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Abstract

I empirically test if the findings documented by Pástor et al. (2022) and Ardia et al.

(2023a)—that green firms outperform brown firms when climate change concerns increase

unexpectedly—extends to option-implied returns, and I enhance these findings by examining

the relationship between the second, third, and fourth option-implied moments and unex-

pected increases in climate concerns, using the daily options data of 421 U.S. companies

from January 2010 to June 2018. I employ the volatility surface model proposed by François

et al. (2022) to convert the daily options data into forward-looking return distributions for

each firm and compute the first four moments of these distributions. I then regress daily

changes of these moments on the shock component of the Media Climate Change Concerns

(UMC) index of Ardia et al. (2023a), a proxy for unexpected increases in climate change

concerns. I find that option-implied returns exhibit a weaker relationship with increases in

climate change concerns compared to realized returns. Additionally, I show that on days

with unexpected increases in climate change concerns, all stocks’ option-implied volatility

and skewness generally increase, with a more pronounced effect for brown firms. Lastly, I

demonstrate that the link between the option-implied moments and the UMC index varies

among the index topical clusters.
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1 Introduction

Climate change is recognized as one of the most pressing challenges of our era. However, con-

siderable debate exists over its severity, origins, and the most effective approaches to mitigate

its impacts. Such disparities in opinion shape the preferences of consumers, regulators, and

investors—some ardently support sustainable practices and investments to mitigate climate

change, while others are less concerned. These preferences are not static. They evolve based

on new information, subsequently influencing financial asset prices (Fama and French, 2007).

Shifts in these preferences have notably accelerated sustainable investing (GSIA, 2018) and

sparked significant anti-fossil fuel campaigns (Halcoussis and Lowenberg, 2019). High-profile

events, such as the 2012 United Nations Climate Change Conference, the Paris Agreement,

and initiatives like the Climate Action Plan, further amplify or intensify these investment

trends.

In the context of these shifting preferences, Pástor et al. (2021) propose a theoretical

model that links changes in sustainability preferences to asset prices. In particular, they

predict that green stocks will outperform brown stocks amid a sudden surge in climate change

concerns. Ardia et al. (2023a) construct a daily Media Climate Change Concerns (MCCC)

index, using primary U.S. news sources to capture unexpected increases in climate-related

concerns and confirm the theoretical predictions of Pástor et al. (2021). Using the MCCC,

Pástor et al. (2022) also confirm the theoretical prediction using another sample and an

alternative classification for green and brown stocks. Further exploring the economic impact

of climate concerns, Bua et al. (2024) introduce two indicators to assess the effect of climate

risks on European equity markets, mainly focusing on physical and transition risks. Their

findings suggest that sectoral classifications provide a reliable estimate of a company’s risk

exposure to physical climate impacts. Employing a textual analysis methodology akin to that

of Engle et al. (2020), their research detects significant responses to critical events influencing

transition and regulatory frameworks. Additionally, using the Latent Dirichlet Allocation

method, Faccini et al. (2023) apply textual analysis to news articles to establish market-wide

climate-risk factors. This technique aggregates topic shares across various articles, forming

a time series reflecting news coverage’s intensity and focus on specific themes.

My research extends the existing literature by considering forward-looking option-implied

moments into the estimation framework. Given the significant differences between option-

implied and realized moments in assessing future dynamics (Han and Park, 2013), my study

investigates whether the empirical findings of Ardia et al. (2023a) and Pástor et al. (2021)

hold with option-implied returns. Furthermore, I expand upon these findings by analyzing

the second, third, and fourth moments of the forward-looking return distribution, enhanc-
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ing our understanding of the dynamics between stock returns and climate change concerns.

Incorporating the second, third, and fourth moments into the analytical framework is par-

ticularly pertinent, as these higher order moments significantly shape investor behavior (Lin

and Liu, 2018). This relevance is heightened by the increasing recognition of the impact of

skewness and kurtosis on investment decisions, especially as markets become more sensitive

to the asymmetries and tail risks in return distributions (Madan and McPhail, 2000; Rogach

et al., 2019; Lai et al., 2006).

My empirical analysis examines 421 U.S. firms from January 2010 to June 2018. First,

I rely on the volatility surface model proposed by François et al. (2022) to convert daily

options data into forward-looking return distributions for each firm. Second, I apply the

methodology of Breeden and Litzenberger (1978) to calculate the first four option-implied

moments. Last, I analyze these option-implied moments by regressing their daily changes

against the daily change of the unexpected climate change concerns (UMC) index of Ardia

et al. (2023a), utilizing two different methods: a panel regression approach and a green-

minus-brown non-parametric approach.

My findings indicate that the relationship between the option-implied underlying first

moment and unexpected variations in climate change concerns is weaker than for the real-

ized first moment, a finding that corroborates the results of Poteshman (2001) and Mahani

and Poteshman (2008), indicating that options markets tend to underreact to individual

daily fluctuations in instantaneous variance, especially for green stocks. I also show that

unexpected increases in climate change concerns are linked to higher implied volatility and

skewness across all stocks, but more so for brown stocks. This is a reasonably intuitive result

for the implied volatility component as investors may perceive green stocks as more resilient

and better positioned for the possibility of a future low-carbon economy. This perception

could lead to a lower increase in implied volatility for green stocks compared to brown

stocks. However, the implied skewness finding is less intuitive and contradicts the hypoth-

esis that an increase in climate change concerns is linked to higher expectations of adverse

tail events affecting companies, which leads to a decrease in implied skewness. The results

suggest that, on the contrary, the factors contributing to downside risks are perceived to be

less likely or less severe than before. Investors might have become more optimistic about

the opportunities presented by addressing climate change, such as advancements in green

technologies, regulatory incentives, or the transition to a low-carbon economy (Ameli et al.,

2020). Finally, I find that the strength of the relation between the implied moments and

the UMC varies among topical clusters. This result is supported by the findings of Salisu

et al. (2023), which indicate that climate risk impacts the return distributions in the crude

oil and natural gas markets, and that transition risks are more predictive of energy market
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fluctuations, notably the return skewness, than physical risks. This suggests that investors

are more responsive to policies, programs, and initiatives to mitigate climate change-related

losses and fatalities and adapt to shifts in environmental sustainability rather than to the

physical damages caused by climate change. This perspective is also consistent with Faccini

et al. (2023), which argue that investors primarily hedge against imminent transition risks

due to government interventions rather than the direct risks from climate change itself.

The research is organized as follows: Section 2 reviews the current literature surrounding

this subject. Section 3 describes the methodology. Section 4 presents my data. Section 5

shows the empirical results and discusses the main findings. Section 6 examines areas of

further research. Finally, Section 7 concludes.
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2 Literature Review

This literature review explores several critical domains within the realm of climate finance,

underpinning the research with a broad spectrum of theoretical and empirical studies. This

review is structured into distinct yet interconnected sections, starting with an overview of

climate finance, where the focus is divided between green and brown assets. The review

then addresses broader climate change concerns, reflecting on how these apprehensions are

measured and quantified. Further, I present the Media Climate Change Concerns (MCCC)

index of Ardia et al. (2023a), a tool for quantifying media narratives around climate change

concerns.

2.1 Climate Finance

Climate finance is a fundamental component of modern-day finance. It encompasses the

financial resources and mechanisms allocated towards mitigating and adapting to climate

change, facilitating the transition towards a low-carbon, climate-resilient economy. It is piv-

otal in addressing the multifaceted challenges posed by climate change, including greenhouse

gas emissions reduction, enhancement of renewable energy infrastructures, conservation of

biodiversity, and the development of adaptive strategies to withstand climatic impacts. The

concept of climate finance is rooted in the principle of “common but differentiated responsi-

bilities,” recognizing countries’ varying capabilities and contributions to climate change. It

is an area of expanding research as it represents a critical component of the global response

to climate change, bridging the gap between environmental sustainability and economic de-

velopment.

Long et al. (2022) provide a comprehensive review of the literature in climate finance,

observing that significant scholarly contributions have emerged more recently, mainly moti-

vated by the Paris Climate Agreement. They identified six principal themes dominating the

discourse: (i) the broader implications of climate change, (ii) the mechanisms and impact of

green financing, (iii) the role of public policy, (iv) the valuation processes for green bonds,

(v) the intersection of green financing with banking practices, and (vi) the integration of

green bonds within financial markets.

Stroebel and Wurgler (2021) survey 861 participants from finance academia, industry

professionals, public sector regulators, and policy economists, focusing on climate finance

issues. The survey reveals that regulatory risk is perceived as the most significant climate-

related risk to businesses and investors in the next five years. In contrast, physical risk is the

primary concern over the next 30 years. The respondents overwhelmingly agreed that current

asset prices fail to accurately reflect climate risks, indicating a general underestimation rather
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than an overestimation due to a widespread misunderstanding of these risks. Furthermore,

the findings show that those with a professional stake in climate finance—arguably the

respondents with the most informed perspectives—are even more strongly of the opinion

that the financial markets do not accurately account for climate risks.

A wealth of research has been devoted to dissecting various facets of climate change,

aiming to clarify widespread misconceptions about its nature and impact on corporate finan-

cial performance. Below, I underscore the critical role of climate sentiment in the practical

deployment of financial theories. Accompanied by a surge in investment activism and unpar-

alleled access to information, there has been an escalating demand for investment strategies

that conscientiously consider climate issues.

2.1.1 Green and Brown Assets

It is first necessary to categorize firms into green and brown groups to evaluate the differ-

ential impact of climate sentiment shocks on firm’s stock price. This categorization allows

for a nuanced analysis of how different types of companies—those that are environmen-

tally friendly versus those that are not—react to the same external stimuli such as changes

in climate policy or shifts in consumer preferences. By distinguishing between green and

brown firms, it is easier to understand investor behavior, as investors may respond differ-

ently based on a company’s environmental impact. Various classification methodologies have

been employed in scholarly research to achieve this delineation. Pástor et al. (2022) attribute

greenness levels to individual stocks utilizing the environmental ratings provided by MSCI,

which Eccles and Stroehle (2018) describe as a leading global entity in ESG (Environmental,

Social, Governance) scoring. The environmental criteria consider how a company performs

as a steward of the natural environment. These criteria include carbon emissions, waste

management, energy efficiency, resource depletion, and the company’s impact on biodiver-

sity. Investors use these criteria to assess potential environmental risks associated with their

investments and to identify companies that are leaders in adopting eco-friendly practices.

MSCI’s ratings, enriched by its research unit comprising over 200 analysts, undergo frequent

updates throughout the year. A notable advantage of MSCI’s ESG ratings is their provision

of non-industry-adjusted scores, enabling Pástor et al. (2022) to discern green and brown

stocks irrespective of their industrial sectors. Conversely, Bauer et al. (2022), Garvey et al.

(2018), Cheema-Fox et al. (2021), and Ardia et al. (2023a) advocate for the utilization of

carbon dioxide emissions data, positing its consistency and reliability over ESG scores as doc-

umented by Busch et al. (2022). This approach defines emission intensity ratios, mitigating

the influence of a firm’s size on its green classification. By dividing greenhouse gas emissions

by firm revenue, this metric quantifies the tons of CO2 equivalent emissions required for a

5



firm to generate one million dollars, offering an empirical basis for assessing firm greenness

as a determinant of returns and its relevance to consumers and investors. An alternative

strategy, eschewing direct stock greenness classification, involves using clean energy ETFs

as surrogates for green stocks. Dutta et al. (2023), Li et al. (2023), and Bouri et al. (2022)

examine various ETFs within their empirical analyses, explicitly highlighting the Invesco

WilderHill Clean Energy ETF (PBW) and the Invesco Global Clean Energy ETF (PBD).

These ETFs offer investors access to renewable energy ventures, boasting high liquidity and

reduced vulnerability to non-synchronous trading phenomena. For representing brown en-

ergy stocks, Bouri et al. (2022) incorporate three ETFs: the Energy Select Sector SPDR

Fund (XLE), the iShares Global Energy ETF (IXC), and the iShares U.S. Energy (IYE).

According to Fama and French (2007), shifts in preferences can significantly influence

asset prices, a principle underpinning research on how climate change concerns impact the

performance of green and brown stocks. Pástor et al. (2021) propose a model to capture the

effect of preference variations on asset prices, demonstrating that green assets outperform

brown ones amid rising climate change concerns. Supporting this notion, Ardia et al. (2023a)

utilize the shock component of their Media Climate Change Concerns (MCCC) index to show

that unexpected surges in climate change concerns lead to appreciable increases in green firm

stock prices and decreases in brown firm stock prices.

Bua et al. (2024) develop two indicators for assessing the pricing of climate risks in

European equity markets, focusing on physical and transition risks. Their findings suggest

that the sectoral classification effectively approximates firms’ exposure to physical risks. The

methodology is rooted in textual analysis, akin to the approach used by Engle et al. (2020),

and identifies significant spikes corresponding to key events that influenced transition and

regulatory actions. Similarly, Santi (2023) conducts a textual analysis on StockTwits posts,

finding that heightened climate sentiment is linked to lower returns for long-short portfolios,

with the volume of climate-related posts serving as a proxy for climate sentiment. This trend

persists when analyzing ETFs as proxies for green versus brown assets, as demonstrated

by Brière and Ramelli (2023), who find that increased green sentiment precipitates the

outperformance of climate-friendly assets. Bouri et al. (2022) provide empirical evidence

that climate policy uncertainty significantly affects the performance of green and brown

energy stocks, particularly during crisis periods, with increased uncertainty favoring green

assets. Pham et al. (2023) examine the reaction of the green stock market to climate policy

events, noting significant responses to positive policy developments, whereas adverse events,

such as the Trump election or the announced withdrawal from the Paris Agreement, showed

no impact on green asset returns. The discussion extends beyond equity markets to the

green and brown fixed-income sectors. Baker et al. (2018) study green municipal bonds,
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finding they are issued at a premium over similar ordinary bonds, a premium that increases

with third-party green certification. Conversely, Huynh and Xia (2021) explores the impact

of climate change news risk on corporate bonds, discovering that bonds with higher climate

change news beta are associated with lower returns, indicating that higher climate risk

concerns elevate prices for bonds issued by environmentally-performant firms.

The relative performance of more versus less climate-friendly assets has garnered at-

tention in recent research, yielding mixed findings. Empirical studies such as Bolton and

Kacperczyk (2021) and Bansal et al. (2023) indicate that green stocks typically exhibit lower

returns, suggesting the presence of a carbon premium. This concept aligns with basic as-

set pricing theory, which posits that firms facing higher climate-related risks (i.e., brown

firms) command higher expected returns as compensation. Bolton and Kacperczyk (2021)

employ panel regressions of equity returns against carbon dioxide emissions, revealing that

less climate-friendly firms tend to generate higher returns. Conversely, Bansal et al. (2023)

highlights that the stock market already integrates climate risks into pricing, as evidenced

by the negative impact of low-frequency variations in global temperature on asset valuations,

thus carrying a risk premium. Several studies, including Ardia et al. (2023a), Pástor et al.

(2021), Huij et al. (2022), Xiong (2021) report significant outperformance by climate-friendly

assets compared to their less climate-friendly counterparts in recent years.

Although these findings may seem contradictory, they underscore the notion that over

the long term, brown firms are expected to outperform green firms due to the risk premium

associated with brown industries. This trend reverses when there is an unexpected increase

in climate change concerns. Pástor et al. (2022) confirm the findings of Ardia et al. (2023a)

that the recent superior performance of green assets was mainly driven by unexpected en-

vironmental concerns escalations rather than elevated expected returns. Their analysis sup-

ports the theoretical framework and corroborates the empirical findings of Chava (2014) and

El Ghoul et al. (2011), which also report that green stocks generally have lower expected

returns than brown stocks. The expected returns are assessed ex-ante, using implied costs of

capital and ex-post, by analyzing realized returns adjusted for climate concern shocks and

earnings variations.

Additionally, Bauer et al. (2022) attribute these conflicting results to differences in green-

ness measurement and the methodologies used to compute stock performance. They suggest

that discrepancies in monthly observation counts lead to weighting differences between panel

regression and brown-minus-green portfolios. More so, the choice of greenness indicator varies

across studies, with some employing emissions levels as the independent variable in regres-

sions, a model Bauer et al. (2022) argue does not align with investor behavior focused on

cross-sectional firm comparisons.
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2.1.2 Climate Change Concerns

Engle et al. (2020) have significantly contributed to quantifying climate change concerns by

proposing two methods for developing climate news indices. Their initial index integrates

19 climate change white papers and 55 glossaries into a dataset of unique terms and their

frequencies, further applying these terms to quantify the presence of climate-related discus-

sions in daily editions of The Wall Street Journal. This approach inherently assumes that

an increase in discussions on climate change correlates with heightened climate risk, suggest-

ing that the absence of such news indicates positive climate developments—a substantial

presupposition. To address potential shortcomings of this assumption, their secondary in-

dex concentrates exclusively on negative climate news, leveraging an extensive collection of

over one trillion news articles by Crimson Hexagon to categorize articles by sentiment, thus

isolating those with predominantly negative connotations.

Building on this work, Gavriilidis (2021) introduces a climate policy uncertainty index

that distinguishes itself in two main ways: by analyzing articles from eight significant news-

papers for a broader assessment of climate discourse and by focusing specifically on climate

policy-related news that could engender uncertainty. This index contrasts with Engle et al.

(2020), who considered all climate change-related news. The index is formulated by identi-

fying articles that contain terms associated with uncertainty in conjunction with standard

climate change terminology, resulting in a correlation coefficient of 0.41 with the WSJ climate

change news index by Engle et al. (2020).

Expanding further upon Engle et al. (2020), Faccini et al. (2023) apply textual analysis

to news articles to establish market-wide climate-risk factors via Latent Dirichlet allocation

(Blei et al., 2003). This methodology, initially introduced in economics by Hansen et al.

(2017) and subsequently in finance, aggregates topic shares from all articles to create a time

series reflecting news coverage’s intensity on specific topics. Their research includes analyzing

over 34,000 articles from the Refinitiv News Archive mentioning “climate change” or “global

warming.”

In contrast to conventional media sources, Santi (2023) examines StockTwits posts re-

lated to climate change to estimate investor climate sentiment. StockTwits, a social media

platform tailored for investors, offers a rich dataset for textual analysis due to its focus on

stock-related information. Santi (2023) selects messages based on keywords associated with

climate change and global warming and conducts sentiment analysis to quantify investor cli-

mate sentiment, employing novel computational packages to calculate text polarity sentiment

accurately.

Brière and Ramelli (2023) diverge from news-based indices by estimating demand shocks

for green assets through ETF arbitrage activity. They calculate abnormal monthly flows into
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eco-friendly ETFs to create a Green Sentiment Index, reflecting unpriced shifts in investor

demand for green assets. This index, distinct from other climate sentiment measures, aims

to capture investor appetite shifts not based on fundamental information, suggesting its

predictive power in forecasting green asset performance.

2.2 Media Climate Change Concerns (MCCC) Index

Ardia et al. (2023a) test the prediction by Pástor et al. (2021) that green firms outperform

brown firms during spikes in climate change concerns. The research quantifies these shifts

by utilizing their novel Media Climate Change Concerns (MCCC) Index, created from ex-

tensive textual analysis of climate change coverage in major U.S. media. This index, crafted

from news articles across newspapers and newswires, applies natural language processing

techniques to assess mentions and sentiment related to climate change, adjusting for media

output fluctuations to isolate genuine changes in public concern.

To quantify variations in climate change concerns, they define concerns as “the perception

of risk and related negative consequences associated with this risk.” Based on this definition,

they create a score to measure these concerns from the informational content of news articles.

They use two lexicons for this purpose: (i) a risk lexicon to gauge the level of discussion

about future risk events and (ii) a sentiment lexicon to assess the increase in risk perception.

These tools are used to calculate the “concerns score.”

Assuming there are S news sources, where s = 1, . . . , S, and each day t = 1, . . . , T ,

source s publishes Nt,s articles discussing climate change. For each article n published on

day t by source s, the concerns score is determined using the number of risk words RWn,t,s,

the number of positive words PWn,t,s, the number of negative words NWn,t,s, and the total

number of words TWn,t,s in the article:

concernsn,t,s = 100×
(
RWn,t,s

TWn,t,s

)
×
(
NWn,t,s − PWn,t,s

NWn,t,s + PWn,t,s

+ 1

)
/2 .

The first ratio,
(

RWn,t,s

TWn,t,s

)
, measures the percentage of risk words in the text, accounting

for variability in article lengths. The second ratio,
(

NWn,t,s−PWn,t,s

NWn,t,s+PWn,t,s
+ 1
)
/2, measures the

degree of negativity, where zero represents the most positive text, and one means the most

negative. This distinction allows for differentiation between negative and positive articles.

Consequently, their article-level concerns score can be seen as a weighted textual risk mea-

sure, with higher weights assigned to more negative texts and lower weights to more positive

ones.

They then construct a daily index to capture changes in climate change concerns by
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aggregating article-level concern scores. The daily concerns score for day t and source s is

defined as the sum of the article-level concern scores across Nt,s articles related to climate

change:

concernst,s =

Nt,s∑
n=1

concernsn,t,s .

They adopt the source-aggregation methodology from Baker et al. (2016) to account

for source heterogeneity. For each source s, they calculate the standard deviation of the

source-specific index over a time range τ1 to τ2 (1 ≤ τ1 ≤ τ2 ≤ T ):

σs =

√∑τ2
τ=τ1

(concernsτ,s − concernss)2

τ2 − τ1
,

where concernss is the sample mean computed over τ1 to τ2. They use the standard

deviation to normalize the source-specific index over the t = 1 to t = T period:

nconcernst,s =
concernst,s

σs

.

Finally, they compute the MCCC index at day t by applying an increasing concave

function h(·) to the average of the normalized source-specific climate change concerns for

that day:

MCCCt = h

(
1

S

S∑
s=1

nconcernst,s

)
.

This increasing concave mapping function is designed to reflect the diminishing impact

of media attention on climate change concerns: a single concerning article may significantly

raise concerns, but more than twenty such articles will not increase concerns twentyfold.

2.2.1 Unexpected Media Climate Change Concerns (UMC) Index

To measure unexpected change (UMC) in climate change concerns, Ardia et al. (2023a)

isolate the shock component of the MCCC index, separating it from potential influences of

financial markets, energy-related factors, and macroeconomic variables. They use an aug-

mented autoregressive time series model (ARX) with explanatory variables to estimate the

expected component of MCCCt and interpret the prediction error as a proxy for unexpected

changes in climate change concerns. By integrating this index with a topic model, they de-

rive topical and thematic UMC variables related to climate change transition and physical

risks, specifically: (i) Business Impact, (ii) Environmental Impact, (iii) Societal Debate, and
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(iv) Research. This approach transforms news coverage into a dynamic measure of public

sentiment, addressing previous data scarcity challenges.

They first examine the contemporary relationship between UMC and the daily return of a

green-minus-brown (GMB) portfolio, which is long on green firms and short on brown firms.

They find that green stocks tend to outperform brown stocks on days with an unexpected

increase in climate change concerns, as evidenced by the significant positive relationship

between the GMB portfolio and the index. When analyzing the green and brown portfolios

separately, they observe a positive relationship with UMC for green and a negative rela-

tionship for brown portfolios. This relationship is stronger for the brown portfolio than for

the green portfolio in absolute terms. Consequently, unexpected increases in climate change

concerns tend to penalize brown firms more than reward green firms.

Then, by integrating this index into a firm fixed-effect panel regression model, they

consider industry differentiation and confirm that green stocks gain value in response to

unanticipated increases in climate concerns. In contrast, brown stocks lose, thus supporting

the hypothesis of market sensitivity to climate sentiment shifts.

While the study robustly confirms that unexpected increases in climate concerns can

sway the immediate performance outlook of green versus brown stocks, the relation of these

concern shifts with assets’ forward-looking moments remains unexplored.
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3 Methodology

The methodology aims to obtain daily forward-looking option-implied moments for assets

and examine the comparative effect of climate change concerns on green and brown assets.

A parametric model assesses implied volatility surfaces by capturing the moneyness and

maturity slopes, smile attenuation, and smirk. This model is particularly beneficial because

it allows for interpolation and extrapolation over a wide range of maturity and moneyness.

It is twice continuously differentiable and well-behaved asymptotically, which means it can

accurately represent the complex dynamics of implied volatility. This, in turn, facilitates

the extraction of the risk-neutral moments (François et al., 2022). This extraction of the

daily moments allows for two analytical frameworks: a panel regression approach and a

green-minus-brown portfolio approach.

Section 3.1 outlines the method for extracting the option-implied moments, Section 3.2

introduces the panel regression framework, and Section 3.3 details the green-minus-brown

portfolio regression framework.

3.1 Extracting Option-Implied Moments

The computation of option-implied moments involves several distinct steps. First, I calibrate

the implied volatility (IV) surface on option data using the approach of François et al. (2022).

I rely on the Bayesian regularization proposed by Gauthier and Simonato (2012) to smooth

out erratic fluctuations in the daily calibrations. Second, I use the methodology proposed by

Breeden and Litzenberger (1978) to extract the daily forward-looking density function from

the IV surface.

3.1.1 Implied Volatility Model

The IV surface model proposed by François et al. (2022) is designed to reflect the dynam-

ics of the surface through mathematically and economically meaningful factors. The model

employs factors specifically chosen to represent critical patterns seen in IV surfaces, such as

the volatility smile and smirk. The factors are designed for the surface to be twice contin-

uously differentiable, allowing the derivation of a continuous risk-neutral density function.

This aligns the model with fundamental financial economics principles, ensuring no-arbitrage

conditions and the viability of pricing derivatives through expected payoffs under the risk-

neutral measure.

In their framework, the IV denoted by σ(M, τ) is a function of the option’s moneyness

M and annualized time-to-maturity τ . The moneyness is defined as:
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M =
1√
τ
log

(
Ft,τ

K

)
,

where Ft,τ is the underlying forward price at day t for a maturity τ , and K is the strike

price. The IV function is specified as follows:

σ(M, τ) = β1 + β2e
−
√

τ
Tconv + β3

(
M1M≥0 +

e2M − 1

e2M + 1
1M<0

)
+ β4(1− e−M2

) log

(
τ

Tmax

)
+ β5(1− e(3M)3) log

(
τ

Tmax

)
1M<0 ,

(1)

where 1M is the indicator function that equals one when the condition is satisfied and

zero otherwise, and the constants Tmax and Tconv are empirically-determined coefficients.

The parameter Tmax delineates the upper maturity limit that the model aims to represent,

set at five years to facilitate extrapolation beyond the maximal maturity of options within

the empirical dataset, which is three years. Tconv, set at 0.25, indicates the point of rapid

convexity alteration in the IV’s term structure as a function of time-to-maturity. Consider-

ing the more pronounced curvature of the IV over time-to-maturity for short-term options,

the model adjusts the convexity correction for maturities shorter than three months. This

adjustment involves linking the β2 factor to a nonlinear function of τ/0.25. Through this

mechanism, the term τ/0.25 significantly enhances the convexity for the short-term segment

(less than three months) of the IV surface, as presented by François et al. (2022).

The five-factor formula’s initial term β1 is a constant that captures the long-term at-

the-money IV. The second coefficient, β2, quantifies the slope of time-to-maturity for at-

the-money IV, notably accentuating the convexity correction for maturities less than three

months through a nonlinear adjustment with τ
0.25

, thereby enriching the short-term segment

of the IV surface with pronounced convexity. The third factor discerns the moneyness

gradient distinctly for put and call options, with the hyperbolic tangent function modeling a

hockey stick-like curvature, ideal for depicting call IV and furnishing a continuous moneyness

gradient. The fourth term modulates the smile’s attenuation, ensuring the flattening of the

smile as maturity lengthens, with β4 also regulating the smile’s convexity. The final factor,

β5, is designed to model the skewness in the smile for deep-out-of-the-money calls, gradually

diminishing as maturity approaches Tmax.

3.1.2 Bayesian Regularization

The IV model (1) is a linear function of the (explicit) factors. Thus, Ordinary Least Squares

(OLS) can be used to estimate it. However, to maintain the economic significance of each

factor, I follow Gauthier and Simonato (2012) and François et al. (2022), who combine OLS
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with a Bayesian approach for regularization. This integration serves to temper the parameter

estimates, ensuring their stability and interpretability.

Let me briefly introduce the underlying idea of the Bayesian regularization. A basic

linear model can written as Y = Xβ + ϵ, where Y denotes the dependent variable, X the

explanatory variables, and ϵ an error term. The model can be expressed in matrix form

when prior knowledge on β is added to it, as follows:[
Y

βprior

]
=

[
X

R

]
β +

[
ϵ

δ

]
.

Here, βprior embodies the anticipated values of the priors, and R is the matrix that

associates the parameters with their corresponding priors. The error vector is presumed to

adhere to a multivariate normal distribution, characterized by a block diagonal covariance

matrix consisting of two diagonal blocks:

Ω =

[
Σϵ 0

0 Σδ

]
.

The estimation of β when prior information is accounted for is accomplished through the

generalized least squares (GLS) method:

β̂ =

[X
R

]T
Ω−1

[
X

R

]−1 [
X

R

]T
Ω−1

[
Y

βprior

]
.

The variance-covariance matrix Ω can be estimated utilizing the Ordinary Least Squares

(OLS) methodology absent prior inputs, where Σ functions as a hyperparameter modulating

the prior distribution’s strictness. Diminishing the diagonal entries of Σ correlates with an

augmented alignment of the estimated β towards the prior expectations.

Now, let me apply Bayesian regularization to the IV estimation. I add the time dimension

t in the notation as some elements of the prior depend on the IV surface estimated the day

before. First, the one-year at-the-money IV (ATM1y,t) is posited as the mean for the prior

of β1,t. The prior for the time-to-maturity slope is derived from the one-month at-the-money

IV (ATM1m,t) via

Slopet =
ATM1y,t − ATM1m,t

exp
(
−
√

4
12

) .

The priors for β3,t and β5,t are established based on the estimates from the preceding day,

β3,t−1 and β5,t−1, respectively. Due to its intricate relationship with other parameters, β4,t is
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not assigned a priori. Overall, the regularization for the IV parameters is written as follows:

βprior =


ATM1y,t

Slopet

β3,t−1

β5,t−1

 , R =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

 , Σδ =


a 0 0 0 0

0 b 0 0 0

0 0 c 0 0

0 0 0 0 d

× 10−4.

The empirical variance of observables (ATM1y,t, Slopet) is employed for the initial two

priors concerning the long-term and slope levels. The β3 prior variance is derived from the

variance of a proxy for the moneyness slope—specifically, the variance between the one-month

ATM IV and the one-month IV for M = 0.4. The β5 prior variance, determined through

evaluative judgment, is set at half the magnitude of the parameter’s value, resulting in a prior

variance of 1×10−4. Given the substantial magnitude of these prior variances, the estimation

process is afforded considerable flexibility in fitting the option data while preserving the

coefficients’ economic significance by mitigating substantial, erratic fluctuations in their time

series through regularization.

In Figure 1, I display the daily evolution of the parameters of model (1) before (in

blue) and after (in orange) Bayesian regularization for data on J.P. Morgan. The Bayesian

regularization stabilizes the outcomes, particularly noticeable in smoothing the smile atten-

uation and moneyness smirk factors, where the results without Bayesian techniques appear

irregular. The results are fairly similar to those presented in Figure 2.3 of François et al.

(2022) which examines the daily evolution of the parameters of model (1) after Bayesian

regularization for data on the S&P 500 index.
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Figure 1: J.P. Morgan – Evolution of IV Model Parameters
The figure shows the daily evolution of estimates of coefficients β = (β1, β2, β3, β4, β5) of (1) for J.P. Morgan
Chase & Co. (JPM) from January 1, 2009, to December 31, 2019. The estimates, with corresponding values
on the left axis, are obtained by minimizing the sum of squared fitting errors and are shown before and after
integrating Bayesian regularization. The model is fitted every day.

Long-term ATM Level

Time-to-maturity Slope

Moneyness Slope

Smile Attenuation

Moneyness Smirk
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3.1.3 Extraction of Density Functions

Breeden and Litzenberger (1978) propose an approach for extracting the implied density

function from option prices. Specifically, the implied density function g(K, τ) for a given

strike price K and time-to-maturity τ is obtained as follows:

g(K, τ) = erτ
∂2C(K, τ)

∂K2
, K > 0, τ > 0 , (2)

where C(K, τ) denotes the American-style call option price as a function of strike price

K and time-to-maturity τ .

Under IV model specification (1), expression (2) becomes:

erτ
∂2C

∂K2
=

F0,τ

K2
φ(δ1)

(
∂δ1√
τ∂M

− δ1∂δ1∂σ√
τ∂M∂M

+
∂2σ√
τ∂M2

)
, (3)

where φ(z), defined as:

φ(z) =
1√
2π

e−
z2

2 ,

is the probability density function of a standard normal distribution, and Fτ is the for-

ward price of the underlying. Using the forward price instead of the underlying asset price

facilitates leveraging the OptionMetrics dataset, which offers forward prices rather than un-

derlying prices. This approach sidesteps the cumbersome daily extraction of implied dividend

rates across different option maturities. Theoretically, pricing formulas based on forward and

underlying asset prices are equivalent (Black, 1976; François et al., 2022). Variables δ1(M)

and δ2(M) are given by:

δ1(M) =
M

σ(M, τ)
+

1

2
σ(M, τ)

√
τ ,

δ2(M) =
M

σ(M, τ)
− 1

2
σ(M, τ)

√
τ .

Furthermore, the derivatives of δ1 with respect to M , and σ with respect to M , are given

by:

∂δ1
∂M

=
1

σ
−
(
M

σ2
− 1

2

√
τ

)
∂σ

∂M
,
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∂σ

∂M
= β31M≥0 + β3

(
1−

(
e2M − 1

e2M + 1

)2
)
1M<0 + β42Me−M2

log

(
τ

Tmax

)
− β581M

2e27M
3

log

(
τ

Tmax

)
1M<0 ,

and the second derivative of σ with respect to M2 is:

∂2σ

∂M2
= −β38e

2M e2M − 1

(e2M + 1)3
1M<0 + β42(1− 2M2)e−M2

log

(
τ

Tmax

)
− β5(162 + 6561M3)Me27M

3

log

(
τ

Tmax

)
1M<0 .

By replacing the expressions above in (3), I obtain the risk-neutral density values for

all combinations of strike price K and time-to-maturity τ , as formulated by François et al.

(2022). I consider a forward-looking horizon of three months in my empirical analyses for

simplicity.

From the implied density g, I can compute the first-four implied moments:

Mean =

∫
xg(x)dx ,

Std =

√∫
(x−Mean)2g(x)dx ,

Skew =

∫
(x−Mean)3g(x)dx/Std3 ,

Kurt =

∫
(x−Mean)4g(x)dx/Std4 .

I estimate the integrals by applying a trapezoidal integration method. The formula for

the trapezoidal rule for a function f(x) over the interval [a, b] with n sub intervals is given

by:

∫ b

a

f(x) dx ≈ h

2

[
f(x0) + 2

n−1∑
i=1

f(xi) + f(xn)

]
,

where a, b are the minimum and maximum strike prices available for a specific stock and

time-to-maturity, n is the number of sub-intervals, and h = b−a
n
. For the purpose of this

project, I set n at 10,000.

In Figure 2, I display the daily evolution of the forward-looking implied moments of J.P.

Morgan from January 1, 2009, to December 31, 2019, before and after Bayesian adjustments.
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Bayesian regularization notably enhances the stability of these moments, making them less

erratic and more accessible to interpret. However, the implied moments from 2009 are still

noticeably erratic due to the increased stock volatility following the great financial crisis.

This volatility is prominent across all four moments during the initial year but gradually

decreases as market conditions normalize.

Figure 2: J.P. Morgan – Evolution of Implied Moments
This figure shows the daily evolution of the forward-looking implied moments of JP Morgan Chase & Co.
(JPM) from January 1, 2009, to December 31, 2019. The top-left panel presents the expected three-month
return of the stock price. The top-right panel presents the three-month expected volatility of the stock price.
The bottom-left panel presents the three-month expected skewness of the stock price. The bottom-right
panel presents the three-month expected kurtosis of the stock price. The results are shown before and after
integrating Bayesian information.

Return Volatility

Skewness Kurtosis

Once I obtain the implied moments, I can compute, for each stock i and date t, the

change in implied moments as follows:

IM1i,t =
Meani,t −Meani,t−1

Meani,t−1

,

IM2i,t =
Stdi,t − Stdt−1

Stdi,t−1

,

IM3i,t = Skewnessi,t − Skewnessi,t−1 ,

IM4i,t = Kurtosisi,t −Kurtosisi,t−1 .

In my analyses, I use these daily changes in implied moments as dependent variables and

measure their relation with daily changes in unexpected changes in climate change concerns

(UMC). I rely on a panel regression and a non-parametric portfolio approach.
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3.2 Panel Regression Approach

Following the panel regression setup of Ardia et al. (2023a), I first examine if daily changes

in implied moments of firms are linked to the interaction between the firms’ greenhouse gas

(GHG) emissions intensity and the UMC variable. This analysis focuses on variations in

GHG emissions intensity within industries instead of across sectors. This perspective aligns

with the findings of Ilhan et al. (2021), which suggest that differences in GHG emissions

intensity can be primarily attributed to the industry sector.

I first define the variable lGHGi,t is initially delineated as the cross-sectionally normalized

logarithm of GHG emission intensity for firm i at time t, with normalization predicated on

the cross-sectional disparities among firms. Subsequently, I estimate the following firm fixed-

effect panel regression model (Ardia et al., 2023a, Equation 9):

IMi,t = ci + γlGHGlGHGi,t + (γUMC + γUMC
lGHGlGHGi,t)UMCt + βT

i CTRLt + ϵi,t , (4)

where IMi,t is the daily change of a particular moment of the implied distribution of the

underlying stock price of firm i at time t, CTRLt is a vector of control variables, and UMCt

is the daily unexpected change in climate change concerns.

Coefficients γlGHG, γUMC , and γUMC
lGHG are the same across firms, while ci and βi are firm-

specific coefficients. The firms’ exposure to unforeseen shifts in climate change concerns is

captured by (γUMC + γUMC
lGHGlGHGi,t), which includes a generic component that reflects the

exposure of neutral firms (i.e., firms whose log-GHG emissions intensity approximates the

cross-sectional mean) and an emissions intensity-dependent component. For instance, an

adverse γUMC
lGHG is anticipated in analyses of excess market returns, suggesting that firms with

higher (lower) GHG emissions intensity face more negative (positive) exposure to unexpected

escalations in climate change concerns (Ardia et al., 2023a; Pástor et al., 2022). This analysis

is also performed for each of the four individual thematic components of the UMC, namely:

Business Impact, Environmental Impact, Societal Debate, and Research.

3.3 Green-Minus-Brown Portfolio Approach

The second approach I consider also follows Ardia et al. (2023a), where a combination of

conditional mean analysis and multivariate factor analysis is employed to investigate the role

of an interaction between a firm’s greenhouse gas (GHG) emissions intensity and the UMC

variable in explaining daily stock returns. This time, the approach involves categorizing

stocks into three groups (terciles) based on the firms’ GHG emissions data: green, brown,
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and neutral. Firms in the top tercile of GHG emissions are categorized as brown, those

in the bottom tercile are classified as green, and the rest are neutral. For each category,

equal-weighted portfolios are constructed daily, and the average performance for the green,

brown, and neutral and the differential performance between green and brown portfolios is

calculated and related to the UMC.

While this approach is straightforward to apply in the context of realized returns, as in

Ardia et al. (2023a), it requires more steps with implied moments as these are not additive.

Indeed, a moment (e.g., mean) of a combination of implied densities is not equal to the

combination of the same moment of the implied densities. To overcome this difficulty, I

adopt a copula-based approach and rely on simulations.

Specifically, I capture the dependence structure by filtering past returns using a GARCH

model and a Gaussian copula. Then, I rely on simulations to generate draws from the

combination of the implied densities. This estimation is performed once over a fixed window.

Thus, I consider a constant dependence structure for simplicity. To calibrate the Gaussian

copula, I first transform the standardized returns obtained with the GARCH filtering with

the inverse function of the implied density of each margin obtained from the option data.

Then, the simulation is performed every day, with the set of implied densities obtained

from equation (2). The simulation allows me to generate draws from the implied density of

equal-weighted portfolios. I detail the steps below.

3.3.1 Filtering Returns With a GARCH Model

As the dependence structure is obtained from historical returns, I first need to filter the

conditional variance of the returns (Malevergne and Sornette, 2003; Hu, 2006; Fernandez,

2008). I use the GARCH model by Bollerslev (1986) for that purpose. For simplicity, I

consider the simple but effective GARCH(1,1) specification. In this case, the conditional

variance at time t of the stock return, σ2
t , is expressed as a linear function of the past

squared return, y2t−1, and the past conditional variance σ2
t−1:

σ2
t = α0 + α1y

2
t−1 + α2σ

2
t−1 .

The model is estimated by quasi-maximum likelihood over a fixed window for each stock’s

returns, and the respective series of returns are standardized with the estimated volatilities.

3.3.2 Capturing the Dependence Structure With a Gaussian Copula

Following the volatility modeling, I determine the dependency structure among the stan-

dardized returns using a Gaussian copula, allowing me to model the dependencies separately
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from the marginals (Malevergne and Sornette, 2003; Hu, 2006; Fernandez, 2008). The pa-

rameters of the copula, specifically entries of the correlation matrix, are estimated using

Maximum Likelihood Estimation (MLE) (Myung, 2003). This accurately reflects the joint

behavior of the assets’ returns.

3.3.3 Simulating Draws From the Implied Density

I generate 10,000 simulated draws from the Gaussian copula using the estimated correlation

matrix. The draws are passed through the individual option-implied marginal cumulative

distributions of the assets daily. The cumulative distributions are obtained through the

same process as the implied densities used in the panel regression approach. The process

is described in Section 3.1. This results in 10,000 daily prices for each firm, which acts as

the new option-implied daily density distribution. I then separate the firms into equally

weighted green, brown, and neutral portfolios based on the firms’ relative greenhouse gas

emissions. This allows me to compute these new portfolios’ option-implied daily mean,

volatility, skewness, and kurtosis, addressing the issue of non-additive implied moments.

3.3.4 Portfolio Analysis

The copula-based approach above allows me to obtain moments of the implied density of

an equal-weighted portfolio of green, brown, and neutral stocks, respectively. I also obtain

moments of the implied density of a portfolio of green-minus-brown stocks.

To measure the relation between these implied moments and unexpected changes in

climate change concerns, I follow Ardia et al. (2023a) and regress the green-minus-brown

(p = GMB), green (p = G), brown (p = B), and neutral (p = N) portfolios implied mean

(IM1), standard deviation (IM2), skewness (IM3), or kurtosis (IM4), IMp,t on UMCt,

and control variables (CTRLt):

IMp,t = cp + βUMC
p UMCt + βT

p CTRLt + ϵp,t , (5)

where cp is a constant, βUMC
p and βp are regression coefficients, and ϵp,t is an error term.

Given the results in Ardia et al. (2023a) and Pástor et al. (2022), I expect that βUMC
GMB > 0,

βUMC
G > 0, and βUMC

B < 0 for the first moment of the distribution.
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4 Data

This section presents the data used to perform my analyses. I first describe the option data

utilized to estimate the IV surfaces in Section 4.1. Section 4.2 details the greenhouse gas

emission data used to construct portfolios classified as green, brown, and neutral. In Section

4.3, I introduce the MCCC index by Ardia et al. (2023a), which is my analysis’s primary

independent variable. Finally, I outline the control variables used in the regression models

in Section 4.4.

4.1 Option Data

I use OptionMetrics data, which comprises American-style call and put options traded on

the Chicago Board Options Exchange (CBOE) from January 1, 2010, to June 30, 2018. Each

option quotation provides essential information, including the date of the quote, expiration

date, option type (call or put), strike price, bid and ask prices, IV, and unique identifiers for

both the option and the associated company. Furthermore, the dataset includes historical

and forward prices of the underlying stocks. The historical prices are required to compute

daily returns used in the realized returns validations and for the GARCH calibration.

For interpretability, each strike price is scaled down by 1,000 (François et al., 2022), and

the price of an option is calculated as the average of the bid and ask prices:

Price =
Bid + Ask

2
,

while the difference between the ask and bid prices determines the bid-ask spread:

Spread = Ask− Bid ,

and the annualized time-to-maturity is defined as follows:

Annualized TTM =
Date of Expiration− Current Date

365
.

Data selection adheres to the criteria established by Bakshi et al. (1997) and followed by

François et al. (2022). Specifically, I exclude options with:

• Time-to-maturity of less than nine days,

• Price below $ 0.50 USD,

• A bid price of zero,
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• Bid-ask spreads exceeding 175% of the option’s price,

• All in-the-money options (puts with M < 0 and calls with M > 0).

I also exclude firms with fewer than ten distinct strike prices for a specific time-to-

maturity, as the volatility surface model’s applicability relies on a minimum number of

observations.

The dataset comprises over 101 million option quotes from January 1, 2010, to June 30,

2018, for 421 U.S. firms. The number of options traded has been continuously increasing in

recent years (Bryzgalova et al., 2023), which is also represented in this dataset as the average

number of observations increases fivefold between 2009 and 2019.

The IV of each option is calculated using the Black (1976) formula. Table 1 provides

detailed statistics on the IVs derived from all quotes in the dataset. The IV profiles over

various days often exhibit asymmetry, typically displaying the well-known smirk pattern.

This pattern is characterized by higher implied volatilities for call options with a moneyness

M < −0.2 compared to those with moneyness −0.2 < M ≤ 0. Additionally, as indicated

in Table 1, options with shorter maturities (90 days or less) are less common than options

with longer maturities (more than 90 days). The higher number of put contracts relative to

call contracts explains the table asymmetry.

Table 1: Descriptive Statistics of the Options Data
This table reports descriptive statistics of stock options IV daily data from January 1, 2010, to June 30,
2018, across multiple times-to-maturity and moneyness buckets. M is the moneyness and τ is the time-to-
maturity.

Calls Puts All

M ≤ -0.2 -0.2 < M M ≤ 0.2 0.2 ≤ M ≤ 0.8 0.8 ≤ M

Mean (%) 34.3 20.5 28.8 37.7 72.5 33.1

Std (%) 15.0 9.3 9.5 11.2 31.6 14.8

# 18,303,807 26,363,186 26,051,363 27,819,988 3,073,589 101,613,933

Calls Puts All

τ ≤ 0.125 0.125 ≤ τ < 0.25 0.25 ≤ τ ≤ 0.5 0.5 ≤ τ ≤ 1 τ > 1 All

Mean (%) 34.3 33.4 33.0 32.3 31.9 33.1

Std (%) 18.9 15.5 13.5 12.5 10.8 14.8

# 28,881,541 10,764,966 18,564,264 21,150,984 22,250,178 101,613,933

4.2 Greenhouse Gas Emission Data

Greenhouse gas (GHG) emissions data from the Eikon database are used to distinguish be-

tween “green” and “brown” firms. Green firms are identified as those that mitigate climate

change impacts while generating economic value. The GHG emissions data, adhering to the
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GHG Protocol Corporate Standard, is categorized into Scope 1 (direct emissions), Scope

2 (indirect emissions from purchased energy), and Scope 3 (other indirect emissions in the

value chain). This analysis concentrates on total GHG emissions expressed in tonnes of CO2

equivalents (aggregate of all scopes), normalized by each firm’s annual revenue from Com-

pustat, yielding the intensity of GHG emissions. This intensity, reflecting CO2-equivalent

emissions per $1 million in revenue, facilitates the classification of firms as green or brown,

contingent on their emissions intensity relative to the overall distribution at a given time.

This analysis will encompass all three scopes, but previous research has found that results

are similar when excluding Scope 3 (see, e.g., Ardia et al., 2023a).

In Table 2, I report the percentage of firms in the dataset with available GHG emissions.

The average yearly coverage of 56.81% is similar to that of Ilhan et al. (2021), who use the

Carbon Disclosure Project Database and a different set of firms, and Ardia et al. (2023a),

which uses the same GHG emissions source but a different set of firms.

Table 2: Percentage of Firms with Emissions Data
This table reports the percentage of firms in my dataset with available greenhouse gas emissions data for
each year (%D). The 2009-2017 data point represents the mean across those years

Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 2009–2017

%D 54.14 55.02 46.35 46.71 51.89 55.28 62.79 69.67 82.21 56.81

It is common practice for GHG emissions reporting to lag by one year. I compensate

for this delay by adjusting the GHG emissions intensity data by 12 months, a methodology

consistent with previous research (Ilhan et al., 2021; Ardia et al., 2023a).

4.3 Media Climate Change Data

The MCCC index of Ardia et al. (2023a) and the related UMC values range from January

1, 2010, to June 30, 2018. Given the necessity of this data in the models, all of my analyses

will focus on data within this range.

The MCCC index contains the daily values of the aggregated, topical, and thematic in-

dices relevant to climate change concerns. Figure 3 illustrates that the index peaks align with

significant climate change events, such as the 2012 Doha UN Climate Change Conference

and the Paris Agreement. The moving average, serving as a proxy for climate change con-

cerns, shows phases of varying intensities. A heightened concern period is observed starting

after the 2007 UN Security Council discussions on climate change, extending until early 2010

following the Copenhagen UN Climate Change Conference. A second period of increased

concern began towards the end of 2012, coinciding with the UN Climate Change Confer-

ence, and continues up to the Paris Agreement. Additionally, a notable spike in concerns
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occurred around the announcement by U.S. President Donald Trump of the withdrawal from

the Paris Agreement. These patterns indicate that the index effectively captures significant

events associated with rises in climate change concerns.

Figure 3: Media Climate Change Concerns Index (Ardia et al., 2023a)
This figure displays the daily MCCC index (gray points) and its 30-day moving average (bold line) from
January 2003 to June 2017. They also report several major events related to climate change (in boxes). The
observations from January 1, 2010 are considered forward-looking, because the data from that period is used
to compute the source-specific standard deviation estimate required to normalize the source-specific indices
before aggregation into the MCCC index. The observations from January 1, 2010, to the end of the time
series are not forward-looking and correspond to the period for my main analysis.
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Figure 4 presents a correlation network that illustrates the relationships between the

topics discussed in the news corpus. Ardia et al. (2023a) derive specific topics using the

Correlated Topic Model (CTM) of Lafferty and Blei (2005) applied to their news corpus.

The CTM model, an unsupervised generative machine-learning algorithm, infers latent, in-

terconnected topics within a body of text.
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The network plot emphasizes the correlations in the frequency with which topics co-occur

within the same news articles. Notably, the diagram reveals two distinct cluster topics:

Business Impact on the left and Environmental Impact on the right. Bridging these clusters,

issues associated with Societal Debate appear in the center. Additionally, the bottom right

of the figure displays three topics grouped under the Research theme.

Figure 4: Correlation Network of Climate Change Topics (Ardia et al., 2023a)
This figure displays the Spearman correlation network for the 30 climate change topics obtained with the
correlated topic model. They keep the network readable; they display only correlations above 0.35. Each
topic is assigned to a thematic cluster (Theme 1: Business Impact, Theme 2: Environmental Impact, Theme
3: Societal Debate, and Theme 4: Research).
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These clusters are comprised of more detailed topics such as Agreements/Actions, Agri-

culture Shifts, Airline Industry, Arctic Wildlife, Car Industry, Carbon Credits Market, Carbon

Reduction Technologies, Carbon Tax, Cities, Climate Legislation/Regulations, Climate Sum-

mits, Controversies, Corporations/Investments, Ecosystems, Extreme Temperatures, Food Short-

age/Poverty, Forests, Glaciers/Ice Sheets, Global Warming, Government Programs, Hurricanes/Floods,

Legal Actions, Marine Wildlife, Political Campaign, Renewable Energy, Scientific Studies, Social
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Events, Tourism, UN/IPCC Reports, and Water/Drought. This data, including the MCCC,

UMC, and topical clusters, are obtained from https://sentometrics-research.com.

4.4 Control Variables

The different models employed integrate four distinct arrays of controls, following the ap-

proach of Ardia et al. (2023a):

1. CTRL-1: MKT, representing the excess market return;

2. CTRL-3: CTRL-1 enriched with HML, the high-minus-low factor, and SMB, the

small-minus-big factor, of Fama and French (1992);

3. CTRL-6: CTRL-3 enriched with RMW, the robust-minus-weak factor, CMA, the

conservative-minus-aggressive factor, as in Fama and French (2015), and MOM, the

momentum factor, as identified by Carhart (1997);

4. CTRL-15: CTRL-6 augmented withWTI, crude oil returns, NG, natural gas returns,

PROP, propane returns, EPU, the economic policy uncertainty index by Baker et al.

(2016), VIX, the CBOE volatility index, the TED spread, TERM, the term spread

factor, DFLT, the default spread factor as per Fung and Hsieh (2004), and FTS, the

flight-to-safety index by Baele et al. (2020).

The varibles in CTRL-1, CTRL-3, and CTRL-6 are ubiquitously recognized within fi-

nance literature. Data for CTRL-1, CTRL-3, and CTRL-6 is retrieved from Kenneth

French’s website at https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.

html.

The CTRL-15 set extends these variables by incorporating energy-related and macroeco-

nomic factors to attenuate the influence of potential confounders. The EPU data comes from

http://www.policyuncertainty.com/media/All Daily Policy Data.csv, the TERM and DFLT

variables from https://fred.stlouisfed.org/series/DBAA, the WTI data from https://fred.

stlouisfed.org/series/DCOILWTICO, the NG data from https://fred.stlouisfed.org/series/

DHHNGSP, the PROP data from https://fred.stlouisfed.org/series/DPROPANEMBTX,

the TED data from https://fred.stlouisfed.org/series/TEDRATE, and the VIX data from

https://fred.stlouisfed.org/series/VIXCLS.
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5 Empirical Results

This section presents the empirical results. I start with the panel regression approach in Sec-

tion 5.1, followed by the green-minus-brown non-parametric approach in Section 5.2. Finally,

I suggest several avenues for interpreting the results in Section 5.3. For both methodologi-

cal approaches, I first validate my implementation with Ardia et al. (2023a) using realized

returns for the same period ranging from January 1, 2010, to June 30, 2018.

5.1 Panel Regression Approach

5.1.1 Validation With Realized Returns

In Table 3, I present the findings for the realized returns (daily returns) from my study in

Panel A, alongside those reported in Ardia et al. (2023a, Table 9) in Panel B. This compari-

son aids in validating my implementation. The table reveals negative significant coefficients

for the lGHG×UMC variable across all control specifications, indicating that higher GHG

emissions are associated with more negative returns when there is an unexpected rise in

climate change concerns. Although the strength of the coefficients varies, their direction and

significance align with the results of Ardia et al. (2023a), corroborating the proper appli-

cation of the methodology. For CTRL-15, I obtain an estimated coefficient of −0.016 for

the lGHG × UMC variable, while Ardia et al. (2023a) obtains an estimated coefficient of

−0.022. The observed discrepancies can mainly be attributed to dataset company composi-

tion variations, as this study focuses on a subset of high-volume firms. At the same time,

Ardia et al. (2023a) uses data from all S&P 500 companies from January 2010 to June 2018.

Table 3: Panel Regression Results – Realized Returns
This table reports the estimation results for the firm fixed-effect panel regression of daily stock returns
on daily standardized logarithmic greenhouse gas emissions intensity (lGHG), daily unexpected changes in
climate change concerns (UMC), and their interaction (lGHG × UMC) with different sets of controls; see
model (4). Standard errors of the estimators are reported in parentheses. The model is estimated using data
from January 2010 to June 2018. *, **, and *** indicate significant coefficients at the 10%, 5%, and 1%
levels, respectively. Panel A shows the results of my research, while Panel B shows the results of Ardia et al.
(2023a, Table 9).

Panel A – My Results Panel B – Ardia et al. Results

lGHG UMC lGHG× UMC lGHG UMC lGHG× UMC

CTRL-1 -0.003 (0.003) 0.000 (0.005) -0.017∗∗∗ (0.006) 0.005∗ (0.003) -0.006 (0.004) -0.027∗∗∗ (0.005)

CTRL-3 -0.002 (0.003) -0.004 (0.004) -0.016∗∗∗ (0.006) 0.004 (0.003) -0.008∗∗ (0.004) -0.024∗∗∗ (0.005)

CTRL-6 -0.002 (0.003) -0.004 (0.004) -0.016∗∗∗ (0.006) 0.005 (0.003) -0.005 (0.004) -0.023∗∗∗ (0.005)

CTRL-15 -0.003 (0.003) -0.004 (0.004) -0.016∗∗∗ (0.006) 0.006∗ (0.003) -0.001 (0.004) -0.022∗∗∗ (0.005)
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5.1.2 Implied Moments

Table 4 reports results for the implied moments across the aggregate UMC index and the

individual topical indices for CTRL-15. The findings are robust across control sets. The

corresponding results for CTRL-1, CTRL-3, and CTRL-6 can be found in the appendix.

The results for the aggregate cluster of the first implied moment are insightful despite

being mostly statistically insignificant. While higher GHG emissions are linked to lower

implied returns and unexpected increases in climate change concerns are related to higher

implied returns across all firms, the interaction term lGHG × UMC coefficient is negative

and equal to −0.006. These results are consistent across clusters, with the Business Impact

and Societal Debate clusters having statistically significant interaction term lGHG× UMC

coefficients at the 10% significance level. I obtain estimated coefficients of −0.007 for both

clusters. These results indicate that similarly to the conclusions of Ardia et al. (2023a)

surrounding realized returns, companies with higher log-GHG emissions intensity face greater

sensitivity to unforeseen shifts in climate concerns regarding their option-implied returns.

However, it must be noted that the results for the implied returns, as shown in Table 4, are

much weaker and are not statistically significant, indicating a clear difference between the

reaction of implied and realized returns. I obtain an estimated coefficient of −0.016 for the

realized first moment and −0.006 for the implied first moment. The first implied moment

is almost three times less sensitive to unexpected variations in climate change concerns.

This discrepancy could be explained by the lesser sensitivity of options to daily variations

in instantaneous variance compared to the sensitivity of stocks (Poteshman, 2001; Mahani

and Poteshman, 2008).

The analysis of the implied volatility component also yields intriguing insights for the

aggregate cluster. Higher GHG emissions are linked to marginally higher implied volatility,

while unexpected increases in climate change concerns are related to significantly higher

expected volatility across all firms. The interaction term lGHG × UMC coefficient is pos-

itive with a value of 0.007, albeit insignificant. These results are consistent across clusters,

ranging from 0.004 to 0.007. These results suggest that all companies, regardless of their

GHG emissions intensity, will likely experience increased implied volatility following sudden

increases in climate change concerns. As climate change is increasingly viewed as a systemic

risk that affects entire economies and sectors (Hui-Min et al., 2021), unexpected increases

in climate change concerns could lead to more significant uncertainty about future economic

conditions, which in turn could result in higher implied volatility across the stock market.

The analysis of the implied asymmetry component yields a similar conclusion for the ag-

gregate cluster. Higher GHG emissions are linked to marginally lower implied asymmetry. In

contrast, unexpected increases in climate change concerns are linked to significantly higher
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expected asymmetry across all firms, with estimated coefficient values ranging from 0.005

to 0.012. The interaction term lGHG × UMC coefficient is positive, albeit insignificant,

with a value of 0.005. These results are consistent across the aggregate, Business Impact,

Research, and Societal Debate clusters, which are all significant at the 1% level, except the

Research cluster, which is statistically significant at the 5% level. The Environmental Impact

cluster stands out as the UMC variable coefficient is statistically insignificant, and the in-

teraction term lGHG × UMC coefficient shows no clear direction. These results suggest

that all companies, regardless of their GHG emissions intensity, will likely experience in-

creased implied asymmetry following sudden increases in climate change concerns. These

findings could reflect expectations of severe financial repercussions for companies adversely

affected by climate change or substantial gains for those poised to benefit from it, leading to

non-normal returns (Boudt et al., 2008).

Finally, the implied kurtosis component results yield insignificant and mostly aimless

results for the aggregate index. Both GHG emissions and unexpected increases in climate

change concerns are not linked to variations in the implied kurtosis of stocks. However, the

interaction term lGHG×UMC coefficient is positive, albeit insignificant. These results are

primarily inconsistent across the topical clusters, as the interaction term lGHG × UMC

coefficient is positive and statistically significant for the Environmental Impact cluster with a

value of 0.008, and the UMC variable coefficient is positive and significant at the 1% level

for the Research cluster with a value of 0.011. The Business Impact cluster’s interaction term

lGHG × UMC coefficient is, on the contrary, negative, albeit insignificant. These results

would mostly appear to be statistical artifacts rather than relevant findings, in which case

GHG emissions and unexpected increases in climate change concerns have no apparent link

with the implied kurtosis of stocks.

31



Table 4: Panel Regression Results – Implied Moments
This table reports the estimation results for the firm fixed-effect panel regression of the stocks’ implied
first four moments on daily standardized logarithmic greenhouse gas emissions intensity (lGHG), daily
unexpected changes in climate change concerns (UMC), and their interaction (lGHG×UMC) with CTRL-
15; see model (4). Standard errors of the estimators are reported in parentheses. The model is estimated
using data from January 2010 to June 2018. *, **, and *** indicate significant coefficients at the 10%,
5%, and 1% levels, respectively. BI, Business Impact; EI, Environmental Impact; SD, Societal Debate; R,
Research.

Implied Moment Cluster lGHG UMC lGHG× UMC

IM1

Aggregate -0.002 (0.002) 0.004 (0.003) -0.006 (0.004)

BI -0.002 (0.002) 0.004 (0.003) -0.007∗ (0.004)

EI -0.002 (0.002) 0.003 (0.003) -0.002 (0.004)

R -0.002 (0.002) 0.001 (0.003) -0.003 (0.004)

SD -0.002 (0.002) 0.003 (0.003) -0.007∗ (0.003)

IM2

Aggregate 0.002 (0.003) 0.023∗∗∗ (0.004) 0.007 (0.005)

BI 0.002 (0.003) 0.023∗∗∗ (0.004) 0.004 (0.005)

EI 0.002 (0.003) 0.014∗∗∗ (0.003) 0.006 (0.004)

R 0.002 (0.003) 0.027∗∗∗ (0.003) 0.006 (0.005)

SD 0.002 (0.003) 0.014∗∗∗ (0.003) 0.006 (0.004)

IM3

Aggregate -0.001 (0.003) 0.012∗∗∗ (0.004) 0.005 (0.005)

BI -0.001 (0.003) 0.012∗∗∗ (0.004) 0.005 (0.005)

EI -0.001 (0.003) 0.005 (0.003) 0.000 (0.004)

R -0.001 (0.003) 0.008∗∗ (0.004) 0.003 (0.005)

SD -0.001 (0.003) 0.011∗∗∗ (0.003) 0.006 (0.004)

IM4

Aggregate 0.000 (0.003) 0.000 (0.003) 0.003 (0.005)

BI 0.000 (0.003) 0.005 (0.004) -0.001 (0.005)

EI 0.000 (0.003) -0.003 (0.003) 0.008∗ (0.004)

R 0.000 (0.003) 0.011∗∗∗ (0.003) 0.006 (0.004)

SD 0.000 (0.003) 0.001 (0.003) 0.000 (0.004)

5.2 Green-Minus-Brown (GMB) Approach

5.2.1 Validation With Realized Returns

In Table 5, I present the findings for the realized returns (daily returns) from my study in

Panel A, alongside those reported in Ardia et al. (2023a, Table 7) in Panel B. This comparison

aids in validating my implementation.

The table reveals remarkably similar results between the two panels for the variable of in-

terest and the control variables, confirming the proper application of the methodology. First,
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I consider the green portfolio. The estimated coefficient for UMC is positive in both panels,

although only statistically significant in Panel B. Looking at the brown portfolio, both panels

have negative estimated coefficients for the UMC variable, but only statistically significant

in Panel B. Finally, the estimated coefficient for UMC is positive for the GMB portfolio

of both panels, but only statistically significant for Panel B. The estimated coefficients for

the control variables also indicate the GMB portfolio of both panels is positively related to

MKT,HML, SMB,MOM, and TERM , negatively associated with CMA,RMW,WTI,

and PROP . The observed discrepancies between both panels can again be attributed to

variations in dataset company composition.
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Table 5: GMB, Green, Brown, and Neutral Portfolios – Realized Returns
This table compares the results of regressing the daily returns of GMB (GMB), green, brown, and neutral
portfolios on the contemporaneous daily unexpected changes in climate change concerns (UMC) and the
daily values of the control variables in the set CTRL-15; see model (5). The composition of the four
portfolios is based on greenhouse gas intensities. Newey and West (1987) standard errors are displayed
below the coefficients. The model is estimated using data from January 2010 to June 2018. *, **, and ***
indicate significant coefficients at the 10%, 5%, and 1% levels, respectively. Panel A shows my results, and
Panel B shows the results of Ardia et al. (2023a, Table 7).

Panel A – My Results Panel B – Ardia et al. Results

GMB Green Brown Neutral GMB Green Brown Neutral

Intercept 0.025 -0.005 -0.03 0.003 0.068* 0.017 -0.051* 0.018

(0.034) (0.021) (0.027) (0.016) (0.038) (0.019) (0.028) (0.014)

UMC 0.042 0.017 -0.025 -0.007 0.072** 0.029** -0.042* 0.006

(0.028) (0.016) (0.020) (0.012) (0.031) (0.014) (0.023) (0.010)

MKT 0.058*** 1.066*** 1.008*** 1.049*** 0.127*** 1.100*** 0.973*** 1.036***

(0.014) (0.009) (0.012) (0.007) (0.016) (0.008) (0.013) (0.005)

HML 0.108*** 0.167*** 0.059*** -0.052*** 0.112*** 0.178*** 0.066*** -0.095***

(0.030) (0.017) (0.022) (0.014) (0.036) (0.018) (0.024) (0.011)

SMB 0.027 -0.019 -0.046** 0.019** 0.071*** 0.017 -0.055*** 0.017**

(0.023) (0.013) (0.019) (0.009) (0.026) (0.011) (0.020) (0.008)

CMA -0.408*** -0.055** 0.353*** 0.146*** -0.462*** -0.088** 0.382*** 0.231***

(0.042) (0.027) (0.031) (0.020) (0.048) (0.028) (0.035) (0.016)

RMW -0.302*** -0.155*** 0.147*** 0.093*** -0.296*** -0.122** 0.174*** 0.137***

(0.036) (0.021) (0.027) (0.017) (0.040) (0.019) (0.031) (0.013)

MOM 0.048*** -0.029** -0.077*** -0.059*** 0.078*** -0.088*** -0.165*** -0.075***

(0.018) (0.012) (0.014) (0.008) (0.023) (0.011) (0.017) (0.007)

WTI -5.275*** -3.283*** 1.992*** 0.158 -8.457*** -2.956*** 5.501*** 0.125

(0.629) (0.324) (0.455) (0.259) (0.695) (0.336) (0.510) (0.221)

NG -0.306 -0.203* 0.104 -0.106 -0.362 -0.066 0.296 -0.100

(0.225) (0.120) (0.173) (0.073) (0.269) (0.113) (0.208) (0.074)

PROP -1.323*** -0.755*** 0.568* 0.063 -1.254*** -0.405 0.849** -0.150

(0.416) (0.223) (0.341) (0.179) (0.482) (0.251) (0.351) (0.135)

EPU 0.000 0.000 0.000 0.000* 0.013 -0.005 -0.018 -0.016***

(0.000) (0.000) (0.000) (0.000) (0.019) (0.009) (0.013) (0.006)

V IX -0.001 0.002 0.003* 0.001 -0.003 0.001 0.004** 0.001

(0.002) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.000)

FTS 0.022 -0.151*** -0.172* -0.007 0.079 -0.043 -0.122 -0.002

(0.108) (0.052) (0.099) (0.062) (0.125) (0.057) (0.097) (0.053)

TERM 2.472*** 0.746*** -1.725*** -0.348*** 3.322*** 1.122*** -2.202*** 0.215*

(0.257) (0.133) (0.205) (0.100) (0.366) (0.164) (0.273) (0.111)

DFLT -0.143 0.141 0.285 0.303* 0.291 0.146 -0.145 0.144*

(0.462) (0.260) (0.340) (0.179) (0.211) (0.103) (0.159) (0.082)

TED 0.003 -0.020 -0.023 -0.001 -0.062 -0.059 0.003 -0.060*

(0.073) (0.039) (0.057) (0.031) (0.080) (0.041) (0.061) (0.027)
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5.2.2 Implied Moments

Table 6 reports results for the implied moments across the aggregate UMC variable and the

individual topical indices. The corresponding individual tables for all implied moments and

clusters are in the appendix.

The results for the aggregate index of the implied return component are particularly in-

sightful. The UMC variable is associated with a slightly higher implied return for the green

portfolio, indicated by a coefficient of 0.017. Conversely, the brown portfolio shows a slight

decrease in implied return, with a coefficient of −0.014. The neutral portfolio demonstrates

no apparent directional influence, with a coefficient of 0.009. The GMB portfolio shows a

positive link with a coefficient of 0.031, but this result, like all other results for IM1, lacks sta-

tistical significance. These observations are consistent across the aggregate, Environmental,

Research, and Societal Debate clusters. However, the Business Impact cluster is distinctive as

the implied return of green, brown, and neutral portfolios positively correlates with increases

in the UMC variable. The connection with the GMB portfolio is considerably weaker than

other topical clusters. These results suggest that similar to findings by Ardia et al. (2023a)

on realized returns, companies with higher log-GHG emissions intensity are more sensitive

to unforeseen shifts in climate concerns regarding their option-implied returns. Notably, the

results for the realized returns, although showing a more substantial effect, remain statis-

tically insignificant, indicating a possible discrepancy between the immediate reactions of

implied and realized returns.

Regarding the aggregate index of the implied volatility component, the UMC variable

is linked to a notable increase in implied volatility for the green portfolio by 0.059. The

brown portfolio sees a more substantial increase in implied volatility, marked by a coefficient

of 0.197, underlining a significant sensitivity. The neutral portfolio is similarly linked with a

rise of 0.084 implied volatility. Contrarily, the GMB portfolio displays a decrease in implied

volatility by 0.138, yet this result, like the others, is not statistically significant. These find-

ings underscore the consistency of increased volatility across all stocks as determined by the

panel regression approach, reinforcing the notion that companies, regardless of their GHG

emissions intensity, are likely to face increased implied volatility following sudden rises in

climate change concerns. The observed increments in volatility align with the GHG emis-

sions intensity of the portfolios, offering an intriguing insight into market reactions specific

to climate change concerns. This reinforces that climate change, increasingly viewed as a

systemic risk, could propel more significant uncertainty about future economic conditions,

leading to heightened implied volatility across the stock market.

The results for the aggregate index of the implied asymmetry component are compelling.

The UMC variable shows a solid link to higher implied asymmetry for the brown portfolio,
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significantly highlighted by a coefficient of 0.448 at a 5% significance level, compared to

that of the green portfolio and the neutral portfolio with coefficients of 0.059 and 0.084,

respectively. In contrast, the GMB portfolio presents a lower implied asymmetry of −0.312,

emphasizing a different market reaction to climate concerns. These findings remain consistent

across various clusters except for the Environmental Impact cluster, where the link between the

UMC variable and the implied asymmetry of green, brown, neutral, and GMB portfolios is

considerably weaker. The observed significant relationship between GHG emissions and the

linkage of the UMC variable to implied asymmetry suggests that market expectations might

include severe financial repercussions for companies adversely affected by climate change and

substantial gains for those positioned to benefit, potentially leading to non-normal returns.

Finally, the examination of the aggregate index of the implied kurtosis component yields

mostly indeterminate and statistically insignificant results. The UMC variable is associated

with lower implied kurtosis for both green and brown portfolios, with coefficients of −0.065

and −0.157, respectively, and a slight increase for the neutral portfolio by 0.051. The GMB

portfolio exhibits a minor rise in implied kurtosis by 0.091, yet this finding is inconclusive.

The inconsistency of these results across topical clusters suggests that GHG emissions and

sudden increases in climate change concerns do not have a clear connection with the implied

kurtosis of green, brown, neutral, or GMB portfolios.
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Table 6: GMB, Green, Brown, and Neutral Portfolios – Implied Moments
This table reports the results of regressing the first four moments of GMB (GMB), green, brown, and neutral
portfolios on the contemporaneous daily unexpected changes in climate change concerns (UMC) and the
daily values of the control variables CTRL-15; see model (5). The composition of the four portfolios is based
on greenhouse gas intensities. Newey and West (1987) standard errors of the estimators are reported in
parentheses. The model is estimated using data from January 2010 to June 2018. *, **, and *** indicate
significant coefficients at the 10%, 5%, and 1% levels, respectively. The complete tables for each cluster and
the corresponding control variables are in the Appendix. BI, Business Impact; EI, Environmental Impact;
SD, Societal Debate; R, Research.

Implied Moment Cluster GMB Green Brown Neutral

IM1

Aggregate 0.031 (0.033) 0.017 (0.020) -0.014 (0.027) 0.009 (0.016)

BI 0.007 (0.033) 0.014 (0.021) 0.007 (0.027) 0.016 (0.016)

EI 0.036 (0.030) 0.020 (0.018) -0.016 (0.025) 0.001 (0.015)

R 0.022 (0.034) 0.003 (0.019) -0.019 (0.030) 0.001 (0.016)

SD 0.031 (0.029) 0.024 (0.018) -0.007 (0.024) 0.012 (0.013)

IM2

Aggregate -0.138 (0.180) 0.059 (0.162) 0.197 (0.210) 0.084 (0.155)

BI -0.079 (0.192) 0.113 (0.176) 0.192 (0.214) 0.141 (0.165)

EI -0.144 (0.173) 0.030 (0.140) 0.175 (0.198) 0.047 (0.136)

R -0.202 (0.193) 0.089 (0.147) 0.291 (0.213) 0.151 (0.155)

SD -0.041 (0.156) 0.055 (0.148) 0.096 (0.187) 0.027 (0.128)

IM3

Aggregate -0.312 (0.227) 0.136 (0.191) 0.448** (0.193) 0.107 (0.141)

BI -0.386* (0.230) 0.111 (0.201) 0.497***(0.212) 0.187 (0.143)

EI -0.050 (0.187) 0.083 (0.162) 0.134 (0.175) 0.006 (0.134)

R -0.148 (0.216) 0.121 (0.184) 0.269 (0.198) 0.116 (0.142)

SD -0.388* (0.212) 0.143 (0.189) 0.530*** (0.197) 0.116 (0.117)

IM4

Aggregate 0.091 (0.241) -0.065 (0.234) -0.157 (0.264) 0.051 (0.216)

BI 0.281 (0.249) 0.084 (0.238) -0.197 (0.291) 0.191 (0.204)

EI -0.008 (0.222) -0.151 (0.204) -0.143 (0.250) -0.052 (0.195)

R -0.238 (0.241) 0.109 (0.203) 0.347 (0.267) 0.185 (0.217)

SD 0.005 (0.247) -0.042 (0.216) -0.047 (0.256) 0.022 (0.185)

5.3 Main Findings and Discussion

The empirical results of the panel regression and the GMB approaches offer three novel

findings on the relationship between stocks’ option-implied moments and climate change

concerns.
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Finding #1. The relationship between the option-implied underlying first mo-

ment and unexpected variations in climate change concerns is weaker than it is

for the historically realized first moment.

Based on the insights from Ardia et al. (2023a) and Pástor et al. (2022), I anticipated that

the GMB approach would show that unexpected increases in climate change concerns are

linked to higher implied returns for the green and GMB portfolios but are also linked to lower

implied-returns for the brown portfolio. Additionally, I expected that the link between the

interaction term of the GHG emissions intensity and unexpected increases in climate change

concerns would prove to be negative in the panel regression analysis. These expectations

reflected the hypothesis that companies with higher (lower) intensities of GHG emissions

are likely to experience more adverse (favorable) effects due to sudden increases in concerns

about climate change.

Although the estimated coefficients’ signs are consistent with the hypotheses, their mag-

nitudes are statistically insignificant and weaker compared to the coefficients from the re-

alized return validations. Suppose the strength of these coefficients matched those of the

validation results. In that case, the differences between the realized returns and the implied

moments might have been attributed to methodological variations, as presented in Section

3.3. Still, given the current findings alongside the validation results, the association between

the option-implied first moment and sudden shifts in climate change concerns is weaker than

that observed with the historically realized first moment.

Research by Poteshman (2001) demonstrates that investors in the options market tend

to underreact to individual daily fluctuations in instantaneous variance. Conversely, these

investors often overreact when facing a sequence of mainly increasing or decreasing daily

fluctuations in instantaneous variance. Specifically, investors tend to underreact to daily

changes in instantaneous variance that follow predominantly opposite-sign changes, while

overreacting to those that follow changes of the same sign. Considering that the UMC

focuses on daily variations that are unexpected, it is logical to expect a relative underre-

action from options market investors to these fluctuations. This would explain the weaker

link between unexpected variations in climate change concerns and the option-implied first

moment.

Additionally, Mahani and Poteshman (2008) show that growth stocks are much more

(less) prone to option overreaction (underreaction) than value stocks. Given the preponder-

ance of growth stocks in green portfolios and of value stocks in brown portfolios (Bauer et al.,

2022; Pástor et al., 2022), we can infer that green portfolios are more (less) prone to option

overreaction (underreaction) than brown portfolios. Therefore, a general underreaction of

brown portfolios relative to historical returns would explain the difference in implied mo-
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ment results relative to realized returns, which have a stronger relationship with the UMC

variable (Poteshman, 2001; Mahani and Poteshman, 2008).

Finding #2. Unexpected increases in climate change concerns are linked to

higher implied volatility and skewness across all stocks, but more so for brown

stocks.

The aggregate UMC variable is positively linked to the implied volatility of all stocks. This

result is statistically significant across all topical clusters and for each control set of the panel

regression approach. This is a reasonably intuitive result, as Duan and Wei (2009) show that

systematic risk significantly impacts individual equity options’ prices. They specifically argue

that a higher amount of systematic risk leads to a higher level of implied volatility. More

so, Bansal et al. (2019) highlight climate change is a source of systematic risk. They use the

findings of Jagannathan et al. (2018) to show that incorporating Environmental concerns

in investment portfolio decisions helps reduce exposure to systematic risks. Consequently, a

rise in the UMC variable suggests an increase in systematic risk that is not encapsulated by

my control variables, such as the V IX or FTS variables. This unrecognized systematic risk

could, therefore, drive higher levels of implied volatility across the market, which corroborates

my findings.

These results are consistent across the green, brown, and neutral portfolios of the GMB

approach, albeit insignificantly. However, the aggregate UMC variable is negatively linked

to the implied volatility of the GMB portfolio, as the positive link is greater for the brown

than the green portfolio. This is also a reasonably intuitive result as investors may perceive

green stocks as more resilient and better positioned for the possibility of a future low-carbon

economy. This perception could lead to a lower increase in implied volatility for green stocks

compared to brown stocks. More so, higher perceived climate risk poses risks to brown

stocks as they may face challenges adapting their business models. How these companies

react to these new challenges could result in highly profitable transformations or lead to

their downfall, reflected in the higher implied volatility.

The same aggregate UMC variable is also positively linked with the implied skewness of

all stocks. This result is statistically significant across all topical clusters except the Envi-

ronmental Impact cluster and each control set of the panel regression approach. This finding

is less intuitive and contradicts the hypothesis that an increase in climate change concerns

is linked to higher expectations of adverse tail events affecting companies, which leads to

a decrease in implied skewness. The results suggest that, on the contrary, the factors con-

tributing to downside risks are perceived to be less likely or less severe than before. Investors

might have become more optimistic about the opportunities presented by addressing climate
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change, such as advancements in green technologies, regulatory incentives, or the transition

to a low-carbon economy (Stephens and Markusson, 2018; Ameli et al., 2020). This increase

in the implied skewness could also reflect a higher degree of speculation or uncertainty, where

investors are betting on significant positive developments but acknowledge that the future

is less predictable. The findings are intuitive by highlighting how climate risks and the de-

velopment of green technologies influence investor behavior (Infante and Estevez-Mendoza,

2024).

Similarly to the implied volatility analysis, the aggregate UMC variable is negatively

linked to the implied skewness of the GMB portfolio. This link is statistically significant for

the Societal Debate and Business Impact clusters. It is driven mainly by strong positive links

between the UMC variable and the implied skewness of the brown portfolios. These results

seem counter-intuitive as they suggest that the factors contributing to downside risks are

perceived to be less likely or less severe than before. This is more significant for the brown

portfolio than the green portfolio following unexpected increases in climate change concerns.

However, as mentioned before, this could reflect a belief that the less environmentally friendly

firms would be forced to innovate and adapt, which could lead to unexpectedly high per-

formance through new technologies or efficiency improvements (Stephens and Markusson,

2018; Ameli et al., 2020; Infante and Estevez-Mendoza, 2024).

Finding #3. The strength of the relation between the implied moments and the

UMC varies among topical clusters.

Given the nature of the topics within each theme, notably Business Impact, Environmental

Impact, Research, and Societal Debate, I anticipated that the various clusters would have

different relationships with the stocks’ implied moments. Specifically, specific themes and

topics may be more relevant and have a stronger connection than others in relation to the

implied moments. That is mainly due to the difference between physical and transition

risks (Gambhir et al., 2022). Climate-induced physical risks are primarily associated with

acute or chronic events such as rising temperatures, sea levels, intensified storms, floods, and

wildfires, leading to significant damages and losses. In contrast, transition risks emerge from

the gradual shift towards a low-carbon economy, which includes changes in climate policies,

shifts in consumer preferences, and the emergence of competitive green technologies (Stan

et al., 2021). The nature of the specific topics within each theme can explain the correlation

between the various themes. For instance, the Business Impact theme, featuring topics like

Renewable Energy and Carbon Tax, aligns with transition risk. In contrast, the Societal Debate

theme, highlighted by such issues as Political Campaign, is similarly linked to transition risk.

Conversely, the Environmental Impact theme, which includes topics like Extreme Temperatures
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and Glaciers/Ice Sheets, pertains to physical risks. The Research theme uniquely comprises

transition-related issues and physical risks (Ardia et al., 2023a).

In Table 7, I present the correlations among the aggregate and four thematic UMC

indices of Ardia et al. (2023a). The unconditional correlations range between 0.47 and 0.73.

Among the themes, Business Impact and Environmental Impact exhibit the lowest correlation,

while Environmental Impact and Research are the most highly correlated. These findings are

consistent with the network analysis depicted in Figure 4.

Table 7: Correlation Matrix Between Daily Aggregate and Thematic UMC Indices of
(Ardia et al., 2023a)
This table reports the pairwise correlations between the daily aggregate and thematic UMC indices. BI,
Business Impact; EI, Environmental Impact; SD, Societal Debate; R, Research.

BI EI SD R

Aggregate 0.85 0.79 0.82 0.81

BI 0.47 0.66 0.57

EI 0.51 0.73

SD 0.58

My findings show different relationships between the topics and the stocks’ implied mo-

ments. Themes linked with transition risks demonstrate a stronger negative correlation with

the implied returns of brown stocks compared to other themes. In the panel regression

framework, only the Business Impact and Societal Debate clusters show statistically signifi-

cant associations with stock implied returns, particularly when considering the interaction

with the GHG emission variable, corroborating the finding of Faccini et al. (2023) that stock

prices of U.S. firms primarily reflect the news-based policy factor, rather than physical risk

factors. Zhang (2022) further observes that investors are attentive to global transition and

physical risks. However, the market’s response to perceived physical risks is relatively muted

compared to transition risks, indicating equity investors’ potential underemphasis on physi-

cal risks. This is echoed in an earlier study by the IMF (Monetary and Department, 2004),

which suggested that global aggregate equity indices have only modestly responded to sig-

nificant climatic disasters over several decades. Nonetheless, the negative impact on brown

stocks’ implied returns from transition risk themes appears less pronounced than from other

themes. This finding aligns with Bua et al. (2024), which notes that transition risks typically

result in higher returns for green stocks and lower returns for brown stocks.

Furthermore, the themes of transition risks, specifically Business Impact and Societal De-

bate, exhibit a stronger positive correlation with the implied skewness of stock returns. In

the panel regression and GMB methodologies, these themes are the only ones that show
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statistically significant associations with stocks’ implied skewness. This result is supported

by the findings of Salisu et al. (2023), which indicate that climate risk impacts the return

distributions in the crude oil and natural gas markets, and that transition risks are more

predictive of energy market fluctuations, notably the return skewness, than physical risks.

This suggests that investors are more responsive to policies, programs, and initiatives to

mitigate climate change-related losses and fatalities and adapt to shifts in environmental

sustainability rather than to the physical damages caused by climate change. This perspec-

tive is also consistent with Faccini et al. (2023), which argue that investors primarily hedge

against imminent transition risks due to government interventions rather than the direct

risks from climate change itself.
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6 Areas of Further Research

This section highlights the significance of my research constraints, emphasizing how they

frame the findings and point toward opportunities for future studies.

First, the three-month forward horizon was chosen to balance the analysis between short-

term and long-term market behaviors, shedding light on their impacts. This time frame has

underscored the potential for variations in market reactions, as daily fluctuations often go

unnoticed by investors in the options market. Exploring longer timelines, such as six or

twelve months, could provide deeper insights into the alignment—or divergence—between

implied and realized market behaviors.

Second, my research unveiled a weaker correlation between the option-implied underly-

ing first moment and shifts in climate change concerns compared to the historically realized

first moment. This finding invites further investigation into whether similar patterns exist in

higher-order moments or are unique to the first moment of the return distribution. Although

higher-order moments were not validated due to the unavailability of high-frequency intra-

day data, future research equipped with such data could expand on these initial findings,

potentially leading to more comprehensive insights into the behavior of the options market.

Third, the IV surface model from François et al. (2022), which relies on daily options

data, highlighted a selection bias by excluding firms with inconsistent data availability. This

exclusion is particularly significant as options trading volume and market size have been

shown to influence stock returns and market dynamics (Zhou, 2022; Griffith et al., 2020).

More so, in Table 5, I present results where the signs of the variables are consistent between

the two datasets. Still, the strength of significance is weaker in my dataset compared to those

reported in Ardia et al. (2023a). This raises a pertinent question: would a larger dataset

encompassing more firms yield more statistically significant results? Addressing this gap by

including a broader array of companies could enhance the applicability of the findings and

offer a more nuanced understanding of the IV surface model’s impact across different market

segments.

Fourth, I applied Bayesian regularization to the regression factors before calculating

the implied moments. This regularization made the results more coherent, smooth, and

interpretable. However, it is reasonable to question whether this regularization significantly

influenced the results’ significance. Comparing these findings with those obtained without

Bayesian regularization would be valuable to determine if the results differ substantially.

Finally, I employed the UMC index from Ardia et al. (2023b) as the primary proxy for

unexpected variations in climate change concerns. However, exploring whether the results

would be substantially different if using indices from other studies, such as those by Faccini
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et al. (2023) or Bua et al. (2024), would also be pertinent. This comparison could provide

deeper insights into the robustness of the findings across different indices.
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7 Conclusion

Climate finance is gaining traction in academic and corporate circles, yet many areas still

need to be explored. Following the studies by Ardia et al. (2023a) and Pástor et al. (2021)

that measure the link between climate change concerns and realized stock movements, my

research aims to examine the link between climate change concerns and option-implied stock

movements.

I use the volatility surface model proposed by François et al. (2022) to convert daily

options data into forward-looking return distributions for individual firms. Subsequently,

I apply the methodology of Breeden and Litzenberger (1978) to calculate the first four

option-implied moments. These moments are then regressed against the daily changes in the

unexpected climate change concerns (UMC) index by Ardia et al. (2023a), using two distinct

methods: a panel regression approach and a green-minus-brown non-parametric approach.

My results indicate that the relationship between the option-implied underlying first moment

and unexpected variations in climate change concerns is weaker than that with the realized

first moment. Moreover, I find that unexpected increases in climate change concerns are

linked to higher implied volatility and skewness across all stocks, but more so for brown

stocks. Lastly, the strength of the relationship between the implied moments and the UMC

index varies among topical clusters.
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Appendix

In this appendix, I provide the individual results for the panel and GMB regressions for

each combination of the implied moments, topical clusters, and control sets. The results

for CTRL-15 are the same as those found in Section 5. The panel regression results are

presented in Tables A1-A4, while the GMB results are presented in Tables A5-A24.
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Table A1: Panel Regression Results - IM1
Refer to Table 4 but only for the first moment, and to Section 4.3 for a detailed description of the individual
control sets.

Cluster Control Set lGHG UMC lGHG× UMC

Aggregate

CTRL-1 -0.001 (0.002) 0.005∗ (0.003) -0.007∗ (0.004)

CTRL-3 -0.001 (0.002) 0.005 (0.003) -0.006 (0.004)

CTRL-6 -0.001 (0.002) 0.005∗ (0.003) -0.006 (0.004)

CTRL-15 -0.002 (0.002) 0.004 (0.003) -0.006 (0.004)

BI

CTRL-1 -0.001 (0.002) 0.005∗ (0.003) -0.008∗∗ (0.004)

CTRL-3 -0.001 (0.002) 0.005 (0.003) -0.007∗ (0.004)

CTRL-6 -0.001 (0.002) 0.005∗ (0.003) -0.008∗ (0.004)

CTRL-15 -0.002 (0.002) 0.004 (0.003) -0.007∗ (0.004)

EI

CTRL-1 -0.002 (0.002) 0.005∗ (0.003) -0.002 (0.004)

CTRL-3 -0.001 (0.002) 0.005 (0.003) -0.002 (0.004)

CTRL-6 -0.001 (0.002) 0.005∗ (0.003) -0.001 (0.004)

CTRL-15 -0.002 (0.002) 0.003 (0.003) -0.002 (0.004)

R

CTRL-1 -0.001 (0.002) 0.001 (0.003) -0.004 (0.004)

CTRL-3 -0.001 (0.002) 0.001 (0.003) -0.004 (0.004)

CTRL-6 -0.001 (0.002) 0.002 (0.003) -0.003 (0.004)

CTRL-15 -0.002 (0.002) 0.001 (0.003) -0.003 (0.004)

SD

CTRL-1 -0.001 (0.002) 0.003 (0.003) -0.008∗∗ (0.003)

CTRL-3 -0.001 (0.002) 0.003 (0.003) -0.007∗∗ (0.003)

CTRL-6 -0.001 (0.002) 0.004 (0.003) -0.006∗ (0.003)

CTRL-15 -0.002 (0.002) 0.003 (0.003) -0.007∗ (0.003)
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Table A2: Panel Regression Results - IM2
Refer to Table 4 but only for the second moment, and to Section 4.3 for a detailed description of the individual
control sets.

Cluster Control Set lGHG UMC lGHG× UMC

Aggregate

CTRL-1 0.002 (0.002) 0.015∗∗∗ (0.004) 0.007 (0.005)

CTRL-3 0.002 (0.002) 0.014∗∗∗ (0.004) 0.007 (0.005)

CTRL-6 0.002 (0.002) 0.014∗∗∗ (0.004) 0.007 (0.005)

CTRL-15 0.002 (0.003) 0.023∗∗∗ (0.004) 0.007 (0.005)

BI

CTRL-1 0.002 (0.002) 0.018∗∗∗ (0.004) 0.005 (0.005)

CTRL-3 0.002 (0.002) 0.018∗∗∗ (0.004) 0.004 (0.005)

CTRL-6 0.002 (0.002) 0.018∗∗∗ (0.004) 0.004 (0.005)

CTRL-15 0.002 (0.003) 0.023∗∗∗ (0.004) 0.004 (0.005)

EI

CTRL-1 0.002 (0.002) 0.003 (0.003) 0.006 (0.004)

CTRL-3 0.002 (0.002) 0.003 (0.003) 0.006 (0.004)

CTRL-6 0.002 (0.002) 0.003 (0.003) 0.006 (0.004)

CTRL-15 0.002 (0.003) 0.014∗∗∗ (0.003) 0.006 (0.004)

R

CTRL-1 0.002 (0.002) 0.020∗∗∗ (0.003) 0.007 (0.005)

CTRL-3 0.002 (0.002) 0.019∗∗∗ (0.003) 0.006 (0.005)

CTRL-6 0.002 (0.002) 0.020∗∗∗ (0.003) 0.006 (0.005)

CTRL-15 0.002 (0.003) 0.027∗∗∗ (0.003) 0.006 (0.005)

SD

CTRL-1 0.002 (0.002) 0.009∗∗∗ (0.003) 0.006 (0.004)

CTRL-3 0.002 (0.002) 0.007∗∗ (0.003) 0.006 (0.004)

CTRL-6 0.002 (0.002) 0.007∗∗ (0.003) 0.006 (0.004)

CTRL-15 0.002 (0.003) 0.014∗∗∗ (0.003) 0.006 (0.004)

54



Table A3: Panel Regression Results - IM3
Refer to Table 4 but only for the third moment, and to Section 4.3 for a detailed description of the individual
control sets.

Cluster Control Set lGHG UMC lGHG× UMC

Aggregate

CTRL-1 0.000 (0.002) 0.012∗∗∗ (0.004) 0.005 (0.005)

CTRL-3 0.000 (0.002) 0.012∗∗∗ (0.004) 0.004 (0.005)

CTRL-6 0.000 (0.002) 0.012∗∗∗ (0.004) 0.004 (0.005)

CTRL-15 -0.001 (0.003) 0.012∗∗∗ (0.004) 0.005 (0.005)

BI

CTRL-1 0.000 (0.002) 0.012∗∗∗ (0.004) 0.005 (0.005)

CTRL-3 0.000 (0.002) 0.012∗∗∗ (0.004) 0.005 (0.005)

CTRL-6 0.000 (0.002) 0.012∗∗∗ (0.004) 0.005 (0.005)

CTRL-15 -0.001 (0.003) 0.012∗∗∗ (0.004) 0.005 (0.005)

EI

CTRL-1 0.001 (0.002) 0.006∗ (0.003) 0.000 (0.004)

CTRL-3 0.000 (0.002) 0.007∗ (0.003) 0.000 (0.004)

CTRL-6 0.001 (0.002) 0.006∗ (0.003) 0.000 (0.004)

CTRL-15 -0.001 (0.003) 0.005 (0.003) 0.000 (0.004)

R

CTRL-1 0.000 (0.002) 0.009∗∗ (0.004) 0.004 (0.005)

CTRL-3 0.000 (0.002) 0.008∗∗ (0.004) 0.003 (0.005)

CTRL-6 0.000 (0.002) 0.008∗∗ (0.004) 0.003 (0.005)

CTRL-15 -0.001 (0.003) 0.008∗∗ (0.004) 0.003 (0.005)

SD

CTRL-1 0.000 (0.002) 0.013∗∗∗ (0.003) 0.006 (0.004)

CTRL-3 0.000 (0.002) 0.013∗∗∗ (0.003) 0.006 (0.004)

CTRL-6 0.000 (0.002) 0.013∗∗∗ (0.003) 0.005 (0.004)

CTRL-15 -0.001 (0.003) 0.011∗∗∗ (0.003) 0.006 (0.004)

55



Table A4: Panel Regression Results - IM4
Refer to Table 4 but only for the fourth moment, and to Section 4.3 for a detailed description of the individual
control sets.

Cluster Control Set lGHG UMC lGHG× UMC

Aggregate

CTRL-1 0.000 (0.002) 0.001 (0.003) 0.004 (0.004)

CTRL-3 0.000 (0.002) 0.001 (0.003) 0.004 (0.004)

CTRL-6 0.000 (0.002) 0.001 (0.003) 0.003 (0.004)

CTRL-15 0.000 (0.003) 0.000 (0.003) 0.003 (0.005)

BI

CTRL-1 0.000 (0.002) 0.006∗ (0.003) -0.001 (0.005)

CTRL-3 0.000 (0.002) 0.006 (0.003) -0.001 (0.005)

CTRL-6 0.000 (0.002) 0.006 (0.003) -0.001 (0.005)

CTRL-15 0.000 (0.003) 0.005 (0.004) -0.001 (0.005)

EI

CTRL-1 -0.001 (0.002) -0.004 (0.003) 0.008∗ (0.004)

CTRL-3 -0.001 (0.002) -0.004 (0.003) 0.008∗ (0.004)

CTRL-6 0.000 (0.002) -0.004 (0.003) 0.008∗ (0.004)

CTRL-15 0.000 (0.003) -0.003 (0.003) 0.008∗ (0.004)

R

CTRL-1 0.000 (0.002) 0.011∗∗∗ (0.003) 0.006 (0.004)

CTRL-3 0.000 (0.002) 0.010∗∗∗ (0.003) 0.006 (0.004)

CTRL-6 0.000 (0.002) 0.011∗∗∗ (0.003) 0.005 (0.004)

CTRL-15 0.000 (0.003) 0.011∗∗∗ (0.003) 0.006 (0.004)

SD

CTRL-1 0.000 (0.002) 0.002 (0.003) 0.000 (0.004)

CTRL-3 0.000 (0.002) 0.001 (0.003) 0.000 (0.004)

CTRL-6 0.000 (0.002) 0.002 (0.003) 0.000 (0.004)

CTRL-15 0.000 (0.003) 0.001 (0.003) 0.000 (0.004)
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Table A5: GMB, Green, Brown, and Neutral Portfolios – IM1 – Aggregate
Refer to Table 6, but specifically for the first moment, and for the aggregate index.

GMB Green Brown Neutral

Intercept 0.046 0.062*** 0.016 0.034*

(0.039) (0.022) (0.031) (0.020)

UMC 0.031 0.017 -0.014 0.009

(0.033) (0.020) (0.027) (0.016)

MKT 0.053** -0.924*** -0.871** 0.923**

(0.015) (0.009) (0.013) (0.010)

HML 0.082*** 0.145*** 0.063** -0.050***

(0.030) (0.020) (0.022) (0.017)

SMB -0.003 -0.039*** -0.036 0.006

(0.028) (0.015) (0.023) (0.013)

CMA -0.396*** -0.060* 0.337* 0.144**

(0.048) (0.031) (0.036) (0.024)

RMW -0.244** -0.106*** 0.138** 0.123**

(0.039) (0.025) (0.029) (0.021)

MOM 0.048** -0.030** -0.078*** -0.048***

(0.019) (0.013) (0.015) (0.012)

PROP -1.494*** -0.370 1.124** 0.135

(0.467) (0.294) (0.387) (0.207)

WTI -4.455*** -2.722*** 1.733** 0.643*

(0.704) (0.430) (0.549) (0.363)

NG -0.196 -0.185 0.011 -0.066

(0.249) (0.155) (0.178) (0.090)

EPU 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)

V IX -0.003 -0.003** 0.000 -0.001

(0.002) (0.001) (0.002) (0.001)

FTS 0.113 0.080 -0.033 0.112

(0.116) (0.075) (0.099) (0.088)

TERM 2.189*** 0.754*** -1.435*** -0.275***

(0.267) (0.147) (0.212) (0.137)

DFLT 0.165 0.239 0.073 -0.047

(0.537) (0.267) (0.453) (0.247)

TED -0.054 -0.034 0.020 -0.021

(0.078) (0.042) (0.065) (0.045)
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Table A6: GMB, Green, Brown, and Neutral Portfolios – IM1 – BI
Refer to Table 6, but specifically for the first moment, and for the Business Impact cluster.

GMB Green Brown Neutral

Intercept 0.049 0.062*** 0.013 0.034***

(0.039) (0.022) (0.031) (0.020)

UMC 0.007 0.014 0.007 0.016

(0.033) (0.021) (0.027) (0.016)

MKT 0.053*** 0.924*** 0.871*** 0.923***

(0.015) (0.009) (0.013) (0.011)

HML 0.082*** 0.145*** 0.063*** -0.050***

(0.030) (0.020) (0.022) (0.017)

SMB -0.003 -0.039*** -0.036 0.006

(0.028) (0.015) (0.023) (0.013)

CMA -0.396*** -0.059* 0.336*** 0.141***

(0.048) (0.032) (0.036) (0.024)

RMW -0.244* -0.106* 0.138*** 0.123***

(0.039) (0.025) (0.029) (0.021)

MOM 0.048*** -0.030** -0.078*** -0.048***

(0.019) (0.013) (0.015) (0.012)

PROP -1.494*** -0.367 1.127*** 0.139

(0.468) (0.295) (0.388) (0.208)

WTI -4.446*** -2.722*** 1.739*** 0.645***

(0.703) (0.430) (0.550) (0.362)

NG -0.202 -0.187 0.015 -0.066

(0.248) (0.155) (0.177) (0.099)

EPU 0.000 0.000 0.000 0.001***

(0.001) (0.001) (0.001) (0.001)

V IX -0.003 -0.003*** 0.000 -0.001

(0.002) (0.001) (0.002) (0.001)

FTS 0.112 0.078 -0.034 0.111

(0.116) (0.076) (0.099) (0.088)

TERM 2.185*** 0.753*** -1.432*** -0.276***

(0.267) (0.147) (0.212) (0.137)

DFLT 0.169 0.237 0.068 -0.051

(0.538) (0.268) (0.453) (0.246)

TED 0.052 -0.033 0.019 -0.021

(0.078) (0.042) (0.065) (0.045)
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Table A7: GMB, Green, Brown, and Neutral Portfolios – IM1 – EI
Refer to Table 6, but specifically for the first moment, and for the Environmental Impact cluster.

GMB Green Brown Neutral

Intercept 0.045 0.061*** 0.016 0.036***

(0.039) (0.022) (0.032) (0.020)

UMC 0.036 0.020 -0.016 0.001

(0.030) (0.018) (0.025) (0.015)

MKT 0.053*** 0.924*** 0.871*** 0.923***

(0.015) (0.009) (0.013) (0.011)

HML 0.082*** 0.145*** 0.063*** -0.050***

(0.030) (0.020) (0.022) (0.017)

SMB -0.003 -0.039*** -0.036 0.006

(0.028) (0.015) (0.023) (0.013)

CMA -0.396*** -0.06* 0.337*** 0.141***

(0.048) (0.032) (0.036) (0.024)

RMW -0.244*** -0.107* 0.138*** 0.123***

(0.039) (0.025) (0.029) (0.021)

MOM 0.047*** -0.03** -0.077*** -0.048***

(0.019) (0.013) (0.015) (0.012)

PROP -1.497*** -0.372 1.125*** 0.134

(0.467) (0.293) (0.388) (0.208)

WTI -4.463*** -2.726*** 1.739*** 0.645***

(0.706) (0.430) (0.551) (0.362)

NG -0.202 -0.187 0.009 -0.066

(0.248) (0.155) (0.177) (0.089)

EPU 0.000 0.000 0.000 0.001***

(0.001) (0.001) (0.001) (0.001)

V IX -0.003 -0.003*** 0.000 -0.001

(0.002) (0.001) (0.002) (0.001)

FTS 0.116 0.082 -0.034 0.112

(0.116) (0.076) (0.099) (0.088)

TERM 2.194*** 0.757*** -1.437*** -0.277***

(0.266) (0.147) (0.211) (0.137)

DFLT 0.175 0.244 0.069 -0.045

(0.537) (0.268) (0.453) (0.246)

TED -0.057 -0.036 0.021 -0.021

(0.078) (0.041) (0.065) (0.045)
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Table A8: GMB, Green, Brown, and Neutral Portfolios – IM1 – R
Refer to Table 6, but specifically for the first moment, and for the Research cluster.

GMB Green Brown Neutral

Intercept 0.047 0.063*** 0.016 0.034***

(0.039) (0.022) (0.032) (0.020)

UMC 0.022 0.003 -0.019 0.001

(0.034) (0.019) (0.031) (0.016)

MKT 0.053*** 0.924*** 0.871*** 0.923***

(0.015) (0.009) (0.013) (0.011)

HML 0.082*** 0.145*** 0.064*** -0.050***

(0.030) (0.020) (0.022) (0.017)

SMB -0.003 -0.039*** -0.036 0.006

(0.028) (0.015) (0.023) (0.013)

CMA -0.396*** -0.059* 0.337*** 0.140***

(0.048) (0.031) (0.036) (0.024)

RMW -0.244*** -0.107* 0.138*** 0.123***

(0.039) (0.025) (0.029) (0.021)

MOM 0.048*** -0.030** -0.077*** -0.048***

(0.019) (0.013) (0.015) (0.012)

PROP -1.501*** -0.372 1.129*** 0.132

(0.468) (0.296) (0.388) (0.208)

WTI -4.454*** -2.725*** 1.739*** 0.645***

(0.704) (0.431) (0.552) (0.363)

NG -0.195 -0.187 0.007 -0.064

(0.249) (0.156) (0.179) (0.089)

EPU 0.000 0.000 0.000 0.001

(0.001) (0.001) (0.001) (0.001)

V IX -0.003 -0.003*** 0.000 -0.001

(0.002) (0.001) (0.002) (0.001)

FTS 0.114 0.082 -0.034 0.112

(0.116) (0.076) (0.099) (0.088)

TERM 2.187*** 0.757*** -1.435*** -0.276***

(0.266) (0.147) (0.212) (0.137)

DFLT 0.172 0.244 0.069 -0.045

(0.538) (0.268) (0.454) (0.246)

TED -0.053 -0.033 0.021 -0.021

(0.078) (0.041) (0.065) (0.045)
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Table A9: GMB, Green, Brown, and Neutral Portfolios – IM1 – SD
Refer to Table 6, but specifically for the first moment, and for the Societal Debate cluster.

GMB Green Brown Neutral

Intercept 0.046 0.061*** 0.015 0.034

(0.039) (0.022) (0.031) (0.021)

UMC 0.031 0.024 -0.007 0.012

(0.029) (0.018) (0.024) (0.013)

MKT 0.053*** 0.924*** 0.871*** 0.923***

(0.015) (0.009) (0.013) (0.011)

HML 0.082*** 0.145*** 0.064*** -0.050***

(0.030) (0.020) (0.022) (0.017)

SMB -0.004 -0.039*** -0.036 0.005

(0.028) (0.015) (0.023) (0.013)

CMA -0.395*** -0.059* 0.336*** 0.141***

(0.048) (0.032) (0.036) (0.024)

RMW -0.244*** -0.107*** 0.138*** 0.123***

(0.039) (0.025) (0.029) (0.021)

MOM 0.048*** -0.030*** -0.078*** -0.048***

(0.019) (0.013) (0.015) (0.012)

PROP -1.500*** -0.374 1.126*** 0.133

(0.466) (0.293) (0.387) (0.207)

WTI -4.456*** -2.721*** 1.735*** 0.643***

(0.703) (0.429) (0.549) (0.362)

NG -0.204 -0.19 0.015 -0.069

(0.248) (0.155) (0.177) (0.099)

EPU 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)

V IX -0.003 -0.003*** 0 -0.001

(0.002) (0.001) (0.002) (0.001)

FTS 0.111 0.079 -0.032 0.111

(0.116) (0.076) (0.099) (0.088)

TERM 2.186*** 0.753*** -1.433*** -0.276***

(0.267) (0.147) (0.212) (0.137)

DFLT 0.167 0.238 0.072 -0.047

(0.537) (0.267) (0.453) (0.247)

TED -0.055 -0.035 0.02 -0.021

(0.078) (0.042) (0.065) (0.045)
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Table A10: GMB, Green, Brown, and Neutral Portfolios – IM2 – Aggregate
Refer to Table 6, but specifically for the second moment, and for the aggregate index.

GMB Green Brown Neutral

Intercept 0.421 0.390*** -0.032 0.026

(0.279) (0.202) (0.311) (0.192)

UMC -0.138 0.059 0.197 0.084

(0.180) (0.162) (0.210) (0.155)

MKT -0.027 -1.084*** -1.057*** -1.085***

(0.098) (0.096) (0.126) (0.085)

HML -0.037 0.091 0.128 0.051

(0.167) (0.149) (0.202) (0.157)

SMB -0.172 0.174 0.345*** 0.208*

(0.105) (0.124) (0.153) (0.126)

CMA 0.298 -0.031 -0.329 -0.083

(0.242) (0.200) (0.284) (0.204)

RMW 0.317* 0.434*** 0.117 0.188

(0.185) (0.176) (0.201) (0.147)

MOM 0.160 -0.004 -0.164 -0.120

(0.113) (0.082) (0.128) (0.089)

PROP 1.234 3.798 2.563 2.911

(3.399) (2.392) (3.633) (2.068)

WTI 8.022** -2.030 -10.052*** -5.116

(3.209) (3.372) (3.633) (3.331)

NG -0.660 1.435 2.095 0.509

(1.300) (0.989) (1.393) (0.845)

EPU -0.001 0.000 0.001 0.000

(0.001) (0.001) (0.001) (0.001)

V IX -0.019 0.014 0.033** 0.037***

(0.012) (0.013) (0.018) (0.012)

FTS 0.718 0.065 -0.653 -0.362

(0.497) (0.575) (0.698) (0.637)

TERM 0.766 1.833 1.067 2.074**

(1.434) (1.158) (1.622) (1.103)

DFLT 3.010 8.517*** 5.507 5.689**

(2.760) (2.311) (3.557) (2.248)

TED -1.258** -0.299 0.959 -0.478

(0.582) (0.375) (0.605) (0.393)
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Table A11: GMB, Green, Brown, and Neutral Portfolios – IM2 – BI
Refer to Table 6, but specifically for the second moment, and for the Business Impact cluster

GMB Green Brown Neutral

Intercept 0.041 0.383*** -0.029 0.021

(0.278) (0.202) (0.311) (0.191)

UMC -0.079 0.113 0.192 0.141

(0.192) (0.176) (0.214) (0.164)

MKT -0.026 -1.084*** -1.058*** -1.085***

(0.098) (0.096) (0.127) (0.085)

HML -0.037 0.091 0.128 0.051

(0.167) (0.149) (0.202) (0.157)

SMB -0.173* 0.174 0.346*** 0.208***

(0.105) (0.124) (0.154) (0.126)

CMA 0.297 -0.031 0.336*** 0.141***

(0.242) (0.200) (0.284) (0.204)

RMW 0.317* 0.436*** 0.119 0.191

(0.185) (0.176) (0.201) (0.148)

MOM 0.158 -0.003 -0.161 -0.118

(0.113) (0.082) (0.127) (0.069)

PROP 1.219 3.828 2.608 2.948

(3.404) (2.397) (3.641) (2.082)

WTI 8.034*** -2.011 -10.045*** -5.096

(3.206) (3.366) (3.635) (3.322)

NG 0.112 1.435 2.075 0.506

(1.301) (0.992) (1.397) (0.852)

EPU -0.001 0.000 0.001 0.000

(0.001) (0.001) (0.001) (0.001)

V IX -0.003 0.014 0.033*** 0.037***

(0.012) (0.013) (0.018) (0.012)

FTS 0.112 0.052 -0.034 0.124

(0.116) (0.076) (0.099) (0.088)

TERM 2.185*** 0.753*** -1.432*** 2.071***

(0.267) (0.147) (0.212) (0.137)

DFLT 0.169 2.289 5.471 4.327

(0.538) (2.308) (3.929) (2.239)

TED -1.266*** -0.295 0.971 -0.473

(0.582) (0.375) (0.603) (0.424)
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Table A12: GMB, Green, Brown, and Neutral Portfolios – IM2 – EI
Refer to Table 6, but specifically for the second moment, and for the Environmental Impact cluster.

GMB Green Brown Neutral

Intercept 0.421 0.394*** -0.027 0.031

(0.278) (0.202) (0.311) (0.191)

UMC -0.144 0.030 0.175 0.047

(0.173) (0.140) (0.198) (0.136)

MKT -0.026 -1.084*** -1.058*** -1.085***

(0.098) (0.096) (0.127) (0.085)

HML -0.038 0.091 0.129 0.051

(0.167) (0.149) (0.202) (0.157)

SMB -0.173** 0.174 0.347*** 0.209***

(0.105) (0.124) (0.154) (0.126)

CMA 0.299 -0.031 -0.330 -0.018

(0.242) (0.200) (0.284) (0.204)

RMW 0.318** 0.434*** 0.116 0.187

(0.185) (0.176) (0.201) (0.148)

MOM 0.161 -0.004 -0.165 -0.118

(0.113) (0.082) (0.128) (0.089)

PROP 1.245 3.793 2.548 2.905

(3.402) (2.393) (3.637) (2.071)

WTI 8.059*** -2.045 -10.104*** -5.139

(3.205) (3.374) (3.632) (3.331)

NG -0.068 1.434 2.114 0.506

(1.301) (0.992) (1.402) (0.851)

EPU -0.001 0.000 0.001 0.000

(0.001) (0.001) (0.001) (0.001)

V IX -0.019 0.014 0.033*** 0.037***

(0.012) (0.013) (0.018) (0.012)

FTS 0.708 0.066 -0.642 -0.359

(0.497) (0.575) (0.699) (0.638)

TERM 0.748 1.832 -1.209 2.074***

(1.427) (1.159) (1.619) (1.104)

DFLT 2.968 8.532*** 5.564 5.711***

(2.753) (2.316) (3.955) (2.253)

TED -1.247*** -0.299 0.947 -0.479

(0.583) (0.376) (0.605) (0.395)
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Table A13: GMB, Green, Brown, and Neutral Portfolios – IM2 – R
Refer to Table 6, but specifically for the second moment, and for the Research cluster.

GMB Green Brown Neutral

Intercept 0.425 0.387*** -0.038 0.021

(0.282) (0.201) (0.311) (0.189)

UMC -0.202 0.089 0.291 0.151

(0.193) (0.147) (0.213) (0.155)

MKT -0.028 -1.083*** -1.055*** -1.084***

(0.098) (0.096) (0.126) (0.085)

HML -0.035 0.090 0.125 0.049

(0.167) (0.150) (0.202) (0.157)

SMB -0.172*** 0.174 0.346*** 0.208***

(0.104) (0.124) (0.153) (0.125)

CMA 0.300 -0.031 -0.331 -0.084

(0.242) (0.200) (0.284) (0.204)

RMW 0.314*** 0.435*** 0.121 0.191

(0.185) (0.166) (0.202) (0.147)

MOM 0.162 -0.005 -0.167 -0.121

(0.113) (0.082) (0.128) (0.089)

PROP 1.286 3.775 2.489 2.874

(3.396) (2.382) (3.627) (2.055)

WTI 7.982*** -2.012 -9.993*** -5.081

(3.214) (3.368) (3.628) (3.332)

NG -0.706 1.455 2.161 0.547

(1.305) (0.992) (1.397) (0.848)

EPU -0.001 0.000 0.001 0.000

(0.001) (0.001) (0.001) (0.001)

V IX -0.019 0.014 0.033*** 0.037***

(0.012) (0.013) (0.018) (0.012)

FTS 0.707 0.070 -0.637 -0.353

(0.496) (0.574) (0.697) (0.636)

TERM 0.763 1.835 1.072 2.084***

(1.143) (1.152) (1.612) (1.099)

DFLT 2.979 8.532*** 5.555 5.708***

(2.755) (2.315) (3.554) (2.251)

TED -1.259*** -0.298 0.947 -0.479

(0.583) (0.374) (0.605) (0.395)
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Table A14: GMB, Green, Brown, and Neutral Portfolios – IM2 – SD
Refer to Table 6, but specifically for the second moment, and for the Societal Debate cluster.

GMB Green Brown Neutral

Intercept 0.408 0.390*** -0.018 0.034

(0.276) (0.202) (0.308) (0.191)

UMC -0.041 0.055 0.096 0.027

(0.156) (0.148) (0.187) (0.128)

MKT -0.026 -1.084*** -1.058*** -1.085***

(0.098) (0.096) (0.127) (0.085)

HML -0.037 0.090 0.127 0.051

(0.167) (0.150) (0.203) (0.157)

SMB -0.172*** 0.173 0.345*** 0.209***

(0.104) (0.124) (0.153) (0.126)

CMA 0.296 -0.028 -0.324 -0.081

(0.243) (0.201) (0.285) (0.205)

RMW 0.318*** 0.434*** 0.115 0.187

(0.185) (0.176) (0.201) (0.147)

MOM 0.159 -0.004 -0.163 -0.119

(0.113) (0.082) (0.128) (0.089)

PROP 1.248 3.787 2.539 2.903

(3.399) (2.390) (3.638) (2.068)

WTI 8.050*** -2.034 -10.084*** -5.133

(3.205) (3.377) (3.636) (3.334)

NG -0.204 1.420 2.050 0.491

(1.304) (0.997) (1.399) (0.847)

EPU -0.001 0.000 0.001 0.000

(0.001) (0.001) (0.001) (0.001)

V IX -0.018 0.014 0.032*** 0.037***

(0.012) (0.013) (0.018) (0.012)

FTS 0.722 0.062 -0.660 0.122

(0.496) (0.576) (0.699) (0.637)

TERM 2.186*** 1.828 -1.433*** 2.062***

(1.434) (1.154) (1.620) (1.499)

DFLT 2.988 8.520*** 5.533 5.703***

(2.755) (2.315) (3.923) (2.254)

TED -1.263*** -0.299 0.964 -0.475

(0.583) (0.374) (0.606) (0.392)
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Table A15: GMB, Green, Brown, and Neutral Portfolios – IM3 – Aggregate
Refer to Table 6, but specifically for the third moment, and for the aggregate index.

GMB Green Brown Neutral

Intercept 0.043 0.524*** 0.481*** 0.344***

(0.114) (0.125) (0.145) (0.139)

UMC -0.312 0.136 0.448*** 0.107

(0.227) (0.191) (0.193) (0.141)

MKT 0.012 -1.679*** -1.691*** -1.439***

(0.122) (0.091) (0.125) (0.069)

HML -0.108 0.022 0.129 0.306***

(0.169) (0.153) (0.169) (0.121)

SMB -0.464*** 0.098 0.558*** 0.135

(0.146) (0.118) (0.132) (0.096)

CMA 0.388 0.146 -0.242 -0.019

(0.267) (0.235) (0.288) (0.189)

RMW 0.553*** 0.276*** -0.274 0.128

(0.230) (0.166) (0.200) (0.148)

MOM -0.016 0.067 0.083 0.078

(0.101) (0.084) (0.094) (0.069)

PROP -0.483 1.804 2.287 -0.235

(2.642) (2.326) (2.571) (1.633)

WTI 9.436*** 10.058*** 0.622 6.727***

(3.874) (3.628) (3.865) (3.285)

NG 0.169 0.785 0.616 0.817

(1.221) (0.952) (1.210) (0.899)

EPU 0.000 0.001 0.001 0.001***

(0.001) (0.001) (0.001) (0.001)

V IX -0.004 -0.030*** -0.026*** -0.021***

(0.008) (0.008) (0.009) (0.008)

FTS -0.131 1.032 1.163 0.774

(0.560) (0.691) (0.885) (0.726)

TERM -3.983*** 1.611 5.594*** 1.947***

(1.569) (1.114) (1.405) (0.978)

DFLT -0.659 0.977 1.636 -0.539

(2.852) (2.260) (3.007) (2.180)

TED 0.007 -0.177 -0.184 -0.087

(0.215) (0.237) (0.264) (0.249)

67



Table A16: GMB, Green, Brown, and Neutral Portfolios – IM3 – BI
Refer to Table 6, but specifically for the third moment, and for the Business Impact cluster

GMB Green Brown Neutral

Intercept 0.049 0.529*** 0.479*** 0.335***

(0.114) (0.122) (0.148) (0.139)

UMC -0.386*** 0.111 0.497*** 0.187

(0.230) (0.201) (0.212) (0.143)

MKT 0.014 -1.684*** -1.694*** -1.439***

(0.122) (0.091) (0.125) (0.069)

HML -0.107 0.022 0.129 0.306***

(0.169) (0.153) (0.169) (0.121)

SMB -0.461*** 0.099 0.564*** 0.135

(0.146) (0.118) (0.132) (0.095)

CMA 0.386 0.147 -0.240 -0.018

(0.266) (0.236) (0.290) (0.189)

RMW 0.546*** 0.277** -0.269 0.131

(0.229) (0.167) (0.200) (0.148)

MOM -0.020 0.069 0.089 0.080

(0.101) (0.084) (0.093) (0.069)

PROP -0.579 1.829 2.408 -0.186

(2.657) (2.333) (2.595) (1.683)

WTI 9.434*** 10.056*** 0.655 6.756***

(3.875) (3.631) (3.876) (3.272)

NG 0.192 0.768 0.576 0.814

(1.222) (0.951) (1.213) (0.899)

EPU 0.000 0.001 0.001 0.001***

(0.001) (0.001) (0.001) (0.001)

V IX -0.004 0.014 0.033*** 0.037***

(0.008) (0.013) (0.014) (0.012)

FTS -0.084 0.052 -0.034 0.124

(0.560) (0.688) (0.873) (0.726)

TERM 3.967*** 1.597 5.556*** 1.943***

(1.563) (1.113) (1.401) (1.108)

DFLT -0.657 0.961 1.531 -0.591

(2.846) (2.261) (2.998) (2.174)

TED -1.266*** -0.295 0.971 -0.473

(0.582) (0.374) (0.603) (0.424)
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Table A17: GMB, Green, Brown, and Neutral Portfolios – IM3 – EI
Refer to Table 6, but specifically for the third moment, and for the Environmental Impact cluster.

GMB Green Brown Neutral

Intercept 0.007 0.532*** 0.525*** 0.358***

(0.112) (0.127) (0.146) (0.141)

UMC -0.050 0.083 0.134 0.006

(0.187) (0.162) (0.175) (0.134)

MKT 0.015 -1.684*** -1.694*** -1.444***

(0.122) (0.091) (0.126) (0.077)

HML -0.108 0.022 0.131 0.306***

(0.169) (0.153) (0.169) (0.122)

SMB -0.464*** 0.099 0.563*** 0.137

(0.146) (0.118) (0.133) (0.096)

CMA 0.386 0.146 -0.240 -0.018

(0.267) (0.235) (0.288) (0.189)

RMW 0.553*** 0.275** -0.278 0.127

(0.229) (0.166) (0.199) (0.147)

MOM -0.018 0.067 0.085 0.079

(0.101) (0.084) (0.093) (0.069)

PROP -0.463 1.795 2.257 -0.242

(2.628) (2.333) (2.587) (1.686)

WTI 9.518*** 10.021*** 0.503 6.699***

(3.844) (3.631) (3.882) (3.293)

NG 0.215 0.785 0.570 0.797

(1.301) (0.959) (1.226) (0.899)

EPU 0.000 0.001 0.001 0.001***

(0.001) (0.001) (0.001) (0.001)

V IX -0.003 0.014 0.033*** 0.037***

(0.008) (0.013) (0.014) (0.012)

FTS -0.084 0.052 -0.034 0.124

(0.559) (0.693) (0.973) (0.731)

TERM 3.945*** 1.612 5.557*** 1.931***

(1.559) (1.113) (1.401) (1.098)

DFLT -0.729 1.013 1.742 -0.516

(2.853) (2.263) (3.498) (2.173)

TED -1.247*** -0.299 0.947 -0.479

(0.583) (0.376) (0.605) (0.395)
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Table A18: GMB, Green, Brown, and Neutral Portfolios – IM3 – R
Refer to Table 6, but specifically for the third moment, and for the Research cluster.

GMB Green Brown Neutral

Intercept 0.018 0.529*** 0.511*** 0.345***

(0.113) (0.125) (0.143) (0.136)

UMC -0.148 0.121 0.269 0.116

(0.216) (0.184) (0.198) (0.142)

MKT 0.013 -1.679*** -1.692*** -1.438***

(0.122) (0.091) (0.125) (0.077)

HML -0.107 0.021 0.127 0.305***

(0.169) (0.153) (0.169) (0.121)

SMB -0.463*** 0.099 0.562*** 0.136

(0.146) (0.118) (0.133) (0.096)

CMA 0.387 0.145 -0.241 -0.019

(0.267) (0.236) (0.289) (0.189)

RMW 0.554*** 0.277** -0.278 0.129

(0.230) (0.166) (0.199) (0.147)

MOM -0.016 0.067 0.083 0.078

(0.101) (0.084) (0.093) (0.069)

PROP -0.432 1.770 2.202 -0.267

(2.622) (2.334) (2.575) (1.678)

WTI 9.462*** -2.012 -9.993*** -5.081

(3.856) (3.625) (3.628) (3.285)

NG 0.178 0.801 0.623 0.837

(1.229) (0.956) (1.224) (0.911)

EPU 0.000 0.001 0.001 0.001***

(0.001) (0.001) (0.001) (0.001)

V IX -0.019 0.014 0.033*** 0.037***

(0.012) (0.013) (0.018) (0.012)

FTS 0.707 0.070 -0.637 -0.353

(0.496) (0.574) (0.697) (0.636)

TERM 3.945*** 1.604 5.554*** 1.944***

(1.566) (1.111) (1.408) (1.099)

DFLT -0.726 2.262 1.732 -0.515

(2.855) (2.267) (3.033) (2.153)

TED -1.259*** -0.298 0.947 -0.479

(0.582) (0.239) (0.606) (0.392)
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Table A19: GMB, Green, Brown, and Neutral Portfolios – IM3 – SD
Refer to Table 6, but specifically for the third moment, and for the Societal Debate cluster.

GMB Green Brown Neutral

Intercept 0.055 0.523*** 0.468*** 0.342***

(0.112) (0.126) (0.146) (0.141)

UMC -0.388*** 0.143 0.530*** 0.116

(0.212) (0.189) (0.197) (0.117)

MKT 0.010 -1.678*** -1.689*** -1.438***

(0.121) (0.091) (0.125) (0.069)

HML -0.102 0.020 0.122 0.304***

(0.169) (0.153) (0.168) (0.121)

SMB -0.453*** 0.096 0.549*** 0.134

(0.145) (0.118) (0.131) (0.096)

CMA 0.372 0.152 -0.220 -0.014

(0.265) (0.235) (0.285) (0.189)

RMW 0.551*** 0.275*** -0.276 0.127

(0.231) (0.166) (0.201) (0.148)

MOM 0.159 -0.004 -0.163 -0.119

(0.113) (0.082) (0.128) (0.089)

PROP 1.248 3.787 2.539 2.903

(3.651) (2.390) (3.638) (2.068)

WTI 9.437*** -2.034 -10.084*** -5.133

(3.879) (3.627) (3.636) (3.286)

NG 0.255 0.748 0.493 0.788

(1.215) (0.951) (1.199) (0.893)

EPU 0.001 0.001 0.001 0.001***

(0.001) (0.001) (0.001) (0.001)

V IX -0.005 0.014 0.032*** 0.037***

(0.008) (0.008) (0.010) (0.008)

FTS 0.722 0.062 -0.660 0.122

(0.496) (0.576) (0.699) (0.637)

TERM 2.186*** 1.828 -1.433*** 2.062***

(1.434) (1.151) (1.620) (1.499)

DFLT 2.988 8.520*** 5.533 5.703***

(2.755) (2.315) (3.923) (2.254)

TED -1.263*** -0.299 0.964 -0.475

(0.583) (0.374) (0.606) (0.392)
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Table A20: GMB, Green, Brown, and Neutral Portfolios – IM4 – Aggregate
Refer to Table 6, but specifically for the fourth moment, and for the aggregate index.

GMB Green Brown Neutral

Intercept -0.008 0.141 0.149 0.011

(0.158) (0.212) (0.232) (0.193)

UMC 0.091 -0.065 -0.157 0.051

(0.241) (0.234) (0.264) (0.216)

MKT -0.158 -0.018 0.140 -0.125

(0.107) (0.115) (0.154) (0.111)

HML 0.093 -0.057 -0.149 0.005

(0.219) (0.188) (0.228) (0.185)

SMB 0.134 0.155 0.021 0.134

(0.200) (0.160) (0.220) (0.162)

CMA -0.691* 0.462 1.153*** 0.601***

(0.373) (0.313) (0.395) (0.291)

RMW -0.323 0.162 0.486 0.049

(0.282) (0.200) (0.312) (0.194)

MOM -0.018 -0.408*** -0.228 -0.327***

(0.158) (0.118) (0.167) (0.105)

PROP 2.713 5.305 2.592 2.758

(4.195) (3.399) (4.795) (3.057)

WTI -4.025 -11.243*** -7.218 -11.894***

(5.660) (4.441) (6.843) (5.054)

NG 0.112 -0.478 -0.590 0.063

(1.942) (1.280) (2.162) (1.053)

EPU 0.000 -0.001 -0.001 0.000

(0.001) (0.001) (0.001) (0.001)

V IX -0.001 0.006 0.008 0.007

(0.009) (0.013) (0.014) (0.012)

FTS -0.063 0.037 0.026 0.124

(0.722) (1.103) (0.966) (1.035)

TERM 2.414 1.194 -1.221 2.318

(1.644) (1.520) (1.883) (1.502)

DFLT -2.483 2.289 4.772 4.327

(4.142) (3.261) (3.929) (3.131)

TED 0.271 -0.312 -0.583 -0.162

(0.294) (0.449) (0.512) (0.424)
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Table A21: GMB, Green, Brown, and Neutral Portfolios – IM4 – BI
Refer to Table 6, but specifically for the fourth moment, and for the Business Impact cluster

GMB Green Brown Neutral

Intercept -0.031 0.122 0.152 -0.007

(0.156) (0.213) (0.233) (0.193)

UMC 0.281 0.084 -0.197 0.191

(0.249) (0.238) (0.291) (0.204)

MKT -0.158 -0.017 0.141 -0.125

(0.107) (0.115) (0.154) (0.111)

HML 0.092 -0.057 -0.149 0.005

(0.219) (0.188) (0.230) (0.185)

SMB 0.133 0.154 0.021 0.133

(0.200) (0.160) (0.220) (0.162)

CMA -0.691*** 0.461 1.152*** 0.600***

(0.373) (0.313) (0.395) (0.291)

RMW 0.546*** 0.277** -0.269 0.131

(0.282) (0.201) (0.310) (0.195)

MOM -0.178 -0.408*** -0.230 -0.326***

(0.158) (0.117) (0.168) (0.105)

PROP 2.791 5.334 2.543 2.812

(4.214) (3.409) (4.798) (3.068)

WTI -3.964 -11.201*** -7.237 -11.850***

(5.568) (4.422) (6.799) (5.031)

NG 0.122 -0.456 -0.578 0.073

(1.301) (1.280) (2.149) (1.053)

EPU 0.000 -0.001 -0.001 0.000

(0.001) (0.001) (0.001) (0.001)

V IX -0.004 0.007 0.008 0.007

(0.009) (0.014) (0.014) (0.012)

FTS -0.095 0.052 0.050 0.124

(0.722) (1.094) (0.973) (1.025)

TERM 2.420 1.211 -1.209 2.324

(1.644) (1.515) (1.879) (1.497)

DFLT -2.577 2.242 4.819 4.261

(4.135) (3.249) (3.969) (3.113)

TED 0.276 -0.316 -0.592 -0.159

(0.276) (0.316) (0.512) (0.424)
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Table A22: GMB, Green, Brown, and Neutral Portfolios – IM4 – EI
Refer to Table 6, but specifically for the fourth moment, and for the Environmental Impact cluster.

GMB Green Brown Neutral

Intercept 0.006 0.152 0.146 0.024

(0.158) (0.214) (0.232) (0.196)

UMC -0.008 -0.151 -0.143 -0.052

(0.223) (0.204) (0.251) (0.195)

MKT -0.159 -0.019 0.140 -0.126

(0.107) (0.115) (0.154) (0.112)

HML 0.093 -0.057 -0.149 0.005

(0.219) (0.189) (0.228) (0.185)

SMB 0.135 0.155 0.020 0.135

(0.200) (0.160) (0.220) (0.162)

CMA -0.691*** 0.463 1.153*** 0.602***

(0.373) (0.314) (0.395) (0.291)

RMW 0.553*** 0.275** -0.278 0.127

(0.229) (0.166) (0.199) (0.147)

MOM -0.018 0.067 0.085 0.079

(0.101) (0.084) (0.093) (0.069)

PROP -0.463 1.795 2.257 2.755

(2.628) (2.333) (2.587) (1.686)

WTI -4.049 -11.225*** -7.716 -11.908***

(5.662) (4.452) (6.834) (5.055)

NG 0.091 -0.516 -0.606 0.035

(1.953) (1.287) (2.149) (1.053)

EPU 0.000 -0.001 -0.001 0.000

(0.001) (0.001) (0.001) (0.001)

V IX -0.003 0.007 0.008 0.007

(0.009) (0.014) (0.014) (0.012)

FTS -0.065 0.066 -0.034 0.119

(0.723) (1.102) (0.966) (1.038)

TERM 2.397 1.162 -1.209 2.074***

(1.632) (1.515) (1.879) (1.497)

DFLT -2.465 2.262 4.727 4.261

(4.135) (3.249) (3.969) (3.113)

TED 0.278 -0.316 -0.592 -0.159

(0.296) (0.449) (0.515) (0.425)
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Table A23: GMB, Green, Brown, and Neutral Portfolios – IM4 – R
Refer to Table 6, but specifically for the fourth moment, and for the Research cluster.

GMB Green Brown Neutral

Intercept 0.032 0.120 0.088 -0.000

(0.158) (0.209) (0.231) (0.191)

UMC -0.238 0.109 0.347 0.185

(0.243) (0.203) (0.256) (0.185)

MKT -0.162 -0.016 0.146 -0.123

(0.108) (0.114) (0.153) (0.111)

HML 0.095 -0.058 -0.154 0.003

(0.219) (0.188) (0.227) (0.185)

SMB 0.137 0.154 0.021 0.133

(0.199) (0.160) (0.220) (0.162)

CMA -0.687*** 0.460 1.147*** 0.602***

(0.372) (0.312) (0.392) (0.291)

RMW -0.329 0.165 0.495 0.048

(0.282) (0.200) (0.312) (0.194)

MOM -0.176 -0.408*** -0.229 -0.327***

(0.158) (0.117) (0.167) (0.105)

PROP 2.707 5.285 2.607 2.752

(4.201) (3.396) (4.785) (3.059)

WTI -4.048 -11.185*** -7.186 -11.903***

(5.565) (4.441) (6.819) (5.047)

NG 0.093 -0.462 -0.555 0.052

(1.943) (1.284) (2.165) (1.055)

EPU 0.000 -0.001 -0.001 0.000

(0.001) (0.001) (0.001) (0.001)

V IX -0.005 0.007 0.008 0.007

(0.009) (0.013) (0.014) (0.012)

FTS -0.065 -0.035 0.051 0.122

(0.722) (1.100) (0.969) (0.725)

TERM 2.369 1.201 -1.198 2.311

(1.642) (1.515) (1.875) (1.499)

DFLT -2.465 2.282 4.747 4.334

(4.155) (3.275) (3.923) (3.143)

TED 0.286 -0.313 -0.589 -0.161

(0.295) (0.450) (0.514) (0.422)
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Table A24: GMB, Green, Brown, and Neutral Portfolios – IM4 – SD
Refer to Table 6, but specifically for the fourth moment, and for the Societal Debate cluster.

GMB Green Brown Neutral

Intercept 0.004 0.138 0.134 0.014

(0.157) (0.215) (0.231) (0.194)

UMC 0.005 -0.042 -0.047 0.022

(0.247) (0.216) (0.256) (0.185)

MKT -0.159 -0.018 0.141 -0.125

(0.107) (0.115) (0.153) (0.111)

HML 0.093 -0.056 -0.149 0.005

(0.219) (0.189) (0.228) (0.185)

SMB 0.135 0.156 0.021 0.134

(0.199) (0.160) (0.220) (0.162)

CMA -0.695* 0.460 1.149*** 0.602***

(0.372) (0.313) (0.393) (0.291)

RMW -0.324 0.163 0.487 0.048

(0.282) (0.200) (0.312) (0.194)

MOM -0.179 -0.408*** -0.229 -0.327***

(0.158) (0.117) (0.167) (0.105)

PROP 2.707 5.314 2.607 2.752

(4.201) (3.396) (4.785) (3.059)

WTI -4.048 -11.235*** -7.186 -11.903***

(5.565) (4.441) (6.819) (5.053)

NG 0.093 -0.462 -0.555 0.052

(1.943) (1.284) (2.165) (1.055)

EPU 0.001 0.001 0.001 0.001

(0.001) (0.001) (0.001) (0.001)

V IX -0.005 0.007 0.010 0.007

(0.009) (0.013) (0.014) (0.012)

FTS -0.065 -0.035 0.030 0.122

(0.722) (1.100) (0.969) (0.638)

TERM 2.399 1.201 -1.198 2.333

(1.642) (1.515) (1.875) (1.497)

DFLT -2.465 2.282 4.747 4.333

(4.155) (3.275) (3.923) (3.141)

TED 0.277 -0.313 -0.589 -0.161

(0.294) (0.448) (0.606) (0.422)
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