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Résumé

Ce mémoire explore les interactions entre la complexité des taches, la charge cognitive et
les traits individuels, tels que la compétitivité, dans un contexte de ludification, avec un
accent particulier sur I’éducation en sciences, technologies, ingénierie et mathématiques
(STEM). Réalisée sous forme d’une étude en laboratoire avec un plan expérimental intra-
sujet, cette recherche examine comment la complexité des questions influence la charge
cognitive et la performance des apprenants, tout en investiguant le réle modérateur de la
compétitivité. Les participants ont été exposés a un stimulus expérimental interactif concu
comme un prototype haute-fidélité inspiré du jeu « Business Builders ». Ce prototype
intégrait des éléments compétitifs, tels que des tableaux de classement et des systemes de
points, pour simuler un environnement d’apprentissage ludifié. Les tdches ont été
réalisées a I’aide de SAP Analytics Cloud, une plateforme facilitant la visualisation et
I’analyse de données. Chaque tache était congue pour varier en complexité, reflétant un
nombre croissant d’étapes nécessaires pour arriver a la solution. Les résultats montrent
qu’une augmentation de la complexité des tAches entraine une augmentation significative
de la charge cognitive. Cette charge cognitive accrue a un impact négatif sur la
performance des apprenants. Cependant, les individus hautement compétitifs font preuve
d’une plus grande résilience face a une charge cognitive élevée, maintenant des niveaux
de performance supérieurs a leurs pairs moins compétitifs. Ces résultats mettent en
lumiére les interactions entre la complexité des taches, le traitement cognitif et les traits
individuels dans des contextes éducatifs ludifiés. L’étude propose des recommandations
pratiques pour la conception d’environnements d’apprentissage ludifiés qui équilibrent
engagement et efficacité. Elle suggére d’adapter la complexité des taches et les éléments
compétitifs aux traits individuels des apprenants. Le mémoire comprend également un
article managerial proposant des stratégies pour adapter la ludification aux divers besoins
des apprenants, en mettant particulicrement l’accent sur la création d’activités

personnalisées et efficaces pour I’éducation STEM.

Mots clés : Ludification, Charge cognitive, Complexité, Competitivité, Performance,

Expérience des apprenants, Interaction humain-machine, Design pédagogique



Abstract

This thesis explores the interactions between task complexity, cognitive load, and
individual traits, such as competitiveness, in a gamification context, with a particular
focus on science, technology, engineering, and mathematics education (STEM).
Conducted as a laboratory study using a within-subject experimental design, this research
examines how question complexity affects cognitive load and learner performance while
investigating the moderating role of trait competitiveness. Participants were exposed to
an interactive experimental stimulus designed as a high-fidelity prototype inspired by the
"Business Builders™" game. This prototype was integrated with competitive elements, such
as leaderboards and point systems, to simulate a gamified learning environment. Tasks
were completed using SAP Analytics Cloud, a platform that facilitated data visualization
and analysis, allowing participants to engage with progressively complex problem-
solving scenarios. Each task was carefully designed to vary in complexity, reflecting an
increasing number of steps required to arrive at the correct solution. The results show that
increasing task complexity significantly raises cognitive load. This increased cognitive
load negatively impacts learner performance. However, highly competitive individuals
demonstrate greater resilience under high cognitive load, maintaining better performance
levels compared to their less competitive peers. These findings contribute to Cognitive
Load Theory by highlighting the interplay between task complexity, cognitive processing,
and individual traits in gamified educational contexts. The study provides practical
recommendations for designing gamified learning environments that balance engagement
and effectiveness. It suggests tailoring task complexity and competitive elements to
learners’ individual traits, ensuring tasks are challenging but not overwhelming. The
thesis also includes a managerial article proposing strategies to adapt gamification to the
diverse needs of learners, with a particular emphasis on creating personalized and

effective activities for STEM education.

Keywords: Gamification, Cognitive Load, Task Complexity, Competitiveness,

Performance, Learner Experience, Human-Computer Interaction, Instructional Design
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Avant-propos

Le présent mémoire a éte rédigé en suivant une structure par article conformément aux
exigences du programme de Maitrise és Science en Gestion de HEC Montréal. Le premier
article examine les interactions entre la complexité des taches, la charge cognitive et les
traits individuels, notamment la compétitivité, dans un contexte d’apprentissage ludifié
en sciences, technologies, ingénierie et mathématiques (STEM). Cet article est en
préparation en vue d’une publication éventuelle dans AIS Transactions on HCI. L’article

est présenté avec 1’accord des coauteurs.

Le second article est de nature managériale et constitue une synthése et interprétation des
résultats obtenus dans le premier article. Il propose des recommandations pratiques pour
la conception de stratégies de ludification adaptées a 1’éducation STEM. Le niveau de
vulgarisation de 1’article vise un public plus large en vue d’augmenter la portée des
résultats et de les rendre accessibles a une communauté diversifiée d’éducateurs et de
professionnels. Cet article est en préparation pour soumission a eLearning Industry

journal.
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Introduction

Ces derniéres années, les systemes éducatifs ont subi des transformations significatives
pour répondre aux exigences d’une société en rapide évolution, dominée par la
technologie. L’éducation a déplacé son focus de la transmission traditionnelle des
connaissances vers le développement des compétences du XXle siecle, telles que la
pensée critique, 1’adaptabilité et la collaboration — des compétences essentielles pour
naviguer dans les défis complexes a 1’échelle mondiale. Parmi ces changements,
I’éducation STEM — couvrant les sciences, la technologie, 1’ingénierie et les
mathématiques — a pris une importance particuliére en raison de son réle central dans
I’innovation et la réponse a des besoins sociétaux cruciaux, tels que le changement
climatique, les avancées en santé et le développement technologique (Bybee, 2010).
Cependant, les disciplines STEM posent souvent des défis uniques, avec des concepts
abstraits, des exigences complexes en résolution de problémes et de fortes charges
cognitives qui peuvent entrainer un désengagement et des résultats d’apprentissage

médiocres pour de nombreux étudiants.

Pour relever ces défis, les éducateurs et les chercheurs se tournent de plus en plus vers des
outils numériques pour améliorer I’apprentissage en STEM. Les simulations interactives,
les laboratoires virtuels et les plateformes de visualisation de données permettent
désormais aux apprenants d’expérimenter des concepts scientifiques et d’interagir avec
des scénarios du monde réel qui seraient autrement inaccessibles (Siemens et al., 2015).
Ces outils personnalisent les expériences d’apprentissage en permettant aux étudiants
d’explorer les contenus STEM a leur propre rythme, favorisant ainsi I’accessibilité et
I’inclusivité. Cependant, malgré ces avancées, 1’engagement reste un obstacle clé dans
I’éducation STEM. Les recherches indiquent que les apprenants en STEM éprouvent
souvent des difficultés de motivation et de persévérance, en particulier dans les
environnements numériques, ou la nature abstraite des taches et les interactions sociales
limitées peuvent exacerber les sentiments d’isolement et la surcharge cognitive
(Santhanam et al., 2016). Ainsi, favoriser un engagement durable et un apprentissage

efficace dans les contextes STEM demeure un défi pressant.



La ludification s'est imposée comme une stratégie prometteuse pour relever les défis dans
I'éducation STEM, notamment en raison de son potentiel a rendre I'apprentissage plus
interactif et gratifiant. La ludification est définie comme I'utilisation d'éléments de
conception de jeux dans des contextes non ludiques afin d'engager les utilisateurs et
d'ameliorer leur expérience (Deterding et al., 2011). Elle intégre des éléments tels que des
points, des badges, des classements et des retours en temps réel pour transformer les
environnements d'apprentissage afin d'instiller un sentiment de compétence chez les
utilisateurs (Nacke & Deterding, 2017). Contrairement aux jeux complets, la ludification
ajoute une couche ludique a des systemes non ludiques tout en conservant leurs fonctions
instrumentales, ce qui permet d'améliorer a la fois les résultats instrumentaux et
I'engagement expérientiel (Liu et al., 2017). Ainsi, en tirant parti des motivations
intrinséques telles que la maitrise, I'accomplissement et la reconnaissance, la ludification
a le potentiel de rendre I'apprentissage STEM plus accessible et engageant, en particulier
pour les apprenants qui pourraient autrement avoir du mal a maintenir leur intérét pour

ces matiéres exigeantes.

Le role de la compétitivité dans la ludification est particulierement pertinent dans
I’éducation STEM, ou des éléments compétitifs sont souvent utilisés pour stimuler
I’engagement. La compétitivité de trait, définie comme un désir général de se surpasser
par rapport aux autres et d'apprécier la compétition (Newby & Klein, 2014), est un concept
multidimensionnel qui inclut des dimensions telles que la dominance, l'affectivité
compétitive et I'amélioration personnelle. Les classements, par exemple, incitent les
apprenants a surpasser leurs pairs, motivant ainsi ceux qui possedent une forte
compétitivité de trait a s’investir davantage dans les tiches. Cependant, la compétitivité
de trait est complexe et peut inclure des composantes telles que lattitude
hypercompétitive, qui se manifeste par un besoin indiscriminé de compétition et de
victoire pour maintenir ou améliorer I’estime de soi (Fletcher & Nusbaum, 2008;
Ryckman et al., 1990). Cette compétitivité peut étre une arme a double tranchant; si
certains apprenants prosperent dans des environnements compétitifs, d’autres peuvent
ressentir une anxiété accrue ou un désengagement, en particulier face a des taches STEM

cognitivement exigeantes. Cette variabilité souligne 1’importance d’aligner les éléments



ludifiés sur les profils psychologiques et les besoins motivationnels des apprenants pour

éviter des résultats négatifs inattendus (De Raad & Schouwenburg, 1996).

Malgré I’intérét croissant pour la ludification, des lacunes importantes subsistent dans la
compréhension de son interaction avec les exigences uniques de 1’éducation STEM. La
plupart des études se concentrent sur ses avantages généraux, tels que 1’augmentation de
la motivation et de I’engagement, laissant de coté les fondements théoriques relatifs aux
aspects cognitifs, qui restent largement sous-explorés par rapport aux théories de la
motivation (Landers et al., 2015; Zainuddin et al., 2020). Peu de recherches examinent
comment les différences individuelles, telles que la compétitivité de trait, influencent son
efficacité dans les contextes STEM (Zainuddin et al., 2020). De plus, I’impact de la
complexité des taches et de la charge cognitive — des facteurs clés dans 1’apprentissage
STEM — sur les résultats de la ludification n’est pas entiérement compris. Ces lacunes
soulignent la nécessité d’une approche nuancée pour concevoir des experiences
d’apprentissage ludifiées qui tiennent compte a la fois des exigences cognitives des taches
STEM et des caractéristiques diversifiées des apprenants. En mettant davantage I’accent
sur les théories cognitives dans 1’étude de la ludification, cette recherche vise a combler
ces manques critiques et a fournir des bases théoriques solides pour orienter la conception

pédagogique dans des environnements STEM.

Guidé par ces perspectives, ce mémoire vise a approfondir la compréhension de
I’influence de la ludification sur I’engagement et les résultats d’apprentissage dans

I’éducation STEM. L’étude s’articule autour des questions de recherche suivantes :

Question de recherche 1 - Dans quelle mesure la complexité des questions influence-
t-elle les performances des taches, par I'intermédiaire de la charge cognitive, dans

un contexte de ludification?

Cette question examine la relation entre différents niveaux de complexité des taches, la
charge cognitive et les performances dans les contextes STEM. En comprenant cette
dynamique, I’étude vise a identifier les seuils a partir desquels la complexité des questions

commence a entraver le traitement cognitif et I’apprentissage.



Question de recherche 2 - Dans quelle mesure la compétitivité de trait modere-t-elle
la relation entre la charge cognitive et les performances des taches dans un contexte

de ludification?

En reconnaissant le role des différences individuelles, cette question explore comment la
compétitivité de trait influence la résilience des apprenants face a la charge cognitive dans
les taches STEM. Elle examine notamment si les individus compétitifs sont mieux équipés

pour gérer les exigences cognitives ou si une grande complexité réduit leur performance.

En répondant & ces questions, ce mémoire contribue a ’avancement théorique de la
compréhension de la ludification dans 1’éducation en intégrant des concepts issus de la
théorie de la charge cognitive (Cognitive Load Theory, CLT) et des cadres théoriques sur
les traits de personnalité. En explorant I’interaction entre la complexité des taches et la
compétitivité sur la charge cognitive et les performances dans des contextes STEM, cette
recherche approfondit la compréhension des différences individuelles dans les
environnements d’apprentissage ludifiés. Elle met également en lumiere les effets
nuancés des traits compétitifs sur ’apprentissage, en reliant les théories motivationnelles

et cognitives pour proposer un cadre plus complet pour la conception pédagogique.

Sur le plan pratique, les résultats de ce mémoire offrent des recommandations exploitables
pour la conception d’outils éducatifs ludifiés. En proposant des stratégies pour équilibrer
la complexité des taches et adapter les éléments de ludification aux profils des apprenants,
comme leur niveau de compétitivité, cette recherche contribue a développer des
environnements STEM d’apprentissage adaptatifs et inclusifs. Ces recommandations
visent a accroitre I’engagement, réduire la surcharge cognitive et optimiser les résultats

d’apprentissage, répondant ainsi aux défis spécifiques de I’éducation STEM.

Ce mémoire s'articule autour de deux articles interconnectés qui abordent collectivement
I’'impact de la ludification sur I’engagement et les résultats d’apprentissage dans
I’éducation STEM, en mettant I’accent sur les roles de la charge cognitive, de la

complexité des taches et des différences individuelles telles que la compétitivité de trait.



Le premier article se concentre sur les aspects theoriques et empiriques de la ludification.
Il examine comment la complexité des taches influence la charge cognitive et les
performances dans des environnements éducatifs ludifiés, tout en explorant le rdle
modérateur de la compétitivité de trait. L’étude a été réalisée en laboratoire avec un design
expérimental intra-sujet, impliquant 60 participants agés de 18 a 65 ans, recrutés
principalement parmi des étudiants ou dipldmés récents. Les participants ont réalisé des
taches de complexité variable (faible, moyenne, élevée) congues a 1’aide d’un prototype
interactif développé sur Figma, inspiré du jeu « Business Builders » (Léger et al., 2024)
et utilisant la plateforme SAP Analytics Cloud pour visualiser des données. Les mesures
incluaient la charge cognitive implicite (via la pupillométrie), la charge cognitive explicite
(évaluée par le NASA TLX), la performance observée sur chaque tache, ainsi que le trait
de compétitivité de chaque participant. Apres chaque tache, les participants recevaient un
feedback, visualisaient leur position sur un classement et répondaient a des questionnaires
pour mesurer leurs perceptions. Les résultats ont été analyses avec des modeéles
statistiques avancés pour comprendre ’impact de la complexité des taches et le réle
modérateur de la compétitivité sur la charge cognitive et les performances. Ces résultats
fournissent des perspectives sur ’optimisation de la complexité des taches afin
d’équilibrer engagement et performance dans des environnements d’apprentissage

ludifiés, tout en considérant le différences individuelles, telle que la compétitivité.

Le second article adopte une perspective pratique et managériale pour explorer comment
les principes de conception de la ludification peuvent étre appliqués pour créer des outils
éducatifs efficaces et engageants. S’appuyant sur les conclusions du premier article, il
offre des recommandations concrétes aux éducateurs et concepteurs pédagogiques, en
particulier dans le domaine de I’éducation STEM. Cet article met 1’accent sur des
stratégies de personnalisation de la ludification pour répondre aux besoins diversifiés des
apprenants, en veillant a équilibrer les exigences cognitives et motivationnelles afin

d’améliorer les résultats d’apprentissage.

En synthese, cette etude suggére plusieurs résultats clés. Premiérement, elle indique que
l'augmentation de la complexité des taches pourrait entrainer une hausse significative de

la charge cognitive, ce qui influence la performance de maniere non linéaire : la



performance tend a augmenter dans un premier temps lorsque la charge cognitive est
modérée, avant de diminuer lorsque cette charge devient excessive. Deuxiemement, les
données suggérent que la compétitivité de trait pourrait modérer cette relation : les
individus hautement compétitifs semblent montrer une plus grande résilience face a une
charge cognitive élevée, maintenant des performances supérieures comparées a leurs pairs
moins compétitifs. Ces résultats contribuent a répondre aux questions de recherche en
explorant les dynamiques potentielles entre la complexité des taches, la charge cognitive
et les traits individuels dans un contexte ludifie. Ils mettent également en lumiére
I'importance d’une approche personnalisée pour la conception d’environnements
d'apprentissage, en tenant compte des différences individuelles et en optimisant la
complexité des taches pour favoriser I'engagement et les performances. Ces contributions
théoriques et pratiques enrichissent la compréhension des defis uniques de I'éducation
STEM et offrent des pistes concretes pour améliorer I'efficacité des stratégies de

ludification.

Ensemble, ces articles contribuent a la fois a la compréhension théorique et a la mise en
ceuvre pratique de la ludification, faisant progresser la recherche et fournissant des outils
pour concevoir des expériences d’apprentissage adaptatives, engageantes et efficaces dans

I’éducation STEM.
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Chapitre 2
The Effects of Task Complexity on Performance Through
Cognitive Load and Trait Competitiveness in the Context of
Gamification?

Abstract

Despite the widespread implementation of gamification in educational contexts, there is
limited understanding of how task complexity and individual differences influence
learning outcomes in such environments. Specifically, the impact of task complexity on
task performance, mediated through cognitive load, remains underexplored. Additionally,
individual traits like competitiveness, which can significantly affect motivation and
engagement, have not been adequately examined as moderators in this context. This study
addresses these gaps by investigating the role of task complexity and trait competitiveness
in shaping task performance through cognitive load in a gamified educational setting.
Using a within-subject experimental design, participants completed tasks of varying
complexity levels while cognitive load was measured through self-reports and
physiological indicators. The results revealed that higher task complexity significantly
increased cognitive load, which in turn negatively impacted task performance. Moreover,
trait competitiveness moderated the relationship between cognitive load and performance,
with highly competitive individuals demonstrating greater resilience under increased
cognitive load conditions. These findings contribute to existing literature by integrating
cognitive load theory and motivational frameworks to better understand how task
complexity and individual differences interact in gamified educational environments. The
study offers practical implications for the design of educational interventions, suggesting
that instructional strategies should consider both task complexity and learners’ individual

traits to optimize performance and engagement.

! This article is currently in preparation for submission to the scientific journal AIS Transactions on Human-
Computer Interaction.



Keywords: cognitive load, task complexity, trait competitiveness, gamification, task

performance, educational design.

2.1 Introduction

STEM — encompassing science, technology, engineering, and mathematics — has
emerged as a cornerstone of modern education due to its pivotal role in driving innovation
and addressing pressing societal challenges, such as climate change, healthcare
advancements, and technological development (Bybee, 2010). These disciplines are
essential for equipping learners with 21st-century skills, including critical thinking,
adaptability, and collaboration. However, STEM education is not without its challenges.
Its inherently abstract concepts, cognitively demanding problem-solving requirements,
and complex tasks often result in disengagement and suboptimal learning outcomes for
many students. These unique characteristics underscore the importance of exploring
innovative approaches to make STEM education more accessible and engaging.

Gamification, defined as the use of game design elements like points, badges, and
leaderboards in non-game contexts, aims to boost user motivation and interaction
(Deterding et al., 2011). It leverages game mechanics to create meaningful engagement
by addressing both experiential (e.g., enjoyment) and instrumental (e.g., achieving goals)
outcomes (Santhanam et al., 2016). Studies highlight that gamification may have matured
into a practice with established design principles that are now integrated across various
industries, including education, health, and employee engagement (Nacke & Deterding,
2017). By drawing on the aspects of games that make them engaging, gamification
transforms traditional learning environments into more interactive and enjoyable
experiences, thereby fostering deeper cognitive and motivational involvement. When
thoughtfully integrated into educational platforms, gamification can improve learners'
motivation, reduce cognitive load, and enhance performance. This approach offers

potential solutions for challenges observed in STEM education by making learning more
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dynamic and purpose-driven. However, the success of gamification depends significantly
on the complexity of the tasks; finding the right balance of challenge is crucial—tasks that
are too simple may lead to boredom, while overly difficult tasks may result in frustration
or anxiety (Czikszentmihalyi, 1990).

In educational settings, gamification’s success largely depends on its alignment with
learners’ intrinsic motivations and psychological needs, such as autonomy, competence,
and relatedness (Ryan & Deci, 2000). For example, the use of leaderboards and badges
can foster a sense of competence by providing feedback on progress, while customizable
learning paths can enhance autonomy (Krath et al., 2021). However, individual
differences, such as personality traits and competitive tendencies, also play a critical role
in how learners respond to gamified elements. For instance, highly competitive
individuals may thrive in environments with leaderboards, viewing them as motivational,
while less competitive students might find them anxiety-inducing and distracting (Abril
& Trinidad, 2022; Elliot et al., 2018). Poorly designed gamified elements, perceived as
irrelevant or excessively competitive, can lead to disengagement and reduced learning
outcomes, underscoring the need for thoughtful, context-sensitive design (Krath et al.,
2021). These variations underscore the need to consider individual characteristics in
gamification design to avoid unintended cognitive overload or disengagement and to

enhance learning outcomes effectively.

While gamification has been praised for its potential to enhance motivation and
engagement in educational contexts, its application remains fraught with challenges.
Current research tends to focus on the positive outcomes of gamification, such as
improved learning efficiency and motivation, but often neglects its negative effects and
unintended consequences, particularly in complex educational tasks. Studies indicate that
poorly designed gamified elements, like leaderboards and badges, can lead to unintended
issues such as cognitive overload, demotivation, or even disengagement for certain
learners (Toda et al., 2018). Moreover, individual differences, such as competitiveness
and learning preferences, are often overlooked despite their critical role in determining
the efficacy of gamified learning environments (Abril & Trinidad, 2022; Toda et al.,
2018). This gap suggests a pressing need for a more nuanced understanding of how
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gamified designs interact with both the cognitive demands of tasks and the unique traits

of learners, thereby ensuring equitable and effective learning experiences.

Despite the growing body of research on cognitive load and gamification, there remains
a need to better understand how these factors interact to influence learning outcomes,
particularly in complex educational tasks. While prior studies have explored the impact
of task complexity on cognitive load and performance, they often overlook the role of
individual differences such as trait competitiveness. Furthermore, although gamification
is widely used to improve user engagement, its influence on cognitive processing in high-

complexity tasks has not been fully elucidated.
This study addresses these gaps by investigating the following research questions:

RQ1: To what extent does task complexity impact task performance through
cognitive load?

RQ2: To what extent does trait competitiveness moderate the relationship between

cognitive load and task performance?

By examining these questions, the study aims to provide a more comprehensive
understanding of how cognitive load, task complexity, and individual differences interact
in gamified educational environments, contributing to the development of more effective
instructional designs and HCI applications. It can be noted that, while the first question

remains important, its main purpose is to serve as a foundation for the second question.

This study integrates Cognitive Load Theory (CLT) and trait competitiveness to
investigate how task complexity and individual differences, such as trait competitiveness,
affect performance in a gamification setting. Using a within-subject experimental design,
participants completed tasks of varying complexity while cognitive load was measured
through self-reports and physiological indicators. The experimental stimuli were based on
the "Business Builders" game, an innovative platform developed collaboratively by HEC
Montréal and SAP to provide students with practical experience in SAP Analytics Cloud,
aimed at enhancing analytical thinking and supporting data-driven decision-making in

real business scenarios (Leger et al., 2024). In this study, a high-fidelity prototype was
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created using Figma, drawing inspiration from Business Builders. This prototype
incorporated gamified elements such as leaderboards and points to engage participants in
data visualization and problem-solving tasks. Participants used SAP Analytics Cloud as a
core analytical tool within the experiment, allowing them to generate insights through
data visualization and analysis, thereby providing a practical educational experience that
aligns closely with the study's objective of simulating real-world analytics challenges in
an interactive, competitive environment. The findings reveal that higher task complexity
increases cognitive load, which has a non-linear relationship with performance, ultimately
negatively impacting it, and that trait competitiveness moderates this relationship, with
competitive individuals demonstrating greater resilience under cognitive load. These
results contribute to the understanding of how task design and individual traits interact,
emphasizing the importance of balancing task complexity and considering personality

traits to optimize educational outcomes.

This research offers actionable insights for designing personalized and effective
gamification exercises, such as balancing task complexity to optimize cognitive load,
tailoring gamification elements like leaderboards to individual competitiveness, and
creating adaptive learning environments that accommodate diverse learner traits to

enhance engagement and performance.

2.2 Literature Review

2.2.1 Task Complexity

Research on task complexity in education often emphasizes the relationship between task
design, cognitive processing, and learner performance. Studies argue that cognitive task
complexity is a critical factor in educational design, influencing not only learners'
engagement but also their linguistic and cognitive development (Sasayama, 2016). Task
complexity refers to the inherent cognitive demands of a task, which are determined by

factors such as the number of elements involved and the relationships between them
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(Wood, 1986). For example, tasks with a greater number of elements or requiring complex

reasoning are generally considered to be more cognitively demanding.

It has been said that task complexity in education can be measured independently of task
performance through objective methods such as dual-task methodology, time estimation,
and self-rating measures (Sasayama, 2016). These approaches help validate whether the
designed complexity of a task translates into actual cognitive load for learners. This
distinction is crucial, as the perceived complexity of a task does not always align with its
actual cognitive demands. When task complexity is not validated independently, it may
lead to inaccurate assumptions about learners' abilities and the effectiveness of

instructional designs.

In the context of complexity theory, studies highlight that educational tasks are part of a
larger, dynamic system where unpredictability and interrelated elements play a significant
role (Morrison, 2006). They argue that educational settings are complex adaptive systems,
and task complexity should be understood in terms of the interactions between students,
tasks, and the learning environment. This perspective suggests that effective educational
design should account for these interactions to better manage cognitive load and facilitate

learning (Morrison, 2006).

The concept of task complexity is further refined by it being defined through three
dimensions: component complexity, coordinative complexity, and dynamic complexity
(Wood, 1986). Component complexity refers to the number of distinct elements in a task,
coordinative complexity involves the interrelationships between these elements, and
dynamic complexity captures changes that occur over time. These dimensions offer a
structured approach to analyzing and categorizing educational tasks based on their
inherent complexity, which can be applied to optimize task design and sequencing in
educational contexts. By understanding and validating task complexity, educators can
create more effective learning experiences that are tailored to students' cognitive
capacities and promote deeper learning (Morrison, 2006; Sasayama, 2016; Wood, 1986).
This nuanced understanding of task complexity lays a critical foundation for examining

how these elements interact with cognitive processing demands, or cognitive load, which
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will be explored in the next section as a key determinant of learners' capacity to manage

and perform educational tasks effectively (Sasayama, 2016).
2.2.2 Cognitive Load and Learning Performance

Cognitive Load Theory (CLT) is a framework that describes the role of working memory
in learning and how different instructional designs can optimize or hinder learning by
manipulating cognitive demands (Sweller, 2020). CLT distinguishes between three types
of cognitive load: intrinsic load, related to the inherent complexity of the content;
extraneous load, which refers to unnecessary cognitive effort due to poor instructional
design; and germane load, which enhances learning by facilitating schema construction
and automation (de Jong, 2010; Sweller, 1988). The goal of instructional design is to
manage these loads to avoid exceeding learners’ cognitive capacity, which can lead to

reduced performance and learning.

While most research has focused on reducing extraneous load and optimizing germane
load, recent studies have explored the interaction between cognitive load and motivation.
Studies argue that cognitive load should be viewed as a motivational cost that can
influence learners’ willingness to invest effort in a task (Feldon et al., 2019). When
cognitive load is too high, learners may perceive the task as too demanding, leading to
decreased motivation and engagement (Feldon et al., 2019). Conversely, when the task

load is appropriately balanced, it can enhance motivation and persistence.

This balance of cognitive load might be particularly relevant in gamified educational
contexts, where the intrinsic complexity of tasks could play a role in maintaining
engagement without overwhelming learners (Sasayama, 2016). Additionally, individual
differences, such as personality traits like conscientiousness and motivation, may
influence the interaction between task complexity and learning outcomes, potentially
shaping how cognitive demands are perceived and managed (De Raad & Schouwenburg,
1996).
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2.2.3 The Influence of the Competitivity Trait on Learning Performance

Personality traits play a significant role in influencing how students approach learning,
engage with academic tasks, and respond to challenges in educational settings (De Raad
& Schouwenburg, 1996). Research in educational psychology often focuses on the impact
of key traits such as conscientiousness, openness, and emotional stability on academic
performance. For instance, conscientious students, who tend to be diligent, organized, and
self-disciplined, often achieve higher grades and demonstrate better study habits, as they
are more likely to set goals and maintain focus (Crozier, 1997) .

Beyond cognitive abilities, non-cognitive traits like self-efficacy, motivation, and
curiosity contribute significantly to academic success (De Raad & Schouwenburg, 1996).
Self-efficacy, the belief in one’s own ability to succeed, encourages students to take on
challenging tasks and persist through difficulties (De Raad & Schouwenburg, 1996;
Wolfe & Johnson, 1995). Similarly, high motivation and curiosity drive students to
explore new concepts and engage more deeply with learning materials, resulting in better
retention and understanding (De Raad & Schouwenburg, 1996; Heckhausen &
Heckhausen, 2018).

Competitiveness, a personality trait defined by the desire to outperform others,
significantly influences academic performance, though its effects are contingent on
context. Competitive individuals often excel in achievement-oriented settings where
performance is evaluated comparatively (Abril & Trinidad, 2022). This trait can foster
motivation, drive, and resilience, particularly in environments that reward high
achievement. However, its impact is not uniformly positive. In highly competitive
contexts, the pressure to outperform peers may lead to increased anxiety, stress, and
maladaptive behaviors, such as avoidance of challenging tasks or unethical practices like
cheating (Elliot et al., 2018; Van Yperen & Orehek, 2013).

Research underscores the multidimensional nature of competitiveness, encompassing
aspects like dominance, personal enhancement, and enjoyment of competition. While
dominance-driven competitiveness may emphasize outperforming others at any cost,

personal enhancement focuses on self-improvement and mastery, even in the absence of
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direct comparison (Newby & Klein, 2014). These distinctions are critical, as different
dimensions of competitiveness predict diverse outcomes in learning and performance. For
instance, environments fostering "friendly competition” tend to leverage the positive
aspects of competitiveness, enhancing engagement and achievement, especially in lower-
performing contexts (Abril & Trinidad, 2022).

Trait competitiveness, linked to personality frameworks such as the Big Five, interacts
with environmental factors to shape learning outcomes. Individuals high in
competitiveness are more likely to adopt performance-approach goals—seeking success
relative to peers—which positively influences academic achievement (Elliot et al., 2018).
Conversely, performance-avoidance goals, driven by fear of failure, often lead to adverse
outcomes. The interplay between trait competitiveness and perceived environmental
competitiveness also highlights how personal tendencies and contextual perceptions

jointly impact motivation and achievement strategies (Elliot et al., 2018).

Leaderboards and other gamified elements in education illustrate practical applications of
competitiveness, leveraging social comparison and goal-setting behaviors to enhance
motivation and engagement. However, their effectiveness depends on aligning the
competitive dynamics with individual traits and the broader learning environment (Nacke
& Deterding, 2017). While such tools can optimize student engagement when designed
thoughtfully, overemphasis on competitive rankings without adequate support may
amplify stress for less competitive students, undermining their benefits (Faust, 2021,
Newby & Klein, 2014). Incorporating personality traits into educational research enables
a more nuanced understanding of individual differences, guiding the development of
tailored strategies that balance healthy competition with inclusivity for all learners (Faust,
2021).

2.3 Theoretical Foundation

The proposed model examines how task complexity affects task performance through
cognitive load, with trait competitiveness moderating this relationship. Specifically, task
complexity is hypothesized to increase cognitive load, which in turn negatively impacts

performance. Trait competitiveness is positioned as a mitigating factor, potentially
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buffering the adverse effects of cognitive load on performance. This framework integrates
cognitive and motivational perspectives, offering a nuanced understanding of the
interactions between task complexity, cognitive processing, and individual differences in

gamified learning environments.

Figure 1. Research Model
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The theoretical link between complexity and cognitive load is grounded in CLT, which
posits that task complexity significantly influences the cognitive resources required for
learning and problem solving. Complexity, defined by the interactivity and number of
elements in a task, determines the intrinsic cognitive load—how inherently demanding a
task is based on its structure and learner expertise (Leppink & van den Heuvel, 2015;
Sweller, 2020). It is further emphasized that high-complexity tasks, particularly those
requiring means-ends analysis, impose significant cognitive demands, reducing the
resources available for schema acquisition, a critical process for developing problem-
solving expertise (Sweller, 1988, 2020). Effective instructional design mitigates these
effects by reducing extraneous cognitive load through strategies like simplifying task
structures and promoting goal-free approaches, thereby enhancing learning outcomes
(Sweller, 1988). This theoretical framework underscores the need to balance task
complexity to optimize cognitive processing and facilitate effective learning. It is

schematically represented in figure 1.
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Empirical studies corroborate the theoretical relationship between complexity and
cognitive load, demonstrating that tasks with greater element interactivity impose higher
intrinsic cognitive load. For example, it was found that increasing task complexity in
simulated pharmacy environments may have led to measurable increases in intrinsic
cognitive load, particularly when novices encountered tasks involving multiple interactive
elements (Tremblay et al., 2023). Similarly, cognitive complexity of language tasks may
have an influence on both perceived difficulty and mental effort through independent
measures, such as reaction time and self-assessments, underscoring how increased task
demands may heighten cognitive processing requirements (Sasayama, 2016). These
findings emphasize the importance of adapting task complexity to learners' capabilities,
as excessive demands can hinder performance and schema acquisition (Tremblay et al.,
2023; Sasayama, 2016). Building on this theoretical and empirical foundation, the
proposed hypotheses aim to investigate how task complexity impacts key outcomes in

performance and cognitive load. Specifically, the following hypotheses are posited:
H1: As task complexity increases, task performance will decrease.
H2: As task complexity increases, cognitive load increases.

The relationship between cognitive load and performance has been said to follow a non-
linear pattern, with performance peaking at an optimal level of cognitive load and
declining when cognitive demands are either too low or too high. The roots of this
proposal can be found in the Yerkes-Dodson Law, which states that performance increases
with arousal or stimulation, but only up to a certain point, after which it will start to
decrease (Yerkes & Dodson, 1908).

Studies proposed that working memory load is associated with curvilinear hemodynamic
responses in the dorsolateral prefrontal cortex (DLPFC), reflecting optimal performance
at intermediate cognitive loads (McKendrick & Harwood, 2019). These findings suggest
that underload and overload states disrupt cognitive process integration, leading to
decreased performance. Similarly, other studies found that task performance correlates
positively with germane cognitive load but negatively with excessive intrinsic or

extraneous cognitive load, further emphasizing the importance of maintaining an
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appropriate cognitive demand (Leppink et al., 2014). Building upon this theoretical and
empirical foundation, the proposed hypotheses aim to investigate how cognitive load

impacts performance. Specifically, the following hypothesis is posited:

H3: As cognitive load increases, performance will initially increase, before starting to

diminish.

Studies suggest that individuals evaluate their abilities in relation to others, shaping their
motivation and emotional responses (Festinger, 1954). When trait competitiveness is
high, individuals view competition as an opportunity to excel, leveraging it to enhance
motivation and performance by setting ambitious goals and persisting through challenges.
However, for individuals with low trait competitiveness, the same context may amplify
feelings of inadequacy, as comparisons with higher-performing peers exacerbate anxiety
and avoidance behaviors. These contrasting dynamics emphasize the need for balanced
competitive environments that accommodate varying levels of trait competitiveness,

promoting engagement without fostering undue stress or disengagement.

Empirical studies provide substantial evidence for the effects of trait competitiveness on
performance, supporting its theoretical underpinnings. For instance, it was suggested that
trait competitiveness significantly predicts performance-approach and performance-
avoidance goals, which subsequently influence achievement (Elliot et al., 2018). Their
findings highlighted that students with high trait competitiveness were more likely to
adopt performance-approach goals, leading to enhanced performance outcomes, while
those with low competitiveness leaned toward performance-avoidance goals, often

resulting in diminished performance (Elliot et al., 2018).

Empirical studies further highlight the relationship between competitiveness, emotions,
and cognitive load. Studies suggest that positive achievement emotions, such as
enjoyment, can significantly reduce cognitive load by facilitating effective problem-
solving strategies and enabling learners to focus on relevant information (Sugiyo et al.,
2018). This suggests that individuals with a preference for competition might experience
greater enjoyment during competitive activities, which could lower cognitive load and

enhance their capacity to process complex information. By optimizing germane cognitive
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load, these positive emotions may explain the link between high trait competitiveness and
improved performance in challenging environments. This aligns with broader research
connecting emotional states and learning efficiency, emphasizing the interplay between
cognitive and affective factors (Sugiyo et al. 2018).

This theoretical and empirical foundation leads us to a hypothesis that aims to investigate
how trait competitiveness moderates the relationship between cognitive load and

performance. Specifically, the following hypothesis is posited:

H4: The higher the trait competitiveness, the smaller the effect of cognitive load on task

performance.

2.4  Methodology

This study employs a game-based approach to teach data analytics, leveraging
gamification elements to foster engagement and simulate real-world problem-solving
scenarios. By using an interactive and competitive environment, participants engage in
tasks that mimic the complexities of data analytics. The stimulus used for the study was a
high-fidelity Figma prototype inspired by the "Business Builders" game, designed to
incorporate gamification elements such as leaderboards and points. This setup allows for
a closer examination of how task complexity affects cognitive load and performance,
providing insights into individual differences like trait competitiveness. This game-based
framework serves as a foundation for the experimental design and creates a practical

context for testing the study’s hypotheses.

"Business Builders" is an educational game developed by the ERPsim Lab in
collaboration with HEC Montréal, designed to simulate real-world business challenges in
a gamified environment. The game focuses on decision-making and data-driven problem-
solving through engaging scenarios such as supply chain resilience, sustainability
portfolio management, and international market expansion. Participants analyze data,
make strategic decisions, and interact with mechanics like leaderboards and performance
feedback, fostering a competitive yet educational experience. In the context of this study,

"Business Builders” serves as the foundation for the experimental tasks, providing a
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practical, gamified framework that aligns with the study's goal of exploring the effects of
task complexity on cognitive load and performance, while highlighting individual traits

like competitiveness (Léger et al., 2024).

SAP Analytics Cloud is a comprehensive cloud-based platform designed for data analysis,
visualization, and business intelligence. It integrates various analytics tools to provide
real-time insights, enabling users to create dynamic dashboards, perform predictive
analytics, and generate visualizations to support data-driven decision-making. In this
study, SAP Analytics Cloud served as the core analytical tool, allowing participants to
process and visualize data required to complete tasks within the "Business Builders"
Figma prototype. By utilizing this platform, the study simulated realistic data analytics
scenarios, aligning with the study's objective of examining how task complexity affects
cognitive load and performance. The use of SAP Analytics Cloud ensured that tasks
mirrored professional data analysis processes, thereby enhancing the ecological validity
of the experimental design (Waldorf, Germany; SAP SE, 2024).

2.4.1 Participants

In our study, we included participants who were either currently enrolled in or had
recently graduated from college (CEGEP), undergraduate, or graduate programs.
Participants were required to be familiar with graphs and charts (e.g., Excel) and at least
somewhat comfortable with reading and listening to English instructions. A total of 60
participants took part in the study (31 females, 29 males), with 59 included in the final
sample. Participant ages ranged from 18 to 65 years (mean: 27.08, SD: 7.32, median:
25.5). Each participant received a $30 compensation for their participation. While most
participants were recruited through Panel HEC, additional participants were enlisted via
convenience sampling and snowball sampling within the extended network. This project
was approved by HEC Montréal’s Research Ethics Board under form number 2024-
5934:396 (Nagano, n.d.).
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2.4.2 Experimental Design

Our study employed a within-subject experimental design, where each participant
completed tasks across three levels of task complexity (Low, Medium, and High) as the
single independent variable. The sequence of tasks was randomized, and each participant
completed two tasks at each complexity level. Participants were not recruited based on
any specific personality traits, ensuring that the sample represented a range of individual
differences, which is essential for understanding the generalizability of the findings. After
each task, participants received feedback on their performance, viewed their position on
a leaderboard, and completed a questionnaire. Following all six tasks, participants

answered additional questionnaires before the recording tools were turned off.
2.4.3 Experimental Stimuli

Multiple stimuli were used in our experiment, beginning with a high-fidelity prototype of
the Business Builders game by ERPsim Lab, developed on Figma (Figma, n.d.).
Participants answered seven questions during the experiment. The first question was
always a tutorial, designed to help participants familiarize themselves with the platforms.
The remaining six questions were evaluated. To introduce randomization, six distinct
groups were created within Figma, each representing a different order of task complexity
(link). For example, Group 1 followed the order “simple, medium, complex.”, as seen in
figure 2. A leaderboard was presented after each question to foster a sense of competition

among participants.

Figure 2. Questions Used for the Three Levels of Complexity
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The questions were deliberately designed to vary in complexity by altering the number of

essential steps required to produce an appropriate graphic to answer the question. This
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approach aligns with the reported concept that task complexity increases with the number
of distinct actions needed for completion (Wood, 1986). Low-complexity questions
required two essential steps, medium-complexity questions involved four to five steps,

and high-complexity questions necessitated six to seven steps.

In this study, leaderboards and points were integrated as core gamification elements to
enhance participant engagement and motivation. As studies suggest, gamification uses
game design elements to create a "gameful” experience in non-game contexts, leveraging
competitive and achievement-oriented behaviors intrinsic to gameplay (Deterding et al.,
2011). Leaderboards facilitated structured social comparison, fostering a competitive
environment that could increase motivation in educational settings. Points further
supported this by offering quantifiable feedback, enabling participants to track their
progress and improvements, aligning with the mechanics of gameful interaction
(Deterding et al., 2011). The leaderboard structure used in the study is exemplified in
Appendix H.

Another key stimulus in our experiment was the SAP Analytics Cloud platform (SAP,
n.d.). On this platform, participants utilized data visualization tools to create graphs using
pre-uploaded data sets. The interface of the software is as presented in figure 3. These
graphs were necessary to answer the questions posed in the Figma prototype. The data
sets used belonged to ERPsim Lab (ERPsim, n.d.). For access to the platform, please
contact the ERPsim Lab or email rayane.benhenni@hec.ca.
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Figure 3. Example Interface from SAP Analytics Cloud
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2.4.4 Instruments and Lab Setup

Below is an overview of the types of data collected and the corresponding tools used

during the experiment:

Explicit data was collected using Qualtrics, a survey platform widely utilized for academic
and professional research. The specific version employed was the July 2024 release,
developed by Qualtrics (Provo, Utah, USA; Qualtrics, 2024).

Observational data was recorded and analyzed using Microsoft Excel, version 2407,
developed by Microsoft Corporation (Redmond, Washington, USA; Figma, Inc., 2024).

Implicit data, such as gaze tracking, was captured using Tobii Pro Lab software, version
1.241, produced by Tobii AB (Danderyd, Sweden; Tobii AB, 2024).

Descriptions of the participant side, observation side, and the synchronization of the

equipment are included in the appendix for further details.
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2.45 Procedure

Participants were welcomed and brought into the experiment room, where they were
asked to leave their personal belongings on the observation side and ensure their devices
were silenced. They were then seated on the participant side.

The session began with the moderator reading a scripted welcome message that explained
the structure of the experiment, the number of tasks, the tools used, the approximate
duration, and the compensation details. Participants were directed to read and sign the
consent form on a tablet. Following this, the moderator verbally asked demographic

questions, including age, gender identity, vision, and handedness.

The moderator then moved to the participant's side to sign the consent form and set up the
eye-tracker calibration. Participants were then instructed to complete a pre-test

questionnaire on their screen.

The experiment began with a tutorial task where participants watched a video
demonstrating how to solve a sample question using SAP Analytics Cloud. After
watching the video, participants attempted the tutorial task with guidance from the
moderator as needed. Upon completing the task and reviewing an explanation, the
moderator informed participants that the following tasks would be graded, and that no

help would be provided.

For each task, participants were given instructions, attempted the task using Figma and
SAP Analytics Cloud within a 5-minute time limit, reviewed the explanation, viewed their
ranking on the leaderboard, and completed a post-task questionnaire. This process was

repeated for six graded tasks.

After completing all tasks, participants completed a post-task questionnaire regarding
their experience in the study. The moderator then conducted a brief interview to gather

additional feedback about the tasks and overall experience.
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Finally, the moderator stopped the data collection tools and guided them through signing
the compensation form. The session concluded with the participant collecting their

belongings and being escorted out of the lab.
2.4.6 Tasks

For the tasks, participants were required to answer the questions displayed on the
"Business Builders" Figma prototype by using SAP Analytics Cloud to analyze and
visualize data. Each task involved generating accurate insights from pre-uploaded datasets
to address a specific problem. Participants created data visualizations, such as graphs or
charts, by following a sequence of steps within SAP Analytics Cloud. These steps
included selecting the appropriate dataset, applying filters, and using visualization tools
to construct a graphic that met the requirements of the question. To assist with the tasks,
participants had access to a printed data dictionary detailing the datasets included in the

study.

To successfully complete a task, participants had to follow the correct method, as pre-
established by the research team. If a participant guessed the correct answer without
constructing the required visualizations in SAP Analytics Cloud, the task was marked as
unsuccessful. Similarly, if a participant failed to provide an answer within the 5-minute
time limit, the task was also considered a failure. This ensured that success was
determined not just by the accuracy of the response but also by the proper application of
the analytical process. The questions associated with all 6 tasks and the tutorial are

detailed in Appendices A to G.
2.4.7 Measures

The study utilized a variety of measures to assess key constructs. Implicit cognitive load
was measured using a psychophysiological approach, specifically through pupillometry
(Krejtz et al., 2018). Explicit cognitive load was assessed via the NASA TLX, a self-
reported measure that included six items evaluated on 100-point sliders. This instrument
demonstrated high reliability with a Cronbach's alpha of .92 (Hart & Staveland, 1988).

Trait competitiveness was also measured using a self-reported scale consisting of four
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items on a 7-point Likert scale, ranging from 1 (Extremely Disagree) to 7 (Extremely
Agree). This scale showed strong internal consistency, with a Cronbach's alpha of .84,
(Brown et al., 1998; Spence & Helmreich, 2014). Finally, learning performance was

observed and scored based on the method participants used to answer the given question.

Additionally, as part of a manipulation check, we collected a measure of perceived
complexity. After completing each task, participants were asked to rate how complex they
found the task on a 7-point Likert scale, ranging from "extremely simple" to "extremely
complex.” The items used in the questionnaires are listed in Appendix P.

2.4.8 Statistical Analysis

Our analyses aimed to examine how task complexity affects learning performance, with
a particular focus on cognitive load and pupil response as potential mediators. To perform
these analyses, we used R for linear mixed-effects models, generalized linear mixed-
effects models (mediation analyses), while SAS was used for data preprocessing and
logistic regression (direct effects and moderation analyses). The data mapping details are

documented in Appendix O.

First, we transformed the explicit cognitive load measure (log-transformed Task Load
Index, or log_TLX) to meet the assumptions of normality required for parametric tests.
This transformation ensured that statistical models could accurately capture the

relationships between variables.

To evaluate the direct effects of task complexity on learning performance, we used linear
mixed-effects models, allowing us to account for both fixed effects (task complexity) and
random effects (variability between participants and repeated measures). Individual
differences were specifically accounted for by including participant ID as a random
intercept, which controlled for variability due to individual-specific characteristics.

Logistic regression models were employed to analyze binary performance outcomes,
assessing the likelihood of success across different complexity conditions. This analysis

provided insight into the overall impact of task complexity on learning performance.
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To explore mediation effects, causal mediation analyses were conducted for three
pairwise comparisons: low versus medium complexity, medium versus high complexity,
and low versus high complexity. These analyses tested whether changes in cognitive load
(log_TLX) or pupil response mediated the relationship between complexity and
performance. By using simulations clustered by participant, we ensured robust estimates
of indirect effects (ACME) and direct effects (ADE).

These statistical approaches were chosen to address the specific research questions. Linear
mixed-effects models accounted for repeated measures and individual variability, logistic
regression handled binary performance outcomes, and mediation analyses identified
indirect pathways through cognitive and physiological changes. Together, these methods
provided a comprehensive understanding of how task complexity influences performance,
and the impact of trait competitiveness.

2.5 Results

2.5.1 Manipulation Checks

To confirm the relative differences in complexities between our questions, we
incorporated manipulation check questions. The results of the pairwise comparisons
indicated that the “low” complexity group was perceived to be significantly less complex
than the “medium” complexity group, which was, in turn, perceived to be significantly

less complex than the “high” complexity group.

The descriptive statistics for each complexity level are as follows: For the “low”
complexity condition, the mean complexity rating was 2.05 with a standard deviation of
1.46 (N = 120). For the “medium” complexity condition, the mean was 3.839 with a
standard deviation of 1.65 (N = 120). For the “high” complexity condition, the mean was
4.76 with a standard deviation of 1.56 (N = 120).

Pairwise comparisons confirmed significant differences between all complexity levels.
Specifically, the difference between “low” and “medium” complexity conditions was

highly significant (p <.0001), as was the difference between “low” and “high” complexity
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conditions (p < .0001). Additionally, the difference between the “medium” and “high”

complexity conditions was also highly significant (p <.0001).
2.5.2 Descriptive Statistics

We collected descriptives statistics for the various variables that were under investigation
in our study, mainly central tendencies as well as dispersion measures. Table 1 shows
these results. We also gathered data on the trait competitiveness of each participant. The
mean for that variable is 4.67 out of 7 on a Likert type scale. The standard deviation is
1.55.

Table 1: Descriptive Statistics of Collected Data for Each Complexity Level

Low Medium High
Measure
Mean Std Dev Mean Std Dev Mean Std Dev
Success 0.93 0.25 0.48 0.50 0.33 0.47

Psychological
Cognitive -0.06 0.23 -0.04 0.23 -0.07 0.23
Load

Self-reported
Cognitive 16.98 13.58 33.05 20.60 41.29 18.75
Load

2.5.3 Hypotheses Testing: Direct Effects

A linear mixed-effects model was conducted to examine the effect of complexity on
performance. The Type Ill test revealed a significant main effect of complexity on
performance, F(2,299) = 35.96, p < .0001 F(2, 299) = 35.96, p < .0001 F(2,299) = 35.96,
p < .0001. Pairwise comparisons with Bonferroni-adjusted p-values indicated that

performance was significantly lower in the high complexity condition compared to the
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low complexity condition (adjusted p < .0001 p < .0001 p < .0001), as well as in the
medium complexity condition compared to the low complexity condition (adjusted p <
.0001 p < .0001 p < .0001). These findings suggest that higher levels of complexity are
associated with reductions in performance, as such, hypothesis 1 is supported.

In a separate analysis, a linear mixed-effects model was conducted to examine the effect
of task complexity on pupil dilation, a measure of cognitive load. The Type Il test
indicated a significant main effect of complexity on pupil dilation, F(2,257) = 6.85, p =
0013 F(2, 257) = 6.85, p =.0013 F(2,257) = 6.85, p = .0013. Pairwise comparisons with
Holm-adjusted p-values showed that pupil dilation was significantly lower in the high
complexity condition compared to the medium complexity condition (adjusted p =.0010p
=.0010 p =.0010). Additionally, the medium complexity condition was associated with
significantly greater pupil dilation compared to the low complexity condition (adjusted p
=.0334 p = .0334 p = .0334). No significant difference was observed between the high
and low complexity conditions (adjusted p = .2173 p = .2173 p = .2173). These results
suggest that cognitive load, as indicated by pupil dilation, is elevated under medium
complexity compared to both high and low complexity. This shows that hypothesis 2 is

partially supported for pupil dilation.

Another linear mixed-effects model was conducted to examine the effect of complexity
on the log-transformed task load index (log_TLX). The Type Ill test indicated a
significant main effect of complexity, F(2,293) = 101.67, p <.0001 F(2, 293) = 101.67, p
<.0001 F(2,293) = 101.67, p < .0001. Pairwise comparisons with Holm-adjusted p-values
revealed significant differences between all levels of complexity: high complexity was
associated with significantly higher log_TLX compared to medium complexity (adjusted
p < .0001 p <.0001 p < .0001), and both high and medium complexity resulted in
significantly higher log_TLX compared to low complexity (both adjusted p <.0001 p <
.0001 p <.0001). These findings suggest that increasing complexity levels are associated
with greater cognitive load, as indicated by higher log_TLX values. This shows that

hypothesis 2 is supported for log-transformed task load index.
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Further analysis using a generalized linear mixed-effects model evaluated the effects of
the squared term for pupil adjustment (pupil_adj*pupil_adj) and trait competitiveness on
performance (success_method), with an alpha level of 10%. The effect of the squared
pupil adjustment term reached significance at this threshold (Estimate = -2.6976, SE =
1.6112, t(257) = -1.67, p = .0953), suggesting a non-linear relationship between pupil
adjustment and performance. This implies that as pupil adjustment increases, performance
initially improves but then declines as pupil adjustment continues to rise. The Type IlI
test of fixed effects confirmed a significant main effect for the squared term of pupil
adjustment, F(1, 257) = 2.80, p =.0953, at the 10% level. In contrast, trait competitiveness
had no significant effect on performance even at this relaxed threshold (Estimate =
0.08134, SE = 0.09845, t(257) = 0.83, p =.4095), with the Type Il test also indicating no
significant impact, F(1, 257) = 0.68, p = .4095. This is graphically represented in figure
4. This shows that hypothesis 3 is supported for pupil dilation.

Finally, a linear mixed-effects model was used to examine the effects of log-transformed
task load index (log_TLX), the quadratic term for log_TLX (log_TLXlog_TLX), and trait
competitiveness on  performance  (success_method). The quadratic term
log_TLXlog_TLX was highly significant (Estimate = -0.5554, SE = 0.09651, t(293) = -
5.75, p <.0001), suggesting a non-linear relationship between log_TLX and performance.
Specifically, as log_TLX increases, performance initially rises but then declines as
log_TLX continues to increase, a finding confirmed by the Type Il test, F(1, 293) =
33.12, p < .0001. Trait competitiveness, however, had no significant effect on
performance (Estimate = 0.02341, SE = 0.1396, t(293) = 0.17, p = .8669), with the Type
I11 test similarly indicating no influence, F(1, 293) = 0.03, p = .8669. This shows that
hypothesis 3 is supported for log-transformed task load index.
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Figure 4: Fitted Values of Predicted Probability of Success as a Function of Implicit

Cognitive Load
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2.5.4 Hypotheses Testing: Moderations and Mediations
Moderations

A linear mixed-effects model was conducted to examine whether trait competitiveness
moderated the quadratic relationship between pupil dilation (pupil_adj) and performance
(success_method). The model examined whether trait competitiveness moderated the
nonlinear relationship between pupil dilation and performance. The interaction term was
significant, F(1, 256) = 5.88, p = .0160 (Estimate = 3.5939, SE = 1.4822, t(256) = 2.42).
Given the one-tailed hypothesis, the p-value was divided by 2, resulting in p = .0080,

supporting the hypothesized moderation effect at the 1% significance level. The positive
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direction of the interaction term indicates that higher trait competitiveness weakens the
negative quadratic effect of pupil dilation on performance. In other words, while increased
pupil dilation generally associates with reduced performance, this decline is less
pronounced for individuals with higher trait competitiveness, aligning with the original
hypothesis that higher competitiveness would mitigate the impact of cognitive load on
success. This is graphically represented in figure 5. This shows that hypothesis 4 is

supported for pupil dilation.

A linear mixed-effects model was also conducted to examine whether trait
competitiveness moderated the quadratic relationship between cognitive load (log_tIx)
and performance (success_method). The model tested whether trait competitiveness
influenced the nonlinear relationship between cognitive load and performance. The
interaction term between the quadratic effect of cognitive load and trait competitiveness
was marginally significant at the a = 10% level, F(1,292) =2.47, p=.1174 (Estimate = -
0.04582, SE = 0.02918, t(292) = -1.57). However, since the direction of the interaction
effect aligns with the quadratic effect of cognitive load, this suggests that higher trait
competitiveness strengthens, rather than mitigates, the negative impact of cognitive load
on performance, contrary to the hypothesis. Adjusting for the one-tailed hypothesis test
yields a p-value of 0.9413, indicating a lack of support for moderation in the expected
direction. This shows that hypothesis 4 is NOT supported for log-transformed task
load index.
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Figure 5: Interaction Plot of Pupil Adjustment and Trait Competitiveness on Success
Probability
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Mediations

The analyses were performed for three comparisons: medium vs. low complexity,
medium vs. high complexity, and high vs. low complexity, using 1,000 simulations and

clustered by participant.

For the medium vs. low complexity comparison, there was a significant indirect effect
(ACME) of task complexity on performance through pupil dilation for both the control
condition (Estimate = 0.00396, 95% CI [0.00003, 0.01], p = .05) and the treated condition
(Estimate = 0.0118, 95% CI [0.0001, 0.03], p = .05). The direct effect (ADE) was
significant and negative (Estimate = -0.422, 95% CI [-0.534, -0.31], p <.001), indicating

that complexity had a strong direct negative impact on performance. The proportion
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mediated, however, was small and only marginally significant (p = .05), suggesting a

limited mediation effect.

For the medium vs. high complexity comparison, the indirect effect (ACME) was
significant for both the control condition (Estimate = 0.0162, 95% CI [0.0012, 0.04], p =
.03) and the treated condition (Estimate = 0.0175, 95% CI [0.0012, 0.04], p = .03). The
direct effect (ADE) was also significant and positive (Estimate = 0.1385, 95% CI [0.0169,
0.25], p = .036), indicating that higher complexity had a positive direct effect on
performance. The proportion mediated was statistically significant (p = .048), suggesting

a meaningful mediation effect.

For the high vs. low complexity comparison, the indirect effect (ACME) was not
significant for either the control condition (Estimate = -0.0023, 95% CI [-0.0090, 0.00], p
= .25) or the treated condition (Estimate = -0.0059, 95% CI [-0.0201, 0.00], p = .25).
However, the direct effect (ADE) was significant and negative (Estimate = -0.567, 95%
CI [-0.685, -0.45], p < .001), indicating a strong direct negative effect of task complexity
on performance, with no evidence of mediation in this comparison. Detailed mediation

analysis results for pupillometry are provided in Appendices L to N.

A series of causal mediation analyses were also conducted to examine whether cognitive
load, measured by the log-transformed TLX scores (log_tlx), mediated the relationship
between task complexity (low, medium, and high) and performance. The analyses were
performed for three comparisons: medium vs. low complexity, medium vs. high
complexity, and high vs. low complexity, using 1,000 simulations and clustered by

participant.

For the medium vs. low complexity comparison, the analysis revealed significant indirect
effects (ACME) for both the control condition (Estimate = -0.126, 95% CI [-0.207, -0.06],
p <.001) and the treated condition (Estimate = -0.237, 95% CI [-0.299, -0.17], p <.001).
The direct effects (ADE) were also significant and negative for both the control (Estimate
=-0.188, 95% CI [-0.286, -0.10], p < .001) and treated conditions (Estimate = -0.299,
95% CI [-0.416, -0.18], p < .001). The proportion mediated was substantial and

significant, with estimates of 0.289 for the control and 0.562 for the treated condition
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(both p < .001), indicating that a meaningful portion of the effect of complexity on

performance was mediated by cognitive load.

For the medium vs. high complexity comparison, there were significant indirect effects
(ACME) for both the control (Estimate = 0.1032, 95% CI [0.0542, 0.16], p < .001) and
treated conditions (Estimate = 0.1058, 95% CI [0.0550, 0.16], p < .001). However, the
direct effects (ADE) were not significant for either the control (Estimate = 0.0410, 95%
Cl [-0.0484, 0.13], p = .408) or treated conditions (Estimate = 0.0436, 95% CI [-0.0497,
0.14], p = .408). The proportion mediated was significant, with 0.7046 for the control and
0.7259 for the treated condition (both p = .004), suggesting that the mediation effect

accounted for a large portion of the total effect of complexity on performance.

For the high vs. low complexity comparison, the indirect effects (ACME) were again
significant for both the control (Estimate = -0.205, 95% CI [-0.308, -0.11], p < .001) and
treated conditions (Estimate = -0.346, 95% CI [-0.417, -0.26], p < .001). The direct effects
(ADE) were also significant and negative for both the control (Estimate = -0.229, 95% CI
[-0.349, -0.13], p < .001) and treated conditions (Estimate = -0.369, 95% CI [-0.516, -
0.23], p < .001). The proportion mediated was significant and substantial, with 0.357 for
the control and 0.608 for the treated condition (both p < .001), indicating a strong
mediation effect of cognitive load on the relationship between complexity and
performance. Detailed mediation analysis results for log_TLX are provided in
Appendices | to K.

The analyses showed significant indirect effects of task complexity on performance
through pupil dilation for medium vs. low and medium vs. high complexity, but not for
high vs. low complexity. Direct effects were significant for all comparisons, with negative
effects for medium vs. low and high vs. low, and a positive effect for medium vs. high.
Cognitive load significantly mediated the relationship between complexity and
performance in all comparisons, with substantial proportions mediated for medium vs.

low, medium vs. high, and high vs. low complexity.
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2.6 Discussion

This study examined the influence of task complexity on cognitive load and learning
performance within a gamification setting, while also considering the moderating role of
trait competitiveness. The results suggest that increasing task complexity led to significant
increases in cognitive load, as evidenced by measurements using both the NASA TLX
and pupil dilation. Furthermore, the study showed that higher complexity levels
negatively impacted learning performance. A non-linear relationship was also observed
between cognitive load and performance, with optimal performance occurring at
moderate levels of cognitive load. Finally, trait competitiveness was found to moderate
the relationship between cognitive load and performance, although this effect varied
across different measurement metrics. A higher trait competitiveness may have mitigated

the negative effects of high cognitive load on performance.

The results support the hypothesis that complexity elevates cognitive load and diminishes
performance, consistent with CLT. However, the nuances in pupil dilation between
medium and high complexity tasks suggest that task design impacts cognitive processing

in complex ways, potentially linked to task-specific strategies or learning plateaus.

The non-linear relationship between cognitive load and performance aligns with the
theory that excessive load disrupts schema construction, while underload fails to
sufficiently challenge learners. This supports the notion of an optimal cognitive load range
for effective learning and task performance (McKendrick & Harwood, 2019). If we
consider intrinsic cognitive load as a form of stimuli, its non-linear relationship with
performance can also find meaning in the Yerkes-Dodson Law (Yerkes & Dodson,
1908).

The moderating effect of trait competitiveness was significant for pupil dilation but not
for log-transformed TLX. This divergence may stem from differences in implicit versus
explicit measures of cognitive load, suggesting that competitive individuals might
unconsciously adapt better to stress, even if their subjective perceptions of load remain
unchanged. The positive implicit response is aligned with theories that suggest that

individuals shape their motivation and emotional responses as they evaluate their abilities
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in relation to others (Festinger, 1954). In other words, when their trait competitiveness is
high, individuals may view competition as an opportunity to excel, as they set ambitious
goals and persevere through challenges, which may increase their performance. The
opposite may also be true however, for individuals with low trait competitiveness, as their
feeling of inadequacy amplifies due to comparisons with higher-performing peers, which

may exacerbate anxiety or avoidance behaviors, leading to lower performance.

The findings corroborate prior studies emphasizing the detrimental effects of excessive
task complexity on performance (e.g., Sasayama, 2016; Tremblay et al., 2023). The
observed non-linear relationship aligns with previous findings on cognitive load’s

curvilinear impact on performance (McKendrick & Harwood, 2019).

This study also extends prior work by integrating trait competitiveness as a moderating
factor in gamified environments, a relatively underexplored area. Unlike previous
research that treated gamification as universally beneficial, this study highlights the

nuanced effects of individual traits on learning outcomes.

This study advances CLT by empirically testing the intricate relationship between task
complexity, cognitive load, and performance in the context of gamified learning. By
examining these elements together, the research sheds light on how increased task
complexity influences cognitive processing and learning outcomes. Furthermore, the
study highlights the moderating role of competitiveness traits, bridging cognitive theories
with motivational frameworks. The findings demonstrate that competitive traits can shape
learners' responses to cognitive load, thereby providing a nuanced understanding of how
individual differences influence task performance in gamified environments. Importantly,
the distinction between implicit and explicit cognitive load measures emerges as a key
contribution to educational research, suggesting that learners may respond differently at
subconscious versus conscious levels when faced with cognitive challenges. These
contributions collectively advance the theoretical foundations of CLT and open avenues
for integrating motivational and cognitive perspectives in the study of gamification and

education.
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The findings of this study provide actionable insights that can enhance the design of
educational interventions. Firstly, it is essential to calibrate tasks to balance their
complexity, ensuring that learners remain within an optimal cognitive load range. This
balance helps prevent cognitive overload, which could negatively impact learning
outcomes, while also avoiding tasks that are too simplistic and fail to engage learners.
Secondly, gamification elements, such as leaderboards, should be tailored to align with
individual competitiveness levels. By doing so, negative emotional or cognitive effects,
such as anxiety or disengagement among less competitive learners, can be mitigated.
Lastly, designing personalized gamified learning environments that leverage traits like
competitiveness can foster greater engagement and resilience under cognitive load. Such
adaptive systems have the potential to enhance learning experiences by accommodating
individual differences and optimizing the interplay between motivation and cognitive

demands.

While the results of this study are compelling, there are certain limitations that must be
acknowledged. Firstly, when designing the tasks with different levels of complexity, the
number of unique steps required to reach the result, was the only complexity parameter
that was manipulated (Wood, 1986). Secondly, some of the measures employed, such as
self-reported trait competitiveness and NASA TLX scores, are subject to potential biases,
including social desirability and subjective interpretation. Lastly, the experimental setting
used in this study may not fully replicate the complexities and dynamics of real-world
learning environments, potentially restricting the applicability of the results to practical,
non-controlled contexts. It can also be noted that this study focused solely on the
immediate response to complexity and its interplay with cognitive load and

competitiveness. The effects over a longer period of time were not considered.

Future research should investigate the long-term effects of gamified complexity on
retention and the transfer of knowledge. This would provide insights into how
gamification strategies influence learning outcomes over time, beyond immediate
performance measures. Additionally, exploring other personality traits, such as
conscientiousness or openness, as potential moderators in gamified learning contexts

could broaden the understanding of individual differences and their impact on cognitive
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load and performance. Finally, there is a need to develop adaptive gamification systems
that dynamically adjust task complexity and feedback based on learners' cognitive and
motivational states. Such systems could optimize the balance between engagement and
challenge, ensuring that learning experiences are both effective and personalized.

2.7 Conclusion

This study aimed to investigate how task complexity affects cognitive load and learning
performance in gamification settings, while also exploring the moderating role of trait
competitiveness. The motivation behind this research stemmed from the need to better
understand how task design and individual differences influence learning outcomes,

particularly in gamified environments.

The findings suggest that higher task complexity leads to increased cognitive load, which
in turn reduces performance. Moreover, the relationship between cognitive load and
performance followed a non-linear trajectory, with optimal performance achieved at
moderate levels of cognitive load. Additionally, while trait competitiveness moderated
the relationship between cognitive load and performance, the effects varied across
different measures, providing nuanced insights into the interaction between motivation

and cognitive processes.

This research contributes to the advancement of CLT by integrating personality traits and
gamification principles, offering new perspectives on how to optimize learning
environments. Practically, the study provides actionable recommendations for designing
adaptive and personalized gamified educational systems that balance task complexity and

cater to individual learner traits.

Looking ahead, this study highlights the importance of tailoring gamification strategies to
individual differences and suggests exploring how these findings can be scaled to diverse
educational contexts. By continuing to refine our understanding of the interplay between
cognitive load, task complexity, and personality traits, future research can contribute to

the development of more effective, equitable, and engaging learning experiences.
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Chapitre 3
Accounting for Individual Differences to Make Gamification
More Effective: The Case of Competitiveness

Recent research highlights intriguing dynamics in how gamification engages individuals
with varying levels of competitiveness. An experiment we conducted revealed that
personality traits play a crucial role in shaping responses to gamified environments. For
highly competitive individuals, gamified settings often boost resilience and motivation,
creating a dynamic and engaging experience. Conversely, those with lower
competitiveness may struggle, experiencing feelings of inadequacy or disengagement.
This disparity in engagement underscores the importance of designing gamified systems

that are inclusive and adaptable to individual differences.

The varying impact of gamification can be understood as an issue of accessibility, rooted
in the limited agency individuals have over their personality traits. These deeply ingrained
characteristics shape how learners interact with gamified systems, making some naturally
more aligned with competitive or feedback-driven elements than others. Without
addressing this disparity, gamification risks fostering environments where certain learners
thrive while others are left behind. To ensure equitable engagement, it is essential to

design gamified systems that adapt to diverse personality traits and learning needs.
Methodology

The findings discussed here are based on a laboratory study conducted with 60
participants (59 included in the final sample) aged 18 to 65 years, recruited through HEC
Montréal’s participant panel and additional networks. Participants were exposed to tasks
of varying complexity in a controlled setting. Using a within-subject experimental design,
the study employed a high-fidelity prototype developed in Figma, inspired by the
educational game Business Builders. Tasks were completed on the SAP Analytics Cloud

platform, designed to facilitate data visualization and analysis.

Each participant completed six graded tasks (two for each complexity level: low, medium,
high). These tasks varied in the number of steps required to create accurate data
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visualizations. For example, low-complexity tasks required two steps, medium-
complexity tasks involved four to five steps, and high-complexity tasks demanded six to
seven steps. After completing each task, participants received performance feedback via
leaderboards and answered a questionnaire. Cognitive load was measured using NASA
TLX for self-reported explicit load and pupillometry for implicit load. The study also

assessed trait competitiveness through a validated self-reported scale.

The results suggested that increasing task complexity significantly raises cognitive load,
which negatively impacts performance. However, individuals with high competitiveness
showed greater resilience under high cognitive load conditions, maintaining superior
performance levels compared to their less competitive peers, which is visually represented
in the chart below. This underscores the importance of adaptable gamified designs to

accommodate diverse personality traits and enhance inclusivity.

Interaction Plot of Pupil Adjustment and Trait Competitiveness on Success Probability

10

08
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Recommendations to Bridge the Gap

To ensure gamification benefits a diverse range of learners, it is essential to tailor design
elements to accommodate varying levels of competitiveness. Below are specific

strategies, accompanied by real-world examples:
1. Inclusive Competition
Foster environments where competition motivates without alienating participants.

o Tiered Leaderboards: Implement leaderboards with multiple tiers or groups to
allow learners to compete within their skill levels. For example, Duolingo, a
language learning app that gamifies lessons through quick, interactive exercises,
uses tiered leaderboards to enable users to engage in friendly competition

regardless of their proficiency?.

o Personal Progress Comparison: Apple Fitness+ is a fitness platform that offers
guided workout videos combined with personalized activity tracking. It uses
personal activity rings to track daily movement, exercise, and standing goals,
allowing users to focus on self-improvement by comparing their current activity

to their past achievements rather than competing with others®.
2. Autonomy and Choice

Encourage learners to take ownership of their gamified experiences by providing

flexibility.

o Customizable Paths: Minecraft Education Edition is an educational version of
the popular sandbox game, designed to teach subjects like coding, history, and

science through interactive projects. It allows learners to choose their own projects

2 https://duoplanet.com/duolingo-leagues-the-essential-quide-everything-you-need-to-know/

3 https://support.apple.com/en-ca/quide/watch/apd3bf6d85a6/watchos
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https://support.apple.com/en-ca/guide/watch/apd3bf6d85a6/watchos

and objectives, enabling them to explore topics like coding or architecture at their

own pace and based on their interests, making the experience highly personalized®.

Optional Challenges: Nintendo's Ring Fit Adventure is a fitness game for
Nintendo Switch that combines physical exercise with role-playing game
mechanics. It allows players to engage in optional mini-games and fitness
challenges tailored to their preferences, ensuring gamified elements align with

individual goals and physical capabilities®.

3. Non-Competitive Rewards

Offer incentives that emphasize individual growth over competition.

Story-Driven Progression: Assassin's Creed Discovery Tour is an educational
mode of the Assassin’s Creed games, offering guided historical experiences
without combat. It provides a narrative-driven educational experience, immersing
players in rich historical settings with interactive stories and discoveries. This
approach caters to individuals motivated by learning and exploration rather than
rankings, fostering a deeper engagement through contextual and meaningful

gameplay®.

4. Collaboration Instead of Competition

Promote teamwork to achieve shared objectives, reducing the focus on individual rivalry.

Team-Based Tasks: Escape room games are immersive puzzle experiences where
players work together to solve challenges within a set time limit. Both physical
and virtual versions of these games require participants to collaborate and pool
their skills to solve puzzles and achieve a shared objective, fostering teamwork

and strategic thinking. These tasks emphasize cooperation and the necessity of

4 https://education.minecraft.net/en-us/discover/what-is-minecraft

5 https://ringfitadventure.nintendo.com/

6 https://www.ubisoft.com/en-ca/game/assassins-creed/discovery-tour
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leveraging diverse perspectives and abilities to succeed, making them an excellent

example of collaboration-focused gamification.
Conclusion

Gamification holds immense potential for transforming education and training, but its
success hinges on understanding and addressing individual differences. By considering
traits such as competitiveness, emotional stability, and openness to experience,
stakeholders can design gamified experiences that resonate with everyone.
Personalization, adaptive challenges, and inclusive rewards are key strategies to ensure

gamification bridges the gap between those it motivates and those it alienates.

For practical implementation, educators can design course materials that balance
competitive and non-competitive elements, fostering inclusivity. Similarly, workplace
training programs can offer modular approaches, allowing employees to choose elements
that align with their motivations. Incorporating collaborative games, tiered leaderboards,
and flexible mechanics ensures gamification provides accessible opportunities for success
across diverse populations. Ultimately, the goal is to create gamified systems that are not
just engaging but also equitable and effective for all learners.
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Chapitre 4
Conclusion

Ce mémoire visait a explorer les interactions complexes entre la complexité des taches, la
charge cognitive et les différences individuelles, en particulier la compétitivité de trait,
dans des contextes éducatifs STEM ludifiés. Les objectifs principaux étaient de
comprendre comment la complexité des taches influence la charge cognitive et la
performance et d’examiner le réle modérateur de la compétitivité dans cette relation. Deux

questions de recherche guidaient cette étude :

(1) Dans quelle mesure la complexité des questions influence-t-elle les
performances des taches, par I'intermédiaire de la charge cognitive ?
(2) Dans quelle mesure la compétitivité de trait modére-t-elle la relation entre la

charge cognitive et la performance des taches ?

Pour répondre a ces questions, un design expérimental intra-sujet a été mis en ceuvre avec
60 participants réalisant des taches de complexité variable dans un environnement ludifié.
La charge cognitive des participants a été évaluée a 1’aide de mesures auto-rapportées
(NASA-TLX) et d’indicateurs physiologiques (dilatation pupillaire), tandis que leurs
performances étaient mesurées a travers les résultats des taches. La compétitivité de trait
a été évaluée a I’aide d’échelles psychométriques validées. Cette méthodologie rigoureuse
a permis d’examiner en détail I’interaction entre la complexité des taches, la charge
cognitive et les différences individuelles dans des contextes d’apprentissage STEM

ludifiés.

La rigueur méthodologique de cette étude se distingue par la nature authentique des taches
effectuées, simulant des scénarios réels d’analyse de données dans un contexte éducatif
ludifié. En utilisant SAP Analytics Cloud et un prototype haute-fidélité, les participants
ont réalisé des taches reflétant des pratiques professionnelles courantes dans les domaines
STEM. De plus, la réalisation de 1’étude dans un environnement contr6lé en laboratoire a

garanti une cohérence dans 1’administration des taches et la collecte des données,



renforcant ainsi la validité interne des résultats. Cette approche constitue une force

méthodologique majeure, enrichissant la portée des conclusions.

Les résultats suggeérent que la complexité des taches influence significativement la charge
cognitive, qui a son tour impacte la performance. Plus précisément, des niveaux élevés de
complexité des taches ont été associés a une augmentation de la charge cognitive,
entrainant une diminution des performances lorsque les demandes cognitives dépassent la
capacité des apprenants. Cependant, une relation non linéaire a été observée entre la
charge cognitive et la performance, soutenant I’hypothése qu’une plage optimale de
charge cognitive existe, ou la performance atteint un sommet avant de décliner sous des

demandes excessives ou insuffisantes.

La compétitivité de trait est apparue comme un modérateur clé dans ces dynamiques. Bien
que les individus tres compétitifs aient atténué certains des effets négatifs de la charge
cognitive sur la performance, I’influence était complexe et variait selon les différentes
mesures de charge cognitive. Par exemple, les individus compétitifs ont montré une plus
grande résilience face aux demandes cognitives implicites, comme en témoignent les
indicateurs physiologiques tels que la dilatation pupillaire, mais cet effet n’a pas été

systématiquement reflété dans les mesures auto-rapportées de la charge cognitive.

Ces résultats contribuent a la théorie de la charge cognitive en intégrant des perspectives
motivationnelles et en soulignant ’importance des différences individuelles dans les
contextes educatifs ludifiés. Ils mettent en évidence que des stratégies de ludification
efficaces nécessitent un équilibre entre la complexité des taches pour optimiser les
demandes cognitives et 1’adaptation des éléments de jeu aux traits et besoins des
apprenants. En plus d’enrichir la théorie de la charge cognitive en mettant en évidence la
relation non linéaire entre charge cognitive et performance, cette recherche élargit les
cadres théoriques motivationnels en démontrant le r6le modérateur de la compétitivité de
trait dans des contextes éducatifs ludifiés. Les résultats montrent que les individus
compétitifs font preuve d’une plus grande résilience face aux charges cognitives élevées
et tirent parti des éléments ludifiés, comme les classements, pour maintenir leur

engagement et leur performance. Cette intégration des cadres cognitifs et motivationnels
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approfondit le discours théorique sur I’apprentissage personnalisé et met en lumicre

I’interaction entre la motivation, les traits de personnalité et la charge cognitive.

D’un point de vue pratique, les résultats de cette étude mettent en évidence 1l'importance
de concevoir des environnements ludifiés qui s’adaptent aux différences individuelles des
apprenants, notamment leur niveau de compétitivité. Pour les apprenants tres compétitifs,
des éléments tels que les classements ou les défis peuvent renforcer I'engagement et la
résilience face a des tiches complexes. A I’inverse, pour ceux moins compétitifs, il est
essentiel de proposer des mécanismes favorisant la progression personnelle et des
récompenses centrées sur I’accomplissement individuel afin de limiter les risques de
désengagement. Par ailleurs, I'intégration de taches collaboratives permet de promouvoir
des dynamiques inclusives tout en réduisant la pression de la compétition individuelle.
Ces approches soulignent la nécessité de développer des systemes éducatifs adaptatifs
capables d’ajuster la complexité des taches et les éléments ludiques en temps réel, afin
d’optimiser la charge cognitive et de maximiser la réussite des apprenants dans des

contextes STEM exigeants.

Malgré ses forces, cette étude présente certaines limites qu’il convient de mentionner.
Tout d’abord, le niveau de familiarité des participants avec les systeémes étudiés, comme
SAP Analytics Cloud, variait, ce qui a pu influencer leurs performances et leur charge
cognitive. Bien que des pré-tests aient été réalisés pour limiter cet effet, de futures
recherches pourraient intégrer une évaluation plus approfondie des compétences
techniques initiales des participants. Ensuite, la complexité des taches a été manipulée
selon une seule dimension—le nombre d’étapes nécessaires—ce qui limite la
généralisation des résultats a d’autres dimensions de la complexité, telles que I’ambiguité
ou la nouveauté des taches. De plus, le design expérimental s’est concentré sur les
réponses immédiates a la complexité et a la charge cognitive, laissant inexplorés les effets
a long terme, comme la rétention des connaissances et leur transfert. Enfin, bien que
I’environnement contrdlé du laboratoire ait assuré une cohérence méthodologique, il ne
reflete pas nécessairement les distractions et la complexité des environnements

d’apprentissage réels. Par ailleurs, les mesures auto-rapportées, telles que le NASA-TLX
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et les échelles de compétitivité de trait, sont sujettes a des biais pouvant affecter

I’exactitude des résultats.

Les recherches futures devraient explorer les effets longitudinaux de la ludification dans
I’éducation STEM pour évaluer son impact sur la rétention et I’engagement a long terme.
L’exploration d’autres traits individuels, tels que la conscience ou 1’ouverture, pourrait
¢galement mieux éclairer comment divers profils d’apprenants interagissent avec des
environnements ludifiés. Par ailleurs, le développement de systémes adaptatifs capables
d’ajuster dynamiquement la complexité des taches et les ¢léments de ludification en
fonction des données en temps réel des apprenants représenterait une avancée significative

dans 1I’éducation personnalisée.

Ce mémoire contribue a I’enrichissement des recherches sur la ludification et 1’éducation
STEM en reliant les théories cognitives et motivationnelles a des preuves empiriques. Ses
résultats approfondissent notre compréhension de la maniere dont la conception des
taches et les différences individuelles fagonnent 1’engagement et la performance,
fournissant ainsi une base pour des environnements d’apprentissage plus efficaces,
adaptatifs et inclusifs. En abordant les interactions entre la charge cognitive, la complexité
des taches et les traits de personnalité, cette recherche propose une feuille de route pour
aider les éducateurs et les concepteurs a exploiter le potentiel de la ludification pour

relever les défis de 1’éducation STEM au XXIe siecle.
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Annexes

Annexe A : Question 1

Topic: International Expansion

Question
Answers

India

Based solely on the total Gen Z population size, which

country appears to be the most promising market? i
ina

Hints

Check my answer

+ Remember what measures and dimensions are!

* You can use your preferred chart type to show the data



Annexe B : Question 2

+ Remember what measures and dimensions are!

* You can use your preferred chart type to show the dat




Annexe C : Question 3

Topic: International Expansion

Question

Which country boasts the highest average willingness to pay,

and what is the average willingness to pay in that country?

Hints

+ Remember what measures and dimensions are!
+ You will need to use a calculation to get the average

willingness to pay per Respondent ID.

Answers

Italy, 6.10

Italy, 6.23

France, 6.10

France, 6.23

Check my answ

er



Annexe D : Question 4

Hints

* You will need to use a calculation to get th av

&
-
A




Annexe E : Question 5

+ You will need to use calculations to get the answer. -

+ A price markup is the price increase f[gm'j' prgzdu'dt;’s_iqqst',

price to its selling price.

Mﬁplication symbol is




Annexe F : Question 6




Annexe G : Question Tutoriel

+ Remember what measures and dimensions are!

+ Make sure you are using the right data set.
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Annexe H : Exemple classement

Leaderboard
Gabriel Sabrina Ryan

ml -

04 You

05  Anthony
06 Amy

07 Stephanie

08 Carl
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Annexe | : Tableau complet des résultats de médiation pour log_TLX (medium vs low)

" Effect Estimate 95% CI Lower 959% CI Upper p-value
ACME (control) -0.124 -0.203 -0.06 <.001 ***
ACME (treated) -0.237 -0.308 -0.17 <.001 ***
ADE (control) -0.189 -0.294 -0.1 <.001 ***
ADE (treated) -0.302 -0426 -0.19 <.001 ***
Total Effect -0.426 -0.529 -0.31 <.001 ***
Prop. Mediated 0.287 0.154 0.5 <.001 ***
(control)

Prop. Mediated 0.559 0.42 0.7 <.001 ***
(treated)
ACME (average) -0.18 -0.247 -0.12 <.001 ***
ADE (average) -0.245 -0.36 -0.15 < .001 ***
Prop. Mediated 0.423 0.295| 0.59 <.001 ***
(average)




Annexe J : Tableau complet des résultats de médiation pour log_TLX (medium vs
high)

Effect Estimate 95% CI Lower 959% CI Upper p-value
ACME (control) 0.104 0.0518 0.16 <.001 ***
ACME (treated) 0.1065 0.054 0.16 <.001 ***
ADE (control) 0.0398 -0.0462 0.13 0.41

ADE (treated) 0.0424 -0.0485 0.14 0.41
Total Effect 0.1464 0.0439 0.25 0.01**
Prop. Mediated 0.7098 0.3335 1.77 0.01**
(control)

Prop. Mediated 0.7309 0.3656 1.75 0.01**
(treated)

ACME (average) 0.1053 0.0533 0.16 <.001 ***
ADE (average) 0.0411 -0.0466 0.14 0.41
Prop. Mediated 0.7204 0.354 1.76 0.01 **
(average)




Annexe K : Tableau complet des résultats de médiation pour log_TLX (high vs low)

Effect Estimate 959% CI Lower 959% CI Upper p-value
ACME (control) -0.209 -0.307 -0.11 <.001 ***
ACME (treated) -0.347 -0.419 -0.26 <.001 ***
ADE (control) -0.227 -0.348 -0.13 <.001 ***
ADE (treated) -0.365 -0.503 -0.23 <.001 ***
Total Effect -0.574 -0.675 -0.47 <.001 ***
Prop. Mediated 0.359 0.192 0.55 <.001 ***
(control)

Prop. Mediated 0.612 0.449 0.75 <.001 ***
(treated)

ACME (average) -0.278 -0.358 -0.19 <.001 ***
ADE (average) -0.296 -0.417 -0.18 <.001 ***
Prop. Mediated 0.486 0.329 0.64 <.001 ***
(average)
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Annexe L : Tableau complet des résultats de médiation pour pupillométrie (medium

vs low)

Effect Estimate 95% CI Lower 95% CI Upper p-value
ACME (control) 0.003908 0.000137 0.01 0.036 *
ACME (treated) 0.011887 0.000567 0.03 0.036 *
ADE (control) -0.421615 -0.539249 -0.3 <.001 ***
ADE (treated) -0.413636 -0.528504 -0.29 <.001 ***
Total Effect -0.409728 -0.525668 -0.29 <.001 ***
Prop. Mediated -0.008329 -0.02842 0.0 0.036 *
(control)

Prop. Mediated -0.026593 -0.076868 0.0 0.036 *
(treated)

ACME (average) | 0.007897 0.000366 0.02 0.036 *
ADE (average) -0.417626 -0.533489 -0.3 <.001 ***
Prop. Mediated -0.017461 -0.05148 0.0 0.036 *

(average)
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Annexe M : Tableau complet des résultats de médiation pour pupillométrie (medium

vs high)

Effect Estimate 95% CI Lower 95% CI Upper p-value
ACME (control) 0.01671 0.00131 0.04 0.026*
ACME (treated) 0.01795 0.00144 0.04 0.026 *
ADE (control) 0.14286 0.02625 0.26 0.002 **
ADE (treated) 0.1441 0.02632 0.26 0.002 **
Total Effect 0.16081 0.04563 0.28 <.001 ***
Prop. Mediated 0.10008 0.01052 0.43 0.026 *
(control)

Prop. Mediated 0.1089 0.01175 0.44 0.026 *
(treated)

ACME (average) | 0.01733 0.00138 0.04 0.026 *
ADE (average) 0.14348 0.02628 0.26 0.002 **
Prop. Mediated 0.10449 0.01097 0.43 0.026 *

(average)
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Annexe N : Tableau complet des résultats de médiation pour pupillométrie (high vs
low)

Effect Estimate 95% CI Lower 95% CI Upper p-value
ACME (control) -0.00208 -0.00813 0.0 0.26
ACME (treated) -0.00554 -0.01878 0.0 0.26

ADE (control) -0.56805 -0.66943 -0.45 <.001 ***
ADE (treated) -0.57151 -0.6727 -0.45 <.001 ***
Total Effect -0.57359 -0.67598 -0.45 <.001 ***
Prop. Mediated 0.00296 -0.00263 0.01 0.26
(control)

Prop. Mediated 0.00826 -0.00771 0.03 0.26
(treated)

ACME (average) | -0.00381 -0.01328 0.0 0.26

ADE (average) -0.56978 -0.67051 -0.45 <.001 ***
Prop. Mediated 0.00561 -0.00517 0.02 0.26
(average)
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Annexe O : Data mapping

Construct Name

Operationalized Name

Task complexity

NASA TLX Cognitive load

Log Transformed NASA
TLX Cognitive load

Pupillometry cognitive
load

Trait competitiveness

Performance

Complexity

TLX

log tix

pupil_adj

trait_ competi

success_method

XV




Annexe P : lItems questionnaires

Construc
tname

Measure type

Description

Validity
(alpha)

Source
Reference

Implicit
Cognitive
load

Psychophysiologi
cal

Cognitive load measured with
pupillometry

(Krejtz et al.,
2018)

Explicit
Cognitive
load

Self-reported

Nasa TLX

6 items 100 points sliders
1. How mentally demanding was the
task?

2. How physically demanding was the
task?

3. How hurried or rushed was the pace
of the task?

4. How successful were you in
accomplishing what you were asked to
do?

5. How hard did you have to work to
accomplish your level of performance?

6. How insecure, discouraged, irritated,
stressed, and annoyed were you?

.92

(Hart &
Staveland,
1988)

Trait
competiti
veness

Self-reported

4 items:
7-point Scale: 1 = Extremely Disagree, to
7 = Extremely Agree

1. | enjoy working in situations involving
competition with others.

2. Itis important to me to perform
betterthan others on a task.

3. | feel that winning is important in
both work and games.

4. | try harder when | am in competition
with other people.

.84

(Spence &
Helmreich,
2014)
(Brown et
al., 1998)

Learning
Performa
nce

Observed

A score will be attributed to the
participants based on the method they
used to answer the question asked

N/A
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