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Résumé

L’augmentation du temps d’écran et l’isolement dus au confinement ont conduit à une

augmentation alarmante du nombre d’incidents d’exploitation sexuelle en ligne. Le pé-

dopiégeage est défini comme étant l’ensemble des stratégies mises en place par les pré-

dateurs pour approcher un enfant à des fins sexuelles. Dans l’industrie et dans le domaine

académique, les tentatives pour repérer la prédation sexuelle sur les médias sociaux re-

posent sur la surveillance des conversations privées des utilisateurs. Nous proposons la

première approche de détection préventive du piédopiégeage qui vise à assurer la sécu-

rité des enfants en ligne tout en respectant leur vie privée. Et ce, grâce à un modèle

d’apprentissage fédéré qui tient en compte du contexte des conversations, entraîné en re-

spectant la confidentialité différentielle. L’évaluation de notre système de détection sur

des données réelles nous indique que sa performance est aussi bonne que celle d’un mod-

èle traditionnel d’apprentissage supervisé. Finalement, nous analysons les compromis

nécessaires entre la précision des prédictions, la rapidité de détection et la garantie de

protection de confidentialité de notre système.
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Abstract

The rise in screen time and the isolation brought by the different containment measures

implemented during the COVID-19 pandemic have led to an alarming increase in cases of

online grooming. Online grooming is defined as all the strategies used by predators to lure

children into sexual exploitation. Previous attempts made on the detection of grooming

in the industry and academia rely on accessing and monitoring users’ private conversa-

tions through the training of a model centrally or by sending personal conversations to

a global server. We introduce a first, privacy-preserving, cross-device, federated learn-

ing framework for the early detection of sexual predators, which aims to ensure a safe

online environment for children while respecting their privacy. Empirical evaluation on

a real-world dataset indicates that the performance of our framework is as good as the

performance of a centrally trained model. Finally, we discuss the necessary trade-offs be-

tween the accuracy of a prediction, the speed of the detection and the privacy protection

of our framework.
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General Introduction

Child sexual abuse is a serious problem that has wide-ranging and lifelong consequences:

survivors often suffer from depression, anxiety, low self-confidence, and trust issues

throughout their adult life. Suicide attempts, self-harm, panic attacks, eating disorders

or alcohol and drug abuse are also reported by victims following the abuse (Jay et al.,

2018).

The key to convincing a child to engage in sexual activities is trust. Whether it be

online or offline, a potential victim needs to be lured into the relationship. As such, online

grooming is defined as “the process whereby an adult seeks to arrange a sexually abusive

situation with a minor through the use of cyber-technology” (Lorenzo-Dus et al., 2016).

Every half second around the world, a child goes online for the first time (UNICEF,

2022). And while the internet provides incredible opportunities for creativity, learning,

and discovery, it also comes with serious risks. Through social media platforms, chat

rooms, or internet games, abusers can lure children into sexual exploitation. By forming

an emotional connection and a trusting relationship with their victim, they can convince

them into having a sexual conversation, sending sexual content like pictures or videos,

and even meet in person.

In 2021 alone, 85 million pictures and videos of child sexual abuse were reported

worldwide (European Commission, 2022). And the Internet Watch foundation noted an

increase of 64% in reports of confirmed child sexual abuse in 2021 compared to 2020

(European Commission, 2022). In fact, around the world, the COVID pandemic had dev-



astating consequences on children’s safety. In Canada, Cybertip 1 – the national tipline for

reporting online sexual abuse and exploitation of children – registered a 120% increase

in reports of online abuse of children whereas the Royal Canadian Mounted Police’s Na-

tional Child Exploitation Crime Centre reports more than 500 new files a day (Somos,

2022).

Even more alarming, these numbers are restricted to reported cases. Experts agree

that the real number of incidences is far greater than what is reported. For example, in the

United States, it is estimated that about one in ten children is sexually abused before their

eighteenth birthday (Townsend and Rheingold, 2013).

A Model of Deceptive Communication

Thwarting sexual abuse requires insight into the process of operation among predators. To

this aim, Olson et al. (2007) presented their luring communication model which details

the various strategies used by offline predators to lure children into sexual exploitation.

As seen in Figure 0.1, the cycle of entrapment, the model’s core phenomenon, is

defined as a cyclic approach to luring in which abusers groom, isolate, and, approach

their potential victim. These strategies often happen simultaneously, since a variety of

techniques are needed to ensure that the victims stay isolated and keep the relationship a

secret. The isolation step is essential to the entrapment process: predators need to make

sure that their potential victim does not have a strong support system. Thus, children with

dysfunctional families, fewer friends, and low self-esteem are often more vulnerable and

receptive to their attention.

Olson et al. (2007) define the grooming process as the different strategies predators use

to prepare their victim for sexual contact. Communicative desensitization and reframing

are two examples of those strategies. In communicative desensitization, predators place

themselves in intimate situations with the children to verbally and physically desensitize

1https://www.cybertip.ca/en/
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Figure 0.1: Model of luring communication : The cycle of entrapment (Olson et al., 2007)

them to the potential sexual contact. For example, a predator can watch them change their

clothes.

Communicative reframing consists of talking about sexual acts in a playful manner:

by comparing them to games to play or learning experiences that could be helpful for the

child later in life.

Once deceptive trust is established, the groomer can approach the child to see if sexual

contact is possible. The approach phase can be viewed as a physical manifestation of how

successful the perpetrator has been (Olson et al., 2007). It includes all physical contact or

verbal sexual advances. Examples of physical contact may include giving the child a bath

or a massage.

Indeed, as noted by journalists Caroline Touzin and Gabrielle Duchaine: “Le préda-
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teur sexuel n’est plus dans le parc. Il est désormais dans l’écran du cellulaire de votre

enfant (Sexual predators are no longer lurking in the neighborhood park: they are behind

your child’s mobile phone screen).” (Touzin, Caroline and Duchaine, Gabrielle, 2020)

Unfortunately, they are in both. But whereas offline groomers must account for more

social stigmas and riskier interactions, online groomers have been shown to be bolder

and more direct in their sexual advances (Lorenzo-Dus et al., 2016). Unlike most offline

abusers who already know their victims and are part of their entourage, they need to be

more creative in gaining the trust of their victims. Online grooming thus requires an

intermediate stage of deceptive befriending (Lorenzo-Dus et al., 2016).

To account for these differences, Lorenzo-Dus et al. (2016) adapted Olson et al. (2007)

luring communication model. They defined the entrapment phase: four interconnected

processes of luring communication.

Figure 0.2: The cycle of entrapment for online groomers(Lorenzo-Dus et al., 2016)

As shown in Figure 0.2 deceptive trust development and isolation corresponds to the

phases identified by (Olson et al., 2007). Deceptive trust development includes three

4



strategies that also happen in offline settings (exchange of personal information, activities

and relationships) and two additional strategies typical of online grooming (praise and

sociability). Praise refers to all compliments and congratulations made by the groomer to

the victim where as sociability encompasses the small talk needed to keep the conversation

going. Furthermore, they newly identified the compliance testing process, comprised of

three strategies: strategic withdrawal, role reversal, and reverse psychology. In strategic

withdrawal, the predator appears to give control to the relationship to their victim. In role

reversal, the predator act as should be expected from children engaging with adults and

in reverse psychology, groomers challenge their victim’s intent to behave sexually.

By identifying patterns in predators’ behavior and mapping their discourse, researchers

hope to provide better lexical analysis tools for the detection of sexual predators. Indeed,

academic work on the subject has shown that by extracting linguistic and behavioral fea-

tures from chat logs and using them as input to a classifier, it was possible to identify

grooming conversations with high accuracy (Morgan et al., 2021; Inches and Crestani,

2012; McGhee et al., 2011; Pendar, 2007). However, their approach focused on iden-

tifying predators after the grooming incurred. Fewer treated the problem from a safety

perspective: trying to detect grooming as early as possible (Vogt et al., 2021; Bours and

Kulsrud, 2019; López-Monroy et al., 2018).

Trading Privacy for Safety

Despite the concrete need for intervention, one of the major difficulties of implementing

safety measures is their toll on the privacy of users. This is because ascertaining the

inappropriate nature of a communication requires its interception by a third party.

In the industry, social media platforms like Snapchat, Instagram, and Facebook use

advanced technologies and collaborate closely with law enforcement to fight child sexual

exploitation online (Picheta, 2019).

A series of attempts to provide more secure systems have been met with outcries from

users and privacy experts alike. In 2021, Apple announced two new features for children’s

5



protection in iCloud and iMessage (McKinney and Portnoy, 2021). The first feature would

compare all pictures when they are uploaded into the cloud with a database of known

child pornography. The second feature would scan all messages from minors’ accounts

for sexually explicit material. Given the intrusive nature of these features, this approach

was never implemented by Apple. In addition to breaking end-to-end encryption, and

violating users’ privacy, experts warned about its dangers and the door it could open to

broader abuses (McKinney and Portnoy, 2021).

In May 2022, the European Commission proposed a new regulation to combat child

sexual abuse online (European Commission, 2022). The new rules aim to oblige social

platform providers to detect, report, and remove child sexual abuse material from their

services. The current system, based on voluntary detection and reporting by companies,

is not robust enough to prevent the misuse of social platforms for child exploitation. As

evidence, in 2020, 95% of the reported cases came from one company only even if the

problem is present on all platforms (European Commission, 2022).

This new regulation was however met with wide criticism, deemed even more intru-

sive than Apple user-side scanning features. Experts argue that scanning users’ private

messages for child sexual abuse material and grooming behavior is an infringement of

privacy and democracy (Vincent, 2022). Indeed, the new regulation involves the possibil-

ity for countries to issue “detection orders” to social media platforms. A company that

receives such an order is then expected to scan its users’ messages for grooming and sex-

ual content. Even if such detection orders are described as being targeted and specified,

human rights experts fear the possibility of misuse of such orders for targeting specific

individuals: political opponents or minorities (Vincent, 2022).

Contributions

Protecting children from sexual abuse and exploitation should not come at the cost of pri-

vacy and additional abuse. In this work, we introduce a privacy-preserving decentralized

framework for the early detection of sexual predators. Our model detects grooming as

6



early as possible while ensuring that their personal data is neither monitored nor leaked.

To implement such a framework, we extract a context-aware representation from

users’ personal conversations using a pre-trained language representation model able to

capture the context surrounding a conversation. We then use those features to train a

model in a decentralized way using differential privacy to ensure that each users’ per-

sonal data is not shared or leaked by the resulting model.

Our main contributions are as follow:

• We implement a practical cross-device federated learning framework for the early

detection of sexual predators based on users’ textual conversation with formal pri-

acy guarantess.

• We propose an extensive evaluation of our framework on a real-world dataset

Thesis Structure

The following sections start by introducing the main machine-learning techniques used

for the implementation of our framework. In Chapter 1, we present in its entirety the

paper presenting our research: we describe our methods, implementation, and our results.

Finally, we conclude by highlighting our contribution and promising results.
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Theoretical Framework

We start by presenting the main machine learning techniques used for the implementation

of the privacy-preserving framework for the early detection of sexual predators introduced

in Chapter 1.

0.1 Bidirectional Encoder Representations from

Transformers

In this section, we introduce the Transformer architecture, before presenting BERT, a

context-aware language representation model.

0.1.1 Attention is All You Need

In 2017, researchers at Google introduced the Transformer (Vaswani et al., 2017), a novel

network architecture more suited for parallelization. With the help of transfer learning

and fast computing devices (GPUs and TPUs), the Transformer was able to achieve state-

of-the-art results on multiple natural language processing tasks. With parallelization also

came scalability: the models were trained in an unsupervised manner on large amounts of

raw text to gain a statistical understanding of the language they use.

Vaswani et al. (2017) idea was simple: replace all recurrence and convolution with

self-attention mechanisms. Self-attention is an attention mechanism that relates differ-

ent positions of the same input to compute a representation of the sequence (Vaswani

et al., 2017). In other words: “the self-attention mechanism allows the inputs to interact



with each other (“self”) and find out who they should pay more attention to (“attention”)”

(Raimi, 2019). With self-attention, models can gain a better understanding of the context

of a sentence by looking at the relationships between words. Using only self-attention

layers, they managed to overcome the main challenges of recurring neural networks: se-

quential computation and vanishing gradients.

Regarding its architecture, the Transformer follows the encoder-decoder structure

used for translation tasks (Cho et al., 2014; Bahdanau et al., 2014; Vinyals et al., 2015).

The encoder extract features from an input sequence and returns a contextualized en-

coding sequence. The decoder models a probability distribution from the given encoded

sequence as well as the previously predicted tokens. The encoder is composed of six

identical layers: each comprised of two sub-layers: a multi-head self-attention mecha-

nism and a fully connected feed-forward network. The decoder is also composed of six

identical layers with the same two sub-layers, but it also has a third sub-layer to perform

multi-head attention on the output of the encoder.

0.1.2 Introducing BERT

In 2018, Devlin et al. (2018) introduced a new language representation model called Bidi-

rectional Encoder Representations from Transformers or BERT. The novelty of BERT

comes from the fact that, unlike other language representation models like GPT, it can

train a deep representation from an unlabeled text using Masked Language Modeling,

jointly conditioning on the left and right context in all layers. With its context-aware rep-

resentation, BERT was able to obtain state-of-the-art results on eleven natural language

processing tasks (Devlin et al., 2018).

BERT’s architecture is a multi-layer bidirectional Transformer encoder: the BERTBASE

model is constituted of 12 layers of transformers blocks with a hidden size of 768 and 12

self-attention heads, with a total of 110 million trainable parameters. Its input representa-

tion can handle both single sentences and pairs of sentences, making the model compatible

with a variety of downstream tasks.
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During pre-training, BERT was trained on unlabeled data on two separate tasks: (1)

Prediction of the masked tokens and (2) Next Sentence Prediction. Indeed, to train a

deep bidirectional representation, some of the input tokens were randomly masked and

the model had to predict them. Furthermore, since language modeling does not directly

capture the relationship between sentences, the model was also trained for next-sentence

prediction.

This pre-trained deep bidirectional representation alleviates the need for task-specific

architectures. As such BERT can be applied to a variety of tasks either using the feature-

based approach or by fine-tuning the model. The feature-based approach consists of ex-

tracting the contextual embeddings from one or more of the layers without fine-tuning

any parameters of the model. The embeddings can then be used as input to a classi-

fier. Whereas the fine-tuning approach relies on fine-tuning all pre-trained parameters on

labeled data from the downstream task, usually only for a few epochs.

Vaswani et al. (2017) Transformer architecture brings transfer learning to the fore-

front, by offering a variety of high-performing models that only need to be fine-tuned

rather than trained from scratch. Indeed, BERT’s learned understanding of language and

context can be re-applied to solve a variety of tasks and achieve state-of-the-art results

with few computational resources.

0.2 Federated Learning

This section introduces the background, technical details, and challenges of federated

learning.

0.2.1 Background

Meant to take advantage of the unprecedented amounts of data generated each day by

edge devices (mobile phones, tablets, wearable devices) and their growing computational

power, federated learning (FL) was first introduced in 2017 by McMahan et al. (2017)

11



as an alternative to privacy-invasive centralized learning. By training statistical models

directly on the device, instead of on a global server, federated training ensures that each

user’s data is never shared. Furthermore, training on local data improves the usability of

the resulting models without impacting the user experience or leaking private information

(Li et al., 2020).

Federated learning is a new machine learning paradigm, where multiple entities col-

laborate to train a statistical model under the coordination of a global server (Kairouz

et al., 2021). The term was first coined by McMahan et al. (2017) to describe the fact that

the “learning task is solved by a loose federation of participating devices (referred to as

clients)” and presented as a direct application of the principle of focused collection and

data minimization, which aims at protecting consumers’ right to privacy (Kairouz et al.,

2021). FL only collects relevant information since the updates sent by each client do not

contain more information than the raw training data. Furthermore, FL does not retain any

personal information, the clients’ updates being ephemeral.

Federated learning can take different forms. In cross-device FL, millions of entities

take part in training. In cross-device training, entities usually share the same features.

But the local data distribution varies from one user to another. This type of learning is

referred to as horizontal FL or homogeneous FL. Existing real-life applications of cross-

device learning include word prediction, face detection, and voice recognition (Li et al.,

2020).

0.2.2 Methodology

The principle behind federated learning is that each entity involved in training receives

a model to train using its local data. At the end of the training, the weights are shared

with a server, tasked to aggregate them, and update the global model. The process is then

repeated until a stopping criterion is attained: a predefined number of rounds or a certain

level of performance.

The server operates based on an aggregation algorithm. The baseline algorithm for

12



federated optimization is the federated stochastic gradient descent algorithm (FedSGD).

In FedSGD, each client computes the average gradient on its local dataset and the server

aggregates these gradients and applies the update. A more used aggregation algorithm

is the federated averaging (FedAvg) algorithm, a generalized version of FedSGD. In this

setting, multiple iterations of training are made for each client’s local update. The average

of the weights of the resulting model is then sent to the server for a weighted aggregation

that relies on the size of each client’s local data. The amount of computation is therefore

controlled by three hyperparameters: the fraction of clients selected for training at each

round, the number of training passes each client makes over their local data and the local

minibatch size used for the client update (McMahan et al., 2017). By increasing the

number of local training iterations, McMahan et al. (2017) realized that the resulting

models were more stable and able to converge faster, the algorithm acting as a regularizer.

0.2.3 Properties and Challenges of Federated Training

McMahan et al. (2017) defined multiple properties and challenges to federated optimiza-

tion. They are as follows:

Non-independent and identically distributed data: Whereas centralized training relies

on the assumption that the training data’s distribution is representative of the whole popu-

lation, this assumption cannot be made in a federated setting where each user’s data has its

own distribution. In the case of grooming, this statistical challenge is even more present.

In a real-life situation, most users will not interact with predators and thus, will only have

access to one label for training.

Imbalanced data: Since each user trains a model on their local data only, the number of

examples locally available may vary heavily. For example, for messaging applications,

each user has a different sample size. Some people have hundreds of conversations with

thousands of messages, whereas others only use the application occasionally and thus

have fewer data points to contribute.

Massively distributed: The number of participating devices is expected to be much larger

13



than the number of training examples per client. Indeed, for cross-device training to

be efficient, a very large number of clients are expected to take part in training, each

contributing with only a small number of examples.

Limited communication and systems heterogeneity: Mobile devices are not always

connected or plugged in and often offer fewer computational resources. Furthermore, the

storage and computational and communication capabilities of each device differ. This is

due to the difference in hardware, network connectivity, and power. Only a fraction of

the devices are available at the same time, and dropouts during training are common due

to energy or connectivity constraints (McMahan et al., 2017). Federated training must

therefore be robust to dropped devices and anticipate heterogeneous hardware.

There are other aspects to consider when implementing a federated system. For exam-

ple, clients’ data change constantly (new messages are sent and others deleted), and there

is often a correlation between the clients’ availability and their local data distribution (for

example, people who speak American English would not be available at the same time as

people who speak British or South African English), which could create bias in models.

Furthermore, even if the computational costs incurred by federated settings are low, com-

munication is usually very expensive because it relies on connecting a massive number of

devices.

Finally, even if federated learning provides significant privacy improvements over

centralized training, the baseline model does not provide a formal guarantee of privacy

(Kairouz et al., 2021). Indeed, personal data can be inferred from shared updates or from a

client’s device. The global server could be compromised and training data still be inferred

from the deployed model.

0.3 Differential Privacy

This section explains the intuition behind differential privacy.

Whilst state-of-the-art machine learning techniques require an ever increasing volume

of data; some models having even been shown to memorize parts of their training data
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(Carlini et al., 2022), a growing number of institutions, researchers, and organizations are

concerned with privacy challenges. Differential privacy (DP) addresses these concerns by

providing a formal and rigorous definition of privacy in machine learning (Dwork, 2008).

With DP comes the promise that everything inferred from a model will be at a popu-

lation level, not at an individual level. This ensures an individual will not be affected by

the use of their private data for training.

DP works by introducing randomness into the training process. The process would be

akin to flipping a coin every time an answer to a question as to be provided. Depending

on the outcome, the answer will either be the truth or a lie. In the case of a lie, a second

coin is flipped to determine which answer (positive or negative) to give (Dwork, 2008). In

essence, 50% of the time, the response given is truthful and 50% of the time, the response

given is the result of a random coin flip.

For any given answer, it is impossible to know with certainty if it is truthful or not, and

that is where the privacy angle comes from. However, with enough answers, it is possible

to isolate the randomness and still get accurate models from the aggregated responses.

With such a mechanism, it is now possible to train machine learning model while

ensuring the integrity of the training examples.
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Chapter 1

Mitigating Online Grooming with

Federated Learning

This chapter is a reproduction of a research paper submitted to the 16th International

WSDM Conference in August 2022. It was co-written with professor Gilles Caporossi

(HEC Montreal), professor Reihaneh Rabbany (McGill University, Mila), professor Mar-

tine De Cock (University of Washington Tacoma) and professor Golnoosh Farnadi (HEC

Montreal, Mila). The referencing style was changed to match the rest of the thesis.

Abstract

The rise in screen time and the isolation brought by the different containment measures

implemented during the COVID-19 pandemic have led to an alarming increase in cases of

online grooming. Online grooming is defined as all the strategies used by predators to lure

children into sexual exploitation. Previous attempts made on the detection of grooming

in the industry and academia rely on accessing and monitoring users’ private conversa-

tions through the training of a model centrally or by sending personal conversations to

a global server. We introduce a first, privacy-preserving, cross-device, federated learn-

ing framework for the early detection of sexual predators, which aims to ensure a safe



online environment for children while respecting their privacy. Empirical evaluation on

a real-world dataset indicates that the performance of our framework is as good as the

performance of a centrally trained model. Finally, we discuss the necessary trade-offs be-

tween the accuracy of a prediction, the speed of the detection and the privacy protection

of our framework.

1.1 Introduction

With the COVID-19 pandemic, the number of children victim of online grooming has

increased substantially: the Canadian Centre for Child Exploitation has recorded an 88%

spike in the reported cases of sexual exploitation online (Pawliw, 2021). The unprece-

dented rise in screen time and isolation brought about by the school closures and lock-

downs have left children more vulnerable than ever to online sexual exploitation. In 2021

alone, 85 million pictures and videos of child sexual abuse have been reported worldwide

(European Commission, 2022).

Online grooming can be defined as the different strategies used by predators to lure

children into sexual relationships. Studies (Olson et al., 2007; Lorenzo-Dus et al., 2016;

O’Connell, 2003) have shown that predators have a particular communication style and

exhibit common behavior patterns that allow them to approach children, lure them into a

trusting relationship, isolate them and desensitize them to the sexual act.

The notable technological advancements these past decades and the proliferation of

mobile devices have made children far more accessible. Social media platforms have

changed the rules and facilitate unlimited and low-risk access to predators. The direct

messages in these platforms are a low-risk tool for luring a child into (online) sexual

exploitation. Indeed, while parents can have a tighter hold on their children’s interactions

in real life, monitoring their online conversations is far more complicated.

In May 2022, the European Commission proposed a new regulation to compel chat

apps to scan private user messages for child abuse and exploitation (European Commis-

sion, 2022). This new regulation was strongly condemned by privacy experts, who be-
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lieved that implementing such mechanisms and breaking end-to-end encryption of users’

messages could lead to mass surveillance (Vincent, 2022). Other attempts made at adopt-

ing child protection features have sparked wide criticism by privacy experts (Snowden,

2021; McKinney and Portnoy, 2021), while existing parental controls, deemed too intru-

sive, can easily be bypassed. In this paper, we propose a privacy-preserving solution to

ensure children’s safety in online platforms while protecting their privacy and personal

data.

Previous works on the identification of sexual predators have shown that the sexual

predators’ discourse contains specific indicators that can be exploited for the detection of

online grooming. Some researchers focused on finding these linguistic cues by extract-

ing lexical, syntactical, and behavioral features from chat messages (Inches and Crestani,

2012; McMahan et al., 2017). Others have used deep learning techniques to learn useful

representations from text (Zambrano et al., 2019; Morgan et al., 2021). Although pre-

venting grooming before any harms occurs is essential to ensure safe access to online

social media platforms for children, there are only a few works that treat the grooming

detection problem as an early risk detection task (López-Monroy et al., 2018; Vogt et al.,

2021). Furthermore, most of the existing work relies on detecting online grooming by

monitoring the users’ messages and none of the proposed solutions were concerned with

ensuring the privacy of the training examples. This represents a major limitation for the

applicability of these models in a real-life setting, which is the main focus of this paper.

In this paper we present a novel privacy-preserving decentralized approach to train a

context-aware language model for the early detection of sexual predators. To do this, we

leverage federated learning, an alternative to centralized machine learning that relies on a

global server orchestrating the training of different entities without sharing any raw data.

Our key contributions are:

• A practical, cross-device federated learning framework for the early detection of

sexual predators based on users’ textual conversation with formal differential pri-

vacy guarantees.
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• An end-to-end implementation of our framework with an extensive evaluation on a

real-world dataset.

The remainder of this paper is organized as follows: In Section 1.2 we present the

existing work surrounding the task of detecting sexual predators and, more generally, text

classification in a decentralized way. In Section 1.3, we introduce the preliminaries of our

work, whereas in Section 1.4 we present our framework, and we discuss its implemen-

tation details and evaluate it on a real-world dataset in Section 1.5. Finally, we discuss

the limitations and opportunities of our framework in Section 1.6 before concluding and

presenting possible future works in Section 1.7.

1.2 Related Work

In this section, we review the most relevant works to our proposed approach in three main

categories. First, we look at what has been done in the literature for the detection of sexual

predators, then we introduce related work on the early detection of sexual predators before

presenting existing work on decentralized text classification.

Detection of sexual predators: ChatCoder, a software system designed to identify the

different phases of grooming (Olson et al., 2007) was one of the first attempts at clas-

sifying predatory conversations. At first they were using dictionaries and a rule-based

approach (Edwards and Leatherman, 2009), then they switched to machine learning tech-

niques (McGhee et al., 2011) to classify each message from a conversation extracted from

the Perverted Justice (PJ) website1 into a phase of grooming. They defined four main cat-

egories inspired by Olson et al. (2007)’s luring communication model: phase 1: exchange

of personal information, phase 2: grooming, phase 3: approach, and others for the mes-

sages that didn’t go into any of the categories. They concluded that their system was more

accurate at identifying the non-grooming messages than it was at distinguishing between

the different phases of grooming.

1perverted-justice.com
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In 2012, the international sexual predator identification competition at PAN-12 (Inches

and Crestani, 2012) gave greater visibility to the task with the creation of a new annotated

dataset for the detection of grooming. Two problems were to be solved: (1) identify the

predators among all the users and (2) identify the grooming messages. Most of the par-

ticipants choose a two-step approach: first identifying the suspicious conversations and

then filtering the grooming messages in the flagged conversations. Lexical and behavioral

analysis, and pre-filtering of the dataset, were popular techniques used by the participants.

Furthermore, most of them chose to not apply any pre-processing technique to the text and

considered spelling mistakes, abbreviations, and emojis as lexical features. The winners

of the first problem (Villatoro-Tello et al., 2012) used Neural Networks and Support Vec-

tor Machines classifiers to identify suspicious conversations on a pre-filtered version of

the PAN 12 dataset, whereas the winners of the second problem (Popescu and Grozea,

2012) treated texts as sequences of symbols and used kernel-based learning methods to

classify the grooming messages.

Recent work mainly adopted deep learning techniques to solve the task (Zambrano

et al., 2019; Morgan et al., 2021). Zambrano et al. (2019) considered the problem as a so-

cial engineering attack by first using Latent Dirichlet Allocation (LDA) topic modeling to

identify the different phases of grooming before applying a linear classifier to classify the

chats. They used a convolutional neural network and a long short-term memory (LSTM)

network for the supervised multiclass classification task. Finally, Morgan et al. (2021)’s

work integrated linguistic knowledge (Lorenzo-Dus et al., 2016) into the architecture of

Deep Neural Networks to improve the classification task.

All these approaches treated the problem from a forensic perspective rather than for

prevention. To block harm from occurring, grooming should be detected before a victim

is lured into sexual exploitation. Next, we discuss works on the early detection task.

Early risk detection: Another body of work treats the task of identifying sexual predators

as an early detection problem (Escalante et al., 2015, 2017; López-Monroy et al., 2018).

The main difference between the early detection problem and the standard problem is that

while the training phase is similar and the model uses the complete document, during
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the inference phase, the document is evaluated sequentially at different time steps before

being classified.

Escalante et al. (2015) made the first attempt at the early detection of sexual predators

by adapting a naïve Bayes classifier for the grooming prediction with partial information.

The authors evaluated the performance of their model with different percentages of words

from the test set (chunk-by-chunk evaluation). In their follow-up work, they proposed a

profile-based representation for the early detection of deception (Escalante et al., 2017).

López-Monroy et al. (2018) further extended the profile-based representation by propos-

ing multi-resolution concept representations for the task. They used a chunk-by-chunk

evaluation and evaluated their results using different resolutions, i.e. the full document

being represented with far more details than a partial read.

In a later work, Bours and Kulsrud (2019) tried to identify how many messages were

needed for their classifiers to be able to correctly predict a grooming conversation. They

were the first to use full-predatory conversations for the task. They used a TF-IDF repre-

sentation with a neural network classifier to sequentially classify 10 full PJ conversations.

They found that in most cases, 26 to 161 messages of a conversation were sufficient to

identify a predator. More recently, Vogt et al. (2021) formally defined the task of early de-

tection of sexual predators (eSPD), moving away from existing work to propose a sliding

window evaluation. They also created a new dataset that is better suited for the task. We

build on top of this work and use their proposed dataset and their evaluation framework.

In this paper, we show that a privacy-preserving framework gives as good a performance

as the traditional centralized set-up for the early detection task while ensuring not only

the security of children and teenagers online but also their right to privacy.

Our proposed solution relates to the existing work on decentralized text classification,

which we will review next.

Federated learning for text classification. The approaches above assume training and

deployment of models for grooming detection without concerns for privacy, i.e. while

fully disclosing the users’ personal messages to a central server for model training. FL,

a method for training models in a decentralized fashion at the clients’ end, and intermit-
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tently aggregating them via a central server, has been proposed as an alternative for natural

language processing and text classification tasks (see e.g. (?Hilmkil et al., 2021)). While

privacy is preserved to some extent in FL because no raw data is disclosed, information

about the clients’ training data may leak from the gradients or model parameters sent to

the central server (Boenisch et al., 2021; Carlini et al., 2022). This information leak-

age can be mitigated by combining FL with another privacy-enhancing technology such

as differential privacy (DP), e.g. by training models with differentially private gradient

descent (DP-SGD) (Abadi et al., 2016). Basu et al. (2021) have for instance recently ap-

plied FL and DP-SGD for financial text classification. They trained BERT and RoBERTa

models on a financial dataset in a centralized setting with differentially private gradient

descent (DP-SGD) as well as in a federated setting, showing the necessary trade-off be-

tween utility and privacy.

To the best of our knowledge, privacy-preserving early detection of abusive content in

a decentralized manner by leveraging both FL and DP-SGD, as we propose in this paper,

has not been investigated in the literature.

1.3 Background

In this section, we review several key topics upon which our proposed privacy-preserving

early detection of sexual predator framework relies. In our work, we leverage federated

learning and differential privacy (DP) to protect the privacy of users, hence we first in-

troduce federated learning and the federated averaging algorithm and then provide a brief

overview of the DP-SGD algorithm that we use in our framework.

1.3.1 Federated Learning

Introduced by McMahan et al. (2017) as an alternative to privacy-invasive centralized

learning, federated learning (FL) is a machine learning technique that allows multiple

entities, called clients, to collaboratively learn a statistical model under the coordination
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of a central server. The global server orchestrates the training by sampling, at each round,

a set of clients to participate in the training (i.e., client selection). Each selected client

downloads the current global model, trains it further on its local data and shares a focused

update with the server. The server then collects and aggregates all the updates before

updating the global model.

Cross-Device and Cross-Silo Federated Learning: There are two main categories of

federated learning: cross-device FL and cross-silo FL. Cross-device FL relies on small

entities: usually edge devices like smartphones or smart watches. Each client trains a

copy of the model on its own personal data. To achieve a good performance, cross-device

FL, therefore, requires a very large number of devices participating in the training. In

opposition, cross-silo FL involves only a few clients, generally organizations with larger

datasets, but everyone of them are expected to participate in the entire training (Huang

et al., 2022).

The Federated Averaging Algorithm: The aggregation algorithm used by the global

server plays an important role in the federated setting since it defines how the training

is going to be orchestrated and how the final model will be computed. The baseline

algorithm used for federated optimization is the Federated Stochastic Gradient Descent

(FedSGD) algorithm (McMahan et al., 2017): at each round, a fraction of clients is se-

lected, and each client computes the gradient of the loss over its local data. The server

then aggregates these gradients and updates the global model. The Federated Averaging

algorithm (FedAvg) is a generalization of the FedSGD algorithm where each client is al-

lowed to perform more than one batch update on their local data, and the updated weights

rather than the gradients are sent back to be aggregated (McMahan et al., 2017). The

server then takes a weighted average of the clients’ updates, taking into consideration the

amount of data held by each of them to update the global model. Thus, by iterating mul-

tiple times on each client, the model is able to converge faster. Furthermore, in addition

to lowering communication costs, averaging different models has been shown to act as a

regularization technique (McMahan et al., 2017), allowing for more stable models.
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1.3.2 Differential Privacy

Whilst FL protects the privacy of the clients by not requiring any raw data to be disclosed,

FL in itself does not offer formal privacy guarantees, and the resulting model can leak

information about the training data (Carlini et al., 2022). To mitigate such information

leakage, FL can be combined with DP (Dwork, 2008) to provide plausible deniability

regarding an instance being in a dataset, i.e. offering protection against membership in-

ference attacks.

Formally, DP revolves around the idea of a randomized algorithm – such as an algo-

rithm to train ML models – producing very similar outputs for adjacent inputs. In the

context of this paper, two datasets d and d′ are considered adjacent if they differ in one

record (one labeled instance). A randomized algorithm M : D 7→ R with domain D and

range R is said to be (ε , δ )-differentially private if for any adjacent datasets d and d′ and

for all subsets of outputs S ⊆ R we have Pr[M(d) ∈ S] ≤ eεPr[M(d′) ∈ S]+ δ , where ε

is the metric of privacy loss (privacy budget) whereas δ is the probability of data being

accidentally leaked. The smaller these values, the stronger the privacy guarantees.

An (ε,δ )-DP randomized algorithm M is commonly created out of an algorithm M ∗

by adding noise that is proportional to the sensitivity of M ∗, in which the sensitivity

measures the maximum impact a change in the underlying dataset can have on the output

of M ∗. This technique is used in the differentially private stochastic gradient descent

(DP-SGD) algorithm which aims at controlling the influence the training data has on the

final model by making the minibatch stochastic optimization process differentially private

through clipping and adding noise to the gradients (Abadi et al., 2016). At the end of the

training, the overall privacy cost of the mechanism (ε , δ ) can be computed from the

accumulated costs across all training iterations. Often, a target ε is defined in advance

whereas δ should be smaller than the inverse of the size of the training data. We refer to

Abadi et al. (2016) for details.
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1.4 Methodology

While protecting children from cybercrime is important, the main challenge is the balance

between safety and users’ privacy. We introduce a privacy-preserving framework for the

identification of sexual predators which aims at taking advantage of the growing use of

mobile devices by children and teenagers. Our proposed framework consists of, first,

training a classifier on the training set (training phase) before evaluating its performance

for the early detection task on the test set (inference phase).

1.4.1 Training Phase: eSPD via Federated Learning

Figure 1.1: Early detection of sexual predators: training phase

We introduce a cross-device federated architecture for the early detection of online

grooming: our model is intended to be deployed on each user’s cellular device and trained

locally on their local data without the need for monitoring them.

Our framework addresses multiple task-specific challenges: (1) training with imbal-

anced data, (2) training with non-independent and identically distributed (non-IID) data
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and (3) ensuring that users’ personal data are protected during training.

(1) Dealing with imbalanced data. To deal with the problem of imbalanced data –

namely very few positive instances – that often comes with early risk detection problems,

we implement Errecalde et al. (2017)’s oversampling technique. They considered that the

minority class is formed not only by the complete conversation but also by portions of the

full conversation at different time steps. Therefore, to account for the sequential nature of

the eSPD problem and mitigate the imbalanced nature of the data, we enrich our dataset

with chunks of conversations from the minority class, in our case, the conversations with a

predator. By giving our system more training examples of the beginning of a conversation

with a predator, we are able to gain detection speed.

(2) Training with non-IID data. One of the major challenges of FL is dealing with non-

IID data since each client’s local data distribution is not representative of the population

(Zhu et al., 2021). This statistical challenge is even more prevalent in the context of

online grooming since most users are less likely to interact with sexual predators. Thus,

the detection of online grooming in a federated setting can be viewed as an extreme case

of non-IID data where most users will only have access to one label for training. Indeed,

only the victims of online grooming will have access to both grooming and non-grooming

conversations.

We use Zhao et al. (2018)’s data-sharing strategy during training in which a small

portion of warm-up data is distributed to each device in addition to the initial model. The

warm-up data, which contains public examples from both classes and is balanced, can

be seen as a starting point for training, and helps alleviate the statistical challenge. In

their paper, Zhao et al. (2018) also suggested sharing a warm-up model with each client:

a model trained centrally on the warm-up data. We experimented with this strategy but

realized that each client did not have enough data to learn from the warm-up model and

decided to only share a small fraction of warm-up data instead.

(3) Protecting users’ privacy. Although each client’s local data does not leave their de-

vice during federated training, it has been shown that it is possible to reconstruct a client’s

private data using its shared updates (Kairouz et al., 2021), hence a federated architecture
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by itself does not guarantee privacy. We therefore train each client’s model using DP-

SGD (see Section 1.3.2), to mitigate leakage of personal information to the server. By

clipping the gradient norm of outliers and randomly adding noise during training, we en-

sure that our model does not memorize any particular information about a single training

data point.

Figure 1.1 illustrates the training phase of our framework. A global server selects

clients to participate and distributes a model to them; the clients will then further train the

model in a privacy-preserving manner on their mobile devices using their own personal

data as well as a portion of warm-up data, as we can see in Alice’s cellular device.

1.4.2 Inference Phase: Early Detection of Sexual Predators

Figure 1.2: Early detection of sexual predators: inference phase

Our work is an extension of the framework proposed by Vogt et al. (2021) for eSPD,

i.e. the early risk detection problem (Losada et al., 2020) of sequentially classifying a

conversation and detecting early signs of online grooming as soon as possible.

Vogt et al. (2021)’s approach for the inference phase of an eSPD system relies on the

use of a sliding window for sequential classification of a conversation. Here, a conversa-

tion consists of a sequence of messages t1, t2, . . .
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For a window of length l, at step s the classifier labels the sequence ts, ts+1, . . . , tl−1, at

step s+1 the classifier labels the sequence ts+1, ts+2, . . . , tl etc.

After every window prediction, the system decides whether to raise a warning or not

based on the inferred labels of the last 10 window predictions. If a pre-defined threshold

– called skepticism level – is reached, a warning is raised and the whole conversation is

classified as a grooming conversation. A conversation is only classified as a non-grooming

conversation if it is finite and no warning has been raised. Indeed, an eSPD system never

classifies a conversation as non-grooming if there are messages left, or if it is still ongoing.

In Figure 1.2, we can see how the different messages received by Alice are analyzed

by first being turned into word embeddings and then passed to a classifier given a slid-

ing window for classification. Note that the final prediction is determined based on the

previous sequence of predictions and that a warning notification is triggered only when

multiple messages are sequentially classified as being grooming messages.

We can envision a system where users will be able to report their own suspicious

conversations to the messaging platforms, and will receive a notification if a warning is

raised (see Figure 1.3).

1.5 Evaluation

In this section, we show the effectiveness of our proposed approach for the early detection

task by performing an empirical evaluation. All our experiments were performed on the

PANC dataset.

1.5.1 Data

The PANC dataset was introduced by Vogt et al. (2021) as a better alternative for the

eSPD task. It was created by merging the “negative” (non-grooming) chats from the PAN

12 competition (Inches and Crestani, 2012), sampled from IRC logs2 and the Omegle

2https://www.yoctoproject.org/irc/
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forum3, and the “positive” (grooming) chats from the ChatCoder2 dataset (McGhee et al.,

2011): 497 complete conversations extracted from the PJ website and labeled according

to the different phases of grooming. They filtered the full grooming conversation and split

them into segments to make them comparable to the non-predatory examples and create a

corpus better suited for the task of early detection. Despite its numerous limitations, such

as the lack of full negative conversations and small differences in formatting between the

two classes, we found that the PANC dataset is the most appropriate available data for our

task.

The PANC dataset was split into a training set (60%) and a test set (40%). The training

set consists of 1,753 positive segments (representing in total 298 full-length positive chats

and 9.06% of the training examples) and 17,598 negative segments, whereas the test set

contains 10.84% examples of grooming. Table 1.1 presents the number of the segments

and the average number of words they contain for the training set and the test set for each

of the classes. We can see that the positive class has in average longer segments. It can be

explained by the fact that the full conversations were split into segments of 120 messages,

thereby giving longer positive segments since most of them contained 120 messages.

Table 1.1: Statistics about the PANC dataset

Number of segments Number of words (mean and std)

Label train test train test

0 17598(91%) 11733(89%) 173(±1385) 184(±1529)
1 1753(9%) 1426(11%) 289(±218) 292(±222)

In Figure 1.3, we present a visualization of a synthetic setup based on our proposed

framework using a predatory conversation from the PANC dataset. It can take weeks or

even months before a warning notification is triggered when a child is being lured by

an abuser. Our goal is to minimize the harm by detecting the abuse early and sending a

notification to the user. It is up to the user to decide whether to continue the conversation

or report the predator. Note that in our framework, both training and inference phases

3https://www.omegle.com/
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Figure 1.3: Visualization of eSPD in which the risk is detected, warning is raised after
passing a threshold, and user is notified as early as possible.

are happening locally and users’ personal conversations are never shared with a third-

party. Moreover, the global aggregated model from the server can further be tuned and

personalized based on users’ local data.

1.5.2 Evaluation Metrics

In addition to the established metrics of precision, recall, F1 score, and area under the

curve (AUC), we used the latency-weighted F1 score which is introduced by Sadeque

et al. (2018) for the early risk detection task. The F-latency metric estimates the trade-off

between the speed of detection and the accuracy of the warning by applying a penalty

that increases with the warning latency. The warning latency is defined as the number of

messages exchanged before a warning is raised (Vogt et al., 2021). The penalty can be
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computed for each warning latency l ≥ 1 as follows:

penalty(l) =−1+
2

1+ e(−p·(l−1))

where p defines how quickly the penalty should increase. As suggested by Sadeque et al.

(2018), p should be set such that the latency penalty is 50% at the median number of

messages of a user.

We can then formally define F-latency as:

Flatency = F1 · speed

Furthermore, the overall speed of a correct warning is defined as:

speed = 1−median{penalty(l) | l ∈ latencies}

where latencies corresponds to the list of warning latencies produced by an eSPD

system for all grooming chats for which a warning is raised.

Therefore, we only compute the penalty and speed of detection on the positive conver-

sations. It is because the delay needed to detect true positives is a key component of the

early risk detection task (Losada et al., 2020; Sadeque et al., 2018). The F-latency metric

allows us to adequately evaluate an eSPD system by taking into consideration both the ac-

curacy of the detection and its speed. A higher F-latency score means a better-performing

eSPD system.

1.5.3 Experimental Set-Up

In this section, we explain our framework and its implementation details.

Data manipulation: As explained in Section 1.4, we leverage the oversampling tech-

nique proposed by Errecalde et al. (2017) to our training data to improve the speed of our

system’s detection. As such, we have added four additional rows of data to each of the

users with a positive label in our training set: the first 10% characters of the full conver-

sation, then 20%, 30%, and 40% of the full conversation. Whereas Errecalde et al. (2017)
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selected the above four additional chunks of data to obtain a balanced dataset, we selected

the number of augmented data portions with the help of hyperparameter tuning.

Furthermore, to implement the data-sharing strategy, we first split the PANC training

set into three portions: 10% of the dataset is randomly selected to create the warm-up data,

and the rest is split between a training set (81 %) and a validation set (9%). To ensure that

no bias came from the warm-up split, we repeated the process three times and tested our

model with every split. We have also experimented with different sizes of warm-up data

(1% and 5%) and concluded that a 10% split was better suited for the task (Appendix B).

Since neither the test set nor real-life data will be augmented, we removed the additional

chunks of data from the validation set. Appendix B shows the new distribution of our

dataset and the effect of changing the warm-up data size during training.

Federated set-up: In our cross-device federated framework, each client is randomly se-

lected from the training set. One client corresponds to one user ID, as such since the

PANC dataset only has one conversation per user ID, a unique label is associated with the

user ID. At initialization, each client receives a random, balanced portion of the warm-up

data: ten rows with a “negative” label and ten rows with a “positive” one to complement

their own data. Furthermore, if the selected user is a "negative" user, we then select an

additional ten "negative" users and combine their data to compensate for the lack of non-

predatory examples since they only have a segment of conversation assigned to them. This

setup also allows us to simulate a real-life scenario where each client will have multiple

conversations to train from. If the selected user has a “positive” label, we leave the data

untouched since it is already constituted of multiple segments using the data augmentation

technique that we described above.

Choice of the classifier: Although fine-tuning BERT has been shown to give better results

for the early detection task, as seen in Appendix B, we use the pre-trained feature-based

approach with logistic regression since it is far less computationally expensive and better

suited for scaling federated training to a large number of clients. In federated learning, the

edge users (clients) are responsible to train the local model on their own devices which

can become a bottleneck.
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In our framework, each user uses the BERTBASE model to create a context-aware

representation of their personal conversation by extracting fixed features from the pre-

trained model. The [CLS] representation of the last layer is then used as an input for

logistic regression with a binary cross entropy loss function. For each user’s segment, we,

therefore, obtain a 768 length vector.

Implementation: We use Flower (Beutel et al., 2020), an FL framework that facilitates

large-scale experiments through its simulation tools, to implement our setup and collab-

oratively train a logistic regression model with 10,000 clients for 100 rounds. At each

round of training, we select 10% of the clients randomly to participate in the training,

and the parameters are aggregated with the FedAvg algorithm (McMahan et al., 2017).

Surprisingly, the portion of selected clients for training does not have an impact on the

performance of the model but heavily influences the computational time. After exper-

imenting with 10%, 25%, 50%, and 100% of selected clients at each round, we have

concluded that a 10% fraction fit was enough to achieve a good performance in a rea-

sonable amount of time. Indeed, the computational time is proportional to the number

of clients selected for training because in Flower simulation, the training of the clients is

sequential, not parallelized since it depends on the number of CPUs available. The opti-

mal number of rounds was determined by following the evolution of the validation loss

of different models during training as seen in Appendix D. For the number of clients. We

have fine-tuned a model using 100, 1000 and 10,000 clients and found that the perfor-

mance usually improves with a larger number of clients. For the results that are presented

in Section 1.5.4, we use 10,000 clients to participate in the training phase.

Finally, all of the models were evaluated using a 50-message sliding window and a

skepticism level of 5, i.e. 5 of the last 10 predictions had to be positive before a warn-

ing was raised. Our federated learning implementation of eSDP will be made publicly

available upon publication of the paper.
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1.5.4 Empirical Results

We investigate three research questions in our experiments:

RQ1: How is the performance of the eSPD system affected by the federated learning

framework?

To address the first research question, we compare the performance of our cross-device

approach with three baselines: (1) Baseline (warm-up data): A logistic regression model

trained centrally on the warm-up data only, to ensure that our framework is not too biased

by the warm-up data distributed to each client. (2) Centralized LR: A logistic regression

model trained centrally on the training data and the warm-up data; (3) Cross-Silo FL: A

logistic regression model trained in a federated manner by partitioning the training data

and the warm-up data between 5 clients. Both centralized and federated learning models

used five-fold cross-validation for hyperparameter tuning whereas the best hyperparame-

ters for the federated models have been chosen using a random search.

Table 1.2: The evaluation results of the early online grooming detection task

Model F1 Recall Precision Speed F-latency

Baseline (warm-up data) 0.50 0.98 0.33 0.96 0.48
Centralized eSDP 0.75 0.95 0.62 0.83 0.63

Cross-Silo FL eSDP 0.87 0.87 0.87 0.70 0.61
Cross-Device FL eSDP 0.82 0.85 0.79 0.79 0.64

Cross-Device FL+DP-SGD eSDP (ε = 1) 0.76 0.86 0.68 0.81 0.61

In Table 1.2 we can see that the federated frameworks perform better than the central-

ized models for the early detection task: both the cross-silo and cross-device models show

a higher F1 score, compensated with less speed, than the centralized setting. Furthermore,

even if the cross-device framework shows slightly better results for the early detection task

(with a 64% F-latency score), the cross-silo setup is better at identifying predators with

a 87% precision. We think this is due to the large amount of data that is distributed to

each client which minimizes the loss of utility that is often attributed to non-IID data. The

good performance of the cross-device model for the early detection task can be attributed
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to the fact that in cross-device training, the minority class is no longer "a minority" since

each "positive" user selected for training trains with more grooming examples than non-

grooming. Appendix E shows that in a normal evaluation setup, the centralized models

still perform better, which is to be expected.

Furthermore, we notice a decrease in utility when making our model (1, 10−5)-differentially

private by training it with DP-SGD. It is interesting to observe that the F-latency is less

impacted because of the increase in speed of detection, which can be attributed to the

higher recall. Finally, the poor performance of the model trained on the warm-up data

confirms that our model is not biased by the data sharing strategy and it is indeed learning

from each client’s personal data.

Figure 1.4: Warning latencies for a skepticism level of 5

Figure 1.4 shows the distribution of the warning latencies during the early detection

evaluation of our different models.

RQ2: How to reduce the harm of false positives in eSPD?

We look at the impact that a low false positive rate could have on our results. In

eSPD, the emphasis is often put on the detection of predators since missing one could

cause a lot of harm. Indeed, the F-Latency metric depends on both the F1-score and

the speed. And while the F1-score takes into consideration both recall and precision,
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the speed does not penalize for precision: a model that predicts every conversation as

being predatory will have a very high speed. Therefore, we should also evaluate our

model to consider the cost of falsely accusing someone. In a real-life setting, we expect

an alarm to be raised each time a predator is detected. An innocent could be accused

wrongly and it could be even more dangerous if our model is biased towards certain

communities like sex workers. Indeed, considering the nature of grooming messages,

it is more likely that an eSPD system will be mistaken when confronted with sexual

or intimate conversations. Therefore, evaluating an eSPD system should take this into

consideration. For this purpose, for each of our models, we identify the classification

threshold that is needed to achieve a 1% false positive rate when evaluated on the test set.

Using this new threshold, we re-evaluate our models. Table ?? shows that varying the

threshold comes with a loss in speed for almost all models except the centralized one and

the cross-silo model. It takes a 99% classification threshold for the baseline to achieve

a 1% false positive rate showing that it was probably classifying a lot of non-predatory

conversations as being predatory conversations. Finally, we notice a decrease in F-latency

for our private FL+DP-SGD model, which can be attributed to the large (10%) decrease

in speed; which is expected and it is a necessary trade-off to achieve better precision.

Table 1.3: Evaluation results for a 1% FPR

Model F1 Recall Precision Speed F-latency

Baseline – – – – –
Centralized 0.85 0.83 0.88 0.69 0.59

Cross-Device FL 0.83 0.78 0.89 0.73 0.61

Cross-Device FL+DP-SGD (ε = 1) 0.78 0.70 0.88 0.72 0.57
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RQ3: How does differential privacy impact the eSPD system?

Figure 1.5: Impact of the privacy budget on the performance of our model. All the models
were evaluated on the full test set.

Figure 1.6: Impact of the privacy budget on the early detection performance of our model.

To evaluate the cost of privacy on eSPD systems, we experiment with adding various

amounts of noise ε to the training process: every client selected for the training process

will train its data with logistic regression with differentially private stochastic gradient
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descent to ensure that none of its data points is memorized by the model. A random grid

search was conducted to test for different hyperparameters: notably, the selected range for

the gradient clipping level is (0.5,1,2,5,7), and we tried (0.01,0.05,0.001,0.0001) for

the learning rate, (8,16,32,100) for the batch size , and (5,10,15,20,100) for the number

of local epochs of training. Appendix E shows some of the results obtained during fine-

tuning. It is not surprising to observe that the less performing model is the one with the

highest privacy constraints: with an ε of 0.50, we notice a drop of 8% of the F-latency

score for the most private model as seen in Figure 1.6. However, we notice that there is

not much loss of utility when ε is greater than 10 and the loss is negligible when ε is set to

20 or higher. Furthermore, as we can see in Figure 1.5, the precision graph has a steeper

slope and therefore seems to be more impacted by the differentially-private training. We

can notice a decrease of 12% in the precision score between a model with an ε budget of

5 and a model with an epsilon budget of 0.50 when we evaluate the full test set. Indeed,

it has been shown that DP-SGD does not affect the performance of a model equally and

that minority classes may be more affected by the training process (Bagdasaryan et al.,

2019). In our case, making our model more private may result in a decrease in its ability

to detect predators adequately.

1.6 Opportunities and Limitations

In this section, we explore the limitations of our proposed approach and ethical consider-

ations relating to the implementation of such a tool in a real-life setting.

Beyond the privacy issues, a main limitation of the sexual predators’ identification

task comes from the lack of publicly available labeled and realistic datasets. The different

datasets used in the literature take their grooming examples from the PJ website, which

are examples of conversations between predators and adults posing as children to catch

them. Such chats have been shown to differ from real-life conversations and lack certain

aspects of grooming like overt persuasion and sexual extortion (Schneevogt et al., 2018).

Indeed, volunteers are often actively trying to get the offenders to be sexually explicit and
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to arrange an encounter, which is not the case in real-life settings. Furthermore, the non-

grooming examples often come from forums and chatrooms where strangers can interact

or engage in cyber-sex. Lack of negative examples of trusting and intimate relationships

between family members, friends, or partners is an issue of the current datasets which are

essential components for a realistic eSPD task.

We hope that the federated architecture we propose in this paper, will give access to

a larger range of training examples. Indeed, since each user will be given the option to

report abusive content, the conversations flagged as alleged grooming will then be added

to the pool of training examples, thus alleviating the lack of realistic and available labeled

datasets. Such a system will allow the training examples to be updated regularly, and will

consider the growing speed at which language, especially internet slang, evolves.

However, we can imagine that even with such a framework, the labeling will still be

an issue since it will rely on users self-reporting cases of grooming. We could think of a

preliminary training phase with real data of convicted predators before deploying a pre-

trained model to evaluate each user’s personal conversation and send a notification where

a warning is raised by the eSPD system. Such a model will also alleviate the privacy cost

since the first training phase will happen on publicly available data. In this setting, the

user will be able to give feedback on the model’s prediction. But such a set-up is certainly

not ideal, since actual victims of online grooming often trust their abuser and may not

realize that they are being manipulated. Notifying a third party, such as a legal guardian

or a social worker tasked with monitoring the flagged content, may increase the chances

of a case of grooming being reported but will undoubtedly infringe on the privacy of the

victim.

Involving law enforcement could also have disastrous consequences. As we have

mentioned in subsection 1.5.4, the resulting model could be biased towards certain popu-

lations like sex workers, people from the LGBTQI+ community, or people prone to online

dating. Evaluating and selecting the best model based on a classification threshold that

guarantees a 1% false positive rate can be a first step towards ensuring that the eSPD

system does not falsely incriminate. Furthermore, pre-trained language models used to
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extract a context-aware representation of personal conversations, like BERT, have been

shown to reproduce racial and gender biases (Liang et al., 2021). Using such models

as a basis for identifying potential suspects to be prosecuted could lead to unanticipated

outcomes.

Finally, the literature and datasets used for our experiments concern male predators,

both heterosexual and homosexual, that do not know their victims. The lack of data

available about female abusers does not allow us to assume that our model is applicable

to the detection of female predators.

1.7 Conclusion and Future Directions

In the wake of the new European Commission’s regulation (European Commission, 2022),

social media companies will be expected to take action to ensure that their underage users

are safe from sexual exploitation when using their platforms. Doing so would entail

breaking end-to-end encryption and monitoring users’ content, which can easily lead to

human rights infringements as we have seen recently with the case of the teenager charged

for abortion in Nebraska after Meta turned over her personal chat messages to the police

(Collier and Burke, 2022). Alternatives to existing privacy-invasive monitoring systems

are therefore more pressing since the COVID-19 pandemic has increased the need for

children’s safety. In this paper, we presented a possible alternative to the existing frame-

works for the early detection of sexual predators that will enable a privacy-preserving

solution for the detection of online grooming and could pave ways to collect more labeled

data.

We presented a first-of-its-kind decentralized framework for the early detection of

sexual predators and we showed that the performance of our eSPD system is comparable

to the performance of a model trained in a centralized manner while fully protecting users’

personal data rights.

Differentially-private optimization approaches that adapt the noise to guarantee pri-

vacy have been shown to impact the performance of minority subgroups in federated
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models (Cummings et al., 2019; Jagielski et al., 2019). We have also noticed that the

minority class seemed to be more impacted by the addition of privacy in our framework,

hence our eSPD system which leverages DP-SGD algorithm is not able to detect preda-

tory messages as early as the eSPD system without privacy guarantees. Further research

is needed to determine the extent to which the issue is raised in a real-world setting.

Evaluating the cost of privacy of a model that behaves falsely due to noisy data could be

extremely challenging. A proper procedure to label messages as predatory should there-

fore be clearly defined (as discussed in Section 1.6). Investigating and addressing these

challenges are open problems and remain as future directions of this work.

Finally, we believe that our framework can be extended to any early risk detection

problem. Future work could explore the use of our framework for the detection of cyber-

bullying or depression.
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General Conclusion

Social media platforms and messaging applications have become the primary form of

communication for children and teenagers. And whilst the internet is full of opportunities,

it also exposes its more vulnerable users to substantial hazards, online grooming being one

of the most pervasive.

To ensure that children are not lured into sexual exploitation, social media platforms

must have a robust prevention system in place. Unfortunately, such a system would re-

quire having access to personal exchanges, thus breaking end-to-end privacy guarantees

such as encryption. This could lead to other misuses of the technology as well as infringe

on human rights. To make sure that we are not trading one evil for another, an appropriate

eSPD system should therefore ensure that the privacy of the users is preserved.

As part of this research project, we present the first privacy-preserving framework for

early detection of sexual predators. Leveraging federated learning, language represen-

tation models and differential privacy, we implement a framework for the detection of

online grooming which addresses two specific challenges of the task. First, our detection

system respects users’ privacy while still ensuring children’s safety. Second, our detec-

tion system enables our model to continuously learn from users’ inferred labels through

its reporting option.

We were able to achieve high quality results for the task. Our cross-device federated

framework achieved a better performance at predicting predators earlier than a traditional

centralized setting. As well, our differential-private framework showed competitive re-

sults, despite a slight decrease in utility. In addition to implementing such a framework,



we demonstrated how the accuracy of a predictor can be impacted by privacy-related de-

cisions, underlining the importance of striking an appropriate balance between the two.

This trade-off is of substantial importance in the context of grooming detection since lev-

eling false accusations may have devastating consequences.

Indeed since the detection of grooming often relies on identifying sexual content, we

believe that such a system may be more biased against certain individuals: people who use

messaging applications with a legitimate suggestive discourse such as sex work or dating.

For this reason, we propose to evaluate the eSPD system by setting the classification

threshold in such a way that the false positive rate is minimal to account for the high cost

of falsely accusing someone.

Furthermore, we warn against the possible racial and gender biases that come with the

use of large pre-trained models (Liang et al., 2021). Such a system should therefore never

be used directly by law-enforcement agencies at the risk of exacerbating existing social

inequalities and persecuting innocents.

In this project, we have shown that safety should not come at the cost of privacy

and that less-intrusive monitoring systems for social media applications are possible. We

believe that our framework can be generalized to other early risk detection problems on

social media like that of cyberbullying or depression and that our setup is model agnostic.

Exploring other privacy preserving machine learning techniques like secure aggregation

can also be a future direction of our work.
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Appendix A – Effect of the Warm-Up

Data

This appendix presents more information about the creation of the warm-up data and the

impact its size and distribution have on training.

Effect of The Warm-Up Data on the Speed of Detection

To address the imbalance problem typical of early risk detection, we used Errecalde et al.

(2017) temporal variation of terms method to augment our training set. Table 1 shows the

new distribution of our dataset for each split: training, warm-up, and validation.

Table 1: Statistics about the new warm-up, train and validation set

Number of segments Number of words (mean and std)

Label Warm_up Train Validation Warm-up Train Validation

0 872(5%) 13513(75%) 1453(8%) 226(±2544) 158(±1448) 136(±133)

1 871(5%) 1276(6%) 93(1%) 300(±310) 312(±427) 262(±194)

We can see that the positive examples now represent 11% of all the data used for

training (train set and warm-up set) instead of 7% as in the original PANC training set.

We assumed that giving our classifier more examples from the beginning of the con-

versations will help it improve its early detection performance. We tested our hypothesis

by fine-tuning a centralized model on the augmented training set and compared our per-

formance to Vogt et al. (2021) reported results for the early detection task with BERTBASE .
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Table 2: Early evaluation of BERT fine-tuned

Model F1 Precision Recall Speed F-latency

BERTBASE - PANC train 0.81(±0.02) 0.74(±0.05) 0.91(±0.01) 0.63(±0.03) 0.52(±0.03)
BERTBASE - augmented PANC train 0.81(±0.05) 0.69(±0.07) 0.97(±0.005) 0.93(±0.03) 0.75(±0.04)
Vogt et al. (2021) eSPD model 0.89(±0.02) 0.82(±0.04) 0.96(±0.01) 0.91(±0.02) 0.81(±0.03)

In Table 2 we can see that we gain 30% in speed when we fine-tune BERTBASE on our

"augmented" training set. It comes however with a loss in precision, which was expected,

since there is always a trade-off between utility and speed. We can also notice that Vogt

et al. (2021) the eSPD system presents better results. This is because it was trained on the

full PANC set and the test set was used as validation, whereas we split the PANC training

set between a training set and a validation set, to make sure that our model was capable of

generalizing. Nevertheless, our approach seems to have a slightly better speed than theirs

(2%).

Effect of the Portion of Data Allocated to the Warm-Up

Data

The warm-up data was created using 10% of the training set. In this section, we experi-

ment with different splits in data.

Table 3 presents the results of a federated model trained with 10000 clients on 100

rounds, 10% of them being selected randomly at each round for training. For each user,

we add 10 rows of positive warm-up examples and 10 rows of negative warm-up examples

for training. And if a negative user is selected, we combine 10 negative conversations.

Table 3: Effect of the portion of data allocated to the warm-up set

Model WU data F1 Recall Precision AUC

Cross-device FL 1% 0.75 0.72 0.79 0.85
Cross-device FL 5% 0.81 0.8 0.82 0.89
Cross-device FL 10% 0.83 0.85 0.81 0.91
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Table 3 shows that better results are obtained whem allocating a bigger portion of the

PANC training set to constitute the warm-up set.

Effect of the Size and Distribution of the Warm-Up Data

During Training

In this section, we analyze how varying the size and distribution of the warm-up data for

each client impacts the training. All models were trained with 10000 clients, but only

10% of them were selected at each round of training. Furthermore, in this part of the

analysis, no negative user conversations are combined. One user, therefore, corresponds

to one user ID only.

In Table 4, we can see the effect of changing the size of the warm-up data on the

training.

Table 4: Effect of the size of the warm-up data

Type Rounds WU size F1 Recall Precision AUC

Cross-device FL 100 200 0.81 0.95 0.71 0.95
Cross-device FL 100 2 0.56 0.9 0.4 0.87
Cross-device FL 500 2 0.7 0.79 0.63 0.87
Cross-device FL 500 10 0.74 0.9 0.62 0.92
Cross-device FL 200 20 0.76 0.93 0.64 0.93

When we distribute more rows of training data to each users, the model gets better:

with 200 rows of warm-up data per user, we achieve an F1-score of 81% with less rounds

of training. With only 2 rows of warm-up data and 10, it takes around 500 rounds to

improve the performance of the model. Having more data distributed to each client seems

to improve the training. However, since we want to make sure that our model learns from

the client’s data (as opposed to only the warm-up data), we should make sure that the rows

of warm-up data distributed are not bigger than the client’s local dataset. We can see that

with 20 rows of data, we achieve an acceptable performance with 200 rounds of training,

with an F1-score of 76%.
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Table 5 shows the effect of varying the distribution of the warm-up data. In Table 4,

the warm-up data was balanced. In Table 5 we show how varying the distribution impacts

the results: by testing first with 10 rows of warm-up data (9 negative examples and 1

positive example), then 20 rows of data (12 negative examples and 8 positive examples)

and finally another 20 rows of data (19 negative examples and 1 positive examples).

Table 5: Effect of the distribution of the warm-up data

Model WU size WU dist F1 Recall Precision AUC

Cross-device FL 10 9n-1p 0.43 0.28 0.98 0.64
Cross-device FL 20 12n-8p 0.81 0.88 0.76 0.92
Cross-device FL 20 10n-10p 0.76 0.93 0.64 0.93
Cross-device FL 20 19n-1p 0.3 0.18 0.98 0.59

We can see that varying the distribution of the warm-up dataset has a big impact

on training. We observe a poor performance with a highly unbalanced split, whereas

a split of 60% of negative examples and 40% of positive examples (12n-8p) seems to

have better results than the balanced split. We can assume that this is caused by the fact

that negative examples are only constituted of one row of data, while positive examples

contain multiple rows (all the different segments that constitute the full conversation to

which we have added four additional examples with our data augmentation technique).
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Appendix B – Combining Negative

Examples

In this section, we evaluate the impact of merging multiple "negative" conversations as

being from the same user.

As we have seen earlier, the lack of data for negative users seems to impact the train-

ing. Therefore, we try combining multiple conversations to account for the dataset limi-

tation: having only one row of data per negative user. Table 6 shows the results obtained

when combining a different number of users. Each model has been trained with 10000

clients, where only 10% are selected at each round of training, for 200 rounds and each

user receiving 10 rows of positive warm-up examples and 10 rows of negative warm-up

examples.

Table 6: Effect of combining negative users together

Model Combined F1 Recall Precision AUC

Cross-device FL 10 0.84 0.85 0.82 0.92
Cross-device FL 50 0.82 0.72 0.95 0.86
Cross-device FL 15 0.85 0.83 0.86 0.91
Cross-device FL 0 0.76 0.93 0.64 0.93

We can see that combining negative users improve the performance of our model.

For the rest of our experiments, we chose to combine 10 additional users every time

a "negative" example is selected as a client because it achieves a good level of utility

without merging too many clients.
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Appendix C – Effect of the Number of

Rounds of Training

In this section, we present the effect the number of rounds of federated training has on

utility.

Figure 1 shows the evolution of the validation loss and other metrics during training.

The model was trained with 10000 clients, selecting 10% at each round. And each user

received 20 rows of balanced warm-up data. Furthermore, for each "negative" client, 10

additional negative examples were merged to constitute the training data. The model was

trained for 500 rounds, but the validation loss is stable after a little more than 100 rounds.

Figure 1: Effect of the number of rounds of training

Therefore, we trained all our models for 100 rounds.
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Appendix D – Training with DP-SGD

In this section, we present examples of the results obtained while training our model us-

ing differentially-private stochastic gradient descent. We trained all the models with 1000

clients for 100 rounds. Differential private training has a big impact on computational

efficiency: the training time is often multiplied by 5 or 10. We, therefore, did our hy-

perparameters tuning with a sample of the clients. The combinations of hyperparameters

showing the best results with 1000 clients were then used to train a model with 10000

clients.

Table 7: Effect of hyperparameter tuning on utility

epsilon batch gradient learning rate epochs F1 Recall Precision AUC

0.5 100 3 0.001 10 0.39 0.25 0.95 0.62
0.5 100 5 0.0001 10 0 0 0 0.5
0.5 100 2 0.01 15 0.58 0.85 0.44 0.86
1 100 5 0.01 20 0.67 0.87 0.54 0.89
1 100 0.5 0.001 15 0.31 0.22 0.55 0.6
1 100 2 0.001 20 0.54 0.39 0.91 0.69
2 32 7 0.05 15 0.74 0.88 0.64 0.91
10 32 5 0.05 15 0.8 0.94 0.69 0.95
8 100 0.5 0.001 15 0 0 0 0.5

In Table 7 we can see that the utility of the model varies highly when we chose differ-

ent hyperparameters. The first 3 lines of the table show the results obtained with a privacy

budget of ε = 0.50 and we can see that some models have a 0% f1 score. It is probably

due to the low learning rate and they will require more rounds of training to achieve a

better performance. This table shows the importance of hyperparameter tuning when im-
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plementing a model with DP-SGD. Adding noise to training always comes with a drop in

utility, but it is possible to gain in performance with the appropriate parameters.
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Appendix E – Evaluation of the Full

Test Set

In this Appendix, we take a look at the results of the evaluation of our model in a "normal"

inference setup: the model is evaluated on the full dataset, without sliding windows.

Table 8: Evaluation of the PANC test set

Model F1 Recall Precision AUC

Baseline (warm-up data) 0.84 0.95 0.76 0.96
Centralized 0.92 0.89 0.95 0.94

Cross-Silo FL 0.89 0.84 0.94 0.92
Cross-Device FL 0.85 0.89 0.81 0.93

Cross-Device FL+DP-SGD (ε = 1) 0.79 0.83 0.75 0.90

In a traditional inference setup, we see that the centralized model performs better at

identifying sexual predators: here with an F1 score of 92%. This is not surprising since

federated learning usually comes with a slight decrease in utility. The baseline model

trained on the warm-up data also shows very good results, despite the fact that it was

only trained on a small portion (10%) of the training set: with the best AUC score of

96%. However, it also achieves one of the lowest precision scores with an extremely high

recall. Furthermore, we can see that the Cross-Silo model shows the closest results to

the centralized framework. Indeed, because of the large amount of data distributed to

each client, the loss of performance attributed to non-IID data is not significant. We also

notice that the drop in utility for the differentially private model is more pronounced when
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evaluating the full dataset.
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