange 

of parents’ encodings from Point1 and Point2. Note that these points are randomly picked 

and can be anywhere in the encoding. In the illustration we picked Point1 and Point2 far 

from each other, but they may be close based on randomness. In case that either of the 

crossing points obtained from the formulas does not fall into the search space restrictions, 

we replace O1, O2. These two new outputs are obtained by first separating the fully 

connected part from the convolutional part and then exchanging them from the parents a 

and b. In fact, O1 and O2 are obtained through the Hybrid of Point Fusion and Mixed 

Crossover while O3 and O4 are earned through Fully Connected Exchange Crossover. 

Therefore, it is a replacement of two crossovers. That is why we named this crossover A 

Hybrid of Point Fusion and Mixed Crossover – Replacement. 

3.5.5 Fully Connected Exchange + Single Point Fusion Crossover (FCE+SPF) - 
firstly proposed 

There are four offspring out from this proposed operation. First, we separate the 

convolutional and fully connected parts from the encoding and then exchange the fully 

connected parts with each other. This creates two offspring. Next, we will have a single 

point fusion crossover on these two offspring to have the next two offspring.  

Figure 3.6 shows that, on the left side, a and b are the parents encodings and graphically 

one of them is darker than the other. On the right side you see O1, O2, O3, and O4 are the 

outputs of this crossover. First, O1, O2 are acquired by first separating the fully connected 

part from the convolutional part and then exchanging the fully connected parts. Next, O3 

and O4 are obtained through the exchange of parents’ convolutional part from Point1. 

Note that this point is randomly selected and can be anywhere in the convolutional part 

of the encoding. In fact, O1 and O2 are earned through Fully Exchange Crossover while 

O3 and O4 obtained through the single Point Fusion and Mixed Crossover. Therefore, it is 

a mixture of two crossovers. That is why we named this crossover Fully Connected 

Exchange + Single Point Fusion Crossover. 
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Figure 3.6: Fully Connected Exchange + Single Point Fusion Crossover. Let a and b be the 

parental individuals, we will have O1, O2, O3, and O4 as our crossed offspring. 

In details, O1 gains its convolutional encoding from a and its fully exchange encoding 

from b. O2 gains its convolutional encoding from b and its fully exchange encoding from 

a. O3 obtains its fully connected encoding from O1 and its convolutional part from the top 

until Point1 from O1 and from Point1 to the end of convolutional encoding from 

convolutional encoding of O2. O4 acquires its fully connected encoding from O2 and its 

convolutional part from the top until Point1 from O2 and from Point1 to the end of 

convolutional encoding from convolutional encoding of O1.  

Let n be the length of convolutional part in individual encoding. Also, O1c = (g1, g2, …., 

gn) and O2c = (h1, h2, …., hn) be the convolutional parts and O1f and O2f are the fully 

connected parts, then we will have the following operation on O1c and O2c to obtain the 

O3 and O4: 
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O1 = ac + bf  

O2 = bc + af 

O3 = (g1, …, gp-1, g′, hp+1, …, hn) 

O4 = (h1, …, hp-1, h′, gp+1, …, gn) 

g′ = r1 ∗	(gp − hp) + r2 ∗	gp + (1− r2) ∗	hp 

h′ = r1 ∗	(gp − hp) + r2 ∗	hp + (1− r2) ∗	gp 

3.5.6 Fully Connected Exchange + Two Points Fusion Crossover (FCE+TPF) - 
secondly proposed 

This operation is the same as the first proposed however instead of only one point to cross 

the convolutional parts and crossing the tails, we have two points with crossing the middle 

part. The formula for O1 and O2 remains the same but for O3 and O4 will be as follows: 

O1 = ac + bf  

O2 = bc + af 

O3 = (g1, …, gp-1, g′, ht+1, …, ht-1, i′,…, gp+1, …, gn) 

O4 = (h1, …, hp-1, h′, gt+1, …, gt-1, j′,…, hp+1, …, hn) 

g′ = r1 ∗	(gp − hp) + r2 ∗	gp + (1− r2) ∗	hp 

h′ = r1 ∗	(gp − hp) + r2 ∗	hp + (1− r2) ∗	gp 

i′ = r1 ∗	(gt − ht) + r2 ∗	gt + (1− r2) ∗	ht 

j′ = r1 ∗	(gt – ht) + r2 ∗	ht + (1− r2) ∗	gt 
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Figure 3.7: Fully Connected Exchange + Two Points Fusion Crossover. Let a and b be the 

parental individuals, we will have O1, O2, O3, and O4 as our crossed offspring. 

Figure 3.7 shows that, on the left side, a and b are the parents encodings and graphically 

one of them is darker than the other. On the right side you see O1, O2, O3, and O4 are the 

outputs of this crossover. First, O1, O2 are acquired by first separating the fully connected 

part from the convolutional part and then exchanging the fully connected parts. Next, O3 

and O4 are obtained through the exchange of parents’ convolutional part from Point1 and 

Point2. Note that these points are randomly selected and can be anywhere in the 

convolutional part of the encoding. In fact, O1 and O2 are earned through Fully Exchange 

Crossover while O3 and O4 obtained through the Two-Points Fusion and Mixed Crossover. 

Therefore, it is a mixture of two crossovers. That is why we named this crossover Fully 

Connected Exchange + Two Point Fusion Crossover. 

In details, O1 gains its convolutional encoding from a and its fully exchange encoding 

from b. O2 gains its convolutional encoding from b and its fully exchange encoding from 

a. O3 obtains its fully connected encoding from O1 and its convolutional part from the top 
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until Point1 from O1 and gains its encoding from Point1 to Point2 from convolutional 

encoding of O2 and from Point2 to the end of convolutional encoding from the 

convolutional encoding of O1. O4 acquires its fully connected encoding from O2 and its 

convolutional part from the top until Point1 from O2 and obtains its encoding from Point1 

to Point2 from convolutional encoding of O1 and from Point2 to the end of convolutional 

encoding from the convolutional encoding of O2.  

3.5.7 Fully Connected Exchange + mean value for two important parameters + Single 
Point Fusion Crossover (FCE+Mean+SPF) - thirdly proposed 

This operation is in fact the firstly proposed (FCE+SPF), however, there is a difference in 

the fully connected exchange operation. When exchanging the fully connected parts, we 

change the value of the number of epochs and the number of neurons in each layer to be 

equal to the mean of the corresponding values in the parents. Collected with the single-

point crossover we will have the following illustration and formula for all four offspring. 

According to Figure 3.8, on the left side, a and b are the parents encodings and graphically 

one of them is darker than the other. On the right side you see O1, O2, O3, and O4 are the 

outputs of this crossover. First, O1, O2 are acquired by first separating the fully connected 

part from the convolutional part and then exchanging the fully connected parts. Moreover, 

since we know that number of epochs and number of neurons help model acquire a better 

performance, we get an average of these two values and replace their original values by 

this average. Next, O3 and O4 are obtained through the exchange of parents’ convolutional 

part from Point1. Note that this point is randomly selected and can be anywhere in the 

convolutional part of the encoding. In fact, O1 and O2 are earned through Fully Exchange 

Crossover while O3 and O4 obtained through the single Point Fusion and Mixed 

Crossover. Therefore, it is a mixture of two crossovers. That is why we named this 

crossover Fully Connected Exchange + mean value for two important parameters + Single 

Point Fusion Crossover. 

In details, O1 gains its convolutional encoding from a and its fully exchange encoding 

from b where we also replace the mean value for number of neurons and number of 

epochs. O2 gains its convolutional encoding from b and its fully exchange encoding from 
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a where we also replace the mean value for number of neurons and number of epochs. O3 

obtains its fully connected encoding from O1 and its convolutional part from the top until 

Point1 from O1 and from Point1 to the end of convolutional encoding from convolutional 

encoding of O2. O4 acquires its fully connected encoding from O2 and its convolutional 

part from the top until Point1 from O2 and from Point1 to the end of convolutional 

encoding from convolutional encoding of O1.  

 

Figure 3.8: Fully Connected Exchange + mean value for two important parameters + Single 

Point Fusion Crossover. Let a and b be the parental individuals, we will have O1, O2, O3, and O4 

as our crossed offspring. 

Considering m to be the length of convolutional encoding and n to be the length of fully 

connected encoding. Let a and b be the parent individuals and the ac and bc be the 

convolutional parts, if the af  = (af1, af2, …, afn) and bf = (bf1, bf2, …, bfn) are the fully 

connected parts, where r1 is a random number in [0,1], p is a random point from [2, m-1], 

we will have O1 and O2 two crossed individuals as follows: 
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O1 = ac + (bf1, mean (af2, bf2), bf3, mean (af4, bf4)) 

O2 = bc + (af1, mean (af2, bf2), af3, mean (af4, bf4)) 

Now from these two crossed individuals we will have one point tale switch in the 

convolutional parts O1c = (g1, g2, …., gn) and O2c = (h1, h2, …., hn) to obtain O3 and O4 as 

follows: 

O3 = (g1, …, gp-1, g′, hp+1, …, hn) 

O4 = (h1, …, hp-1, h′, gp+1, …, gn) 

Note that g′ and h′ are the value of the pth in the convolutional part encoding that is selected 

to cross and is calculating from the formula below: 

g′ = r1 ∗	(gp − hp) + r2 ∗	gp + (1− r2) ∗	hp 

h′ = r1 ∗	(gp − hp) + r2 ∗	hp + (1− r2) ∗	gp 

3.5.8 Convolutional Fusion & Fully Connected Exchange and Maximization 
Crossover (CF&FCEM) - fourthly proposed 

This set of operations is the same as the third proposed, instead of replacing the mean 

value of number of neurons and the number of epochs we simply replace both with 

maximum value between them. In fact, the winner among the proposed algorithms is this 

fourth one. In human chromosome crossovers, there are two chromosomes from parent 1 

and two chromosomes from parent 2, which in this work we associated them with 

convolutional part and fully connected parts. The difference is that in Meiosis II - 

Telophase II, both of chromosomes are crossed like point fusion, but here we only cross 

the convolutional part and for fully connected part we take the maximum value instead of 

crossing them. We decided to do so because the fully connected integer coding is not long 

enough to be crossed like an exchange of tails. Plus, it makes more sense for 

hyperparameters such as number of epochs and number of neurons to get increased for 

the purpose of adding to the model complexity from a machine learning point of view.  
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Figure 3.9: Convolutional Fusion & Fully Connected Exchange and Maximization Crossover. 

Let a and b be the parental individuals, we will have O1, O2, O3, and O4 as our crossed 

offspring.  

Figure 3.9 depicts the operation. According to this figure, on the left side, a and b are the 

parents encodings and graphically one of them is darker than the other. On the right side 

you see O1, O2, O3, and O4 are the outputs of this crossover. First, O1, O2 are acquired by 

first separating the fully connected part from the convolutional part and then exchanging 

fully connected parts. Moreover, we know that the number of epochs and the number of 

neurons help our model acquire a better performance. Therefore, we get an average of 

these two values and replace their original values by this average. Next, O3 and O4 are 

obtained through the exchange of parents’ convolutional part from Point1. Note that this 

point is randomly selected and can be anywhere in the convolutional part of the encoding. 

In fact, O1 and O2 are earned through Fully Exchange Crossover while O3 and O4 are 

obtained through the single Point Fusion and Mixed Crossover. Therefore, it is a mixture 

of two crossovers. That is why we named this crossover Fully Connected Exchange + 

maximum value for two important parameters + Single Point Fusion Crossover. 

In details, O1 gains its convolutional encoding from a and its fully exchange encoding 

from b. We also replace the maximum value for number of neurons and number of epochs. 
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O2 gains its convolutional encoding from b and its fully exchange encoding from a, we 

then repeat this same process of replacing maximum values and number of epochs, 

neurons. O3 obtains its fully connected encoding from O1 and its convolutional part from 

the top until Point1 from O1 and from Point1 to the end of convolutional encoding from 

convolutional encoding of O2. O4 acquires its fully connected encoding from O2. On the 

other hand, O4 ’s convolutional part, from the top until Point1, comes from O2. And the 

rest of it comes from convolutional encoding of O1.  

Considering m to be the length of convolutional encoding and n to be the length of fully 

connected encoding. Let a and b be the parent individuals and the ac and bc be the 

convolutional parts, if the af  = (af1, af2, …, afn) and bf = (bf1, bf2, …, bfn) are the fully 

connected parts, where r1 is a random number in [0,1], p is a random point from [2, m-1], 

we will have O1 and O2 two crossed individuals as follows: 

O1 = ac + (bf1, max (af2, bf2), bf3, max (af4, bf4)) 

O2 = bc + (af1, max (af2, bf2), af3, max (af4, bf4)) 

Now from these two crossed individuals we will have one point tale switch in the 

convolutional parts O1c = (g1, g2, …., gn) and O2c = (h1, h2, …., hn) to obtain O3 and O4 as 

follows: 

O3 = (g1, …, gp-1, g′, hp+1, …, hn) 

O4 = (h1, …, hp-1, h′, gp+1, …, gn) 

Note that g′ and h′ are the value of the pth in the convolutional part encoding that is selected 

to cross and is calculating from the formula below: 

 

g′ = r1 ∗	(gp − hp) + r2 ∗	gp + (1− r2) ∗	hp 

h′ = r1 ∗	(gp − hp) + r2 ∗	hp + (1− r2) ∗	gp 

Now, let us move on to the mutation operators. 
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3.6. Mutation Operations 

There are five different operations defined as mutation operations as elaborated below. 

• The first one is removing a layer from individual encoding from a random point 

selected. This operation is borrowed from Mattioli et al. (2019) and Sun et al. 

(2020).  

• The second operation is inserting a layer to a random point selected. This layer 

has hyperparameters that are randomly selected from the hyperparameter ranges. 

This operation is inspired by Mattioli et al. (2019).  

• In the third operation we investigate the existing layers’ hyperparameters, and we 

randomly choose one of them and replace it with a new hyperparameter from the 

hyperparameter range. This is inspired by Yang & Shami (2020).  

• The fourth operation is removing and adding a layer. It means we first select a 

random point; we remove a layer from that point. We then select another point and 

insert a new layer to that point.  

• Finally, for the fifth operation we decided to have it increase the number of epochs 

by one. We are aware that from using this operator, we may get better individuals, 

or we may get worse individuals.  

Note that we select one of these five operations for each individual which is an offspring 

of crossover phase. For each of these operations there is a probability to be selected. This 

probability is 5%, 50%, 25%, 10%, 10% respectively.  

3.7. Experiment Setting 

The dataset used is MNIST and we used the torch library for python which has useful and 

fast functions for neural networks. MNIST has 60,000 images of handwritten digits, that 

are of size 28*28 (black & white scale so depth is equal to 1) for the training set. There 

are 10,000 images as the testing set. However, for faster computation we take only 100 

images from the training set which is first randomly shuffled and are mutually exclusive. 
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This way, we may get even extremely low accuracy levels as low as 0% or 1% so when 

we move forward with the algorithm, we can see the increase in the level of accuracy as 

we create better individuals. otherwise starting the first generation with individuals of 

around 90% when we fit the whole train set, we will not be able to see how algorithm 

performs from 90% to 98% versus from 0% to 98%. 

The following table shows the hyperparameter range. For example, any neural network 

architecture that comes out of this algorithm has at least one convolutional layer and at 

most 5 convolutional layers. The kernel size will be one of the elements in the set {3, 5, 

7, 9, 11}. To store the name of activation function used, {1,2,3,4} corresponds to {relu, 

selu, softsign, sigmoid} respectively. The choice of these ranges is based on the 

conventional values used in deep learning as hyperparameters and it can be changed 

according to the user’s wish. 

Number of convolutional layers {1, 2, 3, 4, 5} 

Kernel size {3, 5, 7, 9, 11} 

Stride {1, 2, 3, 4} 

Pooling {2, 3, 4} 

Type of activation function {relu (1), selu (2), softsign (3), sigmoid (4)} 

Number of fully connected layers {0, 1, 2} 

Number of neurons per layer [100, 500] 

Dropout {0.0, 0.2, 0.4, 0.6} 

Table 3.1: Search Space Restrictions 

We have used torch library to implement machine learning in our work. Since this 

algorithm is fully automated, we may want to fix some of the hyperparameters such as 

batch size equal to 1, output classes equal to 10, default number of epochs for the first-

generation individuals is equal to 1 and it can increase up to a maximum of 50 epochs. 

There will be no probability for mutation or crossover since we want to give everyone the 

same chance to cross and mutate in a hope for greater accuracy. The optimization function 
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is an Adam optimizer with a learning rate of 0.0003. The type of pooling layers is all set 

to be Max Pooling.  

3.8. Design Choice 

3.8.1 Toward a Strategy 

A. A Two-Generation Crossover Tentative 

The idea of the first proposed crossover operation is borrowed from the real crossover in 

the sex cells of human beings. In every human body two chromosomes, each coming from 

a grandparent, will be crossed for creating sex cells. Each of these chromosomes has two 

parts: a longer segment and a shorter segment. We resemble the longer segment to the 

convolutional layer and the shorter segment to the fully connected layer. That is why we 

first exchange the fully connected segments exactly like what happens in Meiosis cell 

division. Then by a randomly selected point we cross the tails of longer segments which 

is in fact the convolutional part of an individual. This will create four crossed individuals.  

At first, we tried to have crossover using the grandparents in the same manner as human 

biology. This results in a wave of better individuals every other generation, plus a slower 

convergence compared to using parental crossover. This is justified if we do not want to 

have children contrasting too far from their parents in each generation. However, in 

computer science we may want to produce the best individual faster, so we changed to 

use the parents only as inputs to the crossover operation instead of grandparents.  

B. Using Two-Point Crossover 

The outcome of the first proposed crossover operation compared to the hybrid of point 

fusion and mixed crossover was not quite different. They were quite the same in terms of 

diversity and the accuracy level. Therefore, we tried to change one operation in the 

convolutional part from being one-point fusion crossover to two-point fusion crossover. 

This only worsened the situation in terms of computation, while the accuracy level 

remained quite the same.  
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C. Making Changes in Fully Connected Parts 

Then we moved to the third proposed crossover operation. Keeping the first proposed 

operation, while trying to make changes in the fully connected part. According to Table 

B, since we observed that an alternation in the convolutional parts in the second proposed 

algorithm did not make the maximum accuracy any better. In fact, they are almost equal. 

Thus, there must be something within the fully connected part that may make the 

algorithm better which we highly likely neglected.  

D. Refinements from Strategy C 

Therefore, for the fourth crossover operation we took the third proposed operator and 

made a change in the fully connected part. We then observed that fully connected part is 

crucial, making the networks perform in a robust manner. In general, the more the 

neurons, the greater the accuracy. Subsequently we decided to take the maximum of 

between two values instead of the mean value. This also holds true for the number of 

epochs. In fact, the results were more robust when changing epochs, and we finally 

selected our best performing crossover operator among these four. In fact, the fourth one 

is the winner. 

3.8.2 Improvements and Fine Tuning 

- One challenge is to see how we can reduce the number of fitness evaluations. One 

issue specific to tuning hyperparameters for neural networks, whenever the fitness 

is defined to be the accuracy on the test set, we may find it difficult to train and test 

on the total dataset. Thusly, we may try to reduce that to a lower amount for the 

train set, which we practiced within this work. It is suggested to do the same for the 

custom dataset we may have. Once we have the best hyperparameters we will 

continue training on the whole dataset and test on the whole test set.  

- Another solution is to make sure to evaluate each distinct individual only once 

during the whole algorithm process. This is achievable by storing the individual 

encoding with their accuracy level in a global pool. We will then write a function to 
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help check if the new individual has already been evaluated and exists within the 

global pool. Again, we made use of this solution as well in this work. 

This work is limited to the convolutional neural network architecture design and the fact 

that some of the hyperparameters are fixed. These include batch size, optimizers, and their 

learning rate. However, the focus here is to develop an algorithm for tuning any set of 

hyperparameters with a potential to expand into to more hyperparameter search spaces. 

Note that this will become computationally expensive so we may want to choose the most 

affecting hyperparameters based on the type of the neural network we have. In fact, how 

we tune any set of hyperparameters remains the same when the type of neural network 

differs. In this work it is limited to CNNs, but it can be further expanded to other NN 

models. 

3.9. Challenges 

3.9.1 Feasibility 

One issue that arises is the fact that not all combinations for hyperparameters will be 

oversufficient regarding the size of our image. This issue includes a choice of strides or 

kernel size. For this case in particular, images in MNIST must maintain a dimension of 

28 * 28. To elaborate, the combination of (11, 9, 11) as a kernel size for three 

convolutional layers is not feasible, as they remain in order, respectively. We need to 

resolve this issue after both an initialized population and two other stages further along in 

the algorithm called crossover and mutation. In fact, we will always make sure that for 

the individual we possess, it remains valid and feasible through utilization of a 

troubleshooting function. Otherwise, we will have a zero-denominator error. 

3.9.2 Fix the Unwanted Offspring Challenge 

One issue that arises is that some of the individuals will change in a way that causes them 

to become invalid. Take the example of crossing a single convolutional layer individual 

with a three-convolutional layer individual from the second point. The result is this; an 

individual that has a first layer, second layer is empty, and the third layer is again 

nonempty. This individual is unwanted, and we want to fix it either by removing the last 

layer or by discarding the individual.  
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Another important case of the same nature happens within the mutation phase; after 

removing a middle layer of a three-layer convolutions individual. You then have an 

individual with two convolutional layers, but they are sparse and far apart from one 

another.  

In addition to this occurrence in the mutation phase, a second example would transpire 

when adding or removing layers. When this happens, we need to adjust the number of 

layers’ indicator in the individual encoding. Otherwise, further computations will become 

problematic because it is implemented based on the number of layers’ indicator value. 

Moreover, when we remove one layer from a one-convolutional layer network, the 

number of layers will become zero. Due to the randomness involved in all the phases of 

this algorithm, it will take a long time to encounter these issues along the way and discover 

their basis for debugging. 

To solve abovementioned issues, we defined a function called “fix” so that we can fix 

these problems right after the crossover. Then once more after the mutation phase, just 

before we update the pool for the next selection. Other little functions were also 

implemented to help this fix function work properly. 

In this function, we check if the list that includes individual encoding is valid. In case we 

see abnormality, for instance an empty hidden layer, then we shift the next layers one 

layer toward the layer that is missed so that it replaces the empty layer. Another example 

is when a newly picked hyperparameter from the range of search space, is making the 

individual invalid. This especially happens when we randomly change the kernel size of 

a layer in the mutation process. In this case we try to pick another kernel size, we do this 

up to 20 times and if after 20 attempts we still have a non-valid individual, then the 

function returns the individual without any mutations. 

3.9.3 Mimicking Human Body Challenge 

During the development of this algorithm, we tried to mimic all the various steps from 

human evolution, but some of them did not work as intended. For example, in the human 

body, a crossover occurs between the grandparents but not the parents themselves. First, 

we implemented the code where individual’s crossover was between the grandparents. 
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Then comparing the results, we realized that it only makes the convergence rate slower, 

so we then used the parents’ architecture to perform the crossover. In nature it would make 

sense if we do not wish to have higher quality individuals in every consecutive generation. 

Perhaps we wish to consider a slower convergence but in computer science we might also 

want to use our resources timely and converge faster. 

The follow up chapter fully elaborates the results and interprets them. 
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Chapter 4 
Discussion & Results 

4.0. Introduction 

In the previous chapter, we described how we developed our new algorithm. This chapter 

is the analysis of our new algorithm experiments. Computationally speaking, practicing 

the RAY package of python, which is a general purpose and distributed compute 

framework, we managed to reduce the computation time by 32% by parallelization. We 

benefited from a computer with a configuration of 16 GB RAM, Intel core i7 9750H CPU 

processor with 8 cores. From this resource, we allocated 7 cores and a memory of 7.6 GB 

of RAM. 

We have fixed some of the hyperparameters such as batch size equal to 1, output classes 

equal to 10, the default number of epochs for the first-generation individuals is equal to 1 

and it can increase up to a maximum of 50 epochs. Note that, for the final experiment, we 

have changed the initial number of epochs from 1 to 5 which only includes the results 

from Table 4.5. Although the larger the number of epochs, the longer it takes for the 

algorithm to compute, starting from 5 epochs makes the convergence faster.  

On the mutation side, there will be no probability for mutation or crossover since we want 

to give everyone the same chance to cross and mutate in a hope for greater accuracy. The 

optimization function is an Adam optimizer with a learning rate of 0.0003. The type of 

pooling layers is all set to be Max Pooling.  

The number of convolutional layers varies among {1, 2, 3, 4, 5} and number of fully 

connected layers varies among {0, 1, 2}. The value of the kernel size is chosen among the 

set {3, 5, 7, 9, 11}. The stride and pooling values are respectively chosen from the sets 

{1, 2, 3, 4} and {2, 3, 4}. The type of activation functions is restricted to ReLU, SeLU, 

Softsign, and sigmoid. The number of neurons is narrowed to [100, 500] and finally the 

probability of a dropout is from the set {0.0, 0.2, 0.4, 0.6}. 

 



58 
 

4.1. Findings 

Table 4.1 shows the results of 12 generations of genetic algorithms that are only different 

in their crossover operators and reports their execution time in minutes, maximum 

accuracy in the 12th generation solution set, the average accuracy in this set and the 

standard deviation. This is one run and all six of these experiments begin with the exact 

same initial population with a size of ten, with an average accuracy of 18%, and the 

maximum accuracy of 48%. Note that all the experiments in this chapter have been 

obtained on MNIST dataset for the purpose of the fair comparison. The standard deviation 

of the last population refers to standard deviation of the individuals in the last population 

not from population to its previous population but rather only for the last population of 

that algorithm which means the 12th population.  

Experiment 
Execution 

Time 
(minutes) 

Last 
population’s 
Maximum 
Accuracy 

Last 
population’s 

 Average 
Accuracy 

Last 
population’s 

 Standard 
Deviation 

Last Population 

Crossover Proposed 1rst 
version (FCE+SPF) 94 79% 68% 12.1 

75,74,76,60,72,77,71,67,66,7
2,49,75,74,72,76,79,75,70,72
,72,74,17,70,65,68 

Crossover Proposed 2nd 
version FCE+TPF  37 77% 58% 15.82 

56,73,36,77,58,55,43,73,32,7
3,32,74,22,53,68,64,68,71,68
,34,61,72,69,60,71 

Crossover Proposed 3rd 
version (FCE+Mean+SPF) 55 77% 60% 17.7 

72,72,43,54,60,67,71,73,73,5
0,43,66,77,40,54,60,71,56,30
,75,74,74,73,73,0 

Crossover Proposed 4th 
version (CF&FCEM) 52 84% 71% 18.8 

82,63,80,70,75,79,67,78,74,7
3,81,10,82,81,81,16,78,78,83
,81,81,76,84 

A Hybrid of Point Fusion 
and Mixed Crossover 
(HPF&M) 

40 80% 72% 6.2 73,69,73,64,65,78,69,57,79, 
79,76,80,78,71,66,79,71,71 

A Hybrid of Point Fusion 
and Mixed Crossover 
Replacement (HPF&M-R) 

21 81% 67% 12.8 
70,63,72,28,45,65,67,52,80, 
81,79,76,74,69,70,73,69,78, 
73 

Table 4.1.  A comparison between six crossover operators.  

After comparing these results, although HPF&M-R and CF&FCEM are front runners in 

maximum accuracy. We therefore perform experiments only on CF&FCEM and HPF&M 

crossover from this point on. This is due to fair comparison between the crossover 

proposed in the paper Xiang & Zhining (2019) (or HPF&M) and our fourth proposed 

crossover operation, CF&FCEM. In fact, HPF&M-R is built upon HPF&M and is a better 
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version of it, therefore we will use the original operation in paper Xiang & Zhining (2019) 

for the following experiments.  

Moreover, we add a new column for comparison and see which selection mechanism 

yields more diversity. For establishing a fair judgment, we run each experiment or row 

three times, then later report the average +- standard deviation of those three result values. 

Additionally, they all start with the same initial population. 

Experiment Execution Time 
(minutes) 

Last population’s 
Maximum 
Accuracy 

Last 
population’s 

 Average 
Accuracy 

Last 
population’s 

Standard 
Deviation 

Selection Mechanism 
(to decide which one 

to use for the next 
generation) 

Convolutional 
Fusion & Fully 

Connected 
Exchange and 
Maximization 

Crossover 
(CF&FCEM) 

51.66 ± 18.8 85.77 ± 0.77 74.81 ± 5.61 13.33 ± 5.03 Ranked 

68 ± 15.57 84.7 ± 0.49 72.34 ± 2.51 13.78 ± 2.12 Random 

64.66 ± 0.47 85.24 ± 2.09 72.60 ± 5.58 14.11± 4.2 Tournament 

A Hybrid of Point 
Fusion and Mixed 

Crossover 
(HPF&M) 

46.66 ± 6.8 82.11 ± 2.24 75.41 ± 1.34 8.63 ± 6.07 Ranked 

50.66 ± 5.79 84.01 ± 0.49 75.08 ± 0.71 7.15 ± 0.77 Random 

46 ± 22.1 82.98 ± 1.81 71.28 ± 2.09 13.07 ± 4.42 Tournament 

  Table 4.2. Two crossover operators versus three selection mechanisms 

Based on Table 4.2, focusing on the standard deviation in the last population, we see that 

tournament selection mechanism has the best result. Additionally, this table shows the 

average results of the three experiments in all cells. Take the example of (85.24 ± 2.09), 

this means we have run three experiments and from the three, the average is 85.24 with a 

margin of 2.09. This makes the results promising. Focusing on the maximum accuracy 

among the set of solutions (converged population), we compare both our CF&FCEM 

crossover and HPF&M crossover against each other. Results indicate that CF&FCEM 

crossover retains a higher maximum accuracy in each of the selection mechanism 

categories.  

Comparing the standard deviations of the final set of solutions, taking ranked selection 

mechanism, CF&FCEM crossover provides a much higher degree of standard deviations 
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to that of HPF&M crossover counterpart. This holds true for Random and Tournament 

selections as well. 

Looking at these three selection mechanisms prioritized for the next generation, we note 

that the tournament selection establishes greater impacts on the standard deviation, solely 

within HPF&M crossover. This proves that tournament selection plays an outstanding 

role in diversification.  

For the next set of experiments, we will repeat two algorithms for thirty times total, to 

ensure that these results are reliable. Both algorithms have the same mutation operators 

mentioned in Section 3.6 and selection mechanism is set to tournament. They only differ 

in their crossover operators. Each algorithm iterates for five populations where the first 

one is the same for both. Table 4.3 presents the statistics on the maximum accuracy for 

each of the 30 runs written in population row. 

Descriptive 

Statistics: 
Symbol CF&FCEM Crossover with our mutation 

operations from Section 2.6 

HPF&M Crossover with our mutation 

operations from Section 2.6 

Minimum min  71.74 60.09 

Maximum max  83.13 82.68 

Range R  11.39 22.59 

Size n  30 30 

Mean 𝜇 78.61 75.32 

Median 𝑥 78.59 76.09 

Population 
 

71.74, 73.99, 74.57, 76.08, 76.48, 76.52, 

76.97, 77.3, 77.39, 77.48, 77.67, 77.84, 

77.88, 78.12, 78.35, 78.83, 78.86, 79.19, 

79.48, 80.02, 80.24, 80.58, 80.93, 81.01, 

81.25, 81.28, 81.51, 81.84, 81.88, 83.13 

66.76, 73.54, 76.16, 72.47, 70.57, 70.01, 

77.84, 81.24, 78.5, 81.0, 81.69, 75.11, 65.52, 

64.78, 76.97, 72.06, 79.18, 80.18, 80.34, 

77.03, 76.03, 82.68, 82.3, 75.42, 81.96, 60.09, 

71.27, 74.66, 72.81, 81.62 

Standard Deviation 𝜎 2.54 5.74 

Table 4.3. A comparison between two crossover operators, CF&FCEM and HPF&M. 
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Figure 4.1 presents the boxplots of the abovementioned populations. As mentioned before 

this population refers to the maximum accuracy of the individuals of the fifth generation 

in this experiment. Each of CF&FCEM and HPF&M has run thirty times. These boxplots 

highlight that using the CF&FCEM crossover leads to more reliable set of solutions as we 

see among thirty runs. This is because the minimum pertaining to the maximum accuracy 

values in CF&FCEM are higher than that of HPF&M crossover. If we compare the 

minimum accuracy, we realize that CF&FCEM crossover reaches an accuracy that is 10 

percent higher. The following maximum accuracy is less than 1 percent higher, with a 

mean accuracy more than 3 percent higher, and the median following suit which is two 

percent higher than HPF&M. Standard deviation of CF&FCEM crossover is less than half 

of HPF&M’s. 

 

Figure 4.1. Boxplot of maximum accuracy distribution, a comparison between CF&FCEM 

crossover and HPF&M crossover both with our mutation operations.  

The next set of experiments corresponds to the same experiment as above, except that we 

begin with a population that is not fixed across every experiment or run. We allow 

randomness to determine the initialization of the population for all case experiments 

instead. Note that the size of the first population is set to 10.  

Moreover, a new column has been added to the table where we can see our results when 

we change the mutation operators. First column is the combination of CF&FCEM 
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crossover with the mutation operations from Section 3.6. Second column is the 

combination of the HPF&M crossover with similar mutation operations from Section 3.6. 

The third column displays results of the HPF&M crossover along with its own mutation 

operators mentioned by Xiang & Zhining (2019).  

Descriptive 

Statistics: 
Symbol CF&FCEM Crossover with 

our mutation operations from 

Section 3.6 

HPF&M Crossover with our 

mutation operations from 

Section 3.6 

HPF&M Crossover with Xiang 

& Zhining (2019)’s original 

mutation operations 

Minimum min  70.7 54.29 49.7 

Maximum max  85.01 82.91 73.9 

Range R  14.31 28.62 24.2 

Size n  30 30 30 

Mean 𝜇 79.07 

 

74.82 67.43 

Median 𝑥 79.85 77.40 68.01 

Population 
 

71.74, 73.99, 74.57, 76.08, 

76.48, 76.52, 76.97, 77.3, 

77.39, 77.48, 77.67, 77.84, 

77.88, 78.12, 78.35, 78.83, 

78.86, 79.19, 79.48, 80.02, 

80.24, 80.58, 80.93, 81.01, 

81.25, 81.28, 81.51, 81.84, 

81.88, 83.13 

66.76, 73.54, 76.16, 72.47, 

70.57, 70.01, 77.84, 81.24, 

78.5, 81.0, 81.69, 75.11, 

65.52, 64.78, 76.97, 72.06, 

79.18, 80.18, 80.34, 77.03, 

76.03, 82.68, 82.3, 75.42, 

81.96, 60.09, 71.27, 74.66, 

72.81, 81.62 

49.7, 60.89, 61.84, 62.39, 63.85, 

64.03, 65.18, 65.55, 65.78, 

65.85, 66.54, 67.66, 67.73, 

67.87, 68.15, 68.34, 68.38, 

69.12, 69.45, 69.86, 69.99, 

70.06, 70.54, 72.02, 72.05, 

72.15, 73.51, 73.87, 73.9, 66.68 

Standard 

Deviation 

𝜎 3.62 6.98 4.75 

Table 4.4. A comparison between two crossover operators and two mutation operators. 

To better understand Table 4.4, we introduce the following boxplots that manifests a 

comparison of the distributions for maximum accuracies in these two experiments: first, 

the CF&FCEM crossover with our own proposed mutation operations. Second, HPF&M 

crossover operation with the paper Xiang & Zhining (2019)’s mutation operations.  
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Figure 4.2. Boxplot of maximum accuracy distribution, a comparison between CF&FCEM 

crossover and our mutation operations versus HPF&M crossover with Xiang & Zhining 

(2019)’s original mutation operations. 

Figure 4.2 suggests that using CF&FCEM crossover results in steadier and trustworthy 

set of solutions. As we see among thirty runs, the minimum value of all the maximum 

accuracy values remains higher than in comparison with HPF&M crossover.  

From the beginning there were many experiments in this research aiming for finding the 

best performing crossover. The very first experiments (Table A. in the appendix) showed 

that HPF&M-Collected has the lowest maximum accuracy among all with 47%. After 

that, the fully exchange crossover had the lowest accuracy level with 60%. HPF&M 

crossover was the front runner with 81%. After that it was the first proposed crossover 

with 74%. This set of experiments guided us to the fact that we need to invest more on 

the first proposed crossover to compete with HPF&M crossover. Therefore, we eliminated 

crossover operations with the least effective accuracy values from our further 

experiments. Those of which were FCE crossover and HPF&M-Collected crossover. 

Heading to the next set of experiments, we had the results in Table B which you can locate 

within the appendix. We then introduced the third crossover proposed along with a fourth 

version. The fourth version surpassed HPF&M crossover by a small amount in accuracy 

value. Both versions surpassed HPF&M crossover with a larger amount for standard 
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deviation. Between these last two, the fourth crossover was selected for the crossover 

phase of our final algorithm, the name of which being algo-new. 

Table 4.5 shows the last population individuals. As you see individuals are sorted based 

on their accuracy level. This accuracy is obtained after four generations of genetic 

algorithm. The encodings consist of two parts: the first bracket is there to describe the 

hyperparameters of convolutional part and the next bracket corresponds to the fully 

connected part hyperparameters.  

Individual Encoding Accuracy (%) 

1 [3, 3, 1, 2, 4, 5, 1, 7, 2, 0, 0, 0, 0] [1, 100, 0.2, 7, 98.88] 98.88 

2 [3, 7, 1, 2, 4, 3, 1, 9, 1, 0, 0, 0, 0] [1, 100, 0.2, 7, 98.81] 98.81 

3 [2, 9, 2, 2, 3, 7, 1, 0, 0, 0, 0, 0, 0] [1, 100, 0.2, 6, 98.70] 98.70 

4 [3, 5, 1, 2, 4, 7, 1, 9, 1, 0, 0, 0, 0] [1, 100, 0.2, 7, 98.70] 98.70 

5 [3, 5, 1, 2, 4, 3, 1, 9, 2, 0, 0, 0, 0] [2, 500, 0.2, 6, 98.63] 98.63 

6 [3, 5, 1, 2, 4, 3, 1, 9, 1, 0, 0, 0, 0] [2, 100, 0.0, 7, 98.54] 98.54 

7 [3, 7, 1, 2, 4, 3, 1, 7, 2, 0, 0, 0, 0] [1, 100, 0.2, 7, 98.54] 98.54 

8 [2, 7, 1, 2, 3, 7, 2, 0, 0, 0, 0, 0, 0] [1, 500, 0.2, 7, 98.53] 98.53 

9 [3, 7, 1, 2, 4, 5, 1, 9, 1, 0, 0, 0, 0] [1, 500, 0.2, 6, 98.47] 98.47 

10 [3, 7, 1, 2, 4, 5, 1, 9, 1, 0, 0, 0, 0] [1, 500, 0.2, 6, 98.47] 98.47 

11 [3, 3, 1, 2, 3, 3, 1, 7, 2, 0, 0, 0, 0] [1, 100, 0.2, 7, 98.46] 98.46 

12 [2, 5, 2, 2, 3, 9, 2, 0, 0, 0, 0, 0, 0] [1, 500, 0.0, 7, 98.39] 98.39 

13 [3, 5, 2, 2, 1, 7, 1, 5, 1, 0, 0, 0, 0] [2, 100, 0.0, 7, 98.32] 98.32 
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14 [3, 3, 1, 2, 4, 5, 1, 9, 1, 0, 0, 0, 0] [2, 100, 0.2, 6, 98.25] 98.25 

15 [2, 5, 2, 2, 3, 7, 2, 0, 0, 0, 0, 0, 0] [1, 100, 0.2, 7, 98.25] 98.25 

16 [2, 3, 1, 2, 4, 9, 2, 0, 0, 0, 0, 0, 0] [2, 500, 0.2, 6, 98.00] 98.00 

17 [2, 3, 1, 2, 4, 9, 1, 0, 0, 0, 0, 0, 0] [2, 100, 0.2, 7, 97.73] 97.73 

18 [3, 3, 1, 2, 4, 11, 2, 5, 1, 0, 0, 0, 0] [2, 100, 0.2, 6, 96.53] 96.53 

19 [3, 3, 1, 2, 4, 3, 3, 4, 2, 0, 0, 0, 0] [2, 500, 0.2, 6, 95.99] 95.99 

20 [2, 3, 4, 2, 3, 5, 2, 0, 0, 0, 0, 0, 0] [1, 100, 0.0, 7, 93.84] 93.84 

Table 4.5 Final Algorithm on its Evolution to Generation Number 4 

In Table 4.5, the convergence of our algorithm is obtained in the fourth generation using 

MNIST’s full training set with the size of 60,000 images. Comparing this table to that of 

Xiang & Zhining (2019), which you can find within the appendix table C, we see that 

their algorithm converges to 98.81% with standard deviation of 0.0002396 in the thirtieth 

generation while our algorithm converges to 98.88% with standard deviation of 

1.2200917 in the fourth generation.  

4.2. Discussion 

4.2.1 Tables 

- Table 4.2 shows that standard deviation results of ranked selection and random selection 

mechanisms are also notable. Observing these two mechanisms proves that operations 

defined in the CF&FCEM crossover were the root cause behind larger standard deviation. 

Regardless of any selection mechanism utilized in its implementation. This is because of 

the crossover operation brought forward within our proposed algorithm. Doing so allows 

for a fully connected part to be treated differently from the convolutional part and even 

includes its own separate operation formula. Versus in the HPF&M crossover operation, 

convolutional and fully connected parts of the gene representation are both treated as a 

single part. Therefore, our new algorithm has a better enhanced crossover operation 
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specifically tuned for CNNs that have a fully connected part. This is simply because the 

more operation you place on values within the gene representations, the higher degree of 

variance is subsequently generated among the offspring individuals. As well the degree 

to which they remain disparate regarding their parents.  

- In Table 4.2, when comparing between the standard deviation column and the average 

column, we realize the higher value of standard deviation, the lower average accuracy. 

We conclude a trade-off remains between a higher average accuracy and obtaining 

diversity. 

- The results of Table 4.3 are extracted from thirty runs each using a tournament selection 

mechanism combined with a random crossover selection for five generations each. Based 

on this table we can claim that the CF&FCEM crossover is more promising. Meaning, we 

can guarantee a better accuracy using these new functions, regardless of the high degree 

of randomness involved in distinct stages of the algorithm. Note that to have a fair 

comparison, we started all sixty experiments in Table 4.3 from one unique pool, as in the 

first generation.  

- Unlike Table 4.3, in Table 4.4 we started all experiments from a randomly generated 

initial population and the results for our algo-new proceeded much further after 

consideration of the randomness factor. Up until now we always kept the same mutation 

operations in the experiments, however in this table we present the results of a new 

experiment, in the last column, that is the exact implementation of crossover and mutation 

operations from the paper Xiang & Zhining (2019). Comparing these results with the other 

two results, the minimum accuracy is lower, the maximum accuracy is lower. This shows 

that our mutation operation surpasses operations from the paper Xiang & Zhining (2019) 

in performance. One reason is that in our algorithm all the individuals can mute. Second 

reason is that there are five different mutation operations in our algorithm instead of one. 

Third reason is that between these mutation operations, there is higher probability of usage 

for adding layer and increasing the epochs by one. This probability allocation comes from 

the fact that we want to increase the capacity of our model. 



 
 

67 

- Looking into Table 4.5, the reason behind this faster convergence comparing algo-new 

to the algorithm belong to Xiang & Zhining (2019) is of two; first, Xiang & Zhining 

(2019) uses multi perceptron layer neural network, however, we are using CNNs which 

has proven to work better with images. Second, we have increased the number of epochs 

in the first generation from 1 in all the past experiments to 5 which helps boosting the 

accuracy of the model. However, in Xiang & Zhining (2019), the number of epochs is not 

a hyperparameter, it is a parameter of 20. The reason we did not use 20 epochs is that it 

requires a huge resource and that based on experience and knowledge we have from deep 

learning, we know that using a high number of epochs without early stopping results in 

model to start overfitting. 

- The results of the third and fourth tables both promise reliability following an enhanced 

degree of minimum accuracy. Additionally, using the CF&FCEM crossover, we may 

retain similar accuracy levels for individuals within the last generation.  

4.2.2 Gene Representations 

An example of a final set of solutions or the last generation individuals’ gene 

representations is in the appendix. Looking into these encodings of each individual we 

note two observations: 

First, sometimes we have two accuracy values that are not so much different from one 

another, take two individuals between 77% and 77%. However, we see that the hyper 

parameters corresponding to them are disparate. In fact, a five-layer CNN may retain the 

same accuracy of a three-layer CNN. The same phenomenon as observed for one percent 

accuracy value difference, take a pair of individuals with 76% or 75%. In these cases, we 

see that the hyperparameters contrast in either the convolutional part or in the fully 

connected part.  

Second, there are individuals with 10% or even 7% accuracy within the last generations, 

which results in greater diversity. In the case of a 7% accuracy individual, we know that 

we only have a softmax as an output layer and no fully connected layer before it. In 

addition, we have just one convolutional layer. Therefore, we expect a low accuracy due 
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to the diminished capacity of the model. However, for a 9% we do not expect similar low 

accuracy with three convolutions and one fully connected layer.  

 1. One reason is that a single change of one hyper parameter will not make the 

highest accuracy, rather, a combination plays the key role. Meaning that a combination 

makes a perfect impact. 

 2. Another reason is that, only increasing the model capacity may not always be a 

promising idea. In this regard, we must pay attention to the dataset size as well since we 

can be easily overfit by only increasing this capacity of the model. Of which is sensitive 

to the size of the dataset. Due to our small dataset, increasing the number of layers within 

this area does not help to provide a better solution. 

3. Additionally increasing the number of epochs is an idea worthy of 

consideration, but only up to a certain point. An optimal solution does not necessarily 

include an optimal single hyperparameter, in fact, the combination of hyperparameters 

next to one another is preferred. When we tune hyperparameters manually, we may miss 

this combination, simply because we cannot always attempt all possible combinations. In 

a directed search, this it is within reason. 

4. As we compare an individual of 10% accuracy with other three-convolutional 

individuals that have higher accuracy, for instance 75%, we see that the kernel size is 

larger in 10% individual compared to the other. Therefore, we conclude that the smaller 

the kernel size, the better features extracted. This means only adding additional layers 

may not help our architectural performance, we must continue tuning kernel size along 

with added layers. 

Collectively, there are rules on hyper-parameter tuning in deep learning that make the 

network more accurate. For example, the deeper and the wider the network (increasing 

capacity by adding layers or adding neurones per layer) the better yields for network 

accuracy. Another example is the more you optimize training through back propagation, 

in fact the higher the number of epochs, the better the accuracy. These points remain true 

until we pass an optimal point, which leads to a lower accuracy. Our algorithm brings the 
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individual with highest accuracy and a set of individuals with the highest diversity, 

includes the following phases:  

First, randomly initialization of first generation. 

Second, a tournament selection for league selection. 

Third, random selection of two individuals from the league set to pass to the crossover 

operations. This means one individual may be picked more than once. 

Fourth, applying Convolutional Fusion & Fully Connected Exchange and Maximization 

Crossover to the selected individuals. 

Fifth, mutation of all individuals with one of the five mutation operations defined. 

Sixth, creating neural networks for the mutated individuals and calculating their accuracy. 

Seventh, going to the first step and repeating.  
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Chapter 5 
Conclusion 

There are many examples of algorithms that manage the hyperparameter tuning for neural 

networks in such a way that results in a final architecture with the best accuracy. Some 

are fully automatic, some need more human intervention. Among meta-heuristic 

algorithms, genetic algorithms retain the ability to be parallelized and find a larger set of 

solution space. Some of the genetic algorithms focus on selection mechanisms, some 

focus on operations to control the speed of convergence or to acquire the best possible 

fitness.  

This research has introduced a semi-automatic genetic algorithm to find a set of solutions 

with the highest variances in which there is an architecture with the highest accuracy. 

Once we set some of the hyperparameters, mostly the ones related to optimization process 

in the neural networks, our proposed genetic algorithm works automatically and gives us 

a final architecture. This architecture design is for convolutional neural networks against 

many other works with only MPL architectures and the set of hyperparameters is set 

according to the dataset. The following algorithm is the fourth attempt after careful 

comparison between the implementation of the four algorithms proposed. Including the 

state-of-the-art algorithm in the paper by Xiang & Zhining (2019). One drawback in the 

existing genetic algorithm implementations is the lack of diversity within generations that 

we addressed throughout this research. The goal obtained in this work is to introduce new 

operations for crossover that mimics the human natural evolutional operator. This 

operator captures the high diversity as well as maintaining high accuracy level. 

Our results show that this algorithm is designed to converge toward 85% accuracy within 

an average of 61 minutes trained on the limited 100 images from MNIST and tested on 

the MNIST test set. Additionally, Xiang & Zhining (2019) HPT algorithm converges to 

98.81% with standard deviation of 0.00 in the thirtieth generation while our algorithm 

converges to 98.88% with standard deviation of 1.22 in the fourth generation. This 

comparison is based on the same dataset MNIST. 
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These results continue to matter as we deem higher accuracies and difference between the 

individuals within various generations. Determining these results are imperative because 

tuning hyperparameters is a challenging task. It comes with an excessive cost of 

computation and if not execute in an optimized manner, one may extend many resources 

in addition to passing by the optimal solution. Acknowledging this fact, we have managed 

to achieve a directed automatic search result that promises a range of solutions, in which 

we find the best candidate.  

Limitations 

This work is an attempt to tune hyperparameters of convolutional neural networks, and 

exclusively an algorithm in both crossover and mutation operations developed for 

convolutional neural networks. Have no guarantee on how this algorithm would perform 

if we attempted further tuning the hyperparameters for graph neural networks, or recurrent 

neural networks and any other NNs.  

Aside from standard deviation, one can try to define new functions as a measurement of 

diversity between individuals of a generation.  

This study has shown how crossover operation affects diversity. We have no guarantee 

how mutation operations dictate this parameter and its accuracy level. Solely after 

consideration of the same crossover operation in two genetic algorithms.  

Recommendation 

The purpose of this research is to find an automated algorithm that can find the best 

hyperparameters for a CNN that is widely used in computer vision. In this way, the users 

who have no knowledge in hyperparameter tuning will benefit from the automation. In 

the future, we will bring to bear two ways for developing this work. First, the 

hyperparameter range can be defined with different value sets based on the current 

architecture in both crossover and mutation operations. This may help the exploitation but 

can also lead to infeasibility. Second, a set of selection mechanisms can be tested to decide 

which two individuals are going to crossover with each other. This is important since we 

can define it randomly as we did in this research, where an individual has the chance to 
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cross more than once. Or we define it in-a-row, meaning we take two individuals that are 

stored next to each other in the data structure used for crossing. This helps to control the 

chance of an individual achieving a crossover only once. Or it can be the same for all, in 

case of in a row selection. In addition, with the climate change, future research will focus 

on how to reduce the computation in the fitness evaluation. 
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Appendix 

Experiment Max Accuracy Acquired among the 
individuals in the last population 

FCE crossover 60% 
Crossover Proposed 1st version 74% 
Crossover Proposed 2nd version 73% 
HPF&M crossover 81% 
HPF&M- Collected crossover 47% 
HPF&M-Replacement crossover 69% 

Table A 

 

 

 

Experiment Max Accuracy Acquired 
among the individuals in the 

last population 

Standard 
Deviation 

Crossover Proposed 1st version 79% 12.1 
Crossover Proposed 2nd version 77% 15.82 
Crossover Proposed 3rd version 77% 17.7 
Crossover Proposed 4th version 
(CF&FCEM) 

84% 18.8 

HPF&M crossover 80% 6.2 
HPF&M-Replacement crossover 81% 12.8 

Table B 
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Individual Encoding Accuracy 

1 3-2-970-788-866-633-0-0-0-156 98.81 

2 3-2-970-788-866-818-0-0-0-156 98.78 

3 3-2-970-788-866-682-0-0-0-156 98.76 

4 3-2-970-788-866-688-0-0-0-156 98.75 

5 3-2-970-802-422-387-0-0-0-135 98.75 

6 3-2-970-795-121-688-0-0-0-144 98.75 

7 3-2-970-802-121-688-0-0-0-144 98.74 

8 3-2-970-788-866-645-0-0-0-156 98.74 

9 3-2-970-798-619-0-0-0-0-135 98.73 

10 3-2-970-936-293-427-0-0-0-156 98.73 

11 3-2-970-802-417-298-0-0-0-139 98.73 

12 5-2-970-802-417-298-0-0-0-121 98.72 

Table C: Generation number thirty by Xiang & Zhining (2019) 
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The output of the last generation:  

The Testing Set Accuracy of the Network is: 77 %  

[1 7 1 2 1 0 0 0 0 0 0 0 0] 

[2 400 0.0 4 0] 

----------------------------- 

Finished Training 

The testing set accuracy of the network is: 64 % 

[4 7 1 2 3 5 1 3 1 7 1 0 0] 

[2 400 0.0 4 0] 

----------------------------- 

Finished Training 

The testing set accuracy of the network is: 83 % 

[3 7 1 2 3 7 1 7 1 0 0 0 0] 

[2 400 0.0 4 0] 

----------------------------- 

Finished Training 

The testing set accuracy of the network is: 10 % 

[3 7 1 2 3 4 1 7 1 0 0 0 0] 

[1 100 0.0 5 0] 

----------------------------- 
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Finished Training 

The testing set accuracy of the network is: 76 % 

[4 3 1 2 3 9 1 4 1 6 1 0 0] 

[2 100 0.0 5 0] 

----------------------------- 

Finished Training 

The testing set accuracy of the network is: 75 % 

[3 11 1 2 3 3 1 7 1 0 0 0 0] 

[1 400 0.0 4 0] 

----------------------------- 

Finished Training 

The testing set accuracy of the network is: 7 % 

[1 11 2 3 1 0 0 0 0 0 0 0 0] 

[0 0 0 1 0] 

----------------------------- 

Finished Training 

The testing set accuracy of the network is: 77 % 

[3 9 1 2 3 5 1 7 1 0 0 0 0] 

[2 400 0.0 4 0] 

----------------------------- 
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Finished Training 

The testing set accuracy of the network is: 78 % 

[3 9 1 2 3 5 1 7 1 0 0 0 0] 

[2 100 0.0 5 0] 

----------------------------- 

Finished Training 

The testing set accuracy of the network is: 78 % 

[2 7 1 2 3 7 1 0 0 0 0 0 0] 

[1 100 0.0 5 0] 

----------------------------- 

Yes, we found it here! 

The Testing Set Accuracy of the Network is: 77 %  

[1 7 1 2 1 0 0 0 0 0 0 0 0] 

[2 400 0.0 4 0] 

----------------------------- 

Yes, we found it here! 

The Testing Set Accuracy of the Network is: 77 %  

[3 11 1 2 3 7 1 7 1 0 0 0 0] 

[1 400 0.0 4 0] 

----------------------------- 



88 
 

Finished Training 

The testing set accuracy of the network is: 72 % 

[4 7 1 2 3 3 1 3 1 7 1 0 0] 

[1 100 0.0 4 0] 

----------------------------- 

Finished Training 

The testing set accuracy of the network is: 75 % 

[4 5 1 2 3 7 1 3 1 7 1 0 0] 

[1 100 0.0 5 0] 

----------------------------- 

Finished Training 

The testing set accuracy of the network is: 81 % 

[4 7 1 2 3 9 1 3 1 6 1 0 0] 

[1 100 0.0 5 0] 

----------------------------- 

Finished Training 

The testing set accuracy of the network is: 67 % 

[2 7 2 2 3 9 1 0 0 0 0 0 0] 

[2 400 0.0 4 0] 

----------------------------- 
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Finished Training 

The testing set accuracy of the network is: 52 % 

[3 11 2 2 1 7 1 3 1 0 0 0 0] 

[2 400 0.0 4 0] 

----------------------------- 

Finished Training 

The testing set accuracy of the network is: 66 % 

[2 5 2 2 3 7 1 0 0 0 0 0 0] 

[2 400 0.0 4 0] 

----------------------------- 

Finished Training 

The testing set accuracy of the network is: 69 % 

[2 3 2 2 1 7 1 0 0 0 0 0 0] 

[2 400 0.0 4 0] 

----------------------------- 

Finished Training 

The testing set accuracy of the network is: 42 % 

[3 11 3 2 3 7 1 3 1 0 0 0 0] 

[1 400 0.0 4 0] 

----------------------------- 
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Yes, we found it here! 

The Testing Set Accuracy of the Network is: 77 %  

[3 5 1 2 3 3 1 7 1 0 0 0 0] 

[2 100 0.0 4 0] 

----------------------------- 

Yes, we found it here! 

The Testing Set Accuracy of the Network is: 82 %  

[3 9 1 2 3 5 1 7 1 0 0 0 0] 

[2 100 0.0 4 0] 

----------------------------- 

Finished Training 

The testing set accuracy of the network is: 77 % 

[3 3 1 2 3 11 1 7 1 0 0 0 0] 

[1 500 0.0 4 0] 

----------------------------- 

Finished Training 

The testing set accuracy of the network is: 81 % 

[3 7 1 2 3 5 1 7 1 0 0 0 0] 

[1 500 0.0 4 0] 

----------------------------- 
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Finished Training 

The testing set accuracy of the network is: 75 % 

[3 9 1 2 3 3 1 9 1 0 0 0 0] 

[2 100 0.0 5 0] 

----------------------------- 

Finished Training 

The testing set accuracy of the network is: 79 % 

[2 5 1 2 3 7 1 0 0 0 0 0 0] 

[2 100 0.0 5 0] 

----------------------------- 

Finished Training 

The testing set accuracy of the network is: 81 % 

[3 9 1 2 3 5 1 7 1 0 0 0 0] 

[2 500 0.0 4 0] 

----------------------------- 

Finished Training 

The testing set accuracy of the network is: 73 % 

[4 9 1 2 3 5 1 3 1 7 1 0 0] 

[2 400 0.0 4 0] 

----------------------------- 
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Finished Training 

The testing set accuracy of the network is: 74 % 

[3 11 1 2 3 5 1 7 1 0 0 0 0] 

[1 400 0.0 4 0] 

----------------------------- 

29 

[77.69 64.78 83.07 10.32 76.34 75.8 7.04 77.37 78.01 78.78 77.69 77.01 72.03 75.13

 81.95 67.13 52.99 66.46 69.86 42.17 77.78 82.16 77.4 81.78 75.32 79.68 81.7 73.42

 74.48] 

===Standard Deviation of the generation===18.99586526179671  

===Maximum of the generation===83.07 

===Average of the generation===69.49448275862069 

---00:35:46.25--- 


