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Résumé

Les transactions interbancaires ont fait l’objet de nombreuses études classiques sur

le risque systémique, lorsqu’il existe un grand nombre de petites banques. Deux types

d’interactions sont considérés : les transactions interbancaires entre elles et les transac-

tions avec la banque centrale. Cette thèse développe une formulation de jeu pour décrire

un système interbancaire qui comprend une grande banque et de nombreuses petites ban-

ques. À cette fin, des systèmes de jeu à champ moyen linéaire-quadratique-gaussien

(LQG) sont utilisés pour modéliser le logarithme des fonds inversés et le coût d’emprunt

ou de prêt encouru par chaque banque. Une analyse variationnelle est ensuite appliquée

pour dériver les meilleures stratégies de réponse des banques qui, ensemble, produisent

un équilibre pour le système interbancaire. En outre, le risque systémique est caractérisé

par la probabilité que l’état du marché mondial passe sous un seuil spécifique à un horizon

temporel donné. Par la suite, des simulations de Monte Carlo sont utilisées pour étudier

la probabilité de défaut d’une petite banque représentative et le risque systémique. Sur la

base des expériences numériques, nous concluons que la présence d’une grande banque

sur le marché peut avoir deux effets opposés sur le système selon qu’elle fait défaut ou

non. Dans le cas où la grande banque ne fait pas défaut, un agent mineur représentatif est

moins susceptible de se retrouver en défaut. De plus, le risque systémique diminue. Cet

impact positif augmente avec la taille relative et le taux de réversion moyen de l’agent

majeur (équivalent du taux de réversion moyen de l’agent mineur). Cependant, dans un

marché interbancaire où la banque principale fait défaut, une banque mineure représenta-

tive a un risque de défaut plus élevé. De plus, le risque systémique augmente de manière



significative. Ainsi, la défaillance d’une grande banque est beaucoup plus susceptible

d’entraîner l’effondrement de l’ensemble du système. Cet impact négatif devient plus im-

portant avec la taille relative et le taux de réversion moyen de l’agent majeur. Nos résul-

tats montrent que l’impact négatif d’une grande banque l’emporte sur son impact positif.

Nous observons que la probabilité de défaut totale d’une banque mineure représentative

et le risque systémique sont plus élevés dans un marché où il existe une grande banque par

rapport au cas où il n’y a pas de grande banque. De toute évidence, plus la taille relative

de l’agent majeur et le taux de réversion moyen sont élevés sur le marché, plus le risque

systémique est important.

Ces résultats ont des implications importantes pour comprendre comment une grande

banque peut affecter le marché interbancaire. Plus précisément, elles pourraient être util-

isées pour élaborer des politiques et des réglementations qui améliorent la stabilité de ces

marchés. En particulier, il n’est pas sain pour l’économie d’avoir une très grande banque

en raison de son externalité négative extrême. Les décideurs politiques peuvent établir

des réglementations pour empêcher les banques de devenir trop grandes ou imposer des

exigences de capital plus élevées et des réglementations plus strictes aux grandes banques

pour s’assurer qu’elles ne se retrouvent pas en défaillance.

Mots-clés

Marché interbancaire ; risque systémique ; jeux à champ moyen linéaire-quadratique-

gaussien majeur-mineur ; jeux stochastiques.
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Abstract

Interbank transactions have been the subject of many classic studies in systemic risk,

where there exist a large number of small banks. There are two types of interactions con-

sidered: interbank transactions with one another and transactions with the central bank.

This thesis develops a game formulation to describe an interbank system which includes

a large bank and many small banks. To this end, linear-quadratic-Gaussian (LQG) mean-

field game systems are used to model the log reverse funds and the cost of borrowing or

lending incurred to each bank. A variational analysis is then applied to derive the best re-

sponse strategies for banks which together yield an equilibrium for the interbank system.

Furthermore, systemic risk is characterized by the probability that the global market state

falls below a specific threshold by a given time horizon.

Subsequently, Monte Carlo Simulations are used to study the default probability of a

representative small bank and the systemic risk. Based on the numerical experiments, we

conclude that having a major bank in the market may have two opposite effects on the

system depending on whether it defaults or not. In the case where the major bank does

not default, a representative minor agent is less likely to end up in default. Moreover,

the systemic risk decreases. This positive impact increases with the relative size and the

mean-reversion rate of the major agent (equivalently the mean reversion rate of the minor

agent). However, in an interbank market where the major bank defaults, a representative

minor bank has a higher default risk. Moreover, the systemic risk increases significantly.

Hence the failure of a large bank is highly likely to bring the whole system down. This

negative impact becomes larger with the relative size and the mean-reversion rate of the

major agent. Our results show that the negative impact of a major bank prevails its positive

impact. We observe that the total default probability of a representative minor bank and

the systemic risk are higher in a market where there exists a major bank compared to the

case where there is no major bank. Obviously, the higher the relative size of the major

agent and the mean reversion rate in the market, the higher is the systemic risk.

These findings have significant implications for the understanding how a major bank

may affect the interbank market. Specifically, they could be used to develop policies and

1



regulations that improve the stability of such markets. In particular, it is not healthy for the

economy to have a very large bank due to its extreme negative externality. Policymakers

may set regulations to prevent banks from becoming too large or impose higher capital

requirement and stricter regulations on large banks to ensure that they would not end up

in default.

Keywords Interbank Market; Systemic Risk; Major-Minor Linear-Quadratic-Gaussian

Mean Field Games; Stochastic Games
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Chapter 1

Systemic risk in an interbank market

with a large bank and many small banks

Abstract

1.1 Introduction

Banking is an essential part of the modern economy and plays an increasingly im-

portant role as a society develops. The core business activity of the sector is to absorb

deposits and provide credit. Banks connect those financial participants who need to bor-

row funds with those who are willing to lend out monetary resources. They profit from

the difference in the interest rates at various maturities which is a strategy encouraging

them to have an asset-liability mismatch. At the same time, the introduction of a deposit

insurance system worldwide aggravates the reckless expansion in business lines in the

bank industry. Providing loans without due diligence is an example of such expansions,

which exacerbates the imbalance between the asset side and liability side.

Therefore, one of the most significant risks faced by a bank is the liquidity risk, which

means that they do not have sufficient eligible assets that can be converted rapidly into

cash or cash equivalent to meet the demand for withdrawal or to cover day-to-day oper-



ating costs. For banks, there are many different ways to raise short-term funds to cover

the liquidity gap, for instance selling tradable assets, using credit lines given by other

financial institutions, securitizing non-liquid assets on their balance sheet, lending from

the central bank, etc. There is no doubt that the interbank market is the most important

short-term financial resource provider.

In an interbank market, banks with deficits in their settlement operations can borrow

money from those with surplus funds. The interbank market was proven to be able to

alleviate a part of the liquidity burden due to a risk-sharing scheme. A distressed bank

could use the extra liquidity in the interbank market in an efficient fashion to distribute

the losses to more counterparties to avoid ending up in default

Scholars search for explanations from many different aspects, such as behavioral fi-

nance, counterparty credit risk and statistics, to get a deeper understanding of systemic

risk to take more efficient measures for avoiding future undesirable events. In this the-

sis, we describe the complicated transactions between banks and an interbank market by

means of a mathematical model. In order to model the competition between banks in the

market, we consider a game framework where a large number of small banks and a rela-

tively influential bank exist. To the best of our knowledge, this is the first time where the

presence of a large bank in an interbank market is dynamically modelled. In the following

we motivate the inclusion of such a bank in our model. Due to a variety of features, such

as the bank’s grade granted by the rating agency and the bank size, not every individual

bank has the same influence on the market. In particular, in the wake of the Global Finan-

cial Crisis in 2008, a new term was created by regulators worldwide, known as "Systemic

Important Banks". More specifically, the Financial Stability Board (FSB) has issued a

list of "Global Systemically Important Banks" (G-SIBs), and several national regulatory

authorities have also designated "Domestic Systemically Important Banks". When such

banks are in trouble, their impact on financial stability and economy is rather great (Huang

et al., 2012; Tarashev et al., 2009). The major bank or large bank is used to describe this

type of important banks in the system. The log-monetary reserve of this bank affects the

market state. Furthermore, in our model there exist a large number of minor banks that
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individually have a negligible impact on the status of the whole market and the influence

of each minor bank diminishes as the number of them increases. In the financial system

that we consider, all small banks have the same statistical properties and are of the same

size and influence on the system. They affect the market state through the log-monetary

reserve empirical average of their ensemble.

Each bank keeps an efficient operation through transactions with other banks and by

controlling its borrowing and lending rates with the central bank. It aims to have sufficient

liquidity to avoid ending up in default. This is while the bank does not wish to hold a lot of

cash, which is a waste of resources. The trade-off is based on the cost of doing business in

the interbank market (Denbee et al., 2021), for example, transaction charges and other fees

due to the absence of market opportunities. To do this, we assume that each small bank

aims to hold their log-monetary reserves as much close as possible to the market average

state, a weighted average of the large bank’s and the small banks’ average log-monetary

reserves. Therefore, the target of each bank is to minimize their cost by choosing the

optimal strategy to track the market average state. We show that our model in the limiting

case, where the number of small banks tends to infinity, is an example of a stochastic

Linear-Quadratic (LQG) mean-field games with explicit solutions. We apply the convex

analysis approach (Firoozi et al., 2020) to derive the best-response strategy of each bank.

The collection of these strategies leads to an ε-Nash equilibrium for the market with a

finite number of small banks.

Then, we define the default of a bank and the systemic event as the situation where,

respectively, the bank’s log-monetary reserve and the market average state end up in the

default zone, i.e. fall below the default threshold. Subsequently, through Monte Carlo

experiments, we investigate the impact of the large bank on the stability of the interbank

market. More specifically, we examine its impact on a representative small bank’s default

probability and on the systemic risk. We perform this analysis in various scenarios where

the relative size and the mean-reversion rate of the major bank change. Based on the nu-

merical experiments, we conclude that having a non-defaulting major bank in the market

may have two opposite effects on the system depending on whether it defaults or not. In
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the case where the major bank does not default, a representative minor agent is less likely

to end up in default. Moreover, the systemic risk decreases. This positive impact in-

creases with the relative size and the mean-reversion rate of the major agent (equivalently

the mean reversion rate of the minor agent). However, in an interbank market where the

major bank defaults, a representative minor bank has a higher default risk. Moreover, the

systemic risk increases significantly. Hence the failure of a large bank is far more likely to

bring the whole system down. This negative impact becomes larger with the relative size

and the mean-reversion rate of the major agent. As a result the total default probability of

a representative minor bank and the systemic risk are higher in a market where there exists

a major than in the one without a major agent. Obviously, the higher the relative size of

the major agent and the mean reversion rate in the market, the higher is the systemic risk.

These findings have significant implications for the understanding how a major bank may

affect the interbank market. The contributions of this thesis are summarized as follows:

• This is the first time where the presence of a large bank in an interbank market is

dynamically modelled in a game formulation of the market.

• We used the mean field game methodology to solve for the optimal strategies of

the large bank and minor banks yielding an equilibrium for the interbank market.

This required mathematical developments and we were not able to use the existing

results in the given form. This was in particular due to our interest (for interpretation

purposes) in a specific representation of transaction rates in terms of the difference

between the log-monetary reserve of a generic bank and the market state.

• We implemented numerical experiments using Monte Carlo simulations for various

scenarios to examine how the default probability of minor banks and the stability

of the entire financial system are impacted by

– the presence of a major bank,

– the success or failure of the major bank,

– the relative size of the major bank in the market, and
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– the mean-reversion rate of the major bank to its long term average log-monetary

reserve.

• Given our results, we make some policy recommendations.

The remainder of this thesis is organized as follows. Section 1.2 reviews the previous

works in the literature on systemic risk and mean field game methodology. Section 1.3

introduces the model we use to describe the interbank transactions. Section 1.4 presents

the limiting model as the number of bank goes to infinity in the mean field game frame-

work. Section 1.5 details the solution methodology for deriving the optimal strategies of

individual banks and an equilibrium for the market. Section 1.6 gives the definition of

the default probability of an individual bank and the systemic risk. Section 1.7 performs

numerical experiments to investigate the impact of the major bank on the behavior of dif-

ferent banks, their default probability and systemic risk. Section 1.8 concludes our work

and discusses potential future work.

1.2 Literature Review

As elaborated in the Introduction, banks make margin by absorbing short-term de-

posits and making long-term loans. The "riding the curve" strategy makes the mismatch

between the asset side and the liability side more serious. If the internal liquidity is dried

up due to the request of depositors’ withdrawal, it is very likely to lead to a bank run

(Diamond and Dybvig, 1983). Denbee et al. (2021) proposed each bank needs to choose

the appropriate level of monetary reserves based on the cost-benefit analysis. They need

to make a trade-off between undertaking more liquidity risk with a lower level of reserves

and paying for a higher opportunity cost tied with forgoing other available investments.

The interbank market provides banks with a tool to minimize the amount of capital held

in low-return liquid assets (Freixas et al., 2000).

The interbank market plays a crucial role in the financial system. Banks have many

different incentives to participate in the interbank market. Wiemers and Neyer (2003)
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came up with three reasons for banks to trade in this market. The first one is the specula-

tive purpose. They could benefit from the price inconsistency of the same products across

different markets. The heterogeneous borrowing cost is another driver for the participa-

tion of individual bank in the interbank market. Those banks with relatively low marginal

costs of borrowing funds have comparative advantages and they could act as an interme-

diary agent to grant credits to other banks. The most important motivation for banks to

trade in this market is to deal with the daily liquidity fluctuation (Bhattacharya and Gale,

1987). Indeed, the interbank market provides a channel for banks to cover the liquidity

gap. Banks with reserves surplus grant credits to those with a deficit in monetary reserves

(Freixas and Jorge, 2008).

However, the interbank market is a double-edged sword. On the one hand, it is widely

accepted that the interbank market provides a co-insurance against uncertainty in the daily

liquidity fluctuations. Furfine (2002) pointed out that a well-operating interbank market

could make the liquidity exchange more effective. The diversification in the banking

sector also makes the risk-sharing among banks more efficient(Steinbacher and Stein-

bacher, 2015). The results of Acemoglu et al. (2015) show that a distressed bank could

use the extra liquidity in the system in an efficient fashion to distribute the losses to more

counterparties to avoid ending up in default. Hence, the highly connected structure of the

interbank market could make the system more resilient to prevent an individual bank from

insolvency (Franklin and Douglas, 2000).

On the other hand, financial contagion is the price that has been paid for the benefit of

risk sharing in an interbank market (ECB, 2009). The high interdependence in the banking

industry exacerbates the potential risk spillovers (Hautsch et al., 2015).Siebenbrunner

et al. (2017) summarized the four channels of the contagion in the banking sector: first-

round, correlated losses, a fire sale of assets, and mark-to-market losses. The "first-round"

channel means the direct losses obtained from acting as the counterparty of the failure of

a specific bank. Due to the highly interdependent relationships in the banking industry,

the idiosyncratic shock of one bank would be propagated quickly throughout the whole

network. The empirical analysis of Siebenbrunner et al. (2017) displays that the "first-
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round" channel caused the highest loss contribution among all other channels. Another

contagion channel is the overlapping of the portfolio holdings. A specific factor could

shock a set of correlated assets and translate losses to changes in the balance sheet of

banks. Elsinger et al. (2006) finds that the loss from correlated losses is the main source

of systemic risk. The information about the insolvency of a bank is very likely to cause

panic in the market leading to the liquidation of the related assets of this bank at a very

low price. The losses caused by the fire-sale decrease the recovery value of the loan made

to the insolvent bank and trigger a larger effect in the banking network (Caccioli et al.,

2015). Some shocks caused by the failure of a bank are spread by the mark-to-market

accounting rules. This has been recognized as an accelerator in the 2008 Global Financial

Crisis (Georgescu, 2015). In fact, the valuation based on the balance sheet information

will establish the expectation of future insolvency which will affect the availability of the

liquidity required by the bank.

Due to the multiple contagion channel in the banking system, there has been an in-

creasing amount of literature on the relationship between the network characteristics of

the bank system and systemic risk. Learning from the terminologies in topology, the in-

terbank market network is characterised principally by nodes (individual bank), links (the

interbank credit exposure), size (the number of banks in the whole system), connectivity

(fraction of links present in the network). Krause and Giansante (2012) propose that the

structure of the banking system plays a key role in the scale of contagion from a bank

failure in the system. The impact from the connectivity of the interbank market network

on the systemic risk has been receiving much attention but it is still inconclusive. The

majority of researchers think that connectivity is positively correlated with system risk.

Caccioli et al. (2012) shows, even in a scale free network characterized by fewer nodes,

the probability of contagion which is led by a more connected individual bank is sig-

nificantly higher.Kanno (2015) implement simulations and draw the conclusion that the

contagion phenomena driven by the failure of a highly interconnected bank is more signif-

icant. From the empirical analysis from different countries (Anand et al., 2015; Fan et al.,

2018; Diem et al., 2020), the positive relationship between the connectivity and systemic
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risk has been verified. However, some researchers argue that additional connections will

improve the risk-sharing scheme within the network. Allen and Gale (2000), Duffy et al.

(2019) and Li et al. (2019) claim that the more complete banking network is the least

likely it is to be affected by the idiosyncratic shock caused by the default of an individual

bank. They propose the connected linkage between banks could provide a buffer to ab-

sorb the loss and reduce the contagion risk. The network concentration has been identified

as another influential risk factor. A number of studies have found the the probability of

systemic risk is positively related to the concentration of the network. Gai et al. (2011),

Fei et al. (2015) and Zedda and Sbaraglia (2020) also conclude that the greater network

concentration level amplifies the spread of shock in the system and increases the proba-

bility of systemic risk. There are also some other network characteristics considered in

the literature such as the first failed bank’s centrality in the system (Degryse and Nguyen,

2004; Lee, 2013), and the number and size of the exposure in the network (LI and HE,

2012; Memmel and Sachs, 2013; Bucher et al., 2014).

After the 2008 Global Financial Crisis, much of the literature on drivers of systemic

risk has emphasized the importance of a relatively large bank. Steinbacher and Stein-

bacher (2015) argues that the large and well-capitalized banks are less likely to get in

trouble and De Jonghe et al. (2015) claims that the universal banking services provided

by a major bank could generate non-interest income which could help large banks to

reduce their exposure to systemic risk. Benefiting from the advanced risk management

technology and the rigorous supervision of the shareholders in the major banks, they have

the advantage of economies of scale in mitigating the financial systemic risk. On the con-

trary, Huang et al. (2012) applies the decomposition analysis to show that the bank size

largely determined the marginal contribution of a single bank in the systemic risk. Tara-

shev et al. (2009) provides evidence that the systemic significance of the biggest bank is

almost ten times greater than that of small banks, even though its size is only five times

as much the small banks. This is consistent with the conclusion drawn by Laeven et al.

(2016) that the systemic risk increases with the bank size. The concern about the "too-

big-to-fail" problem also gives major banks additional incentives to assume more risk than
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small banks. This is because they can search for a bail-out by the government due to their

importance in keeping the stability of the whole system (Altunbas et al., 2017). Anand

et al. (2015) uses stress test to show that a large bank has a higher potential to cause a

contagious default than relatively small banks. Our work provides additional evidence

that a major bank may increase the systemic risk using a game formulation of the market

and perfoming extensive Monte Carlo simulations.

More specifically, due to the importance of large banks in the system, in this thesis

we aim to dynamically model the presence of a major bank in an interbank market. To

the best of our knowledge, this is the first time a major bank is modelled dynamically in a

game formulation of interbank markets in order to investigate its impact on systemic risk.

We use the mean field game (MFG) methodology to describe the borrowing and lending

activities between a large number of small banks, the major bank, and the central bank.

Then we investigate the systemic risk in such a financial environment. In the following

we briefly review the literature on MFGs and their applications in the domain of interbank

systems and systemic risk.

Mean field game (MFG) theory has been developed in the early 21st century to model

the interactions between a large number of agents (Lasry and Lions, 2007; Huang et al.,

2006, 2007; Gamito García, 2017; Carmona and Delarue, 2018). In such games each

agent is not only impacted by its own behaviour but also by the mass behaviour of all other

agents. The mathematical limit of this mass effect as the number of agents goes to infinity

is called the mean field. MFG theory establishes the existence of approximate Nash equi-

libria in such games and can be used to obtain the corresponding optimal strategies for

each player in the system. Huang et al. (2006, 2007) and Lasry and Lions (2007) indepen-

dently developed an analytical approach to solve the problem of constructing approximate

Nash equilibria for MFGs. In this approach, the system equilibrium solutions are formu-

lated as the solutions to a set of coupled PDEs consisting of the Hamilton-Jacobi-Bellman

equation and Kolmogorov equation. Moreover, Carmona and Delarue (2013) developed

a probabilistic approach for a similar problem. Due to special characteristics of some

agents in reality, such as market power and relatively large size, a significant part of the
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MFG literature is devoted to including a major agent to model the special impact of a rela-

tively influential agent in the game (Huang, 2010; Nguyen and Huang, 2012; Nourian and

Caines, 2013; Carmona and Zhu, 2016; Carmona and Wang, 2017, 2016; Şen and Caines,

2016; Firoozi and Caines, 2021; Firoozi et al., 2022a; Lasry and Lions, 2018; Bensoussan

et al., 2017; Moon and Başar, 2018). A few recent studies investigate the equivalency of

solutions to MFG systems with major and minor agents obtained via different approaches

(Firoozi et al., 2020; Huang, 2021; Firoozi, 2022)In particular, in this thesis we use the

convex analysis method developed in (Firoozi et al., 2020) to derive the best-response

transaction strategies in an interbank market with a major agent.

The MFG methodology has been used to solve problems in an extensive range of

applications, for example, equilibrium pricing (Shrivats et al., 2022; Gomes and Saúde,

2021; Fujii and Takahashi, 2022), optimal execution problems (Casgrain and Jaimun-

gal, 2020; Firoozi and Caines, 2015; Wu and Liu, 2017; Cardaliaguet and Lehalle, 2018;

Lehalle and Mouzouni, 2019), compliance market design (Firoozi et al., 2022b), games of

timing (Guéant et al., 2011), and production of exhaustible resources. It is not surprising

that the MFG methodology has been used extensively to obtain a deeper understanding

of systemic risk. The first interbank model using MFGs was proposed in (Carmona et al.,

2015) with N small banks borrowing or lending to each other and to the central bank.

In this model the log-monetary reserves of the banks are modelled as a system of mean-

reverting controlled diffusion processes coupled in the drift with the average log-monetary

reserve of all banks and subject to correlated noise processes. It is concluded that inter-

bank transaction improve the stability in the interbank market. Fouque and Ichiba (2013)

use a set of interacting Feller diffusion processes to model the monetary reserves of banks

and quantify the relationship between the lending preference of a bank and its bankruptcy.

They conclude that the growth rate and lending preferences are important for understand-

ing the systemic risk in interbank lending. Furthermore, Fouque and Sun (2013) investi-

gate different types of coupled systems: uncontrolled systems coupled through the drift

term and correlated Brownian motions, and controlled systems with mean field interac-

tion. They show that the interbank borrowing and lending activities increase both the
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stability and the likelihood of the systemic event. These results are consistent with those

from the numerical experiments of Garnier et al. (2013). Some other authors advanced

these models by taking into account more factors. The Cox–Ingersoll–Ross (CIR) pro-

cess was used to replace the Ornstein–Uhlenbeck (OU) processes used in Carmona et al.

(2015) to model the evolution of the log-monetary reserves (Sun, 2018). Sun (2019) ex-

tended the interbank model by considering heterogeneous borrowing and lending among

banks.

1.3 Interbank Transactions Model Model

In this section, we introduce the model we use to demonstrate the transactions in an

interbank system consisting of a major bank and a large number of small banks. In our

model, an individual bank trades with other banks and also choose an optimal strategy to

borrow from or to lend to the central bank to minimize its cost. We note that in reality

banks never lend money to the central bank. Hence, we need to give a broader definition

of this lending activity. A key instrument of monetary policy by the central bank is the

open market operation that adjusts the market liquidity through the sale or purchase of

financial assets on the market. Hence, in this work "Lending to the Central Bank" refers

to an individual bank activity when it buys a Treasury Bond or acts as a Repo buyer.

Under these circumstances, liquidity in the market decreases.

1.3.1 Major Bank Model

As mentioned in the Introduction, systemically important banks were identified by the

regulators given their special position in the financial system. In our setting, we use the

"major bank" to model the behavior of a relatively large influential bank, which is to be

differentiated from a small or minor bank.

We denote the major bank by A 0 and its logarithm of monetary reserves (log-monetary

reserves) at time t by x0
t . The major bank in our hypothesized economic environment
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borrows or lends to other banks when its log-monetary reserve is respectively lower or

higher than the average log-monetary reserve across small banks. These transaction rates

are proportional to the distance of the major bank from the average log-monetary reserve.

Therefore the log-monetary reserve of the major bank is assumed to satisfy

dx0
t = a0

[
F0x(N)

t − x0
t

]
dt +u0

t dt +σ0dW 0
t , (1.1)

where

x(N)
t =

1
N

N

∑
i=1

xi
t . (1.2)

In the above SDE, x(N)
t represents the average log-monetary reserves of the large pop-

ulation of minor banks. u0
t models the borrowing and lending activities of the major bank

with the central bank. Moreover, a0

[
F0x(N)

t − x0
t

]
models transactions of the major bank

with other banks in the market. As a0 increases, the major bank tends to trade more fre-

quently with other banks and to mean-revert more quickly to a fraction F0 of the market

mean log-monetary reserves. F0 quantifies the relative power the major bank aims to have

with respect to the aggregate log-reserve of minor banks. The parameter σ0 represents the

volatility of its log-monetary reserve which is coming from the depositing and withdraw-

ing activity of retail customers modelled by the Brownian motion W 0
t at each point t in

time.

From the perspective of a bank, it is natural to optimize the use of their deposits.

Hence, a bank is motivated to keep a minimum required amount of money in its ac-

counts and to borrow from other banks when it needs more money to cover the liquidity

gap. Therefore the operational target for the major bank is to control its rate (the amount

per unit time) of borrowing and lending reserves with the central bank and keep its log-

monetary reserve as close as possible to the average log-monetary reserve of the minor

banks. Mathematically, the objective of the major bank is to minimize its cost functional

JN
0 (u

0,u−0) = E
[∫ T

0

{1
2
(
u0

t
)2 −q0u0

t
(
F0x(N)

t − x0
t
)

+
ε0

2
(
F0x(N)

t − x0
t
)2
}

dt +
c0

2
(
F0x(N)

T − x0
T
)2
]

(1.3)
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The optimal strategy chosen by the major bank is represented by u0, and u−0 is

the collection of the optimal controls of all other banks besides the major bank u−0 =

(u1, . . . ,uN). From the cost functional above, the parameter q0 quantifies the incentive

to participate in borrowing and lending activity and a higher q0 is akin to the regulator

having low fees. ε0 measures the penalization posed on the major bank when its log-

monetary reserve deviates from the average log-monetary reserves of minor banks during

the considered period. The parameter c0 penalize the major bank if there exist a difference

between its log-monetary reserves and the average log-monetary reserves of minor banks

in the terminal time.

The information set of the major bank is denoted by F 0 = (F 0
t )t∈[0,T ]. It is generated

by the sample paths of the state of the major bank. The admissible set U0 of control action

for the major bank consists of all F 0-adapted R-valued processes such that E
[∫ T

0 u2
t dt

]
<

∞.

1.3.2 Minor Bank Model

In our model, we assume there are a large number N of minor banks in the market.

Each minor bank represents a small bank that has a negligible impact on the financial

system as the number N grows. We assume that all minor agents are homogeneous, i.e.

they share the same model parameters and hence are statistically identical. We denote a

minor bank by A i, i ∈ {1, ...,N},N < ∞ and its log-monetary reverse at time t by xi
t . The

log-monetary reserve xi
t of minor bank A i is assumed to satisfy the SDE

dxi
t = a

[(
Fx(N)

t +Gx0
t
)
− xi

t

]
dt +ui

tdt +σdW i
t . (1.4)

The difference between the log-monetary reserve dynamics of the major bank and that

of a minor bank is that a minor bank is directly influenced by the major bank. A minor

bank A i is motivated to keep its liquidity as much close as possible to the market average

state
(
Fx(N)

t +Gx0
t
)
. The market average state is modeled by a linear combination of

the average log-monetary reserve of all minor banks and the log-monetary reserve of the

major bank. The parameters F and G indicate the relative size of the major bank and the
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mass of minor banks and satisfy F +G = 1. Since the value of these parameters may not

be observed by an individual bank in the market, we assume it is provided by the central

bank. The term
[(

Fx(N)
t +Gx0

t
)
− xi

t

]
models the transactions of the minor bank with

the major bank and other minor banks. a represents with which the minor bank mean-

reverts to the market state through interbank transactions. ui
t is the control action of each

minor bank and it models the borrowing and lending activities of the minor bank with

the central bank. The parameter σi represents the volatility of its log-monetary reverse

arising from the depositing and withdrawing activity from their retail customers modelled

by the Brownian motion W i
t at each point t in time. All Brownian motions in this model

{W 0
t ,W

i
t , i ∈ {1,2, . . . ,N}} are independent.

Each minor bank aims to operate efficiently. Hence, it chooses an optimal strategy to

minimize its cost functional as in

JN
i (u

i,u−i) = E
[∫ T

0

{1
2
(
ui

t
)2 −qui

t
(
Fx(N)

t +Gx0
t − xi

t
)

+
ε

2
(
Fx(N)

t +Gx0
t − xi

t
)2
}

dt +
c
2
(
Fx(N)

T +Gx0
T − xi

T
)2
]
. (1.5)

The strategy chosen by a representative minor bank-i is represented by ui, and the collec-

tion of strategies chosen by all other banks is represented by u−i =(u0,u1, . . . ,ui−1,ui+1, . . . ,uN).

The cost functional of a minor bank is similar to that of the major bank. The difference

exists in the value of individual parameters and in the level of log-monetary reserve they

aim to hold. Due to the small size of a minor bank compared to that of the major agent the

value of its cost parameters q, ε , and c could be different from those of the major bank.

Moreover, a minor bank wishes to keep its log-monetary reserve as close as possible to

the market state (Fx(N)
t +Gx0

t ) described above. Moreover, for the minor bank’s cost

functional to be convex we assume q2 ≤ ε .

The information set of a representative minor bank A i is denoted by F i = (F i
t )t∈[0,T ].

It is generated by the states of the major bank and the minor bank A i. The admissible set

Ui of control action for the minor agent consists of all F i-adapted R-valued processes

such that E
[∫ T

0 (ui
t)

2dt
]
<∞ (this assumption makes sure that the optimal control problem

is well defined).
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1.3.3 Market Clearing Condition

We build our economy in a closed environment, which means that all banks in the

financial system can only transact with the central bank and other banks in the same sys-

tem. This implicitly proposes a constraint on our model that the sum of all log-monetary

reserves traded in the financial environment should sum to zero. In an individual trans-

action, one bank takes on the role of lending and there must exist another bank acting as

its counterparty and borrowing funds to it. Since all interbank transactions take place in

a closed economy, the total volume of log-monetary reserve transactions should be zero

after all netting activities at each point t in time, i.e.

a
N

N

∑
i=1

[(
Fx(N)

t +Gx0
t
)
− xi

t

]
+a0

[
F0x(N)

t − x0
t

]
= 0, t ∈ [0,T ]. (1.6)

In above equation the terms a
N ∑

N
i=1

[(
Fx(N)

t +Gx0
t
)
− xi

t
]

and a0
[
F0x(N)

t − x0
t
]

represent,

respectively, the average transactions of minor banks and the transcations of the major

bank per unit time with other banks in the market. We perform some algebraic manipula-

tions on (1.6) to get(
aF −a+a0F0

)
x(N)

t +
(
aG−a0

)
x0

t = 0, t ∈ [0,T ]. (1.7)

In order for the above condition to be satisfied at every time instant t ∈ [0,T ] and for every

value of processes x(N)
t and x0

t , we must have

a0F0 = a−aF, (1.6a)

a0 = aG. (1.6b)

By substituting (1.6b) into (1.6a) we obtain

F0 =
1−F

G
. (1.8)

In this model, we interprate the parameters F and G as the relative size of major bank and

the mass of minor banks in the market average state, i.e.

F +G = 1 (1.9)
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We substitute this constraint into (1.8) and obtain F0 = 1. Hence, in the rest of the thesis

we use F0 = 1 in the major bank’s model.

Furthermore, from (1.6b), we obtain a relationship between the mean reversion rate

of the major bank a0 and that of the minor banks a. As discussed G is associated with the

relative size of the major bank in the market average state and hence its value is smaller

than one. This means that the major bank always has a lower mean-reversion rate than

minor banks. In fact, the trade flow of a minor bank is divided into the trades with other

minor banks and with the major bank. In equilibrium the major bank gets the share aGx0
t

of trades which corresponds to its trade flow a0x0
t and gives rise to (1.6b).

It is worth mentionning that the smaller value of a0 can be interpreted as a larger mar-

ket friction for the major bank, which hinder it from trading quickly. This might seem

counterintuitive, since it is generally perceived that the major bank has comparative ad-

vantages due to its high credit rating or well-capitalization. We note that in our model

banks can only remedy their monetary reserves deficit either through interbank transac-

tions or transactions with the central bank. In addition, previous studies show that the

major bank might not be as advantaged as we thought in the interbank market. Bucher

et al. (2014) and Arce et al. (2017) proposed that interbank frictions mainly exist in the

form of transaction cost and regarded it broadly as the search cost. A bank must find

an appropriate counterparty that satisfies two conditions: (1) matching the liquidity re-

quirements and (2) willing to make an agreement with it. Hence, the major bank has to

split a large amount of liquidity needs into smaller ones and fulfill each part by using

the credit facilities in different counterparties. This may increase the search costs for the

major bank. At the same time, the major bank is not regarded as the optimal transaction

partner for a minor bank. This is because minor banks do not have too much bargain-

ing power over the major bank. Thus, minor banks are more likely to trade together first

and then trade with the major bank if they cannot find other minor banks (Colliard et al.,

2016). These two considerations might impede the major bank to mean-revert to their

target log-monetary reserves as quickly as the minor banks.
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1.4 Limiting Interbank Transactions Model: A MFG

formulation

As described in Section 1.3, banks in the financial system under study behave in a

competitive manner and aim to minimize their cost to achieve an optimal operation. Each

individual bank makes its own decision based on the information available at that time to

borrow or lend in the market. On the one hand a bank wishes to secure enough liquid-

ity and on the other hand it does not want to hold too much money to lose an excellent

investment opportunity. We aim to obtain a collection of optimal borrowing and lend-

ing strategies for individual banks yielding an equilibrium for the market. This could

be typically challenging even when there are a small number of banks in the financial

environment. Therefore we resort to the mean field game (MFG) methodology.

MFG theory analyzes a game environment where exists a large number of players tak-

ing strategies to minimize their own cost function. These players act in a non-cooperative

fashion and the information they rely on is the empirical distribution of states across popu-

lation instead of the individual strategy taken by other players in the game. The aggregate

effect of the population appears in the optimization problem through the dynamics or the

cost functions. The generic idea of the MFG methodology is that some simplifications

could be made in the limiting case with an infinite number of agents. The theory es-

tablishes the existence of the appropriate equilibria and an asymptotic solution for this

class of games when the number N of agents in the system goes to infinity. Moreover,

it is shown that a limiting equilibrium yields an approximate equilibrium for the original

finite-player game.

Here we introduce the mean field of log-monetary reserves x̄t and the mean field of

transactions with the central bank ūt in the limiting case as in

x̄t = E[x.t |F 0
t ], (1.10)

ūt = E[u.t |F 0
t ], (1.11)

where x.t and u.t denote, respectively, the log-monetary reserve and the borrowing and
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lending activities of a representative minor bank. If the limit exists, the mean field terms

are equivalent to the mathematical limit of the following empirical averages as the number

of banks N goes to infinity.

x̄t = lim
N→∞

x(N)
t = lim

N→∞

1
N

N

∑
i=1

xi
t , (1.12)

ūt = lim
N→∞

u(N)
t = lim

N→∞

1
N

N

∑
i=1

ui
t . (1.13)

Accordingly, we express the interbank model in the limiting case. This includes (i) the

dynamics of log-monetary reserves for bank, (ii) the cost faced by banks, and (iii) the

mean field equation as follows.

(i) Major bank

dx0
t = a0

[
x̄t − x0

t
]

dt +u0
t dt +σ0dW 0

t , (1.14)

J0(u) = E
[∫ T

0

{1
2
(
u0

t
)2 −q0u0

t
(
x̄t − x0

t
)
+

ε0

2
(
x̄t − x0

t
)2
}

dt +
c0

2
(
x̄T − x0

T
)2
]
. (1.15)

(ii) Minor banks

dxi
t = a

[(
Fx̄t +Gx0

t
)
− xi

t
]

dt +ui
tdt +σdW i

t , (1.16)

Ji(u) = E
[∫ T

0

{1
2
(
ui

t
)2 −qui

t
(
Fx̄t +Gx0

t − xi
t
)

+
ε

2
(
Fx̄t +Gx0

t − xi
t
)2
}

dt +
c
2
(
Fx̄T +Gx0

T − xi
T
)2
]
. (1.17)

(iii) Mean Field Equation We can derive the equation that the mean field satisfies in

terms of ūt by taking the conditional expectation of (1.16) conditioned on the information

set F 0
t . As a result the diffusion part disappears due to the independence of Brownian

motions {w0
t ,w

i
t} and the mean field x̄t satisfies

dx̄t =
[
a(F −1)x̄t +aGx0

t + ūt
]

dt. (1.18)

1.5 Best-Response Transactions and System Equilibria

There are many different ways to search for the optimal actions of the banks in our

financial system, such as the stochastic maximum principle, dynamic programming and
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calculus of variations. In this thesis, we apply the convex analysis approach developed

by the Firoozi et al. (2020) to seek the best response strategies for the major bank and for

each individual minor bank.

In Section 1.4, we replaced the average terms of all minor banks in dynamics and

cost functional by their infinite population limit to obtain the infinite population version

of the stochastic game. In this section we aim to derive the system equilibria for this

limiting market model. We note that in the limiting case, each minor bank is interacting

with the major bank and the mean field instead of N − 1 other minor banks. A similar

situation holds for the major bank as it is interacting only with the mean field. Moreover,

we can derive the equation that the mean field satisfies. All these observations motivate

us to extend the dynamics of (i) the major bank to include the mean-field of log-monetary

reserves, and (ii) a representative minor bank to include the major bank’s log-monetary

reserve dynamics, and the mean-field dynamics. In this manner for each individual banks

in the system, we obtain a stochastic control problem. These optimal control problems are

linked through the shared elements, i.e. the major bank’s log-monetary reserve and the

mean-field of log-monetary reserves. Then we can solve these stochastic control problems

to obtain the best-response strategies and a consistent mean-field. In the last step, we use

these limiting best response strategies in the finite population market model which yields

and ε-Nash equilibrium for the latter.

1.5.1 Important Results

We first summarize all the important results of our work and then we show the detailed

derivation in the following subsection.

Theorem 1 (Best-Response Transactions) For the interbank market model given by (1.14)

- (1.17), the optimal borrowing and lending strategies for the major bank and a represen-

tative minor bank, and the mean field equation are given by

(i) Major bank:
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• Optimal control

u0,∗
t =

(
q−φ

0
t
)(

Fx̄t − x0
t
)

(1.19)

• ODE that the coefficient in the optimal control satisfies

φ̇
0
t = 2(a0 +q0)φ

0
t −

(
φ

0
t
)2

+
(
a+q−φt

)
G
(
φ

0
t
)
+ ε0 −q2

0

φ
0
T =−c0

(1.20)

(ii) Minor banks:

• Optimal control

ui,∗
t =

(
q−φt

)[(
Fx̄t +Gx0

t
)
− xi

t
]

(1.21)

• ODE that the coefficient in the optimal control satisfies

φ̇t = 2(a+q)φt −
(
φt
)2

+ ε −q2

φT =−c
(1.22)

(iii) Mean Field Equation:

dx̄t =
(
a+q+φt

)[
(F −1)x̄t +Gx0

t
]
dt. (1.23)

Proof. See Section 1.5.2. □

In our model, each individual bank interacts with the aggregate effect of the population

and simultaneously takes an optimal strategy for trading with the central bank. Hence the

notion of Nash equilibrium becomes relevant. A Nash equilibrium is characterized by the

fact that no individual agent can obtain an additional benefit by just unilaterally changing

the strategies it takes. Thus an agent has no motivation to deviate from a Nash strategy

while all other agents are following them. In the following we first give the mathematical

definition of Nash equilibrium and then show that the set of obtained optimal strategies in

Theorem 1 yields a Nash-equilibrium for the limiting interbank market.

Consider a non-cooperative game with N agents. Each agent-i, i ∈ {1, . . . ,N}, has

a choice of strategy denoted by ui in the admissible set of strategies U . We denote by
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u−i the collection of strategies chosen by all other agents other than agent-i. To be more

specific, (ui,u−i) represents the N-tuple (u1, . . . ,uN), and (u,u−i) represents the N-tuple

(u1, . . . ,ui−1,u,ui+1, . . . ,uN), where for the latter the i-th element ui in the original tuple

is replaced by u.

Definition 1 (Nash Equilibrium) An N-tuple of strategies (u1, . . . ,uN)∈U 1×·· ·×U N

is said to be a Nash equilibrium for an N-player non-cooperative game if for every i ∈

{1, . . . ,N} and u ∈ U i,

Ji(u1, . . . ,ui, . . . ,uN)≤ Ji(u1, . . . ,ui−1,u,ui+1, . . . ,uN), (1.24)

or equivalently

ui = argmin
u∈U i

Ji(u,u−i). (1.25)

Theorem 2 (Nash Equilibrium for Infinite-Population Interbank Market) For the lim-

iting interbank market (1.14)-(1.17), the N-tuple of best-response strategies

U = (u0,u1, . . . ,ui, . . . ,u∞), characterized by (1.19)-(1.22), yields a Nash equilibrium.

Proof. Given that all banks are following the strategies from U , the mean field satis-

fies (1.23). Now if a minor bank unilaterally deviates from U , as individually it has

a negligible impact, this deviation does not affect the mean field value and its charac-

terization. Hence, the minor bank seeks an optimal strategy in response to the same

mean field as before. This yields to the strategy specified by (1.52)-(1.22). Hence the

minor bank cannot benefit by deviating unilaterally. A similar reasoning can be used

for the unilateral deviation of the major bank from U . In this case still the mean field

satisfies (1.23), where the value of x0
t is updated. This results in the same optimal con-

trol law for the major bank. Hence U forms a Nash equilibrium for the limiting inter-

bank market model (1.14)-(1.17) (see also (Huang, 2010; Carmona and Wang, 2016)).

□

We note that we are interested in an equilibrium for the original finite-population in-

terbank market model described by (1.1)-(1.5). Now we connect the obtained solutions
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for the limiting model to the finite-population model through the notion of ε-Nash equilib-

rium. An ε-Nash equilibrium is an approximation to the Nash equilibrium. The difference

exists in that an agent may have small incentives to unilaterally change its strategy in an

ε-Nash equilibrium. Hence, the requirement that no agent has any incentive to deviate

from its strategy in Nash equilibrium has been weakened. However, the incentive will not

be larger than ε , where ε is of small value.

Definition 2 (ε-Nash property) An N-tuple of strategies (u1, . . . ,uN) ∈ U 1 ×·· ·×U N

is said to be an ε-Nash equilibrium solution for an N-player non-cooperative game if

there exists an ε ≥ 0 such that for i ∈ {1, . . . ,N} and u ∈ U i,

Ji(ui,u−i)≤ Ji(u,u−i)+ ε, (1.26)

where u is an admissible alternative strategy for agent-i.

Theorem 3 (ε-Nash Equilibrium for Finite-Population Interbank Market) For the finite-

population interbank market (1.1)-(1.5), the N-tuple of best-response strategies U =

(u0, . . . ,ui, . . . ,uN), specified by (1.19)-(1.22), yields a ε-Nash equilibrium.

Proof. The interbank model considered is a special case of LQG mean field games with

one major agent and a large population of minor agents. Hence, the proof of ε-Nash prop-

erty follows from the existing results in the literature, see e.g. (Huang, 2010; Carmona

and Zhu, 2016). □

1.5.2 Methodology

In this section we obtain the optimal trading strategy for the major bank and a repre-

sentative minor bank A i for the limiting interbank model given by (1.1)-(1.5), and market

clearing conddtion (1.6) and (1.9). We explain each step of the solution methodology in

detail. First of all, following the MFG methodology with a major agent (Huang, 2010),

we extend the dynamics of the log-monetary reserves for the major bank as we described
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at the very beginning of this section. Then following the convex analysis method devel-

oped by Firoozi et al. (2020), we perturb the major bank’s control action by a relatively

small value and investigate how this disturbance propagates through the whole economy.

Subsequently, we write down the Gâteaux Derivative of the major bank and set it equal

to zero to derive the major bank’s optimal control. We note that we cannot directly use

the results derived by Huang (2010) and Firoozi et al. (2020). This is because, for the

purpose of our work, we are interested in deriving the optimal transcation rates in terms

of the difference between the market state (or the average log-monetary reserve) and the

bank’s log-monetary reserves (i.e. (Fx(N)
t − x0

t ) or (Fx(N)
t +Gx0

t − xi
t)). In order to com-

pletely characterize the major bank’s optimal strategy we need to characterize the mean

field. Thus we investigate a representative minor bank’s problem subsequently. We fol-

low a similar variational analysis to solve the minor bank’s problem. Then we return to

the major bank’s problem and complete the analysis to obtain an explicit representation

of the optimal control strategy.

(a) Major Bank Problem

Step (i): Perturb the control of the major bank by δ0 in the direction ω0 ∈ U 0. The

dynamics for log-monetary reserves of the major bank is subjected to the perturbed control

u0
0 +δ0ω0.

dx0,δ0
t = a0

(
x̄δ0

t − x0,δ0
t

)
dt +

(
u0

t +δ0ω
0)dt +σ0dW 0

t (1.27)

Step (ii): Follow the effect of the major bank’s perturbed control action on its own state

and every minor bank’s state to obtain the resulting perturbed mean-field x̄δ0
t .

Perturbed minor banks’ states xi,δ0:

dxi,δ0
t = a

[(
Fx̄δ0

t +Gx0,δ0
t

)
− xi,δ0

t

]
dt +ui

tdt +σdW i
t (1.28)

Perturbed mean-field x̄δ0
t : Taking the conditional expectation of (1.28) given F 0

t

yields the mean-field equation:

dx̄δ0
t =

[
a(F −1)x̄δ0

t +aGx0,δ0
t + ūt

]
dt (1.29)
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From (1.28) and (1.29), we get a clear idea about how a shock of the major bank in-

fluence the minor banks and the whole system, which is a benefit obtained by the convex

analysis approach (Firoozi et al., 2020). The perturbation in the trading activity of the ma-

jor bank with the central bank affects its own log-monetary reserves. As its special status

in the market, the log-monetary reserves of the major bank directly influence that of mi-

nor banks and indirectly affect the mean-field of the market state. In turn, the mean-field

influence the major bank through participating in its log-monetary reserves evolvement.

Step (iii): Extend the major bank’s state to include the joint dynamics of the major bank’s

state and the mean-field

X0,δ0
t =

x0,δ0
t

x̄0,δ0
t

 (1.30)

We substitute the original dynamics for minor banks to the equation of mean-field to

get the dynamics of the extended state and the extended cost function:

dX0,δ0
t =

dx0,δ0
t

dx̄0,δ0
t

=
[
Ã0X0,δ0

t +B0u0
t + B̃0ūt +δ0B0ω

0
]

dt +Σ0dW 0
t (1.31)

where

Ã0 =

 −a0 a0

aG a(F −1)

, B0 =

 1

0

, B̃0 =

 0

1

, Σ0 =

 σ0 0

0 0

. (1.32)

J0(u0 +δ0ω
0) = 1

2E
[∫ T

0

{
(X0,δ0

s )⊺Q0X0,δ0
s +2(X0,δ0

s )⊺N0(u0
s +δ0ω

0
s )+

(u0
s +δ0ω

0
s )

2
}

dt +(X0,δ0
T )⊺G0X0,δ0

T

]
, (1.33)

where

Q0 =

 ε0 −ε0

−ε0 ε0

, N0 =

 q0

−q0

, G0 =

 c0 −c0

−c0 c0

. (1.34)

Step (iv): Summarize for the unperturbed extended dynamics and cost function for major

bank.
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• By setting the perturbation in (1.5.2) to zero, we get the unperturbed extended dy-

namics for major banks:

dX0
t =

[
Ã0X0

t +B0u0
t + B̃0ūt

]
dt +Σ0dW 0

t . (1.35)

• Cost function of major bank expressed in extended state:

J0(u0) = 1
2E

[∫ T

0

{(
X0

s
)⊺Q0X0

s + 2
(
X0

s
)⊺N0

(
u0

s
)
+
(
u0

s
)2
}

dt +
(
X0

T
)⊺G0X0

T

]
.

(1.36)

Now we aim to characterize the mean field of controls ūt appearing in the dynamical

model of the major bank. For this purpose, we look into the problem of a representative

minor agent.

(b) Minor Bank Problem

Step (i): Perturb a minor bank’s control action by δi in the direction ω i ∈ U i.

dxi,δi
t = a

[(
Fx̄δ0

t +Gx0,δi
t

)
− xi,δi

t

]
dt +

(
ui

t +δiω
i)dt +σdW i

t (1.37)

Step (ii):By taking the average of (1.37) and then the mathematical limit as N → ∞, we

get the perturbed mean-field x̄δi:

dx̄δi
t =

[
a(F −1)x̄δi

t +aGx0,δi
t + ūt

]
dt (1.38)

The shock on the minor banks propagates throughout the whole system in a different

fashion as that of the major bank. From (1.37) and (1.38), a disturbance in a small bank’s

trading activity with a central bank affects its own log currency reserves. Because of the

negligible impact of one minor bank, the mean-field and major bank are not effected by

the perturbation of minor banks’ control action, so we get x̄δi
t = x̄t and x0,δi

t = x0
t .

Step (iii): Extend the minor bank’s state to include the joint dynamics of the minor banks,

major banks and mean-field.

X i,δi
t =


xi,δi

t

x0,δi
t

x̄0,δ0
t

=


xi,δi

t

x0
t

x̄t

=

 xi,δi
t

X0,δ0
t

 (1.39)
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We substitute the equation of the extended dynamics for major bank (1.5.2) and the

dynamics for minor (1.37) to get the expression of the extended dynamics for the minor

bank-i as in

dX i,δi
t =

 dxi,δi
t

dX0,δ0
t

=
[
ÃX i,δi

t +Bui
t + B̃ūt +δiBω

i
]

dt +ΣdW i
t (1.40)

where

Ã =

 −a [aG,aF ]

0 Ã0 −B0N⊺
0 −B0B⊺

0φ 0
t B

⊺
0Ã0

, B=

 1

0

, B̃ =

 0

B̃0

, Σ =

 σ 0

0 Σ0

.
(1.41)

Then we obtain the perturbed cost function for minor bank-i:

Ji(ui +δiω
i) = 1

2E
[∫ T

0

{
(X i,δi

s )⊺QX i,δi
s +2(X i,δi

s )⊺N
(
ui

s +δiω
i
s
)

+
(
ui

s +δiω
i
s
)2
}

ds+
(
X i,δi

T
)⊺Q̂X i,δi

T

]
, (1.42)

where

Q=


ε −Gε −Fε

−Gε G2ε FGε

−Fε FGε F2ε

, N=


q

−qG

−qF

, Q̂ =


c −cG −cF

−cG cG2 cFG

−cF cFG cF2

.
(1.43)

Step (iv): We use the theorem 2-4 developed by Firoozi et al. (2020) to obtain the best

response strategy for the minor bank. For the LQG system (1.37) and (1.42) we write

down the Gâteaux Derivative:

⟨DJ∞
i (u),ω

i⟩= E
[∫ T

0
ω

i
t

{
N⊺X i

t +ui
t +B⊺

(
e−Ã⊺tMt −

∫ t

0
eÃ⊺(s−t)(QX i

s +Nui
s)ds

)}]
dt,

(1.44)

where Mt is a martingale and

Mi
t = E

[
eÃ⊺

Q̂X i
T +

∫ T

0
eÃs(QX i

s +Nui
s)ds|Fs

]
, (1.45)
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Mi
t = Mi

0 +
∫ t

0
Zi

sdW i
s ,

dW i
t = Zi

t dW i
t .

(1.46)

By setting the perturbation δi in (1.40) to zero, we get the unperturbed extended state

dynamics for minor banks.

dX i
t =

[
ÃX i

t +Bui
t + B̃ūt

]
dt +ΣdW i

t . (1.47)

From the theorem 3 shown by Firoozi et al. (2020), we could derive the minor bank’s

optimal control action:

ui,∗
t =−

[
N⊺X i

t +B⊺
(

e−Ã⊺
Mi

t −
∫ t

0
eÃ⊺(s−t)(QX i

s +Nui,∗
s )ds

)]
. (1.48)

Then we define the minor bank’s adjoint process pi
t by

pi
t = e−Ã⊺

Mi
t −

∫ t

0
eÃ⊺(s−t)(QX i

s +Nui,∗
s )ds, (1.49)

and adopt the ansatz

pi
t =−1

q
ΦtN⊺X i

t = Φt

[(
Fx̄t +Gx0

t
)
− xi

t

]
, (1.50)

where

Φt =


φt

ψt

λt

 . (1.51)

Hence the optimal control action (1.48) can be written as

ui,∗
t =−

[
N⊺X i

t +B⊺pi
t

]
=−

[
N⊺X i

t −
1
q
B⊺

ΦtN⊺X i
T

]
=
(
−q+φt

)
xi

t +
(
qG−φtG

)
x0

t +
(
qF −φtF

)
x̄t

=
(
q−φt

)[(
Fx̄t +Gx0

t
)
− xi

t
]
.

(1.52)
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We average the expression (1.52) and then take its limit as N → ∞ to get the mean-field

of the optimal control ūt :

ūt = q
[
Gx0

t +(F −1)x̄t
]
+φt

[
−Gx0

t − (F −1)x̄t
]
,

=
1
a

(
q−φt

)
B̃⊺

oÃ0X0
t ,

=
(
q−B⊺

Φt
)
K⊺X i

t ,

(1.53)

where

K =


0

G

F −1

 . (1.54)

We apply Ito’s Lemma to (1.49) and use the martingale representation theorem, and

we find the minor bank’s adjoint process pi
t satisfied the following SDE:

d pi
t =

[
− Ã⊺pi

t −
(
QX i

t +Nui,∗
t
)]

dt + e−Ã⊺tZi
t dW i

t . (1.55)

Substituting (1.50) into (1.55) results in:

d pi
t =

[
1
q

Ã⊺
ΦtN⊺−Q+NN⊺− 1

q
NB⊺

ΦtN⊺
]

X i
T dt + e−Ã⊺tZi

t dW i
t . (1.56)

Moreover, we apply Itô’s Lemma to (1.50) and the pi
t satisfied another SDE:

d pi
t =

[
− 1

q
Φ̇tN⊺X i

t −
1
q

ΦtN⊺(ÃX i
t +Bui

t + B̃ūt
)]

dt − 1
q

ΦtN⊺
ΣdW i

t . (1.57)

Substituting (1.48) and (1.53) into the drift term of (1.57) and results in:

d pi
t =

[
− 1

q
Φ̇tN⊺− 1

q
ΦtN⊺Ã+

1
q

ΦtN⊺BN⊺− 1
q2 ΦtN⊺BB⊺

ΦtN⊺

−1
q

(
q−B⊺

φt
)
ΦtN⊺B̃K⊺

]
X i

t dt − 1
q

ΦtN⊺
ΣdW i

t .

(1.58)

Then we match the two SDE (1.56) and (1.58) to get the two conditions that Φt satisfies

as in

• Diffusion term:

− 1
q

ΦtN⊺
Σ = e−Ã⊺tZi

t . (1.59)
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• Drift term:

−1
q

Φ̇tN⊺− 1
q

ΦtN⊺Ã+
1
q

ΦtN⊺BN⊺− 1
q2 ΦtN⊺BB⊺

ΦtN⊺− 1
q

(
q−B⊺

Φt
)
φtN⊺B̃K⊺

=
1
q

Ã⊺
ΦtN⊺−Q+NN⊺− 1

q
NB⊺

ΦtN⊺.

(1.60)

In this section, we characterized the optimal control actions of minor banks which are

used for deriving the mean-filed of the control actions ūt . This will be used in the next

section to complete the solution of the major bank’s problem.

(c) Major Bank Problem

We recall some results from the previous section and do some calculation for the major

bank’s LQG system. Then we derive the optimal control for the major bank.

• Substitute ūt (1.53) into unperturbed extended dX0
t (1.35) to to get the extended

state dynamics:

dX0
t =

{[
Ã0 +

1
a
(q−φt)B̃0B̃⊺Ã0

]
X0

t +B0u0
t

}
dt +Σ0dW 0

t

= [A0X0
t +B0u0

t ]dt +Σ0dW 0
t ,

(1.61)

where

A0 = Ã0 +
1
a
(q−φt)B̃0B̃⊺Ã0. (1.62)

• The cost function from the previous section:

J0(u0) = 1
2E

[∫ T

0

{
(X0

s )
⊺Q0X0

s + 2(X0
s )

⊺N0(u0
s ) + (u0

s )
2
}

ds + (X0
T )

⊺G0X0
T

]
,

(1.63)

Step (i): Write down the Gâteaux Derivative of major bank:

⟨DJ∞
0 (u),ω

0⟩= E
[∫ T

0
ω

0
t

{
N⊺X0

t +u0
t +B⊺

(
e−A⊺tM0

t −∫ t

0
eA

⊺(s−t)(Q0X i
s +N0ui

s)ds
)}]

dt. (1.64)

31



where M0
t is a martingale as in

M0
t = E

[
eA

⊺
0G0X0

T +
∫ T

0
eA

⊺
0s(Q0X0

s +N0u0
s )ds|Fs

]
, (1.65)

and by the martingale representation theorem we have

M0
t = M0

0 +
∫ t

0
Z0

s dW 0
s ,

dW 0
t = Z0

t dW 0
t .

(1.66)

Step (ii): We obtain the optimal control action for the major bank in the infinite-population

limit. Since the DJ∞
0 (u) has the similar structure as DJ(u) in the Theorem 3 developed

by Firoozi et al. (2020), we could directly write out the optimal control action

u0,∗
t =−

[
N⊺

0X0
t +B⊺

0

(
e−A⊺

0 M0
t −

∫ t

0
eA

⊺
0(s−t)(Q0X0

s +N0u0,∗
s )ds

)]
. (1.67)

Step (iii): We derive the State feedback control action for the major bank. To this purpose

we define the major bank’s adjoint process p0
t by

p0
t = e−A⊺

0 M0
t −

∫ t

0
eA

⊺
0(s−t)(Q0X0

s +N0u0,∗
s )ds. (1.68)

We adopt the ansatz

p0
t =− 1

q0
Φ

0
t N

⊺
0X0

t = Φ
0
t
(
x̄t − x0

t
)
, (1.69)

where

Φ
0
t =

 φ 0
t

ψ0
t

. (1.70)

Substituting (1.68) and (1.69) into (1.71):

u0,∗
t =−

[
N⊺

0X0
t +B⊺

0 p0
t

]
=−

[
N⊺

0X0
t +B⊺

0Φ
0
t
(
x̄t − x0

t
)]
.

=
(
q−φ

0
t
)(

Fx̄t − x0
t
)

(1.71)
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We apply Ito’s lemma to (1.68) and using the martingale representation theorem to get the

SDE that the major bank’s adjoint process satisfies as in

d p0
t =

[
−A⊺

0 p0
t −

(
Q0X0

t +N0u0,∗
t

)]
dt + e−A⊺

0tZ0
t dW 0

t . (1.72)

Then we replace (1.69) and (1.71) into the (1.72) to get

d p0
t =

[
− 1

a0
A⊺

0Φ
0
t B

⊺
0Ã0X0

t −Q0X0
t +N0N⊺

0X0
t +

1
a0

N0B⊺
Φ

0
t B

⊺
0Ã0X0

t

]
dt + e−A⊺

0tZ0
t dW 0

t .

(1.73)

Moreover, we apply Ito’s Lemma to (1.69) to obtain another SDE that p0
t satisfies as in:

d p0
t =

{
Φ̇

0
t
(
x̄t − x0

t
)
+Φ

0
t
[
a(F −1)x̄t +aGx0

t + ūt
]
−Φ

0
t

(
a0x̄t −a0x0

t +u0
t

)}
dt

−φ
0
t σ0dW 0

t .

(1.74)

We then rewrite (1.74) in the extended form and replace (1.71) and (1.53) to get

d p0
t =

[( 1
a0

Φ̇
0
t −Φ

0
t +

1
a0

Φ
0
t B⊺

φ
0
t
)
B⊺

0Ã0X0
t +Φ

0
t B̃⊺

0Ã0X0
t +

1
a

(
q−φt

)
Φ

0
t B̃⊺

0Ã0X0
t

+Φ
0
t N

⊺
0X0

t

]
dt +

(
−Φ

0
t σ0

)
dW 0

t .

(1.75)

Finally we match the two SDEs (1.73) and (1.75) to get the two conditions that the Φ0
t

must satisfy, i.e.

• Diffusion term:

e−A⊺
0tZ0

t =−Φ
0
t σ0. (1.76)

• Drift term:( 1
a0

Φ̇
0
t −Φ

0
t +

1
a0

Φ
0
t B⊺

Φ
0
t
)
B⊺

0Ã0 +Φ
0
t B̃⊺

0Ã0 +
1
a

(
q−φt

)
Φ

0
t B̃⊺

0Ã0 +Φ
0
t N

⊺
0 =

− 1
a0

A⊺
0Φ

0
t B

⊺
0Ã0 −Q0 +N0N⊺

0 +
1
a0

N0B⊺
Φ

0
t B

⊺
0Ã0.

(1.77)

To conclude, we derived the optimal trading strategies for the major bank and a repre-

sentative minor bank Ai given, respectively, by (1.71), (1.77), and (1.52), (1.60). We can
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then exploit the structure of system matrices to simplify the optimal strategies and the as-

sociated ODEs by performing simple matrix multiplications. This gives rise to a reduced

representation of the optimal trading strategies as in

u0,∗
t =

(
q−φ

0
t
)(

Fx̄t − x0
t
)

φ̇
0
t = 2(a0 +q0)φ

0
t −

(
φ

0
t
)2

+
(
a+q+φt

)
G
(
φ

0
t
)
+ ε0 −q2

0

φ
0
T =−c0

(1.78)

ui,∗
t =

(
q−φt

)[(
Fx̄t +Gx0

t
)
− xi

t
]

φ̇t = 2(a+q)φt −
(
φt
)2

+ ε −q2

φT =−c,

(1.79)

1.6 Individual Default and Systemic Risk

The most basic idea of banking industry is to bridge the counterparties who want to

borrow and lend. They provide the channel making the monetary resources in the system

more flexible and used in a more efficient way. Out of profitability, it is natural for banks

to absorb the short-term funds and make long-term loans which is a strategy helping them

to profit from the difference between the interest rates of various maturities. However,

this strategy could also put a bank in a dangerous position where it does not hold enough

liquidity to pay back the withdrawal requests initiated by its customers. Usually, banks

also use some financial instruments in the interbank market such as credit lines to make up

the deficit in their balance sheet. However, the liquidity of a bank can dry up when there

exist some negative indicators shown in its daily operation . In the event of a liquidity

shortage, a bank faces the default risk.

Because of the complex and close interactions of banks in an interbank market, there

exists a phenomenon called “Financial Contagion” in the financial system, just like what

happened in the 2008 global financial crisis. The default risk faced by one bank may

lead to a bank run as the public is more comfortable with holding cash in their hand

instead of depositing it in the bank. If the panic quickly spreads to the whole market,
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it is very likely to lead to liquidity black holes and disorders in the financial system.

This in turn means that more banks will get in trouble. Since globalization has been

deepening, almost all markets worldwide are connected with each other through monetary

and financial systems. Hence the risk in a bank industry may evolve into a world-wide

disaster which disrupts the growth of global GDP.

In general the default of a bank in the financial environment is defined as the situation

where it is unable to fulfill the timely repayment its liability or to afford it after selling all

the assets. In this work, motivated by Carmona et al. (2015), we consider a simpler defi-

nition of default as the scenario where the log-monetary reserve of one bank goes below

a specific value which is called the default threshold. We regard the systemic event as a

circumstance where the market average log-monetary reserve falls in the default region.

The market average log-monetary reserve or state, Fx̄t +Gx0
t , is defined as a linear com-

bination of the major bank’s log-monetary reserve and the average log-monetary reserve

of the mass of minor banks.

Now we present the mathematical definition of the default probabilities of interest.

We denote the default threshold by D, to which we assign an exogenous default threshold

D = −0.65 derived from Section 1.8. We then define the default probability of bank-

i, i ∈ {1, . . .}, as in

pi = P
(

min
t∈[0,T ]

(xi
t) ≤ D

)
. (1.80)

Subsequently the probability of systemic event, or equivalently, systemic risk, is defined

by

pSE = P(systemic event) = P
(

min
t∈[0,T ]

(
Fx̄t +Gx0

t
)
≤ D

)
. (1.81)

In particular we are interested in the difference that the presence of a major bank makes

in the default of probability pi of a representative small bank-i, i ∈ {1,2, . . .} and in the

systemic risk pSE . The results where there is no major bank in the economy is available in

the literature (see e.g. (Carmona et al., 2015; Fouque and Ichiba, 2013; Fouque and Sun,

2013)) and permits us to perform a comparison. Furthermore, to better understand the role

of the major bank on the resilience of the interbank market, we define the aforementioned
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default probabilities conditioned on the event that the major bank defaults or otherwise in

the market. Mathematically speaking, for i ∈ {1,2, . . .}, we are interested in

pi|MD = P
(

min
t∈[0,T ]

(xi
t) ≤ D|major bank defaults on [0,T ]

)
, (1.82)

pi|MS = P
(

min
t∈[0,T ]

(xi
t) ≤ D|major bank does not default on [0,T ]

)
. (1.83)

Similarly we are interested in the conditional systemic risks as in

pSE|MD = P
(

min
t∈[0,T ]

(
Fx̄t +Gx0

t
)
≤ D|major bank defaults on [0,T ]

)
, (1.84)

pSE|MS = P
(

min
t∈[0,T ]

(
Fx̄t +Gx0

t
)
≤ D|major bank does not default on [0,T ]

)
. (1.85)

Clearly, du to the law of total probability, the introduced probabilities satisfy

pi =
(

pi|MD − pi|MS
)
×P(major bank defaults on [0,T ])+ pi|MS, (1.86)

pSE =
(

pSE|MD − pSE|MS
)
×P(major bank defaults on [0,T ])+ pSE|MS. (1.87)

We aim to investigate both total and conditional probabilities of a representative minor

bank’s default and the systemic event in various scenarios. More specifically, we study

how these probabilities change with the relative size G and the mean reversion rate a0 of

the major bank using Monte Carlo simulations presented in the following section.

1.7 Numerical experiments

In Section 1.3 we present a game formulation of an interbank market consisting of a

large number of minor banks and one major bank. We then aim to find the best-response

strategies of banks such that they yield an equilibrium for the market. Due to the presence

of a large number of agents and their interactions, solving such a problem is mathemati-

cally intractable in general. We use the mean field methodology to address this problem

by solving the infinite-population version of the game when the number of agents goes

to infinity. Then we show that the limiting strategies yield an ε-Nash equilibrium for the

original finite-population problem. What we care about is the presence and position of

the major bank on the behavior of the minor banks and the entire system.
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In this section first we numerically implement the infinite-population system. Then

we estimate the default probabilities introduced in Section 1.6 using Monte Carlo sim-

ulations. Moreover, we illustrate the sample trajectories of banks and the market state.

Next we implement the finite population system. We show that the infinite-population

system (and hence the limiting best-response strategies) provides a good approximation

for the finite-population system through some illustrations. Subsequently we look into

the default probability of a representative minor bank and systemic risks. Furthermore,

we illustrate sample trajectories and depict the loss distribution of minor agents in various

scenarios detailed below.

In a more technical level, in both infinite and finite population cases, we set the de-

fault threshold D =−0.651. We assume all banks still stay in the system and continue to

lend and borrow until the end of time period even though they have reached the default

threshold. We use regression analysis to estimate pi, pi|MD, pi|MS, pSE , pSE|MD, pSE|MS re-

spectively by p̄i, p̄i|MD, p̄i|MS, p̄SE , p̄SE|MD, p̄SE|MS for the cases where the relative size G

and the mean reversion rate a0 of the major bank changes. The details of the regression

models used can be found in Section 1.8.

1.7.1 Infinite Population

For the numercial analysis in the following subsections, we simulate 104 minor banks

in the economy and perform 5000 simulations for each market setting to estimate the dis-

cussed default probabilities using Monte Carlo simulations. The results are summarized

in three subsections: 1.7.2.1. Impact of Relative Size of Major Bank, 1.7.2.2. Impact of

Mean-Reversion Rate, and 1.7.2.3. Mean-Reversion Rate Across Time.

1.7.2.1 Impact of Relative Size of Major Bank

According to the model we described in Section 1.4, each minor bank wishes to track

the average log-monetary reserve in the market or the market state
(
Fx̄t +Gx0

t
)
. The

1The method used to collect the default threshold is described in Section 1.8.
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market state is a weighted average of the major bank’s log-monetary reserve and the

mean field of log-monetary reserves. The parameters G and F denote, respectively, the

relative sizes of major bank and the mean field such that G + F = 1. We study how

changing the relative size G of the major bank in the set {0.1,0.2,0.3, . . . ,0.9} affects to-

tal and conditional default probabilities pi, pi|MD, pi|MS, i ∈ {1,2, . . .}, and systemic risks

p̄SE , p̄SE|MD, p̄SE|MS.

(a) Default Probability of a Representative minor bank

We use linear regression2 to examine the variation of the default probability of a rep-

resentative minor bank-i, i ∈ {1, . . . ,∞}, for different values of G ∈ {0.1,0.2, . . . ,0.9}.

The obtained results are summarized in Table 1.1. We note that the first column in Ta-

ble 1.1 is the estimated default probability of a representative small bank in an interbank

market where the is no major bank (see e.g. (Carmona et al., 2015; Fouque and Ichiba,

2013; Fouque and Sun, 2013)). By comparing this default probability with that of an

interbank market with a major bank, we can better understand the impact of the major

agent.

From the estimated values shown in Table 1.1, the average default probability for a

representative minor bank is around 0.2363 in the absence of a major bank. However,

we observe that the total default probability p̄i of the minor bank generally increases

when there exists a major bank in the market. Moreover, the larger the relative size G

of the major bank, the larger is the default probability p̄i. Initially, there seems to be no

benefit in having a major bank in the interbank market. By looking more closely into the

total default probability p̄i, we can disentangle it into the weighted average of the two

conditional probabilities p̄i|MD, p̄i|MS depending on whether the major bank defaults or

not. We find that the default probability of the minor bank in the system with a defaulting

major bank, i.e. p̄i|MD, is much higher than the case without a major agent. This could be

explained by the fact that if the major bank defaults it may drag down minor banks and

this impact is stronger when the major bank has a larger size. Hence the small banks are

2See the "Regression Model 1" in Section 1.8.
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G No Major Bank

With a Major Bank

Total
Conditional

Non-defaulting Major Defaulting Major
p̄i p̄i|MS p̄i|MD

0 0.2363 - - -
0.1 - 0.2531 0.2082 0.3336
0.2 - 0.2877 0.1962 0.4484
0.3 - 0.3120 0.1921 0.5389
0.4 - 0.3417 0.1925 0.6206
0.5 - 0.3584 0.1997 0.6558
0.6 - 0.3727 0.1954 0.6974
0.7 - 0.3896 0.2044 0.7423
0.8 - 0.3919 0.2011 0.7601
0.9 - 0.4103 0.2084 0.7839

Table 1.1: Estimated default probability of a representative minor bank in the infinite
population limit for the cases (from left to right) with (i) no major bank, (ii) total default
probability (p̄i) with a major bank, (iii) conditional default probability (p̄i|MS) with a non-
defaulting major bank, and (iv) conditional default probability (p̄i|MD) with a defaulting
major bank

more likely to wind up in the default area. However, we observe that the presence of a

non-defaulting major bank does slightly improve the position of the representative small

bank. In this case the average default probability p̄i|MS decreases to around 0.2 in the

system. This positive impact holds true even when the relative size G of the major bank

is 0.1 with respect to the mean field size F = 0.1.

From these simulations we can conclude that a major bank has two opposing effects

on the default probability of a representative small bank. On the one hand, a successful

major bank improves slightly the position of the small bank, as it can provide additional

liquidity when the small bank needs money to cover a liquidity shortage. On the other

hand, the huge negative externality that would arise from the failure of a major bank puts

the small bank in a more precarious situation. The ultimate status of the minor bank is

decided by the dominant influence of these two aspects. In the settings we considered, the

negative impact dominates the benefits obtained from having a major bank in the system.

Hence the total default probability p̄i of the minor bank (shown in the second column of
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G No Major Bank

With a Major Bank

Total
Conditional

Non-defaulting Major Defaulting Major
p̄SE p̄SE|MS p̄SE|MD

0 0 - - -
0.1 - 0 0 0
0.2 - 0.0014 0 0.0039
0.3 - 0.0254 0 0.0735
0.4 - 0.0690 0 0.1980
0.5 - 0.1094 0 0.3144
0.6 - 0.1680 0 0.4757
0.7 - 0.2104 0 0.6109
0.8 - 0.2548 0 0.7463
0.9 - 0.3082 0 0.8786

Table 1.2: Estimated probability of systemic event in the infinite population limit for the
cases (from left to right) with (i) no major bank, (ii) total default probability (p̄SE) with
a major bank, (iii) conditional default probability (p̄SE|MS) with a non-defaulting major
bank, and (iv) conditional default probability (p̄SE|MD) with a defaulting major bank

Table 1.1) in the presence of a major bank is higher than the case without a major bank in

the interbank market.

(b) Probability of Systemic Event

We use a linear regression3 to estimate the total and conditional probabilities of the

systemic event. The results are shown in Table 1.2.

We first investigate the probability of systemic event in the scenario without a major

bank. In this case the market state is equal to the mean field of log-monetary reserves

(x̄t). In the numerical experiments all the banks in the system start borrowing and lending

with zero log-monetary reserves at the beginning of the time period. This setting leads to

a special case where the mean-field does not change and stays at zero during the whole

period. Therefore, the market state will never reach the default threshold. This could be

seen from the mean-filed equation (1.23). Therefore the estimated systemic risk is equal

3See the "Regression Model 2" in Section 1.8.
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to zero as shown in the first column of Table 1.2.

For the scenarios with a major bank shown in the second column of Table 1.2, the total

probability p̄SE of the systemic event is zero when the relative size of the major bank

is given by G = 0.1. However, for the larger relative sizes p̄SE becomes positive and

increases with the size G. Now if we examine the conditional systemic risk p̄SE|MS given

a non-defaulting major bank in the third column of Table 1.2, we observe that it is always

equal to zero no matter the relative size G. Therefore a successful major bank makes the

system stable and hence the systemic risk zero in the infinite-population limit. It is worth

mentioning that this result is slightly different for the finite-population case with only 10

small banks. For more details we refer the reader to Section 1.7.2. We now examine

the systemic risk p̄SE|MD for the case with a defaulting major bank in the last column of

Table 1.2. We observe that the presense of a defaulting major bank increases p̄SE|MD.

Moreover, the larger the relative size G of the major bank, the higher is p̄SE|MD.

Hence, although with the presence of a successful major bank the systemic risk is zero,

if it goes bankrupt the likelihood of a financial catastrophe is much higher.

(c) Trajectories of Banks

We plot the simulated trajectories of log-monetary reserves for 10 representative small

banks and the major agent, and the market state in Fig. 1.1. As can be seen, when the

relative size G of the major bank increases, the trajectories of the minor banks, the major

bank and the market state evolve more closely to each other. Moreover, the failure of the

major bank drags down the whole system quickly and makes it a disaster. This is while

for a smaller size G = 0.1 of the major bank, despite its default the market state remains

above the default threshold. These plots confirm the fact that the failure of a major bank

with a larger relative size G has a larger detrimental effect as it significantly increases the

default probability of a representative minor bank and the risk of a financial disaster.
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Figure 1.1: Simulated trajectories for 10 representative minor banks, the major bank and
the market state in the infinite-population limit for the cases with (a = 5): (a) G = 0.1 and
a non-defaulting major bank, (b) G = 0.9 and a non-defaulting major bank, (c) G = 0.1
and a defaulting major bank, and (d) G = 0.9 and a defaulting major bank. In all cases.

1.7.2.2 Impact of Mean-Reversion Rate

In this section, we assume that the major bank and the mean field (mass) of minor

banks are of the same size (F = G = 0.5). We then examine the impact of mean-reversion

rate in interbank transactions on the individual default probability and systemic risk. We

note that the mean reversion rate a of a representative minor bank is considered to be

different from that a0 of the major bank due to their different characteristics and position

in the market. However, they are related through the clearing condition (1.6b) which for

our case gives rise to a0 = 0.5a. From the financial perspective, a higher mean-reversion

rate translates to a higher frequency in lending and borrowing activities. Hence the major
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a No Major Bank

With a Major Bank

Total
Conditional

Non-defaulting Major Defaulting Major
p̄i p̄i|MS p̄i|MD

1 0.4030 0.4379 0.3147 0.6086
2 0.3668 0.4199 0.2859 0.6247
3 0.3251 0.3932 0.2511 0.6392
4 0.2806 0.3794 0.2260 0.6570
5 0.2362 0.3580 0.1928 0.6579
6 0.1941 0.3428 0.1766 0.6716
7 0.1561 0.3340 0.1547 0.7007
8 0.1230 0.3148 0.1353 0.6959
9 0.0952 0.3159 0.1226 0.7131

10 0.0725 0.2966 0.1112 0.7190

Table 1.3: Estimated default probability of a representative minor bank in the infinite
population limit for the cases (from left to right) with (i) no major bank, (ii) total default
probability (p̄i) with a major bank, (iii) conditional default probability (p̄i|MS) with a non-
defaulting major bank, and (iv) conditional default probability (p̄i|MD) with a defaulting
major bank

bank trades in a lower frequency than a representative minor bank given the same distance

from their respective tracking signal, respectively, x̄t and 0.5(x0
t + x̄t). This could be due

to some market frictions and conditions explained in Section 1.3.3. To investigate the

impact of the mean reversion rates on the system we change the value of a in the set

{1,2, . . . ,10} and summarize the results in the following sections.

(a) Default Probability of a Representative Minor Bank

In this part, we investigate the effect of increasing the mean-reversion rate a (or equiv-

alently a0) on the default probability of a representative minor bank. We use a linear

regression model, the details of which is provided in Section 1.8. The estimated probabil-

ities are shown in Table 1.3.

From the first column of Table 1.3, the default probability of a minor bank decreases

as the mean-reversion rate a increases in a market without a major bank. Hence when a

minor bank trades with a higher frequency, it is less likely to end up in the default region.

A similar impact is observed in an interbank market where a major bank is present (see
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the second column of Table 1.3). As the mean-reversion rate increases, the total default

probability of a minor bank decreases. However, we observe that, in comparison with

the case without a major bank, (i) the amount of decrease is not as large, and (ii) the

default probability for each value of a is higher. These observations can be justified

by examining the conditional default probabilities. According to the third columns of

Table 1.3, a successful major bank could improve the status of a minor bank to some

extent. However, if the major bank gets in trouble, the default probability of a minor

bank increases with a. This is because the major bank’s log-reserve is reflected in the

market state, which a minor bank seeks to follow as closely as it can. Therefore when a

minor bank increases its frequency of trading (mean-reversion rate), it tends to converge

more quickly to the market state brought down by a defaulting major bank. Hence, this

negative externality offsets the benefit the minor bank obtains from having a major bank in

the market. Therefore, the total default probability is higher than that of a market without

a major bank for each value of a, and it decreases with a with a smaller slope.

(b) Probability of Systemic Risk

We follow a similar approach and use a regression model detailed in Section 1.8 to

investigate the impact of mean reversion rate on systemic risk. The results are summarized

in Table 1.4.

The zero values for the systemic risk in a market without a major bank in the first

column of Table 1.4 can be explained in the same manner as in Section 1.7.1. For the case

where there exists a major bank, the total probability of systemic event slightly increases

with the mean-reversion rate a. We also observe that the conditional systemic risk given

a non-defaulting major bank in the market is zero. However when the major bank goes

bankrupt, the conditional systemic risk increases significantly.

(c) Trajectories of Banks

We plot the simulated trajectories for the log-monetary reserves of 10 representative minor

banks, the major bank, and the market state for the cases with a= 1 and a= 10 in Fig. 1.2.

44



a No Major Bank

With a Major Bank

Total
Conditional

Non-defaulting Major Defaulting Major
p̄SE p̄SE|MS p̄SE|MD

1 0 0.1158 0 0.2762
2 0 0.1056 0 0.2671
3 0 0.1094 0 0.2989
4 0 0.1082 0 0.3041
5 0 0.1202 0 0.3384
6 0 0.1126 0 0.3353
7 0 0.1230 0 0.3745
8 0 0.1198 0 0.3741
9 0 0.1300 0 0.3971

10 0 0.1286 0 0.4157

Table 1.4: Estimated probability of systemic event in the infinite population limit for the
cases (from left to right) with (i) no major bank, (ii) total default probability (p̄SE) with
a major bank, (iii) conditional default probability (p̄SE|MS) with a non-defaulting major
bank, and (iv) conditional default probability (p̄SE|MD) with a defaulting major bank

Our results are consistent with those in (Fouque and Sun, 2013). When the mean-reversion

rate ‘a’ increases from 1 to 10, there is a larger flocking effect such that the trajectories of

minor banks evolve much more closely to each other. Moreover, from panel (c) and (d)

of Fig. 1.2, we observe that a higher mean-reversion rate could delay the default of the

major bank. However, when the major bank goes bankrupt it drags down the market state

and hence the minor banks more quickly.

1.7.2.3 Mean-Reversion Rate Across Time

In the interbank market modelled in Section 1.4, a representative minor bank and the

major bank implement their best-response strategy (derived in Section 1.5) to minimize

the costs they incur by transacting in the market. After substituting the optimal strate-

gies of the major bank (1.19) and a representative minor bank (1.52) in their respective

dynamics of the log-monetary reserves (respectively, (1.1) and (1.4)), we can view how

transactions with the central bank affect the log-monetary reserves. We find that the op-

timal strategies increase the mean-reversion rate by adding a time-varying component
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Figure 1.2: Simulated Trajectories for 10 representative minor banks, the major bank and
the market state in the infinite-population limit for the cases with (G = 0.5,F = 0.5): (a)
a = 1 and a non-defaulting major bank, (b) a = 10 and a non-defaulting major bank, (c)
a = 1 and a defaulting major bank, and (d) a = 10 and a defaulting major bank

(
q0 −φ 0

t
)

and
(
q−φt

)
, respectively, for the major bank and a representative minor bank.

The evolution of φ 0
t and φt over time is depicted in panel (a) of Fig. 1.3. Moreover the

evolution of the total mean reversion rates
(
a+q−φt

)
and

(
a0 +q0 −φ 0

t
)

is depicted in

panel (b) of Fig. 1.3. We observe that the presence of a central bank provides the market

participants with extra liquidity and increases the frequency of their transaction activities

(note that q−φt > 0 and q0−φ 0
t > 0). In our model, banks only trade during a fixed time

period [0,T ] and they are not concerned about what happens after T . Banks start borrow-

ing and lending activities with a higher mean-reversion rate since they can not forecast too

far away. However, as time elapses, they are approaching the end of the trading horizon
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Figure 1.3: Simulation Results (from left to right): (a) solution of the ODE system, and (b)
the mean-reversion level of different banks after adding the optimal control (a = 5,a0 =
2.5,F = 0.5,G = 0.5,q = q0 = 1)

and the uncertainty in the market decreases. Hence they reduce their trading frequency

naturally.

1.7.2 Finite Population

In this section we model the financial system with a finite number of minor banks

described by (1.1)-(1.5) in Section 1.3. The strategies taken by banks in the finite pop-

ulation are the mean field strategies obtained in the infinite-population limit, where the

mean field x̄t is replaced by the empirical average x(N)
t of the log-monetary reserves of

minor banks and the finite-population log-monetary reserves are used. We consider a

setup where there are 10 minor banks and one major bank in the financial system. In

the mean field game methodology, the equilibrium of a large population game is approx-

imated by the Nash equilibrium of the limiting game when the number of agents goes to

infinity. To show the quality of this approximation for our setup,we plot the mass effect

of minor banks and the market states in both finite and infinite population cases Fig. 1.4.

We observe that the trajectories of the mass effect (x(N)
t , x̄t) and those of the market state

(Fx̄t +Gx0
t ,Fx(N)

t +Gx0
t ) evolve closely. Hence the behaviour of the system in the infinite
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Figure 1.4: Convergence of the average state and the market state in the finite population
to corresponding quantities in the infinite population

population is a good approximation to that in the finite population even when the number

of minor banks in the finite population is relatively small.

In the remainder of this section we perform 50000 simulations for various settings to

estimate the default probabilities introduced in Section 1.6 using Monte Carlo simula-

tions. In particular, we change the relative size G and the mean reversion rate a0 of the

major bank and use regression analysis to estimate pi, pi|MD, pi|MS, pSE , pSE|MD, pSE|MS

respectively by p̄i, p̄i|MD, p̄i|MS, p̄SE , p̄SE|MD, p̄SE|MS.

1.7.3.1 Impact of Relative Size of Major Bank

In this section, we simulate the system with 10 minor banks and run the same regression

as we did in Section 1.7.1. We examine how changing the relative size G of the man in the

set {0.1,0.2, . . . ,0.9} affects total and conditional default probabilities pi, pi|MD, pi|MD, i∈

{1,2, . . . ,10}, and systemic risks p̄SE , p̄SE|MD, p̄SE|MS.

We use linear regression4 to examine the variation of the default probability of a rep-

resentative minor bank-i, i ∈ {1,2, . . . ,10}. The obtained results are summarized in Ta-

4See the "Regression Model 1" in Section 1.8
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G No Major Bank

With a Major Bank

Total
Conditional

Non-defaulting Major Defaulting Major
p̄i p̄i|MS p̄i|MD

0 0.3405 - - -
0.1 - 0.3367 0.2248 0.5112
0.2 - 0.3422 0.2084 0.5617
0.3 - 0.3548 0.1980 0.6157
0.4 - 0.3645 0.1920 0.6615
0.5 - 0.3785 0.1919 0.7020
0.6 - 0.3873 0.1915 0.7295
0.7 - 0.3985 0.1939 0.7557
0.8 - 0.4033 0.1945 0.7762
0.9 - 0.4098 0.1984 0.7923

Table 1.5: Estimated default probability of a representative minor bank in finite population
for the cases (from left to right) with (i) no major bank, (ii) total default probability (p̄i)
with a major bank, (iii) conditional default probability (p̄i|MS) with a non-defaulting major
bank, and (iv) conditional default probability (p̄i|MD) with a defaulting major bank

ble 1.5. It shows a similar trend in the changes in the estimated default probability of

a representative minor bank compared with the simulated results in the infinite popula-

tion. A successful major bank could improve the status of the minor bank in the system.

However the failure of the major bank may drag down the minor bank and hence increase

its default probability. These two effects lead to a higher total default probability for a

representative minor agent.

Next, we use a linear regression5 to estimate the total and conditional probabilities of

the systemic event. The results are shown in Table 1.6. The systemic risk generally show

similar trends in the finite population (Table 1.6) and the infinite population (Table 1.2)

cases. However, despite the infinite-population case we observe nonzero systemic risks

for the cases where (i) there is no major bank, and (ii) there is a non-defaulting major

agent. This is due to the finite number of minor banks. Moreover, we observe that the

conditional systemic risk p̄SE|MS given a non-defaulting major bank decreases with the

relative size G of the major bank. Moreover, the total systemic risk increases with G.

5See the "Regression Model 2" in Section 1.8.
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G
No Major Bank

With a Major Bank

Total
Conditional

Non-defaulting Major Defaulting Major
p̄SE p̄SE|MS p̄SE|MD

0 0.0376 - - -
0.1 - 0.0288 0.0018 0.0709
0.2 - 0.0445 0.0004 0.1169
0.3 - 0.0726 0.0001 0.1931
0.4 - 0.1100 0 0.2994
0.5 - 0.1521 0 0.4155
0.6 - 0.1929 0 0.5299
0.7 - 0.2364 0 0.6494
0.8 - 0.2744 0 0.7644
0.9 - 0.3150 0 0.8850

Table 1.6: Estimated probability of systemic event in finite population for the cases (from
left to right) with (i) no major bank, (ii) total default probability (p̄SE) with a major bank,
(iii) conditional default probability ( p̄SE|MS) with a non-defaulting major bank, and (iv)
conditional default probability (p̄SE|MD) with a defaulting major bank

This is because a defaulting major bank may significantly increase the systemic risk.

Finally we plot the loss distribution in Fig. 1.5. From panel (a), we notice the tail gets

fatter as we increase the relative size of the major bank. This means that the probability of

extreme events (either a large number of minors go to default together or no minor bank

end up in bankruptcy increases. Panel (b) of Fig. 1.5 shows that having a non-defaulting

major bank may improve the stability of the system compared with the case where there is

no major bank. The loss distribution in the former is much lower than in the latter. As the

relative size of the major agent increases the loss distribution in panel (b) remains almost

the same. The only difference lies in the left tail, i.e. the probability of the extreme event

where no bank ends up in default increases with G. From panel (c) of Fig. 1.5, when there

is a defaulting major bank in the market, the right tail of the loss distribution becomes

fatter as the relative size G of the major agent increases. Hence the probability of the

extreme event where almost all agents wind up in default increases.
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Figure 1.5: Loss distribution (a = 5): (a) total loss distribution for minor banks, (b) loss
distribution for minor banks conditional on the major bank not default, and (c)loss distri-
bution for minor banks conditional on the major bank default
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a No Major Bank

With a Major Bank

Total
Conditional

Non-defaulting Major Defaulting Major
p̄i p̄i|MS p̄i|MD

1 0.4341 0.4397 0.2999 0.6361
2 0.4135 0.4246 0.2692 0.6544
3 0.3869 0.4090 0.2419 0.6700
4 0.3666 0.3939 0.2146 0.6869
5 0.3435 0.3770 0.1920 0.6999
6 0.3213 0.3661 0.1732 0.7117
7 0.3002 0.3524 0.1551 0.7234
8 0.2831 0.3438 0.1393 0.7336
9 0.2629 0.3315 0.1259 0.7441

10 0.2482 0.3249 0.1162 0.7507

Table 1.7: Estimated default probability of a representative minor bank in finite population
for the cases (from left to right) with (i) no major bank, (ii) total default probability (p̄i)
with a major bank, (iii) conditional default probability (p̄i|MS) with a non-defaulting major
bank, and (iv) conditional default probability (p̄i|MD) with a defaulting major bank

1.7.3.2 Impact of Mean-reversion Rate

In this section, we investigate the effect of increasing mean-reversion rate a (or equiv-

alently a0) on the default probability of a representative minor bank and the systemtic

risk.

From Table 1.7, the variations in the estimated default probabilities of a representative

minor bank show a similar trend in the finite population and in the infinite population

cases. A non-defaulting major bank reduces the default probability of a representative

minor bank in the system. However a defaulting major bank may increases this probabil-

ity. These two effects lead to a higher total default probability of the representative minor

bank compared with the case in the absence of a major bank. However, this probability

decreases with the mean-reversion rate a.

Now we use a regression model6 to examine the systemic risk in the finite population

(Table 1.8). Despite the infinite population case, the estimated probability of the systemic

event is nonzero in the market without a major bank in the finite-population case. We
6See the "Regression Model 4" in Section 1.8.
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a No Major Bank

With a Major Bank

Total
Conditional

Non-defaulting Major Defaulting Major
p̄SE p̄SE|MS p̄SE|MD

1 0.0378 0.1470 0 0.3534
2 0.0377 0.1448 0 0.3590
3 0.0377 0.1480 0 0.3792
4 0.0373 0.1499 0 0.3950
5 0.0377 0.1500 0 0.4120
6 0.0363 0.1543 0 0.4307
7 0.0365 0.1541 0 0.4437
8 0.0368 0.1570 0 0.4561
9 0.0362 0.1577 0 0.4741

10 0.0356 0.1616 0 0.4914

Table 1.8: Estimated probability of systemic event in finite population for the cases (from
left to right) with (i) no major bank, (ii) total default probability (p̄SE) with a major bank,
(iii) conditional default probability ( p̄SE|MS) with a non-defaulting major bank, and (iv)
conditional default probability (p̄SE|MD) with a defaulting major bank

emphasize that in this case the empirical average x(N)
t of log-monetary reserves are used

in the market model instead of the mean field. We observe that the systemic risk slightly

decreases with the mean-reversion rate a in the case without a major bank. However, when

a major bank is present the total systemic risk p̄SE increases with a. We can obtain a better

understanding of this result by examining the conditional systemic risks. We observe that

indeed when there is a non-defaulting major bank in the market, the systemic risk p̄SE|MS

is down to zero, which means that the system is slightly more stable. This is while in the

case of a defaulting major agent, the systemic risk p̄SE|MD increases significantly with a.

Next we plot the loss distribution of minor banks in Fig. 1.6. By comparing panels

(a) and (b), we conclude that they have a very similar shape. As the mean-reversion

rate increases, the tails become fatter . The distinction mainly lies in the right tail which

represents the scenario where all minor banks simulated end up in default. Panel (b)

shows a fatter right tail than panel (a). This confirms the results in Table 1.8, i.e. the

model with a major bank is more likely to lead to a financial crisis. By inspecting panels

(c) and (d) of Fig. 1.6, we get a clearer view of the role played by the major bank. First
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Figure 1.6: Loss distribution (G = 0.5,F = 0.5): (a) loss distribution for minor banks
without major bank, (b) total loss distribution for minor banks with major bank, (c) loss
distribution for minor banks conditional on the major bank not default, and (d)loss distri-
bution for minor banks conditional on the major bank default

of all, the left tails in panels (a) and (c) are almost the same. However, the fatter right tale

in (a) indicates a higher systemic risk. Now if we compare panels (c) and (d), the former

has a fatter left tail and the latter a fatter right tail and, indicating a low systemic risk in

the case of non-defaulting major bank and a high systemic risk in the case of a defaulting

major bank.
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1.8 Concluding Remarks

The purpose of the current study is to investigate the impact of the presence of a major

bank on the default probability of a representative minor bank and the systemic risk.

Based on the numerical results, we have come to the conclusion that having a major

bank in the market may have two opposite effects on the system depending on whether

it defaults or not. In the case where the major bank does not default, a representative

minor agent is less likely to end up in default. Moreover, the systemic risk decreases.

This positive impact increases with the relative size and the mean-reversion rate of the

major agent (equivalently the mean reversion rate of the minor agent). However, in an

interbank market where the major bank defaults, a representative minor bank has a higher

default risk. Moreover, the systemic risk increases significantly. Indeed, the failure of a

large bank is highly likely to bring the whole system down. This negative impact becomes

larger with the relative size and the mean-reversion rate of the major bank. Our results

show that the negative impact of a major bank prevails its positive impact. We observe

that the total default probability of a representative minor bank and the systemic risk are

higher in a market where there exists a major bank compared to the case where there is

no major bank. Obviously, the higher the relative size of the major agent and the mean

reversion rate in the market, the higher is the systemic risk.

These findings have significant implications for the understanding how a major bank

may affect the interbank market. Specifically, they could be used to develop policies and

regulations that improve the stability of such markets. In particular, it is not healthy for the

economy to have a very large bank due to its extreme negative externality. Policymakers

may set regulations to prevent banks from becoming too large or impose higher capital

requirement and stricter regulations on large banks to ensure that they would not end up

in default.

With regard to the research methods, some limitations need to be acknowledged. The

current study is limited by the fact that the model is relatively simple. Hence, it cannot

capture all the characteristics of the interbank activities. Further experimental investiga-
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tions are needed to estimate the impact of other parameters on the whole system. The

model could be advanced by taking more factors into consideration, for example, con-

sidering multiple group of minor banks with different characteristics and risk sensitivity.

Moreover, it would be interesting to study systemic risk and the behaviour a major bank

which might be bailed out by the government once in crisis. Moreover, a more compre-

hensive sensitivity analysis can be performed to investigate the impact of other model

parameters rather than the relative size of the major bank and the mean reversion rate of

banks.
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Appendix A

The choice of Default Threshold

In this section, we would like to explain how we select an appropriate default threshold.

It is crucial to choose it carefully. A proper value is that we might have sufficient sample

observations to make some kind of explanation and conclusion.

First of all, it is important to note that the default threshold is chosen in an environment

where there is no major bank, since we want to eliminate the impact of the major bank on

the minors so that we can see an unconditional distribution of small banks’ log-currency

reserves at the end of the period that we are considering. We examine the stability of

the different quantiles of the log-monetary reserves using the Monte Carlo simultaion to

calculate the quantiles of the distribution for the minor banks’ log-monetary reserves at

the end of the period. It is shown in Table 1 that the first ten quantiles of the distribution

for the log-monetary reserves for the minor bank. For example, only around 400 minor

banks (%1 out of 40000 minor banks) in each simulation will end up in the region where

their log-monetary reserves will be less than -0.49. We could conclude from the Table 1

that the quantiles are stable across different simulations.

Then, by changing the parameter ‘a’ from 1 to 10, we select the default threshold for

the subsequent simulations. We show the simulation results in Table 2. We think the

-0.65 which is the 1% quantile when we set the parameter ‘a’ equal to 5 is a good choice.

It ensures that the default probability is not too far from what reality shows when the

parameter ‘a’ is relatively small. And also we could have some default observations as

i



% 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
1 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49
2 -0.44 -0.44 -0.44 -0.43 -0.43 -0.44 -0.44 -0.43 -0.43 -0.44
3 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40
4 -0.37 -0.37 -0.37 -0.37 -0.37 -0.37 -0.37 -0.37 -0.37 -0.37
5 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35
6 -0.33 -0.33 -0.33 -0.33 -0.33 -0.33 -0.33 -0.33 -0.33 -0.33
7 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31
8 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30
9 -0.28 -0.28 -0.28 -0.28 -0.28 -0.28 -0.28 -0.28 -0.28 -0.28
10 -0.27 -0.27 -0.27 -0.27 -0.27 -0.27 -0.27 -0.27 -0.27 -0.27

Table 1: First ten quantiles for the distribution of the log-monetary reserves across differ-
ent values taken by parameter ‘a’ (a = 1,F = 0.5,G = 0.5)

% a = 1 a = 2 a = 3 a = 4 a = 5 a = 6 a = 7 a = 8 a = 9 a = 10
1 -0.98 -0.87 -0.78 -0.71 -0.65 -0.61 -0.57 -0.54 -0.52 -0.49
2 -0.87 -0.76 -0.68 -0.63 -0.58 -0.54 -0.51 -0.48 -0.46 -0.43
3 -0.79 -0.70 -0.63 -0.57 -0.53 -0.49 -0.46 -0.44 -0.42 -0.40
4 -0.74 -0.65 -0.58 -0.53 -0.49 -0.46 -0.43 -0.41 -0.39 -0.37
5 -0.69 -0.61 -0.55 -0.50 -0.46 -0.43 -0.41 -0.38 -0.36 -0.35
6 -0.66 -0.58 -0.52 -0.47 -0.44 -0.41 -0.38 -0.36 -0.34 -0.33
7 -0.62 -0.55 -0.49 -0.45 -0.41 -0.39 -0.36 -0.34 -0.33 -0.31
8 -0.59 -0.52 -0.47 -0.43 -0.39 -0.37 -0.35 -0.33 -0.31 -0.30
9 -0.57 -0.50 -0.45 -0.41 -0.38 -0.35 -0.33 -0.31 -0.30 -0.28

10 -0.54 -0.48 -0.43 -0.39 -0.36 -0.34 -0.32 -0.30 -0.28 -0.27

Table 2: Different quantiles for the distribution of the log-monetary reserves across 10
simulations (F = 0.5,G = 0.5)

we increase the parameter ‘a’.

Regression Model

In this section, we provide the details about the regression models used in the analysis

of numerical part.
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(i) Regression Model 1

PD(Minor banks) = α0 · IG=0 + Ima jor exist

( 0.9

∑
i=0.1

βi · IG=i + Ima jor de f ault

0.9

∑
i=0.1

γi · IG=i

)
(88)

• PD(Minor banks) is the dependent variable representing the simulated default prob-

ability of minor banks.

• IG=i represents the dummy variables dividing the simulated results into 10 different

groups. It takes 1 when the data comes from the simulation in which G = i and

0 otherwise. We need to notice that the dummy IG=0 represents the observations

from the model without a major bank.

• The estimated slope coefficient α0 is the difference between the average default

probability of minor banks in the group where there exist a non-defaulting major

bank and that in another group without a major bank. We could show the average

default probability of minor banks in the system with a successful major bank as .

α0 = PD(Minor banks de f ault | without a ma jor bank) (89)

• The estimated slope coefficient βi is the difference between the average default

probability of minor banks in the group where there exist a non-defaulting major

bank and that in another group without a major bank. We could show the average

default probability of minor banks in the system with a successful major bank as

Eq. (91).

βi = PD(Minor banks de f ault | G = i and ma jor bank not de f ault)−

PD(Minor banks de f ault | without a ma jor bank) (90)

PD(Minor banks de f ault | G = i and ma jor bank not de f ault) = α0 +βi (91)
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• The estimated slope coefficient γi is the difference between the average default prob-

ability of minor banks in the system with a defaulting major bank and that in another

system with a successful major bank. And the average default probability of minor

banks in the system with a failed major bank could be expressed as Eq. (93).

γi = PD(Minor banks de f ault | G = i and ma jor bank de f ault)−

PD(Minor banks de f ault | G = i and ma jor bank not de f ault) (92)

PD(Minor banks de f ault | G = i and ma jor bank de f ault) = α0 +βi + γi (93)

(ii) Regression Model 2

PD(Systemic event) = α0 · IG=0 + Ima jor exist

( 0.9

∑
i=0.1

βi · IG=i + Ima jor de f ault

0.9

∑
i=0.1

γi · IG=i

)
(94)

• PD(Systemic event) is the probability of the market state
(
Fx̄t +Gx0

t
)

ending in the

default region and it is the dependent variable in this regression.

• IG=i represents the dummy variables dividing the simulated results into 10 different

groups. It takes 1 when the data comes from the simulation in which G = i and

0 otherwise. We need to notice that the dummy IG=0 represents the observations

from the model without a major bank.

• The estimated slope coefficient α0 is the average probability of systemic event in

the scenario where there is no major bank.

α0 = PD(systemic event | without a ma jor bank) (95)

• The estimated slope coefficient βi is the difference between the average probability

of systemic event for the system having a successful major bank and that for another
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system without a major bank. We could express the average probability of the

systemic event as Eq. (97).

βi = PD(systemic event | G = i and ma jor bank not de f ault)−

PD(systemic event | without a ma jor bank) (96)

PD(systemic event | G = i and ma jor bank not de f ault) = α0 + βi (97)

• The estimated slope coefficient γi is the difference between the average probabil-

ity of the systemic event in the environment having a failed major bank and that

in another system with a successful major bank. And we could express the aver-

age probability of the systemic event in the group with a defaulting major bank as

Eq. (99).

γi = PD(systemic event | G = i and ma jor bank de f ault)−

PD(systemic event | G = i and ma jor bank not de f ault) (98)

PD(systemic event | G = i and ma jor bank de f ault) = α0 + βi + γi (99)

(iii) Regression Model 3

PD(Minor banks) =
10

∑
i=1

αi · Ia=i + Ima jor exist

( 10

∑
i=1

βi · Ia=i + Ima jor de f ault

10

∑
i=1

γi · Ia=i

)
(100)

• PD(Minor banks) is the dependent variable representing the simulated default prob-

ability of minor banks.

• Ia=i represents the dummy variables dividing the simulated results into 10 different

groups. It takes 1 when the data comes from the simulation in which a = i and 0

otherwise.
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• The estimated slope coefficient α0 is the average default probability of minor banks

coming from the model without major banks.

αi = PD(Minor banks de f ault | a = i and without a ma jor bank) (101)

• The estimated slope coefficient βi is the difference between the average default

probability of minor banks in the system with a successful major bank and that in

another system without a major bank. The average default probability of minor

banks in the system having a non-defaulting major bank is Eq. (103).

βi = PD(Minor banks de f ault | a = i and ma jor bank not de f ault)−

PD(Minor banks de f ault | a = i and without a ma jor bank) (102)

PD(Minor banks de f ault | a = i and ma jor bank not de f ault) = αi +βi (103)

• The estimated slope coefficient γi is the difference between the average default prob-

ability of minor banks in the environment having a failed major bank and that in

the system with a successful major bank. The average default probability of minor

banks in the system having a defaulting major bank could be expressed as Eq. (105).

γi = PD(Minor banks de f ault | a = i and ma jor bank de f ault)−

PD(Minor banks de f ault | a = i and ma jor bank not de f ault) (104)

PD(Minor banks de f ault | a = i and ma jor bank de f ault) = αi +βi + γi (105)

(iv) Regression Model 4

PD(Systemic event) =
10

∑
i=1

αi · Ia=i + Ima jor exist

( 10

∑
i=1

βi · Ia=i + Ima jor de f ault

10

∑
i=1

γi · Ia=i

)
(106)

• PD(Systemic event) is the dependent variable representing the simulated probabil-

ity of systemic event.
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• Ia=i represents the dummy variables dividing the simulated results into 10 different

groups. It takes 1 when the data comes from the simulation in which a = i and 0

otherwise.

• The estimated slope coefficient α0 is the average probability of systemic event com-

ing from the model without major banks.

αi = PD(Systemic event | a = i and without a ma jor bank) (107)

• The estimated slope coefficient βi is the difference between the average probability

of systemic event in the system with a successful major bank and that in another

system without a major bank. The average probability of systemic event in the

system having a non-defaulting major bank is Eq. (109).

βi = PD(Systemic event | a = i and ma jor bank not de f ault)−

PD(Systemic event | a = i and without a ma jor bank) (108)

PD(Systemic event | a = i and ma jor bank not de f ault) = αi +βi (109)

• The estimated slope coefficient γi is the difference between the average systemic

risk in the environment having a failed major bank and that in the system with a

successful major bank. The average systemic risk in the system having a defaulting

major bank could be expressed as Eq. (111).

γi = PD(Systemic event | a = i and ma jor bank de f ault)−

PD(Systemic event | a = i and ma jor bank not de f ault) (110)

PD(Systemic event | a = i and ma jor bank de f ault) = αi +βi + γi (111)
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