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Résumé 

Ce mémoire explore les interactions entre la complexité des tâches, la charge cognitive et 

les traits individuels, tels que la compétitivité, dans un contexte de ludification, avec un 

accent particulier sur l’éducation en sciences, technologies, ingénierie et mathématiques 

(STEM). Réalisée sous forme d’une étude en laboratoire avec un plan expérimental intra-

sujet, cette recherche examine comment la complexité des questions influence la charge 

cognitive et la performance des apprenants, tout en investiguant le rôle modérateur de la 

compétitivité. Les participants ont été exposés à un stimulus expérimental interactif conçu 

comme un prototype haute-fidélité inspiré du jeu « Business Builders ». Ce prototype 

intégrait des éléments compétitifs, tels que des tableaux de classement et des systèmes de 

points, pour simuler un environnement d’apprentissage ludifié. Les tâches ont été 

réalisées à l’aide de SAP Analytics Cloud, une plateforme facilitant la visualisation et 

l’analyse de données. Chaque tâche était conçue pour varier en complexité, reflétant un 

nombre croissant d’étapes nécessaires pour arriver à la solution. Les résultats montrent 

qu’une augmentation de la complexité des tâches entraîne une augmentation significative 

de la charge cognitive. Cette charge cognitive accrue a un impact négatif sur la 

performance des apprenants. Cependant, les individus hautement compétitifs font preuve 

d’une plus grande résilience face à une charge cognitive élevée, maintenant des niveaux 

de performance supérieurs à leurs pairs moins compétitifs. Ces résultats mettent en 

lumière les interactions entre la complexité des tâches, le traitement cognitif et les traits 

individuels dans des contextes éducatifs ludifiés. L’étude propose des recommandations 

pratiques pour la conception d’environnements d’apprentissage ludifiés qui équilibrent 

engagement et efficacité. Elle suggère d’adapter la complexité des tâches et les éléments 

compétitifs aux traits individuels des apprenants. Le mémoire comprend également un 

article managérial proposant des stratégies pour adapter la ludification aux divers besoins 

des apprenants, en mettant particulièrement l’accent sur la création d’activités 

personnalisées et efficaces pour l’éducation STEM. 

Mots clés : Ludification, Charge cognitive, Complexité, Compétitivité, Performance, 

Expérience des apprenants, Interaction humain-machine, Design pédagogique 
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Abstract 

This thesis explores the interactions between task complexity, cognitive load, and 

individual traits, such as competitiveness, in a gamification context, with a particular 

focus on science, technology, engineering, and mathematics education (STEM). 

Conducted as a laboratory study using a within-subject experimental design, this research 

examines how question complexity affects cognitive load and learner performance while 

investigating the moderating role of trait competitiveness. Participants were exposed to 

an interactive experimental stimulus designed as a high-fidelity prototype inspired by the 

"Business Builders" game. This prototype was integrated with competitive elements, such 

as leaderboards and point systems, to simulate a gamified learning environment. Tasks 

were completed using SAP Analytics Cloud, a platform that facilitated data visualization 

and analysis, allowing participants to engage with progressively complex problem-

solving scenarios. Each task was carefully designed to vary in complexity, reflecting an 

increasing number of steps required to arrive at the correct solution. The results show that 

increasing task complexity significantly raises cognitive load. This increased cognitive 

load negatively impacts learner performance. However, highly competitive individuals 

demonstrate greater resilience under high cognitive load, maintaining better performance 

levels compared to their less competitive peers. These findings contribute to Cognitive 

Load Theory by highlighting the interplay between task complexity, cognitive processing, 

and individual traits in gamified educational contexts. The study provides practical 

recommendations for designing gamified learning environments that balance engagement 

and effectiveness. It suggests tailoring task complexity and competitive elements to 

learners’ individual traits, ensuring tasks are challenging but not overwhelming. The 

thesis also includes a managerial article proposing strategies to adapt gamification to the 

diverse needs of learners, with a particular emphasis on creating personalized and 

effective activities for STEM education. 

Keywords: Gamification, Cognitive Load, Task Complexity, Competitiveness, 

Performance, Learner Experience, Human-Computer Interaction, Instructional Design 
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Avant-propos 

Le présent mémoire a été rédigé en suivant une structure par article conformément aux 

exigences du programme de Maîtrise ès Science en Gestion de HEC Montréal. Le premier 

article examine les interactions entre la complexité des tâches, la charge cognitive et les 

traits individuels, notamment la compétitivité, dans un contexte d’apprentissage ludifié 

en sciences, technologies, ingénierie et mathématiques (STEM). Cet article est en 

préparation en vue d’une publication éventuelle dans AIS Transactions on HCI. L’article 

est présenté avec l’accord des coauteurs.  

Le second article est de nature managériale et constitue une synthèse et interprétation des 

résultats obtenus dans le premier article. Il propose des recommandations pratiques pour 

la conception de stratégies de ludification adaptées à l’éducation STEM. Le niveau de 

vulgarisation de l’article vise un public plus large en vue d’augmenter la portée des 

résultats et de les rendre accessibles à une communauté diversifiée d’éducateurs et de 

professionnels. Cet article est en préparation pour soumission à eLearning Industry 

journal. 
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Introduction 

Ces dernières années, les systèmes éducatifs ont subi des transformations significatives 

pour répondre aux exigences d’une société en rapide évolution, dominée par la 

technologie. L’éducation a déplacé son focus de la transmission traditionnelle des 

connaissances vers le développement des compétences du XXIe siècle, telles que la 

pensée critique, l’adaptabilité et la collaboration — des compétences essentielles pour 

naviguer dans les défis complexes à l’échelle mondiale. Parmi ces changements, 

l’éducation STEM — couvrant les sciences, la technologie, l’ingénierie et les 

mathématiques — a pris une importance particulière en raison de son rôle central dans 

l’innovation et la réponse à des besoins sociétaux cruciaux, tels que le changement 

climatique, les avancées en santé et le développement technologique (Bybee, 2010). 

Cependant, les disciplines STEM posent souvent des défis uniques, avec des concepts 

abstraits, des exigences complexes en résolution de problèmes et de fortes charges 

cognitives qui peuvent entraîner un désengagement et des résultats d’apprentissage 

médiocres pour de nombreux étudiants. 

Pour relever ces défis, les éducateurs et les chercheurs se tournent de plus en plus vers des 

outils numériques pour améliorer l’apprentissage en STEM. Les simulations interactives, 

les laboratoires virtuels et les plateformes de visualisation de données permettent 

désormais aux apprenants d’expérimenter des concepts scientifiques et d’interagir avec 

des scénarios du monde réel qui seraient autrement inaccessibles (Siemens et al., 2015). 

Ces outils personnalisent les expériences d’apprentissage en permettant aux étudiants 

d’explorer les contenus STEM à leur propre rythme, favorisant ainsi l’accessibilité et 

l’inclusivité. Cependant, malgré ces avancées, l’engagement reste un obstacle clé dans 

l’éducation STEM. Les recherches indiquent que les apprenants en STEM éprouvent 

souvent des difficultés de motivation et de persévérance, en particulier dans les 

environnements numériques, où la nature abstraite des tâches et les interactions sociales 

limitées peuvent exacerber les sentiments d’isolement et la surcharge cognitive 

(Santhanam et al., 2016). Ainsi, favoriser un engagement durable et un apprentissage 

efficace dans les contextes STEM demeure un défi pressant. 
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La ludification s'est imposée comme une stratégie prometteuse pour relever les défis dans 

l'éducation STEM, notamment en raison de son potentiel à rendre l'apprentissage plus 

interactif et gratifiant. La ludification est définie comme l'utilisation d'éléments de 

conception de jeux dans des contextes non ludiques afin d'engager les utilisateurs et 

d'améliorer leur expérience (Deterding et al., 2011). Elle intègre des éléments tels que des 

points, des badges, des classements et des retours en temps réel pour transformer les 

environnements d'apprentissage afin d'instiller un sentiment de compétence chez les 

utilisateurs (Nacke & Deterding, 2017). Contrairement aux jeux complets, la ludification 

ajoute une couche ludique à des systèmes non ludiques tout en conservant leurs fonctions 

instrumentales, ce qui permet d'améliorer à la fois les résultats instrumentaux et 

l'engagement expérientiel (Liu et al., 2017). Ainsi, en tirant parti des motivations 

intrinsèques telles que la maîtrise, l'accomplissement et la reconnaissance, la ludification 

a le potentiel de rendre l'apprentissage STEM plus accessible et engageant, en particulier 

pour les apprenants qui pourraient autrement avoir du mal à maintenir leur intérêt pour 

ces matières exigeantes. 

Le rôle de la compétitivité dans la ludification est particulièrement pertinent dans 

l’éducation STEM, où des éléments compétitifs sont souvent utilisés pour stimuler 

l’engagement. La compétitivité de trait, définie comme un désir général de se surpasser 

par rapport aux autres et d'apprécier la compétition (Newby & Klein, 2014), est un concept 

multidimensionnel qui inclut des dimensions telles que la dominance, l'affectivité 

compétitive et l'amélioration personnelle. Les classements, par exemple, incitent les 

apprenants à surpasser leurs pairs, motivant ainsi ceux qui possèdent une forte 

compétitivité de trait à s’investir davantage dans les tâches. Cependant, la compétitivité 

de trait est complexe et peut inclure des composantes telles que l'attitude 

hypercompétitive, qui se manifeste par un besoin indiscriminé de compétition et de 

victoire pour maintenir ou améliorer l’estime de soi (Fletcher & Nusbaum, 2008; 

Ryckman et al., 1990). Cette compétitivité peut être une arme à double tranchant; si 

certains apprenants prospèrent dans des environnements compétitifs, d’autres peuvent 

ressentir une anxiété accrue ou un désengagement, en particulier face à des tâches STEM 

cognitivement exigeantes. Cette variabilité souligne l’importance d’aligner les éléments 
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ludifiés sur les profils psychologiques et les besoins motivationnels des apprenants pour 

éviter des résultats négatifs inattendus (De Raad & Schouwenburg, 1996). 

Malgré l’intérêt croissant pour la ludification, des lacunes importantes subsistent dans la 

compréhension de son interaction avec les exigences uniques de l’éducation STEM. La 

plupart des études se concentrent sur ses avantages généraux, tels que l’augmentation de 

la motivation et de l’engagement, laissant de côté les fondements théoriques relatifs aux 

aspects cognitifs, qui restent largement sous-explorés par rapport aux théories de la 

motivation (Landers et al., 2015; Zainuddin et al., 2020). Peu de recherches examinent 

comment les différences individuelles, telles que la compétitivité de trait, influencent son 

efficacité dans les contextes STEM (Zainuddin et al., 2020). De plus, l’impact de la 

complexité des tâches et de la charge cognitive — des facteurs clés dans l’apprentissage 

STEM — sur les résultats de la ludification n’est pas entièrement compris. Ces lacunes 

soulignent la nécessité d’une approche nuancée pour concevoir des expériences 

d’apprentissage ludifiées qui tiennent compte à la fois des exigences cognitives des tâches 

STEM et des caractéristiques diversifiées des apprenants. En mettant davantage l’accent 

sur les théories cognitives dans l’étude de la ludification, cette recherche vise à combler 

ces manques critiques et à fournir des bases théoriques solides pour orienter la conception 

pédagogique dans des environnements STEM. 

Guidé par ces perspectives, ce mémoire vise à approfondir la compréhension de 

l’influence de la ludification sur l’engagement et les résultats d’apprentissage dans 

l’éducation STEM. L’étude s’articule autour des questions de recherche suivantes : 

Question de recherche 1 - Dans quelle mesure la complexité des questions influence-

t-elle les performances des tâches, par l'intermédiaire de la charge cognitive, dans 

un contexte de ludification? 

Cette question examine la relation entre différents niveaux de complexité des tâches, la 

charge cognitive et les performances dans les contextes STEM. En comprenant cette 

dynamique, l’étude vise à identifier les seuils à partir desquels la complexité des questions 

commence à entraver le traitement cognitif et l’apprentissage. 
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Question de recherche 2 - Dans quelle mesure la compétitivité de trait modère-t-elle 

la relation entre la charge cognitive et les performances des tâches dans un contexte 

de ludification? 

En reconnaissant le rôle des différences individuelles, cette question explore comment la 

compétitivité de trait influence la résilience des apprenants face à la charge cognitive dans 

les tâches STEM. Elle examine notamment si les individus compétitifs sont mieux équipés 

pour gérer les exigences cognitives ou si une grande complexité réduit leur performance. 

En répondant à ces questions, ce mémoire contribue à l’avancement théorique de la 

compréhension de la ludification dans l’éducation en intégrant des concepts issus de la 

théorie de la charge cognitive (Cognitive Load Theory, CLT) et des cadres théoriques sur 

les traits de personnalité. En explorant l’interaction entre la complexité des tâches et la 

compétitivité sur la charge cognitive et les performances dans des contextes STEM, cette 

recherche approfondit la compréhension des différences individuelles dans les 

environnements d’apprentissage ludifiés. Elle met également en lumière les effets 

nuancés des traits compétitifs sur l’apprentissage, en reliant les théories motivationnelles 

et cognitives pour proposer un cadre plus complet pour la conception pédagogique. 

Sur le plan pratique, les résultats de ce mémoire offrent des recommandations exploitables 

pour la conception d’outils éducatifs ludifiés. En proposant des stratégies pour équilibrer 

la complexité des tâches et adapter les éléments de ludification aux profils des apprenants, 

comme leur niveau de compétitivité, cette recherche contribue à développer des 

environnements STEM d’apprentissage adaptatifs et inclusifs. Ces recommandations 

visent à accroître l’engagement, réduire la surcharge cognitive et optimiser les résultats 

d’apprentissage, répondant ainsi aux défis spécifiques de l’éducation STEM. 

Ce mémoire s'articule autour de deux articles interconnectés qui abordent collectivement 

l’impact de la ludification sur l’engagement et les résultats d’apprentissage dans 

l’éducation STEM, en mettant l’accent sur les rôles de la charge cognitive, de la 

complexité des tâches et des différences individuelles telles que la compétitivité de trait. 
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Le premier article se concentre sur les aspects théoriques et empiriques de la ludification. 

Il examine comment la complexité des tâches influence la charge cognitive et les 

performances dans des environnements éducatifs ludifiés, tout en explorant le rôle 

modérateur de la compétitivité de trait. L’étude a été réalisée en laboratoire avec un design 

expérimental intra-sujet, impliquant 60 participants âgés de 18 à 65 ans, recrutés 

principalement parmi des étudiants ou diplômés récents. Les participants ont réalisé des 

tâches de complexité variable (faible, moyenne, élevée) conçues à l’aide d’un prototype 

interactif développé sur Figma, inspiré du jeu « Business Builders » (Léger et al., 2024) 

et utilisant la plateforme SAP Analytics Cloud pour visualiser des données. Les mesures 

incluaient la charge cognitive implicite (via la pupillométrie), la charge cognitive explicite 

(évaluée par le NASA TLX), la performance observée sur chaque tâche, ainsi que le trait 

de compétitivité de chaque participant. Après chaque tâche, les participants recevaient un 

feedback, visualisaient leur position sur un classement et répondaient à des questionnaires 

pour mesurer leurs perceptions. Les résultats ont été analysés avec des modèles 

statistiques avancés pour comprendre l’impact de la complexité des tâches et le rôle 

modérateur de la compétitivité sur la charge cognitive et les performances. Ces résultats 

fournissent des perspectives sur l’optimisation de la complexité des tâches afin 

d’équilibrer engagement et performance dans des environnements d’apprentissage 

ludifiés, tout en considérant le différences individuelles, telle que la compétitivité. 

Le second article adopte une perspective pratique et managériale pour explorer comment 

les principes de conception de la ludification peuvent être appliqués pour créer des outils 

éducatifs efficaces et engageants. S’appuyant sur les conclusions du premier article, il 

offre des recommandations concrètes aux éducateurs et concepteurs pédagogiques, en 

particulier dans le domaine de l’éducation STEM. Cet article met l’accent sur des 

stratégies de personnalisation de la ludification pour répondre aux besoins diversifiés des 

apprenants, en veillant à équilibrer les exigences cognitives et motivationnelles afin 

d’améliorer les résultats d’apprentissage. 

En synthèse, cette étude suggère plusieurs résultats clés. Premièrement, elle indique que 

l'augmentation de la complexité des tâches pourrait entraîner une hausse significative de 

la charge cognitive, ce qui influence la performance de manière non linéaire : la 
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performance tend à augmenter dans un premier temps lorsque la charge cognitive est 

modérée, avant de diminuer lorsque cette charge devient excessive. Deuxièmement, les 

données suggèrent que la compétitivité de trait pourrait modérer cette relation : les 

individus hautement compétitifs semblent montrer une plus grande résilience face à une 

charge cognitive élevée, maintenant des performances supérieures comparées à leurs pairs 

moins compétitifs. Ces résultats contribuent à répondre aux questions de recherche en 

explorant les dynamiques potentielles entre la complexité des tâches, la charge cognitive 

et les traits individuels dans un contexte ludifié. Ils mettent également en lumière 

l'importance d’une approche personnalisée pour la conception d’environnements 

d'apprentissage, en tenant compte des différences individuelles et en optimisant la 

complexité des tâches pour favoriser l'engagement et les performances. Ces contributions 

théoriques et pratiques enrichissent la compréhension des défis uniques de l'éducation 

STEM et offrent des pistes concrètes pour améliorer l'efficacité des stratégies de 

ludification. 

Ensemble, ces articles contribuent à la fois à la compréhension théorique et à la mise en 

œuvre pratique de la ludification, faisant progresser la recherche et fournissant des outils 

pour concevoir des expériences d’apprentissage adaptatives, engageantes et efficaces dans 

l’éducation STEM. 

 

 

 

 

 

 

 

 



7 

 

Étape Contribution 

Définition de la problématique 
Problématisation, questions de recherche 

- 100%  

Revue de littérature 
Recherche et rédaction de la revue de 

littérature – 100% 

Conception du design expérimental 

Rédaction du protocole – 70%  

-Plan du protocole offert par le 

Tech3Lab, modifications 

importantes apportées 

Conception du stimulus sur Figma – 70% 

-Maquette existante fournie par 

ERPsim Lab, modifications 

importantes apportées 

Conception des taches – 70% 

-Certaines tâches du jeu Business 

Builders prises comme exemple 

Formulaire d’éthique – 10% 

-Majeure partie effectuée par 

l’équipe du Tech3Lab 

Collecte de données 

Pré-tests – 100% 

Recrutement des participants – 50% 

-Le panel HEC a grandement 

contribué au recrutement de nos 

participants. 

Modération de la collecte – 100% 

Analyse des données 

Analyse des données collectées – 90% 

-L’équipe du Tech3Lab s’est 

occupé de l’extraction des données 

Rédaction du mémoire 
Rédaction de toutes les sections du 

mémoire – 100% 





Chapitre 2 

The Effects of Task Complexity on Performance Through 

Cognitive Load and Trait Competitiveness in the Context of 

Gamification1 

Abstract 

Despite the widespread implementation of gamification in educational contexts, there is 

limited understanding of how task complexity and individual differences influence 

learning outcomes in such environments. Specifically, the impact of task complexity on 

task performance, mediated through cognitive load, remains underexplored. Additionally, 

individual traits like competitiveness, which can significantly affect motivation and 

engagement, have not been adequately examined as moderators in this context. This study 

addresses these gaps by investigating the role of task complexity and trait competitiveness 

in shaping task performance through cognitive load in a gamified educational setting. 

Using a within-subject experimental design, participants completed tasks of varying 

complexity levels while cognitive load was measured through self-reports and 

physiological indicators. The results revealed that higher task complexity significantly 

increased cognitive load, which in turn negatively impacted task performance. Moreover, 

trait competitiveness moderated the relationship between cognitive load and performance, 

with highly competitive individuals demonstrating greater resilience under increased 

cognitive load conditions. These findings contribute to existing literature by integrating 

cognitive load theory and motivational frameworks to better understand how task 

complexity and individual differences interact in gamified educational environments. The 

study offers practical implications for the design of educational interventions, suggesting 

that instructional strategies should consider both task complexity and learners’ individual 

traits to optimize performance and engagement. 

 
1 This article is currently in preparation for submission to the scientific journal AIS Transactions on Human-

Computer Interaction. 
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Keywords: cognitive load, task complexity, trait competitiveness, gamification, task 

performance, educational design. 

 

 

2.1 Introduction 

STEM — encompassing science, technology, engineering, and mathematics — has 

emerged as a cornerstone of modern education due to its pivotal role in driving innovation 

and addressing pressing societal challenges, such as climate change, healthcare 

advancements, and technological development (Bybee, 2010). These disciplines are 

essential for equipping learners with 21st-century skills, including critical thinking, 

adaptability, and collaboration. However, STEM education is not without its challenges. 

Its inherently abstract concepts, cognitively demanding problem-solving requirements, 

and complex tasks often result in disengagement and suboptimal learning outcomes for 

many students. These unique characteristics underscore the importance of exploring 

innovative approaches to make STEM education more accessible and engaging. 

Gamification, defined as the use of game design elements like points, badges, and 

leaderboards in non-game contexts, aims to boost user motivation and interaction 

(Deterding et al., 2011). It leverages game mechanics to create meaningful engagement 

by addressing both experiential (e.g., enjoyment) and instrumental (e.g., achieving goals) 

outcomes (Santhanam et al., 2016). Studies highlight that gamification may have matured 

into a practice with established design principles that are now integrated across various 

industries, including education, health, and employee engagement (Nacke & Deterding, 

2017). By drawing on the aspects of games that make them engaging, gamification 

transforms traditional learning environments into more interactive and enjoyable 

experiences, thereby fostering deeper cognitive and motivational involvement. When 

thoughtfully integrated into educational platforms, gamification can improve learners' 

motivation, reduce cognitive load, and enhance performance. This approach offers 

potential solutions for challenges observed in STEM education by making learning more 
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dynamic and purpose-driven. However, the success of gamification depends significantly 

on the complexity of the tasks; finding the right balance of challenge is crucial—tasks that 

are too simple may lead to boredom, while overly difficult tasks may result in frustration 

or anxiety (Czikszentmihalyi, 1990). 

In educational settings, gamification’s success largely depends on its alignment with 

learners’ intrinsic motivations and psychological needs, such as autonomy, competence, 

and relatedness (Ryan & Deci, 2000). For example, the use of leaderboards and badges 

can foster a sense of competence by providing feedback on progress, while customizable 

learning paths can enhance autonomy (Krath et al., 2021). However, individual 

differences, such as personality traits and competitive tendencies, also play a critical role 

in how learners respond to gamified elements. For instance, highly competitive 

individuals may thrive in environments with leaderboards, viewing them as motivational, 

while less competitive students might find them anxiety-inducing and distracting (Abril 

& Trinidad, 2022; Elliot et al., 2018). Poorly designed gamified elements, perceived as 

irrelevant or excessively competitive, can lead to disengagement and reduced learning 

outcomes, underscoring the need for thoughtful, context-sensitive design (Krath et al., 

2021). These variations underscore the need to consider individual characteristics in 

gamification design to avoid unintended cognitive overload or disengagement and to 

enhance learning outcomes effectively. 

While gamification has been praised for its potential to enhance motivation and 

engagement in educational contexts, its application remains fraught with challenges. 

Current research tends to focus on the positive outcomes of gamification, such as 

improved learning efficiency and motivation, but often neglects its negative effects and 

unintended consequences, particularly in complex educational tasks. Studies indicate that 

poorly designed gamified elements, like leaderboards and badges, can lead to unintended 

issues such as cognitive overload, demotivation, or even disengagement for certain 

learners (Toda et al., 2018). Moreover, individual differences, such as competitiveness 

and learning preferences, are often overlooked despite their critical role in determining 

the efficacy of gamified learning environments (Abril & Trinidad, 2022; Toda et al., 

2018). This gap suggests a pressing need for a more nuanced understanding of how 



12 

 

gamified designs interact with both the cognitive demands of tasks and the unique traits 

of learners, thereby ensuring equitable and effective learning experiences. 

Despite the growing body of research on cognitive load and gamification, there remains 

a need to better understand how these factors interact to influence learning outcomes, 

particularly in complex educational tasks. While prior studies have explored the impact 

of task complexity on cognitive load and performance, they often overlook the role of 

individual differences such as trait competitiveness. Furthermore, although gamification 

is widely used to improve user engagement, its influence on cognitive processing in high-

complexity tasks has not been fully elucidated. 

This study addresses these gaps by investigating the following research questions: 

RQ1: To what extent does task complexity impact task performance through 

cognitive load? 

RQ2: To what extent does trait competitiveness moderate the relationship between 

cognitive load and task performance? 

By examining these questions, the study aims to provide a more comprehensive 

understanding of how cognitive load, task complexity, and individual differences interact 

in gamified educational environments, contributing to the development of more effective 

instructional designs and HCI applications. It can be noted that, while the first question 

remains important, its main purpose is to serve as a foundation for the second question. 

This study integrates Cognitive Load Theory (CLT) and trait competitiveness to 

investigate how task complexity and individual differences, such as trait competitiveness, 

affect performance in a gamification setting. Using a within-subject experimental design, 

participants completed tasks of varying complexity while cognitive load was measured 

through self-reports and physiological indicators. The experimental stimuli were based on 

the "Business Builders" game, an innovative platform developed collaboratively by HEC 

Montréal and SAP to provide students with practical experience in SAP Analytics Cloud, 

aimed at enhancing analytical thinking and supporting data-driven decision-making in 

real business scenarios (Léger et al., 2024). In this study, a high-fidelity prototype was 
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created using Figma, drawing inspiration from Business Builders. This prototype 

incorporated gamified elements such as leaderboards and points to engage participants in 

data visualization and problem-solving tasks. Participants used SAP Analytics Cloud as a 

core analytical tool within the experiment, allowing them to generate insights through 

data visualization and analysis, thereby providing a practical educational experience that 

aligns closely with the study's objective of simulating real-world analytics challenges in 

an interactive, competitive environment. The findings reveal that higher task complexity 

increases cognitive load, which has a non-linear relationship with performance, ultimately 

negatively impacting it, and that trait competitiveness moderates this relationship, with 

competitive individuals demonstrating greater resilience under cognitive load. These 

results contribute to the understanding of how task design and individual traits interact, 

emphasizing the importance of balancing task complexity and considering personality 

traits to optimize educational outcomes.  

This research offers actionable insights for designing personalized and effective 

gamification exercises, such as balancing task complexity to optimize cognitive load, 

tailoring gamification elements like leaderboards to individual competitiveness, and 

creating adaptive learning environments that accommodate diverse learner traits to 

enhance engagement and performance. 

 

2.2 Literature Review 

2.2.1 Task Complexity 

Research on task complexity in education often emphasizes the relationship between task 

design, cognitive processing, and learner performance. Studies argue that cognitive task 

complexity is a critical factor in educational design, influencing not only learners' 

engagement but also their linguistic and cognitive development (Sasayama, 2016). Task 

complexity refers to the inherent cognitive demands of a task, which are determined by 

factors such as the number of elements involved and the relationships between them 
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(Wood, 1986). For example, tasks with a greater number of elements or requiring complex 

reasoning are generally considered to be more cognitively demanding. 

It has been said that task complexity in education can be measured independently of task 

performance through objective methods such as dual-task methodology, time estimation, 

and self-rating measures (Sasayama, 2016). These approaches help validate whether the 

designed complexity of a task translates into actual cognitive load for learners. This 

distinction is crucial, as the perceived complexity of a task does not always align with its 

actual cognitive demands. When task complexity is not validated independently, it may 

lead to inaccurate assumptions about learners' abilities and the effectiveness of 

instructional designs. 

In the context of complexity theory, studies highlight that educational tasks are part of a 

larger, dynamic system where unpredictability and interrelated elements play a significant 

role (Morrison, 2006). They argue that educational settings are complex adaptive systems, 

and task complexity should be understood in terms of the interactions between students, 

tasks, and the learning environment. This perspective suggests that effective educational 

design should account for these interactions to better manage cognitive load and facilitate 

learning (Morrison, 2006). 

The concept of task complexity is further refined by it being defined through three 

dimensions: component complexity, coordinative complexity, and dynamic complexity 

(Wood, 1986). Component complexity refers to the number of distinct elements in a task, 

coordinative complexity involves the interrelationships between these elements, and 

dynamic complexity captures changes that occur over time. These dimensions offer a 

structured approach to analyzing and categorizing educational tasks based on their 

inherent complexity, which can be applied to optimize task design and sequencing in 

educational contexts. By understanding and validating task complexity, educators can 

create more effective learning experiences that are tailored to students' cognitive 

capacities and promote deeper learning (Morrison, 2006; Sasayama, 2016; Wood, 1986). 

This nuanced understanding of task complexity lays a critical foundation for examining 

how these elements interact with cognitive processing demands, or cognitive load, which 
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will be explored in the next section as a key determinant of learners' capacity to manage 

and perform educational tasks effectively (Sasayama, 2016). 

2.2.2 Cognitive Load and Learning Performance 

Cognitive Load Theory (CLT) is a framework that describes the role of working memory 

in learning and how different instructional designs can optimize or hinder learning by 

manipulating cognitive demands (Sweller, 2020). CLT distinguishes between three types 

of cognitive load: intrinsic load, related to the inherent complexity of the content; 

extraneous load, which refers to unnecessary cognitive effort due to poor instructional 

design; and germane load, which enhances learning by facilitating schema construction 

and automation (de Jong, 2010; Sweller, 1988). The goal of instructional design is to 

manage these loads to avoid exceeding learners’ cognitive capacity, which can lead to 

reduced performance and learning. 

While most research has focused on reducing extraneous load and optimizing germane 

load, recent studies have explored the interaction between cognitive load and motivation. 

Studies argue that cognitive load should be viewed as a motivational cost that can 

influence learners’ willingness to invest effort in a task (Feldon et al., 2019). When 

cognitive load is too high, learners may perceive the task as too demanding, leading to 

decreased motivation and engagement (Feldon et al., 2019). Conversely, when the task 

load is appropriately balanced, it can enhance motivation and persistence. 

This balance of cognitive load might be particularly relevant in gamified educational 

contexts, where the intrinsic complexity of tasks could play a role in maintaining 

engagement without overwhelming learners (Sasayama, 2016). Additionally, individual 

differences, such as personality traits like conscientiousness and motivation, may 

influence the interaction between task complexity and learning outcomes, potentially 

shaping how cognitive demands are perceived and managed (De Raad & Schouwenburg, 

1996). 
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2.2.3 The Influence of the Competitivity Trait on Learning Performance 

Personality traits play a significant role in influencing how students approach learning, 

engage with academic tasks, and respond to challenges in educational settings (De Raad 

& Schouwenburg, 1996). Research in educational psychology often focuses on the impact 

of key traits such as conscientiousness, openness, and emotional stability on academic 

performance. For instance, conscientious students, who tend to be diligent, organized, and 

self-disciplined, often achieve higher grades and demonstrate better study habits, as they 

are more likely to set goals and maintain focus (Crozier, 1997) . 

Beyond cognitive abilities, non-cognitive traits like self-efficacy, motivation, and 

curiosity contribute significantly to academic success (De Raad & Schouwenburg, 1996). 

Self-efficacy, the belief in one’s own ability to succeed, encourages students to take on 

challenging tasks and persist through difficulties (De Raad & Schouwenburg, 1996; 

Wolfe & Johnson, 1995). Similarly, high motivation and curiosity drive students to 

explore new concepts and engage more deeply with learning materials, resulting in better 

retention and understanding (De Raad & Schouwenburg, 1996; Heckhausen & 

Heckhausen, 2018). 

Competitiveness, a personality trait defined by the desire to outperform others, 

significantly influences academic performance, though its effects are contingent on 

context. Competitive individuals often excel in achievement-oriented settings where 

performance is evaluated comparatively (Abril & Trinidad, 2022). This trait can foster 

motivation, drive, and resilience, particularly in environments that reward high 

achievement. However, its impact is not uniformly positive. In highly competitive 

contexts, the pressure to outperform peers may lead to increased anxiety, stress, and 

maladaptive behaviors, such as avoidance of challenging tasks or unethical practices like 

cheating (Elliot et al., 2018; Van Yperen & Orehek, 2013). 

Research underscores the multidimensional nature of competitiveness, encompassing 

aspects like dominance, personal enhancement, and enjoyment of competition. While 

dominance-driven competitiveness may emphasize outperforming others at any cost, 

personal enhancement focuses on self-improvement and mastery, even in the absence of 
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direct comparison (Newby & Klein, 2014). These distinctions are critical, as different 

dimensions of competitiveness predict diverse outcomes in learning and performance. For 

instance, environments fostering "friendly competition" tend to leverage the positive 

aspects of competitiveness, enhancing engagement and achievement, especially in lower-

performing contexts (Abril & Trinidad, 2022). 

Trait competitiveness, linked to personality frameworks such as the Big Five, interacts 

with environmental factors to shape learning outcomes. Individuals high in 

competitiveness are more likely to adopt performance-approach goals—seeking success 

relative to peers—which positively influences academic achievement (Elliot et al., 2018). 

Conversely, performance-avoidance goals, driven by fear of failure, often lead to adverse 

outcomes. The interplay between trait competitiveness and perceived environmental 

competitiveness also highlights how personal tendencies and contextual perceptions 

jointly impact motivation and achievement strategies (Elliot et al., 2018). 

Leaderboards and other gamified elements in education illustrate practical applications of 

competitiveness, leveraging social comparison and goal-setting behaviors to enhance 

motivation and engagement. However, their effectiveness depends on aligning the 

competitive dynamics with individual traits and the broader learning environment (Nacke 

& Deterding, 2017). While such tools can optimize student engagement when designed 

thoughtfully, overemphasis on competitive rankings without adequate support may 

amplify stress for less competitive students, undermining their benefits (Faust, 2021; 

Newby & Klein, 2014). Incorporating personality traits into educational research enables 

a more nuanced understanding of individual differences, guiding the development of 

tailored strategies that balance healthy competition with inclusivity for all learners (Faust, 

2021).  

2.3 Theoretical Foundation 

The proposed model examines how task complexity affects task performance through 

cognitive load, with trait competitiveness moderating this relationship. Specifically, task 

complexity is hypothesized to increase cognitive load, which in turn negatively impacts 

performance. Trait competitiveness is positioned as a mitigating factor, potentially 
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buffering the adverse effects of cognitive load on performance. This framework integrates 

cognitive and motivational perspectives, offering a nuanced understanding of the 

interactions between task complexity, cognitive processing, and individual differences in 

gamified learning environments. 

Figure 1. Research Model 

 

The theoretical link between complexity and cognitive load is grounded in CLT, which 

posits that task complexity significantly influences the cognitive resources required for 

learning and problem solving. Complexity, defined by the interactivity and number of 

elements in a task, determines the intrinsic cognitive load—how inherently demanding a 

task is based on its structure and learner expertise (Leppink & van den Heuvel, 2015; 

Sweller, 2020). It is further emphasized that high-complexity tasks, particularly those 

requiring means-ends analysis, impose significant cognitive demands, reducing the 

resources available for schema acquisition, a critical process for developing problem-

solving expertise (Sweller, 1988, 2020). Effective instructional design mitigates these 

effects by reducing extraneous cognitive load through strategies like simplifying task 

structures and promoting goal-free approaches, thereby enhancing learning outcomes 

(Sweller, 1988). This theoretical framework underscores the need to balance task 

complexity to optimize cognitive processing and facilitate effective learning. It is 

schematically represented in figure 1. 
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Empirical studies corroborate the theoretical relationship between complexity and 

cognitive load, demonstrating that tasks with greater element interactivity impose higher 

intrinsic cognitive load. For example, it was found that increasing task complexity in 

simulated pharmacy environments may have led to measurable increases in intrinsic 

cognitive load, particularly when novices encountered tasks involving multiple interactive 

elements (Tremblay et al., 2023). Similarly, cognitive complexity of language tasks may 

have an influence on both perceived difficulty and mental effort through independent 

measures, such as reaction time and self-assessments, underscoring how increased task 

demands may heighten cognitive processing requirements (Sasayama, 2016). These 

findings emphasize the importance of adapting task complexity to learners' capabilities, 

as excessive demands can hinder performance and schema acquisition (Tremblay et al., 

2023; Sasayama, 2016). Building on this theoretical and empirical foundation, the 

proposed hypotheses aim to investigate how task complexity impacts key outcomes in 

performance and cognitive load. Specifically, the following hypotheses are posited:  

H1: As task complexity increases, task performance will decrease.  

H2: As task complexity increases, cognitive load increases. 

The relationship between cognitive load and performance has been said to follow a non-

linear pattern, with performance peaking at an optimal level of cognitive load and 

declining when cognitive demands are either too low or too high. The roots of this 

proposal can be found in the Yerkes-Dodson Law, which states that performance increases 

with arousal or stimulation, but only up to a certain point, after which it will start to 

decrease (Yerkes & Dodson, 1908). 

Studies proposed that working memory load is associated with curvilinear hemodynamic 

responses in the dorsolateral prefrontal cortex (DLPFC), reflecting optimal performance 

at intermediate cognitive loads (McKendrick & Harwood, 2019). These findings suggest 

that underload and overload states disrupt cognitive process integration, leading to 

decreased performance. Similarly, other studies found that task performance correlates 

positively with germane cognitive load but negatively with excessive intrinsic or 

extraneous cognitive load, further emphasizing the importance of maintaining an 
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appropriate cognitive demand (Leppink et al., 2014). Building upon this theoretical and 

empirical foundation, the proposed hypotheses aim to investigate how cognitive load 

impacts performance. Specifically, the following hypothesis is posited:  

H3: As cognitive load increases, performance will initially increase, before starting to 

diminish. 

Studies suggest that individuals evaluate their abilities in relation to others, shaping their 

motivation and emotional responses (Festinger, 1954). When trait competitiveness is 

high, individuals view competition as an opportunity to excel, leveraging it to enhance 

motivation and performance by setting ambitious goals and persisting through challenges. 

However, for individuals with low trait competitiveness, the same context may amplify 

feelings of inadequacy, as comparisons with higher-performing peers exacerbate anxiety 

and avoidance behaviors. These contrasting dynamics emphasize the need for balanced 

competitive environments that accommodate varying levels of trait competitiveness, 

promoting engagement without fostering undue stress or disengagement.  

Empirical studies provide substantial evidence for the effects of trait competitiveness on 

performance, supporting its theoretical underpinnings. For instance, it was suggested that 

trait competitiveness significantly predicts performance-approach and performance-

avoidance goals, which subsequently influence achievement (Elliot et al., 2018). Their 

findings highlighted that students with high trait competitiveness were more likely to 

adopt performance-approach goals, leading to enhanced performance outcomes, while 

those with low competitiveness leaned toward performance-avoidance goals, often 

resulting in diminished performance (Elliot et al., 2018).  

Empirical studies further highlight the relationship between competitiveness, emotions, 

and cognitive load. Studies suggest that positive achievement emotions, such as 

enjoyment, can significantly reduce cognitive load by facilitating effective problem-

solving strategies and enabling learners to focus on relevant information (Sugiyo et al., 

2018). This suggests that individuals with a preference for competition might experience 

greater enjoyment during competitive activities, which could lower cognitive load and 

enhance their capacity to process complex information. By optimizing germane cognitive 
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load, these positive emotions may explain the link between high trait competitiveness and 

improved performance in challenging environments. This aligns with broader research 

connecting emotional states and learning efficiency, emphasizing the interplay between 

cognitive and affective factors (Sugiyo et al. 2018). 

This theoretical and empirical foundation leads us to a hypothesis that aims to investigate 

how trait competitiveness moderates the relationship between cognitive load and 

performance. Specifically, the following hypothesis is posited:  

H4: The higher the trait competitiveness, the smaller the effect of cognitive load on task 

performance. 

2.4 Methodology 

This study employs a game-based approach to teach data analytics, leveraging 

gamification elements to foster engagement and simulate real-world problem-solving 

scenarios. By using an interactive and competitive environment, participants engage in 

tasks that mimic the complexities of data analytics. The stimulus used for the study was a 

high-fidelity Figma prototype inspired by the "Business Builders" game, designed to 

incorporate gamification elements such as leaderboards and points. This setup allows for 

a closer examination of how task complexity affects cognitive load and performance, 

providing insights into individual differences like trait competitiveness. This game-based 

framework serves as a foundation for the experimental design and creates a practical 

context for testing the study’s hypotheses. 

"Business Builders" is an educational game developed by the ERPsim Lab in 

collaboration with HEC Montréal, designed to simulate real-world business challenges in 

a gamified environment. The game focuses on decision-making and data-driven problem-

solving through engaging scenarios such as supply chain resilience, sustainability 

portfolio management, and international market expansion. Participants analyze data, 

make strategic decisions, and interact with mechanics like leaderboards and performance 

feedback, fostering a competitive yet educational experience. In the context of this study, 

"Business Builders" serves as the foundation for the experimental tasks, providing a 
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practical, gamified framework that aligns with the study's goal of exploring the effects of 

task complexity on cognitive load and performance, while highlighting individual traits 

like competitiveness (Léger et al., 2024). 

SAP Analytics Cloud is a comprehensive cloud-based platform designed for data analysis, 

visualization, and business intelligence. It integrates various analytics tools to provide 

real-time insights, enabling users to create dynamic dashboards, perform predictive 

analytics, and generate visualizations to support data-driven decision-making. In this 

study, SAP Analytics Cloud served as the core analytical tool, allowing participants to 

process and visualize data required to complete tasks within the "Business Builders" 

Figma prototype. By utilizing this platform, the study simulated realistic data analytics 

scenarios, aligning with the study's objective of examining how task complexity affects 

cognitive load and performance. The use of SAP Analytics Cloud ensured that tasks 

mirrored professional data analysis processes, thereby enhancing the ecological validity 

of the experimental design (Waldorf, Germany; SAP SE, 2024). 

2.4.1 Participants 

In our study, we included participants who were either currently enrolled in or had 

recently graduated from college (CEGEP), undergraduate, or graduate programs. 

Participants were required to be familiar with graphs and charts (e.g., Excel) and at least 

somewhat comfortable with reading and listening to English instructions. A total of 60 

participants took part in the study (31 females, 29 males), with 59 included in the final 

sample. Participant ages ranged from 18 to 65 years (mean: 27.08, SD: 7.32, median: 

25.5). Each participant received a $30 compensation for their participation. While most 

participants were recruited through Panel HEC, additional participants were enlisted via 

convenience sampling and snowball sampling within the extended network. This project 

was approved by HEC Montréal’s Research Ethics Board under form number 2024-

5934:396 (Nagano, n.d.). 
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2.4.2 Experimental Design 

Our study employed a within-subject experimental design, where each participant 

completed tasks across three levels of task complexity (Low, Medium, and High) as the 

single independent variable. The sequence of tasks was randomized, and each participant 

completed two tasks at each complexity level. Participants were not recruited based on 

any specific personality traits, ensuring that the sample represented a range of individual 

differences, which is essential for understanding the generalizability of the findings. After 

each task, participants received feedback on their performance, viewed their position on 

a leaderboard, and completed a questionnaire. Following all six tasks, participants 

answered additional questionnaires before the recording tools were turned off. 

2.4.3 Experimental Stimuli 

Multiple stimuli were used in our experiment, beginning with a high-fidelity prototype of 

the Business Builders game by ERPsim Lab, developed on Figma (Figma, n.d.). 

Participants answered seven questions during the experiment. The first question was 

always a tutorial, designed to help participants familiarize themselves with the platforms. 

The remaining six questions were evaluated. To introduce randomization, six distinct 

groups were created within Figma, each representing a different order of task complexity 

(link). For example, Group 1 followed the order “simple, medium, complex.”, as seen in 

figure 2. A leaderboard was presented after each question to foster a sense of competition 

among participants.  

Figure 2. Questions Used for the Three Levels of Complexity 

 

The questions were deliberately designed to vary in complexity by altering the number of 

essential steps required to produce an appropriate graphic to answer the question. This 

https://bit.ly/396tremblantconditions
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approach aligns with the reported concept that task complexity increases with the number 

of distinct actions needed for completion (Wood, 1986). Low-complexity questions 

required two essential steps, medium-complexity questions involved four to five steps, 

and high-complexity questions necessitated six to seven steps. 

In this study, leaderboards and points were integrated as core gamification elements to 

enhance participant engagement and motivation. As studies suggest, gamification uses 

game design elements to create a "gameful" experience in non-game contexts, leveraging 

competitive and achievement-oriented behaviors intrinsic to gameplay (Deterding et al., 

2011). Leaderboards facilitated structured social comparison, fostering a competitive 

environment that could increase motivation in educational settings. Points further 

supported this by offering quantifiable feedback, enabling participants to track their 

progress and improvements, aligning with the mechanics of gameful interaction 

(Deterding et al., 2011). The leaderboard structure used in the study is exemplified in 

Appendix H.  

Another key stimulus in our experiment was the SAP Analytics Cloud platform (SAP, 

n.d.). On this platform, participants utilized data visualization tools to create graphs using 

pre-uploaded data sets. The interface of the software is as presented in figure 3. These 

graphs were necessary to answer the questions posed in the Figma prototype. The data 

sets used belonged to ERPsim Lab (ERPsim, n.d.). For access to the platform, please 

contact the ERPsim Lab or email rayane.benhenni@hec.ca. 
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Figure 3. Example Interface from SAP Analytics Cloud 

 

 

2.4.4 Instruments and Lab Setup  

Below is an overview of the types of data collected and the corresponding tools used 

during the experiment: 

Explicit data was collected using Qualtrics, a survey platform widely utilized for academic 

and professional research. The specific version employed was the July 2024 release, 

developed by Qualtrics (Provo, Utah, USA; Qualtrics, 2024). 

Observational data was recorded and analyzed using Microsoft Excel, version 2407, 

developed by Microsoft Corporation (Redmond, Washington, USA; Figma, Inc., 2024). 

Implicit data, such as gaze tracking, was captured using Tobii Pro Lab software, version 

1.241, produced by Tobii AB (Danderyd, Sweden; Tobii AB, 2024). 

Descriptions of the participant side, observation side, and the synchronization of the 

equipment are included in the appendix for further details. 
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2.4.5 Procedure 

Participants were welcomed and brought into the experiment room, where they were 

asked to leave their personal belongings on the observation side and ensure their devices 

were silenced. They were then seated on the participant side. 

The session began with the moderator reading a scripted welcome message that explained 

the structure of the experiment, the number of tasks, the tools used, the approximate 

duration, and the compensation details. Participants were directed to read and sign the 

consent form on a tablet. Following this, the moderator verbally asked demographic 

questions, including age, gender identity, vision, and handedness. 

The moderator then moved to the participant's side to sign the consent form and set up the 

eye-tracker calibration. Participants were then instructed to complete a pre-test 

questionnaire on their screen. 

The experiment began with a tutorial task where participants watched a video 

demonstrating how to solve a sample question using SAP Analytics Cloud. After 

watching the video, participants attempted the tutorial task with guidance from the 

moderator as needed. Upon completing the task and reviewing an explanation, the 

moderator informed participants that the following tasks would be graded, and that no 

help would be provided. 

For each task, participants were given instructions, attempted the task using Figma and 

SAP Analytics Cloud within a 5-minute time limit, reviewed the explanation, viewed their 

ranking on the leaderboard, and completed a post-task questionnaire. This process was 

repeated for six graded tasks. 

After completing all tasks, participants completed a post-task questionnaire regarding 

their experience in the study. The moderator then conducted a brief interview to gather 

additional feedback about the tasks and overall experience. 
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Finally, the moderator stopped the data collection tools and guided them through signing 

the compensation form. The session concluded with the participant collecting their 

belongings and being escorted out of the lab. 

2.4.6 Tasks 

For the tasks, participants were required to answer the questions displayed on the 

"Business Builders" Figma prototype by using SAP Analytics Cloud to analyze and 

visualize data. Each task involved generating accurate insights from pre-uploaded datasets 

to address a specific problem. Participants created data visualizations, such as graphs or 

charts, by following a sequence of steps within SAP Analytics Cloud. These steps 

included selecting the appropriate dataset, applying filters, and using visualization tools 

to construct a graphic that met the requirements of the question. To assist with the tasks, 

participants had access to a printed data dictionary detailing the datasets included in the 

study. 

To successfully complete a task, participants had to follow the correct method, as pre-

established by the research team. If a participant guessed the correct answer without 

constructing the required visualizations in SAP Analytics Cloud, the task was marked as 

unsuccessful. Similarly, if a participant failed to provide an answer within the 5-minute 

time limit, the task was also considered a failure. This ensured that success was 

determined not just by the accuracy of the response but also by the proper application of 

the analytical process. The questions associated with all 6 tasks and the tutorial are 

detailed in Appendices A to G. 

2.4.7 Measures 

The study utilized a variety of measures to assess key constructs. Implicit cognitive load 

was measured using a psychophysiological approach, specifically through pupillometry 

(Krejtz et al., 2018). Explicit cognitive load was assessed via the NASA TLX, a self-

reported measure that included six items evaluated on 100-point sliders. This instrument 

demonstrated high reliability with a Cronbach's alpha of .92 (Hart & Staveland, 1988). 

Trait competitiveness was also measured using a self-reported scale consisting of four 
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items on a 7-point Likert scale, ranging from 1 (Extremely Disagree) to 7 (Extremely 

Agree). This scale showed strong internal consistency, with a Cronbach's alpha of .84, 

(Brown et al., 1998; Spence & Helmreich, 2014). Finally, learning performance was 

observed and scored based on the method participants used to answer the given question. 

Additionally, as part of a manipulation check, we collected a measure of perceived 

complexity. After completing each task, participants were asked to rate how complex they 

found the task on a 7-point Likert scale, ranging from "extremely simple" to "extremely 

complex." The items used in the questionnaires are listed in Appendix P. 

2.4.8 Statistical Analysis 

Our analyses aimed to examine how task complexity affects learning performance, with 

a particular focus on cognitive load and pupil response as potential mediators. To perform 

these analyses, we used R for linear mixed-effects models, generalized linear mixed-

effects models (mediation analyses), while SAS was used for data preprocessing and 

logistic regression (direct effects and moderation analyses). The data mapping details are 

documented in Appendix O.  

First, we transformed the explicit cognitive load measure (log-transformed Task Load 

Index, or log_TLX) to meet the assumptions of normality required for parametric tests. 

This transformation ensured that statistical models could accurately capture the 

relationships between variables. 

To evaluate the direct effects of task complexity on learning performance, we used linear 

mixed-effects models, allowing us to account for both fixed effects (task complexity) and 

random effects (variability between participants and repeated measures). Individual 

differences were specifically accounted for by including participant ID as a random 

intercept, which controlled for variability due to individual-specific characteristics. 

Logistic regression models were employed to analyze binary performance outcomes, 

assessing the likelihood of success across different complexity conditions. This analysis 

provided insight into the overall impact of task complexity on learning performance. 
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To explore mediation effects, causal mediation analyses were conducted for three 

pairwise comparisons: low versus medium complexity, medium versus high complexity, 

and low versus high complexity. These analyses tested whether changes in cognitive load 

(log_TLX) or pupil response mediated the relationship between complexity and 

performance. By using simulations clustered by participant, we ensured robust estimates 

of indirect effects (ACME) and direct effects (ADE). 

These statistical approaches were chosen to address the specific research questions. Linear 

mixed-effects models accounted for repeated measures and individual variability, logistic 

regression handled binary performance outcomes, and mediation analyses identified 

indirect pathways through cognitive and physiological changes. Together, these methods 

provided a comprehensive understanding of how task complexity influences performance, 

and the impact of trait competitiveness. 

2.5 Results 

2.5.1 Manipulation Checks 

To confirm the relative differences in complexities between our questions, we 

incorporated manipulation check questions. The results of the pairwise comparisons 

indicated that the “low” complexity group was perceived to be significantly less complex 

than the “medium” complexity group, which was, in turn, perceived to be significantly 

less complex than the “high” complexity group. 

The descriptive statistics for each complexity level are as follows: For the “low” 

complexity condition, the mean complexity rating was 2.05 with a standard deviation of 

1.46 (N = 120). For the “medium” complexity condition, the mean was 3.839 with a 

standard deviation of 1.65 (N = 120). For the “high” complexity condition, the mean was 

4.76 with a standard deviation of 1.56 (N = 120). 

Pairwise comparisons confirmed significant differences between all complexity levels. 

Specifically, the difference between “low” and “medium” complexity conditions was 

highly significant (p < .0001), as was the difference between “low” and “high” complexity 
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conditions (p < .0001). Additionally, the difference between the “medium” and “high” 

complexity conditions was also highly significant (p < .0001). 

2.5.2 Descriptive Statistics 

We collected descriptives statistics for the various variables that were under investigation 

in our study, mainly central tendencies as well as dispersion measures. Table 1 shows 

these results. We also gathered data on the trait competitiveness of each participant. The 

mean for that variable is 4.67 out of 7 on a Likert type scale. The standard deviation is 

1.55.  

Table 1: Descriptive Statistics of Collected Data for Each Complexity Level 

Measure 

Low Medium High 

Mean Std Dev Mean Std Dev Mean Std Dev 

Success 0.93 0.25 0.48 0.50 0.33 0.47 

Psychological 

Cognitive 

Load 

-0.06 0.23 -0.04 0.23 -0.07 0.23 

Self-reported 

Cognitive 

Load 

16.98 13.58 33.05 20.60 41.29 18.75 

 

2.5.3 Hypotheses Testing: Direct Effects 

A linear mixed-effects model was conducted to examine the effect of complexity on 

performance. The Type III test revealed a significant main effect of complexity on 

performance, F(2,299) = 35.96, p < .0001 F(2, 299) = 35.96, p < .0001 F(2,299) = 35.96, 

p < .0001. Pairwise comparisons with Bonferroni-adjusted p-values indicated that 

performance was significantly lower in the high complexity condition compared to the 
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low complexity condition (adjusted p < .0001 p < .0001 p < .0001), as well as in the 

medium complexity condition compared to the low complexity condition (adjusted p < 

.0001 p < .0001 p < .0001). These findings suggest that higher levels of complexity are 

associated with reductions in performance, as such, hypothesis 1 is supported.  

In a separate analysis, a linear mixed-effects model was conducted to examine the effect 

of task complexity on pupil dilation, a measure of cognitive load. The Type III test 

indicated a significant main effect of complexity on pupil dilation, F(2,257) = 6.85, p = 

.0013 F(2, 257) = 6.85, p = .0013 F(2,257) = 6.85, p = .0013. Pairwise comparisons with 

Holm-adjusted p-values showed that pupil dilation was significantly lower in the high 

complexity condition compared to the medium complexity condition (adjusted p = .0010p 

= .0010 p =.0010). Additionally, the medium complexity condition was associated with 

significantly greater pupil dilation compared to the low complexity condition (adjusted p 

= .0334 p = .0334 p = .0334). No significant difference was observed between the high 

and low complexity conditions (adjusted p = .2173 p = .2173 p = .2173). These results 

suggest that cognitive load, as indicated by pupil dilation, is elevated under medium 

complexity compared to both high and low complexity. This shows that hypothesis 2 is 

partially supported for pupil dilation. 

Another linear mixed-effects model was conducted to examine the effect of complexity 

on the log-transformed task load index (log_TLX). The Type III test indicated a 

significant main effect of complexity, F(2,293) = 101.67, p < .0001 F(2, 293) = 101.67, p 

< .0001 F(2,293) = 101.67, p < .0001. Pairwise comparisons with Holm-adjusted p-values 

revealed significant differences between all levels of complexity: high complexity was 

associated with significantly higher log_TLX compared to medium complexity (adjusted 

p < .0001 p < .0001 p < .0001), and both high and medium complexity resulted in 

significantly higher log_TLX compared to low complexity (both adjusted p < .0001 p < 

.0001 p < .0001). These findings suggest that increasing complexity levels are associated 

with greater cognitive load, as indicated by higher log_TLX values. This shows that 

hypothesis 2 is supported for log-transformed task load index. 
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Further analysis using a generalized linear mixed-effects model evaluated the effects of 

the squared term for pupil adjustment (pupil_adj*pupil_adj) and trait competitiveness on 

performance (success_method), with an alpha level of 10%. The effect of the squared 

pupil adjustment term reached significance at this threshold (Estimate = -2.6976, SE = 

1.6112, t(257) = -1.67, p = .0953), suggesting a non-linear relationship between pupil 

adjustment and performance. This implies that as pupil adjustment increases, performance 

initially improves but then declines as pupil adjustment continues to rise. The Type III 

test of fixed effects confirmed a significant main effect for the squared term of pupil 

adjustment, F(1, 257) = 2.80, p = .0953, at the 10% level. In contrast, trait competitiveness 

had no significant effect on performance even at this relaxed threshold (Estimate = 

0.08134, SE = 0.09845, t(257) = 0.83, p = .4095), with the Type III test also indicating no 

significant impact, F(1, 257) = 0.68, p = .4095. This is graphically represented in figure 

4. This shows that hypothesis 3 is supported for pupil dilation. 

Finally, a linear mixed-effects model was used to examine the effects of log-transformed 

task load index (log_TLX), the quadratic term for log_TLX (log_TLXlog_TLX), and trait 

competitiveness on performance (success_method). The quadratic term 

log_TLXlog_TLX was highly significant (Estimate = -0.5554, SE = 0.09651, t(293) = -

5.75, p < .0001), suggesting a non-linear relationship between log_TLX and performance. 

Specifically, as log_TLX increases, performance initially rises but then declines as 

log_TLX continues to increase, a finding confirmed by the Type III test, F(1, 293) = 

33.12, p < .0001. Trait competitiveness, however, had no significant effect on 

performance (Estimate = 0.02341, SE = 0.1396, t(293) = 0.17, p = .8669), with the Type 

III test similarly indicating no influence, F(1, 293) = 0.03, p = .8669. This shows that 

hypothesis 3 is supported for log-transformed task load index. 
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Figure 4: Fitted Values of Predicted Probability of Success as a Function of Implicit 

Cognitive Load 

 

 

2.5.4 Hypotheses Testing: Moderations and Mediations 

Moderations 

A linear mixed-effects model was conducted to examine whether trait competitiveness 

moderated the quadratic relationship between pupil dilation (pupil_adj) and performance 

(success_method). The model examined whether trait competitiveness moderated the 

nonlinear relationship between pupil dilation and performance. The interaction term was 

significant, F(1, 256) = 5.88, p = .0160 (Estimate = 3.5939, SE = 1.4822, t(256) = 2.42). 

Given the one-tailed hypothesis, the p-value was divided by 2, resulting in p = .0080, 

supporting the hypothesized moderation effect at the 1% significance level. The positive 
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direction of the interaction term indicates that higher trait competitiveness weakens the 

negative quadratic effect of pupil dilation on performance. In other words, while increased 

pupil dilation generally associates with reduced performance, this decline is less 

pronounced for individuals with higher trait competitiveness, aligning with the original 

hypothesis that higher competitiveness would mitigate the impact of cognitive load on 

success. This is graphically represented in figure 5. This shows that hypothesis 4 is 

supported for pupil dilation. 

A linear mixed-effects model was also conducted to examine whether trait 

competitiveness moderated the quadratic relationship between cognitive load (log_tlx) 

and performance (success_method). The model tested whether trait competitiveness 

influenced the nonlinear relationship between cognitive load and performance. The 

interaction term between the quadratic effect of cognitive load and trait competitiveness 

was marginally significant at the α = 10% level, F(1, 292) = 2.47, p = .1174 (Estimate = -

0.04582, SE = 0.02918, t(292) = -1.57). However, since the direction of the interaction 

effect aligns with the quadratic effect of cognitive load, this suggests that higher trait 

competitiveness strengthens, rather than mitigates, the negative impact of cognitive load 

on performance, contrary to the hypothesis. Adjusting for the one-tailed hypothesis test 

yields a p-value of 0.9413, indicating a lack of support for moderation in the expected 

direction. This shows that hypothesis 4 is NOT supported for log-transformed task 

load index. 
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Figure 5: Interaction Plot of Pupil Adjustment and Trait Competitiveness on Success 

Probability 

 

Mediations 

The analyses were performed for three comparisons: medium vs. low complexity, 

medium vs. high complexity, and high vs. low complexity, using 1,000 simulations and 

clustered by participant. 

For the medium vs. low complexity comparison, there was a significant indirect effect 

(ACME) of task complexity on performance through pupil dilation for both the control 

condition (Estimate = 0.00396, 95% CI [0.00003, 0.01], p = .05) and the treated condition 

(Estimate = 0.0118, 95% CI [0.0001, 0.03], p = .05). The direct effect (ADE) was 

significant and negative (Estimate = -0.422, 95% CI [-0.534, -0.31], p < .001), indicating 

that complexity had a strong direct negative impact on performance. The proportion 
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mediated, however, was small and only marginally significant (p = .05), suggesting a 

limited mediation effect. 

For the medium vs. high complexity comparison, the indirect effect (ACME) was 

significant for both the control condition (Estimate = 0.0162, 95% CI [0.0012, 0.04], p = 

.03) and the treated condition (Estimate = 0.0175, 95% CI [0.0012, 0.04], p = .03). The 

direct effect (ADE) was also significant and positive (Estimate = 0.1385, 95% CI [0.0169, 

0.25], p = .036), indicating that higher complexity had a positive direct effect on 

performance. The proportion mediated was statistically significant (p = .048), suggesting 

a meaningful mediation effect. 

For the high vs. low complexity comparison, the indirect effect (ACME) was not 

significant for either the control condition (Estimate = -0.0023, 95% CI [-0.0090, 0.00], p 

= .25) or the treated condition (Estimate = -0.0059, 95% CI [-0.0201, 0.00], p = .25). 

However, the direct effect (ADE) was significant and negative (Estimate = -0.567, 95% 

CI [-0.685, -0.45], p < .001), indicating a strong direct negative effect of task complexity 

on performance, with no evidence of mediation in this comparison. Detailed mediation 

analysis results for pupillometry are provided in Appendices L to N. 

A series of causal mediation analyses were also conducted to examine whether cognitive 

load, measured by the log-transformed TLX scores (log_tlx), mediated the relationship 

between task complexity (low, medium, and high) and performance. The analyses were 

performed for three comparisons: medium vs. low complexity, medium vs. high 

complexity, and high vs. low complexity, using 1,000 simulations and clustered by 

participant. 

For the medium vs. low complexity comparison, the analysis revealed significant indirect 

effects (ACME) for both the control condition (Estimate = -0.126, 95% CI [-0.207, -0.06], 

p < .001) and the treated condition (Estimate = -0.237, 95% CI [-0.299, -0.17], p < .001). 

The direct effects (ADE) were also significant and negative for both the control (Estimate 

= -0.188, 95% CI [-0.286, -0.10], p < .001) and treated conditions (Estimate = -0.299, 

95% CI [-0.416, -0.18], p < .001). The proportion mediated was substantial and 

significant, with estimates of 0.289 for the control and 0.562 for the treated condition 
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(both p < .001), indicating that a meaningful portion of the effect of complexity on 

performance was mediated by cognitive load. 

For the medium vs. high complexity comparison, there were significant indirect effects 

(ACME) for both the control (Estimate = 0.1032, 95% CI [0.0542, 0.16], p < .001) and 

treated conditions (Estimate = 0.1058, 95% CI [0.0550, 0.16], p < .001). However, the 

direct effects (ADE) were not significant for either the control (Estimate = 0.0410, 95% 

CI [-0.0484, 0.13], p = .408) or treated conditions (Estimate = 0.0436, 95% CI [-0.0497, 

0.14], p = .408). The proportion mediated was significant, with 0.7046 for the control and 

0.7259 for the treated condition (both p = .004), suggesting that the mediation effect 

accounted for a large portion of the total effect of complexity on performance. 

For the high vs. low complexity comparison, the indirect effects (ACME) were again 

significant for both the control (Estimate = -0.205, 95% CI [-0.308, -0.11], p < .001) and 

treated conditions (Estimate = -0.346, 95% CI [-0.417, -0.26], p < .001). The direct effects 

(ADE) were also significant and negative for both the control (Estimate = -0.229, 95% CI 

[-0.349, -0.13], p < .001) and treated conditions (Estimate = -0.369, 95% CI [-0.516, -

0.23], p < .001). The proportion mediated was significant and substantial, with 0.357 for 

the control and 0.608 for the treated condition (both p < .001), indicating a strong 

mediation effect of cognitive load on the relationship between complexity and 

performance. Detailed mediation analysis results for log_TLX are provided in 

Appendices I to K. 

The analyses showed significant indirect effects of task complexity on performance 

through pupil dilation for medium vs. low and medium vs. high complexity, but not for 

high vs. low complexity. Direct effects were significant for all comparisons, with negative 

effects for medium vs. low and high vs. low, and a positive effect for medium vs. high. 

Cognitive load significantly mediated the relationship between complexity and 

performance in all comparisons, with substantial proportions mediated for medium vs. 

low, medium vs. high, and high vs. low complexity. 
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2.6 Discussion 

This study examined the influence of task complexity on cognitive load and learning 

performance within a gamification setting, while also considering the moderating role of 

trait competitiveness. The results suggest that increasing task complexity led to significant 

increases in cognitive load, as evidenced by measurements using both the NASA TLX 

and pupil dilation. Furthermore, the study showed that higher complexity levels 

negatively impacted learning performance. A non-linear relationship was also observed 

between cognitive load and performance, with optimal performance occurring at 

moderate levels of cognitive load. Finally, trait competitiveness was found to moderate 

the relationship between cognitive load and performance, although this effect varied 

across different measurement metrics. A higher trait competitiveness may have mitigated 

the negative effects of high cognitive load on performance. 

The results support the hypothesis that complexity elevates cognitive load and diminishes 

performance, consistent with CLT. However, the nuances in pupil dilation between 

medium and high complexity tasks suggest that task design impacts cognitive processing 

in complex ways, potentially linked to task-specific strategies or learning plateaus. 

The non-linear relationship between cognitive load and performance aligns with the 

theory that excessive load disrupts schema construction, while underload fails to 

sufficiently challenge learners. This supports the notion of an optimal cognitive load range 

for effective learning and task performance (McKendrick & Harwood, 2019). If we 

consider intrinsic cognitive load as a form of stimuli, its non-linear relationship with 

performance can also find meaning in the Yerkes-Dodson Law (Yerkes & Dodson, 

1908).  

The moderating effect of trait competitiveness was significant for pupil dilation but not 

for log-transformed TLX. This divergence may stem from differences in implicit versus 

explicit measures of cognitive load, suggesting that competitive individuals might 

unconsciously adapt better to stress, even if their subjective perceptions of load remain 

unchanged. The positive implicit response is aligned with theories that suggest that 

individuals shape their motivation and emotional responses as they evaluate their abilities 
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in relation to others (Festinger, 1954). In other words, when their trait competitiveness is 

high, individuals may view competition as an opportunity to excel, as they set ambitious 

goals and persevere through challenges, which may increase their performance. The 

opposite may also be true however, for individuals with low trait competitiveness, as their 

feeling of inadequacy amplifies due to comparisons with higher-performing peers, which 

may exacerbate anxiety or avoidance behaviors, leading to lower performance.  

The findings corroborate prior studies emphasizing the detrimental effects of excessive 

task complexity on performance (e.g., Sasayama, 2016; Tremblay et al., 2023). The 

observed non-linear relationship aligns with previous findings on cognitive load’s 

curvilinear impact on performance (McKendrick & Harwood, 2019). 

This study also extends prior work by integrating trait competitiveness as a moderating 

factor in gamified environments, a relatively underexplored area. Unlike previous 

research that treated gamification as universally beneficial, this study highlights the 

nuanced effects of individual traits on learning outcomes. 

This study advances CLT by empirically testing the intricate relationship between task 

complexity, cognitive load, and performance in the context of gamified learning. By 

examining these elements together, the research sheds light on how increased task 

complexity influences cognitive processing and learning outcomes. Furthermore, the 

study highlights the moderating role of competitiveness traits, bridging cognitive theories 

with motivational frameworks. The findings demonstrate that competitive traits can shape 

learners' responses to cognitive load, thereby providing a nuanced understanding of how 

individual differences influence task performance in gamified environments. Importantly, 

the distinction between implicit and explicit cognitive load measures emerges as a key 

contribution to educational research, suggesting that learners may respond differently at 

subconscious versus conscious levels when faced with cognitive challenges. These 

contributions collectively advance the theoretical foundations of CLT and open avenues 

for integrating motivational and cognitive perspectives in the study of gamification and 

education. 
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The findings of this study provide actionable insights that can enhance the design of 

educational interventions. Firstly, it is essential to calibrate tasks to balance their 

complexity, ensuring that learners remain within an optimal cognitive load range. This 

balance helps prevent cognitive overload, which could negatively impact learning 

outcomes, while also avoiding tasks that are too simplistic and fail to engage learners. 

Secondly, gamification elements, such as leaderboards, should be tailored to align with 

individual competitiveness levels. By doing so, negative emotional or cognitive effects, 

such as anxiety or disengagement among less competitive learners, can be mitigated. 

Lastly, designing personalized gamified learning environments that leverage traits like 

competitiveness can foster greater engagement and resilience under cognitive load. Such 

adaptive systems have the potential to enhance learning experiences by accommodating 

individual differences and optimizing the interplay between motivation and cognitive 

demands. 

While the results of this study are compelling, there are certain limitations that must be 

acknowledged. Firstly, when designing the tasks with different levels of complexity, the 

number of unique steps required to reach the result, was the only complexity parameter 

that was manipulated (Wood, 1986). Secondly, some of the measures employed, such as 

self-reported trait competitiveness and NASA TLX scores, are subject to potential biases, 

including social desirability and subjective interpretation. Lastly, the experimental setting 

used in this study may not fully replicate the complexities and dynamics of real-world 

learning environments, potentially restricting the applicability of the results to practical, 

non-controlled contexts. It can also be noted that this study focused solely on the 

immediate response to complexity and its interplay with cognitive load and 

competitiveness. The effects over a longer period of time were not considered. 

Future research should investigate the long-term effects of gamified complexity on 

retention and the transfer of knowledge. This would provide insights into how 

gamification strategies influence learning outcomes over time, beyond immediate 

performance measures. Additionally, exploring other personality traits, such as 

conscientiousness or openness, as potential moderators in gamified learning contexts 

could broaden the understanding of individual differences and their impact on cognitive 
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load and performance. Finally, there is a need to develop adaptive gamification systems 

that dynamically adjust task complexity and feedback based on learners' cognitive and 

motivational states. Such systems could optimize the balance between engagement and 

challenge, ensuring that learning experiences are both effective and personalized. 

2.7 Conclusion 

This study aimed to investigate how task complexity affects cognitive load and learning 

performance in gamification settings, while also exploring the moderating role of trait 

competitiveness. The motivation behind this research stemmed from the need to better 

understand how task design and individual differences influence learning outcomes, 

particularly in gamified environments. 

The findings suggest that higher task complexity leads to increased cognitive load, which 

in turn reduces performance. Moreover, the relationship between cognitive load and 

performance followed a non-linear trajectory, with optimal performance achieved at 

moderate levels of cognitive load. Additionally, while trait competitiveness moderated 

the relationship between cognitive load and performance, the effects varied across 

different measures, providing nuanced insights into the interaction between motivation 

and cognitive processes. 

This research contributes to the advancement of CLT by integrating personality traits and 

gamification principles, offering new perspectives on how to optimize learning 

environments. Practically, the study provides actionable recommendations for designing 

adaptive and personalized gamified educational systems that balance task complexity and 

cater to individual learner traits. 

Looking ahead, this study highlights the importance of tailoring gamification strategies to 

individual differences and suggests exploring how these findings can be scaled to diverse 

educational contexts. By continuing to refine our understanding of the interplay between 

cognitive load, task complexity, and personality traits, future research can contribute to 

the development of more effective, equitable, and engaging learning experiences. 
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Chapitre 3 

Accounting for Individual Differences to Make Gamification 

More Effective: The Case of Competitiveness 

Recent research highlights intriguing dynamics in how gamification engages individuals 

with varying levels of competitiveness. An experiment we conducted revealed that 

personality traits play a crucial role in shaping responses to gamified environments. For 

highly competitive individuals, gamified settings often boost resilience and motivation, 

creating a dynamic and engaging experience. Conversely, those with lower 

competitiveness may struggle, experiencing feelings of inadequacy or disengagement. 

This disparity in engagement underscores the importance of designing gamified systems 

that are inclusive and adaptable to individual differences. 

The varying impact of gamification can be understood as an issue of accessibility, rooted 

in the limited agency individuals have over their personality traits. These deeply ingrained 

characteristics shape how learners interact with gamified systems, making some naturally 

more aligned with competitive or feedback-driven elements than others. Without 

addressing this disparity, gamification risks fostering environments where certain learners 

thrive while others are left behind. To ensure equitable engagement, it is essential to 

design gamified systems that adapt to diverse personality traits and learning needs. 

Methodology 

The findings discussed here are based on a laboratory study conducted with 60 

participants (59 included in the final sample) aged 18 to 65 years, recruited through HEC 

Montréal’s participant panel and additional networks. Participants were exposed to tasks 

of varying complexity in a controlled setting. Using a within-subject experimental design, 

the study employed a high-fidelity prototype developed in Figma, inspired by the 

educational game Business Builders. Tasks were completed on the SAP Analytics Cloud 

platform, designed to facilitate data visualization and analysis. 

Each participant completed six graded tasks (two for each complexity level: low, medium, 

high). These tasks varied in the number of steps required to create accurate data 
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visualizations. For example, low-complexity tasks required two steps, medium-

complexity tasks involved four to five steps, and high-complexity tasks demanded six to 

seven steps. After completing each task, participants received performance feedback via 

leaderboards and answered a questionnaire. Cognitive load was measured using NASA 

TLX for self-reported explicit load and pupillometry for implicit load. The study also 

assessed trait competitiveness through a validated self-reported scale. 

The results suggested that increasing task complexity significantly raises cognitive load, 

which negatively impacts performance. However, individuals with high competitiveness 

showed greater resilience under high cognitive load conditions, maintaining superior 

performance levels compared to their less competitive peers, which is visually represented 

in the chart below. This underscores the importance of adaptable gamified designs to 

accommodate diverse personality traits and enhance inclusivity. 
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Recommendations to Bridge the Gap 

To ensure gamification benefits a diverse range of learners, it is essential to tailor design 

elements to accommodate varying levels of competitiveness. Below are specific 

strategies, accompanied by real-world examples: 

1. Inclusive Competition 

Foster environments where competition motivates without alienating participants. 

• Tiered Leaderboards: Implement leaderboards with multiple tiers or groups to 

allow learners to compete within their skill levels. For example, Duolingo, a 

language learning app that gamifies lessons through quick, interactive exercises, 

uses tiered leaderboards to enable users to engage in friendly competition 

regardless of their proficiency2. 

• Personal Progress Comparison: Apple Fitness+ is a fitness platform that offers 

guided workout videos combined with personalized activity tracking. It uses 

personal activity rings to track daily movement, exercise, and standing goals, 

allowing users to focus on self-improvement by comparing their current activity 

to their past achievements rather than competing with others3. 

2. Autonomy and Choice 

Encourage learners to take ownership of their gamified experiences by providing 

flexibility. 

• Customizable Paths: Minecraft Education Edition is an educational version of 

the popular sandbox game, designed to teach subjects like coding, history, and 

science through interactive projects. It allows learners to choose their own projects 

 
2 https://duoplanet.com/duolingo-leagues-the-essential-guide-everything-you-need-to-know/ 

 
3 https://support.apple.com/en-ca/guide/watch/apd3bf6d85a6/watchos 

 

https://duoplanet.com/duolingo-leagues-the-essential-guide-everything-you-need-to-know/
https://support.apple.com/en-ca/guide/watch/apd3bf6d85a6/watchos
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and objectives, enabling them to explore topics like coding or architecture at their 

own pace and based on their interests, making the experience highly personalized4. 

• Optional Challenges: Nintendo's Ring Fit Adventure is a fitness game for 

Nintendo Switch that combines physical exercise with role-playing game 

mechanics. It allows players to engage in optional mini-games and fitness 

challenges tailored to their preferences, ensuring gamified elements align with 

individual goals and physical capabilities5. 

3. Non-Competitive Rewards 

Offer incentives that emphasize individual growth over competition. 

• Story-Driven Progression: Assassin's Creed Discovery Tour is an educational 

mode of the Assassin’s Creed games, offering guided historical experiences 

without combat. It provides a narrative-driven educational experience, immersing 

players in rich historical settings with interactive stories and discoveries. This 

approach caters to individuals motivated by learning and exploration rather than 

rankings, fostering a deeper engagement through contextual and meaningful 

gameplay6. 

4. Collaboration Instead of Competition 

Promote teamwork to achieve shared objectives, reducing the focus on individual rivalry. 

• Team-Based Tasks: Escape room games are immersive puzzle experiences where 

players work together to solve challenges within a set time limit. Both physical 

and virtual versions of these games require participants to collaborate and pool 

their skills to solve puzzles and achieve a shared objective, fostering teamwork 

and strategic thinking. These tasks emphasize cooperation and the necessity of 

 
4 https://education.minecraft.net/en-us/discover/what-is-minecraft  
5 https://ringfitadventure.nintendo.com/  
6 https://www.ubisoft.com/en-ca/game/assassins-creed/discovery-tour  

https://education.minecraft.net/en-us/discover/what-is-minecraft
https://ringfitadventure.nintendo.com/
https://www.ubisoft.com/en-ca/game/assassins-creed/discovery-tour
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leveraging diverse perspectives and abilities to succeed, making them an excellent 

example of collaboration-focused gamification. 

Conclusion 

Gamification holds immense potential for transforming education and training, but its 

success hinges on understanding and addressing individual differences. By considering 

traits such as competitiveness, emotional stability, and openness to experience, 

stakeholders can design gamified experiences that resonate with everyone. 

Personalization, adaptive challenges, and inclusive rewards are key strategies to ensure 

gamification bridges the gap between those it motivates and those it alienates. 

For practical implementation, educators can design course materials that balance 

competitive and non-competitive elements, fostering inclusivity. Similarly, workplace 

training programs can offer modular approaches, allowing employees to choose elements 

that align with their motivations. Incorporating collaborative games, tiered leaderboards, 

and flexible mechanics ensures gamification provides accessible opportunities for success 

across diverse populations. Ultimately, the goal is to create gamified systems that are not 

just engaging but also equitable and effective for all learners. 

 

 





Chapitre 4 

Conclusion 

Ce mémoire visait à explorer les interactions complexes entre la complexité des tâches, la 

charge cognitive et les différences individuelles, en particulier la compétitivité de trait, 

dans des contextes éducatifs STEM ludifiés. Les objectifs principaux étaient de 

comprendre comment la complexité des tâches influence la charge cognitive et la 

performance et d’examiner le rôle modérateur de la compétitivité dans cette relation. Deux 

questions de recherche guidaient cette étude :  

(1) Dans quelle mesure la complexité des questions influence-t-elle les 

performances des tâches, par l'intermédiaire de la charge cognitive ?  

(2) Dans quelle mesure la compétitivité de trait modère-t-elle la relation entre la 

charge cognitive et la performance des tâches ? 

Pour répondre à ces questions, un design expérimental intra-sujet a été mis en œuvre avec 

60 participants réalisant des tâches de complexité variable dans un environnement ludifié. 

La charge cognitive des participants a été évaluée à l’aide de mesures auto-rapportées 

(NASA-TLX) et d’indicateurs physiologiques (dilatation pupillaire), tandis que leurs 

performances étaient mesurées à travers les résultats des tâches. La compétitivité de trait 

a été évaluée à l’aide d’échelles psychométriques validées. Cette méthodologie rigoureuse 

a permis d’examiner en détail l’interaction entre la complexité des tâches, la charge 

cognitive et les différences individuelles dans des contextes d’apprentissage STEM 

ludifiés.  

La rigueur méthodologique de cette étude se distingue par la nature authentique des tâches 

effectuées, simulant des scénarios réels d’analyse de données dans un contexte éducatif 

ludifié. En utilisant SAP Analytics Cloud et un prototype haute-fidélité, les participants 

ont réalisé des tâches reflétant des pratiques professionnelles courantes dans les domaines 

STEM. De plus, la réalisation de l’étude dans un environnement contrôlé en laboratoire a 

garanti une cohérence dans l’administration des tâches et la collecte des données, 
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renforçant ainsi la validité interne des résultats. Cette approche constitue une force 

méthodologique majeure, enrichissant la portée des conclusions. 

Les résultats suggèrent que la complexité des tâches influence significativement la charge 

cognitive, qui à son tour impacte la performance. Plus précisément, des niveaux élevés de 

complexité des tâches ont été associés à une augmentation de la charge cognitive, 

entraînant une diminution des performances lorsque les demandes cognitives dépassent la 

capacité des apprenants. Cependant, une relation non linéaire a été observée entre la 

charge cognitive et la performance, soutenant l’hypothèse qu’une plage optimale de 

charge cognitive existe, où la performance atteint un sommet avant de décliner sous des 

demandes excessives ou insuffisantes. 

La compétitivité de trait est apparue comme un modérateur clé dans ces dynamiques. Bien 

que les individus très compétitifs aient atténué certains des effets négatifs de la charge 

cognitive sur la performance, l’influence était complexe et variait selon les différentes 

mesures de charge cognitive. Par exemple, les individus compétitifs ont montré une plus 

grande résilience face aux demandes cognitives implicites, comme en témoignent les 

indicateurs physiologiques tels que la dilatation pupillaire, mais cet effet n’a pas été 

systématiquement reflété dans les mesures auto-rapportées de la charge cognitive. 

Ces résultats contribuent à la théorie de la charge cognitive en intégrant des perspectives 

motivationnelles et en soulignant l’importance des différences individuelles dans les 

contextes éducatifs ludifiés. Ils mettent en évidence que des stratégies de ludification 

efficaces nécessitent un équilibre entre la complexité des tâches pour optimiser les 

demandes cognitives et l’adaptation des éléments de jeu aux traits et besoins des 

apprenants. En plus d’enrichir la théorie de la charge cognitive en mettant en évidence la 

relation non linéaire entre charge cognitive et performance, cette recherche élargit les 

cadres théoriques motivationnels en démontrant le rôle modérateur de la compétitivité de 

trait dans des contextes éducatifs ludifiés. Les résultats montrent que les individus 

compétitifs font preuve d’une plus grande résilience face aux charges cognitives élevées 

et tirent parti des éléments ludifiés, comme les classements, pour maintenir leur 

engagement et leur performance. Cette intégration des cadres cognitifs et motivationnels 
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approfondit le discours théorique sur l’apprentissage personnalisé et met en lumière 

l’interaction entre la motivation, les traits de personnalité et la charge cognitive. 

D’un point de vue pratique, les résultats de cette étude mettent en évidence l'importance 

de concevoir des environnements ludifiés qui s’adaptent aux différences individuelles des 

apprenants, notamment leur niveau de compétitivité. Pour les apprenants très compétitifs, 

des éléments tels que les classements ou les défis peuvent renforcer l'engagement et la 

résilience face à des tâches complexes. À l’inverse, pour ceux moins compétitifs, il est 

essentiel de proposer des mécanismes favorisant la progression personnelle et des 

récompenses centrées sur l’accomplissement individuel afin de limiter les risques de 

désengagement. Par ailleurs, l'intégration de tâches collaboratives permet de promouvoir 

des dynamiques inclusives tout en réduisant la pression de la compétition individuelle. 

Ces approches soulignent la nécessité de développer des systèmes éducatifs adaptatifs 

capables d’ajuster la complexité des tâches et les éléments ludiques en temps réel, afin 

d’optimiser la charge cognitive et de maximiser la réussite des apprenants dans des 

contextes STEM exigeants. 

Malgré ses forces, cette étude présente certaines limites qu’il convient de mentionner. 

Tout d’abord, le niveau de familiarité des participants avec les systèmes étudiés, comme 

SAP Analytics Cloud, variait, ce qui a pu influencer leurs performances et leur charge 

cognitive. Bien que des pré-tests aient été réalisés pour limiter cet effet, de futures 

recherches pourraient intégrer une évaluation plus approfondie des compétences 

techniques initiales des participants. Ensuite, la complexité des tâches a été manipulée 

selon une seule dimension—le nombre d’étapes nécessaires—ce qui limite la 

généralisation des résultats à d’autres dimensions de la complexité, telles que l’ambiguïté 

ou la nouveauté des tâches. De plus, le design expérimental s’est concentré sur les 

réponses immédiates à la complexité et à la charge cognitive, laissant inexplorés les effets 

à long terme, comme la rétention des connaissances et leur transfert. Enfin, bien que 

l’environnement contrôlé du laboratoire ait assuré une cohérence méthodologique, il ne 

reflète pas nécessairement les distractions et la complexité des environnements 

d’apprentissage réels. Par ailleurs, les mesures auto-rapportées, telles que le NASA-TLX 
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et les échelles de compétitivité de trait, sont sujettes à des biais pouvant affecter 

l’exactitude des résultats. 

Les recherches futures devraient explorer les effets longitudinaux de la ludification dans 

l’éducation STEM pour évaluer son impact sur la rétention et l’engagement à long terme. 

L’exploration d’autres traits individuels, tels que la conscience ou l’ouverture, pourrait 

également mieux éclairer comment divers profils d’apprenants interagissent avec des 

environnements ludifiés. Par ailleurs, le développement de systèmes adaptatifs capables 

d’ajuster dynamiquement la complexité des tâches et les éléments de ludification en 

fonction des données en temps réel des apprenants représenterait une avancée significative 

dans l’éducation personnalisée. 

Ce mémoire contribue à l’enrichissement des recherches sur la ludification et l’éducation 

STEM en reliant les théories cognitives et motivationnelles à des preuves empiriques. Ses 

résultats approfondissent notre compréhension de la manière dont la conception des 

tâches et les différences individuelles façonnent l’engagement et la performance, 

fournissant ainsi une base pour des environnements d’apprentissage plus efficaces, 

adaptatifs et inclusifs. En abordant les interactions entre la charge cognitive, la complexité 

des tâches et les traits de personnalité, cette recherche propose une feuille de route pour 

aider les éducateurs et les concepteurs à exploiter le potentiel de la ludification pour 

relever les défis de l’éducation STEM au XXIᵉ siècle. 
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