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Résumé 

Dans les usines intelligentes il est crucial de garder les opérateurs engagés et attentifs, que ce soit 

pour des raisons de sécurité ou pour garantir une gestion efficace des exceptions. De récentes 

études semblent indiquer que l’intégration d’intelligence artificielle (IA) dans les usines 

intelligentes peut réduire l’engagement des opérateurs, affectant ainsi leur capacité à réagir 

efficacement en cas d’exception. Dans ce mémoire, nous explorons l’utilisation de contre-mesures 

cognitives pour rehausser l’engagement et la performance des opérateurs dans des tâches 

manufacturières assistées par l’IA. Nous posons l’hypothèse que si les opérateurs sont plus 

engagés dans leur travail grâce aux contre-mesures cognitives, alors ils seront plus performants, 

plus motivés et réagiront mieux lors de la gestion d’exceptions. Deux contre-mesures cognitives 

ont été étudiées: la réalité augmentée (RA) et les systèmes de rétroaction du niveau d’engagement 

(SRNE). Dans ce mémoire, nous proposons d’abord un nouveau SRNE adapté au milieu 

manufacturier qui utilise des mesures physiologiques faciles à collecter en mouvement telles que 

la respiration et l’accélération. En second lieu, nous évaluons l’effet des deux contre-mesures 

cognitives (la RA et le SRNE développé) sur l’engagement, la motivation et la performance des 

opérateurs en contexte de travail assisté par l’IA, ainsi que sur leur résilience en cas d’échec 

d’automatisation. Les résultats suggèrent que le SRNE conçu était capable de prédire les niveaux 

d’engagement de notre banque de données d’entraînement avec une précision de 80.95%. Les 

résultats indiquent également que les contre-mesures aident les opérateurs à développer des 

compétences plus résilientes. Les travailleurs utilisant les contre-mesures ont montré une plus 

faible réduction de précision lorsque l'automatisation a été retirée comparativement au groupe 

contrôle. De plus, les résultats indiquent que le SRNE peut améliorer l'engagement 

comportemental des opérateurs lors du travail assisté par l'IA. En effet, le SRNE a mené à une plus 

grande accélération dans la tâche assistée par l’IA. Toutefois, contrairement à nos attentes, les 

contre-mesures n'ont pas eu d'impacts sur la motivation, l'engagement cognitif et l’engagement 

émotionnel. Nos résultats montrent qu'il est possible d'utiliser les contre-mesures cognitives pour 

atténuer certains problèmes de performance liés à l’automatisation. 

Mots clés : Contre-mesure cognitive, Réalité augmentée, Rétroaction du niveau d’engagement, 

Résilience, Engagement, Motivation, Fabrication, Intelligence artificielle  

Méthodes de recherche : Expérimentation, Science de design 
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Abstract 

In smart factories, it is crucial to keep operators engaged and attentive, whether for safety reasons 

or to ensure effective management of exceptions by the operators. Recent studies suggest that the 

integration of artificial intelligence (AI) in smart factories may reduce operator engagement, 

thereby affecting their ability to respond effectively in case of an exception. In this thesis, we 

explore the use of cognitive countermeasures to enhance operator engagement and performance in 

AI-assisted manufacturing tasks. We hypothesize that if operators are more engaged in their work 

due to cognitive countermeasures, they will be more performant, more motivated, and better 

equipped to handle exceptions. Two cognitive countermeasures were studied: augmented reality 

(AR) and a real-time engagement level feedback systems (RTELFS). In this thesis, we first 

propose a new RTELFS adapted to the manufacturing environment, which uses physiological 

measures that are easy to collect while in motion, such as respiration and acceleration. Secondly, 

we evaluate the effect of the two cognitive countermeasures (AR and the developed RTELFS) on 

operator engagement, motivation, and performance in the context of AI-assisted work, as well as 

their resilience in the event of automation failure. The results suggest that the designed RTELFS 

was capable of predicting engagement levels from our training data with an accuracy of 80.95%. 

The results also indicate that the countermeasures help operators develop more resilient skills. 

Workers using the countermeasures showed a smaller reduction in accuracy when automation was 

removed compared to the control group. Additionally, the results indicate that the RTELFS can 

improve behavioral engagement during AI-assisted work. Indeed, the RTELFS led to a greater 

acceleration in the AI-assisted task. However, contrary to our expectations, the countermeasures 

did not impact motivation, cognitive engagement, or emotional engagement. Our findings 

demonstrate that it is possible to use cognitive countermeasures to mitigate certain performance 

issues related to automation. 

Keywords: Cognitive Countermeasure, Augmented Reality, Engagement Feedback, Resilience, 

Engagement, Motivation, Manufacturing, Artificial Intelligence 

Research methods: Experimentation, Design Science 
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mémoire a été approuvée par tous les co-auteurs. Le premier article (chapitre 2) a été publié dans 

le journal Sensors and Transducers en mai 2024. L’article publié est une version étendue d’un 

article de conférence qui avait été rédigé en préparation pour la conférence ARCI2024 

(Automation, Robotics and Communication for Industry 4.0/5.0) qui a eu lieu du 7 au 9 février 

2024.  L’article de conférence présenté à cette conférence se trouve en annexe A. Le second article 

(chapitre 3), a été rédigé pour soumission au journal International Journal of Production Research 

(IJPR). Au moment de la remise de ce mémoire, l’article n’a pas été soumis au journal.  

La recherche présentée dans ce mémoire a été approuvée par le comité d’éthique de la recherche 
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Chapitre 1 

Introduction 

1.1 Mise en contexte 

Au cours des dernières années, nous avons observé une croissance du déploiement des systèmes 

d'intelligence artificielle (IA) dans les usines intelligentes. Les capacités de traitement de 

l'information et de projection des systèmes d'IA permettent aux systèmes de devenir de plus en 

plus autonomes, leur permettant ainsi de fonctionner au-delà des heures de travail et entraînant des 

augmentations significatives de la productivité des systèmes (Yang et al., 2021). De plus, 

l’intégration d’IA a aussi démontré des effets positifs sur la productivité des travailleurs  

(Plathottam et al., 2023; Raj and Seamans, 2018). En effet, ces systèmes peuvent être utilisés pour 

réduire la charge de travail des opérateurs en prenant en charge certaines tâches répétitives ou à 

faible valeur ajoutée (Tortorella et al., 2024), ou encore pour augmenter les capacités des 

travailleurs, par exemple en leur fournissant des instructions en temps réel (Sahu, Young and Rai, 

2021).   

Actuellement, les principales utilisations de l'IA dans les usines intelligentes incluent la détection 

de défauts, le suivi de la maintenance prédictive, la gestion des coûts et de l'énergie, ainsi que le 

développement de robots et de systèmes de conduite autonome (Nti et al., 2022), mais de nouvelles 

applications émergent progressivement. Par exemple, Mypati et al. (2023) ont récemment proposé 

plusieurs applications d’IA dans les domaines du moulage, du formage et de la finition dans les 

fonderies. Manikandan et al. (2023) ont souligné le besoin de développer des outils d’IA dans les 

procédés avancés d'usinage ainsi que dans les techniques de soudage des métaux. De plus, He et 

al. (2023) ainsi que Mattera, Nele et Paolella (2024) ont récemment proposé de nouvelles façons 

d'utiliser l'IA dans les méthodes de fabrication additives. Avec des applications de plus en plus 

diversifiées, on s’attend à ce que l'IA devienne de plus en plus omniprésente dans les usines 

intelligentes du futur. 

Lorsque les opérateurs manufacturiers travaillent avec des systèmes d’IA, il devient crucial pour 

eux de maintenir des niveaux élevés d’engagement et d’attention dans leur travail. En effet, 

Mangler et al. (2021) expliquent que les opérateurs dans les usines intelligentes gèrent souvent une 
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variété de sous-systèmes et interagissent avec plusieurs niveaux d'automatisation, ce qui peut 

augmenter la charge cognitive requise pour réaliser leur travail (Yamamoto, 2019). Cette demande 

mentale accrue peut conduire à des erreurs, en particulier lorsque les opérateurs sont inattentifs 

(Mangler et al., 2021), ce qui peut potentiellement compromettre la qualité de la production (Yung 

et al., 2020) ou, dans les cas les plus graves, entraîner des accidents (Naderpour, Nazir et Lu, 

2015). De plus, lors de l’intégration de nouvelles technologies manufacturières comme l’IA, les 

entreprises s'attendent à ce que les opérateurs soient capables de rapidement identifier les erreurs 

des systèmes et puissent intervenir efficacement en cas de problèmes d'automatisation (Endsley 

and Kiris, 1995). En cas de défaillance de l’automatisation (aussi appelé exception) il devient 

particulièrement important que les opérateurs humains puissent reprendre le processus de manière 

efficace tout en maintenant un état calme afin de limiter les pertes de productivité possibles 

(Romero et Stahre, 2021).  

Il y a cependant une inquiétude croissante que l’intégration d’intelligence artificielle en milieu 

manufacturier puisse avoir des effets négatifs sur l’engagement et la motivation des opérateurs, 

affectant ainsi leur capacité à superviser adéquatement des systèmes automatisés ainsi qu’à 

répondre efficacement aux problèmes d’automatisation (Endsley, 2023). Cette inquiétude est 

exacerbée par les résultats d’une récente étude par Passalacqua et al. (2024) dans laquelle les 

chercheurs démontrent que l’utilisation d’une IA très performante lors de la formation d’opérateurs 

manufacturier avait réduit leur engagement, leur motivation ainsi que leur performance lorsque 

l’IA a été retirée, comparativement aux opérateurs qui s’étaient formés avec un système moins 

performant, nécessitant des interventions humaines. Ce résultat est plutôt alarmant puisque les 

applications de l'IA sont de plus en plus performantes, variées et de plus en plus intégrées dans les 

processus manufacturiers des entreprises (Li et al., 2017). Il semble donc impératif de trouver des 

solutions pour s’assurer que l’intégration d’IA puisse promouvoir la performance et le bien-être 

des opérateurs humains au lieu de les dégrader. 

Les contre-mesures cognitives représentent des solutions très prometteuses pour rehausser 

l’engagement et la performance des opérateurs dans des contextes hautement automatisés. Les 

contre-mesures cognitives sont définies de manière globale comme étant des stratégies, des 

techniques ou des outils qui permettent d’améliorer ou de maintenir des performances cognitives 

durant une tâche (Dehais et al., 2010). Elles sont souvent utilisées pour limiter certains biais 
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cognitifs comme la baisse d’engagement (Karran et al., 2019; Demazure et al., 2021) ou le « tunnel 

cognitif », un état cognitif où les opérateurs adoptent un focus intense sur certaines informations, 

négligeant les informations externes (Dehais et al., 2010). Bien que la littérature scientifique 

bénéficierait d’une définition plus spécifique des contre-mesures cognitives, dans ce travail nous 

faisons référence à ce concept pour désigner des outils et des méthodes pour assurer que les 

opérateurs puissent maintenir des niveaux optimaux d’engagement dans leur travail et éviter les 

distractions.  

Un bon exemple de contre-mesure cognitive a été développé par Dehais, Causse et Tremblay 

(2011) pour réduire les baisses de performances dues au « tunnel cognitif ». La contre-mesure 

développée par ces chercheurs consistait à retirer momentanément les informations principales du 

tableau de bord des opérateurs afin d’afficher les signaux externes. Ceci forçait les opérateurs à 

prendre connaissance des signaux externes même en état de « tunnel cognitif » ce qui a mené à 

une meilleure prise de décision globale. Ce système représente un bon exemple de contre-mesure 

cognitive, mais n’est pas applicable pour rehausser l’engagement des opérateurs. Pour rehausser 

l’engagement, deux contre-mesures cognitives semblent particulièrement prometteuses : les 

systèmes de rétroaction du niveau d’engagement (SRNE) et la réalité augmentée (RA). 

Les SRNE sont des systèmes qui utilisent des réponses physiologiques (i.e., 

électroencéphalographie, variabilité de la fréquence cardiaque) et des métriques de performance 

pour mesurer les niveaux d'engagement cognitif des opérateurs en temps réel. Ces systèmes 

affichent ensuite le niveau d’engagement mesuré en temps réel, permettant aux opérateurs de rester 

conscients de leur niveau d’engagement dans la tâche. Ces systèmes agissent comme des contre-

mesures cognitives en permettant aux opérateurs de s’ajuster en temps réel face à des baisses 

d’engagement afin de maintenir des niveaux d’engagement soutenus dans leur travail. Un exemple 

notable de SRNE a été développé par Demazure et al. (2021) et consistait à changer la couleur de 

fond d’un logiciel de gestion de ressources (ERP) en fonction du niveau d’attention soutenue des 

opérateurs mesuré à partir d’un index d’électroencéphalographie (EEG). Ce système a démontré 

un grand potentiel pour aider les opérateurs à maintenir des niveaux d’attention soutenue optimaux 

dans une longue tâche de suivi passif de processus d’entreprise (Karran et al., 2019).  
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La réalité augmentée (RA) démontre également un fort potentiel pour renforcer l’engagement des 

opérateurs en milieu manufacturier. En permettant de manipuler les informations accessibles aux 

opérateurs, la RA offre une capacité significative à orienter leur attention vers les données les plus 

pertinentes, en faisant ainsi un outil puissant à utiliser comme contre-mesure cognitive. En milieu 

manufacturier, la RA a été beaucoup utilisée pour afficher des instructions d’assemblage aux 

opérateurs en temps réel et directement sur leur environnement de travail (Wang et al., 2022; 

Werrlich et al., 2017). Dans ce contexte, la RA est principalement utilisée pour améliorer 

l’accessibilité des instructions d’assemblage, ce qui réduit la charge cognitive liée à la recherche 

d’informations. Elle permet également de limiter les pertes de productivité et les distractions 

potentielles associées au passage de la tâche principale à la consultation d’un manuel d’instructions 

ou d’un tableau de bord. En ce qui concerne l’effet de la RA sur l’engagement des opérateurs, 

Nguyen et Meixner (2019) ont démontré que l’utilisation de ludification (gamification) avec la RA 

dans des tâches d’assemblage avait globalement rehaussé l’engagement des opérateurs 

manufacturiers. De plus, Lam et al. (2021) ont démontré que l’entraînement d’opérateurs 

manufacturiers à l’aide de RA permettait d’améliorer la rétention d’information comparativement 

à l’entraînement avec papier, ce qui semble suggérer un plus grand engagement lors de 

l’entraînement.  

Malgré le fort potentiel de ces deux contre-mesures, actuellement, elles n’ont jamais été étudiées 

en laboratoire comme moyen pour mitiger les impacts négatifs de l’IA sur l’engagement et la 

performance des opérateurs manufacturiers. De plus, les SRNE présentés dans la littérature 

utilisent principalement l’EEG pour mesurer l'engagement des opérateurs, une méthode peu 

adaptée au contexte manufacturier où les opérateurs sont souvent en mouvement.  

1.2 Objectifs et questions de recherche 

Ainsi, l’objectif de ce travail est double. Premièrement, nous souhaitons développer un système 

de rétroaction du niveau d’engagement qui serait adapté au contexte manufacturier. Ensuite, nous 

souhaitons évaluer l’effet des deux contre-mesures cognitives (c’est-à-dire de la RA et le système 

de rétroaction du niveau d’engagement) sur l’engagement, la motivation, la performance et la 

résilience des opérateurs manufacturiers en contexte de travail assisté par l’IA. Les questions de 

recherches qui ont guidé notre travail sont donc les suivantes : 
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1. Comment pouvons-nous concevoir un système de rétroaction du niveau d’engagement 

adapté au milieu manufacturier ? 

2. Quel est l'effet des deux contre-mesures cognitives (i.e., la RA et le système de rétroaction 

du niveau d’engagement) sur l'engagement, la performance, la motivation et la résilience 

des opérateurs manufacturiers dans un environnement de travail assisté par l'IA? 

Nous posons l’hypothèse que si les opérateurs sont plus engagés dans leur travail, alors ils seront 

plus motivés et performants lors du travail assisté, et développeront également des compétences 

plus résilientes leur permettant de mieux réagir lors de situations critiques, par exemple lorsque 

l'automatisation échoue. 

1.3 Structure du mémoire 

Ce mémoire est structuré en quatre chapitres. Le présent chapitre offre une mise en contexte 

générale et introduit les principaux objectifs de recherche qui ont guidé ce travail. Le chapitre 2 

répond à la première question de recherche dans un article scientifique détaillant le processus de 

conception d’un système de rétroaction du niveau d’engagement adapté au contexte manufacturier. 

Dans le chapitre 3, nous adressons la deuxième question de recherche dans un article portant sur 

l’effet de la RA et du système de rétroaction du niveau d’engagement développé dans le chapitre 

2 sur l’engagement, la motivation, la performance et la résilience des opérateurs manufacturiers 

dans un environnement de travail assisté par l’IA. Enfin, le chapitre 4 contient une conclusion qui 

résume les principaux résultats obtenus dans ce mémoire, les contributions majeures, ainsi que les 

perspectives pour de futurs projets de recherche.  

La structure des articles scientifiques des chapitres 2 et 3 a été adaptée pour publication dans des 

journaux académiques, ce qui explique pourquoi ceux-ci sont rédigés en anglais. Une version de 

l’article présenté dans le chapitre 2 a été publiée en mai 2024 dans le journal Sensors and 

Transducers (Couture et al., 2024a). Additionnellement, une version plus courte de cet article a 

été présentée à la conférence ARCI2024 en février 2024 (Couture et al., 2024b). Cet acte de 

conférence se trouve en annexe. L’article du chapitre 3 a été rédigé en vue d'une publication dans 

le journal International Journal of Production Research (IJPR), mais n’a pas encore été soumis. 
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1.4 Contribution 

Tableau 1.1 Tableau de contribution 

Étapes Contribution 

Questions de recherche Identifier les “gaps” dans la littérature et le problème de recherche – 85% 

- Identifier les écarts dans la littérature - 100% 

- Définir les questions de recherches  - 80% 

- Définir les hypothèses – 80%  

- Définir les construits à tester – 80%  

- Les directeurs de recherche ont aidé à guider les questions de recherche et 

hypothèse 

Revue de littérature Rechercher et lire les articles pertinents pour ce projet de recherche – 100% 

- Méthodologie de recherche d’articles – 100% 

- Lecture des articles – 100% 

Design expérimental Application au CER – 100% 

(Chapitre 2) 

Protocole expérimental – 100% 

Setup expérimental – 95%  

Stimuli expérimentaux – 75% 

- Le système testé a été entièrement développé (codé) par l’étudiant - 75% 

- L’index d’engagement a été calculé par le statisticien du Tech3lab ce qui 

explique la contribution de 75% de l’étudiant. 

(Chapitre 3) 

Protocole expérimental – 75% 

- Un co-auteur ayant réalisé une expérimentation très similaire a beaucoup aidé 

l’étudiant à définir le protocole expérimental, ce qui explique la contribution 

de l’étudiant de 75% 

Setup expérimental – 0% 

- Cette expérience a été réalisée dans une usine-école en France. Ce sont des 

collaborateurs de cet établissement qui ont créé la simulation manufacturière. 

Stimuli expérimentaux – 50% 

- Système de rétroaction du niveau d’engagement – 75% 

- Le système de réalité augmentée a été réalisé par des collaborateurs – 0% 

Recrutement Recrutement – 75% 

- Configuration de l’outil de recrutement – 100% 

- Recrutement et compensation (chapitre 2) – 100% 

- Recrutement et compensation (chapitre 3) – 50% 

- Un collaborateur a fortement aidé dans le recrutement de participants pour 

l’expérimentation du chapitre 3, mais la compensation a entièrement et prise 

en charge par l’étudiant. Ceci explique la contribution de 50% de l’étudiant. 

Collecte de données Collecter les données et superviser les opérations – 100%  

- Collecte de données (chapitre 2) – 100% 

- Collecte de données (chapitre 3) – 100% 
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Analyse Extraction et synchronisation des données – 85% 

- Extraction et synchronisation des données (chapitre 2) – 100% 

- Extraction et synchronisation des données (chapitre 3) – 100% 

- Calcul de moyennes à partir des données brutes (chapitre 2) – 100% 

- Calcul de moyennes à partir des données brutes du chapitre 3 a été réalisé par 

le statisticien du Tech3Lab, mais l’étudiant a fourni un guide pour organiser et 

comprendre les données – 25% 

Analyse statistique – 90% 

- Analyses statistiques (chapitre 2) – 100% 

- Analyses statistiques (chapitre 3) – 80% 

- Le statisticien du Tech3Lab a fourni un guide à l’étudiant sur les tests 

statistiques recommandés pour chaque variable. Ceux-ci ont été réalisés 

entièrement par l’étudiant avec le logiciel SAS 

Création de tableaux et graphiques – 100%  

Rédaction Rédaction – 95% 

- Les co-auteurs ont aidé à réviser et à  fournir des commentaires pour les deux 

articles 
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Abstract: Sustaining optimal task engagement is becoming vital in smart factories, where 

manufacturing operators' roles are increasingly shifting from hands-on machinery tasks to 

supervising complex automated systems. However, because monitoring tasks are inherently less 

engaging than manual operation tasks, operators may have a growing difficulty in keeping the 

optimal levels of engagement required to detect system errors in highly automated environments. 

Addressing this issue, we created an adaptive task engagement feedback system designed to 

enhance manufacturing operators’ engagement while working with highly automated systems. 

Utilizing real-time acceleration, heart rate, and respiration rate data, our system provides an 

intuitive visual representation of an operator's engagement level through a color gradient, ensuring 

operators can stay informed of their engagement levels in real-time and make prompt adjustments 

if required. This paper elaborates on the six-step process that guided the development of this 

adaptive feedback system. We developed a task engagement index by leveraging the physiological 

distinctions between more and less engaging manufacturing scenarios and using automation to 

induce lower engagement. This index demonstrates a prediction accuracy rate of 80.95% for 

engagement levels, as demonstrated by a logistic regression model employing leave-one-out cross-

 
* Une version de cet article a été publiée dans le journal Sensors and Transducers en mai 2024 (Couture et al., 

2024a) 
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validation. The implications of deploying this adaptive system include enhanced operator 

engagement, higher productivity and improved safety measures. 

Keywords: Engagement, Adaptive system, Manufacturing, Industry 5.0, Human-machine 

interaction, Design science. 

 

2.1 Introduction 

Recent advances in manufacturing technologies have significantly expanded the capabilities of 

automation, enabling even traditionally human-centric tasks to be automated. When automating 

such tasks, we frequently see the role of human operators transitioning from manual labor to 

supervisory roles, which can have negative implications for operators' engagement in their work 

(Passalacqua et al., 2024a). In the context of Industry 5.0, which emphasizes the importance of 

workers' interests and well-being, ensuring that operators remain engaged and stimulated in their 

roles becomes crucial (Lu et al., 2022; Goujon et al., 2024). This approach is not only fundamental 

to their personal development but is also imperative for enhancing their decision-making skills, 

especially in increasingly complex work environments (Goujon et al., 2024; Rosin et al., 2021; 

Rosin et al., 2022). By prioritizing the engagement and stimulation of operators, organizations can 

navigate the challenges of modern manufacturing landscapes more effectively, ensuring that 

technological advancements contribute positively to the work experience of human operators 

(Passalacqua et al., 2024b). Engagement varies in definition across the literature. It is often used 

either as “task engagement” or "operator engagement" to describe the effective allocation of 

attentional resources towards the task objectives (Pope et al., 1995; Matthews et al., 2002; Dehais 

et al., 2020). This definition focuses on the cognitive aspects of the worker experience. 

Alternatively, terms like “work engagement” and “employee engagement” are used to characterize 

a positive, fulfilling psychological state related to work (Mazzetti et al., 2021; Bakker and 

Demerouti, 2008; Hallberg and Schaufeli, 2006; Saks, 2006) that encompasses the cognitive, 

behavioral, and emotional aspects of the work experience. Given the prevalent focus on the 

cognitive dimension of engagement in existing research on human-machine interaction, we 

employ ‘task engagement’ to represent the cognitive aspect of the work experience. This decision 
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acknowledges the broader spectrum of engagement but aligns our focus with the extensive body 

of research emphasizing cognitive engagement in the context of human-machine interaction. 

To effectively oversee automated systems, an operator must remain alert to various signals, 

referred to as arousal, and must stay focused on the task at hand, known as task engagement 

(Dehais et al., 2020). There is a sweet spot of arousal and task engagement that operators need to 

sustain to ensure adequate and optimal monitoring (Dehais et al., 2020). If an operator is 

disengaged, they risk becoming distracted with mind-wandering (Cheyne et al., 2009), whereas 

being overly engaged can lead to tunnel vision, preventing the operator from staying alert to 

external signals (Pooladvand and Hasanzadeh, 2023). Similarly, if an operator has too high or too 

low arousal, it might affect their cognitive capabilities (Dehais et al., 2020). However, it can be 

challenging for operators to maintain an optimal level of engagement in monitoring tasks, mainly 

because monitoring tasks are generally less engaging than manual operation tasks (Passalacqua et 

al., 2024a). Consequently, an under-stimulated operator is much more likely to be distracted, 

which reduces their ability to detect system errors (Thomson et al., 2015; Smallwood and Schooler, 

2006). This monitoring difficulty increases as the level of automation rises (Parasuraman, 2000). 

Therefore, in increasingly intelligent factories, there may be a growing difficulty in detecting errors 

in automated systems.  

To limit these performance declines, one method is to ensure that operators can maintain optimal 

levels of task engagement during their work (Couture et al., 2024; Yurish, 2024, p.232). The work 

of Karran et al. (2019) is particularly promising in this regard. Their research demonstrated the 

potential of using real-time engagement level feedback to improve users’ attentiveness during a 

passive monitoring task. In their paper, they used an adaptive system developed by Demazure et 

al. (2021) that continuously informed operators of their level of engagement in the task through a 

color gradient, using electroencephalography (EEG) measurements to infer engagement. While 

this solution has shown promising results, it faces significant limitations in a manufacturing 

context, primarily due to the high sensitivity of EEG to movement. Therefore, our study seeks to 

adapt this approach for manufacturing, aiming to develop a tool designed to help manufacturing 

operators maintain optimal engagement levels when working with highly automated systems. The 

primary aim of this adaptation is to leverage engagement metrics collectible from mobile 

operators. The research question that guided the system’s design is: How can the engagement 
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feedback system proposed by Demazure et al. (2021) be effectively adapted and implemented in a 

manufacturing setting to monitor and enhance the engagement of mobile manufacturing operators?  

The structure of this paper is outlined as follows. Section 2 contains an overview of the current 

solutions to enhance operator engagement, why we hypothesize that adaptive feedback systems 

represent a good solution, and which methods are used to measure task engagement in the 

literature. Section 3 contains the research objectives that guided our design. In section 4, we detail 

the six-step process that led to developing this new innovative feedback system. The results we 

obtained during the design process are detailed in Section 5. In section 6, we discuss the results, 

and in section 7, we provide our concluding remarks along with limitations of the system and 

insights into future developments. 

 

2.2 Background 

2.2.1 Solutions to Enhance Task Engagement During Monitoring Tasks 

Solutions to keep operators cognitively engaged during monitoring tasks can be categorized into 

multi-tasking and adaptive interfaces. Multi-tasking involves engaging the operator with non-task-

related tasks when they experience disengagement. Naujoks et al. (2018) showed that engaging in 

secondary tasks reduced the reaction time of drivers when they needed to regain control, and 

Atchley et al. (2011) showed that talking while driving could improve driving performance. 

However, one limitation of multi-tasking is that it requires the operator to divert some of their 

attention to a secondary task, which diminishes the total level of engagement they can apply to the 

primary task (Argyle et al., 2021). For this reason, adaptive systems appear to be a better alternative 

for keeping operators engaged when monitoring systems. Adaptive systems infer the cognitive 

state of human operators and use this information to adapt in real time. According to Hinss et  al. 

(2022), there are two main types of adaptive systems: adaptive automation and adaptive interfaces. 

Adaptive automation allows for the dynamic adjustment of task allocation based on the cognitive 

state of operators (Scerbo, 2007; Feigh et al., 2012). The purpose of these systems is to reduce the 

level of automation of automated systems when decreases in engagement are detected. This 

decrease in automation necessitates that the operator takes on more stimulating tasks, thereby 
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potentially restoring their engagement to a level considered adequate for environments 

characterized by higher levels of automation.  

The second type of adaptive system consists of adaptive interfaces. Feigh et al. (2012) developed 

a taxonomy for adaptive interfaces, proposing four modalities of adaptation, including task 

allocation, which refers to adaptive automation. The three other modalities are the following. 

When operators are in a state of cognitive disengagement adaptive interfaces can adjust task 

prioritization, for example, by requesting the operator to perform tasks that are either more 

stimulating or require less engagement. They can also adapt the interaction between the operator 

and the system, for instance, by changing the layout of components or the mode of interaction 

(e.g., from haptic to vocal). Lastly, the content of the interface can be adapted, for example, by 

increasing the amount of information displayed when the operator is engaged and reducing it when 

they are less engaged. Figure 2.1 summarizes the different solutions to keep operators engaged 

based on the works of Feigh et al. (2012) and Hinss et al. (2022). 

 
 

Figure 2.1 Categorization of current solutions to enhance operator engagement during 
surveillance work 
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Despite the introduction of adaptive automation and adaptive interfaces years ago, very few 

adaptive systems with generalizable applications have been developed (Bernabei and Costantino, 

2024). The reasons for this include the absence of comprehensive multimodal models to infer 

operators' cognitive states (Bernabei and Costantino, 2024), the dependence of adaptive systems 

applications on the specific working environment in which they are developed, and constraints 

regarding the physiological data collection across different work environments. However, 

feedback systems and alarm systems distinguish themselves from other adaptive systems solutions 

by providing a passive solution that does not need to interface with various systems and introduces 

minimal distraction, making it relatively easy to apply across different contexts. These systems 

would fall into the adaptive interfaces category by modifying the content of the interface (e.g., the 

presence or absence of visual or auditory cues). The key distinction between feedback and alert 

systems lies in the way they present countermeasures. Adaptive feedback systems usually give 

continuous feedback to operators on their cognitive and emotional states, whereas alert systems 

typically wait for specific thresholds to be reached before notifying the operator. Karran et al. 

(2019) compared these two approaches, revealing that the continuous display of mental state had 

a greater impact on operator engagement compared to displaying the mental state after a 

disengagement threshold was reached. Therefore, we opted for the development of an adaptive 

feedback system.  

The feedback system developed by Demazure et al. (2021) offers a promising approach to 

enhancing task engagement during monitoring tasks by providing operators with real-time 

feedback on their level of engagement. This innovation keeps operators continuously aware of 

their engagement, promoting immediate adjustments as needed. Currently, the manufacturing 

sector lacks such adaptive feedback systems specifically designed for engagement levels. Despite 

this, the broad applicability and proven effectiveness of engagement-level feedback systems 

underscore their potential value in maintaining operator engagement, particularly in environments 

requiring high task engagement. 

2.2.2 Measuring Task Engagement 

Task engagement, or the cognitive aspect of work engagement, is most commonly measured using 

questionnaires or observational metrics. The most commonly used questionnaire to measure 

engagement is the Utrecht Work Engagement Scale (UWES) (Schaufeli et al., 2003). The UWES 
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questionnaire facilitates the measurement of the multi-dimensional concept of engagement, 

defined earlier. It encompasses three dimensions: cognitive engagement in work (related to the 

absorption dimension of the questionnaire), behavioral engagement at work (related to the vigor 

dimension of the questionnaire), and emotional engagement (related to the dedication dimension 

of the questionnaire). Given that the absorption dimension encapsulates the cognitive aspect of 

engagement, it can be used as a measure of task engagement. Regarding observational metrics, 

task performance metrics are the most commonly utilized measures. Performance-based measures 

of task engagement include, for example, error detection performance (Passalacqua et al., 2024a; 

Parasuraman et al., 1993), sampling time (Moray and Inagaki, 20000), and reaction time (Körber 

et al., 2015). While performance-based and subjective metrics effectively identify instances of 

lower operator engagement when monitoring automated systems, both these measures have their 

limitations. Questionnaires, which depend on post-task subjective assessments, are prone to biases 

such as recall bias (de Guinea et al., 2014).  Performance metrics, while serving as useful 

engagement proxies, do not directly measure engagement and can be influenced by various 

extraneous factors. A solution to complement the limitations of questionnaires and performance 

metrics is the use of physiological measures, which allow for the continuous measurement of the 

participant’s state throughout the task, without interference, thus limiting biases (de Guinea et al., 

2013). Consequently, recent research has increasingly focused on physiological metrics to 

understand the impact of operators’ mental states on performance, providing deeper insights into 

engagement dynamics (de Guinea et al., 2014; Riedl et al., 2020; Passalacqua et al., 2020). The 

physiological measures used to infer task engagement include eye-tracking, 

electroencephalography (EEG), heart rate variability (HRV), respiration rate (RR), electrodermal 

activity (EDA), and functional near-infrared spectroscopy (fNIRS). These various modalities and 

their application in measuring task engagement are presented in this section. 

Eye-tracking 

Eye-tracking tools detect where an operator’s gaze lands and measure pupil diameter, both 

indicators of task engagement (Vasseur et al., 2023). An operator is considered engaged when their 

gaze is on the main points of interest of a task and disengaged when their gaze deviates from them. 

When analyzing the gaze of operators, we typically distinguish between fixations and saccades. 

Fixations refer to the moments when the eyes are relatively stationary and are focused on a specific 
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point for a period of time, generally lasting between 180 and 330 milliseconds (Carter and Luke, 

2020), while saccades are rapid eye movements between fixations. One way to interpret task 

engagement using gaze data is to use the position, frequency, and duration of fixations (Gouraud 

et al., 2018). Pupil diameter is used as an indicator of task engagement and cognitive fatigue 

(Hopstaken et al., 2015) because this physiological mechanism is controlled by the locus ceruleus 

norepinephrine system (LC-NE) region of the central nervous system, which is also responsible 

for regulating attention (Benarroch, 2009). 

Electroencephalography (EEG) 

Several EEG metrics are used as measures of task engagement (Léger et al., 2014). The most 

common task engagement metric is the Engagement Index, corresponding to the ratio between 

beta and the addition of alpha and theta wave power (Pope et al., 1995).  

     𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝐼𝑛𝑑𝑒𝑥 = 𝛽/(𝛼 + 𝜃) (1) 

Additionally, since the beta signal power is associated with a state of alertness and cognitive 

engagement and the alpha signal power with a state of relaxation, the ratio of beta to alpha is used 

to reflect arousal levels (Eldenfria and Al-Samarraie, 2019). P3 event-related amplitudes are also 

often used to measure task engagement because of their close link with motivation and attention 

(Murphy et al., 2011; Hopstaken et al., 2015). 

Heart rate variability (HRV) 

HRV is defined as the variation of time intervals between consecutive heartbeats (Mccraty and 

Shaffer, 2015) and is mainly used as a measure of the activation of the autonomous nervous system 

(ANS) (Shaffer et al., 2014). Many metrics can be derived from HRV, but the most commonly 

used are the power of the high-frequency band of HRV (0.15–0.4 Hz) (HF-HRV), the power of 

the low-frequency band of HRV (0.04–0.15 Hz) (LF-HRV), the ratio of LF-to-HF power, the 

standard deviation of normal sinus beats (SDNN) and the root mean square of successive RR 

interval differences (RMSSD). More details on all HRV metrics can be found in (Shaffer and 

Ginsberg, 2017). To accurately interpret the various measures of Heart Rate Variability (HRV), a 

brief overview of the Autonomic Nervous System (ANS) is essential. The ANS is governed by 

two primary components: the parasympathetic and sympathetic systems. The parasympathetic 

system orchestrates the body’s “rest and digest” responses, promoting relaxation and energy 
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conservation. Conversely, the sympathetic system triggers the “fight or flight” responses, 

preparing the body for action and mobilizing energy resources. Higher activation of the 

parasympathetic system is usually associated with better cognitive performance (Hansen et al., 

2003) and a better capacity for cognitive engagement (Williams et al., 2016). 

HF-HRV reflects parasympathetic activation, where higher HF-HRV is associated with greater 

activation of the parasympathetic system (Shaffer and Ginsberg, 2017). Since HF-HRV reflects 

parasympathetic activation, higher HF-HRV is associated with a higher capacity for cognitive 

engagement.  

There is a certain ambiguity concerning the mechanisms underlying the LF-HRV. It may be 

produced by the sympathetic nervous system, parasympathetic nervous system, or baroreceptors 

(Shaffer and Ginsberg, 2017). Because of this ambiguity, there is no apparent interpretation of the 

LF-HRV in the literature. However, because of the potential link between LF-HRV and the 

sympathetic nervous system, the ratio of LF/HF has been used to reflect the ratio of 

parasympathetic to sympathetic activation (Shaffer and Ginsberg, 2017). Since parasympathetic 

activation is linked to better cognitive performance (Hansen et al., 2003; Williams et al., 2016), 

lower values of LF/HF can be associated with higher capacity for task engagement. 

RMSSD reflects the beat-to-beat variance in heart rate and is used to assess short-term heart rate 

variability. For ultra-short recordings of HRV (under 5 minutes), the RMSSD is correlated with 

HF-HRV and is usually the primary time domain metric used to estimate the vagally-mediated 

changes reflected in HRV (Shaffer et al., 2014). Higher RMSSD is typically associated with higher 

parasympathetic activation, leading to a better cognitive engagement capacity. RMSSD has also 

been shown to decrease with task difficulty (Hajra and Law, 2020). 

SDNN represents the overall variability in heart rate and is usually used to assess global heart rate 

variability in longer-term HRV measurements. Higher overall variability is associated with a better 

capacity for cognitive engagement.   

Functional near-infrared spectroscopy (fNIRS) 

Functional near-infrared spectroscopy measures the change in blood oxygenation in the brain’s 

cortex and is often used in combination with EEG (Karran et al., 2019; Dehais et al., 2018). The 
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interest in using fNIRS with EEG is to leverage the spatial resolution of fNIRS with the temporal 

resolution of EEG (Karran et al, 2019). Verdière et al. (2018) have shown that fNIRS signals could 

be used to detect higher or lower task engagement during a piloting task. They also showed that 

connectivity measures lead to better classification performance than oxygenation measures. 

Electrodermal activity (EDA) and respiration rate (RR) 

Electrodermal activity reflects the skin's conductivity level and is used to indicate a state of arousal 

or stress (Léger et al., 2014; Castiblanco Jimenez et al., 2023). As for respiration, respiration rate 

has been found to have a significant positive relationship with task engagement (Fairclough and 

Venables, 2005). 

Although eye-tracking and EEG methods are well-established in the literature for assessing task 

engagement (Pope et al., 1995; Léger et al., 2014; Vadeboncoeur et al., 2024), their practical 

application in manufacturing faces significant challenges, primarily due to the movement and 

dynamic environment in which manufacturing operators must operate. Due to these limitations, it 

is proposed to use measures of alternative metrics, such as respiration rate and HRV. Despite these 

metrics being less frequently utilized and explored in the literature on human-machine interaction, 

they are more easily applicable in a manufacturing setting due to their low cost, low intrusiveness, 

and low sensitivity to movement (Kundinger et al., 2020; He et al., 2022). 

2.2.3 Proposed Approach 

The constraints inherent to the manufacturing sector make Moray and Inagaki's (2000) approach 

particularly appealing. Their method evaluates monitoring performance by contrasting actual 

operator performance to an optimal standard. From this perspective, for any specific task, it seems 

feasible to establish a performance metric by initially recording the responses of an operator in a 

high-performance scenario and comparing it to a low-performance scenario. Therefore, in the case 

of operator engagement, a similar approach would be to establish an engagement metric by 

comparing physiological responses recorded in highly engaging scenarios with those from a 

minimally engaging scenario, using contrast to construct a reliable measure of engagement for this 

task (Couture et al., 2024; Yurish, 2024, p.232). To create high and low engagement scenarios, we 

can use the approach of Verdière et al. (2018), who manipulated the level of automation to create 



18 
 

more and less engaging piloting tasks. This approach is consistent with the findings that showed 

that higher automation can reduce operator engagement (Passalacqua et al., 2024a).  

Hence, to maintain optimal engagement levels of manufacturing operators within their dynamic 

work environments, our proposal involves developing a new adaptive engagement feedback 

system inspired by the research of Demazure et al. (2021) but tailored to the manufacturing 

context. Rather than depending on exact real-time engagement metrics and measurements, our 

system follows a methodology inspired by the work of Moray and Inagaki (2000), leveraging 

physiological indicators that differentiate between optimal and suboptimal engagement states. A 

significant advantage of this approach is its adaptability to complex settings like manufacturing, 

where constraints exist concerning the feasibility of specific physiological measurements, such as 

eye-tracking and EEG. 

2.3 Objectives 

To guide the design process, we established three research objectives: (i) Identify the most 

appropriate physiological tools for measuring task engagement in a manufacturing context; (ii) 

Identify and characterize the physiological differences between “high” and “low” engagement 

manufacturing scenarios; and (iii) Develop an interface that intuitively translates the identified 

physiological markers into a color gradient, offering immediate feedback on engagement levels. 

While developing our system, we encountered two significant design challenges that needed 

careful consideration. The first challenge concerned the optimal display modality for the color 

gradient, which is crucial for providing clear and understandable feedback on engagement levels. 

The second challenge involved devising an engagement index scaling method that accurately 

reflects engagement levels, ensuring that the system's feedback is both intuitive and effective. To 

address these challenges, we introduced two additional objectives: (iv) Determine the most 

effective visual representation of engagement through a comparative analysis of a continuous color 

gradient with 100 shades versus a discrete color gradient with three distinct colors, and (v) Identify 

the optimal method for scaling the engagement index that accurately reflects perceived 

engagement, facilitating easier interpretation of physiological markers of engagement by users. 

With the addition of these two objectives, we were able to make informed design choices that 

significantly enhanced the usability and effectiveness of our system. 
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2.4 Methods 

We used a design science methodology to develop a task engagement feedback system involving 

a six-step process that included three studies (see Table 2.1). We first selected non-intrusive 

physiological tools to measure task engagement in a manufacturing assembly context. Then, we 

collected physiological, performance, and subjective data during “high” and “low” engagement 

manufacturing scenarios. We identified the physiological differences between the “high” and 

“low” engagement scenarios and used these markers to design a task-specific “engagement index”. 

Using this formula, we developed the first version of the feedback system. We then evaluated the 

best display modality and the best scaling method for our engagement index, which were critical 

aspects of our feature selection process. 

 

Table 2.1 Methodology Employed to Design the Feedback System 

Step Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 

Title Select Physiological 

Tools 

Collect Data Identify 

Markers 

System 

Design 

Display Validation Scaling Validation 

Description Comparative 
analysis of task 

engagement 
measures collected 
with EEG, fNIRS, 
ECG, eye-tracking 

and breathing bands  

Study 1: 
Collection of 

Physiological 
Data in Scenarios 
with Varied 
Engagement 

Levels 

Identify 
physiological 

markers of 
engagement 

- Study 2: Validating 
multiple display 

modalities of 
engagement 

Study 3: Validating 
multiple index scaling 

methods 

Experimental 

design 

- Within-subject - - Within-subject Between subject 

Conditions - No automation 

Automation 

- - Discrete color gradient 
(3 shades of color)  

Continuous color 
gradient (100 shades 
between green and 

red) 

Min/Max since the 
beginning of the task 

Min/Max of training data 

Min=25
th 

and Max=75
th

 
percentiles since the 

beginning of the task 

Experimental 
manipulation 

- Manufacturing 
QandA and 

assembly tasks 
using snowshoes 

Feature 
extraction using 

a logistic 
regression 
model 

Validation with 
LOOCV  

- Fully automated 
manufacturing QandA 

and assembly tasks 
using images of 
snowshoes 

Fully automated 
manufacturing QandA 

and assembly tasks using 
images of snowshoes 

Data Literature review Collected 

physiological data 
(bpm, breath rate, 
motion) and 
perceived work 

engagement 

Task 1 and Task 

2 data from step 
1 

- 10 minutes semi-

directed interviews 

Three-item questionnaire 
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Step 1 - Choosing Physiological Tools Suitable for a Manufacturing Environment 

A thorough methodological reflection was necessary to select the tools and measurements most 

suited for a manufacturing environment. Our selection criteria dictated that (i) the tool must be 

non-intrusive for a manufacturing assembly context, (ii) ensure easy data collection, and (iii) 

provide reliable measurements. Since EEG and fNIRS require wearing a headset, these 

technologies were deemed too intrusive and potentially distracting for operators in a 

manufacturing context. Additionally, these technologies are highly sensitive to movement, which 

is not ideal in a manufacturing setting where the operator must perform physical work. Moreover, 

electrodermal activity is typically collected on the palm, which would have restricted operators in 

their assembly tasks. For this reason, EDA was also dismissed for intrusiveness. Given that 

manufacturing operators often need to interact with a 3D environment, static eye-tracking devices 

were ruled out. We conducted a pilot test with Tobii Pro glasses (Tobii Technologies, Danderyd, 

Sweden) that allow the collection of eye-tracking data for users in movement. However, we 

concluded that using these glasses would overly complicate data collection due to the low battery 

life and the lack of available tools for analyzing operators' attention when interacting with a 3D 

environment. This resulted in a preference for electrocardiography and respiration measurements. 

The Hexoskin vest (Carré Technologies, Montreal, Canada) was found to be a non-intrusive tool 

that allowed for the simultaneous measurement of these two parameters, as well as accelerometry 

data. Moreover, heart rate and respiration rate measurements obtained from the Hexoskin vest 

show little variation compared to laboratory-grade electrocardiograms and metabolic carts, as 

evidenced by Cherif et al. (2018). Given its accuracy and non-intrusiveness, the Hexoskin vest was 

selected for the development of our system. 

Step 2 – Collect Data in More and Less Engaging Manufacturing Scenarios 

In this step, we collected physiological and perceptual data from participants in more and less 

engaging manufacturing situations. We recruited 22 participants (age=21.62±3.17; men=14) for a 

within-subject experiment, in which they twice performed a quality control and assembly task on 

(UWES) 

Participants - 22 participants - - 3 participants 10 participants 
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a simulated assembly line. All participants provided a signed consent in-line with the University 

ethics committee (project # 2023-5058) and were compensated with 40 euros. The task explained 

in more detail in (Passalacqua et al., 2024a), required participants to detect errors on partially 

assembled snowshoes and complete the assembly by fixing the binding to the base at its pivot point 

(see Figure 2.2). In the “less engaging” condition, we automated the participants’ decision-

making, equipping them with a fully reliable error detection system that indicated to the operator 

whether a snowshoe had a defect. In the “more engaging” condition, participants had to manually 

detect errors before assembling the snowshoes. During each task, a total of 30 snowshoes had to 

be assembled by the participants, with six being defective. Participants realized the task once with 

automated support and once without automated support, with condition order being randomly 

assigned and counterbalanced. During the task, we collected physiological data using a Hexoskin 

vest, recording heart rate, respiration rate, and acceleration data. We also collected perceived 

cognitive absorption, vigor, and dedication using the Utrecht Work Engagement Scale (UWES) 

(Schaufeli et al., 2003), which was collected post-task. Since our study specifically aims to 

modulate the cognitive aspect of work engagement, the absorption dimension is employed as a 

subjective measure of task engagement within our study. The raw physiological data from the 

Hexoskin was pre-processed and synchronized using the COBALT Photobooth software (Léger et 

al., 2019). The list of physiological and self-reported data collected can be found in Table 2.2. 

 

Table 2.2 List of Collected Variables 

Type of data  Measure Description 

Physiological data 
Beats per minute Number of beats per minute 

SDNN Standard deviation of NN intervals 

LF Power of the Low-frequency band (0.04-
0.15 Hz) (ms2) 

HF Power of the High-frequency band (0.15-
0.4 Hz) (ms2) 

LF/HF Ratio of Low-to-High frequency power 

Breathing Rate  Number of respirations per minute 

Minute Ventilation Respiratory volume per minute (L/min)  

Cadence Number of steps per minute 

Motion Norm of the 3D acceleration vector (G) 

Self-reported measures Absorption score 
(UWES) 

Perceived absorption (cognitive 
engagement) 
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Figure 2.2 - Product Used in the Manufacturing Task 

 

Step 3 – Identify Physiological Markers of Engagement and Create an Engagement Index 

In this step, we began by validating our primary assumption that the condition with automation 

was less engaging than the manual condition. We compared the perceived absorption scores 

between automated and manual conditions using a one-sided Wilcoxon signed-rank test, which is 

suitable for evaluating non-parametric paired data. The analysis revealed a statistically significant 

difference in perceived absorption scores when comparing manual and automated conditions 

(p=.0008), with the automated condition showing lower perceived absorption scores than the 

manual condition. This result aligns with our primary assumption that the automated condition 

was less engaging than the automated condition. Based on this result, we then categorized the data, 

assigning labels of “high” or “low” engagement to arrays of data, depending on the condition 

experienced by the participant. Data from the automated task was labeled as “low engagement”, 

while data from the manual task was labeled as “high engagement”. We then defined a task-

specific engagement index (TS-EI) using the three physiological variables with the highest 

estimated weights in the logistic regression model used to predict the probability of a participant 

being more engaged in the task (see Formula 2). The formula represents a weighted sum, where 
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each coefficient corresponds to the respective variable's estimated power to predict if a participant 

is in a “high” or “low” state of engagement. The formula is based on 30-second data windows. 

     𝑇𝑆_𝐸𝐼 = (435.7 𝑀𝑜𝑡𝑖𝑜𝑛𝑠𝑡𝑑) − (175.4 𝑀𝑜𝑡𝑖𝑜𝑛𝑚𝑒𝑎𝑛 ) + (0.78 𝑅𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒𝑠𝑡𝑑) (2) 

 

Without a testing dataset, we validated Formula 2 using the Leave-One-Out Cross-Validation 

(LOOCV) on the same dataset. We employed the LOOCV in a logistic regression model to predict 

if a participant’s engagement during a task was “higher” or “lower”. The results of this test 

demonstrated an average predictive accuracy of 80.95% on the leave-out samples. 

 

Step 4 – Design the Feedback System 

In this step, we developed an initial version of the feedback system. To guide our development 

process, we established 5 main requirements: (i) The system must collect the user's respiration rate 

and acceleration data in real-time, (ii) communicate the user's task engagement in real-time using 

a color gradient, (iii) the displayed color must represent the operator's perceived engagement level, 

(iv) the system must be easy to interpret, and (v) it should not distract the operator during their 

task. An overview of the designed system can be found in Figure 2.3. 

 

Figure 2.3 - Overview of the Adaptive Feedback System 
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The system, developed in Python, receives respiration and acceleration data from the Hexoskin 

vest, which transmits data at a frequency of 1 Hz. Specifically, respiration rate data reflects the 

average number of respirations per minute based on the last seven breathing cycles, and 

acceleration data represents the average norm of the 3D acceleration vector over the last second. 

Our system received data encoded in UTF-8 through a Bluetooth Low Energy (BLE) connection 

directly established with the Hexoskin vest. It was possible to establish a direct connection using 

the UUID keys of the respiration and acceleration Bluetooth channels available in Hexoskin's 

documentation. The system included a Bluetooth reconnection protocol in case of connection 

failure. Formula 2 was used by the system to calculate the task-specific Engagement Index based 

on 30-second data windows (or 30 data points, considering that the frequency of transmission of 

the Hexoskin is 1 Hz). In the first version of the system, the index was normalized using the 

minimum and maximum index values recorded since the beginning of the session and then scaled 

as an integer between 0 and 100. Based on the normalized index value, it was possible to select 

the color to be displayed. The color selection varied according to the display modality, mainly 

whether the color gradient was discrete (with 3 distinct colors) or continuous (with 100 shades of 

color). For the continuous gradient, we created a 1x100 matrix with a palette of 100 shades ranging 

from green to red and used the normalized index value to specify the color code to be fetched from 

the matrix. For a discrete gradient, only three colors were possible: green for normalized index 

values above 66%, yellow for values between 33% and 66%, and red for values below 33%. The 

color codes chosen were then sent via WIFI for display at a frequency of 1Hz. The system's 

architecture and the specific open-source Python Libraries used in the code are detailed in Figure 

2.4 and Table 2.3. 

Table 2.3 Python Open-Source Libraries Used by the System 
 

Library Description License Link 

Bleak BLE communication MIT https://github.com/hbldh/bleak 

Colour Color code 
generation 

BSD https://pypi.org/project/colour/ 
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Figure 2.4 - Architecture of the Adaptive Feedback System 

 

Step 5 – Validation of the Display Modality 

In this step, we assessed whether representing the index through a continuous color gradient (100 

shades) or a discrete color gradient (3 colors) was more effective in conveying participants' 

engagement levels. We recruited three participants for a within-subjects pilot test. Each participant 

completed a low-fidelity version of the automated assembly task twice using printed images of 

snowshoes instead of authentic snowshoes, experiencing the feedback system in both formats. 

After completing each task, participants underwent a 5-minute semi-directed interview. During 

this interview, they were asked about the interpretability of the color gradient, the potential 

distractions caused by the system, and its effectiveness in representing their engagement levels. 

Positive and negative statements in each category were compiled and analyzed, revealing that the 

discrete color gradient was more distracting than the continuous color gradient. This led to the 

decision to retain the continuous color gradient. 

 

Step 6 – Comparative Analysis of Three Scaling Methods 

In the sixth step, we aimed to identify the most effective method for scaling the index. We tested 

three scaling methods: (i) dynamically adjusting the minimum and maximum values based on the 

minimum and maximum engagement index values recorded since the beginning of the task for this 

operator, (ii) using the minimum and maximum values of the training dataset, measured with 

Formula 3 to exclude outliers, and (iii) dynamically setting the minimum and maximum values 

respectively to the 25th (Q1) and 75th (Q3) percentile of the engagement index data measured for 
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this operator since the beginning of the task. A visual representation of each method can be found 

in Figure 2.5. 

 

         𝑀𝐼𝑁/𝑀𝐴𝑋 = 𝑇𝑆_𝐸𝐼𝑚𝑒𝑎𝑛 ± 3 ∗ 𝑇𝑆_𝐸𝐼𝑠𝑡𝑑  (3) 

 

 

 

 

Figure 2.5 - Visual Representation of the Three Index Scaling Methods 

 

We performed a between-subjects experiment with 10 participants who each completed a low-

fidelity version of the manufacturing task while receiving feedback from the system in one of its 

three possible formats. For this low-fidelity version of the manufacturing task, we asked users to 

identify errors on printed images of snowshoes instead of real snowshoes. After completing the 

task, participants were asked to rate the color display's representativeness, interpretability, and 

distractive nature on a scale from 0 to 100. Method (ii) emerged as the most representative of 

perceived engagement, leading to its selection for the final design. No differences were found in 

interpretability and distractive nature between the three methods. 
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2.5 Results 

The one-sided Wilcoxon signed-rank test applied in step three demonstrated a statistically 

significant difference in perceived absorption scores between automated and manual conditions (p 

= .0008). This finding suggests that the distribution of the difference of absorption between 

automated and manual conditions, is not symmetric around zero, predominantly featuring negative 

values. This asymmetry suggests that perceived absorption scores are typically lower in the 

automated condition than in the manual condition, which supports the primary assumption that the 

automated condition was less engaging than the manual condition.  Table 2.4 and Figure 2.6 offer 

an overview of the distribution of reported absorption scores. 

 

Table 2.4 Descriptive Analysis of UWES Absorption Scores Between Manual and Automated 

Conditions 

 

Min Q1 Med Q3 Max Mean  Std 

Manual 2.67 3.67 4.00 5.25 6.00 4.21 0.99 

Automated 1.00 2.67 3.17 4.25 5.33 3.32 1.13 

 

 

 
 

Figure 2.6 - UWES Absorption Scores Distributions Between Manual and Automated 
Conditions 
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Using Formula 2 to predict if a participant was in a “high” or “low” state of engagement in a 

logistic regression model, we achieved an average of 81.31% accuracy on the training set and 

80.95% on the testing set, as confirmed through leave-one-out cross-validation. For step five, 

where we assessed the display modality, we employed a qualitative labeling technique to 

categorize interview statements into three themes: effect on perceived engagement, distraction, 

and representativeness. The number of statements in each category was then compiled (see Table 

2.5), showing that the discrete color gradient was more distracting (0 positive, six negative 

statements) than the continuous color gradient (2 positive, 0 negative statements). 

Table 2.5 Compilation of Qualitative Statements on Continuous and Discrete Color Gradients 

 Perceived effect 

on engagement 

Distraction Representa-

tiveness 

 (+) (-) (+) (-) (+) (-) 

Continuous 5 0 2 0 2 2 

Discrete 2 1 0 6 0 3 

 

In step six, the self-reported data from questionnaires revealed that all methods were equally easy 

to interpret and not distracting. However, the scaling method (ii) utilizing the minimum and 

maximum values from the training dataset proved to be more representative, with a mean score of 

93.33 ±6.24%. This was in contrast to the scaling method (i), which was based on the minimum 

and maximum values since the beginning of the task (mean= 57.33±12.28%), and method (iii) 

which was based on percentiles (mean=45.5±14.5%), as illustrated in Figure 2.7 Based on these 

analyses, we concluded that the continuous color gradient and scaling method, which utilized the 

minimum and maximum values of the training dataset, i.e., method (ii), was the preferred option. 
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Figure 2.7 - Scaling Method Comparison: Evaluating Representativeness, Interpretability, and 

Distraction 

 

2.6 Discussion 

The objectives of this study were to (i) identify the most suitable physiological tools for measuring 

task engagement in a manufacturing context, (ii) discern physiological differences between more 

and less engaging manufacturing situations, (iii) develop an adaptive feedback system that 

translates these physiological differences into a color gradient for immediate feedback on task 

engagement, (iv) determine the best mode of displaying engagement between a discrete and a 

continuous color gradient, and finally (v) find the most representative normalization method for 

the engagement index as perceived by operators. 

For objective (i), we compared eye tracking, EEG, fNIRS, EDA, electrocardiography (ECG), and 

respiratory rate monitoring tools against three criteria: (a) data collection tools must not distract or 

disturb the operator during their work, (b) they must allow for easy real-time data collection, and 

(c) they must provide reliable measurements. EEG, fNIRS, and EDA systems were deemed 
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unsuitable for manufacturing due to their intrusiveness and limitations in dynamic settings. 

Similarly, static eye-tracking systems failed in 3D environments, and eye-tracking glasses faced 

battery and analytical challenges. In contrast, ECG and respiratory rate monitoring, conducted via 

a Hexoskin vest, provided non-intrusive, reliable data collection of engagement metrics, proving 

effective for manufacturing environments. ECG and respiration metrics are less frequently utilized 

in the human-machine interaction literature. However, HRV (an ECG metric) has been shown to 

correlate with well-established engagement metrics such as EEG and eye-tracking, as documented 

in aviation scenarios by Roy et al. (2016). Additionally, the study by Fairclough and Venables 

(2005) illustrates that, within their research context, respiration exhibited a stronger correlation 

with engagement than EEG metrics. While additional validation of respiration as a metric of 

engagement is required, these findings support the potential utility of ECG metrics and respiration 

in measuring task engagement.  

For objective (ii), we simulated a manufacturing environment and subjected participants to varying 

engagement levels, using automation to reduce engagement. Participants in the automated 

condition reported lower absorption scores in the UWES questionnaire, indicating lower perceived 

cognitive engagement during the automated manufacturing task. This result aligns with previous 

findings that showed that higher levels of automation can lead to lower task engagement [1].  

Based on these findings, we analyzed physiological differences between automated and manual 

conditions to identify physiological features that could be used to construct a task engagement 

index. Our observations indicated that participants in the manual condition (condition of higher 

cognitive engagement) had, on average, lower acceleration means and greater acceleration 

variability. Without the aid of an error detection tool, participants in the manual condition had to 

take the time to analyze each product for longer periods than in the automated condition. This 

contributed to a lower acceleration mean for the manual condition, while the acceleration when 

fetching a new product increased variability. Considering that a manufacturing operator might not 

be as focused when moving around as they are when stationary at their worktable, these results 

suggest the potential use of acceleration mean and acceleration variability as indicators of task 

engagement. Despite the absence of observable differences in respiration rates across conditions, 

it was noted that participants engaged in the manual condition (a scenario characterized by greater 

engagement) exhibited a more consistent respiration rate on average compared to those in the 
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automated condition. This observation is supported by Wientjes (1992), who suggests that rapid 

shallow breathing is often associated with higher mental workloads and enhanced sustained 

attention. Consequently, the observed lower variability in respiration rates could be indicative of 

heightened cognitive effort among participants in the more engaging manual condition. Moreover, 

Soni and Muniyandi (2019) report a positive correlation between respiration rate variability and 

heart rate variability, which indicates the potential relationship of this measure with mechanisms 

underlying task engagement.  

For objective (iii), we developed a task-specific engagement index based on the physiological 

differences explained above. Formula 2 demonstrated good predictive ability on the samples used 

to create the formula (80.95% predictive capacity).  

For objective (iv), displaying the engagement level with a discrete gradient proved less distracting 

and less representative than using a continuous gradient. This is likely due to the lower sensitivity 

of the discrete gradient, which affects the operators' sense of control over the system. Additionally, 

a color oscillation can occur when the measured engagement level approaches a threshold of the 

discrete gradient, further distracting operators. Conversely, the higher sensitivity of the continuous 

gradient enhanced the operators' sense of control. It also prevented oscillations between distinct 

colors, making this method a better alternative for displaying the engagement level.  

We compared three methods of normalizing the engagement index. Two of these methods featured 

dynamic thresholds that were adapted based on data collected since the start of the task, while the 

other method employed fixed thresholds based on the maximum and  minimum values from the 

training dataset. Results show that the three scaling methods were equally easy to interpret and 

were not distracting the operators. However, the static threshold method (method ii) was 

significantly more representative than the two dynamic methods. One possible explanation for this 

is that the two methods with dynamic thresholds encountered a similar issue where the thresholds 

diverged as the task progressed, making it increasingly challenging for operators to return to an 

optimal ("green") engagement level, especially at the end of the task. Therefore, we opted for 

utilizing the static threshold option for this iteration of the system.  

In sum, the adaptive feedback system proposed in this paper utilizes respiration and acceleration 

data to provide engagement level feedback to manufacturing operators, using a continuous color 
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gradient calibrated using the minimum and maximum engagement values recorded in the training 

dataset. This system aims to assist manufacturing operators in maintaining optimal engagement 

levels when interacting with highly automated systems. Providing operators with real-time 

feedback on their engagement levels ensures they stay informed of their mental state, allowing 

them to prevent drops in engagement that could adversely impact their performance and, more 

importantly, safety. The application of this system is particularly relevant in safety-critical 

manufacturing environments or roles demanding high cognitive engagement, where errors could 

have significant financial and safety repercussions. A significant benefit of this system is its wide-

ranging applicability to various tasks, regardless of their specific characteristics. Additionally, the 

visual display of engagement can be implemented as an exogenous signal, meaning it does not 

interfere with the primary task at hand. This versatility underscores the potential of adaptive 

feedback systems to bolster cognitive engagement during monitoring tasks. 

 

2.7 Conclusion 

This study employed a design science methodology to create an adaptive task engagement 

feedback system designed to help manufacturing operators stay engaged in their evolving 

workplace. A comparative analysis was utilized to identify the most suitable tools for measuring 

task engagement in a manufacturing setting, emphasizing the ease of implementation using heart 

rate variability and respiration rate metrics. A task-specific engagement index was developed using 

the physiological differences between more and less engaging manufacturing scenarios 

(acceleration mean, acceleration variability, and respiration variability), achieving an average 

engagement state prediction accuracy of 80.95% using the leave-one-out cross-validation method 

in a logistic regression model. We assessed two display modalities and three scaling methods to 

inform our design. The final design utilized a continuous color gradient calibrated based on the 

lowest and highest engagement index values recorded in the training set. A subsequent study was 

conducted to test this advancement on a broader scale, which will be discussed in forthcoming 

scientific publications.  

By offering real-time monitoring and optimization of engagement, this system could help 

minimize errors and downtime, mitigate safety risks, and promote a healthier work environment. 



33 
 

Thus, it represents a promising approach that could improve both the operational performance and 

the human experience within manufacturing settings. The theoretical contributions of our work 

introduce the potential of using measures such as respiration variability and acceleration to infer 

manufacturing operators' engagement while in motion, as well as the possibility of defining an 

engagement metric utilizing various physiological differences between optimal and suboptimal 

scenarios. 

It is essential to acknowledge certain limitations inherent in this system. First, our assessment of 

engagement relied solely on self-reported data. Ideally, employing real-time physiological 

monitoring tools, like EEG, would have enhanced the validation of the measured engagement 

levels but would have been more intrusive than the Hexoskin vest we used, potentially distracting 

operators. Additionally, it should be noted that while the leave-out samples were not employed in 

training the predictive models, they were utilized in creating Formula 2. As a result, the model's 

effectiveness for new participants might not be as robust as measured in this study. It is also 

important to note that the formula used in this system strongly depends on the task and is 

specifically tailored to the context of our study. This means that Formula 2 may not yield reliable 

results in different contexts and should not be applied to other scenarios without appropriate 

modifications and validation. Moreover, using a color gradient can make reading difficult for 

color-blind users, which affects approximately 8% of the male population. Therefore, in future 

iterations, it would be important to integrate a color-blindness feature to adjust the displayed colors 

and improve contrast. Finally, the normalization methods explored in this study did not account 

for individual physiological differences or natural fatigue occurring during a monitoring task. 

Regarding individual physiological differences, our study applied a general formula across all 

participants without differentiation. While effective for establishing a baseline, this approach 

overlooks the nuances of individual responses and their impact on engagement metrics. 

Recognizing this limitation, we propose, in further iterations of our research, to refine our 

engagement threshold criteria by incorporating individual physiological differences into our 

analysis. This adjustment aligns with the methodology employed by Demazure et al. (2021). As 

for the fatigue consideration, in our tests, we managed to circumvent the fatigue challenge by 

conducting short tasks (~15 minutes) where fatigue effects could not realistically take hold. 

However, employing these methods would result in thresholds that fail to consider fatigue for 

longer tasks. Therefore, we suggest that future improvements consider the approach outlined by 
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Demazure et al. (2021) to incorporate fatigue considerations into establishing task engagement 

thresholds. 
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Abstract: In smart manufacturing, keeping workers attentive and engaged is crucial. It  is 

especially important that when automation is interrupted, workers can seamlessly take over the 

process, maintaining a calm state and sustaining their productivity. However, recent research has 

shown that integrating artificial intelligence (AI) in manufacturing can sometimes lead to 

decreased worker engagement, limiting their ability to identify and resolve automation issues 

effectively. We conducted an experiment to explore the possibility of using cognitive 

countermeasures to engage workers in AI-supported tasks. We tested two different cognitive 

countermeasures: augmented reality (AR) and a real-time engagement-level feedback system 

(RTELFS). The hypothesis is that (i) countermeasures would enhance engagement, motivation, 

and performance during automated work and that (ii) when automation is removed, workers that 

used the countermeasures would demonstrate greater resilience, maintaining their engagement, 

motivation, and performance better than those in the control group. First, we found that the 

countermeasures helped develop more resilient skills. Workers using the countermeasures showed 

a smaller reduction in precision when automation was removed. Second, contrary to our 

expectations, the countermeasures did not impact motivation, cognitive engagement and emotional 

engagement. Both the control and experimental groups experienced similar levels of motivation, 
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cognitive engagement and emotional engagement before and when automation was removed. 

However, countermeasures seemed to positively impact behavioral engagement during the AI-

assisted task. Participants using the RTELFS showed increased physical involvement in the AI-

assisted task. These findings highlight the potential of cognitive countermeasures to mitigate 

declines in human performance among workers interacting with automation. 

Keywords: Cognitive Countermeasure, Augmented Reality, Engagement Feedback, Resilience, 

Engagement, Motivation, Manufacturing, Artificial Intelligence 

 

3.1 Introduction 

In recent years, there has been increasing deployment of artificial intelligence (AI) systems in 

smart factories, showing significant increases in both labor and system productivity (Gao and 

Feng, 2023; Raj and Seamans, 2018). The information processing and projection capabilities 

provided by AI have enabled systems to become increasingly autonomous, allowing them to be 

used continuously, beyond traditional work hours (Yang et al., 2021). The integration of AI has 

also demonstrated positive effects on worker productivity (Plathottam et al., 2023; Raj and 

Seamans, 2018). AI can be used to reduce the workload of operators by taking over certain 

repetitive or low-value-added tasks (Tortorella et al., 2024) or by enhancing workers' capabilities, 

such as providing them with real-time instructions (Sahu, Young, and Rai, 2021). 

Currently, the main uses of AI in smart factories include defect detection, predictive maintenance 

tracking, cost and energy management, as well as the development of robots and autonomous 

driving systems (Nti et al., 2022), but new applications are gradually emerging. For example, 

Mypati et al. (2023) recently proposed several AI applications in the areas of casting, forming, and 

finishing in foundries. Manikandan et al. (2023) highlighted the need to develop AI tools in 

advanced machining processes and metal welding techniques. Additionally, He et al. (2023) and 

Mattera, Nele, and Paolella (2024) have recently proposed new ways to use AI in additive 

manufacturing. With increasingly diverse applications, AI is expected to become increasingly 

pervasive in smart factories. 
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When manufacturing operators work with AI systems, it becomes crucial for them to maintain 

high levels of engagement and attention in their work. Mangler et al. (2021) explain that operators 

in smart factories often manage a variety of subsystems and interact with multiple levels of 

automation, which may increase the cognitive load required to perform their tasks (Yamamoto, 

2019). This increased mental demand can lead to errors, especially when operators are inattentive 

(Mangler et al., 2021), which could potentially compromise production quality (Yung et  al., 2020) 

or, in the most severe cases, result in accidents (Naderpour, Nazir, and Lu, 2015). Additionally, 

when integrating new manufacturing technologies like AI, companies generally expect operators 

to quickly identify system errors and effectively intervene in the event of automation issues 

(Endsley and Kiris, 1995). In the event of automation failure, it becomes particularly important 

that human operators can seamlessly take over the process, maintaining a calm state and sustaining 

their productivity to mitigate productivity losses (Romero and Stahre, 2021). 

However, recent findings show that integrating artificial intelligence (AI) in manufacturing can 

lead to mixed effects on worker engagement. It can significantly enhance employee engagement 

when AI is used to reduce the physical and mental efforts of employees in routine tasks, allowing 

them to focus on tasks that require problem solving, communication and collaboration with 

colleagues (Tortorella et al., 2024). However, it can lead to decreased operator engagement if AI 

replaces humans, relegating operators to solely supervisory and passive monitoring roles (Endsley, 

2023). One example of this phenomenon is highlighted in a study by Passalacqua et al. (2024). 

The study found that when operators worked with a fully reliable AI system during manufacturing 

assembly training, it reduced operator engagement, motivation and ultimately their performance 

and learning, compared to when training with imperfect AI systems that required human 

interventions.  

One strategy to mitigate this decrease in engagement and performance is to use cognitive 

countermeasures. Cognitive countermeasures are broadly defined as strategies, techniques or tools 

that can be used to enhance or maintain cognitive performance (Dehais et al., 2010). They have 

been used in the past to counterbalance human cognitive bias, such as loss of engagement (Karran 

et al., 2019) or cognitive tunnelling (Dehais et al., 2010). Although the literature would benefit 

from having a more specific definition of this concept, in this paper we use the term to refer to 

strategies and tools that help operators maintain optimal levels of engagement in their work, avoid 
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distractions and mind wandering. In this context, two cognitive countermeasures show great 

promise for enhancing worker engagement: real-time engagement level feedback systems 

(RTELFS) and augmented reality (AR).   

Real-time engagement-level feedback systems (RTELFS) are systems that measure and assess the 

level of engagement of workers in real-time using physiological responses (e.g., 

electroencephalography, heart rate variability) or work performance metrics. They then feedback 

the information on the level of engagement to the operator, ensuring that operators remain aware 

of their physiological state of engagement. These systems act as countermeasures by allowing 

operators to address decreases in engagement in real-time, which has been shown to help maintain 

optimal cognitive performance during work (Karran et al., 2019). Recently, Couture et al. (2024) 

have developed a RTELFS that is designed to provide manufacturing operators with real-time 

information on their level of engagement. However, this system has never been tested in an actual 

manufacturing context.  

A second promising technological solution to enhance operator engagement is augmented reality 

(AR). AR has the potential to tailor and prioritize the information presented to operators, making 

it an effective tool for ensuring they remain focused on the most relevant details. For instance, in 

manufacturing, AR is often used to provide assembly instructions directly within the operator's 

work environment, minimizing the need to look away and reducing the necessity to divide 

attention. This approach could be used to alleviate the cognitive load associated with searching for 

information, increase productivity, and reduce potential distractions (Büschel, Mitschick and 

Dachselt, 2018). Additionally, AR can deliver information precisely when it is needed, eliminating 

the need for operators to mentally retain or retrieve details, which can further enhance sustained 

focus and reduce the risk of mind wandering. AR has demonstrated positive effects on worker 

engagement in various manufacturing assembly settings (Nguyen and Meixner, 2019; Runji, Lee, 

and Chu, 2023), but it has not yet been studied as a method to counterbalance potential adverse 

effects of AI.  

Despite the potential of both RTELFS and AR, neither has been studied to mitigate AI-related loss 

of engagement in smart manufacturing contexts. Therefore, in this study, we aim to explore the 

potential of using these two countermeasure technologies, both separately and in combination, to 
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enhance the engagement of manufacturing operators in AI-supported tasks. The hypothesis is that 

if workers are more engaged in their AI-assisted tasks due to the support of countermeasures, they 

may exhibit higher performance and motivation during these tasks and show greater resilience 

when required to take over the automated process.  

In this work, engagement will refer to a multidimensional concept that encompasses cognitive, 

emotional, and behavioral dimensions (Mazzetti et al., 2021; Bakker and Demerouti, 2008; 

Hallberg and Schaufeli, 2006; Saks, 2006; Fredricks et al., 2024). Cognitive engagement refers to 

the ability to effectively deploy attentional resources toward tasks, leading to optimal focus during 

work (Pope et al., 1995; Matthews et al., 2002). It involves striking a balance to avoid mind 

wandering (loss of focus) and cognitive tunneling (an over-focused state that leads to missed 

signals) (Dehais et al., 2020). Emotional engagement refers to having a positive, fulfilling feeling 

during work as well as a sense of meaning when realizing the work (Schaufeli, 2013). Finally, 

behavioral engagement refers the willingness of workers to deploy energy and physical resources 

during their work (Schaufeli, 2013).  

In our experiment, we simulated a snowshoe manufacturing assembly line, drawing inspiration 

from a visit to an actual snowshoe factory, and introduced a quality assurance and assembly task 

of 30 snowshoes that had to be completed twice by participants. In the first task, participants were 

equipped with a highly reliable error detection AI system, along with either AR, RTELFS, a 

combination of both countermeasures or no countermeasure, depending on their assigned group. 

In the second task, we removed all technological assistance (i.e., AI and countermeasures) to assess 

the operators' level of resilience when the automated systems failed. Results show that the 

countermeasures led to increased resilience in performance when AI assistance was removed, as 

well as enhanced behavioral engagement in AI-assisted tasks for the RTELFS group. 

This paper is divided into seven sections. In Section 2, we provide a review of the literature, 

offering more detail on countermeasures and their theoretical foundations. In Section 3, we outline 

the main research objectives and our hypotheses. Section 4 details the methods, including the 

experimental setup and artifacts used in this study, while Section 5 presents the results obtained 

for each hypothesis. In Section 6, we discuss the findings, and in Section 7, we provide concluding 

remarks along with the limitations of the current study.  
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3.2 Literature review 

3.2.1 Cognitive Countermeasures 

Cognitive countermeasures are broadly defined as strategies, techniques or tools designed to 

enhance or maintain cognitive performance during work (Dehais et al., 2010). Countermeasures 

have been used to refer to different technological support or strategies that helped counterbalance 

human cognitive bias, such as loss of engagement during work (Demazure et al., 2021; Karran et 

al., 2019) or cognitive tunneling (Dehais et al., 2010). While the literature would benefit from a 

more precise definition of this concept, in this paper, we use the term to refer to strategies and 

tools designed to help operators maintain optimal engagement by reducing the need to divide 

attention or minimize mind wandering. 

One of the first cognitive countermeasures was proposed by Dehais, Causse, and Tremblay (2011), 

and involved removing information from the dashboard of operators to combat cognitive 

tunneling, where operators adopt a narrow focus on specific information and risk missing 

important external signals. Replacing the removed information with signaling cues improved 

operators' awareness of external signals and enhanced overall decision-making and performance. 

Cognitive countermeasures have been evaluated in many contexts, ranging from air traffic control 

(Saint-Lot, Imbert, and Dehais, 2020), autonomous driving (Liu et al., 2024), and even in business 

process monitoring (Karran et al., 2019). However, to our knowledge, no studies have evaluated 

the impact of countermeasures in manufacturing contexts. 

In the literature, two technologies have shown great potential for enhancing worker engagement 

and represent significant opportunities to be used as cognitive countermeasures: real-time 

engagement-level feedback systems (RTELFS) and augmented reality (AR). Due to their potential 

to enhance worker engagement, these technologies offer promising solutions for mitigating the 

potential adverse effects of AI on manufacturing operators' engagement. Both systems will be 

discussed in detail in this section. 

Real-Time Engagement-Level Feedback System (RTELFS) 

The primary purpose of RTELFS is to help operators stay engaged by enabling them to identify 

moments of disengagement and prompting an immediate, appropriate response. RTELFS can be 
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seen as cognitive countermeasures because they allow operators to address decreases in 

engagement in real-time, which has been shown to help maintain optimal cognitive performance 

during work (Karran et al., 2019). These systems are particularly useful in environments where 

sustained attention is crucial, such as in manufacturing, healthcare, or control rooms, where 

maintaining high levels of engagement can directly impact safety, productivity and overall 

performance.  

One notable example of RTELFS was developed by Demazure et al. (2021). Their system used 

electroencephalography (EEG) to measure the level of cognitive engagement of operators in real-

time and update the background color of enterprise resource planning (ERP) software to reflect 

their corresponding level of engagement. Karran et al. (2019) have explored the potential of using 

this engagement feedback system to help operators keep optimal levels of sustained attention 

during a long passive monitoring task of business processes. The results of their study showed that 

using this countermeasure increased the operator’s monitoring performance and EEG wave 

coherence of operators, which seems to indicate a more sustained level of engagement throughout 

the task compared to more varied levels of engagement in the no countermeasures groups. Drawing 

inspiration from these results, Couture et al. (2024) have recently designed an engagement 

feedback system specifically designed for a manufacturing assembly context. The main advantage 

of this new system is that it uses physiological metrics such as respiration rate and acceleration 

that can be more easily collected in manufacturing environments compared to EEG. However, no 

study has yet been conducted to assess the effectiveness of this countermeasure system for 

enhancing operator engagement in manufacturing. 

To explain why RTELFS could help enhance operator engagement, the theory of operant 

conditioning seems particularly relevant. Introduced by B.F. Skinner (2019), operant conditioning 

is a learning process through which behaviors are influenced by reinforcement or punishment. In 

this framework, behaviors followed by positive outcomes are likely to be repeated, while those 

followed by negative outcomes are less likely to be repeated. RTELFS can be viewed as a system 

that provides real-time reinforcement based on the operator’s levels of engagement. The feedback 

serves as a form of operant conditioning, encouraging sustained engagement through positive 

reinforcement. 
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Augmented Reality 

Another promising solution to mitigate the loss of engagement is augmented reality (AR). AR is a 

technology that overlays computer-generated information onto real-world environments, 

enhancing users' perception and interaction with the physical world (Ong, Yuan, and Nee, 2008; 

Nee et al., 2012). Since AR allows for the manipulation of information accessible to operators, it 

can be used to ensure that their focus is directed toward the right information, making it a 

potentially powerful tool to employ as a cognitive countermeasure.   

AR has primarily been used in manufacturing settings to provide assembly instructions to operators 

(Wang et al., 2022; Werrlich et al., 2017). In this context, AR mostly enhances the accessibility 

and salience of information by overlaying it directly onto the worker’s environment (Romero et 

al., 2016). This approach has been shown to reduce the cognitive load associated with searching 

for and interpreting data (Atici-Ulusu, 2021), which could help operators stay focused in their 

tasks. Additionally, AR can dynamically adapt to the operator's current context and needs, 

delivering personalized and relevant information precisely when it is needed, further reducing 

potential distractions, mind wandering or downtime associated with task switching (Romero et al., 

2016). To give an example how AR could be used to implement cognitive countermeasures, we 

could, for instance, use AR to implement the cognitive countermeasure described by Dehais, 

Causse, and Tremblay (2011), where critical information is temporarily removed by the AR system 

and replaced with external signals to prevent cognitive tunneling.  

AR has shown great potential to enhance operator engagement in manufacturing contexts. Nguyen 

and Meixner (2019) have shown that gamification using AR in manufacturing assembly training 

can lead to a general increase in perceived worker engagement. Moreover, Yang et al. (2023) 

demonstrated that manufacturing assembly training with AR glasses could increase the knowledge 

retention of operators on a month-term basis. Finally, Lam et al. (2021) showed that the utilization 

of a smartphone-based AR application increased participants’ knowledge retention compared to a 

paper-based modality in a product part and disassembly process. Despite its great potential, AR 

has not yet been evaluated to mitigate AI-related loss of engagement in manufacturing.  

The dual-task interference theory (Pashler, 1993) can help explain why AR might lead to better 

operator engagement. According to this theory, performing two tasks simultaneously can cause 



 

51 
 

interference, particularly when both tasks require similar cognitive resources, leading to decreased 

performance and potentially lower engagement. The reduction in engagement can be attributed to 

the increased cognitive load that happens when attention must be divided between multiple tasks 

(Strayer et al., 2015). This higher cognitive load can lead to overload, which is associated with 

decreases in worker engagement (Biondi, 2023). From this perspective, if AR can minimize the 

need to search for information across multiple locations (e.g., consulting a dashboard or 

referencing a manual), it would reduce dual-task interference, thereby helping to sustain worker 

engagement. 

In sum, cognitive countermeasures are strategies designed to enhance or maintain cognitive 

performance during work, helping operators prevent sub-optimal cognitive states, such as 

decreased cognitive engagement. Engagement feedback systems and AR have shown great 

promise be used as cognitive countermeasures to enhance operator engagement. However, these 

solutions have not yet been evaluated in smart manufacturing contexts to mitigate AI-induced 

engagement decrements. 

 

3.2.2 Link Between Engagement, Performance, Motivation and Resilience 

Engagement and Performance 

Cognitive engagement is a critical predictor of performance, particularly in roles that require high 

mental involvement, such as supervising automated systems. When operators are cognitively 

engaged, they are more likely to stay focused and attentive, which enhances their ability to detect 

and respond to system errors (Endsley and Kiris, 1995). In contrast, a lack of cognitive engagement 

often leads to distractions or mind-wandering (Dehais et al., 2020), resulting in missed information 

and errors going unnoticed (Casner and Schooler, 2015). In manufacturing, these undetected errors 

can have significant consequences. By maintaining high levels of cognitive engagement, operators 

can adopt better monitoring behaviors, ultimately improving their performance and reducing the 

risk of missing critical information (Moray and Inagaki, 2000). 

Engagement and Motivation 

In the literature, employee engagement is often evaluated alongside employee motivation (Mariza, 

2016; Pourabdollahian, Taisch, and Kerga, 2012; Latta and Fait, 2016). Employee engagement, in 
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its broad definition, refers to the general willingness of workers to be committed to the organization 

and their work. Motivation, on the other hand, refers to the various forces that influence employees' 

levels of commitment, whether it is personal enjoyment of performing the task, external pressure, 

or rewards. Motivation is commonly regarded as a key driver of worker engagement (Dehais et 

al., 2020). Consequently, the reverse may also hold true. If countermeasures can enhance an 

operator's engagement in their work, this increased engagement could, in turn, positively influence 

their motivation.  

The framework used for evaluating motivation in this study is the self-determination theory (SDT). 

The SDT is a psychological theory concerned with how contextual factors support psychological 

growth, engagement, and wellness in individuals (Ryan and Deci, 2017). According to this theory, 

motivation exists on a continuum, with intrinsic motivation at one end, extrinsic motivation in the 

middle, and amotivation at the other end. Intrinsic motivation refers to the enjoyment derived from 

simply completing the task and aligns with the individual's interests and values. Extrinsic 

motivation involves completing the task due to external pressures or incentives. Amotivation, on 

the other hand, refers to a lack of motivation to complete the task. Van den Broeck et al. (2021) 

have shown that intrinsic motivation is the strongest predictor of worker well-being and 

absenteeism. Therefore, this study focuses on intrinsic motivation as the primary metric for 

evaluating motivation.  

Engagement and Resilience 

Worker resilience is defined as a person’s capacity to respond to pressure and the demands of daily 

life (Madni and Jackson, 2009; Peruzzini and Pellicciari, 2017). Workers with higher resilience 

are generally better equipped to handle stressful situations, such as automation failures. Resilience 

in smart manufacturing, however, extends beyond human attributes and encompasses resilience in 

systems as well as the effective integration of human-machine interactions. Recently, Romero and 

Stahre (2021) introduced the concept of the Resilient Operator 5.0, which combines technical and 

human dimensions. According to this concept, the Resilient Operator 5.0 is “a smart and skilled 

operator that uses human creativity, ingenuity, and innovation, empowered by information and 

technology, to overcome obstacles and create new, frugal solutions.” 
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For operators to be truly resilient, work engagement appears to be a crucial aspect. Bakker and 

Demerouti (2008) suggested that engaged employees possess greater adaptability to evolving 

business conditions mainly because personal attributes such as optimism, self-efficacy, self-

esteem, resilience, and an active coping style empower them to manage their work environment 

efficiently. Moreover, Cooke et al. (2016) have shown that resilience is positively associated with 

employee engagement in the banking sector. Similarly, Ojo, Fawehinmi, and Yusliza (2021) 

demonstrated that higher resilience among Malaysian workers during the COVID-19 pandemic 

was associated with increased work engagement. Therefore, if systems can be implemented to 

enhance worker engagement, they might also positively impact the resilience of human workers 

when facing challenging situations such as automation failures. 

 

3.3 Hypothesis Development  

The main objective of this study is to explore the possibility of using cognitive countermeasures 

to engage manufacturing operators in AI-supported tasks. Two specific countermeasures are 

evaluated: augmented reality (AR) and a real-time engagement-level feedback system (RTELFS) 

developed by Couture et al. (2024). Since these countermeasures have shown great potential for 

enhancing worker engagement and that worker engagement has been associated with higher 

performance, motivation, and resilience among workers, the premise is that if workers are more 

engaged in their AI-assisted tasks due to the presence of countermeasures, they might be more 

performant, more motivated and develop greater resilience.  

Therefore, without assuming beforehand which method would be superior, we hypothesized that  

(i) cognitive countermeasures would enhance engagement, motivation, and performance during 

AI-assisted work, that (ii) when AI-assistance is removed, workers that used the countermeasures 

would demonstrate greater resilience, maintaining their engagement, motivation, and performance 

better than those in the control group. This led to the list of hypotheses found below. No specific 

hypothesis was formulated for the combined effect of the countermeasures, as no theoretical 

foundation was found to support a prediction. Consequently, the results related to the combination 

of countermeasures were purely exploratory. 
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H1: The use of cognitive countermeasures will enhance engagement, motivation, and performance 

during AI-assisted work. 

H1a: During AI-assisted work, the use of cognitive will lead to greater cognitive 

engagement compared to individuals who did not use countermeasures. 

H1b: During AI-assisted work, the use of cognitive countermeasures will lead to greater 

emotional engagement compared to individuals who did not use countermeasures. 

H1c: During AI-assisted work, the use of cognitive countermeasures will lead to greater 

behavioral engagement compared to individuals who did not use countermeasures. 

H1d: During AI-assisted work, the use of cognitive countermeasures will lead to greater 

motivation compared to individuals who did not use countermeasures. 

H1e: During AI-assisted work, the use of cognitive countermeasures will lead to greater 

performance compared to individuals who did not use countermeasures. 

H2: When automation is removed, workers that used the countermeasures would demonstrate 

greater resilience than those in the control group. 

H2a:  When automation is removed, workers that used the countermeasures will maintain 

their cognitive engagement better than those who did not 

H2b:  When automation is removed, workers that used the countermeasures will maintain 

their emotional engagement better than those who did not. 

H2c:  When automation is removed, workers that used the countermeasures will maintain 

their behavioral engagement better than those who did not. 

H2d:  When automation is removed, workers that used the countermeasures will maintain 

their motivation better than those who did not. 

H2e:  When automation is removed, workers that used the countermeasures will maintain 

their performance better than those who did not. 
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3.4 Methods 

3.4.1 Participants 

A total of 114 students and teachers were recruited for this study (average age = 23.88 ± 7, 21 

women). Participants were screened for color blindness, cardiovascular diseases, and skin 

reactions. All participants provided signed informed consent in accordance with the University 

Ethics Board (project no. 2023-5427) and were compensated with 40 euros.  

3.4.2 Task 

For this experiment, we introduced a simple manufacturing assembly task that consisted of 

inspecting the quality of 30 partially assembled snowshoes and proceeding with assembling only 

those that met quality standards. There were six possible defects in the products, and participants 

were trained prior to the task to recognize each defect. The assembly procedure for each snowshoe 

involved the following steps: (i) click the “Next Snowshoe” button on the dashboard and scan the 

barcode of the unassembled snowshoe, (ii) inspect the product for defects, (iii) signal any defects 

via the dashboard or assemble the snowshoe if none were found, and (iv) return the snowshoe to 

its original position. The assembly manipulation involved attaching the binding to the base of the 

snowshoe at its pivot (see Figure 3.1 for an overview of the assembly manipulation).  
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Figure 3.1 - Assembly Manipulation on defect-free snowshoes 

3.4.3 Experimental Procedure 

The study consisted of one session of 2 hours that was divided into two phases: a training phase 

and an experiment phase. During the training phase (30 min), participants were provided with a 

thorough supervised practice of manual fault diagnosis and fault management of six different 

defaults on snowshoes. The errors included: (i) unattached front binding strap, (ii) inverted front 

binding, (iii) inverted heel riser, (iv) missing screws, (v) incorrectly mounted spring mechanism 

for adjusting the binding size, and (vi) back binding strap mounted on the wrong side. The training 

phase stopped when participants felt confident enough to move to the next step.  

During the experiment phase (90 minutes), participants first donned a physiological vest, then 

completed a demographic questionnaire (age and gender), followed by two consecutive assembly 

tasks. During the first task, participants were assisted by an AI system that automatically detected 

errors on the products, thus fully supporting the quality control part of the task. During the second 

task, we created a scenario where the AI system had failed, requiring operators to detect product 

errors manually without any assistance from AI. In both tasks, 6 defective products were 

intentionally introduced into the assembly of 30 snowshoes. A questionnaire was filled by 

participants after each task.   
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3.4.4 Experimental Conditions 

Participants were randomly assigned to one of three conditions: AR (n=34), RTELFS (n=34) or 

combined (n=34), which determined the type of technological support they received during the 

AI-assisted assembly task. The control condition comprised data from 11 participants collected in 

a previous experiment, using comparable methods, measures, and a similar participant sample. To 

maintain consistency, we incorporated this existing data into the present study, which accounts for 

the smaller sample size (n = 11) in the control group. 

The control group completed the first task using only the standard  AI quality control system 

without additional technological aids. In the AR condition, participants used the AI quality control 

system with Augmented Reality. Those in the RTELFS condition utilized the real-time 

engagement feedback system alongside the traditional AI quality control system. Finally, 

participants in the combined condition received support from RTELFS and AR alongside the AI 

quality control system. The second task was identical for all, as it required manual completion 

without automated support. Figure 3.2 provides an overview of the experimental design.  
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Figure 3.2 - Experimental design 

3.4.5 Simulated Assembly Line 

Inspired by a visit to an actual snowshoe factory, we developed an assembly line simulation that 

mirrors the conditions experienced by workers in snowshoe production. The setup included a 

worktable equipped with a touchscreen dashboard and barcode scanner for interacting with a 

product management system. This system tracked assembled products and identified defects. 

Adjacent to the worktable were two racks, each holding 15 snowshoes tagged with barcodes. 

Participants scanned these barcodes to automatically input data into the product management 

system. An overview of the workstation is shown in Figure 3.3, and the dashboard interface is 

shown in Figure 3.4.  
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Figure 3.3 - Workstation of the operator 

 

 

Figure 3.4 - Dashboard Interface of the Product Management System 
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3.4.6 AI system 

To simulate AI assistance, we equipped participants with a fully reliable quality control system 

designed to automatically detect defects on snowshoes, thus automating the quality control 

component of the task. Upon scanning a barcode, the AI system displayed diagnostic information 

directly on the operator's dashboard. This included notifications of detected errors along with 

detailed specifics, such as a text description of the error, a visual representation using an image, 

and instructions for the next step (e.g., proceed to assemble the product, scan the error barcode). 

This system was designed to mimic artificial intelligence capabilities, but it operated under a 

Wizard of Oz approach (Dahlbäck, Jönsson and Ahrenberg, 1993), employing barcode and QR 

code analysis to identify pre-planned defects rather than utilizing actual AI technology.  

3.4.7 Augmented Reality (AR) 

An augmented reality system was specially developed for this experiment to project quality control 

diagnostic information directly onto the operator’s worktable rather than on the traditional 

operator’s dashboard. This system ensured enhanced information accessibility by eliminating the 

need to turn toward the dashboard. Additionally, it made the information more dynamic, as it 

interacted directly with the product, using projected arrows that pointed to the identified defect on 

the product (see Figure 3.5). The system utilized a camera and projector, both positioned above 

the workstation to analyze QR codes affixed to the snowshoes (see Figure 3.6) and project 

diagnostic information onto the worktable. Operators placed a snowshoe within a detection zone, 

marked by a projected rectangle on the worktable. The camera then scanned the QR codes on the 

racquet, immediately displaying the diagnostics.  

Figure 3.5 - Overview of the Augmented Reality (left) and of the RTELFS (right) 
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Figure 3.6 - Projected Augmented Reality Setup 

3.4.8 Real-Time Engagement-Level Feedback System (RTELFS) 

The RTELFS used in this study was a passive engagement level-feedback system developed by 

Couture et al. (2024). It utilized breathing frequency and acceleration data to intuitively display 

the operator’s level of engagement in real-time through a color gradient. This system was 

integrated into our augmented reality setup to project the color gradient directly onto the operator's 

worktable as a large colored rectangle on the side of the table (see Figure 3.5). The rectangle’s 

color was updated every second shifting between shades of red and green, reflecting the 

physiological engagement levels measured by the system. Green indicated high physical and 

cognitive engagement, while red signaled low engagement. This system was used to maintain 

participants' awareness of their physiological state of engagement during the task, thereby 

facilitating necessary adjustments. Figure 3.7 provides an overview of the RTELF System’s 

functioning. 
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Figure 3.7 - Overview of the Real-Time Engagement-Level Feedback System (RTELFS) 

 

3.4.9 Dependent measures 

Eight types of measurements were used to assess the efficiency of the countermeasures. These 

measures allowed for the evaluation of performance, cognitive, emotional, and behavioral 

engagement, as well as motivation. The metrics used to evaluate each dependent measure are 

detailed in the following section.  

 

Performance 

Performance was evaluated using the percentage of correct manipulations and completion time for 

each task. The percentage of correct manipulation was extracted by analyzing the output file of the 

product management software that compiled all the scans made by the operators. An error of 

manipulation occurred if a participant reported an error on a valid product or if a participant didn’t 

report an error on a defective product. The percentage of correct manipulation was determined by 

dividing the number of correctly manipulated snowshoes by the total number of snowshoes (30 

per task).  

Cognitive engagement 

Cognitive engagement was assessed with the absorption subscale of the Utrecht Work Engagement 

Scale (UWES) and was self-reported in a questionnaire post-task. This subscale is composed of 3 
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items, rated on a five-point Likert scale. The Absorption dimension of UWES refers to being fully 

concentrated and deeply engrossed in one’s work and is characterized by time passing quickly and 

difficulties in detaching oneself from work (Schaufeli et al., 2003). In this experiment, we used a 

French-translated version of the questionnaire, which has been validated by Zecca et al. (2015). 

Emotional engagement 

Emotional engagement was assessed using valence and arousal sliders. Feldman (1995) defines 

arousal as a physiologically calm or aroused state (e.g., anxiety, boredom) and valence as a 

pleasant or unpleasant emotional state (e.g., happiness or sadness)  

Behavioral engagement 

Behavioral engagement was evaluated using average acceleration and the ratio of low-frequency 

to high-frequency power of heart rate variability (HRV). Acceleration was used to reflect how 

physically engaged participants were in the task. The ratio of low-frequency to high-frequency 

power of HRV is typically used to reflect the ratio of sympathetic to parasympathetic activation of 

the autonomous nervous system (Shaffer and Ginsberg, 2017). Since the sympathetic nervous 

system is associated with a state of “fight or flight”, while the parasympathetic system is associated 

with a state of “rest and digest”, the ratio can be used to evaluate how much an operator is awake. 

A higher LF-to-HF ratio would mean more.  

 

Motivation 

Motivation was evaluated with the intrinsic motivation subscale of the Empowerment Scale. This 

subscale is composed of four items, rated on a five-point Likert scale, and was collected in a 

questionnaire post-task.  

Resilience 

Resilience was measured by variance between task 1 and task 2 for groups with countermeasures 

versus Control, for all dependent measures. This included performance, cognitive engagement, 

emotional engagement, behavioral engagement, and motivation. The lower difference was 

associated with greater resilience.  
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3.5 Results 

A summary of the mean and standard deviation values recorded for each metric in each group 

during the AI-assisted task, along with the results of the statistical comparison of means between 

the countermeasure groups and the control group, is presented in Table 3.1 Similarly, a summary 

table containing these results for the task when AI had failed is presented in Table 3.2. 

Additionally, Table 3.3 provides a summary of the analysis of the differences between task 1 and 

task 2, as well as the statistical comparison of these differences between the countermeasure groups 

and the control group.  

 

 

 

 

 

 

 

Table 3.1 Mean and Variance Results in Task 1 (AI-Assisted Task) 
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Table 3.2 Mean and Variance Results in Task 2 (Manual Task) 

Statistical test

Control 99,09 2,16 - -

AR 99,14 1,98 0,04 1,000

BS 98,97 2,69 -0,13 1,000

Combined 98,82 2,52 -0,27 1,000

Control 822 187 - -

AR 851 166 29 1,000

BS 719 132 -103 0,098

Combined 793 95 -29 1,000

Control 3,52 0,89 - -

AR 3,53 0,87 0,02 1,000

BS 3,22 0,99 -0,30 1,000

Combined 3,57 1,04 0,05 1,000

Control 54,9 18,5 - -

AR 65,2 22,7 10,3 0,491

BS 64,7 19,2 9,8 0,491

Combined 59,0 20,4 4,1 1,000

Control 37,4 17,7 - -

AR 40,9 20,0 3,6 1,000

BS 48,3 25,7 11,0 1,000

Combined 47,4 24,9 10,0 1,000

Control 0,064 0,014 - -

AR 0,069 0,012 0,005 0,366

BS 0,078 0,016 0,015 0,016

Combined 0,072 0,013 0,008 0,186

Control 0,691 0,082 - -

AR 0,713 0,169 0,022 1,000

BS 0,617 0,178 -0,074 1,000

Combined 0,769 0,240 0,078 1,000

Control 2,75 1,45 - -

AR 3,22 1,09 0,47 1,000

BS 3,20 1,07 0,45 1,000

Combined 2,95 1,14 0,20 1,000

Diff to 

Control

p-value

Diff to Control

Performance

Manipulation 

Performance (%)

Completion Time (s)

Mann-Whitney 

Wilcoxon

t-test

Dependent 

Measure Metric Condition Mean Std

Cognitive 

Engagement

UWES Absorption Score 

(/5)

Emotional 

Engagement

Valence Slider (%)

Arousal Slider (%)

t-test

Behavioral 

Engagement

Acceleration Mean (g)

LF/HF ratio (HRV)

Motivation
Empowerment Intrinsic 

Motivation Score (/5)

t-test

t-test

t-test

t-test

t-test
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Table 3.3 Analysis of Variations Between Task 1 and Task 2 

Control 90,6 5,5 - -

AR 97,3 2,6 6,7 0,004

BS 97,6 2,9 7,0 0,001

Combined 96,6 3,6 6,0 0,007

Control 1029 295 - -

AR 954 162 -76 0,331

BS 876 153 -154 0,039

Combined 922 137 -107 0,195

Control 4,15 1,10 - -

AR 3,64 0,96 -0,51 0,491

BS 3,69 0,94 -0,46 0,491

Combined 3,66 1,09 -0,50 0,491

Control 56,4 24,0 - -

AR 62,4 21,7 6,0 1,000

BS 64,5 17,9 8,1 1,000

Combined 55,5 21,7 -0,9 1,000

Control 59,3 21,9 - -

AR 66,7 18,1 7,4 1,000

BS 72,4 15,2 13,2 0,155

Combined 63,1 21,4 3,9 1,000

Control 0,051 0,012 - -

AR 0,057 0,011 0,005 0,242

BS 0,064 0,014 0,013 0,011

Combined 0,059 0,009 0,008 0,145

Control 0,73 0,10 - -

AR 0,78 0,23 0,05 0,400

BS 0,66 0,18 -0,07 0,400

Combined 0,85 0,27 0,12 0,278

Control 3,27 1,91 - -

AR 3,13 1,21 -0,14 1,000

BS 3,22 1,09 -0,06 1,000

Combined 2,81 1,04 -0,47 1,000

Motivation

Empowerment Intrinsic 

Motivation Score

(/5)

t-test

Dependent 

Measure Metric

Statistical 

Test

Performance

Manipulation 

Performance (%)

Mann-Whitney 

Wilcoxon

Completion Time

(s)

Cognitive 

Engagement

UWES Absorption 

Score

(/5)

Emotional 

Engagement

Valence Slider

 (%)

Arousal Slider

(%)

Behavioral 

Engagement

Acceleration Mean

(g)

t-test

t-test

t-test

t-test

Condition Mean Std

Diff to 

Control

p-value

Diff to Control

t-test

t-testLF/HF ratio (HRV)
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3.5.1 Performance 

Performance During the AI-Assisted Task 

Manipulation performances reported during the AI-assisted task were an average of 99.09% for 

the control group, 99,14% for the AR group, 98.97% for the BF group, and 98.82% for the 

combined countermeasures group (see Figure 3.8). A Mann-Whitney Wilcoxon test was used to 

compare mean manipulation performance between conditions during the AI-assisted task. The 

results of this test revealed no statistically significant differences in manipulation performance 

between the countermeasures group and the control group. For this metric, a non-parametric test 

was employed because the data was not normally distributed.  

No significant differences were found in completion time between the countermeasure groups and 

the control group, as detailed in Table 3.1. However, the BF group completed the AI-assisted task 

Control -8,5% <0,0001 - -

AR -1,9% 0,0021 0,066 <0,0001

BS -1,4% 0,0224 0,071 <0,0001

Combined -2,3% 0,0028 0,062 <0,0001

Control 207,09 0,0631 - -

AR 102,48 0,0258 -104,609 0,190

BS 156,66 <0,0001 -50,436 1,000

Combined 128,55 <0,0001 -78,543 0,462

Control 0,64 0,1506 - -

AR 0,11 0,6592 -0,525 0,109

BS 0,47 0,0691 -0,165 1,000

Combined 0,09 0,7522 -0,550 0,077

Control 1,45 0,8753 - -

AR -2,81 0,6436 -4,269 1,000

BS -0,24 0,9606 -1,696 1,000

Combined -3,58 0,5060 -5,035 1,000

Control 21,91 0,0180 - -

AR 25,78 <0,0001 3,869 1,000

BS 24,10 <0,0001 2,194 1,000

Combined 15,77 0,0097 -6,135 1,000

Control -0,0124 0,0468 - -

AR -0,0119 <0,0001 0,0005 1,000

BS -0,0141 0,0011 -0,0017 1,000

Combined -0,0125 <0,0001 -0,0001 1,000

Control 0,04 0,3395 - -

AR 0,06 0,2456 0,025 0,879

BS 0,04 0,3630 0,005 1,000

Combined 0,08 0,2174 0,042 0,260

Control 0,52 0,4778 - -

AR -0,09 0,7682 -0,615 0,182

BS 0,02 0,9517 -0,505 0,355

Combined -0,15 0,6023 -0,668 0,115

Motivation
Empowerment Intrinsic 

Motivation Score (/5)
t-test t-test

Statistical Test 

(T2-T1)

Statistical Test 

(Diff with control)

t-test

Behavioral 

Engagement

Acceleration Mean (g) t-test t-test

LF/HF ratio (HRV) t-test t-test

Cognitive 

Engagement

UWES Absorption 

Score (/5)
t-test t-test

Emotional 

Engagement

Valence Slider (%) t-test t-test

Arousal Slider (%) t-test

p-value 

Diff with control

Performance

Manipulation 

Performance (%)

Mann-Whitney 

Wilcoxon
t-test

Completion Time (s) t-test t-test

Dependent 

Measure Metric Condition T2-T1

p-value

(T2-T1)

Diff with 

control
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an average of 103 seconds more rapidly than the control group, which represents a 12.5% 

productivity increase compared to the control group (see Figure 3.9). The AR group, on the other 

hand, took, on average, 29 seconds more than the control group to complete the task, representing 

a 3.5 % productivity decrease compared to the control group. Finally, the combined 

countermeasure group completed the task in average 29 seconds quicker than the control group, 

representing a 3.5% productivity increase compared to the control group.  

Resilience of Performance After AI Failure (Manual Task) 

After the AI system failed, participants in the control group reported 90.6% manipulation 

performance, while the AR, BF, and combined group respectively reported manipulation 

performance of 97.3%, 97.6%, and 96.6% (see Figure 3.8). Compared to their performance in the 

AI-assisted task, this represents an 8.5% decrease in performance for the control group, a 1.9% 

decrease for the AR group, a 1.4% decrease for the BF group, and a 2.3% decrease for the 

combined group.  

As for completion time, the control group took, on average, 1029 seconds to complete the task, the 

AR group 954 seconds, the BF group 876 seconds, and the combined countermeasure group 922 

seconds (see Figure 3.9).  Compared to their respective performance in the AI-assisted task, this 

represents a 207-second increase for the control group, a 102-second increase for the AR group, a 

156-second increase for the BF group, and a 128-second increase for the combined group.  

Resilience of performance was assessed by comparing these decreases in performance between T1 

and T2 for the countermeasure groups against the control group. A t-test with Bonferroni 

adjustment was used to compare the decrease in manipulation performance between groups. The 

results of this test revealed that the decrease in manipulation performance in the countermeasure 

groups was significantly lower than the decrease in performance in the control group (p<0.0001 

for all conditions). On average, the decrease in manipulation performance was 6.6% lower for the 

AR group, 7.1% lower for the BF group, and 6.2% lower for the combined group, as compared to 

the control group. A t-test was also used to compare the loss of productivity (i.e., increased 

completion time) between the countermeasure groups and the control group. No significant 

difference was found between the groups.  
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Figure 3.8 – Mean Manipulation Performance Across Groups for Both Tasks 

 

Figure 3.9 – Mean Completion Time Across Groups for Both Tasks 
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3.5.2 Behavioral Engagement 

Behavioral Engagement During the AI-Assisted Task 

During the AI-assisted task, the mean acceleration values recorded were 0.064 g for the control 

group, 0.069 g for the AR group, 0.078 g for the BF group, and 0.072 g for the combined group 

(see Figure 3.10). A t-test with Bonferroni adjustment revealed that the acceleration in the BF 

group was significantly higher than in the control group (p=.016). No significant differences were 

found between the other countermeasure groups and the control group. 

As for the LF/HF power ratio of HRV, values during the AI-assisted task were 0.69 for the control 

group, 0.71 for the AR group, 0.62 for the BF group, and 0.77 for the combined group (see Figure 

3.11). None of the comparisons of LF/HF ratio between the countermeasures groups and the 

control group showed statistically significant differences.  

Resilience of Behavioral Engagement After AI Failure (Manual Task) 

When the AI failed, the acceleration mean decreased almost equally between groups. The control 

group acceleration decreased by an average of 0.012 g, the AR group decreased by 0.012 g, the 

BS group decreased by 0.014 g, and the combined group by 0.013 g compared to the acceleration 

in the AI-assisted task (see Figure 3.10). A t-test between conditions revealed that this decrease 

in acceleration was not significantly different between the control group and the countermeasure 

groups. 

As for the ratio of LF to HF power of HRV, we saw small increases in all conditions during the 

AI failure as compared to the values recorded during the AI-assisted task. The ratio increased by 

an average of 0.04 in the control group, 0.06 in the AR group, 0.04 in the BS group, and 0.08 in 

the combined group (see Figure 3.11). A t-test with Bonferroni adjustment revealed that this 

increase in LF to HF ratio was not significatively different in the countermeasure groups when 

compared to the control group.   
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Figure 3.10 – Mean Acceleration Results Across Groups for Both Tasks 

 

Figure 3.11 – Mean LF/HF Power Ratio of HRV Across Groups for Both Tasks 
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3.5.3 Emotional Engagement 

Emotional Engagement During the AI-assisted task 

During the AI-assisted task, the valence slider results were 54.9% in the control group, 65.2% in 

the AR group, 64.7% in the BS group, and 59.0% in the combined countermeasure group (see 

Figure 3.12). Although the valence was not significantly different in the countermeasures groups 

compared to the control group, we see that valence was, on average, higher in the countermeasure 

groups than in the control group. Emotional valence was on average 10.3% higher in the AR group, 

9.8% higher in the BS group and 4.1% in the combined group.  

For arousal, the control group reported a 37.4% arousal score during the AI-assisted task, while 

the AR, BS, and combined countermeasure groups respectively reported arousal scores of 40.9%, 

48.3%, and 47.4% (see Figure 3.13). With these results, we see that arousal was in average higher 

in the countermeasure groups than in the control group. Arousal was, on average, 3.6% higher in 

the AR group, 11.0% higher in the BS group, and 10.0% in the combined group as compared to 

the control group. However, no significant differences between countermeasure groups and the 

control condition were found. 

Resilience of Emotional Engagement After AI Failure (Manual Task) 

When the AI failed, valence results slightly increased by 1.45% in the control group, while in the 

AR, BS, and combined groups, it slightly decreased respectively by 2.81%, 0.24%, and 3.58%, as 

compared to the AI-assisted task (see Figure 3.12). However, this difference in valence between 

T1 and T2 was not significant for the countermeasures groups compared to the control group.  

For arousal, results show a significant increase during AI failure as compared to the AI-assisted 

task across all conditions. Arousal increased by 21.91% in the control group, 25.78% in the AR 

group, 24.10% in the BS group, and 15.77% in the combined group (see Figure 3.13). However, 

these increases in arousal were not significantly different in the countermeasures groups compared 

to the control group. 
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Figure 3.12 – Mean Valence Results Across Groups for Both Tasks 

 

Figure 3.13 – Mean Arousal Results Across Groups for Both Tasks 
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3.5.4 Cognitive Engagement  

Cognitive Engagement During the AI-assisted task 

In the AI-assisted task, absorption scores were 3.52 for the control group, 3.52 in the Ar group, 

3,22 in the Bs group, and 3.57 in the combined group (see Figure 3.14). None of the comparisons 

between the countermeasures groups and the control group showed statistically significant 

differences in absorption scores during the AI-assisted task. Detailed statistical values for each 

comparison are provided in Table 3.1.  

Resilience of Cognitive Engagement After AI Failure (Manual Task) 

After AI had failed, all groups reported increases in absorption. However, these differences were 

not significant. The control group reported a 0.64 increase, the AR group a 0.11 increase, the BS 

group a 0.47 increase and the combined group a 0.09 increase (see Figure 3.14). However, these 

increases were not significantly different in the countermeasure groups compared to the control 

group.  

 

Figure 3.14 – Mean UWES Absorption Subscale Results Across Groups for Both Tasks 
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Motivation During the AI-assisted task 

During the AI-assisted task, the intrinsic motivation results were 2.75 in the control group, 3.22 in 

the AR group, 3.20 in the BS group, and 2.95 in the combined countermeasure group (see Figure 

3.15). Although the intrinsic motivation was not significantly different in the countermeasures 

groups compared to the control group, results show that intrinsic motivation was in average higher 

in the countermeasure groups than in the control group. Compared to the control group, intrinsic 

motivation was, on average, 9.4% higher in the AR group, 9% higher in the BS group, and 4% in 

the combined group.  

Resilience of Motivation After AI Failure (Manual Task) 

After the AI failed, the results of intrinsic motivation were 3.27 for the control, 3.13 for AR, 3.22 

for BS, and 2.81 for combined (see Figure 3.15). This shows mixed effects on intrinsic motivation 

after the AI failed. Increases in intrinsic motivation were reported in the control group and in the 

BS group, respectively, of 0.52 and 0.02, while decreases were reported in the AR and combined 

group, respectively, of 0.09 and 0.15. However, these effects were not significantly different in the 

countermeasure groups compared to the control group, as detailed in Table 3.3.  

 

Figure 3.15 – Mean Intrinsic Motivation Results Across Groups for Both Tasks 
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3.6 Discussion 

The objective of this study was to evaluate the effect of two cognitive countermeasures (i.e., AR 

and RTELFS) on the performance, engagement, and motivation of operators during AI-assisted 

tasks, as well as on their resilience when they had to take over the automated process. Our main 

finding is that both countermeasures led to significantly increased resilience of performance when 

the AI assistance was removed, thus supporting H2e. This was supported by manipulation 

performance data, which showed a decrease in the operator’s manipulation performance of 8.5% 

between task 1 and task 2 in the Control group, compared to decreases of only 1.9%, 1.4%, and 

2.3% in the Countermeasures groups (respectively the AR, RTELFS, and Combined groups). One 

reason that could explain this increased manipulation performance resilience is that participants 

may have been more engaged during the AI-assisted task when using the countermeasures, which 

would have led to better information retention and performance when they had to take over the 

automated process. This would be consistent with Karran et al. (2019), who found positive impacts 

of RTELFS on operator performance and levels of sustained attention, as well as with Yang et al. 

(2023), who showed increased learning when using AR systems. No other resilience effects were 

observed for motivation, cognitive engagement, emotional engagement, or behavioral 

engagement, failing to confirm H2a, H2b, H2c, and H2d. 

The explanation that countermeasures led to higher engagement in the AI-assisted task aligns with 

the results from the RTELFS group. Participants in the RTELFS group reported significantly 

higher acceleration during the AI-assisted task, indicating that this countermeasure helped them 

be more physically and behaviorally engaged in the task, thus supporting H1c. Moreover, they 

completed the AI-assisted task in average 103 seconds faster than the control group, which, 

although not significant, represents a 12.5% increase in productivity. One possible explanation for 

this could be attributed to a potential bias in participants' understanding of how the RTELFS 

worked. Without a clear understanding of what "engaged" meant, participants might have thought 

that being more active would improve results, thus increasing their behavioral engagement and 

possibly turning it into a competition or game that helped increase their productivity.  Additionally, 

although the difference was not significant, participants in the RTELFS group generally reported 

higher emotional valence and arousal compared to Control, indicating a potential trend that 
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RTELFS could enhance emotional engagement in AI-assisted tasks. This may be confirmed with 

larger datasets. However, in this study, these results do not support H1c. 

In contrast, for AR, no statistical differences were found in engagement metrics during the AI-

assisted task, failing to support H1a, H1b, and H1c. This creates a certain ambiguity in explaining 

why skill resilience improved for participants that used AR. One potential reason for this lack of 

significant effect on engagement is that simply using AR to make information more accessible and 

dynamic is not enough to promote worker engagement. To enhance worker engagement, especially 

in passive-monitoring contexts, other strategies, such as gamification, could be employed (Nguyen 

and Meixner, 2019). Despite this result, the increased resilience of manual performance may be 

attributed to the increased accessibility of information that could have improved operator learning 

during the AI-assisted task. This would be consistent with the findings of Yang et al. (2023) who 

showed increased learning outcomes and information retention when training with AR systems. 

Additionally, although the difference was not significant, we found that participants reported 

generally higher emotional valence and arousal compared to the control group. This could indicate 

a small increase in emotional engagement, suggesting that participants using AR were enjoying 

the task more than those in the control group. This would be consistent with the findings of Nguyen 

and Meixner (2019) who showed increased engagement in a gamified AR-assisted manufacturing 

context.  

Surprisingly, we found no effect of the countermeasures on cognitive engagement during the AI-

assisted task. For AR, this result contrasts with the findings of Nguyen and Meixner (2019) and 

may be attributed to the fact that the system employed in this study was a projection system rather 

than a head-mounted display, creating less of an immersive experience. For RTELFS, this finding 

aligns with Karran et al. (2019), who found no significant differences in subjective cognitive load 

assessments with RTELFS despite improvements in objective measures of sustained attention. One 

possible explanation, supported by Karran et al. (2019), is that participants were potentially 

unaware of the benefits of modulating their engagement levels with the RTELFS countermeasure, 

resulting in no subjective effect. Combining subjective and objective measurements could have 

provided a more comprehensive understanding of the impact on cognitive engagement. However, 

present findings only indicate that both countermeasures had no effect on the cognitive 

engagement of operators, failing to confirm H1a. 
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Despite slightly higher levels of intrinsic motivation in all the countermeasure groups, no 

significant differences in motivation were found in countermeasure groups during the AI-assisted 

task, failing to confirm H1d. This may be attributed to the fact that participants were students and 

not actual manufacturing operators, which could have affected the extent to which they relate to 

the work they were doing, a crucial component for motivation. 

One interesting finding is that during the AI-assisted task, manipulation performance was very 

high across all groups, with no significant differences between them (99.09% for the Control 

group, 99.14% for the AR group, 98.97% for the BF group, and 98.82% for the combined group). 

This high level of performance was expected, as the AI system guided participants with 100% 

reliability. However, the lack of differences between conditions indicates that the integration of 

countermeasures did not distract or negatively impact the manual performance of operators. This 

suggests that additional technological support, such as countermeasures, could be implemented 

during AI-assisted work without affecting human operators' manual performance. 

No specific hypothesis was established regarding the combined effect of the countermeasures. 

However, one potential prediction could have been that their combination would enhance 

outcomes, as suggested by the theory of multimedia learning (Mayer and Moreno, 1998), which 

posits that combining different media can improve learning outcomes. Contrary to this expectation, 

our findings revealed that the combination of countermeasures did not lead to improved effects. In 

fact, we observed slightly lower emotional valence and motivation compared to the use of single 

countermeasures alone. One reason for this may be attributed to the fact that both countermeasures 

relied on visual signals, which could have led to interference between the two technologies. 

Table 3.4 Summary of Supported Hypotheses 

Hypothesis  Supported ?  

H1: The use of cognitive countermeasures will enhance engagement, motivation, and 

performance during AI-assisted work. 

  

H1a: During AI-assisted work, the use of cognitive will lead to greater cognitive 

engagement compared to individuals who did not use countermeasures. 

 Not supported 

H1b: During AI-assisted work, the use of cognitive countermeasures will lead to 

greater emotional engagement compared to individuals who did not use 

countermeasures. 

 Not supported 

H1c: During AI-assisted work, the use of cognitive countermeasures will lead to  Supported for 
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greater behavioral engagement compared to individuals who did not use 

countermeasures. 

RTELFS 

H1d: During AI-assisted work, the use of cognitive countermeasures will lead to 

greater motivation compared to individuals who did not use countermeasures. 

 Not supported 

H1e: During AI-assisted work, the use of cognitive countermeasures will lead to 

greater performance compared to individuals who did not use countermeasures. 

 Not supported 

H2: When automation is removed, workers that used the countermeasures would 

demonstrate greater resilience than those in the control group. 

  

H2a:  When automation is removed, workers that used the countermeasures will 

maintain their cognitive engagement better than those who did not 

 Not supported 

H2b:  When automation is removed, workers that used the countermeasures will 

maintain their emotional engagement better than those who did not. 

 Not supported 

H2c:  When automation is removed, workers that used the countermeasures will 

maintain their behavioral engagement better than those who did not. 

 Not supported 

H2d:  When automation is removed, workers that used the countermeasures will 

maintain their motivation better than those who did not. 

 Not supported 

H2e:  When automation is removed, workers that used the countermeasures will 

maintain their performance better than those who did not. 

 Supported 

 

3.7 Conclusion 

In this study, we evaluated the impact of two cognitive countermeasures (i.e., AR and RTELFS) 

on manufacturing operators’ engagement, motivation, performance, and resilience during AI-

assisted work. Our findings indicate that AR and RTELFS could be used to increase operators’ 

skill resilience in situations where operators must regain manual control of AI-automated 

processes. This has implications for technology designers, as it shows the potential of 

complementing automation systems with cognitive countermeasures to help mitigate potential 

human performance issues caused by automation. Moreover, we saw that RTELFS specifically 

enhanced the behavioral engagement of operators during AI-assisted work and led to a general 

increase in productivity. This demonstrates that RTELFS could be utilized to keep manufacturing 

operators behaviorally engaged, which would be particularly useful in training and potentially 

certain safety-critical settings. Surprisingly, no significant effects of the countermeasures were 

found on cognitive engagement, emotional engagement, and motivation, which shows that 

although these countermeasures helped increase performance, they had limited impact on the 
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psychosocial human factors. Future research should, therefore, try to understand how 

technological aids could help increase human psychosocial factors, such as motivation and 

engagement, to help increase human-machine interaction in smart manufacturing contexts.  

It is worth to mention some limitations to this study. First, most participants recruited in this study 

were engineering students and not real manufacturing operators, which could impact the extent to 

which these results would be applicable in real assembly contexts. Second, because the 

experimental procedure was conducted in a single session with only a short interval between tasks, 

it limits our capacity to project these results for long-term performance improvements. Third, 

cognitive engagement was only measured subjectively, which significantly reduces the precision 

and accuracy of this measure. Future work should aim to assess this dimension using both objective 

and subjective methods.  
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Chapitre 4 

Conclusion 

4.1 Retour sur les objectifs 

L’objectif de ce travail était double. Premièrement nous souhaitions proposer un nouveau système 

de rétroaction du niveau d’engagement spécialement conçu pour le milieu manufacturier, ce qui 

était l’objet du chapitre 2. Ensuite, nous voulions évaluer l’effet de deux contre-mesures cognitives 

(c’est-à-dire la RA et le SRNE) sur l’engagement, la motivation et la performance des opérateurs 

lors de tâches assistées par l’IA, ainsi que sur leur résilience dans des situations où ils devaient 

faire la gestion d’exceptions (telle que lorsque l’automatisation fait défaut). Ceci était l’objet du 

chapitre 3.  

En utilisant les différences physiologiques mesurées lors d'un scénario manufacturier à haut 

engagement et un scénario à faible engagement, nous avons pu créer une métrique d'engagement 

basée sur les données de respiration et d'accélération pour évaluer le niveau d'engagement des 

opérateurs. Cela a permis de développer un SRNE capable de mesurer en temps réel le niveau 

d'engagement des opérateurs, et de classifier les niveaux d'engagement dans nos données 

d'entraînement avec une précision de 80,95%. Bien que le système développé puisse encore 

bénéficier d'améliorations en ce qui concerne la précision de sa métrique d’engagement, les 

résultats obtenus étaient entièrement suffisants pour une utilisation dans une étude en laboratoire. 

Nous pouvons donc affirmer que notre premier objectif a été atteint. 

Nous avons ensuite créé une simulation manufacturière inspirée d'une visite dans une véritable 

usine de fabrication de raquettes de neige. Dans cette simulation, nous avons introduit une tâche 

de contrôle qualité et d'assemblage de 30 raquettes, qui devait  être réalisée deux fois par nos 

participants : une première fois avec le support d'un système d'IA et une seconde fois sans aucun 

support, simulant une situation où le système d'IA faisait défaut. Pour cette étude, 114 participants 

ont été recrutés et répartis en quatre groupes, déterminant quelles contre-mesures cognitives les 

participants allaient recevoir lors de la tâche automatisée (RA, SRNE, la combinaison des deux, 

ou aucune contre-mesure). Nos résultats indiquent que les contre-mesures ont amélioré la 

résilience de la performance des opérateurs lorsque le support automatisé a été retiré. Plus 
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spécifiquement, le SRNE a mené à un plus grand engagement comportemental dans la tâche 

assistée, comparativement au groupe contrôle. Nous pouvons donc également affirmer que notre 

second objectif a été atteint. 

 

4.2 Principaux résultats 

Le principal résultat à retenir de ce mémoire est que l’utilisation de contre-mesures cognitives 

(c’est-à-dire la RA et le SRNE) a amélioré la performance des opérateurs lorsque nous avons retiré 

l’assistance de l’IA. Ceci suggère que le fait d’employer la RA ou le SRNE dans un environnement 

de travail manufacturier assisté par l’IA permettrait aux opérateurs de développer des compétences 

plus résilientes, améliorant ainsi leur performance lors d’échecs d’automatisation. À notre surprise, 

les contre-mesures n'ont pas eu d'effet sur l'engagement cognitif ni sur la motivation des 

opérateurs. Cependant, elles ont entraîné un engagement émotionnel légèrement supérieur à celui 

du groupe de contrôle, bien que non significatif. Additionnellement, lors de la tâche assistée par 

l’IA, le SRNE, a mené à un plus grand engagement physique et comportemental et à une 

amélioration de la productivité de 12,5%. 

En ce qui concerne le développement du SRNE dans le chapitre 2, nous avons été capables de 

concevoir un nouvel index d’engagement basé sur les différences physiologiques entre un scénario 

manufacturier hautement engageant et un scénario faiblement engageant. En utilisant cet indice 

dans une étape de validation, nous avons été capables de prédire les niveaux d’engagement de 

notre base de données d’entraînement avec une précision de 80.25%.  

 

4.3 Contributions 

Ce travail a trois principales contributions. Premièrement, il propose un nouveau système de 

rétroaction du niveau d’engagement qui est adapté au milieu manufacturier. L’avantage de ce 

système est qu’il utilise des outils de mesure physiologiques comme la respiration et l’accélération 

qui sont faciles à collecter en contexte manufacturier où les opérateurs sont souvent en mouvement . 

Contrairement aux systèmes similaires présentés dans la littérature, qui reposent principalement 
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sur l'électroencéphalographie, ce système est plus pratique pour un environnement manufacturier. 

Cependant, ce système a été développé pour un contexte spécifique, et les futurs développements 

devront s'assurer de l'adapter avant de l'implémenter. 

La méthodologie que nous avons employée pour développer le SRNE peut également représenter 

une contribution. En effet, malgré le fait que ce n’est pas la première fois que des gens simulent 

des scénarios plus ou moins engageants pour construire des métriques (voir Moray et Inagaki, 

2000; Verdière et al., 2018), c’est la première fois qu’un système de rétroaction a été conçu en 

utilisant cette méthodologie. Ainsi, des chercheurs pourraient utiliser la méthodologie proposée 

dans le chapitre 2 pour développer des systèmes qui sont adaptés à leur contexte, que ce soit en 

aviation, en conduite autonome ou en manufacturier.  

Finalement, nos résultats indiquent que l'utilisation de contre-mesures cognitives peut aider à 

mitiger certains effets négatifs de l'implantation d'IA en manufacturier, notamment sur la 

performance des opérateurs manufacturiers. Ceci peut aider les développeurs de technologies 

industrielles à améliorer l’interaction humain-machine de leurs produits. De plus, cela peut fournir 

aux dirigeants d’usines intelligentes de nouvelles pistes de solutions pour assurer la productivité 

de leurs opérations. À notre connaissance, ceci est le premier travail qui explore les effets de 

contre-mesures cognitives comme moyen de mitiger les potentiels effets négatifs de l’IA sur les 

opérateurs manufacturiers. 

4.4 Futures Recherches 

Les futures recherches devraient essayer de comprendre par quels mécanismes la RA et le SRNE 

ont permis d’aider les opérateurs à conserver leurs compétences. Pour la RA, il se pourrait que ce 

soit dû à la plus grande accessibilité de l’information ou par l’interaction de l’information sur 

l’environnement réel, potentiellement induisant des comportements différents chez les opérateurs. 

De plus, puisque l’utilisation de ludification a démontré un grand potentiel dans la littérature pour 

rehausser l’engagement (Nguyen and Meixner, 2019), il serait intéressant d’évaluer si la 

ludification à travers une application de réalité augmentée pourrait rehausser l’engagement perçu 

des opérateurs. Le SRNE devrait être amélioré pour tenir compte des différences physiologiques 

entre les individus et comparer sa fiabilité à des mesures d’engagement plus établies dans la 
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littérature comme l’EEG et la dilatation de la pupille. De plus, il serait intéressant d’évaluer si 

l’effet positif des contre-mesures permet d’améliorer la rétention ‘habileté au long terme. 
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Summary: The integration of Artificial Intelligence (AI) in manufacturing is shifting the focus of operators from manual labor 

to cognitive supervision roles. While this transition demands more engagement from operators, the less stimulating nature of 

monitoring tasks has, paradoxically, reduced operator involvement, consequently presenting new challenges in performance 
maintenance. Addressing this issue, our research adopted an iterative design science methodology to create a biocybernetic 

system that aims to enhance operator engagement in their evolving workplace. This system leverages physiological signals to 

intuitively display how much an operator’s engagement level deviates from an ideal state, ensuring operators stay aware of 

their psychophysiological state of engagement and can quickly adjust to any decreases in engagement. In this paper, we detail 

the 4-step process that led to the development of the first version of the system. Capitalizing on the physiological differences  
observed in manufacturing operators during “high” and “low” engagement scenarios, we defined a task-specific Optimal State 

Deviation Index (OSDI) formula. This formula enabled us to predict participants' engagement states with an 80.95% success 

rate in our testing dataset. 

 
Keywords: Biocybernetic system, Manufacturing, Engagement, Automation, Design Science, Artificial Intelligence 

 

 

1. Introduction 

AI-driven automation is transforming 

manufacturing operators’ roles, shifting their work 

from manual work to supervising systems [1], which 

can lead to less stimulating tasks, adversely impacting 

operator engagement and performance [2]. Given the 

prevalent risk of occupational injuries associated with 

manufacturing work [3], it appears essential for 

operators to maintain an optimal engagement state. 

Specifically, operators must avoid excessive vigilance, 

which can increase fatigue over time or lead to 

cognitive tunneling, a state in which operators adopt a 

narrow focus and neglect other important information 

[4]. Operators must also avoid cognitive underload, 

which can result in mind wandering and inattention [5]. 

In addressing the issue of maintaining an optimal 

engagement state, very little research has explored how 

new technologies can effectively improve operator 

engagement in manufacturing.  

However, the work of Demazure et al. [6] is 

particularly promising in this regard. Their research 

demonstrated the potential of using real-time 

engagement level feedback to significantly improve 

users’ attentiveness. Our study seeks to adapt this 

approach for manufacturing, aiming to develop a tool 

to help operators maintain optimal engagement levels.  

The structure of this paper is outlined as follows. 

Section 2 delves into the reasons for developing a new 

biocybernetic system tailored for manufacturing. 

Section 3 is dedicated to detailing the iterative design 

science methodology that was employed to create the 

system. The results that influenced the system’s design 

are detailed in Section 4. Finally, we present our 

concluding remarks, along with a discussion of the 

current system's limitations in Section 5. 
 

 

2. Background 
 

The integration of automated systems offers 

significant advantages for industrial applications. 

Nonetheless, it is important to acknowledge that most 

of these automated systems have yet to achieve 

perfection in terms of system reliability [7]. 

Consequently, in instances where a system's reliability 

is not absolute, it is prudent for enterprises to deploy 

human operators. These operators play a crucial role in 

monitoring automated systems' functionality, enabling 

the early detection of anomalies and facilita ting timely 

intervention to rectify such occurrences. However, 

monitoring automated systems can present several 

human challenges, including a decrease in vigilance 

over time [8] and low monitoring performance [2]. 

This decline is attributed to both cognitive overload, 

which can result in cognitive fatigue and cognitive 

tunneling [9], and cognitive underload, which can 

cause mind wandering, low motivation, and increased 

distraction [10]. Therefore, one way to tackle this issue 
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is to ensure the operator can balance their level of 

engagement throughout the monitoring task. 

In this context, the work of Demazure et al. [6] 

seems particularly promising as it offers a passive 

system that informs the operator of their level of 

engagement in real-time. This feature not only keeps 

operators aware of their mental state in real-time but 

also enables them to make immediate adjustments as 

needed. The solution proposed by Demazure utilizes 

electroencephalography (EEG) signals to provide a 

real-time, intuitive display of the operator's 

engagement level through a color gradient display. 

Karran et al. [11] employed Demazure et al.'s system 

and demonstrated that continuously showing 

engagement levels to operators notably enhanced 

sustained attention during long monitoring tasks. This 

was evidenced by increased EEG wave coherence 

recorded for participants who received continuous 

engagement feedback. In contrast, participants who did 

not receive engagement feedback and those who only 

received engagement feedback after critical 

disengagement thresholds were reached reported low 

EEG wave coherence. While these results appear 

encouraging, a notable challenge with this solution is 

the necessity of an accurate measurement of 

engagement, which can be particularly difficult in 

manufacturing settings.  

Numerous physiological tools have been used in 

the literature to measure task engagement, including 

eye-tracking [12], electroencephalography (EEG) [6], 

electrodermal activity (EDA) [13], and heart rate 

variability measures (HRV) [14]. Although eye-

tracking and EEG methods are well-established in the 

literature for assessing engagement, their practical 

application in manufacturing faces significant 

challenges. The primary issue with these techniques is 

their limited adaptability to the dynamic nature of 

manufacturing environments. Operators in such 

settings are frequently mobile and engage with their 

surroundings in a 360-degree manner. This constant 

movement and the need to interact with a wide-ranging 

environment render both eye-tracking and EEG 

methodologies less feasible due to their inherent 

requirement for relative stability and controlled 

observation conditions. EDA is typically measured on 

the palm of the hand, which could constrain operators 

in their work. However, HRV can accurately be 

assessed during operator movement, making it a  

potential choice for a manufacturing setting [15]. HRV 

is defined as the variation of time intervals between 

consecutive heartbeats [16] and is mainly used as a 

measure of the activation of the autonomous nervous 

system [17]. There is, however, some debate regarding 

the interpretation of HRV measures [17,18], which 

raises questions regarding the viability of using this 

metric to assess task engagement.  

This ambiguity makes Moray and Inagaki's 

approach [19] particularly appealing. Their method 

evaluates monitoring performance by contrasting 

actual operator performance to an optimal standard. 

 
2 For an overview of the experimental setup: https://youtu.be/xtcpxqcyz8k. 

From this perspective, for any specific task, it seems 

feasible to establish a performance metric by initially 

recording the responses of an operator in a high-

performance scenario and comparing it to a low-

performance scenario. Therefore, when we want to 

assess operator engagement, a  potential approach 

would be to establish an engagement metric by 

comparing physiological responses recorded in highly 

engaging scenarios with those from a minimally 

engaging scenario, using contrast to construct a 

reliable measure of engagement for this particular task. 

Additionally, since increasing the level of automation 

has been shown to be the source of lower engagement 

[20], it seems possible to use the levels of automation 

to induce different levels of engagement in a 

manufacturing context.  

Hence, to maintain optimal engagement levels of 

manufacturing operators within their dynamic work 

environments, our proposal involves developing a new 

biocybernetic system inspired by the research of 

Demazure et al. [6] but tailored to the manufacturing 

context. Rather than depending on exact engagement 

metrics and measurements, our system follows a 

methodology similar to Moray and Inagaki [19],  

leveraging physiological indicators that differentiate 

between optimal and suboptimal engagement states. A 

significant advantage of this approach is its 

adaptability to complex settings like manufacturing, 

where constraints exist concerning the feasibility of 

certain physiological measurements, such as eye-

tracking and EEG. 

 

 

3. Methods 
 

We used a design science methodology to develop 

an optimal state deviation feedback system involving 

a four-step process that included three studies (see 

Table 1). The first two steps were dedicated to 

identifying physiological markers that could 

characterize the reduction of operators' engagement 

during a specific task and developing a biocybernetic 

system. The last two steps were dedicated to evaluating 

different features of the biocybernetic system, i.e., the 

display modality and the scaling method. 

 

3.1. Step 1  – Collect Data 

 

In the first step, we collected physiological and 

perceptual data from participants in more and less 

engaging manufacturing situations. We recruited 22 

students (age=21.62±3.17; men=14) for a within-

subject experiment, in which they twice performed a 

quality control and assembly task on a simulated 

assembly line2. All participants provided a signed 

consent in-line with the University ethics committee 

(project # 2023-5058) and were compensated with the 

sum of 40 euros. The task, explained in more detail in 

[2], required participants to detect errors on partially 
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assembled snowshoes and complete the assembly by 

fixing the binding to the base at its pivot point (see 

Fig.1). In the “less engaging” condition, we automated 

the participants’ decision-making, equipping them 

with a fully reliable error detection system that 

indicated to the operator whether or not a snowshoe 

had a defect. In the “more engaging” condition, 

participants had to manually detect errors before 

assembling the snowshoes. During each task, a total of 

30 snowshoes had to be assembled by the participants, 

with six being defective. Participants realized the task 

once with automated support and once without 

automated support, with condition order being 

randomly assigned and counterbalanced. During the 

task, we collected physiological data using a Hexoskin 

vest [21], recording heart rate, respiratory rate,  and 

acceleration data. We also collected perceived 

cognitive absorption, vigor, and dedication using the 

Utrecht Work Engagement Scale (UWES) [22], which 

was collected post-task. The raw physiological data 

from the Hexoskin was pre-processed and 

synchronized using the COBALT Photobooth software 

[23]. The list of physiological and self-reported data 

collected can be found in Table 2. 

 

 

 

 

 

 

Table 2.  List of collected variables 

 

Type of data  Measure Description 

Physiological 
data 

Beats per 
minute 

Number of beats per 
minute 

SDNN Standard deviation of 
NN intervals 

LF Power of the Low-
frequency band (0.04-
0.15 Hz) (ms

2
) 

HF Power of the High-
frequency band (0.15-
0.4 Hz) (ms

2
) 

LF/HF Ratio of Low-to-High 
frequency power 

Breathing 

Rate  
Number of respirations 
per minute 

Minute 
Ventilation 

Respiratory volume 
per minute (L/min)  

Cadence 
Number of steps per 
minute 

Motion 
Norm of the 3D 
acceleration vector (G) 

Self-reported 
measures 

Absorption 
score 

Perceived absorption 

Vigor score 
Perceived vigor 

Dedication 
score 

Perceived dedication 

Table 1. Methodology employed to design the biocybernetic system 

Step Step 1 Step 2 Step 3 Step 4 

Title Collect data Identify markers Display validation Scaling validation 

Description Study 1: Collection of 
Physiological Data in 

Scenarios with Varied 
Engagement Levels 

Identify physiological 
markers of 

engagement and 
design the system 

Study 2: Validating 
multiple display 

modalities of 
engagement 

Study 3: Validating multiple 
index scaling methods 

Experimental 
design 

Within-subject - Within-subject Between subject 

Conditions No automation 

Automation 

- Discrete color gradient 
(3 shades of color)  

Continuous color 
gradient (100 shades 
between green and 
red) 

Min/Max since the beginning 
of the task 

Min/Max of training data 

Min=25
th 

and Max=75
th

 
percentiles since the 
beginning of the task 

Experimental 

manipulation 

Manufacturing QandA 

and assembly tasks using 
snowshoes. 

Feature extraction 

using a logistic 
regression model 

Validation with 
LOOCV  

Fully automated 

manufacturing QandA 
and assembly tasks 
using images of 
snowshoes. 

Fully automated 

manufacturing QandA and 
assembly tasks using images 
of snowshoes 

Data Collected physiological 

data (bpm, breath rate, 
motion) and perceived 
work engagement 
(UWES) 

Task 1 and Task 2 data 

from step 1 

10 minutes semi-

directed interviews 

Five questions questionnaire 

Participants 22 participants - 3 participants 10 participants 
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Fig. 1. Product used in the manufacturing task 

 

 

3.2. Step 2 – Identify Markers and System Design 

 

In the second step, we began by validating our 

primary assumption that the condition with automation 

was less engaging than the manual condition. Due to a 

noticeable learning effect between the first and second 

tasks, primarily manifested in performance 

improvements, we chose to focus exclusively on the 

results obtained from the first task, where no learning 

effects could affect perception. We compared the 

perceived absorption, dedication, and vigor scores 

between automated and manual conditions using the 

Mann-Whitney-Wilcoxon Test, which is suitable for 

comparing non-parametric independent samples.  

To categorize the data, we assigned labels of “high” 

or “low” engagement to arrays of data, depending on 

the condition experienced by the participant. Data 

originating from the automated task was labeled as 

“low engagement,” while data from the manual task 

was labeled as “high engagement”. We then defined a 

task-specific optimal state deviation index (OSDI ) 

using the three physiological variables with the highest 

estimated weights in the logistic regression model used 

to predict the probability of a participant being more 

engaged in the task. The whole dataset (Task 1 and 

Task 2) was used to develop the formula. The formula 

represents a weighted sum, where each coefficient 

corresponds to the respective variable's estimated 

power to predict if a  participant is in a “high” or “low” 

state of engagement. The formula is based on 30-

second data windows. 

 
𝑂𝑆𝐷𝐼 = (435.7  motionstd ) − (175.4 motionmean)   (1) 

+ (0.78 breathingRatestd)   

 

To validate the formula, we employed the leave-

one-out cross-validation (LOOCV) using the OSDI in 

a logistic model to predict if a  participant’s 

engagement during a task was “higher” or “lower”. 

The same dataset was used for this validation step. We 

then developed a biocybernetic system on Python that 

employs the OSDI formula to calculate the index in 

real-time, scale it, and visually represent it as a color 

gradient (see Fig.2). The system received pre-

processed physiological data every second (1 Hz) from 

the Hexoskin vest. It calculated the engagement index 

using the OSDI formula based on the last 30 seconds’ 

data. The first prototype (and the one used for the next 

step) scaled the OSDI between [0-100] using the 

minimum and the maximum values since the 

beginning of the task. 

 

 
 

Fig 2. Overview of the biocybernetic system 

 

3.3. Step 3 – Display Validation 

 

In the third step, we assessed whether representing 

the index through a continuous color gradient (100 

shades) or a discrete color gradient (3 colors) was more 

effective in conveying participants' engagement levels. 

We recruited three participants for a within-subjects 

pilot test. Each participant completed a low-fidelity 

version of the automated assembly task twice (using 

printed images of snowshoes instead of real 

snowshoes), experiencing the feedback system in both 

formats. After completing each task, participants 

underwent a 5-minute semi-directed interview. During 

this interview, they were asked about their perceptions 

of the system's impact on their engagement, the 

potential distractions caused by the system, and its 

effectiveness in representing their engagement levels. 

Positive and negative statements in each category were 

compiled and analyzed, making the decision to retain 

the continuous color gradient. 

 

3.4. Step 4 – Scaling Validation 

 

In the fourth step, we aimed to identify the most 

effective method for scaling the index. We tested three 

scaling methods: (i) dynamically adjusting the 

minimum and maximum values based on the minimum 

and maximum values recorded since the beginning of 

the task, (ii) using the minimum and maximum values 

of the training dataset, measured with formula 2 to 

exclude outliers, and (iii) dynamically setting the 

minimum and maximum values respectively to the 25th  

and 75th percentile of the data since the beginning of 

the task. 

 
𝑀𝐼𝑁/𝑀𝐴𝑋 = 𝑂𝑆𝐷𝐼𝑚𝑒𝑎𝑛 ± 3 ∗ 𝑂𝑆𝐷𝐼𝑠𝑡𝑑                   (2) 

 

We performed a between-subjects experiment with 

10 participants who each completed the same low-

fidelity version of the manufacturing task while being 

assisted by the system in one of its three possible 

formats (using printed images of snowshoes instead of  

real snowshoes). After completing the task, 

participants were asked to rate the representativeness, 

interpretability, and distractive nature of the color 

display on a scale from 0 to 100.  
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4. Results 
 

The one-sided Mann-Whitney-Wilcoxon Test used 

for step two revealed a statistically significant 

difference in perceived absorption scores between 

manual and automated conditions  (p = .03;  d = 0.83), 

suggesting that the reported absorption scores tend to 

be lower in the automated condition compared to 

manual condition. This result supports our primary 

assumption that the automated condition was less 

engaging than the manual condition. No significant 

differences were found between conditions for 

dedication (p = .40; d = -.82) and vigor (p = .82; d = -

.43) subscales of UWES during task 1 (see Fig. 3). 

 

 
 

Fig. 3. Task 1 UWES Questionnaire Results: Participant 

Response Analysis 

 

 

Using the OSDI formula to predict if a  participant 

was in a “high” or “low” state of engagement in a 

logistic regression model, we achieved 81.31% 

accuracy on the training set and 80.95% on the testing 

set, as confirmed through leave-one-out cross-

validation. For step three, where we assessed the 

display modality, we employed a qualitative labeling 

technique to categorize interview statements into three 

themes: effect on perceived engagement, distraction, 

and representativeness. The number of statements in 

each category was then compiled (see Table 3), 

showing that the discrete color gradient was more 

distracting (0 positive, six negative statements) than 

the continuous color gradient (2 positive, 0 negative 

statements).  

 

 
Table 3. Compilation of qualitative statements on 

continuous and discrete color gradients 

 

 Perceived 
effect on 
engagement 

Distraction Representa-
tiveness 

 (+) (-) (+) (-) (+) (-) 

Continuous 5 0 2 0 2 2 

Discrete 2 1 0 6 0 3 

 

In step four, the self-reported data from 

questionnaires revealed that all methods were equally 

easy to interpret and not distracting. However, the 

scaling method (ii) utilizing the minimum and 

maximum values from the training dataset proved to 

be more representative, with a mean score of 

93.33% ± 6.24% . This was in contrast to the scaling 

method (i), which was based on the minimum and 

maximum values since the beginning of the task 

(𝑚𝑒𝑎𝑛 =  57.33 ± 12.28%), and method (iii) which 

was based on percentiles (𝑚𝑒𝑎𝑛 = 45.5 ± 14.5%), as 

illustrated in Fig. 4. Based on these analyses, we 

concluded that the continuous color gradient and 

scaling method, which utilized the minimum and 

maximum values of the training dataset, i.e., method 

(ii), are preferred options for any future work. 

 

 
 

Fig. 4. Scaling method comparison: Evaluating 

Representativeness, Interpretability, and Distraction 

through Questionnaire Scores 

 

 

5. Conclusions 
 

This study employed a design science methodology 

to create an optimal state deviation feedback system 

designed to help manufacturing operators stay engaged 

in their workplace. The task-specific optimal state 

index was developed using physiological data 

collected during a simulated manufacturing assembly 

task, achieving 80.95% accuracy in predicting the 

engagement state of the testing set. We assessed two 

display modalities and three scaling methods to inform 

our design. The final design utilized a continuous color 

gradient calibrated based on the lowest and highest 

values of the training set. A subsequent study was 

conducted to test this advancement in a broader scale, 

which will be discussed in forthcoming scientific 

publications. 

It is essential to acknowledge certain limitations 

inherent in this system. First, our assessment of 

engagement relied solely on self-reported data. Ideally, 

employing real-time physiological monitoring tools, 

like EEG, would have enhanced the validation of the 

measured engagement levels but would have been 

much more intrusive than the Hexoskin vest we used. 

Additionally, it should be noted that while the leave-

out samples were not employed in training the 

predictive models, they were utilized in creating the 

OSDI formula. As a result, the model's effectiveness 

for new participants might not be as robust as 

measured in this study. Finally, it is important to note 
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that the formula used in this system strongly depends 

on the task and is specifically tailored to the context of 

our study. This means that the OSDI formula may not 

yield reliable results in different contexts and, 

therefore, should not be applied to other scenarios 

without appropriate modifications and validation. 

 

References 
 

[1] R. Parasuraman and C. D. Wickens, "Humans: Still 
vital after all these years of automation," in Decision 

Making in Aviation: Routledge, 2017, pp. 251-260. 

[2]. M. Passalacqua, R. Pellerin, E. Yahia, F. Magnani, F. 

Rosin, L. Joblot, P.M. Léger, Practice with Less AI 

Makes Perfect: Partially Automated AI during 
Training Leads to Better Worker Motivation, 

Engagement, and Skill Acquisition [Provisionally 

Accepted], International Journal of Human-Computer 

Interaction, 2024 

[3]. Occupation groups with the highest incidence rate of 
nonfatal occupational injuries and illnesses* per 

10,000 full-time workers in the U.S. in 2020 [Graph], 

Bureau of Labor Statistics, 2021. [Online]. 

[4] S. Pooladvand and S. Hasanzadeh, "Impacts of Stress 

on Workers’ Risk-Taking Behaviors: Cognitive 
Tunneling and Impaired Selective Attention," Journal 

of Construction Engineering and Management, vol. 

149, no. 8, p. 04023060, 2023, doi: 

doi:10.1061/JCEMD4.COENG-13339. 

[5] F. Dehais, A. Lafont, R. Roy, and S. Fairclough, "A 
Neuroergonomics Approach to Mental Workload, 

Engagement and Human Performance," (in English), 

Frontiers in Neuroscience, Review vol. 14, 2020-

April-07 2020, doi: 10.3389/fnins.2020.00268. 

[6]. T. Demazure et al., Enhancing Sustained Attention, 
Business and Information Systems Engineering, Vol. 

63, Issue 6, 2021, pp. 653-668. 

[7] K. Wang, J. Lu, S. Ruan, and Y. Qi, "Continuous Error 

Timing in Automation: The Peak-End Effect on 

Human-Automation Trust," International Journal of 
Human–Computer Interaction, pp. 1-13, doi: 

10.1080/10447318.2023.2223954. 

[8] M. Körber, A. Cingel, M. Zimmermann, and K. 

Bengler, "Vigilance Decrement and Passive Fatigue 

Caused by Monotony in Automated Driving," Procedia 
Manufacturing, vol. 3, pp. 2403-2409, 2015/01/01/ 

2015, doi: 

https://doi.org/10.1016/j.promfg.2015.07.499. 

[9] P. A. Desmond and P. A. Hancock, "Active and passive 

fatigue states," in Stress, workload, and fatigue: CRC 
Press, 2000, pp. 455-465. 

[10] S. Conte, D. Harris, and J. Blundell, "Evaluating the 

Impact of Passive Fatigue on Pilots Using Performance 

and Subjective States Measures," in International 

Conference on Human-Computer Interaction, 2023: 
Springer, pp. 21-36. 

[11] A. J. Karran et al., "Toward a Hybrid Passive BCI for 

the Modulation of Sustained Attention Using EEG and 

fNIRS," (in English), Frontiers in Human 

Neuroscience, Original Research vol. 13, 2019-
November-06 2019, doi: 10.3389/fnhum.2019.00393. 

[12] R. N. Roy, A. Bovo, T. Gateau, F. Dehais, and C. P. C. 

Chanel, "Operator engagement during prolonged 

simulated uav operation," IFAC-PapersOnLine, vol. 

49, no. 32, pp. 171-176, 2016. 
[13] U. Kale, J. Rohács, and D. Rohács, "Operators’ Load 

Monitoring and Management," Sensors, vol. 20, no. 

17, p. 4665, 2020. [Online]. Available: 
https://www.mdpi.com/1424-8220/20/17/4665 

 https://mdpi-res.com/d_attachment/sensors/sensors-

20-04665/article_deploy/sensors-20-

04665.pdf?version=1597827000. 

[14] S. Pütz, A. Mertens, L. Chuang, and V. Nitsch, 
"Physiological measures of operators’ mental state in 

supervisory process control tasks: a scoping review," 

Ergonomics, pp. 1-30, doi: 

10.1080/00140139.2023.2289858. 

[15] S. Lee, H. Kim, D.-H. Kim, M. Yum, and M. Son, 
"Heart rate variability in male shift workers in 

automobile manufacturing factories in South Korea," 

International Archives of Occupational and 

Environmental Health, vol. 88, no. 7, pp. 895-902, 

2015/10/01 2015, doi: 10.1007/s00420-014-1016-8. 
[16] R. Mccraty and F. Shaffer, "Heart Rate Variability: 

New Perspectives on Physiological Mechanisms, 

Assessment of Self-regulatory Capacity, and Health 

Risk," Global Advances in Health and Medicine, vol. 

4, no. 1, pp. 46-61, 2015, doi: 
10.7453/gahmj.2014.073. 

[17] F. Shaffer, R. McCraty, and C. L. Zerr, "A healthy 

heart is not a metronome: an integrative review of the 

heart's anatomy and heart rate variability," Frontiers in 

psychology, vol. 5, p. 1040, 2014. [Online]. Available: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4179

748/pdf/fpsyg-05-01040.pdf. 

[18] G. E. Billman, "The LF/HF ratio does not accurately 

measure cardiac sympatho-vagal balance,"  vol. 4, ed: 

Frontiers Media SA, 2013, p. 26. 
[19] N. Moray and T. Inagaki, "Attention and 

complacency," Theoretical Issues in Ergonomics  

Science, vol. 1, no. 4, pp. 354-365, 2000. 

[20] D. Manzey, J. Reichenbach, and L. Onnasch, "Human 

Performance Consequences of Automated Decision 
Aids: The Impact of Degree of Automation and System 

Experience," Journal of Cognitive Engineering and 

Decision Making, vol. 6, no. 1, pp. 57-87, 2012/03/01 

2012, doi: 10.1177/1555343411433844. 

[21]. Hexoskin. (https://www.hexoskin.com) 

[22]. W. B. Schaufeli, A. B. Bakker, and M. Salanova, 

Utrecht work engagement scale-9, Educational 

and Psychological Measurement, 2003  

[23] P.-M. Léger et al., "Caption and observation based on 

the algorithm for triangulation (COBALT): 

Preliminary results from a beta trial," in NeuroIS 

Retreat: Springer, 2022, pp. 229-23. 



4th IFSA Winter Conference on Automation, Robotics and Communications for Industry 4.0 / 5.0 (ARCI’ 2024), 

7-9 February 2024, Innsbruck, Austria 

113 
 

 


