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Abstract

The constant volatility across all maturities assumption is one of the main limitations

of the Black-Scholes model, and one way of testing the validity of that assumption is

to invert the classical formula of the Black-Scholes. We can then infer the volatility

of the underlying which is consistent with the observed option price. This is what

we know as implied volatility. Historical volatility is the volatility of the underlying

for a given time period, whereas implied volatility is concerned with what volatility

the market option price is implying today. In practice, when we plot the implied

volatility across maturities, we get what is known as a smile or a skew. After

the Black Monday of 1987, implied volatilities in equity markets across maturities

changed in shape from smile to skew. Investors started pricing and giving more value

to a steep downward event hence elevating the price (implied volatility) of the OTM

options. To avoid the limitation of the constant volatility, investors began using

models that assume a stochastic volatility, and we will use one of those models, the

Bates model, to replicate the market options under study. The Bates model is a

stochastic volatility model that allows us to examine the impact of volatility through

the lens of what is known as a jump diffusion model, which allows to disentangle

two kinds of volatility: diffusive (normal shocks) versus jump (large shocks). The

paper is trying to test what type of risk were Canadian investors pricing during the

March 2020 crash. For that, we calibrate the Bates model on XIU ETF options

throughout the March 2020 and we graph the evolution of the parameters of the

model. XIU ETF started trading in 1990, making it the first ETF in the world. It
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has a large exposure to the biggest Canadian companies, and it aims to replicate

the performance of the S&P/TSX 60 index, which is also an index of 60 large

companies on the Toronto stock exchange. By comparing the parameters of the

diffusion and the jump components, we can get an insight and infer what type of

risk was dominant at that time. March 2020 was one of the most volatile months

many investors experienced and it would be interesting to see what can the Bates

model tell us about the day to day changes the market was experiencing. Option

prices reflect the probability of a stock price going above or below a certain level, and

through this fundamental idea we can also get a idea of the probability distribution

during that time. Was it fat tailed? And if it was, was the distribution positively

skewed? In other words, were investors buying more OTM put options to hedge a

price decrease hence skewing the distribution to the left or were they not expecting

such a drop? Elevated prices in the OTM put options may indicate investors were

expecting a drop. A drop in markets can mean two things. A normal drop is what

is known as a diffusive risk and generally refers to the daily movement of a stock on

a normal day. Jump risk however can mean a sudden drop in the stock price, say

from $30 to $20 in one day. Many academic journals indicated that this was the

dominant type of risk in many markets at that time. We use options on XIU to get

an insight on the effect of Covid crisis on Canadian Markets.

Keywords: Bates, Characteristic Function, Fast Fourier Transform, Nelder-Mead,

Calibration, Jump process.

Abbreviations:

-OTM: Out of the money

-ATM: At the money

-ITM: In the money

-GBM: Geometric Brownian Motion

-UA: Underlying Asset
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Chapter 1

Introduction

Even though the Black-Scholes (Black & Scholes, 1973) was a huge milestone for

what we know now as option pricing, its limitation forced practitioners and aca-

demics alike to try and search for other alternatives. One of the limitations we men-

tioned before is the assumption that implied volatility should be constant across all

maturities and strikes. This assumption is clearly violated in practice and we wit-

ness varying implied volatilites with respect to both option strikes and maturities.

The other assumption is that stock prices follows a log-normal distribution whereas

in reality most stock prices have fatter tails than the distribution implies. Many

features observed in option pricing cannot describe market behaviors that we cur-

rently witness. Alos et al. (2007) argues that a while stochastic volatility models can

capture volatility smiles for longer maturity, a jump component becomes necessary

to have a better fit for the short term smiles. Stochastic volatility models include the

Heston (Heston, 1993) which assumes stochastic volatility, and Bates (Bates, 1996)

which combines that with the jump component of the Merton model. The arrival

of new information can create sudden change in prices, hence adding jumps to the

diffusion price dynamics allows a more realistic modelling of the underlying’s price

behavior. A closed form solution is not available. Hence, alternative methods such

as the Monte Carlo Simulation, finite differences, or pricing using the characteristic
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function are commonly used. In this paper, we use the latter as our method to fit

the Bates model on observed market prices, and the market prices used are the XIU

ETF options dating back from January 2020 to March 2020, the month where the

crash occurred.

The paper is organized as follows. The literature review elaborates on the global

market condition during the time of the pandemic and the impact Covid-19 had on

volatility. Literature on pricing various exotics and American options using Bates

are presented as well. Data and Methodology section delves deeper on the pricing

using Bates, with a focus on the Fast Fourier Transform and the different processes

that contribute to the creation of Bates. We explain the characteristic function

and its importance in modelling stochastic volatility models when the risk neutral

density of the terminal stock price is not available. We also explain the calibra-

tion process and the method used for finding the least square error of the objective

function. We present our data with some option prices from the period calibrated,

and we lastly introduce the method used to find the term structure of interest rates

for discounting the options. We then present our results, showing the evolution of

our parameters and some random fits from before and after the crisis. The mean of

the jump in our model moves from positive (positive jump/movement expectation

in the UA price) territory to negative territory on March 12, coinciding with the

largest drop in the ETF. This shows that investors were pricing a huge drop before

March 12, and expected a rebound in the price afterwards. Diffusive parameters

were negligible before March 12, indicating a relatively calm market environment.

After the crash, both diffusive and jump were elevated indicating extreme market

volatility.
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Chapter 2

Literature Review

2.1 Impact of Covid-19 on volatility

After being the main headline for the past 2 years, the Covid-19 pandemic had a huge

toll on market prices, volatility and investor sentiment. In this section, we review the

effect of the pandemic on the global stock market and market sentiment in the US.

Baker et al. (2020) show that the Covid-19 pandemic had the most significant effect

on the stock market compared to other pandemics in 1918–1919, 1957–1958, and

1968. One of the main reasons of this effect is the vulnerability of a service-oriented

economy to restrictions on commercial activity. Chatjuthamard et al. (2021) find

that when the growth rate of the number of people infected with the virus trends

upward, volatility and jumps in the global stock market become more apparent. John

and Li (2021) put together proxies for sentiment levels caused by News, Lockdown,

Banking, Government relief efforts, and Covid. He finds that the jump component of

the VIX index is positively correlated with Market index, Lockdown index, Banking

index, and Covid index. Moreover, when the US government announced the relief

efforts, that same jump component decreased. Volatility in the energy markets

during that time was no different, Shaikh (2022). Li et al. (2021) show the adverse

effect the pandemic had on stock market returns of the major affected countries. As
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to Europe, Duttilo et al. (2021) show that euro countries’ stock markets with large

financial centers were more susceptible Covid-19 than the stock market of countries

with small financial centers. Moreover, the first wave had the biggest effect on stock

market volatility for countries with bigger financial centers. As for commodities,

volatility levels in the WTI crude oil market were extremely high. Investors in the

energy market were trying to protect themselves from tail risks and paid excess

premiums for put options. Li et al. (2021) show that volatility spikes and drops

exhibit the same habit among G20 countries during the Covid pandemic. Other

findings show that developed markets are usually the main spillover transmitters.

Volatility tends to spike in major indices such as the S&P 500 and spillovers to

market indices in emerging markets. We can conclude that no financial market on

average has not been affected by the pandemic as the trend in most markets were

high volatility with lower returns.

2.2 Literature on pricing options using Bates

Commodities in general do exhibit jump-like moves when important news start cir-

culating. Hilliard and Reis (1999) compare the performance of the American version

Bates and Black model when used to price soybean futures options. Since the com-

modity future options studied in the paper are American options, Black and Bates

are used alongside the Barone-Adesi and Whaley which is an adjustment used to

price American options. The paper reports a Mean Absolute Error (MAE) of 0.0694

for calls and 0.0640 for puts using Bates, whereas 0.2170 and 0.1666 for puts and

calls respectively using the Black model. Asian future options are also priced where

parameters used to price OTC Asian options are extracted from standard vanilla

options. Asian options are exotic options whose payoff is linked to the average of the

price of the underlying or the average strikes for a given period of time. They typi-

cally are cheaper than vanillas because they average out a collection of prices which
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makes the option less volatile. The results on Asian options shows that modelling

Asian options using GBM leads to a drastic overpricing in the OTM puts, and under-

pricing in the OTM Asian Calls. If we compare OTM puts of the same strike, we see

that the ratio of prices GBM/Bates surmounts to 4.9269 which is a clear overshoot-

ing. The same OTM put had a ratio of 1.7946 for standard vanilla calls. OTM calls

for the same strike had a ratio of 1.0164 for Asian options and 1.0483 for vanillas.

Using finite differences to price options has been a popular method to price options

and can be used to variation of price dynamics that an underlying may exhibit. Fi-

nite differences are usually used to price American options due to low dimensionality

in pricing an American option. Pricing exotics that exhibit high dimensionalities be-

comes extremely tedious and becomes computationally costly. Ballestra and Sgarra

(2010) propose a method to price American options using finite differences on an un-

derlying modelled by Bates. Early exercise is what differentiates American options

on its European counterpart and adding this extra dimension to any pricing method

may complicate the derivation. Ballestra and Sgarra (2010) argue that the early ex-

ercise component makes it unsuitable to use the characteristic function as a tool for

pricing. The early exercise problem is solved by using the Richardson extrapolation

of the prices of two bermudian options. Bermudian option are then priced using an

implicit/explicit time stepping and a finite element method to arrive at a linear sys-

tem of equations that can be solved efficiently. All the studies mentioned above show

how accurate can Bates be when we try to replicate the price of any type of options.

XIU ETF options are European, hence we can, with confidence, be assured that our

results should be fairly accurate and as good as any other stochastic volatility model.

Option pricing models are usually used to trade options or to manage one’s risk

by calculating the Greek parameters and monitoring the evolution of the model’s

parameters. Barely any literature has been done on the utilization of Bates in the

Canadian market, and this paper is here to do exactly that. We use Bates to try to fit
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the prices generated from the model with the market prices on the XIU ETF options.

We calibrate the model before and after the Covid-19 crash which happened around

March. We then decided to calibrate from January 8 until March 24. We could have

started calibration on February but we give the model several days to converge to

its true parameter values. Bates gives us the chance to decompose volatility into

two main components, one being the diffusive volatility which corresponds normal

shocks. The other type is jump risk/volatility, known as fat tailed risk. Hence,

calibrating Bates allows us to see what type of risk was prevalent at that time,

and gives an insight on the day to day trading such an ETF. One might expect

an elevation in the jump parameters but the decrease in the price of the XIU was

gradual and not sudden. This makes the endeavor more interesting as the results

can go either way.
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Chapter 3

Methodology

3.1 Option Models & Processes

Here we delve deeper into the components and processes of the Bates model. The

model consists of eight unique parameters which we describe below.

3.1.1 Poisson Process

Dorion and Francois (2021) describes the Poisson process as follows. The standard

Poisson process is the stochastic process used to model jumps in models such as the

Merton and Bates Model. Stochastic volatility models such as Heston are not able to

capture the sudden jumps that an asset can exhibit especially in moments of crises,

hence the Poisson process gives us the perfect addition to capture specifically that.

The process is denoted by Nt and is a counting process where a series of events are

assumed to be driven by independent and identically distributed random variables

that follow an exponential distribution with parameter λ which is commonly referred

as the intensity parameter. It is worth mentioning that the Poisson process Nt is a

stochastic process if it satisfies three of the following properties:

1) The process starts at 0.

2) The process has independent increments. This means that for any t and s where
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t > s, Nt - Ns is independent of Ns

3) An exponentially distributed increments, for any n, are described by

P(Nt −Ns = n) =
λ(t− s))n

n !
e−λ(t−s) (3.1)

3.1.2 Merton Model

The Merton model is an extension of the Black-Scholes model as it adds the jump

component to try capturing a steep rise or fall in the underlying’s price when in-

vestors receive new sudden information. By combining the diffusion and Poisson

process, we arrive at the following Merton model equation:

dS(t)

S(t)
= (r − q − λµJ)dt+ σdWt + (eJ − 1)dNt (3.2)

where the log-jumps have the distribution:

log(1 + Jt) ∼ N(log(1 + µJ)−
υJ
2
, υJ) (3.3)

It is assumed that the correlation between the diffusion and jump process is null.

λ is the intensity of the jumps, Jt is the jump size, µJ and υJ are the mean and

variance of the jump respectively. The skewness of the underlying’s distribution is

directly affected by µJ whereas the υJ is more related to the kurtosis. Note that

adding the jump component makes the model incomplete, hence we do not have

a unique risk-neutral measure that makes the discounted price of the underlying a

martingale.
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3.1.3 Bates Model

The Bates model adds another layer to the Merton model by assuming that volatility

is stochastic. One could also argue that Bates is just a Heston model 1 with a jump

process which is just another way of looking at the model. Volatility of the underlying

is assumed to follow a mean reverting process, following the Cox–Ingersoll–Ross

model. The price of the underlying and its variance is characterized by

dSt = (r − q − λµJ)Stdt+
√

VtStdWt + JtStdNt (3.4)

dVt = κ(θ − Vt)dt+ σ
√
VtdZt (3.5)

The model assumes a correlation between the diffusion processes of the underlying

and its variance

dWtdZt = ρdt (3.6)

θ is the long term variance, and it is worth mentioning that both θ and ρ have the

same impact on the implied volatility of the option, and is usually negative, which

is what we typically see in real market observations, Cont (2001). The negative

correlation between the asset’s price or returns to its volatility is known as the

’leverage effect’. κ is the speed of mean reversion, and has a lesser effect on the

implied volatility smile when compared to the other parameters. σ is the volatility-

of-volatility, and it gives our implied volatility surface a more steeper skew. The

jump components produces a higher implied volatility than the ones implied by

Heston especially in the short end, giving us better chances to fit market data 2.

1More on Heston and CIR in the appendix.
2The effects of the parameters on the volatility smile is shown graphically in the appendix.
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3.2 Characteristic Functions

Characteristic functions is a mirror image of a probability density function as it

contains the probability distribution of the underlying asset at any point in time.

For our case, the characteristic function is known analytically. According to Bakshi

and Madan (2000), European options are priced by the following formula:

C0 = e−qτS0Π1 − e−rτXΠ2 (3.7)

On the other hand, the risk-neutral probability of the option finishing in the

money is:

P (ST > K) = Π2 =
1

2
+

1

π

∫ ∞

0

Re

(
e−iulnKϕT (u)

iu

)
du (3.8)

with delta being

∆1 =
1

2
+

1

π

∫ ∞

0

Re

(
e−iulnKϕT (u− i)

iuϕT (−i)

)
du (3.9)

3.3 Fast Fourier Transform

Carr and Madan (1999) developed an algorithm that computes the price of an option

using what is known as the Fast Fourier Transform. The advantages of pricing

using FFT is its speed and ability to price options for a wide range of given strikes.

Moreover, the characteristic options for many stochastic volatility models are known,

whereas their density is in most cases not available. Borak et al. (2005) explain that

the goal of this method is to develop a Fourier transform expression as a function of

the call price, and then inferring the price by Fourier inversion. The standard call

premium CT (k) is described by the following equation:

CT (k) =

∫ +∞

k

e−rT (es − ek)qT (s)ds (3.10)
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where K is the log price of the strike K, and qT is the density of sT = logST under

the risk neutral measure. The general characteristic function that pertains to sT is

defined by

ϕT (u) =

∫ +∞

−∞
eiusqT (s)ds (3.11)

There is a slight modification that Carr and Madan (1999) do to transform equation

3.10 to a square-integrable function

cT (k) = eαkCT (k) (3.12)

where α, also known as the damping factor, is recommended to be strictly positive.

The equation is just an adjustment to the call price CT (k) made by Carr and Madan.

We will be using the adjusted call price ct(k) in the equations below.

The expression for the characteristic function can now be easily inferred:

ϕT (υ) =

∫ +∞

−∞
eiυk

∫ +∞

k

eαke−rT (es − ek)qT (s)dsdk

=

∫ +∞

−∞
e−rT qT (s)ds

∫ s

−∞
(eαk+s − e(α+1)k)eiυkdkds

=

∫ +∞

−∞
e−rT qT (s)

(
e(α+1+iυ)s

α + iυ
− e(α+1+iυ)s

α + 1 + iυ

)
ds

=
e−rTϕT (υ − (α + 1)i)

α2 + α− υ2 + i(2α + 1)υ

(3.13)

Using the inverse transform and by substituting, we get the option price in terms of

the characteristic function

CT (k) =
e−αk

π

∫ +∞

0

e−iυkϕ(υ)dυ (3.14)

The above equation can be written, by utilising the trapezoid rule for integration
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on the integral part of equation 3.14, and by setting υJ = νj for j = 0, .., N − 1, as

CT (k) ≈
e−αk

π

N−1∑
j=0

e−iυjkϕ(υj)ν (3.15)

The generic FFT method computes the sum of

w(k) =
N−1∑
j=0

e−i 2π
N

(j−1)(k−1)x(j), for k = 0, .., N − 1 (3.16)

N here is a power of 2. The mean reason why the FFT method is considered fast

and efficient is because it reduces the computation from N2 to NlogN , which reduces

computational time by quite a lot. This FFT algorithm will allow us to compute

the summation of equation 3.15. Carr and Madan suggested an integration method

known as the Simpson rule which transforms our pricing equation to the following

C(ku) =
e−αku

π

N−1∑
j=0

e−i 2π
N

(j−1)(u−1)eibυjϕ(υj)
ν

3
[3 + (−1)j − δj−1] (3.17)

The Kronecker delta function δj−1 is a binary function where it takes 1 for n = 0

and 0 otherwise. Based on FFT convention, we have decided to take α = 1.5 and

ν = .25 as they have been proven to be the best values where the option converges

to its true value.

Density functions for some stochastic variables in literature is known, and from

that we deduce probabilities, expectations and variances which then allows us to

price our instrument. Characteristic functions are used when the density function

of our variable is not defined which is the case with the Bates model. Fast Fourier

transform is one of various techniques that use the characteristic function as a tech-

nique to price options and due to its simplicity and speed, we have decided to use

it to price the XIU options.
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3.3.1 CF for Bates

One can decompose the characteristic function of Bates as being the addition of the

CF of Heston and the CF of Merton.3 Albrecher et al. (2007) define the characteristic

function of Bates as follows:

ϕ = eA+B+C+D (3.18)

A = iωlogS0 + iω(r − q)τ

B =
θκ

σ2
(κ− ρω − d)τ − 2log(

1− ge−dτ

1− g
)

C =
υ0
σ2

(
(κ− ρω − d)(1− e−dτ )

1− ge−dτ

)

D = −λjµjiωτ + λτ
(
(1 + µJ)

iωe
1
2
υJ iω(iω−1) − 1

)

d =
√

ρσiω2 + σ2(iω + ω2)

g =
κ− ρω − d

κ− ρω + d

3More on CFs in the appendix.
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It is important mention that even though Bates does a better job in capturing

the short end of the skew, there is one main limitation worth mentioning. The Bates

model has 8 distinct parameters with many of those having the same effect on the

implied volatility, hence many of those parameters can in fact be correlated, which

may put us at a risk of over fitting.
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Chapter 4

Data & Calibration

Data used for this paper is the XIU ETF options. We calibrate the months of

January, February and March of 2020. On March 11, the closing price was 21.46, on

the 12th it dropped to 18.83, rebounds the next day to 20.82, and then drops again

on March 16 to 18.76. The real drop in the price of the ETF was on March 12 and

the trough was around 18.83. So, the goal is to calibrate before and after the drop

and monitor our parameters. Figure 4.1 is a graph that shows the drop:

Figure 4.1: Evolution of ETF XIU Price
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In order to get a consistent parameter evolution that reflect market conditions

before the drop, we calibrate the parameters from January 8. The ETF has the

most liquidity for options around the money, and the table below is the prices for

the options on January 9, with a maximum maturity close to one year. The decision

to remove higher maturity options is due to the lack of liquidity .The contribution

would be very minimal and they might bias our parameters. We also remove bid

prices that are zero since they do not really reflect market demand and supply.

We also remove prices of put options to make our calibration faster. We assume

that put-call parity holds for our data, hence we remove prices of put options to

fasten the calibration process. Note that the put call parity in our data does not

always hold, especially for options with little to no liquidity. We had to make this

assumption since adding data for puts will make the calibration process really time

consuming. For March, we have 9330 calls and 9309 puts, the average time to

calibrate the parameters on calls only for one day in March was around an hour.

Since we are calibrating daily for 2 months (January, February and March) we used

this assumption to have an overall view about the Canadian market and the ETF

at that time without imposing an unordinary assumption.

We present two sets of data, one from January 9 and the other from March 16. We

then present some statistics on the data based on moneyness and maturities. We

chose January 9 and March 16 to see the differences before and after the crisis.
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Table 4.1: Jan.9 -Data based on Moneyness

Deep ITM ITM OTM Deep OTM

Total Quotes 8 94 58 12

Max Price 7.91 7.91 2.92 0.455

Min Price 5.9 1.12 0.5 0.05

Mean 6.475 3.01 0.651 0.175

Standard Deviation 0.679 1.565 0.553 0.117

Table 4.2: Jan.9 -Data based on Maturities

3 months Between 3-6 months More than 6 months

Total Quotes 96 17 39

Max Price 6.9 5.90 7.91

Min Price 0.06 0.05 0.065

Mean 1.874 2.387 2.572

Standard Deviation 1.385 1.931 2.179

Table 4.3: Jan.9 -Total Call options

Total Quotes Max Price Min Price Mean Standard Deviation

152 7.91 0.05 2.111 1.716
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Table 4.4: Mar.16 -Data based on Moneyness

Deep ITM ITM OTM Deep OTM

Total Quotes 6 73 205 49

Max Price 4.225 4.225 2.065 0.51

Min Price 3.28 1.42 0.055 0.055

Mean 3.782 2.552 0.750 0.302

Standard Deviation 0.341 0.586 0.463 0.1

Table 4.5: Mar.16 -Data based on Maturities

3 months Between 3-6 months More than 6 months

Total Quotes 188 28 50

Max Price 3.46 4.16 4.225

Min Price 0.145 0.055 0.12

Mean 1.313 1.20 0.929

Standard Deviation 0.855 1.169 1.025

Table 4.6: Mar.16 -Total Call Options

Total Quotes Max Price Min Price Mean Standard Deviation

278 4.225 0.055 1.223 0.936

For January 9, the price of the ETF was 25.87. We consider a call with strike

between 30.5 and 31 (maximum strike value) as deep OTM, and a call with strike

ranging from 20.5 to 18 to be deep ITM. As for March 16, Deep OTM was considered

to have a strike range between 31 and 32 and Deep ITM having a range between 14
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and 15. The price at that time was 17.71. One thing we immediately notice is that

the number of quotes increased sharply after the crisis. This is expected as investors

usually find more opportunity during turbulent times and tend to invest more. The

total number of quotes varies around the 100-200 range everyday throughout our

entire sample of two months which is relatively small compared to indices such as

S&P 500, and should be taken into consideration.

4.1 Nelson-Siegel model

Discounting is a crucial part of option pricing. We used yields from Canadian

treasury bills with maturity up to 3 years. To capture the term structure needed

for discounting, we use the Nelson-Siegel model which is used to capture different

shapes of the term structure and works relatively well for the short term of the term

structure which is what we need since our options have a maximum maturity of 1

year. The following is the Nelson-Siegel equation used to model the forward term

structure:

f(0, Ti) = β0 + β1e
−Ti
θ + β2

Ti

θ
e

−Ti
θ (4.1)

The first and the second term of the equation tries to capture different shapes of the

interest rate term structure. Many academics add a third term to better capture

the long end of the term structure but since we use interest rates up to three years,

we limit our equation to the first two terms. The following relationship between the

continuous spot and forward rates is:

R(0, Ti) =
1

Ti

∫ Ti

0

f(0, s)ds (4.2)

Replacing (3.20) into (3.19):

R(0, Ti) = β0 + β1(
1− e

−Ti
θ

Ti

θ

) + β2(
1− e

−Ti
θ

Ti

θ

− e
−Ti
θ ) (4.3)
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We then calibrate the rates generated by Nelson-Siegel with market rates using

the following equation:

min
ϕ

α∑
i=1

(R(0, Ti)market −R(0, Ti)NS)
2 (4.4)

where ϕ=β0,β1,β2,θ. α is the last maturity date of our term structure. Figures

(a) and (b) shows the term structure for up to three years. Even though time to

maturity is limited to three years, there clearly is an inversion in the term structure

which may have been a signal to what is coming.

(a) Jan 20 Term Structure (b) March 12 Term Structure

4.2 Calibration

Calibrating model prices to market ones is not a simple task especially if you have

a relatively large number of parameters. Many practitioners prefer a low set of

parameters to avoid noise and overfitting. Before describing our calibration method,

we should highlight the limitations of calibrating a model such as Bates. Eight

parameters are needed to be calibrated, ω = κ, θ, σ, v0, ρ, λJ , µJ , σJ , and many of

them have the same impact on the volatility smile. This increases the risk of over-

fitting, and even though we may have the ability to fit all sort of structures, the

ability to forecast with such a model may be dampened. This may also cause the

objective function not to be as smooth as one might want it to be, hence we might

encounter several local minima. As for the objective function, we are looking for
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model parameters that minimizes the differences between model call prices CBates

and market call prices Cmkt. The minimization is solved as a non-linear least squares

optimization problem. For ω = κ, θ, σ, v0, ρ, λJ , µJσJ :

MSE =
1

N
min
ω

N∑
i=1

(C(Ki, Ti)mkt − C(Ki, Ti)Bates)
2/C(Ki, Ti)Bates (4.5)

where N corresponds to the number of XIU call options.

4.3 Fitting Performance

The following are the fits for February 14 and March 4 for random maturities.

Maturities are mentioned on the top of the graph. The blue curve corresponds to

market prices whereas the yellow one is the prices generated by Bates.
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Figure 4.3: Fits for February 14
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Figure 4.4: Fits for March 4

On the other hand, the mean square error was as follows. The error was really

close to zero before the crisis, but increased a bit after the crisis and the worst fit

was on the day of the second largest drop in March 16, where the MSE was equal

to 0.103708. This high error was expected as the market was really volatile and fear
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at that time may change the normal market dynamics that the model can usually

capture. There might have been a regime change which the Bates model cannot

capture, hence we see an elevation towards the end of the March.

Figure 4.5: Evolution of MSE

This graph shows exactly why we decided to start two months before the crisis.

Even though we did not calibrate on every day in January, we gave the model a

learning time-frame so that it can converge to its true parameters. For January, we

calibrated the model on January 7,8,13,20 and 28. We use the parameters of the

previous day to calibrate the parameters of the next. For example, after putting

in an initial parameter guess and calibrating on the 8th of January, we use the

calibrated parameters as an initial guess for the 9th and so on. We use previous

points as starting values because we believe values on the previous day should be a

reasonable estimate to the day after. Unless we face a moment of crisis like the one

on March 12-16, our parameters change within a reasonable range. The reason why

we do not calibrate for every single day in January is that after the 13th of January

we notice that the parameters stabilize around certain values. This is clear in the

parameter evolution graphs presented in the section below. February happens to be

the month with the least errors and calibrating several days in January really helped

reach these small values. We calibrate the whole month of February and March until

we reach March 24.
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Chapter 5

Results

The first day of calibration was on January 7 and to start, we ran the computation

using the following initial parameters:

Initial Parameters

Mean reversion κ 0.01

Long-term mean of variance θ 0.019

Volatility of the volatility σ 0.033

Correlation between Brownian Mo-

tions ρ

-0.7

Variance initial value V0 0.0724

Jump intensity λJ 0.59

Jump mean µJ -0.04

Jump volatility σJ 0.06

Figure 5.1: Initial parameters for calibration

We chose λJ to be 0.59 as per Lindström et al. (2008). Most of the literature has

relatively high values for kappa but after shocking the parameters, we found that

kappa in our case should be anywhere between 0.09 and 0.01. The jump parameters

were also used from Lindstrom’s paper while the others were changed manually,
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before calibration, to get the least mean squared error. We start with a µJ of zero.

A negative µJ means that the underlying is expected to have more downward jumps

whereas a positive jump mean indicates the opposite. As for the initial value for

v0, we use the following heuristic method by Oosterlee and Grzelak (2019). For a

maturity close to zero, one might expect the underlying to follow the Geometric

Brownian motion process:

dS(t) = rS(t)dt+
√
voS(t)dW (t) (5.1)

We can approximate T → 0 by an option with the shortest maturity. This implies

that v0 can be approximated by the square of the short maturity ATM implied

volatility, vo ≈ σ2
imp, Yan (2011).

Calibrated paramaters for that day gave us the following result:

Initial Parameters

Mean reversion κ 0.01001

Long-term mean of variance θ 0.02239

Volatility of the volatility σ 0.03985

Correlation between Brownian Mo-

tions ρ

-0.8231

Variance initial value v0 0.785

Jump intensity λJ 0.125

Jump mean µJ 0

Jump volatility σJ 0.072

Figure 5.2: Calibrated Parameters

It is important to mention the boundaries that we have set throughout the cali-

bration process. The boundaries clearly affect the results and it should be mentioned

that we force vol of vol σJ , and jump intensity λJ to be non-negative and correlation

32



ρ to vary from 1 to -1. θ, v0, σJ , κ are also set to be non-negative. We also try

to increase or decrease the boundaries of other parameters so that the optimization

takes less time. An example of this would be setting κ anywhere between 0.01 and

0.09, or setting vol of vol to range from 0.01 to 0.1 before the crisis as this was

generally what many would consider a reasonable range for a calm market.

The reason why we presented the initial parameters is to highlight the importance

of choosing a set of parameters that can closely match the ETF price. This impor-

tance stems from the fact that the Nelder-Mead works optimally when one feeds it

a reasonable set of initial parameters especially if the model has a large number of

them. We stopped the daily calibration at March 24, and we notice the volatility of

the ETF price is relatively minimal as the price stabilizes around $20 at that time.

Moreover, many practitioners refer to March 2020 as the month where the crash

happened. We present the evolution of the parameters in the following figures. As

one can notice, March 12 and March 16 were the days were our parameters change

the most, and this is expected as the two largest drops where on those two days,

with around 12 and 9 percent drop respectively. Note that we only have one trading

day between the two, March 13, which happens to be on a Friday.
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(a) Mean Reverting Parameter (b) Long Term Variance

(c) Volatility of Volatility (d) Correlation

Figure 5.3: Diffusion Parameters’ Evolution

(a) Intensity of the jump (b) Mean of the Jump

(c) Volatility of the jump

Figure 5.4: Jump Parameters’ Evolution
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Kappa does not exhibit any movement and does not really have that of an effect

on the smile. Theta and sigma almost exhibit a similar pattern. They were low

throughout January, February and early March but spike around the 16th of March.

The parameters above and the move in the underlying clearly proves that the peak of

the crisis was on March 16. On the 16th, the mean of the jump moves from negative

to positive territory. One might ask what happened on March 16 for our parameters

to exhibit such behavior. This behavior resembles a combination of diffusion and

jump processes where the price of the underlying moves up and down, with large

and sharp deviations causing a spike in volatility, theta, and the mean of the jump.

The mean of the jump at January 8 starts around zero (slightly positive), which is

what we expect in a calm market like the one in January. As we get closer to March,

the mean decreases steadily and stabilizes in the negative region before exhibiting a

large drop on March 16th. On this day, the ETF makes its second largest drop of 8

percent after dropping another 12 percent 2 trading days before on the 12th. This

causes the mean of the jump to steeply decrease to around -0.8. What is interesting

is that after this drop, the mean of the jump increases dramatically to fall within

the positive territory, indicating that the market was pricing in a sudden increase

towards the upside after this drop. This also coincides with a spike in the intensity

of the jump on the same date as well. The evolution of the parameters indicate that

around the beginning of March, the market was pricing in a jump-like negative drop

in the ETF. After the drop happened twice on the 12th and 16th, the market priced

in a jump upwards with sharp deviations in the price. We then can divide the three

tested months into three distinct three periods. The period between the first day

of calibration and February 3th would be characterized as period of a calm market

with neither jump nor diffusion parameters exhibiting any non-ordinary behavior.

After February 3, we witness the first drop in the mean of the jump from positive

to negative territory indicating that the market was starting to price in a sharp

price reduction. The jump of the mean kept decreasing up until March 16 with
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little to any movement in the diffusion parameters. The market was pricing in a

sudden drop in price, and after that drop happened, we witness a sharp rise in

the diffusion parameters, mainly theta and volatility of volatility, with the jump of

the mean moving to positive territory, and the intensity of the jump sharply rising.

This period up until the last day of calibration had both high jump and diffusion

parameter values, indicating that the market was expecting both a high volatility in

the price of the ETF and a sharp rise to the upside, mainly a rebound to the largest

drop in the ETF’s price on March 12.

Table 5.1: Parameter Mean & Standard Deviation

Parameters Mean Standard Deviation

κ 0.008786526 0.006129671

θ 0.131051406 0.211485298

σ 0.167903976 0.26005385

ρ -0.719398809 0.240885041

λJ 0.547454854 1.087923011

µJ -0.135204116 0.286273436

σJ 0.024554721 0.021850588

This table gives us an overall picture of what we saw in the graphs. The highest

deviations from the mean where from the diffusion and the jump parameters, with

the intensity of the jumps getting the highest value. We also notice a negative

average for the mean of the jumps, which indicates that during that time, market

sentiment was expecting, on average, a sharp drop in the price of the ETF. We also

present the mean and standard deviations of the parameters before March 12 and

after March 12 where every sample contains 8 calibrated days.
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Table 5.2: Before Mar.12 parameter Mean & Standard Deviation

Parameters Mean Standard Deviation

κ 0.009922378 0.006752116

θ 0.041763639 0.034709636

σ 0.084754986 0.067118278

ρ -0.66569351 0.239823888

λJ 0.697801444 0.445102649

µJ -0.298029114 0.219813854

σJ 0.02471375 0.019494354

Table 5.3: After Mar.12 parameter Mean & Standard Deviation

Parameters Mean Standard Deviation

κ 0.005490512 0.005632359

θ 0.398741668 0.278633641

σ 0.434304222 0.410635061

ρ -0.959373333 0.049013838

λJ 0.673217903 1.916143115

µJ 0.189619339 0.18452323

σJ 0.008657202 0.006280627

Before March 12, theta and sigma were pretty low whereas the mean of the jump

had was deeply negative. This indicates that the market was pricing in a jump

downwards with little small deviations. After March 12, theta and sigma sharply

rose in value and the mean of the jump went to positive territory indicating a change

in market sentiment. Now the market was pricing heavy deviations with a shock

to the upside. In other words, the expectation was that the price will move like a

37



combination of a jump and diffusion process.
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Chapter 6

Conclusion

In this paper, we try to test how the Canadian market reacted to Covid crisis

of March using XIU ETF options. The ETF includes major Canadian financial

and construction companies and could be perceived as a good representation of the

Canadian stock market. To test the reaction of that market, we use the Bates model,

which is a stochastic volatility model that allows us to examine the disentangle two

kinds of volatility: diffusive (normal shocks) versus jump (large shocks). We use

the Characteristic function approach to model Bates, and to fasten the time needed

to generate prices, we use Fast Fourier Transform. We calibrate the model on the

market prices using the Nelder-Mead optimizations from January 7 till March 24.

The results clearly show an elevation in the jump parameter, especially the mean of

the jump. One of the more interesting finds were on March 16, where the mean of the

jump went suddenly from the negative to positive territory, indicating a price jump

to the upside, in addition to a rise in the diffusion parameters, which was not what

we expected. The peak of the crisis was on the 16th where we witnessed the second

largest drop in the ETF, the largest being on the 12th, two trading days before. The

evolution of the parameters reconfirms exactly that, and we see drastic changes in

the value of the parameters after that date. March 2020 was an exceptional time

for markets so seeing these type of results should not come as a real surprise.
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Our calibration error started to rise a bit after March 16 for reasons that can be

explored in later research. We used the local optimization technique, Nelder Mead,

which may not be sufficient to capture a surface with several global minimums, and

that might be the reason why we have a relatively high MSE during that time. One

could say that there might have been a regime change during that time which the

model cannot capture, and we leave this problem for future research.
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Appendix A

Appendix

A.1 Deriving the CFs for Affine Diffusion models

Oosterlee and Grzelak (2019) define an Affine Diffusion process as follows. Suppose

you have state variables that have the following SDEs:

dX(t) = µ̄(X(t))dt+ σ̄(X(t))dW (t) (A.1)

Assuming the brownian motions are independent, for a process to be affine, the

following assumptions should be satisfied:

µ̄(X(t)) = a0 + a1X(t)

σ̄(X(t))σ̄(X(t))T = (c0)ij + (c1)
T
ijX(t)

r(X(t)) = r0 + rT1 X(t)
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This means that the drift,volatility, and interest rates should depend only linearly

with respect to the state variable. Duffie et al. (2000) show that when you have an

affine diffusion process, the discounted characteristic function is defined as follows:

ϕ(X(t), t, T, u) = EQ
[
e−

∫ T
t r(Xs)dseiuXT | F (t)

]
(A.2)

with boundary condition being:

ϕ(X(t), T, T, u) = eiu
TXT (A.3)

has a solution:

ϕ(X(t), t, T, u) = eA(u,t,T )+B(u,t,T )TX(t) (A.4)

A(u, t, T ) and B(u, t, T )T are found when we solve the PDE of the process at

hand. We will use the Black scholes as a demonstration but before we proceed we

should mention that after solving the PDE we get A(u,t,T) and B(u, t, T )T by the

following Ricatti ODEs:

d

dτ
A(u, τ) = −r0 +BTa0 +

1

2
BT c0B (A.5)

d

dτ
B(u, τ) = −r1 + aT1B +

1

2
BT c1B (A.6)
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A.1.1 Example using Black Scholes

Duttilo et al. (2021) present the following example on finding A&B and testing for

affinity. The stock price has the following process under Black-Scholes:

d(S(t)) = rS(t)dt+ σS(t)dWQ(t) (A.7)

Testing the second condition mentioned above to check if the process is affine:

σ̄(S(t))σ̄(S(t)) = σ2S(t)2 (A.8)

This process is clearly not affine as volatility is not linearly related to the stock

price process. Hence, we consider the log-normal of S(t) which is affine as presented

below. The SDE of x(t) = log S(t) is :

d logS(t) = (r − 1

2
σ2)dt+ σdWQ(t) (A.9)

Testing for affinity:

µ̄(X(t)) = r − σ2 + 0x(t)

σ̄(X(t))σ̄(X(t))T = σ2 + 0x(t)

r(X(t)) = r + 0x(t)

where a1, c1, and r1 are all zeros. We also have by substitution, a0 = r − 1
2
σ2, and

c0 = σ2. Drift, interest rate, and volatility are all linearly dependent on the state

variable making the log of S(t) affine. Setting up the system of ODEs to get A(u,τ)

and B(u,τ):
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d

dτ
A(u, τ) = −r0 +B(u, τ)a0 +

1

2
B(u, τ)c0B(u, τ) (A.10)

d

dτ
B(u, τ) = −r1 + a1B(u, τ) +

1

2
B(u, τ)c1B(u, τ) (A.11)

By substituting the values above we get:

∂

∂τ
B(u, τ) = 0

∂

∂τ
A(u, τ) = −r + (r − 1

2
σ2B(u, τ)) +

1

2
σ2B(u, τ)B(u, τ)

with boundary conditions:

B(u, o) = iu

A(u, 0) = 0

We then finally obtain our two values for A&B:

B(u, τ) = iu (A.12)

A(u, τ) =

[
−r + iu(r − 1

2
σ2 − 1

2
u2σ2

]
τ (A.13)

Using equation A.4,The characteristic function for the Black-Scholes model is

defined as:

ϕ(u, τ) = eA(u,τ)+B(u,τ)x0 (A.14)

By directly substituting,

ϕ(u, τ) = eiu logS0+iu(r− 1
2
σ2)τ− 1

2
u2σ2τ−rτ (A.15)
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The same idea can be expanded to find the characteristic function for Bates and

other stochastic volatility models who are affine.

A.2 Stochastic Volatility Models

A.2.1 Cox-Ingersoll-Ross

One of the advantages of the model compared to other models that model volatility

is that the equation forces volatility to be non-negative.

dVt = κ(θ − Vt)dt+ σ
√
VtdWt (A.16)

CIR model is usually used to model variables who exhibit a mean reversion phenom-

ena such as interest rates and volatility. CIR processes could be modelled using the

chi-square distribution or the closed form solution. It is worth mentioning that to

avoid volatility to hit zero, the Feller condition is imposed , 2κvγ2. If the condition is

not satisfied, there will be an accumulation of probability mass around zero making

the left tail grow rapidly and unrealistically.

A.2.2 Heston Model

To negate one of the main assumptions in the Black Scholes model regarding con-

stant volatility, Heston (1993) add a new dimension to the BS model by assuming

stochastic volatility.

dSt = (r − q − λµJ)Stdt+
√
VtStdWt (A.17)

dVt = κ(θ − Vt)dt+ σ
√
VtdZt (A.18)

where the two Brownian motions have a correlation ρdt. We can see that Bates is

simply a Heston model with the jump component extension. The following is the
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characteristic function of Heston if one wishes to model Heston using the character-

istic function.

ϕ = eA+B+C (A.19)

A = iωlogS0 + iω(r − q)τ

B =
θκ

σ2
(κ− ρω − d)τ − 2log(

1− ge−dτ

1− g
))

C =
υ0
σ2

(
(κ− ρω − d)(1− e−dτ )

1− ge−dτ

)

d =
√

ρσiω2 + σ2(iω + ω2)

g =
κ− ρω − d

κ− ρω + d

One can directly notice that the characteristic of Bates is the same as Heston

but with the addition of D = −λµjiωτ + λτ
(
(1 + µJ)

iωe
1
2
υJ iω(iω−1) − 1

)
. D is just

adding the jump component on the CF of Heston, similar to what has been done

when moving from Heston to Bates using the stock processes of the two equations.
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A.3 Varying the Parameters

Oosterlee and Grzelak (2019) clearly show the effect of the parameters on the volatil-

ity smile. He varies the values of the parameters and presents different smile curves

for every parameter. A sample is shown below.

Figure A.1: Impact of varying v0 and θ

Figure A.2: Varying the jump parameters
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Figure A.3: Varying κ

Figure A.4: Varying vol of vol and ρ

Figure A.5: Varying σJ

The first thing to be noticed that the jump parameters provides higher implied
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volatilities, and this is exactly why many academics and professionals would prefer

Bates over Heston. Bates provide steeper skew on both tails of the smile which can

be needed in times such as the pandemic. Oosterlee and Grzelak (2019) argue that

the jump component increases the realized stock variance which increases the price

of the option as the probability of ending up in the money increases.

A.4 Nelder-Mead Algorithm

The Nelder-Mead method is a numerical technique that is used to find the maximum

or minimum of a given function. The method does not use derivatives such as the

gradient method usually used for finding implied volatility. A direct method is used

where it calculates the value of the function and compares it to other values. The

function minimized in our case is the objective function which we described earlier in

the Data section. The algorithm uses a simplex, which is a shape that has one more

vertex than the number of dimensions in the space. In our case, we have 9 vertices

for our 8 parameters. The algorithm has six basic steps, starting with sorting . The

illustration is adopted from Miles Chen’s lecture at UCLA. Suppose you want to

evaluate the function at three points of the simplex, u, v and w. The simplex in this

case looks like a triangle If f(u) < f(v) < f(w) then u is the best performing point

and w is the worst. From the worst point, we do a reflection that looks as follows:

Figure A.6: Reflection Step

Now the new point r is evaluated against v and u. If the reflected point is the

best out of three, we enter into the expansion step and we extend the point even
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further. If not, we go into ’contraction’ mode and contract along the line of the

reflection. Two points are evaluated on that line, one is inside the contracted line

and is quarter of the way between w and r. The other is on the outside and is

three-quarter the line between w and r. If one of them is better than u and v,

we go back to expansion mode. Otherwise, we ’shrink’ and go back to step 1. The

algorithm checks for convergence using the sample standard deviation of the simplex.

If the standard deviation shrinks below a certain threshold ϵ, we then have reached

the proposed optimum. The same concept can be expanded to 3 or more vertices.

Gao and Han (2012) talk about how inefficient the Nelder-mead algorithm becomes

when the number of parameters becomes too high, which happens to be what Bates

have. He proposes an alteration in the contraction,expansion and shrink steps to

better suit the dimensions of the problem. His paper proves that his method works

for high dimension optimization and is better than the standard algorithm. The

least square optimization method using Nelder-mead is implemented in Python as

minimize(method =′ Nelder − Mead′,′ adaptive′ = True). Adaptive is a boolean

which takes True if one wants to use the updated algorithm by Gao and False if

one prefers the standard method. Bounds are used throughout the minimization

process, and we alter the boundaries once we see that the optimal parameter hits

the boundary set by us.

To expand more on the steps that we explained mathematically, lets assume our

objective function is f(x), where x varies from 1 till N+1. Our simplex consists of

N+1 vertices.

1) Ordering: We order the vertices in order to satisfy f(x1) ≤ f(x2) ≤ f(x3) ≤

... ≤ f(xn+1).

2) Calculate: We calculate the centroid of the opposite of the worst vertex c =

1
n

∑j ̸=k xj, where xh is the worst vertex.
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3) Reflection: We reflect on the worst point and calculate it by

xr = x0 + α(x0 − xn + 1) (A.20)

where α > 0. If f(x1) ≤ f(xr) ≤ f(xn), we replace xn+1 with xr. We then obtain a

new simplex and we go back to step 1 until our condition is satisfied.

4) Expansion: if f(xr) < f(x1) which means that the reflection point is the best

out of all the available vertices, we then compute the expanded point, which is an

extension from the best available point,

xe = x0 + γ(xr − x0), γ > 1 (A.21)

After evaluating f(xe) we compare it with the reflect point f(xr). If f(xe) < f(xr)

then we replace xn+1 with the expansion point xe and start back from Ordering.

Otherwise, we replace the same worst point xn+1 with the reflection point xr and go

back to Ordering.

5) Contraction: Contraction consists of two steps. If f(xn) ≤ f(xr) ≤ f(xn+1),

we do what is known as ’Outside Contraction’ and evaluate

xoc = xo + ρ(xr − x0) (A.22)

where 0 < ρ < 0.5. If xoc is better than xn+1, replace xn+1 with it, and go back to

step 1. Otherwise, we move to step 6 which we will discuss below.

If f(xr) > f(xn+1), we compute xic which is ’inside contraction point’.

xic = x0 + ρ(xn+1 − x0) (A.23)

We then evaluate the function at that point and compare it with f(xn+1. The same

procedure in the outside contraction is adopted here.
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6) Shrink: This is the step we referred to above and it says, for 2 ≤ i ≤ n+ 1

xi = x1 + σ(xi − x1) (A.24)

As for the values common used for the greeks in Nelder-Mead, α = 1,σ = 0.5,ρ =

0.5,γ = 2. If one needs to have a faster calibration than the normal algorithm does,

the shrink method can be ignored since many numerical studies have shown that

shrink almost never occur when applying the algorithm. Singer and Singer (2004)

elaborate more on efficient ways to implement this algorithm.

55


	Introduction
	Literature Review
	Impact of Covid-19 on volatility
	Literature on pricing options using Bates

	Methodology
	Option Models & Processes
	Poisson Process
	Merton Model
	Bates Model

	Characteristic Functions
	Fast Fourier Transform
	CF for Bates


	Data & Calibration
	Nelson-Siegel model
	Calibration
	Fitting Performance

	Results
	Conclusion
	References
	Appendix
	Deriving the CFs for Affine Diffusion models
	Example using Black Scholes

	Stochastic Volatility Models
	Cox-Ingersoll-Ross
	Heston Model

	Varying the Parameters
	Nelder-Mead Algorithm


