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Abstract

We analyze the impact of textual sentiment as a predictor for market risk by con-

structing a sentiment score and applying it to Conditional Autoregressive Value-

at-Risk (CAViaR) models of Engle & Manganelli (2004). Term-frequency data of

words found in newswires, newspapers and web-publications concerning individ-

ual publicly-traded companies in the S&P 500 over seventeen years (1999-2016) is

used to calibrate a sentiment scoring model via linear and sparse quantile regression

(Koenker & Bassett Jr, 1978). Using the sentiment score as an external regressor for

CAViaR models, Value-at-Risk (VaR) backtesting methods including the Dynamic

Quantile test, Quantile Loss, and Actual-over-Exceedance ratio are used to evaluate

model performance for one hundred companies with the highest frequency of publi-

cations over the time period. We conclude that there is a marginal improvement in

predictive power over baseline models from our textual sentiment score for higher

levels of VaR (1%).
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Chapter 1

Literature Review

1.1 Introduction

A significant amount of attention has recently focused on the use of market senti-

ment to better understand financial markets. Significant periods of market volatility

are often associated with sentiment such as market panic or excessive optimism.

Value-at-Risk (VaR) models are broadly used by risk professionals and academics

to provide a baseline assessment of the potential risk arising from their positions

in financial markets. There is widespread interest in the academic and practitioner

community for indicators that provide a measure of market sentiment and its po-

tential to help predict market characteristics such as asset returns or volatility. Tra-

ditional measures of market sentiment have ranged from price and volume data, the

measure of implicit volatility in options trading and surveys targeting consumer and

business confidence. Outside of these traditional sources, Big Data, which encom-

passes textual, audio and visual information, has also become a substantial source

of information. Big Data provides its own challenges including the high presence of

noise and a lack of consistency or regularity in data that demands considerable data

processing. One major source of Big Data sentiment analysis has focused on the

use of text and its quantification to obtain valuable information that is not obtained

directly from market price data; see Gentzkow et al. (2019) and Algaba et al. (2020).

This thesis will apply econometric methods to construct a sentiment score indica-
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tor based on textual data and apply it to conditional autoregressive Value-at-Risk

(CAViaR) models; see Engle & Manganelli (2004) .

Sentiment is a latent variable that cannot be observed directly and hence, proxy

variables are created in order to measure it. In the domain of natural language

processing, sentiment analysis assesses the implied sentiment associated with specific

words, sentences and overall bodies of text or spoken word. The use of sentiment

towards econometric models requires the collection, processing and construction of

aggregate quantitative measures that can be used as variable inputs. A body of

text can be interpreted as a set of sentences that are themselves sets of words. The

sets and their elements can each be individually represented as numerical vectors.

These vectors can be aggregated in order to construct an overall matrix, a document

matrix, representing information about the text; see Gentzkow et al. (2019).

Natural language processing is a vast domain of research ranging in its use of

advanced statistical, econometric and machine learning methods towards the un-

derstanding of text and sentiment. Language is complex given the interactions of

different words, negations, and phrases that contribute towards defining sentiment.

This thesis centers its focus on the contribution of individual words to sentiment

rather than complete phrases. Sentiment assesses an entity’s expression of dispo-

sition towards others or even itself via a communication medium. Sentiment can

also have an associated polarity such as positive versus negative messages, otherwise

known as tone. Such a process can involve associating words as positive or nega-

tive to assessing the combined effects of those words in determining the sentiment

for sentences and larger bodies of text; see Tetlock et al. (2008), Jegadeesh & Wu

(2013), and Algaba et al. (2020).

Within finance, initial researchers (Das & Chen, 2007; Tetlock, 2007; Loughran

& McDonald, 2011) would categorize words as positive or negative and assess the

tone of a text through an adjusted frequency of positive versus negative words. They

created and applied lexicons as signifiers of textual tone. A lexicon is a dictionary of

language whereby sentiment can be directly labeled to each word or certain groupings
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of words. More complex models accounted for measurement of the contribution of

individual words to returns with Jegadeesh & Wu (2013) applying the concept of

linear regression of adjusted word frequencies directly to stock returns.

Previous research (Garcia, 2013; Wisniewski & Lambe, 2013; Hanna et al., 2020)

have pointed towards the importance of textual sentiment in the understanding of

short and sudden tail events such as bubbles and crashes. In behavioural eco-

nomics, Baker & Wurgler (2007) and Shiller (2020) propose the hypothesis that the

media can perpetuate narratives which can influence noise traders and lead to a

self-fulfilling prophecy of market events. The importance of sentiment in extreme

events outlines the need to apply methods which specifically aim to study tail risk.

This thesis contributes to the literature by first applying a novel method, quan-

tile regression, to construct a sentiment score with inspiration taken from the work

of Jegadeesh & Wu (2013), and Ardia, Bluteau, et al. (2019). Quantile regression

proves useful in studying events at percentiles of distributions as opposed to ordi-

nary linear regression that estimates the mean. Second, this thesis contributes to

the literature by applying the score as a regressor for Conditional Autoregressive

Value-at-Risk (CAViaR) models of stock returns. CAViaRs are applied individually

on the returns of a hundred companies and it is shown that the score provides ad-

ditional predictive information in assessing the quantile of returns versus only using

pricing history. VaR backtesting methods including the dynamic quantile test (En-

gle & Manganelli, 2004) and quantile loss (Allen et al., 2005) are used to assess the

augmented CAViaR models against their returns-only CAViaR benchmarks.

1.2 Sentiment and Measurement

Keynes (1936) proposes the idea of animal spirits in financial markets which evolves

into the field of behavioural finance by Shiller (2000). Market participants such as

investors are influenced not only by firm fundamentals but also by their interac-

tions and communications with each other and non-investment actors such as the

media and company management. The communication of narratives can exacerbate
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market sentiment and result in reactive crowd behaviour. Emotional words such

as exuberance or fear are commonly used in financial communications whether by

media, market analysts or company management to gauge and communicate the

overall feeling or sentiment of market participants.

A definition of sentiment should be established in order to study its impact in

different economic and social environments. There is general agreement that senti-

ment involves the communication of disposition (e.g. mood or inclination). Algaba

et al. (2020) propose that sentiment is the disposition of an entity towards an en-

tity, expressed via a certain medium. Liu et al. (2010) provides a similar definition

defining an opinion holder that expresses an opinion, either direct or comparative

towards an object. First, sentiment is an entity’s expression of disposition via a

communication medium. In a financial context, this can range from an investor’s

outlook being expressed via Twitter or newspapers, a textual medium, to direct

opinions expressed via video platforms such as cable news outlets. This thesis lim-

its itself to studying the sentiment from sources of text. Second, the disposition

has a measurable polarity or semantic orientation. This can range from positive to

negative in general, dovish versus hawkish with respect to central banks (Picault &

Renault, 2017) or bullish versus bearish for financial markets (Antweiler & Frank,

2004). Third, the sentiment is oriented towards (an aspect of) another entity, or

exceptionally the expressing entity itself. People communicate their ideas or sen-

timent to fellow investors, financial professionals, the general public, etc. Finally,

sentiment can be associated within a given time frame as to when it was expressed.

Previous research has shown that textual sentiment has an impact on financial

returns and volumes. The most dominant ideas within the literature are that textual

sentiment has an impact in the immediate short-term (Chan, 2003; Tetlock, 2007;

Da et al., 2011; Jegadeesh & Wu, 2013), and it is most associated with negative

returns or extreme events such as recessions (Garcia, 2013; Ahmad et al., 2016;

Hanna et al., 2020).

One of the primary challenges in the applications of econometric methods to-
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wards sentiment analysis is the derivation of a quantitative measure from qualitative

data. Traditional quantitative measures in financial academia such as daily returns

or trading volumes are unambiguous. This is a direct contrast to sentiment mea-

surement whereby the choice of measure is dependent on the researcher. Language

is multidimensional and complex considering elements such as the direct definition

of words, their meanings under a specific context (e.g. financial or psychosocial)

and the possible interactions between words (e.g. negations, superlatives) and sen-

tences. Approaches to this complexity can involve the simplifying assumption of

independence between words to the application of complex machine learning meth-

ods (e.g. neural networks) that assess the order and recurrence of words in sentences.

Therefore, in the quantification of text, the choice of methodology and measure can

facilitate a computational simplicity (e.g. normalized word frequency counts) at the

expense of foregoing additional information and consequently, introducing noise to

the measure (Loughran & McDonald, 2016).

The Bag-of-Words approach is a simple approach that assumes independence

between words, meaning the order or syntax, and thus direct context, is unimpor-

tant. For Bag-of-Words, textual information is summarized directly as the counts

of individual words. This permits high dimensional groups of words (e.g. sentences,

paragraphs, documents) to be reduced to a term document matrix where the indi-

vidual words can be organized into columns alongside their respective word counts

as rows. A normalization of the term document matrix to the total number of words

can then take place in order to compare one document to another.

Given the relative frequency of words in a document, various methods have been

applied to derive the meaning or sentiment of them. One of the earliest and most

used methods is the creation of lexicons or specific word lists. A lexicon can be

considered as a dictionary for a specified purpose in research. Sentiment-based lexi-

cons are lists of words that have been grouped to general degrees of sentiment such

as positive or negative. This is often done via manual labeling of vocabulary. The
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Harvard General Inquirer (GI) 1 word lists were developed for sociological and psy-

chological research and have been used and adapted extensively in finance (Tetlock,

2007; Tetlock et al., 2008; Kothari et al., 2009; Heston & Sinha, 2017). The GI

group words into more than 100 attributes including need, pleasure, pain, political,

and interpersonal relations. By using a predefined convention to assess the senti-

ment of a set of words, researcher subjectivity is avoided and the availability of the

lexicon permits replicability of studies. The tone of a document can be measured

by quantifying the overall percentage of words in a document that belong to the

specified groups and whether a majority or a net contribution of words are either

positive or negative.

One problem arising from the use of general word lists is that language can

be context-specific. Words that are generally negative in an everyday social sense

including tax, cost, capital, board, liability and depreciation are not necessarily neg-

ative within a financial setting and can be more seen as being matter-of-fact. Given

the importance of context in language, researchers (Henry, 2008; Loughran & Mc-

Donald, 2011) have built context-specific lexicons suited for research in finance and

economics. Typically, the analysis of accounting literature including company 10-

K’s and earnings press releases would be used to assess frequent and meaningful

words in finance. The general conclusion is that the context-specific lexicons have

contributed to a better measurement of tone compared to general lexicons.

Another challenge within textual sentiment is assessing the polarity of words and

the concept of term-weighting. Term-weighting refers to the measure of importance

and overall additional information for a certain word. Words such as slump, reces-

sion, underperform, crisis are generally viewed as negative but again, depending

on the context, certain words can be more negative than others. A popular weight-

ing scheme is the term-frequency - inverse document frequency, tf-idf, which is the

product of two terms, the count of the specific word in a given document times the

inverse count that the word appears across a set of documents (Luhn, 1958; Jones,

1Available at http://www.wjh.harvard.edu/ inquirer/homecat.htm
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1972; Manning & Schutze, 1999). Although there is no theoretical backing to this

approach (Gentzkow et al., 2019), the logic is that a word’s importance is tied to

its frequency within a document as well as its rarity amongst documents. Applica-

tions of tf-idf include Loughran & McDonald (2011) who assessed the polarity of a

document by giving equal weighting to positive and negative words and then, take

the dominant sentiment or take a net sum of the positive and negative frequencies.

This work is inspired by Jegadeesh & Wu (2013) ’s approach to term weight-

ing and Ardia, Bluteau, et al. (2019) ’s subsequent extension of their methodology.

Adapting from the initial tf-idf methodology, Jegadeesh & Wu (2013) and Wu de-

veloped a term-weighting approach that assigns weights for each word based on

market reactions to documents containing those words. They test multiple lexicons

(Loughran & McDonald, 2011; Harvard IV-4 Psychosocial Dictionary; Bradley &

Lang, 1999) and arrived at the conclusion that the specific lexicon is not as impor-

tant as the overall term-weighting when assessing word importance.

In order to assign an aggregate sentiment score to a document, the relative term

frequencies of words are regressed against the firm’s returns. Their approach has

the following intuitive properties:

1. The score is positively related to the number of occurrences of each positive

and negative word.

2. The score is positively related to the strength of the negative or positive words.

3. The score is inversely related to the total number of words in the document.

For document i, Jegadeesh and Wu’s score is the following:

Scorei =
J∑
j=1

(wjFi,j)
1

ai
(1.1)

where:

• wj is the weight for word j that is estimated from linear regression

• Fi,j is the number of occurences of word j in document i
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• ai is the total number of words in the document. The term 1
ai

reflects that the

score is inversely related.

The weights are estimated indirectly through a regression against the abnormal

stock return, (ri), corresponding to company i. The abnormal stock return is the

difference between the individual stock returns against the CRSP value-weighted

index over three days.

ri = a+ b

J∑
j=1

(wjFi,j
1

ai
) + εi

= a+
J∑
j=1

(bwjFi,j
1

ai
) + εi

= a+
J∑
j=1

(BjFi,j
1

ai
) + εi

(1.2)

where ai and Fi,j can be computed directly and Bj is the regression coefficient which

provides unbiased estimates of bwj. Jegadeesh & Wu (2013) performed a subsequent

regression using standardized estimates for the weights. The weight, ŵj, is equal to

the difference between the slope coefficient estimate obtained from equation 1.3 and

B̄j across all words over the standard deviation of the estimated slope coefficient

across all words.

ŵj =
B̂j − B̄

StandardDeviation(B̂j)
(1.3)

Fitting the regression below using the standardized weights, they empirically arrive

at b > 0.

ri = a+ b(
J∑
j=1

(ŵjFi,j)
1

ai
) + εi (1.4)

Thus, Jegadeesh & Wu (2013) concluded that their tone measure conveyed incre-

mental information to the market.

Ardia, Bluteau, et al. (2019) expand on Jegadeesh & Wu (2013)’s methodology by

assessing the tone surrounding a particular firm, k. They generalize Jegadeesh and
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Wu’s score by studying the ensemble of documents relating to a specific firm versus

assessing the tone from a single document for a collection of firms, k = 1, ..., K.

TONEk,t =
J∑
j=1

ηjf(j, k, t) (1.5)

f(j, k, t) =
1

Dk,t

Dk,t∑
d=1

FQd,j,k,t
1

Nd,k,t

(1.6)

where:

• J is the total number of words in the dictionary, j = 1, ...., J .

• ηj is the associated polarity score for word j.

• f(j, k, t) is the average term frequency which maps a word j for firm k at time

t to a real number.

• Dk,t is the number of articles written about firm k at time t.

• FQd,j,k,t is the number of times that the jth word is encountered in article d.

• Nd,k,t is the number of words in article d.

The value for Dk,t in Jegadeesh and Wu is 1 as they assessed for the tone of

individual articles. Ardia, Bluteau and Boudt normalize the word frequency based

on the total number of articles for firm k.

Both Jegadeesh & Wu (2013) and Ardia, Bluteau, et al. (2019) use linear re-

gression in their approach to assess the weight/polarity score for the words in their

respective dictionaries. This thesis expands on the methodology by applying quan-

tile regression to study the weights of words at various quantiles. Quantile regres-

sion is useful because it does not rely on the distributional assumptions in linear

regression. Second, the assessment of tone from the words is based on the specified

quantile in the quantile regression. Indices taken from quantile regressions using the

1% and 5% quantiles are used as external regressors to CAViaR models to assess

their informational value within a risk-management context.
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1.3 Sentiment and Risk Management

A major aim of this thesis is to study the effect of textual sentiment on firm-level

risk. Specifically, this thesis applies a proposed measure of sentiment to a standard

risk model, CAViaR (Engle & Manganelli, 2004), to evaluate if the information

from text adds value to predicting the Value-at-Risk (VaR) of firm-level returns.

The use of quantile regression is a novel contribution to the literature with respect

to sentiment analysis.

Given a response variable, Y , and a n-dimensional predictor, x, with conditional

cumulative distribution function FY (y|x) = P(Y ≤ y|x), the q-conditional quantile

is defined as:

Qq(Y |x) = inf{y : FY (y|x) ≤ q} (1.7)

Quantile regression is an extension of linear regression whereby the conditional q-

quantile for a random response variable, Y , is predicted using a linear function across

values of predictor variables, x.

Qq(Y |x) ≡ x′β(q), 0 ≤ q ≤ 1 (1.8)

β(q) is a n-dimensional vector of regression coefficients dependent on the quantile

level, q. Intuitively, given a sample of N observations {xn, yn} for n ε {1, 2, . . . , N −

1, N}, the quantile regression for a given quantile level, q, is a line such that the

proportion of observations at or above the line is equal to 1− q and the proportion

of observations below the line is equal to q.

For a given quantile level, q, and linear model, Qq(Y |x) ≡ x′β(q), the parameter

vector, β(q) is estimated by minimizing the quantile loss function. The quantile loss

function is the following:

ρ(βq) =
∑

i:yi≥xiβq

q|yi − xiβq|+
∑

i:yi<xiβq

(1− q)|yi − xiβq| (1.9)
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ρ(βq) =
N∑
i=1

[1{yi≥xiβq}q(yi − xiβq) + 1{yi<xiβq}(q − 1)(yi − xiβq)] (1.10)

ρ(βq) =
N∑
i=1

(q − 1{yi<xiβq})(yi − xiβq) (1.11)

This function is also known as the check function, ρ(u) where u = yi − xiβq.

ρ(u) ≡
N∑
i=1

(q − 1{u<0})u (1.12)

Figure 1.1: Quantile loss function

Claim: For a given quantile q, βq = arg minβ E[ρ(yi − xiβq)|xi].

Consider the data-generating process,

yt = f(yt−1, xt−1, . . . , y1, x1; β
0) + εtq Quantq(εtq|Ωt) = 0

≡ ft(β
0) + εtq

(1.13)

where f1(β
0) is some given initial condition.

Let ft(β) ≡ xtβ. The qth regression quantile is defined as any β̂ that solves:

min
β

1

T

T∑
i=1

[q − 1{yt<ft(β)}][yt − ft(β)] (1.14)

Value-at-Risk is a quantile measure that reports the limit of losses associated

with a specified probability and time period. For example, a 1-day 95%-quantile

VaR of 1M$ would indicate that within 95% of 1-day periods, losses should not
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exceed 1M$. For the remaining 5% of 1-day periods, losses would exceed 1M$.

Value-at Risk is dependent on assumptions of the return distribution (Damodaran,

2007). In practice, Value-at-Risk can be computed via:

• parametric or variance-covariance methods (e.g. GARCH)

• nonparametric (e.g. Historical simulation)

• semi-parametric (e.g. quantile regression, CAViaR, extreme value theory)

Value-at-Risk is closely linked to volatility models. Under the parametric ap-

proach, the estimated standard deviation of the return distribution from a volatility

model is translated into the VaR quantile.

The conditional VaR for a series of returns, rt, t ε {0, 1, ..., T}, for a given quantile,

q, is defined as follows:

P[rt < V aRt|t−1(q)] = q, ∀ t εZ, q ε (0, 1) (1.15)

The economic literature supports the finding that textual sentiment and news

releases has a measurable impact on stock price movements and volatility. Tetlock

(2007) construct textual sentiment measures and find that the conditional volatility

of the Dow Jones is higher when their constructed pessimism factor is high. Kothari

et al. (2009) show asymmetric market responses to firm management’s release of

good and bad news and subsequently, how managers tend to delay the publication

of bad news. Boudoukh et al. (2013) show that stock-level volatility is similar on

no-news days and unidentified news days while on identified news days, the volatility

of stock prices is over double that of other days. Banerjee et al. (2021) use sentiment

word lists to construct measures and find that news sentiment is highly correlated

to bond return volatility.

Sentiment measures derived from text can be applied as external regressors to

improve various volatility models. Examples of models commonly cited in the lit-

erature and their use of external regressors include the Generalized autoregressive

conditional heteroskedasticity model (GARCH ) (Antweiler & Frank, 2004) and the

12



heterogenous autoregressive model (HAR) (Caporin & Poli, 2017; Audrino et al.,

2020; Lehrer et al., 2021) alongside their various extensions. Antweiler & Frank

(2004) applied a Naive Bayes algorithm to word counts on internet message boards

and used their sentiment indicator to improve GARCH, EGARCH and GJR mod-

els. Caporin & Poli (2017), Audrino et al. (2020) and Lehrer et al. (2021) test

large groups of market sentiment measures (including text-based ones) and opti-

mally selected amongst them using a least absolute shrinkage and selection operator

(LASSO) approach to improve extensions of the HAR model.

The use of CAViaR models alongside sentiment analysis is novel with no prior

known research on its application. CAViaR models were proposed by Engle &

Manganelli (2004) to directly model the quantile of returns. CAViaR models are

autoregressive models whose parameters are optimized via quantile regression.

A generic CAViaR specification can be seen as an autoregressive function of its

lagged quantile estimates and lagged external regressors:

ft(β) = β0 +

q∑
i=1

βift−i(β) +
r∑
j=1

βjlt−j(xt−j) (1.16)

where:

• ft(β) is the quantile estimate of returns for a given quantile, q

• lt(xt) is a series of additional regressor variables (e.g. lagged returns)

Engle & Manganelli (2004) propose four different types of CAViaR models. Each

of these models used lagged returns as an additional regressor to the lagged quantile

estimates.

• Symmetric absolute value (SAV ) which responds symmetrically to lagged re-

turns.

ft(β) = β1 + β2ft−1(β) + β3|rt−1| (1.17)

• Asymmetric slope (AS ) with different responses to positive versus negative
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lagged returns.

ft(β) = β1 + β2ft−1(β) + β3(rt−1)
+ + β4(rt−1)

− (1.18)

• Indirect GARCH (GARCH ) which responds symmetrically to lagged returns.

ft(β) = (β1 + β2f
2
t−1(β) + β3r

2
t−1)

1
2 (1.19)

• Adaptive which responds to past hits of VaR by increasing or decreasing the

lagged quantile using positive hyperparameter G.

ft(β) = ft−1(β) + β1{[1 + exp(G[rt−1 − ft−1(β)])−1 − q]} (1.20)

Jeon & Taylor (2013) extend the original models proposed by Engle & Manganelli

(2004) to include the implied quantile which is derived from options implied volatility

as an additional regressor. We aim to replicate this approach but use a textual

sentiment score measure as a regressor instead of the implied quantile.

To calibrate the CAViaR model, the parameter vector, β̂, is the argument that

minimizes the quantile loss function in equation 1.14.

This thesis applies a constructed sentiment score measure to the symmetric abso-

lute value (SAV ), asymmetric slope (AS ) and indirect GARCH(1,1) CAViaR models

and applies VaR backtesting methods to compare performance between baseline and

augmented models.

1.4 Value-at-Risk and Backtesting

The Value-at-Risk measure derived from any model is evaluated with respect to the

hit indicator, Hitt(q), for a given quantile, q. Hitt(q) is a binary variable with the

ex-post observation of a q% VaR violation at time t.

14



Hitt(q) =


1 if rt < V aRt|t−1(q)

0 otherwise

(1.21)

Christoffersen (1998) notes that VaR forecasts are valid if and only if they satisfy

two hypotheses:

• Unconditional coverage (UC) hypothesis (Kupiec, 1995): The probability of

an ex-post return exceeding the VaR forecast must be equal to the q coverage

rate. Essentially, a VaR model that predicts the q-th quantile of returns should

not over- or underestimate the quantile level of risk.

P[Hitt(q) = 1] = E[Hitt(q)] = q (1.22)

• Independence (IND) hypothesis: In order to accurately model the higher-

order dynamic of returns, the hit indicator, Hitt(q), at time t for violation

rate q % should be independent of Hitt−k(q),∀k 6= 0. Past VaR violations

should not be informative of present and future violations. A model that does

not demonstrate the independence hypothesis can lead to clustering of VaR

violations even if it has the correct average number of violations (Dumitrescu

et al., 2012).

If both the UC and IND hypotheses are satisfied, the VaR violation process is a

martingale difference sequence and has correct conditional coverage (CC) under the

information known at the previous time period, Ft−1.

E[Hitt(q)|Ft−1] = q (1.23)

We test three major metrics to assess the performance of the CAViaR VaR

forecasts:

• Dynamic Quantile (DQ) test (Engle & Manganelli, 2004)
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• Quantile Loss Ratio (Koenker & Bassett Jr, 1978; González-Rivera et al.,

2004)

• Actual over Exceedance (AE) Ratio (Ardia, Boudt, et al., 2018)

The DQ test uses a linear regression model to test the independence of the hit

indicator, Hitt(q). Under CC, the conditional expectation of Hitt(q) given past

information must be zero. It evaluates the following regression model:

Hitt(q) =δ +
K∑
k=1

βkHitt−k(q)

+
K∑
k=1

γkg[Hitt−k(q), Hitt−k−1(q), . . . , Hit1(q);Ft−1] + εt

(1.24)

where εt is a discrete i.i.d process and g(.) is a function of past hit indicators and the

information set, Ft−1. Testing for the joint nullity of the coefficients would therefore

check for correct conditional coverage.

H0 : δ = β1 = · · · = βk = γ1 = · · · = γk = 0, ∀k = 1, . . . , K (1.25)

The quantile loss is the same as that used by Koenker & Bassett Jr (1978) for

quantile regression. Specifically, for period t at quantile q, the quantile loss, QLt(q),

is defined as:

QLt(q) ≡ (q − 1{rt<ft(β)})(rt − ft(β)) (1.26)

with Equation 1.14 being the average quantile loss. Quantile loss is an asymmetric

loss function that penalizes more heavily with weight (1 - q) the observations of VaR

exceedance. Given two hit indicator series, A and B, the quantile loss ratio is the

ratio between the average quantile losses for both A and B. If QLA/QLB < 1, then

A outperforms B and vice versa (Ardia, Boudt, et al., 2019).

The AE ratio tests for unconditional coverage. The AE ratio is defined as:

∑T
t=1Hitt(q)

E[Hitt(q)]T
=

∑T
t=1Hitt(q)

qT
under UC (1.27)
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The closer the absolute value of the AE ratio is to 1, the better the model. An

AE ratio < 1 is considered too conservative with the model making less hits than

expected and an AE ratio > 1 is considered to underestimate the risk with the

model making more hits than expected.

Overall, we aim to look for improvements between baseline models and models

that are augmented with our constructed sentiment score for the three VaR back-

testing metrics.
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Chapter 2

Data

The data composes of three major components:

1. Individual daily stock returns for 598 companies. Out of 598 companies, only

100 companies are selected for VaR analysis based on those with the most

average term frequency observations (equation 1.6).

2. Fama and French research factors for the Fama-French five factor model.

3. Average term frequencies for individual firms based on news articles about

firm k at time t.

2.1 Returns

Across 598 firms, the news sample spans from January 1, 1999 to December 31, 2016.

Individual daily stock returns are sourced from the CRSP/Compustat database.

2.2 Fama and French Factors

Fama and French factors are sourced from Kenneth French’s Dartmouth college

website (French, 2013). Specifically, the five-factor model (Fama & French, 2015)

was used. Fama and French factors (Fama & French, 1993) are time series of long-

short portfolio strategy returns based on company fundamentals. They are used as
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control variables representing systematic market factors in deriving our sentiment

indicator (section 3.1). For a given time t, the associated vector of factors:

FFt = [MKTt, SMBt, HMLt, RFt, UMDt]
′ (2.1)

with MKTt being the market risk premium, SMBt being the small-minus-big factor,

HMLt being the high-minus-low factor, RFt being the risk-free rate and UMDt

being the momentum factor all at time t.

2.3 Average Term Frequency

The average term frequency (equation 1.6) was obtained from a constructed database

obtained from Ardia, Bluteau, et al. (2019). They performed a prior analysis on

news articles retrieved from LexisNexis discussing 598 non-financial firms that were

included in the S&P 500. Filters and controls were done for relevance score, the

type of publication (i.e. newswire, newspaper, web publication), the presence of

duplicates, individual company focus instead of overall industry focus and human

versus machine-written texts. News is also controlled such that it is media-sourced

and not sourced from the actual firm in order to account specifically for media

sentiment.

Their sample contains over 2,315,402 news articles, with an average of 3,871

articles per firm and an average daily coverage of 34.81% meaning that approxi-

mately at least one article is published for a given firm once every three days. The

database covers 3,585 words. This lexicon was obtained by merging the Loughran

& McDonald (2011) and Harvard IV-4 (Stone & Hunt, 1963) lexicons.
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Chapter 3

Methodology

3.1 Sentiment Score Construction

For each individual company, a sentiment score is constructed via a two-step re-

gression; first step: linear regression, second step: quantile regression. The series

of individual returns are first regressed against their corresponding Fama-French

factors and then against the average term frequencies. This method was chosen as

opposed to one-step quantile regression due to repeating values for the Fama-French

factors at the same date for different firms and hence, if a combined Fama-French

and term frequency panel was used, the result would be a singular matrix for the

quantile regression loss function . The objective is to obtain a sentiment score that

accounts only for idiosyncratic differences in the media tone and coverage.

The two regressions and subsequent sentiment score are outlined below.

3.1.1 Regression 1: Linear Regression

The series of returns of company i (i ∈ {1, 2, ..., k}) is regressed to the corresponding

Fama-French factors using linear regression.

Ri = αi + β′iFFi + ηi (3.1)
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where:

• αi is a constant for company i.

• Ri is a Ti× 1 vector of daily stock returns for company i with a time frame of

length Ti.

• FFi is a Ti × 5 matrix of the corresponding five Fama-French factors over the

time frame for company i.

• βi is a 5× 1 vector of coefficients to the five Fama-French factors as outlined

in equation 2.1.

• ηi is a Ti × 1 vector of residuals which will be the regressand for the second

quantile regression at quantile q (section 3.1.2).

Therefore, the purpose of βi is to account for the coefficient of company i to sys-

tematic market factors. The vector of residuals, ηi, would therefore be linked to

idiosyncratic factors affecting company i. The aim of the second regression is to as-

sess whether additional predictive power occurs from the average word frequencies.

3.1.2 Regression 2: Quantile Regression

For k companies, i ε {1, 2, ..., k}, the residuals, ηi, from regression in section 3.1.1

were concatenated and regressed to the corresponding average term frequency via

quantile regression using the R quantreg package and the sparse quantile regression

function, rq.fit.sfn (Koenker, Portnoy, et al., 2018).

The objective is to find a set of vocabulary coefficients, Λq, to estimate the

quantile of residuals. We take the quantile estimate of residuals as our sentiment

score. Considering the residuals from equation 3.1 contain idiosyncratic information

about the returns of company i, modeling the quantile estimate would represent

modeling deviations from the market. To calibrate Λq, we define the linear function

as follows and use quantile regression to find the argument which minimizes the

quantile loss function (1.14) for:
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ft(Λq) ≡



Freq1,t−1

Freq2,t−1
...

Freqk−1,t−1

Freqk,t−1


Λq (3.2)

where:

• ft(Λq) is the quantile estimate of the residuals, ηi at time t

• Freqi,t−1 is a Ti×V matrix of one-day lagged (t− 1) average term frequencies

(1.6) for a lexicon vocabulary of V words across time frame Ti for company i

• Λq is a V × 1 vector of vocabulary coefficients, λv,q, to the average term fre-

quencies for the specified quantile, q.

The sentiment score is defined as:

SCOREq,i,t =
V∑
v

λq,vf(v, i, t− 1) (3.3)

where:

• SCOREq,i,t is a measure of sentiment for company i at time t fitted to quantile

q of returns.

• λq,v is the coefficient for the average term frequency of word v amongst a

vocabulary of V words fitted to quantile q of returns.

• f(v, i, t − 1) represents the average term frequency (1.6) of word v amongst

media publications about company i at time t− 1.

This one-day lagged quantile regression aims to test whether the average term

frequencies possess predictive power for a given quantile of residuals and indirectly,

the returns. SCOREq,i,t is estimated via quantile regression using the sparse im-

plementation of the Frisch-Newton interior point algorithm described in Portnoy &

Koenker (1997).
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The data was divided using an expanding window to calibrate the model. With

the exception of the first year of data, for a given year, the sentiment coefficients

were calibrated using data up to one year before. For example, the sentiment score

constructed in 2009 would use data from 1999-2008 as its window to obtain esti-

mated sentiment coefficients. Hence, from 1999 - 2016, there would be 17 expanding

windows and 17 estimates of the sentiment coefficients overtime.

Sentiment scores were constructed from the first available frequency observation

for each company to its last frequency observation. The number of frequency ob-

servations per company varies over the time frame and if no news is observed for a

company at time t, the average term frequency, f(v, i, t−1), and hence the sentiment

score, SCOREq,i,t, would be 0 at that moment.

3.1.3 Lexicon Selection

Given a set of coefficients, Λq, a sorting algorithm is proposed in order to select only

relevant words for the specified quantile, q, and thus create an associated positive or

negative lexicon. For example, one would intuitively expect a positive word such as

outperform to be strongly associated with the upper quantiles (i.e. 90% quantile or

95% quantile) of returns while a negative word such as slump would be associated

with lower quantiles (i.e 10% or 5%).

A sorting algorithm was constructed by fitting the coefficients using opposing

quantiles to filter words. The objective was to filter out words that had opposite

coefficient signs in opposite quantile regressions. Our hypothesis was that a word

that has a positive or negative tone should maintain its sign regardless of the quantile.

For example, a positive word such as outperform should be associated with an

increase in the residual which is an indirect component of the company returns

whether at the 5% quantile or 95% quantile. Therefore, λq,outperform should be

positive whether the quantile regression outlined in 3.1.2 is at the 95% quantile or

the 5% quantile.
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Sorting Algorithm

1. Perform the first regression using linear regression (equation 3.1) on the re-

turns using the Fama-French factors as independent variables and obtain the

residuals, ηi,t for all firms.

2. For a given quantile, q, perform two quantile regressions on equation 3.2 in

order to estimate the q-quantile and (1 − q)-quantile of the residuals respec-

tively.

3. Remove words which possess the opposite sign from both sets of quantile

regression coefficients, Λq,unfiltered and Λ1−q,unfiltered to obtain a new set of

words, Vfiltered.

4. Perform step 1 again and use quantile regression with Equation 3.2 on the

obtained Vfiltered at desired quantile q to obtain a final set of coefficients,

Λq,filtered, for vocabulary, Vfiltered.

Thus, two sets of sentiment scores were constructed with vocabularies and coeffi-

cients, {Vunfiltered,Λq,unfiltered} and {Vfiltered,Λq,filtered}. Each company has a fil-

tered and unfiltered sentiment score.

Score Cleaning

Average term frequencies can sometimes present extreme behaviour due to the sur-

prise behaviour of the news/media cycle. To account for the non-well behaved nature

of average term frequencies, the constructed scores were truncated within a specified

range when used as regressors for the CAViaR models. First, the scores are trun-

cated to be less than zero. Given that the residuals, ηi,t, are indirect components of

company returns, the residuals should normally lower the mean return in equation

3.1 when accounting for the lower quantiles of returns (i.e. 10%, 5%, 1%). Second,

for a given 5-year calibration window, the score observations are truncated to only

contain observations above the 5% percentile within the window. This is used to re-
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duce the effect of outliers, some of which are magnitudes larger than non-truncated

observations and will heavily influence the CAViaR model.

For example, when fitting a CAViaR model for January 2006, sentiment obser-

vations between January 2000 and December 2005 above 0 are replaced by 0 and

score observations below the empirical 5%-quantile of January 2000 to December

2005 data are replaced by the 5th quantile observation. Then, when applying the

CAViaR model for the month of January 2006, the sentiment observations are trun-

cated using 0 and the empirical 5%-quantile observed in the calibration window as

cutoffs.

For each company, we thus have two sets, each with two series of sentiment scores.

The first set is unbounded and the second set is bounded following truncation. They

both contain two series, one obtained from the full set of words (unfiltered) and the

other containing the filtered set of words (filtered). An example of the sentiment

scores for Walmart at the 1% and 5% quantile is shown below (Figures 3.1, 3.2, 3.3,

3.4). The top-half per figure are the point observations and the bottom-half of the

figure is the 20-day rolling average to distinguish the trend.
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Figure 3.1: Walmart sentiment score (unfiltered versus filtered) at 1%-quantile
(point observation and 20-day rolling average) without score truncation/cleaning
(unbounded)
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Figure 3.2: Walmart sentiment score (unfiltered versus filtered) at 1%-quantile
(point observation and 20-day rolling average) with score truncation/cleaning
(bounded)
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Figure 3.3: Walmart sentiment scores (unfiltered versus filtered) at 5%-quantile

(point observation and 20-day rolling average) without score truncation/cleaning

(unbounded)
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Figure 3.4: Walmart sentiment score (unfiltered versus filtered) at 5%-quantile

(point observation and 20-day rolling average) with score truncation/cleaning

(bounded)
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3.2 CAViaR model calibration

To evaluate the additional predictive power for a set of coefficients, Λq, the following

experiment is proposed:

1. For each company i, there is an associated series of returns, Ri and one-day

lagged average term frequencies, Freqi,t−1, for vocabulary V

2. The sentiment score for each company, SCOREq,i,t is calculated as outlined in

equation 3.3 with the calibrated coefficients, Λq, for the entirety of companies

in the dataset (section 2.3).

3. The sentiment score, SCOREq,i,t, is used as an additional regressor in the

following three CAViaR models alongside the returns:

• Augmented Symmetric Absolute Value:

ft(β) = β1 + β2ft−1(β) + β3|rt−1|+ β4SCOREq,i,t (3.4)

• Augmented Asymmetric Slope:

ft(β) = β1 + β2ft−1(β) + β3(rt−1)
+ + β4(rt−1)

− + β5SCOREq,i,t (3.5)

• Augmented Indirect GARCH(1,1):

ft(β) = (β1 + β2f
2
t−1(β) + β3r

2
t−1 + β4SCORE

2
q,i,t)

1
2 (3.6)

These augmented models are compared to the benchmark models with no

sentiment score regressor. The CAViaR models are calibrated on a monthly

rolling basis using a 5-year window. For example, to calculate the VaR for

the month of February 2005, the augmented and benchmark CAViaR models

are calibrated using data from January 2000 to January 2005. Then, for the

month of March 2005, the calibration window is February 2000 to February
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2005. This is done for the whole time frame. A company with data from

January 1999 to December 2016 would have 144 rolling periods. Given the

computational intensity of this exercise, this was done for the top 100 compa-

nies out of 598 with the most average term frequency observations. This entails

144 periods × 100 companies = 14 400 CAViaR specifications per model per

score. Parallel processing was used to calibrate the CAViaR specifications for

individual companies. Table 3.1 outlines the model specifications per company

per rolling period.

4. Obtaining 100 augmented VaR and 100 baseline series per specification, an

aggregate performance comparison of the augmented models versus the origi-

nal CAViaR models is done. The backtesting metrics include the DQ test, the

AE ratio and the quantile loss ratio. The quantile loss ratio is:

QL ratio =
Augmented Model (CAViaRX or CAViaRfX)

Baseline Model (CAViaR)
(3.7)

An example of the CAViaR models for Walmart at the 1% and 5% quan-

tile is shown below (3.5, 3.6). For a given model specification (e.g. unbounded

GARCH), the label CAViaR (in red) represents the baseline model, CAViaRX (in

blue) represents the augmented CAViaR model with the unfiltered sentiment score

and CAViaRfX (in green) represents the augmented CAViaR model with the filtered

sentiment score.
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Sentiment score per company (× 100)

Unbounded values, unfiltered vocabulary score type 1

Unbounded values, filtered vocabulary score type 2

Bounded values, unfiltered vocabulary score type 3

Bounded values, filtered vocabulary score type 4

CAViaR model per company per rolling period (× 144)

Baseline GARCH CAViaR

GARCH with score type 1 Unbounded CAViaRX

GARCH with score type 2 Unbounded CAViaRfX

GARCH with score type 3 Bounded CAViaRX

GARCH with score type 4 Bounded CAViaRfX

Baseline SAV CAViaR

SAV with score type 1 Unbounded CAViaRX

SAV with score type 2 Unbounded CAViaRfX

SAV with score type 3 Bounded CAViaRX

SAV with score type 4 Bounded CAViaRfX

Baseline AS CAViaR

AS with score type 1 Unbounded CAViaRX

AS with score type 2 Unbounded CAViaRfX

AS with score type 3 Bounded CAViaRX

AS with score type 4 Bounded CAViaRfX

Table 3.1: Outline of model specifications per company per rolling period
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Figure 3.5: Walmart CAViaR models at the 1% quantile comparing bounded ver-

sus unbounded sentiment scores across the three CAViaR specifications (SAV, AS,

GARCH)
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Figure 3.6: Walmart CAViaR models at the 5% quantile comparing bounded ver-

sus unbounded sentiment scores across the three CAViaR specifications (SAV, AS,

GARCH)
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Chapter 4

Empirical Results

4.1 Quantile Regression and Selection of Words

Upper and lower quantiles were arranged into pairs (i.e. 1% vs. 99% quantile regres-

sion and 5% vs. 95% quantile regression) and an initial regression was performed

followed by a second filtering regression. The frequency coefficients were collected

and the importance (A.1) of words in the vocabulary was observed. Importance is

a standardized measure of coefficient variance as introduced by Manela & Moreira

(2017). The sum of the importance across all words is equal to 100% by construc-

tion. Words with a high importance value account for large variability within the

sentiment score. Table 4.1, 4.2, 4.3, and 4.4 show the results for the top 25 words

with respect to importance for each subsequent regression and quantile level using

the quantile regression technique. The cumulative importance of the top 25 words

is relatively high (above 40%) meaning that they account for a high amount of vari-

ability within the score. Comparing the word selection of the low quantiles (i.e. 1%

and 5% quantile) to the high quantiles (i.e. 95% and 99% quantile), we see that

there is a large overlap of words with respect to importance. For example, Table 4.1,

which represents the importance of words after the first quantile regression before

filtering (1% vs. 99% quantile), the root words contact, share, exclude and com-

pani are amongst the top 5 for both the regressions at the 1% quantile and at the

99% quantile. This could be explained due to a high variance in the average term
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frequency of these words in the dataset. Share and compani would intuitively be

commonly used words in financial literature.

The low quantile regressions however do manage to capture some negative words.

In Table 4.1, words such as unfit (4th), shortfal (6th), declin (15th), junk (16th) and

slowdown (25th) are amongst the top 25 importance words for the 1st quantile and

are not present in the top 25 words for the corresponding high quantile regression at

the 99th quantile. We notice however that in Table 4.3, first quantile regression be-

fore filtering (5th vs. 95th quantile), that these words become both present amongst

the top 25 words.

Furthermore, the hypothesis that using opposing quantiles and opposite coeffi-

cient signs to filter words does not appear to hold much weight. When using the

initial regression to filter out words with opposing signs and then perform a second

regression, we find that almost all words in the top 25 for the initial regression are

removed and that the top 25 words in the second regressions also appear to overlap

as shown in Table 4.2, second filtering regression of 1st vs. 99th quantile, and Table

4.4, second filtering regression of 5th vs. 95th quantile.

Despite this, the second filtration does manage to carry over certain negative

words. In Table 4.2, unfit (4th) is present in both the 1st regression and the 2nd

subsequent filtration. In Table 4.2, other words including disappoint (15th) and

cautionari (16th) are also amongst the top 25 words for the low quantile (1st) but

not in the top 25 for the high quantile (99th). Comparing Table 4.3 to Table 4.4,

more negative words appear to be singled out compared in the 1st quantile compared

to the 5th.

The filtering process cuts a substantial amount of words in the vocabulary. From

an initial 3585 words, the number of words remaining for the second regression in

the 1%-vs-99% quantile regression is 1243 and 5%-vs-95% quantile regression is 1351

respectively. The cumulative importance of words is roughly the same (above 40%)

amongst the top 25 words between the 1st and 2nd paired regressions.

A possible extension of this thesis would be to test other variable selection meth-
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ods such as penalized quantile regression. As stated previously, researchers including

Caporin & Poli (2017), Audrino et al. (2020) and Lehrer et al. (2021) use penalized

regression methods (e.g. LASSO) to optimally select amongst a multitude of pre-

constructed sentiment indices. The aim in this context would be to optimally select

words amongst the initial amount of words in the vocabulary set.
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1% quantile 99% quantile

Lambda Importance (%) Lambda Importance (%)

1. contact -3.5432 8.006 1. contact 3.9748 9.566

2. share -1.6377 7.371 2. share 1.7516 8.006

3. exclud -18.8684 5.420 3. compani 0.9178 3.878

4. unfit -166.6197 4.832 4. loss 2.6620 2.132

5. compani -0.77324 2.899 5. exclud 11.9626 2.068

6. shortfal -20.6440 2.147 6. diminut 140.4652 1.792

7. loss -1.9661 1.225 7. vice 1.2853 1.392

8. lead -1.3870 1.185 8. lead 1.4409 1.214

9. soft -22.4596 1.083 9. jitteri 91.0328 0.946

10. vice -1.1025 1.079 10. call 0.9596 0.926

11. call -1.0029 1.065 11. close 1.3441 0.900

12. improprieti -43.0414 1.022 12. coincid 54.8499 0.816

13. close -1.3695 0.984 13. mine 2.5481 0.805

14. avail -3.6489 0.857 14. logic 2.0829 0.765

15. declin -2.009 0.853 15. bailout 19.736 0.735

16. junk -14.871 0.853 16. enabl 1.655 0.735

17. actual -2.668 0.750 17. beset 50.757 0.734

18. sane -68.990 0.697 18. sane 72.307 0.727

19. logic -1.909 0.677 19. underreport 63.275 0.659

20. consensu -4.084 0.650 20. monster 2.462 0.649

21. unsold -26.422 0.637 21. avail 3.127 0.598

22. well -1.066 0.620 22. gladden 41.272 0.591

23. enabl -1.479 0.618 23. bankruptci 2.946 0.585

24. crusad -25.867 0.535 24. differ 2.778 0.581

25. slowdown -6.895 0.533 25. servic 0.647 0.569

Total: - 46.524 Total: - 42.367

Table 4.1: 1% vs 99% quantile - 1st quantile regression
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1% quantile 99% quantile

Lambda Importance (%) Lambda Importance (%)

1. tax -4.609 5.212 1. gain 9.991 8.070

2. strong -6.479 3.986 2. strong 7.334 4.880

3. gain -6.650 3.741 3. tax 3.998 3.748

4. unfit -205.649 3.100 4. opportun 6.086 3.714

5. independ -5.403 3.003 5. independ 5.240 2.700

6. weak -9.749 2.837 6. proprietari 10.124 2.412

7. opportun -5.091 2.719 7. need 5.808 2.310

8. proprietari -8.992 1.991 8. better 5.657 1.948

9. need -4.988 1.783 9. reliabl 5.877 1.825

10. save -4.633 1.528 10. save 5.087 1.760

11. better -4.897 1.528 11. excess 10.517 1.224

12. writeoff -32.084 1.466 12. confid 7.184 1.195

13. reliabl -5.065 1.419 13. successfulli 9.206 1.177

14. aggreg -7.504 1.360 14. aggreg 7.096 1.162

15. disappoint -13.453 1.350 15. counsel 5.111 1.030

16. cautionari -17.540 1.149 16. commit 4.735 1.008

17. successfulli -8.803 1.126 17. strengthen 7.676 0.960

18. miss -9.568 1.107 18. ensur 5.610 0.914

19. confid -6.647 1.071 19. edg 6.204 0.906

20. commit -4.701 1.040 20. safeti 2.234 0.895

21. slow -9.092 1.026 21. weak 5.533 0.873

22. premium -5.448 0.938 22. premium 5.219 0.822

23. unanticip -23.646 0.907 23. limit 7.408 0.762

24. limit -7.868 0.899 24. join 6.365 0.753

25. ideal -9.093 0.862 25. learn 5.491 0.696

Total: - 47.145 Total: - 47.746

Table 4.2: 1% vs 99% quantile - 2nd quantile regression after filtering
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5% quantile 95% quantile

Lambda Importance (%) Lambda Importance (%)

1. contact -1.821 12.099 1. contact 2.075 13.622

2. share -0.623 6.102 2. share 0.753 7.728

3. compani -0.396 4.357 3. compani 0.437 4.596

4. loss -1.176 2.507 4. lead 0.815 2.032

5. vice -0.651 2.152 5. exclud 5.055 1.930

6. lead -0.745 1.956 6. loss 1.050 1.735

7. exclud -4.153 1.503 7. vice 0.624 1.712

8. logic -1.137 1.375 8. logic 1.323 1.614

9. close -0.652 1.277 9. avail 1.857 1.101

10. free -0.418 1.204 10. call 0.458 1.101

11. well -0.608 1.153 11. enabl 0.813 0.928

12. call -0.425 1.097 12. free 0.391 0.910

13. mine -1.153 0.995 13. close 0.578 0.870

14. declin -0.901 0.983 14. declin 0.886 0.823

15. avail -1.629 0.978 15. differ 1.439 0.814

16. slowdown -3.788 0.921 16. home 0.409 0.797

17. enabl -0.699 0.791 17. well 0.522 0.737

18. actual -1.143 0.788 18. mine 1.009 0.660

19. home -0.3589 0.706 19. bankruptci 1.3556 0.648

20. differ -1.219 0.674 20. divis 0.684 0.617

21. common -0.581 0.661 21. downturn 2.867 0.517

22. divis -0.630 0.604 22. eloqu 19.671 0.505

23. downturn -2.822 0.578 23. involv 1.732 0.499

24. servic -0.259 0.550 24. tire 0.779 0.481

25. drop -0.997 0.516 25. major 0.644 0.467

Total: - 46.527 Total: - 47.447

Table 4.3: 5% vs 95% quantile - 1st quantile regression
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5% quantile 95% quantile

Lambda Importance (%) Lambda Importance (%)

1. experi -3.031 5.571 1. experi 3.340 6.359

2. effect -3.592 4.018 2. effect 3.705 4.018

3. save -3.163 3.195 3. save 3.395 3.461

4. reliabl -3.462 2.974 4. reliabl 3.613 3.044

5. leadership -2.660 2.253 5. leadership 2.788 2.326

6. premium -3.781 2.029 6. discontinu 6.818 1.912

7. discontinu -6.715 1.973 7. premium 3.768 1.894

8. weaker -11.334 1.811 8. robust 6.659 1.656

9. light -2.553 1.668 9. light 2.572 1.591

10. encourag -3.827 1.485 10. flexibl 4.890 1.524

11. flexibl -4.543 1.399 11. compet 5.431 1.448

12. legal -2.334 1.337 12. encourag 3.856 1.417

13. liabil -4.108 1.266 13. approach 3.796 1.390

14. cautionari -8.582 1.237 14. liabil 4.326 1.320

15. robust -5.561 1.229 15. legal 2.333 1.256

16. intellig -2.341 1.216 16. anomali 12.317 1.239

17. anomali -11.708 1.191 17. particular 4.802 1.199

18. approach -3.390 1.179 18. intellig 2.358 1.160

19. accord -4.780 1.176 19. cautionari 8.458 1.129

20. compet -4.733 1.170 20. hand 3.520 1.118

21. satisfact -3.753 1.072 21. layoff 2.622 1.106

22. connect -3.222 1.038 22. connect 3.388 1.079

23. essenti -4.192 0.981 23. weaker 8.960 1.064

24. ideal -4.511 0.953 24. essenti 4.289 0.966

25. layoff -2.357 0.951 25. accord 4.433 0.951

Total: - 44.372 Total: - 45.629

Table 4.4: 5% vs 95% quantile - 2nd quantile regression after filtering
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4.2 Distribution of Scores

Figure 4.1 and 4.2 show the distribution of the minimum, median and maximum

values amongst the 100 sentiment score series with or without filtration and before

or after bounding/truncation. Comparing the 1% quantile distributions to the 5%

quantile distributions, the nature of the quantiles is apparent with the range of

values for the 1% quantile to be lower than the range of values for the 5% quantile

as is to be expected.

Second, comparing figure 4.1 against figure 4.2, the truncation has a substantial

effect on the minimum and maximum values. Without the bounding, most maximum

values are above zero and the minimums present more extremes.

Third, the filtering also shifts the distribution of scores to the left. This is seen by

looking at the distribution of median scores in the unbounded scores (figure 4.1) and

across the min, median and max score distributions in the bounded scores (figure

4.2). One possible reason for this might be that the filtering process singles out

negative words though this has to be further investigated.
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Figure 4.1: Distribution of sentiment score unbounded values for 100 companies
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Figure 4.2: Distribution of sentiment score bounded values for 100 companies
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4.3 Comparative Performance of CAViaR models

We evaluated the models using the DQ-test, the quantile loss measure and the

actual-over-expected exceedance ratio (AE). The results for the three measures are

outlined in Table 4.5.

4.3.1 DQ-Test

Panel A (Table 4.5) shows the number of DQ rejections out of the 100 companies at

the 5% critical level across all model specifications. A smaller number suggests bet-

ter model performance. Comparing the baseline model (CAViaR) to the augmented

models (CAViaRX, CAViaRfX), at the 1% quantile, there is a noticeable improve-

ment across all three CAViaR types (GARCH, SAV and AS) with less augmented

models being rejected when the initial or filtered score is added. This trend is mixed

at the 5% level.

For the baseline and augmented CAViaRs, the asymmetric slope models are

the top performing group amongst the 3 major classes with the least number of

rejections. At the 1% quantile score measure, the asymmetric slope (AS) models

initially reject 39 out of 100 company calibrations but when the score is added as an

additional regressor, the number of rejections drops to 21 (CAViaRX unbounded,

CAViaRfX unbounded, CAViaRfX bounded) or 24 (CAViaRX bounded). Less re-

jections are also observed for the GARCH and Symmetric absolute value (SAV)

models. However, this improvement is not apparent using the 5% quantile score

measure. The number of regressions tends to slightly increase with the exception of

CAViaRX bounded. One possible explanation to explain the 1% vs. 5% difference

could be that sentiment tends to affect the more extreme nature in stock returns as

previously studied by Garcia (2013), Ahmad et al. (2016), and Hanna et al. (2020).

There is some variation in the performance of the unbounded versus bounded

groups, with the bounded group presenting less rejections for the GARCH and SAV

models at the 1% quantile and GARCH at the 5% quantile. However, the difference

is much less compared to baseline versus augmented models and this difference is
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not found in the AS models (both 1% and 5% quantile) and the SAV model (at 5%

quantile).

4.3.2 Quantile Loss Ratio

Panel B (Table 4.5) shows the number of models out of the 100 companies with a

quantile loss ratio less than 1 compared to the baseline. The larger the number, the

better the model performance. Overall, more than half (> 50) the models showed an

improvement in quantile loss for most model variations (GARCH, SAV and AS at

1% quantile, GARCH and AS at 5% quantile). The SAV models at the 5% quantile

improve for less than half of the 100 companies.

Comparing unbounded to bounded models, there is minimal difference in the

number of improved models. The only noticeable changes are the AS models at the

1% quantile for CAViaRX and the GARCH at the 1% quantile for CAViaRfX where

there is improvement from using the bounded score.

Looking between the 1% and 5% quantiles, the only noticeable improvement is

the SAV model. For the SAV class of CAViaR models, the score calibrated at the 1%

quantile improves more models compared to the score calibrated at the 5% quantile.

For example, the loss ratio for the CAViaRX unbounded SAV models improves for

68 models compared to 48 models from the 5% to the 1% quantile. However, this

improvement in performance between the 1% and 5% quantile is not observed with

the GARCH or AS models.

Amongst the three model classes, more GARCH models improve with the addi-

tion of the exogenous variable compared to the SAV and AS models with the highest

number of loss ratios below 1.

4.3.3 Joint DQ and Quantile Loss Ratio Criteria

Panel C (Table 4.5) shows the number of models out of 100 companies satisfying

both the DQ test and a quantile loss ratio less than 1 compared to the baseline

CAViaR. The larger the number, the better the model performance. The number
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of models that satisfy both conditions falls to less than half in almost all cases

with the exception of GARCH CAViaRX bounded at the 1st quantile at 55 models.

Despite this, there is a clear differenciation in model performance looking between

the 1% quantile and 5% quantile groups. There are more companies under the

1% quantile that satisfy both conditions compared to the 5% quantile calibration.

This is apparent looking at the SAV and GARCH models between the 1% and 5%

quantile. This improvement is minor for the AS models.

Comparing the unbounded and bounded scores, there is a minimal improvement

using the bounded score with CAViaRX across GARCH, SAV and AS for both the

1% and 5% quantile. The result is mixed between the bounded and the unbounded

scores when looking at CAViaRfX. A possible extension would be to investigate

more companies or different VaR models (e.g. GARCH, HAR).

4.3.4 Actual over Exceedance Ratio

Panel D and panel E (Table 4.5) show the number of unbounded and bounded

models respectively out of 100 companies with an AE ratio within a specified range.

Two ranges of 0.98-1.02 and 0.95-1.05 are used. The larger the number, the better

the model performance. Obviously, the larger range will contain the smaller range

and have more models. Instead, the objective is to compare if there are noticeable

increases for augmented models.

In both panels, comparing the baseline to the augmented models, the results are

mixed. For example, the unbounded AS models (panel D) outperform the baseline

CAViaR but this is not apparent in the bounded AS models (panel E).

In both panels, comparing the 1% and 5% quantile, we see that more models fall

in the AE range at the 5% quantile than the 1% model for most model specifications.

Exceptions to this trend are AS CAViaRfX at the 0.98 - 1.02 range in panel D (19

to 13) and SAV CAViaRfX at the 0.98 - 1.02 range in panel E (14 to 9). This

observation is opposite to our analysis of the DQ and quantile loss ratio.

It is important to note that the AE ratio only tests the unconditional coverage
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hypothesis, 1.22 while the joint DQ and Loss Ratio results from panel C would test

both the unconditional coverage and independence hypothesis.
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Table 4.5: Backtesting aggregate results for all CAViaR models

Panel A:

Number of DQ rejections out of 100 companies at 5% critical level

1% quantile 5% quantile

GARCH SAV AS GARCH SAV AS

CAViaR 52 44 39 79 57 30

CAViaRX (unbounded) 43 38 21 79 60 33

CAViaRX (bounded) 35 30 24 76 56 26

CAViaRfX (unbounded) 41 35 21 80 57 34

CAViaRfX (bounded) 31 32 21 78 66 37

Panel B: Number of Loss Ratios < 1 out of 100

1% quantile 5% quantile

GARCH SAV AS GARCH SAV AS

CAViaRX (unbounded) 74 68 57 74 48 63

CAViaRX (bounded) 76 69 69 78 43 66

CAViaRfX (unbounded) 68 60 58 67 38 52

CAViaRfX (bounded) 75 62 56 69 38 54

Panel C: Number of models satisfying both conditions out of 100

1% quantile 5% quantile

GARCH SAV AS GARCH SAV AS

CAViaRX (unbounded) 48 46 49 13 19 47

CAViaRX (bounded) 55 49 54 19 20 52

CAViaRfX (unbounded) 46 41 46 12 19 36

CAViaRfX (bounded) 53 44 45 14 15 34
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Panel D: Number of models within specified AE range (unbounded)

1% quantile 5% quantile

GARCH SAV AS GARCH SAV AS

0.98 - 1.02

CAViaR 9 8 8 15 12 11

CAViaRX 8 9 11 17 15 15

CAViaRfX 9 7 19 23 16 13

0.95 - 1.05

CAViaR 23 22 22 45 34 29

CAViaRX 28 23 25 44 35 42

CAViaRfX 33 23 26 47 35 33

Panel E: Number of models within specified AE range (bounded)

1% quantile 5% quantile

GARCH SAV AS GARCH SAV AS

0.98 - 1.02

CAViaR 11 9 8 22 10 14

CAViaRX 11 6 11 21 15 17

CAViaRfX 8 14 7 22 9 12

0.95 - 1.05

CAViaR 26 19 23 40 23 30

CAViaRX 20 21 29 47 36 38

CAViaRfX 21 28 20 48 28 34
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Chapter 5

Conclusion

The use of non-conventional sources of data including textual sentiment continues

to grow in importance especially in applications such as economics and finance and

risk-management. Thus far, quantile regression is a novel technique in its use for

natural language processing and specifically, textual sentiment analysis.

By proposing a score derived from quantile regression on textual data concerning

non-financial firms, we demonstrated that there is a marginal improvement in VaR

backtesting performance for CAViaR models at the 1% quantile level. This con-

clusion is in sync with the idea that sentiment is associated with market reactions

and extreme idiosyncratic events. Possible extensions of this research could include

reformulating the quantile regression such that the idiosyncratic element of returns

is obtained otherwise (e.g. definition of an abnormal return versus the systemic mar-

ket return) or implementing other variable selection methods to select the lexicon

of choice words (e.g. penalized quantile regression).
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Appendix A

Importance of Words

Importance is a standardized measure of coefficient variance as introduced by Manela

& Moreira (2017). It is constructed using the product of squared regression coeffi-

cients and term-frequency variance. The sum of the importance across all words is

equal to 100% by construction.

For a set of term-frequency regression coefficients for V words, {λv}Vv=1, the

importance for word v is defined as:

impv =
λ̂2vσ̂

2
v∑J

j=1 λ̂
2
vσ̂

2
v

(A.1)

where:

• λ̂v is the coefficient estimate of word v

• σ̂2
v is the variance of the term-frequencies for word v
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