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Résumé

Cette étude démontre la validité prédictive des perceptions subjectives du risque

de mortalité, remettant en question la croyance selon laquelle les perceptions de risque

des individus sont intrinsèquement biaisées. En utilisant les données de Health and

Retirement Study, nous examinons si les probabilités de survie subjectives prédisent

le risque de mortalité et si elles sont corrélées avec les horloges épigénétiques, des

biomarqueurs du vieillissement qui sont fortement prédictifs de la mortalité. Nos

résultats montrent que les probabilités de survie subjectives sont des prédicteurs

significatifs de la mortalité et qu’elles sont fortement corrélées avec les horloges

épigénétiques, qui sont des prédicteurs avérés du vieillissement et de la mortalité,

particulièrement l’horloge GrimAge. Ces deux résultats suggèrent que les individus

possédent des informations privées sur leur santé et leur bien-être qui sont plus

informatives du risque de mortalité que les caractéristiques observables.
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Abstract

This study presents evidence for the predictive validity of subjective mortality

risk perceptions, challenging the belief that individuals’ risk perceptions are inher-

ently distorted. Using data from the Health and Retirement Study, we examine

whether subjective survival probabilities are predictive of mortality risk and if they

correlate with epigenetic clocks, biomarkers of aging that are highly predictive of

mortality outcomes. Our findings demonstrate that subjective survival probabilities

are significant predictors of mortality and that they strongly correlate with epigenetic

clocks, which are proven predictors of aging and mortality, particularly the GrimAge

clock. Both of these results suggest that individuals possess private information

about their health and well-being that is above and over informative of mortality

risk than observable characteristics.

ii



Contents

Résumé i

Abstract ii

Acknowledgements vii

1 Introduction 1

2 Literature Review 5

2.1 The Annuity Puzzle . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Explanations of the Annuity Puzzle . . . . . . . . . . . . . . 6

2.3 Asymmetric Information and Adverse Selection . . . . . . . 8

2.4 Subjective Survival Probabilities . . . . . . . . . . . . . . . . 10

2.5 The Epigenetic Clocks . . . . . . . . . . . . . . . . . . . . . 14

3 Data 17

3.1 The HRS Dataset . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Data for Mortality Risk Analysis . . . . . . . . . . . . . . . 19

3.3 Data for Epigenetic Clock Analysis . . . . . . . . . . . . . . 23

3.4 Construction of Variables . . . . . . . . . . . . . . . . . . . . 27

4 Methodology 30

4.1 Mortality Risk Analysis . . . . . . . . . . . . . . . . . . . . 30

4.1.1 Marginal Effects . . . . . . . . . . . . . . . . . . . . . . 31

4.1.2 Specifications . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Epigenetic Clock Analysis . . . . . . . . . . . . . . . . . . . 33

4.2.1 Specifications . . . . . . . . . . . . . . . . . . . . . . 35

4.2.2 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . 35

5 Results and Discussion 37

5.1 Mortality Risk Analysis . . . . . . . . . . . . . . . . . . . . 37

iii



5.1.1 Subjective Survival Probabilities . . . . . . . . . . . . 37

5.1.2 Self-Reported Health . . . . . . . . . . . . . . . . . . 39

5.1.3 Missing and Focal Values . . . . . . . . . . . . . . . . 40

5.1.4 Socio-Demographic Predictors . . . . . . . . . . . . . 43

5.1.5 Economic Predictors . . . . . . . . . . . . . . . . . . 44

5.1.6 Parents’ Longevity . . . . . . . . . . . . . . . . . . . 45

5.1.7 Lifestyle and Objective Health Indicators . . . . . . . 45

5.2 Epigenetic Clock Analysis . . . . . . . . . . . . . . . . . . . 46

5.3 Implications and Applications of Findings . . . . . . . . . . 50

6 Conclusion 52

References 54

Appendix 59

iv



List of Tables

3.2.1 Mortality Risk Analysis Sample: Descriptive Statistics . . . 22

3.3.2 The Epigenetic Clock Analysis Sample: Descriptive Statistics 24

3.3.3 Epigenetic Clocks: Summary . . . . . . . . . . . . . . . . . 25

3.3.4 Epigenetic Clocks: Descriptive Statistics . . . . . . . . . . . 25

5.1.1 SSP 75 and SSP 85 . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.2 Self-Reported Health . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.3 Socio-Demographic Predictors . . . . . . . . . . . . . . . . . 42

5.1.4 Economic Predictors . . . . . . . . . . . . . . . . . . . . . . 45

5.1.5 Parents’ Longevity . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Comparison of Adjusted R-Squared Results . . . . . . . . . 47

5.2.2 Aggregate Model Results . . . . . . . . . . . . . . . . . . . . 48

5.2.3 Single-Clock Model Results . . . . . . . . . . . . . . . . . . 49

A1.1 Logistic Regression Result for SSP 75 . . . . . . . . . . . . . 59

A1.2 Logistic Regression Result for SSP 85 . . . . . . . . . . . . . 62

A1.3 Marginal Effects for SSP 75 . . . . . . . . . . . . . . . . . . 65

A1.4 Marginal Effects for SSP 85 . . . . . . . . . . . . . . . . . . 67

A2.1 Single-Clock Model for GrimAge . . . . . . . . . . . . . . . . 69

A2.2 Single-Clock Model for Hannum . . . . . . . . . . . . . . . . . 71

A2.3 Single-Clock Model for Levine . . . . . . . . . . . . . . . . . 73

A2.4 Single-Clock Model for Horvath Skin . . . . . . . . . . . . . 76

A2.5 Single-Clock Model for Horvath . . . . . . . . . . . . . . . . 78

v



List of Figures

3.1.1 The HRS Cohorts, by Wave . . . . . . . . . . . . . . . . . . 18

3.2.1 Evolution of the Sample Size, by Wave . . . . . . . . . . . . 20

3.2.2 Evolution of the Sample Age, by Wave . . . . . . . . . . . . . 21

3.3.1 Correlation Heatmap . . . . . . . . . . . . . . . . . . . . . . 26

vi



Acknowledgements

First and foremost, I want to thank my advisor, Professor Pierre-Carl Michaud.

Working with a master firsthand is the best education one can get, and it is the

surest way to raise the bar. I am incredibly fortunate to have had his guidance,

invaluable insights, and support.

I want to extend my gratitude to the two most important people in my life, my

husband Ross and my daughter Gemma, for showering me with encouragement,

endless joy, and love during my thesis journey.

vii



1 Introduction

The uncertainty surrounding individual longevity presents a significant financial

risk known as longevity risk. This risk emerges from the potential of outliving

one’s retirement savings due to a lifespan that exceeds the expectation. Empirical

evidence of longevity risk is found in demographic studies that reveal heterogeneity

in life expectancy, influenced by factors such as genetics, lifestyle, and socio-economic

status. Longevity risk is a critical concern not only for individuals planning for

retirement but also for institutions managing pension schemes, and for government

policymakers.

One strategy to mitigate longevity risk is through the purchase of life annuities

(hereafter referred to simply as annuities), which are financial instruments designed

to provide a consistent stream of income for the duration of an individual’s life in

exchange for a lump-sum payment. However, the decision to annuitize is heavily

influenced by individual differences in life expectancy, which affect the perceived

fairness of annuity pricing. If the mortality risk perceived by an individual is higher

than the risk estimates used by insurers to price annuities, akin to a price loading,

this can lead to a perception of unfair pricing by the potential annuitant. Given that

agents are price elastic (Boyer et al. (2020)), annuities perceived as overpriced may

not be considered optimal, thus lowering their take-up rate.

Indeed, empirical evidence consistently demonstrates suboptimal take-up rates

for annuities despite their apparent benefits, a phenomenon termed ’the annuity

puzzle’ by Modigliani (1986). The optimality of full annuitization was first formally

demonstrated by Yaari (1965), and later expanded upon by Davidoff et al. (2005),

who showed that annuitization should remain optimal even under a general set

of assumptions, with exceptions including the presence of bequest motives and

market imperfections. Benartzi et al. (2011) offer numerous behavioral and economic

factors contributing to market’s divergence from this optimality, including presence

of adverse selection, which arises when individuals posses private information about

their mortality risk. This study examines subjective mortality risk perceptions to
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understand if they are predictive of the actual risk and potentially lead to adverse

selection.

The demand for annuities is a function of individuals’ risk perceptions. If the

subjective risk perceptions are not correlated with the objective mortality risk, it

suggests that these perceptions are largely based on biases, which are non-informative

of the actual outcomes, thereby not contributing to adverse selection. Conversely, if,

within a risk class, these risk perceptions do predict actual mortality outcomes, it

may indicate that those opting for annuities have disproportionately higher longevity

risk than average. This can result in an adverse selection spiral, whereas insurers,

recognizing the higher risk profile of annuity purchasers, adjust their pricing models

accordingly. The resultant increase in annuity prices can deter individuals at lower

mortality risk from purchasing these products, thereby exacerbating the issue of

adverse selection. This dynamic ultimately may lead to a market equilibrium

characterized by higher annuity prices and lower overall take-up rates (Einav and

Finkelstein, 2011; Boyer et al., 2020).

The predictive validity of the subjective risk perceptions can be examined data on

mortality and individuals’ risk perceptions. Indeed, previous studies have consistently

shown that people’s own estimates of their survival chances are predictive of their

actual mortality. Hurd and McGarry (2002) demonstrated this using subjective

survival probabilities (SSPs) from the Health and Retirement Study (HRS) panel

data on the older US population. They found that those who survived in the panel

reported survival probabilities approximately 50% greater at baseline than those

who died. Using data from the same study, the HRS, Smith et al. (2001) concluded

that actual mortality outcomes were "signaled" through the reported lower longevity

expectations. Similar findings were reported examining data on populations of

European countries (Post and Hanewald, 2013; Delavande and Rohwedder, 2011).

The objective of this thesis is to understand whether individual differences in

subjective risk perceptions are predictive of actual mortality. To achieve this, the

study empirically tests the correlation of SSP, first, with observed deaths using data

from the HRS and second, with epigenetic clocks, using newly available data on from
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the Venous Blood Study (VBS) within the HRS. We refer to the first part of our

study as the mortality risk analysis and the second part – as the epigenetic clock

analysis.

Epigenetic clocks serve as biomarkers of aging, integrating genetic and epigenetic

information to estimate an individual’s biological age. Unlike traditional genetic

markers that focus on DNA sequence variations, epigenetic clocks capture dynamic

changes in methylation influenced by both genetic and environmental, lifestyle

factors, such as smoking and stress.In essence, they are values derived from complex

calculations of DNA methylation levels — a biochemical process influencing gene

expression without altering the DNA sequence — across specific genomic regions.

Epigenetic clocks provide a comprehensive understanding of an individual’s aging

process, extending beyond chronological age.

Despite their recent emergence, epigenetic clocks have proven valuable in aging

and health studies by accurately estimating age-related diseases and mortality. In

healthcare, they find applications in predicting disease risk, prognosis, and treatment

responses. In longevity research, they offer insights into factors influencing lifespan.

In public health, they inform interventions for healthy aging and mitigate age-related

health disparities. Beyond medicine, epigenetic clocks extend to forensic applications,

estimating age in criminal investigations.

In studies on SSP, integrating epigenetic clocks provides a new perspective

on factors influencing individuals’ perceptions of their mortality risk. Comparing

subjective and biological age estimates explores alignment or divergence between

beliefs and objective biological indicators, assessing SSP accuracy and reliability. This

insight is valuable for financial decision-making and retirement planning implications.

On the downside, using epigenetic clocks for actuarial purposes introduces signifi-

cant costs associated with the collection and computation of DNA data, limiting the

feasibility of their widespread adoption in insurance practices. A central objective of

this thesis is to investigate the potential of SSP in eliciting individuals’ biological age.

A robust correlation of SSP with epigenetic clocks would suggest that individuals

possess awareness of their biological age affected by life circumstances when evalu-
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ating survival chances, and establish SSP as a more economical proxy for insights

provided by epigenetic clocks.

This brings to the main objective of this thesis, which is investigating and

providing insights into the information content and predictive validity of SSP using

mortality and epigenetic data. The derived insights are important for several

reasons. First, they are informative in designing better annuity plans and prices

that ensure financial security throughout individuals’ retirement. Second, they guide

policymakers in shaping retirement, social security, and healthcare policies based

on more realistic perceptions of longevity. By knowing how individuals perceive

their longevity, policies can be more effective, particularly given the context of aging

population. Finally, examining risk perceptions identifies differences in how various

groups think about longevity, informing education to reduce biases and encourage

better retirement planning decisions.

The rest of this thesis is organized as follows: Section 2 reviews the existing

literature on the topic. Sections 3 and 4 describe the data used in our analyses and

outline the methodology we use to test our hypotheses, respectively. In Section 5, we

report our results and discuss their implications. Lastly, we present our concluding

remarks in Section 6.
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2 Literature Review

This review aims to consolidate existing research findings. First, we consider the

dual perspectives on annuities: the theoretical prediction of their value as an optimal

financial solution for the majority of retirees and the contrasting empirical evidence

regarding their low adoption rate. Following this, we explore various rational and

behavioral factors proposed to explain this discrepancy, focusing on one of the factors

– the adverse selection. As the driving force behind the adverse selection, we discuss

asymmetric information and the role of subjective survival probabilities in creating it.

Finally, we provide an overview of epigenetic clocks as predictors of mortality risk.

2.1 The Annuity Puzzle

The vast literature focused on identifying the value and the optimal level of

annuitization starts with seminal paper of Yaari (1965), where he introduces uncer-

tainty over one’s longevity to the standard life cycle hypothesis. This uncertainty

fundamentally alters the consumption-savings decision of individuals and emphasizes

the related risks of premature depletion of one’s resources and underconsumption

signified by a positive net wealth at the end of life. Annuities play a pivotal role in

this uncertainty framework by providing a guaranteed stream of income until the

individual’s death.

Yaari (1965) concludes that in complete annuity markets with actuarially fair

prices, a risk-averse consumer without a bequest motive should fully annuitize

their wealth as it ensures the maximum possible constant lifetime consumption.

Later studies have demonstrated the optimality of positive annuitization even under

conditions that are less strict than Yaari’s. Davidoff et al. (2005) find that in complete

markets settings, full annuitization still emerges as the optimal strategy, whereas in

incomplete markets, the optimal consumption path substantially deviates from the

income streams offered by annuities, thereby making partial annuitization optimal.

Poterba et al. (1996), Mitchell et al. (1999) conduct both empirical and theoretical

investigations into the annuity markets, using the "wealth equivalence" method
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grounded in utility maximization. Their findings suggest that even in scenarios

where insurance loads exceed a quarter of the price, an individual, given plausible

parameters for the utility function, would still experience a more favorable outcome

through annuitization. The value of an annuity contract can be measured by the

money’s worth ratio (MWR), a ratio of the expected present value of the annuity

payments to the initial premium paid for it. A MWR equal to one indicates a fair

price for the annuity, while a ratio below one suggests that the annuity is actuarially

overpriced.

A study by James and Song (2001) of annuity markets in a range of high and

middle-income countries finds that, when discounting at the risk-free rate, the MWR

for annuitants is greater than 95% in most countries and sometimes greater than

100%. The MWRs for the average population member are lower but still exceed 90%

in most cases. Mitchell et al. (1999) estimate that the average annuity policy payouts

in the US are valued at 80-85 cents per dollar of premium paid, which is lower than

the 90-95 cents per dollar often cited in the literature. The authors offer a number of

possible explanations for this discrepancy, including the possibility that the mortality

rates of the population pool used by annuity companies are too low. Other studies,

such as those by McCarthy and Mitchell (2004), Finkelstein and Poterba (2004),

support the hypothesis of adverse selection in the annuity markets. Investigating the

Canadian market, Milevsky and Wu Shao (2010) estimate the MWRs to be around

100% and conclude that it is "a fairly good deal for the annuity purchaser".

Despite the demonstrated value of annuities and significant increase in life ex-

pectancies, empirical studies on the actual uptake of annuities demonstrate that

only around a small 10% of the population owns annuities (James and Song, 2001;

Rusconi, 2008; Milevsky and Wu Shao, 2010; Boyer et al., 2020).

2.2 Explanations of the Annuity Puzzle

Existing literature provides a range of explanations that can be broadly categorized

as rational and behavioral factors. Benartzi et al. (2011) propose both rational and
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behavioral explanations to the puzzle, offering a holistic perspective on why retirees

might be reluctant to annuitize their savings, despite the apparent financial benefits.

On the behavioral dimension, the authors discuss experimental evidence and studies

that support the influence of biases such as loss aversion, framing effects, and mental

accounting on annuitization decisions. Added to these biases, rational considerations

such as bequest motives, concerns about inflation, and liquidity preference to cover

medical expenses offer a more comprehensive view of the factors influencing retirees’

decisions regarding annuitization.

Gong and Webb (2008) discuss mortality heterogeneity as an explanation. Ana-

lyzing the variances in life expectancy across diverse socioeconomic strata in the US,

they unveil substantial mortality heterogeneity characterized by individuals from

lower socioeconomic backgrounds largely experiencing lower life expectancy. In the

context of distributional equality, the authors argue that annuitization might not be

as optimal for this portion of the population as compared to their counterparts from

higher socioeconomic echelons, who generally enjoy longer life spans. This is because

the former are more likely to be advantageously selected into the annuity pool and,

consequently, risk receiving diminished lifetime benefits.

Individuals’ valuation of annuities is heterogeneous as well. Brown et al. (2017)

investigate the factors driving this heterogeneity through randomized experimental

studies and find that, depending on existing differences in cognitive constraints,

consumers face varying levels of challenge when valuing annuities. This variation

translates into heterogeneity of perceived annuity value. By controlling for the status

quo, the authors eliminate the effects of endowment bias and liquidity constraints.

They conclude that individuals are reluctant to enter into an annuity transaction

if they have difficulty ascertaining its value. Such reluctance regarding difficult-to-

value transactions generally serves as a protective behavior. Similarly, Brown and

Finkelstein (2011) find that consumers seem to show limited interest in long-horizon

insurance products like life annuities, as they experience specific challenges when

making decisions about long-term, probabilistic outcomes.

Fairness of annuity prices is a major factor that determines the demand. The
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pricing of annuities, and their MWR, is primarily influenced by two key factors: the

prevailing term structure of interest rates and the probabilities of mortality (Dickson

et al., 2009). Empirical analysis finds the price sensitivity to changes in rates to

be "sluggish," which leaves the mortality rates to be the significant determinant

of prices (Charupat et al., 2016). A high MWR can be an indicator of adverse

selection, whereby the insurer prices annuities based on the mortality risk of a

population that is higher than the mortality risk of annuitants actually selected into

the pool. Individuals who expect to have a longer-than-average lifespan often find

annuities more attractive because they expect to receive the annuity payments over

a longer period of time, maximizing the benefits from their investment (Rothschild

and Stiglitz, 1976). Because of its upward impact on the prices, the existence of

adverse selection may make annuities not worthwhile for individuals who expect to

live shorter lives.

2.3 Asymmetric Information and Adverse Selection

Adverse selection is a form of precontractual asymmetric information. In the

context of annuity markets, it occurs because individuals with the highest longevity

have the greatest incentive to purchase annuities. We discuss evidence of adverse

selection in the annuity markets in depth because it leads to the main focus of

this paper – the contribution of subjective survival probabilities to informational

asymmetry in the annuity markets.

The annuity market provides an important field for studying asymmetric informa-

tion because differentiating between the effects of adverse selection and moral hazard

presents a considerable challenge, with each carrying distinct welfare and policy

implications. In comparison to other insurance markets, moral hazard is presumed to

be low in the annuity markets as annuities are unlikely to induce substantial efforts

towards extending life. If annuities yield negligible moral hazard, conducting tests

for asymmetric information in this market essentially constitutes testing for adverse

selection (Finkelstein and Poterba, 2004).
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Cohen and Siegelman (2010) examine the body of empirical work on adverse

selection within insurance markets, including the annuity market. They state that

the existing literature, based on analysis of variations in the mortality rates between

annuitants and the broader population across different nations, points to a tendency of

annuitants having longer lifespans than non-annuitants, thus suggesting the presence

of asymmetric information favoring annuitants.

The tendency of annuitants living longer lives may also be explained by variation

in risk preference – people who have less risky behaviors live longer and are more

likely to buy annuities. Cutler et al. (2008) propose that the effect of risk preference

on risk occurrence may provide a potential unifying explanation for the observed

heterogeneity of selection and demand across insurance markets. In an attempt

to understand the effects of risk preference on demand for insurance, Einav et al.

(2007) find that risk preference varies significantly across markets, and that it is

an equally important determinant of annuity demand as the variation in risk itself.

Their evidence reinforces the standard hypothesis about the effect of asymmetric

information.

Another evidence of the presence of adverse selection in annuity markets comes

from Finkelstein and Poterba (2004), who examine the structure of annuity contracts.

They find that those anticipating living longer exhibit a greater tendency to opt

for "back-loaded" policies and are less likely to select annuities featuring guaranteed

survivor benefits. This observation indicates that annuitants’ choice of contracts is

influenced by their often objective expectation to outlive the horizons estimated by

insurers.

With regards to testing for asymmetric information, the positive correlation test

as described in Chiappori and Salanie (2000) is the most commonly used test. The

test rejects the null hypothesis of symmetric information if a significant positive

correlation exists between annuity demand and mortality risk. One of the limitations

of the test, as discussed by Finkelstein and McGarry (2006) and Chiappori et al.

(2006), lies in its inability to hold in the presence of unobserved heterogeneity in

risk preferences, i.e. if individuals have private information about characteristics
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other than risk type, such as risk aversion, and these characteristics affect insurance

demand. Finkelstein and Poterba (2014) attempt to overcome this limitation by

introducing a concept of "unused observables," which are individual characteristics

that are correlated with both the risk and the demand for insurance, yet not used by

the insurers when designing contract menus. The study discusses annuitants’ place of

residence being an "unused observable" until the insurance companies started using

postal codes as a pricing variable. These insights suggest that this kind of selection

could be happening in different ways across various insurance markets and that

understanding how insurance companies choose what information to use in pricing is

important for addressing the adverse selection and low demand for annuities.

Why is addressing adverse selection important? The presence of adverse selection

in annuity markets diminishes welfare (Einav et al., 2010; Einav et al., 2007; Einav

and Finkelstein, 2011). Einav et al. (2007) find that, within the UK annuity market,

asymmetric information at the guarantee margin results in a welfare reduction of

approximately 2 percent of annual premiums, compared to an optimal, symmetric

information benchmark. Their evidence also suggests that government mandates,

which are the conventional remedy for adverse selection issues, do not necessarily

improve the asymmetric information equilibrium, implying that achieving welfare

improvements through compulsory social insurance might be more challenging in

reality than a simple theory suggests. Moreover, adverse selection may potentially

cause a "death spiral," a situation where an adverse selection cycle leads to rapidly

increasing premiums and decreasing numbers of insured individuals, eventually

resulting in a market failure.

2.4 Subjective Survival Probabilities

Private information about mortality risk plays a significant role in determining the

demand for annuities. In this context, subjective survival probabilities — individuals’

own assessments of their likelihood of surviving to a certain age — can be seen as

a consolidation of private information that individuals hold regarding their health,
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lifestyle, family medical history, and other unobservable factors influencing mortality

risk in a single number. Understanding subjective survival probabilities is crucial

as they influence individuals’ decisions concerning insurance, savings, retirement,

and other aspects of financial planning. Depending on their accuracy in predicting

mortality risk, they hold the potential to introduce asymmetric information into the

annuity markets and determine the equilibrium outcome.

As noted by Paté-Cornell (1996), “... uncertainties in decision and risk analyses

can be divided into two categories: those stemming from variability in known (or

observable) populations and, therefore, represent randomness in samples (aleatory

uncertainties), and those arising from a fundamental lack of knowledge about under-

lying phenomena (epistemic uncertainties or ambiguities).” Theoretically, subjective

survival probabilities, as assessments of uncertain events, could be more accurate

and nuanced than the probabilities calculated based on general population data, or,

conversely, they might be less accurate if predominantly shaped by individual biases.

In the existing literature on SSPs, there is greater evidence of predictive validity

about mortality risk.

Hurd and McGarry (1995), Hurd et al. (1998), Hurd and McGarry (2002), pio-

neering a series of empirical analysis of SSPs, are based on the HRS. The respondents

of the study, who were individuals aged 50 years and older, were asked to assess

their chances of surviving to 75 or 85 years of age. The authors find that the SSPs

in the HRS are predictive of actual mortality, even when controlling for factors such

as health status, socioeconomic status, and lifestyle choices. They find that individ-

uals with higher socioeconomic status tend to give higher probabilities of survival,

while individuals who smoke or have poorer health status give lower probabilities.

Moreover, they find that extreme probabilities about survival, such as zero or 100%,

also significantly correlate with actual mortality. These findings lead the authors to

conclude that individuals’ self-assessments of their chances of survival are generally

accurate and consistent with other factors that influence mortality, making the SSPs

a great potential tool that can be used in models of intertemporal decision-making

under uncertainty. This predictive validity stems from individuals generally drawing
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accurate inferences from their health status, survival experiences of acquaintances,

and other factors. These insights bear significant implications for both policymakers,

who can leverage this information to design strategies promoting healthy aging and

longevity, and researchers, who can design improved studies on aging and mortality.

Building upon these foundational works that have significantly advanced our

understanding of SSPs and their correlation with mortality, our study further extends

this research. First, in our analysis we use the latest HRS data, spanning 15 waves

from 1992 to 2020. This dataset includes a substantially higher rate of observed

deaths among respondents (51.5%) compared to the study conducted by Hurd and

McGarry (2002), which was based on the first two waves only (1.6%). The greater

incidence of death provides robustness to our findings and extends the validation

of SSPs’ predictive validity over a longer term. Additionally, our study differs in

its methodological approach by presenting results across five different specifications

with progressively added covariates, allowing us to observe the dynamics of mortality

predictors. Lastly, we employ dummy variables for different age, income, and wealth

subgroups, rather than using continuous values, to capture the potential differential

impacts of these subgroups on mortality and the predictive power of SSPs. These

data and methodological extensions aim to contribute to the existing literature by

providing additional robustness of the results and new insights.

Bissonnette et al. (2017) compare subjective mortality expectations with objective

ones and examine the impact of the discrepancies on savings and consumption

decisions. Using HRS data over a 16-year period, they develop an econometric

model to compare subjective and objective mortality hazards, taking into account

the rounding effect in SSPs. Their study finds that individuals, especially certain

subgroups such as smokers, black individuals, more educated respondents, and

younger cohorts, tend to be slightly optimistic regarding their survival prospects. This

optimism or pessimism in survival expectations influences individuals’ consumption

paths, with pessimistic individuals consuming wealth more quickly. The paper also

demonstrates that misperceptions in survival probabilities could result in significant

welfare losses and affect decisions related to annuitization. These findings underscore
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the importance of accurate mortality expectations in economic models and addressing

discrepancies in survival perceptions.

Hamermesh (1985) study, based on 500 white, married couples aged 62-69, finds

that SSPs exhibit greater variation than actuarial probabilities. He finds that indi-

viduals show awareness of current life table improvements, yet they don’t necessarily

extrapolate this information when determining their subjective life expectancies.

Instead, individuals largely base their longevity projections on idiosyncratic factors

such as their relatives’ longevity (Hamermesh and Hamermesh, 1983).

A similar conclusion is reached by Baji and Bíró (2018), who explore the tra-

jectories of subjective survival probabilities following various health shocks. Using

HRS longitudinal data, they observe that individuals update their probabilities

after health shocks and that the reaction to shocks varies depending on factors

such as shock severity, availability of treatments, and individual coping mechanisms.

Specifically, they find that individuals diagnosed with cancer exhibit a return to

pre-diagnosis health measures and survival probabilities, indicating adaptation to

the health shock. In contrast, those experiencing a stroke or heart attack show

persistent effects on survival probabilities and incomplete recovery in self-reported

health measures, suggesting long-term health consequences.

Ai et al. (2017) extend their research question beyond the interaction of survival

probabilities and health state transitions, examining the impact of the two on retirees’

optimal annuitization decisions. They introduce concepts of morbidity expansion

and contraction, which are defined as extended lifespan spent in more or less healthy

states, respectively. They find different outcomes for wealthier and poorer slices

of the population. When faced with morbidity contraction, wealthier retirees tend

to increase their demand for annuities, and, conversely, decrease the demand when

morbidity is expanding. In contrast, poorer retirees are less responsive to health

changes, which can be partially explained by the general low propensity to annuitize

due to the consumption floor provided by governmental subsidies. This study,

therefore, underscores the impact of SSPs, updated on health shocks, on preventative

decisions such as annuitization in the face of change in longevity perspectives.
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The insights of the research presented in this section mark a substantial contri-

bution to the understanding of subjective survival probabilities and hold significant

implications for refining behavioral models and developing more effective public

policies.

2.5 The Epigenetic Clocks

Epigenetic clocks serve as a biomarker of aging based on DNA methylation process

(DNAmAge), which results from both intrinsic processes, governed by individuals’

genetic profile, and extrinsic factors, such as environmental influences. It has emerged

as one of the most promising measures to estimate biological age, demonstrating

robust evidence of predictive validity. As individuals age, DNA methylation patterns

undergo dynamic changes, with alterations in certain sites linearly correlated with

chronological age, forming the foundation for the development of epigenetic clocks

(Duan et al., 2022). Originally developed to estimate chronological age, epigenetic

clocks have evolved to reveal the disparities between chronological and epigenetic age.

These disparities are indicative of accelerated aging or delayed aging, thereby offering

a useful insight into an individual’s health status and susceptibility to age-related

diseases (Horvath, 2013).

Due to the unavailability of data until recently, research into the correlation

between SSPs and epigenetic clocks is practically absent. Consequently, this section

of the literature review is dedicated to providing an overview of epigenetic clocks,

with a particular emphasis on those that have demonstrated a strong correlation with

mortality risk. Ultimately, our research interest lies in determining whether there is

a correlation between SSPs and epigenetic clocks. Establishing such a correlation

would suggest that individuals possess an awareness of their pace of biological aging,

which is a better predictor of mortality than chronological age, and the proximity

of their mortality. This would also serve as a robust validation of the predictive

validity of SSPs. The application of such findings to the analysis of annuity markets

could prove instrumental, offering a valuable tool for designing more efficient annuity
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contracts, as well as public policy.

Horvath’s epigenetic clock is a prominent multi-tissue age estimator, well-supported

by research in areas like cancer, Alzheimer’s disease, and aging. It uses DNA methy-

lation data from a wide range of samples and demonstrates a strong correlation of

0.96 between with chronological age, and a median absolute difference (MAD) of

only 3.6 years. This clock is notable for its versatility and accuracy across various

tissues, although it has limitations with cultured cells (Horvath, 2013).

In contrast, Hannum’s epigenetic clock is a single-tissue estimator, developed

using methylation data from adult whole blood samples. It shows a correlation of

0.96 with chronological age, and a MAD of 3.9 years. While it offers high accuracy for

adult blood samples, it is less applicable to non-blood tissues and children, indicating

a more specialized focus compared to Horvath’s comprehensive model (Hannum

et al., 2013).

Levine et al. (2018) introduced the PhenoAge clock, which combines clinical

measures with DNA methylation data, providing a broader perspective on biological

aging. This clock exhibits a robust correlation with numerous morbidity and mortality

indicators, surpassing other models in mortality prediction. GrimAge clock is

developed by Lu et al. (2019) and uses methylation levels at specific DNA sites

linked to aging-related characteristics such as smoking, body mass index, and disease

history. Demonstrating exceptional precision in estimating time to death, predictive

capabilities of GrimAge outperforms its predecessors. GrimAge clock’s potential as

an effective instrument for evaluating individual health and forecasting mortality

risk holds substantial implications for academia, clinical settings, and public health.

The utility of epigenetic clocks in predicting mortality risk highlights their

potential role in addressing the issues related to the annuity puzzle. If a correlation

between SSPs and epigenetic clocks is established, it would validate the predictive

accuracy of SSPs and contribute to the understanding of the role of subjective

survival probabilities in the annuity markets. By providing a more accurate measure

of individual mortality risk, epigenetic clocks could help in designing more efficient

annuity contracts and improving the welfare of retirees.
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This literature review has explored the theoretical and empirical perspectives

on annuities, the various factors influencing annuitization decisions, and the role of

adverse selection in the annuity markets. The role of subjective survival probabilities

and the potential application of epigenetic clocks in predicting mortality risk have

also been highlighted, laying the foundation for further exploration of their correlation

and implications for the annuity markets.
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3 Data

3.1 The HRS Dataset

The Health and Retirement Study (HRS) is a national panel survey of older

individuals and their spouses in the USA conducted by the Institute for Social

Research (ISR) at the University of Michigan. The survey spans 15 waves from 1992

to 2020 and includes respondents from seven distinct cohorts, each representative of

the USA population. The data from each survey year are collected and maintained

by the ISR. A user-friendly longitudinal version of the data is prepared by the

RAND Corporation, which improves data quality by incorporating enhancements

and imputations, addressing issues such as nonresponse and inconsistencies.

Our study is based on the most recent release of the longitudinal data, the RAND

HRS Longitudinal File 2020 (V1) from March 2023, HRS Epigenetic clock data,

released in November 2020 and consisting of values for 13 epigenetic clocks developed

from the 2016 HRS Venous Blood Study (VBS) data, and HRS Tracker file, which

facilitates the use of HRS data within and across waves. The data used in this study

are all publicly available.

Figure 3.1.1 displays the distribution of HRS respondents by cohort and wave,

outlining the demographic characteristics of each cohort.

1. Initial HRS cohort, born 1931 to 1941. This cohort was first interviewed in

1992 and subsequently every two years.

2. AHEAD cohort, born before 1924, initially a separate study (The Study of

Assets and Health Dynamics Among the Oldest Old). This cohort was first

interviewed in 1993 and subsequently in 1995, 1998, and subsequently every

two years.

3. Children of Depression (CODA) cohort, born 1924 to 1930. This cohort was

first interviewed in 1998 and subsequently every two years.
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4. War Baby (WB) cohort, born 1942 to 1947. This cohort was also first inter-

viewed in 1998 and subsequently every two years.

5. Early Baby Boomer (EBB) cohort, born 1948 to 1953. This cohort was first

interviewed in 2004.

6. Mid Baby Boomer (MBB) cohort, born 1954 to 1959. This cohort was first

interviewed in 2010.

7. Late Baby Boomer (LBB) cohort, born 1960 to 1965. This cohort was first

interviewed in 2016.

Figure 3.1.1: The HRS Cohorts, by Wave

We use two distinct samples in our analyses of mortality risk and epigenetic

clocks.

In the mortality risk analysis, we restrict our sample to the Initial HRS cohort.

Rationale for this is twofold. First, this cohort has been tracked for the longest
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duration within the HRS survey, providing us with a substantial sample size. Second,

at the onset of the survey in 1992, these individuals were 50-61 years old, enabling

us to record a higher number of observed deaths as the survey progressed, and

consequently improving the statistical power of our analysis.

On the other hand, in the second part of our analysis, the examination of correla-

tion between SSP and epigenetic clocks, we do not restrict our sample to a specific

cohort, but instead use the HRS data on individuals from all 7 cohorts. However,

limitation comes from the DNA data, which is available only for a representative

subsample of the overall HRS sample.

3.2 Data for Mortality Risk Analysis

We construct our data in this section in a long form so that our the number of

observations is constructed by the number of individuals observed in each year of the

study1. Figure 3.2.2 illustrates the shrinking sample size with the progress in waves.

In wave 1, the sample consists of 9,734 individuals. Of these, 2,639 remain by the

end of the wave 15. while the remainder exited the study prematurely either because

they have deceased or stopped responding. Roughly half of the whole sample, 4,719

individuals (or 51.5%), is confirmed to have deceased. The HRS confirms deaths via

an exit interview, where a close relative reports the death. Additionally, the HRS

cross-references its respondents with the National Death Index, a centralized death

record database maintained by the National Center for Health Statistics, providing

an additional verification method for deaths. We assume that the remaining 2,376

individuals (or 24.4%) who have prematurely dropped out from the study were not

deceased during the period of our observation, as the HRS does not report them as

being dead.

The basic descriptive statistics on socio-demographic characteristics of our sample

is presented in Table 3.2.1, and the breakdown of these statistics by gender. Our
1In order to better interpret the results of our regression, to get the conditional mortality risk

for any given year, rather than wave, we fill the data for years in between the waves with the
information from the previous wave.
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Figure 3.2.1: Evolution of the Sample Size, by Wave

sample is predominantly female, 52.24%. An average individual in our sample has

at least high school education, report household income of approximately $55,000

US dollars, and has net wealth close to $364,000 US dollars. The mean income and

wealth indicators are inflated by outliers in the sample, making the median values

more relevant. The median individual has a household income and net wealth of

$35,150 and $133,600, respectively.

The evolution of the age distribution of our sample is presented in Figure 3.2.3.

Mean and median overlap almost perfectly throughout all waves, while the right tail

becomes longer with the progression of the years, indicating on skewness caused by

fewer individuals surviving to older ages.

Our sample suggests that, on average, mothers tend to outlive fathers, with

average life expectancies being 77 and 71 years, respectively. This aligns with general

life expectancy trends in life tables. The median mother lived to at least 75 years

but did not survive to 85, whereas the median father did not survive to either age.

Figure 3.2.3 illustrates the distribution of actual and perceived mortality outcomes
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Figure 3.2.2: Evolution of the Sample Age, by Wave

by gender and race. Women and white respondents, on average, assign higher

probabilities to their survival chances, which might reflect the actual life expectancies

of the people surrounding them.

Compared to women, men are more likely to give a 0% response for both SSP

75 and SSP 85, while women are more likely to give a 100% response. Compared

to white individuals, non-white individuals are more likely to respond with extreme

probabilities for both probabilities to survive to 75 and 85. White individuals and

women are more likely to give 50% response.

When comparing actual survival rates with predictions of surviving to at least

75 and 85 years, we observe notable differences. The mean values of SSP 75 and

SSP 85 are only slightly lower their respective median values, suggesting a slightly

left-skewed distributions. The mean SSP 75 exceeds the mean SSP 85 by nearly 20%,

while the actual difference between the proportions of individuals who lived to at
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Table 3.2.1: Mortality Risk Analysis Sample:
Descriptive Statistics

Mean
Male 47.76%
Black 17.56%
Hispanic 9.53%
Education

Less than high-school 32%
High-school 32%
College 36%

Household income $54,742
bottom 10% $9,900
Median $35,151
top 10% $105,000

Household wealth $364,188
bottom 10% $1,000
Median $133,600
top 10% $789,595

Mother’s longevity 76.76
Mother survived to 75 64.08%
Mother survived to 85 35.01%

Father’s longevity 71.41
Father survived to 75 46.12%
Father survived to 85 19.44%

SSP 75 58.79
1st quartile 40.00%
Median 60.00%
3rd quartile 90.00%

SSP 85 39.77
1st quartile 0.00%
Median 40.00%
3rd quartile 70.00%

Actual survival 75.41
Survived to 75 61.48%
Survived to 85 13.41%

least 75 and those who reached at least 85 is 48%, suggesting an optimistic bias in

predictions.

SSP 85 exhibits a wider range than that of a SSP 75, indicating a considerable

variation in individuals’ perceived risks over a longer-term outcome. Overall, SSP 75

aligns fairly well with actual outcomes, but SSP 85 tends to overestimate the true
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survival rates.

3.3 Data for Epigenetic Clock Analysis

In 2016, the HRS carried out the Venous Blood Study (VBS). This study gathered

DNA methylation data from a sample of 4,018 individuals. The sample is selected

non-randomly, but is representative of the broader HRS sample. 3,329 of these

individuals (or 83%) were matched with the HRS sample that includes individuals

from all cohorts of age at least 50 when entering the study. The not matched sample

might be explained by the presence of younger individuals in the VBS sample.

Table 3.2.2 presents the descriptive statistics of the merged sample (further

referred as the epigenetic clocks sample).

The DNA data from VBS was used to construct 13 epigenetic clocks using

machine learning algorithms which were initially designed by epidemiology and

genetics researchers2. The HRS staff constructed the clocks with the guidance of

some of the researchers who originally developed the clocks, including M.Levine,

S.Horvath, K.Sugden, to ensure data reliability.

Each epigenetic clock is designed with a specific application in mind. Some aim

to predict chronological age, while others are calibrated to predict specific health

outcomes, lifespan, or disease risk. The objective of each clock dictates the training

data on which the algorithms focus and the scale of the clock3. The scale of a clock

may also be influenced by the methodological approaches, statistical techniques, and

reference populations used during their development.

As discussed previously, we narrow our focus to five epigenetic clocks: GrimAge,

Hannum, Levine, Horvath, and Horvath Skin, all of which have shown a strong

correlation with mortality risk. While the prediction objectives of these clocks differ
2Details discussed in the Chapter 2. Literature Review.
3Every clock is derived from a distinct set of CpG sites, specific locations in the DNA that are

prone to methylation under specific circumstances. The selection of these sites to train a model is
based on the objective of the study, its correlation with age or age-related outcomes. Given that
different clocks might prioritize particular CpG sites or genomic regions, this can lead to variations
in scale when the algorithms are applied.
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Table 3.3.2: The Epigenetic Clock Analysis Sample:
Descriptive Statistics

Mean
Age 70.60
Male 46%
Black 18%
Hispanic 14%
Education

Less than high-school 0.23%
High-school 0.27%
College 0.50%

Household income 68,440
bottom 10% $10,800
Median $40,200
top 10% $143,846

Household wealth $393,721
bottom 10% $0
Median $140,000
top 10% $919,200

Mother’s longevity 78.43
Mother survived to 75 68.64%
Mother survived to 85 40.73%

Father’s longevity 72.83
Father survived to 75 50.32%
Father survived to 85 23.55%

SSP 75 49.05
1st quartile 15%
Median 50%
3rd quartile 80%

SSP 85 43.24
1st quartile 10%
Median 50%
3rd quartile 75%

Actual survival 74.13
Survived to 75 45.87%
Survived to 85 15.35%
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in some instances, they are all measured in age years4. For our regression analysis,

we standardize each clock by subtracting its mean and dividing by the standard

deviation. This standardization enables us to interpret the clock estimates in terms

of standard deviations and facilitates comparisons across the various clocks.

Table 3.2.1 summarizes the objectives and scale of the epigenetic clocks in our

analysis, while Table 3.2.2 presents the descriptive statistics. Figure 3.2.1 presents

their correlation heatmap.

Table 3.3.3: Epigenetic Clocks: Summary

Year developed Prediction objective Scale
GrimAge 2019 Time to death, age-related conditions Age
Hannum 2013 Chronological age Age
Levine 2018 Phenotypic age, risk of morbidity Age
Horvath 2013 Chronological age, tissues Age
Horvath Skin 2018 Skin and blood age Age

GrimAge, specifically designed to provide insights into the aging process, has a

mean of 68.75 years with a standard deviation of 8.41 years 5. Its range spans from

49.03 to 99.61 years, a spectrum of biological ages closer to the chronological ages

of the sample. The Hannum clock, another predictor of biological age, has a lower

mean of 55.12 years and exhibits the most extensive range, from 25.06 to 107.79
4Other clocks available in the HRS dataset, including Yang, Zhang, Bocklandt, Garagnani, and

DunedinPoAm38, use different scales, such as risk scores.
5GrimAge is an epigenetic clock designed to predict time-to-death, however, its value is interpreted

as the "biological age" of an individual in the context of how many years they appear to have left,
given average life expectancies and health outcomes

Table 3.3.4: Epigenetic Clocks: Descriptive Statistics

Size Mean Std. dev. Min 25% 50% 75% Max
GrimAge 3,329.0 68.75 8.41 49.03 62.14 68.49 74.84 99.61
Hannum 3,329.0 55.12 9.01 25.06 48.47 54.37 61.10 107.79
Levine 3,329.0 57.97 9.92 28.66 51.00 57.43 64.23 101.68
Horvath 3,329.0 66.20 9.34 23.31 59.66 65.80 72.37 106.47
Horvath Skin 3,329.0 70.23 8.58 36.97 63.58 69.71 76.57 101.29
Actual age 3,329.0 70.60 9.40 52.00 62.00 69.00 78.00 100.00
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Figure 3.3.1: Correlation Heatmap

years, hinting at a diverse age distribution of the respondents. Levine’s clock, which

presents a more holistic perspective on aging by capturing phenotypic age, has a

mean of 57.97 years. Its range, from 28.66 to 101.68 years, is comparable to that

of Hannum’s, suggesting similar variability in the cohort’s biological aging. The

Horvath clock, renowned for its versatility across various tissues, has a mean age

of 66.20 years, closely paralleling GrimAge. Its distribution ranged from 23.31 to

106.47 years. Lastly, the Horvath Skin clock, designed specifically for skin and blood

tissues, has the highest mean age of 70.23 years, with its range extending from 36.97

to 101.29 years.

The observed variations in the means and distributions across these clocks
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highlight the complex nature of epigenetic aging, as well as the distinct ability of

each clock in capturing different aspects of aging process.

3.4 Construction of Variables

In our mortality risk analysis the outcome variable is a binary variable representing

mortality status. It equals 1 for a respondent who dies in year t, given that they

survived the previous year, t-1.

Our primary explanatory variable in the mortality risk analysis and the dependent

variable in the epigenetic clock analysis is the self-reported probabilities to survive

to a certain age which capture their perception of mortality risk. In the HRS dataset

these variables are – the probabilities of surviving to age 75 and 85 given during

the first interview round, which we denoted as SSP 75 and SSP 85, respectively.

These variables were derived from asking the HRS respondents the following question:

"What is the percent chance, with 0 meaning absolutely no chance and 100 meaning

absolutely certain, that you will live to be at least 75 (85)?" The values of SSP 75

and SSP 85 are rescaled to be between 0 and 1.

For SSP 75 and SSP 85, there are missing values. We generate dummy variables

to account for these missing values, and impute the original missing values in SSP

75 and SSP 85 with zeros. We include these indicator variables for missing values

as controls together with the SSP variables in our regression model. As Hurd and

McGarry (2002) discuss, these missing values are often non-random. Individuals

might choose to withhold a survival probability if they perceive a higher mortality

risk, even if they don’t explicitly express this.

Reported probabilities fluctuate based on the known risk factors like smoking

habit and are aligned with the risks associated with certain socio-demographic groups.

For instance, subjective survival probabilities generally increase with income, wealth,

and education. They tend to be lower for male and non-white individuals.

In a similar way, we construct dummy variables for focal responses, which equal

one if an SSP value is 0%, 50%, or 100%. These responses could arise from genuine
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uncertainty or confidence, cognitive simplicity, or the inherent challenge of predicting

one’s mortality. As presented in Figure 3.2.2, there’s a significant clustering of

responses at these focal points. The reasons for selecting extreme responses (0% or

100%) might differ from those for choosing 50%. Extreme values might stem from

an individual’s strong perception based on private knowledge or overly pessimistic or

optimistic (biased) perception. On the other hand, a 50% response might indicate

genuine belief in an even chance of survival to age 75 or 85, or a difficulty of assigning

a probability to a remote uncertain event (an epistemic uncertainty).

An individual’s self-reported health can greatly influence their subjective survival

probabilities. In the HRS this variable is constructed by asking the respondents to

self-rate their general health status from "1" (Excellent) to "5" (Poor). We hold the

rating "Poor" as a reference group and create dummy variables for other ratings.

Self-reported health is likely pivotal in forming subjective survival probabilities, and

existing research emphasizes its connection to both stated probabilities and actual

mortality outcomes.

The HRS collects extensive data on health, cognition, economic status, and family

relations. We incorporate some of these variables as controls in our analysis. All of

the health variables are constructed as dummy variables that equal 1 if a doctor has

diagnosed the respondent with a specific condition, like cancer or diabetes.

Obesity and overweight dummies are constructed using reported and, where

available, physically measured BMI data, and the Centre for Disease Control’s BMI

interpretation guide for adults6. An individual is obese if their BMI equals or greater

than 30, while they are overweight if their BMI is between 25-29.

Individuals’ educational attainment and economic status is also relevant in the

context of subjective survival probabilities and mortality risk. The expectation is

that, other things being equal, individuals with more education and higher wealth

and income may be able to make better health related decisions, as well as have

better access to healthcare, affecting both individuals’ perceived and actual survival

outcomes.
6https://www.cdc.gov/healthyweight/assessing/bmi/adultbmi/index.html
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We construct two dummy variables for individuals with at least high school and

at lest college education, holding the third group of individuals with less than high

school education as a reference group. Parents education is controlled by a dummy

variable that equals one if either parent has at least 12 years education.

Income and wealth factors are accounted by dummies for individual’s household

income and net welath depending on the quartile they fall into. We hold individuals

in the bottom quartile of income and wealth as the reference group.

The value of household income is the sum of earnings, Social Security, pensions,

annuity, disability and other government incomes. The household wealth value is the

sum of the values of individuals’ primary residence, other real estate owned, vehicles,

businesses, IRA’s stocks, chequing and saving accounts less any debt and mortgage

owed.

Individuals’ parents’ longevity is accounted for using separate dummy variables

for mother and father. They equal one if wither parents’ age of death, if dead, or

age in the last wave, if alive, is equal or greater than 75.
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4 Methodology

Our study is structured around two distinct analyses. In the first part, we use a

logistic regression to assess whether subjective survival probabilities can accurately

predict mortality status. We test this model using five specifications of explanatory

variables. In the second part, we use an linear regression (OLS) to test the correlation

of subjective survival probabilities with epigenetic clocks. Similarly, this model is

tested in five covariate specification.

4.1 Mortality Risk Analysis

To understand the link between how well the individuals’ perception about their

survival chances and the actual mortality outcomes, we use a logistic regression, as

shown in equation (4.1.1), as our econometric model. This model is chosen for several

reasons. Firstly, our dependent variable, the mortality status di,t, is binary (either

dead or alive). Logistic regression is designed to handle such binary outcomes, making

it a natural fit. Secondly, the model allows us to account for various factors that

might influence mortality, such as age, health status, lifestyle habits, etc., represented

by the covariate matrix Xi. Econometrically speaking, logistic regression assumes

that the log odds of the outcome is a linear combination of the predictors. This

means that as we change the value of our predictors (like the subjective survival

probability), the rate of increase or decrease in the odds of the outcome (being

dead) is constant. Additionally, for our results to be reliable, we assume no perfect

multicollinearity among our predictors, the absence of extreme outliers, and that our

observations are independent of each other.

In our logistic regression model addressing attrition, individuals exiting due to

attrition at a specific age are treated as having right-censored observations. This

implies assigning them zero probabilities of experiencing the event, mortality, from

their current age up to the attrition age, and subsequently, they are excluded from

the logistic regression as they never transition to the event, i.e. they never turn 1.

This treatment assumes that, given the set of covariates, attrition is uncorrelated
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with mortality. This assumption is justified by the alignment of overall mortality

probabilities by age with life-tables.

log
(

p(di,t = 1 | di,t−1 = 0)
1 − p(di,t = 1 | di,t−1 = 0)

)
= β0 + ρSSP i + Xiβ (4.1.1)

where:

· di,t is individual i’s mortality status in year t and di,t−1 is the mortality status

in year t − 1;

· SSP i is individual i’s subjective survival probability given during at the first

survey year;

· β0 is the intercept that interpreted as the log odds of being dead when all

predictors are zero;

· ρ is the coefficient estimator for SSP i, and represents the change in the log

odds of being dead for a one-unit increase in the subjective survival probability,

holding other variables constant;

· Xi,t is matrix of covariates for individual i at time t (detailed specifications of

the covariates provided later);

· β is the vector of coefficients associated with the covariates in Xi,t, and represent

the change in the log odds of being dead for a one-unit increase in the respective

covariate, holding other variables constant.

4.1.1 Marginal Effects

While the coefficients in a logistic regression, such as ρ), provide insights on the

log odds scale, they might not be straightforward to interpret. Marginal effects, on

the other hand, give us the change in the probability of the event occurring for a

one-unit change in the predictor, holding other factors constant. In simpler terms, it

tells us how much the chance of an event, eg. dying, changes for a small change in

our variable of interest, an increase in subjective survival probability. Thus, using

marginal effects allows us to directly interpret our results in a more intuitive manner.
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The marginal effect of the predictor, SSPi, in our logistic regression is represented

by equation (4.1.2).

∂p(di,t = 1 | di,t−1 = 0)
∂SSPi

= ρ × p(di,t = 1 | di,t−1 = 0) × (1 − p(di,t = 1 | di,t−1 = 0))

(4.1.2)

4.1.2 Specifications

We apply the nesting approach to our model, gradually expanding the set of

control variables. This approach allows us to observe how new sets of variables

influence our main predictor, SSPi, and explore the robustness and sensitivity of our

findings. We estimate the model in seven distinct specifications presented below 7.

We start with a set of basic demographic characteristics and technical variables

in Specification 1, and progressively incorporate more detailed information about the

respondent’s economic status, parents’ longevity, lifestyle, objective and perceived

health status. As discussed in previous chapters, previous works have established

a significant correlation between the SSP variables and self-reported health. We

introduce the self-reported health variable as the final step in Specification 5 in order

to examine its potential confounding effect on the relationships between SSP and

other variables in the model.

This methodology serves two primary purposes. First, it allows us to identify at

which stage, if at all, our main findings become sensitive to the inclusion of additional

controls. If our main results remain largely consistent across specifications, it may

imply robustness of the results. Second, by including variables step-by-step, we can

also explore the explanatory power of each group of variables.

Specification 1. We start by controlling for a basic set of socio-demographic

variables, missing and focal SSP values:
7We provide explain construction of these variables in detail in Chapter 3. Data)
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· dummies for being in late 50s (55-59) and for being older than 60 (reference

group is being in early 50s (50-54))

· gender and race dummies (for male, black and hispanic)

· dummies for educational attainment (for having at least high-school and

at least college education)

· a dummy for parents’ years of education (for having more than 12 years

of education (equivalent to high school level)

· dummies for missing SSP and SSP of values 0, 0.5 or 1.

Specification 2. We introduce dummies for parents’ longevity and economic

status:

· for having mother lived to or beyond 75 years old

· for having father lived to or beyond 75 years old

· for having income in 2nd, 3rd and top quartile

· for having wealth in 2nd, 3rd and top quartile.

Specification 3. We introduce lifestyle variables:

· a dummy for ever being a smoker

· a dummy for being obese and overweight.

Specification 4. We introduce a set of health variables:

· dummies for ever being diagnosed with cancer, diabetes, stroke, a heart

disease, a lung disease, a psychological condition and having high-blood

pressure.

Specification 5. We introduce the self-reported health variable:

· dummies for rating own heath as fair, good, very good and excellent.

4.2 Epigenetic Clock Analysis

In this part of our analysis we want to test the relationship between individuals’

perceived survival chances and their epigenetic aging process that we assume to be as
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shown by equation (4.2.1). We use a linear regression model illustrated in equation

(4.2.2), a robust and straightforward method, to test this relationship. We test this

model for each of the five selected epigenetic clocks individually.

The choice of this model is grounded in several rationales. First, our dependent

variable, SSP, as well as our primary predictor, the epigenetic clock, are continuous in

nature. Linear regression is well-suited to capture and quantify relationships between

such variables. Second, the model provides a framework to control for multiple

covariates that might have confounding effect. This is presented by the covariate

matrix Xi, that includes variables from socio-demographic to health indicators,

ensuring that the relationship of our interest is not spurious, but instead reflective of

an underlying association.

From an econometric standpoint, linear regression presumes that the expected

value of the dependent variable, SSPi, is a linear combination of the predictors.

This linear relationship implies that a unit change in the predictor, an epigenetic

clock, will result in a consistent change in the expected value of the SSP, given other

predictors remain constant.

SSPi = β0 + θEpigeneticClocki + Xiβ1 + ϵi (4.2.1)

E(SSPi|EpigeneticClocki, Xi) = β0 + θEpigeneticClocki + Xiβ1 (4.2.2)

Where:

· SSPi is individual i’s subjective probability to survive to at least 75 or 85,

· EpigeneticClocki is one of the five epigenetic clocks for individual i,

· Xi is a vector of other characteristics of individual i (Xi represents seven

distinct specifications, which we described later),

· β0 is the constant term,

· θ and β1 are the sets of coefficient estimates for the epigenetic clock and the
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set of covariates.

4.2.1 Specifications

We test the model in (4.2.2) in 5 different covariate specifications, which are the

same as described in the 4.1 Mortality Risk Analysis section.

4.2.2 Sensitivity Analysis

As part of our sensitivity analysis, in addition to the model presented in equation

(4.2.2), we test a model that does not include any of the five epigenetic clocks and that

includes all five clocks in aggregate. We present these scenarios in equations (4.2.3)

and (4.2.4), respectively, and refer to them as "baseline" and "collective" models (we

refer to the model represented by equation (4.2.2) as an "individual" model).

E(SSPi|Xi) = β0 + Xiβ1 (4.2.3)

E(SSPi|EpigeneticClockj,i, Xi) = β0 +
5∑

j=1
θjEpigeneticClockj,i + Xiβ1 (4.2.4)

Where:

· EpigeneticClockj,i is clock j (one of the five clocks in our analysis) for individual

i,

· θj is the coefficient estimate for clock j,

· the other variables remain as previously defined in model (4.2.2).

By including the analysis of a model that excludes the epigenetic clocks is a

we establishes a baseline, that allows us to observe the relationships among other

covariates and SSP and determine potential confounders. Comparing the performance

of models with and without the clocks can help us to establish contribution of the

epigenetic clocks more accurately and ensure the robustness of our findings.
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Including all epigenetic clocks in one model, in addition to analyzing each in-

dividually, allows for a simultaneous assessment of their unique contributions to

the outcome while controlling for the effects of the others. This approach offers

a perspective on the combined influence of the clocks and highlights the distinct

significance of each8.

Lastly, we standardize the epigenetic clock variables in our regression analyses,

rescaling them to have a mean of zero and a standard deviation of one, in order to make

our results directly comparable across the clocks and enable a more straightforward

interpretation.

8This model can be extended further by using Lasso regression and evaluating out-of-sample
mean squared error (MSE), thereby improving the predictive power of epigenetic clocks for subjective
mortality risk.
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5 Results and Discussion

5.1 Mortality Risk Analysis

The results of our logistic regression of mortality risk on subjective survival

probabilities, as well as their marginal effects, are presented in Table 5.1.1 (full table

of results is presented in Tables A1-A4 of the Appendix). The analysis in this section

will be primarily focused on the discussion of the results on SSP 75 as the general

behavior trends of SSP 85 and the covariates being similar with the difference being

the smaller magnitude of SSP 85 effect.

Table 5.1.1: SSP 75 and SSP 85

Dependent variable: Mortality Risk (mean=0.0195)
(1) (2) (3) (4) (5)

SSP 75 -0.523∗∗∗ -0.399∗∗∗ -0.373∗∗∗ -0.128∗ 0.010
(0.072) (0.072) (0.072) (0.072) (0.074)

Marginal effect -0.01∗∗∗ -0.008∗∗∗ -0.007∗∗∗ -0.002∗ 0.0
(0.001) (0.001) (0.001) (0.001) (0.001)

Observations 195,263 195,263 193,799 193,799 193,799
SSP 85 -0.261∗∗∗ -0.160∗∗ -0.135∗ -0.020 0.073

(0.073) (0.073) (0.073) (0.073) (0.073)
Marginal effect -0.005∗∗∗ -0.003∗∗ -0.003∗ -0.0 0.001

(0.001) (0.001) (0.001) (0.001) (0.001)
Observations 195,624 195,624 194,160 194,160 194,160

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

5.1.1 Subjective Survival Probabilities

In the presented table, the SSPs are on a continuous scale ranging from 0 to 1,

representing the probability of surviving in percentage points. The mortality risk is

a binary variable that takes values of 0 or 1 to indicate an individual’s alive or dead

status; the average mortality risk is in the table presented in percentage points.

The overall significance of the estimates of SSP 75 indicates that it is informative

of mortality risk, with higher subjective survival probabilities linked to lower mortality
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risk, even after controlling for a wide set of socio-demographic, economic, and health

conditions. The interpretation of this finding could be that individuals’ subjective

expectations about their survival are informed by their personal, possibly private,

health information and overall well-being, which might not be fully captured by the

observed covariates in the study. This supports the idea that SSP is not merely an

optimistic or pessimistic attitude but reflects some intrinsic knowledge about one’s

health that is predictive of actual survival chances.

The average mortality risk, that is, the average probability of death in the

following year for individuals aged 51-61 years, given they were alive in the previous

year, equals roughly 2%. In other words, on average, about 2 individuals out of 100,

or 200 individuals in our initial sample of almost 10,000, die every year during the

period from 1992 to 2020.

In our analysis, a consistent negative relationship between SSP and mortality risk

is observed in all model specifications except the last. This indicates that individuals

who estimate a higher likelihood of surviving to age 75 are, in reality, less likely to

die in the subsequent year. The coefficient estimate for SSP varies: it is -0.523 in

the simplest model specification (1) and changes to 0.010 in our most comprehensive

model (5), which incorporates all covariates. This range in coefficient values reflects

the influence of additional factors accounted for in different model specifications.

Notably, the -0.523 coefficient in model (1) indicates a substantial decrease in the

log odds of mortality, by 0.523, when SSP increases from 0 to 19.

A more intuitive way of interpreting this effect is by looking at the marginal

effect of SSP on the log odds of dying. The marginal effect of SSP on the log odds

of mortality risk ranges from -0.01 to 0.0 in specifications 1 to 5, respectively. This

means that when SSP increases from 0 to 1, the log odds of mortality decrease by 1

percentage points. Given that the mean mortality risk in our sample is 0.0195 (or

1.95%), a reduction of 1 percentage points is quite substantial, representing nearly

half of the mean mortality risk in our sample.
9An increase by 1 unit represents a shift from 0% to 100% in the perceived chance of surviving

to at least 75
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The predictive power of SSP was reported by previous works on mortality risk,

including among others, Hurd and McGarry (2002), which we discuss in Chapter 2

of this thesis, Bisconti and Bergeman (1999) who indicate that individuals’ SSP is

associated with lower mortality risk over a 10-year period.

These results suggest that individuals might have private information about their

own survival prospects that is not fully captured by observable measures. We will

now discuss the effects of the covariates included in our model to gain insights not

only about the factors influencing mortality risk directly, but also about how these

factors change the explanatory power of SSP. Such sensitivity analysis may help us

better understand the mechanisms through which individuals construct their SSP.

5.1.2 Self-Reported Health

The estimate for SSP remained significant even after controlling for most of the

measurable objective health and behavior indicators that could potentially summarize

one’s physical and psychological state. However, it stops being a significant predictor

as soon as indicators for individuals’ self-reported health are added. To get a more

accurate picture of the confounding effect of self-reported health on the power of

SSP, we additionally tested a model in a specification where, unlike specification 5,

we include self-reported health dummies without including the dummies for lifestyle

and objective health measures. We refer to this specification as to specification (6)

in Table 5.1.2, where we present the marginal effects of the variables.

Our observation is that the marginal effect of SSP on mortality risk is non-

significant when controlling for self-reported health dummies, regardless of the

additional inclusion of objective health and lifestyle variables.

Although on the surface this finding might appear obvious as both SSP and

self-rated health are individuals’ perceptions, the evidence is insightful in several

respects.

First, it is possible that SSP and self-reported health contain largely overlapping

information regarding mortality risk. When we include both variables in the same

model, it appears that the unique contribution of SSP is overshadowed by the self-
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reported health indicators, which could be a more immediate and explicit indicator

of health status.

Second, self-reported health may act as a mediator between SSP and mortality

risk, meaning that individuals’ perceptions of their survival probabilities could be

significantly influenced by their own assessments of their health. If self-reported

health captures much of the variation in mortality risk, once it is controlled for, the

direct effect of SSP on mortality risk is no longer distinguishable.

Lastly, it is likely that not only the self-reported health accurately captures infor-

mation about an individual’s objective health, but that it also contains information

over and above what the objective health measures and SSP contains. This may

include aspects such as mental well-being, lifestyle choices, and other day-to-day

challenges, which are hard to measure and observe, and which individuals might not

fully consider when constructing their SSP (Idler and Benyamini, 1997).

The marginal effect estimates for self-rated health indicators, when compared to

the reference group of individuals who rated their health as very bad, show a negative

association with mortality risk, indicating that better self-rated health is significantly

associated with lower mortality risk. Improvement in individuals’ perception of their

health from very bad to fair, and further to excellent ratings, is associated with a

reduction in the mortality risk by 0.2 percentage points (statistically significant at

the 5%) and 1.2 percentage points (statistically significant at the 1%), respectively.

5.1.3 Missing and Focal Values

We account for the potential impact of missing SSP by including a dummy

variable that equals one when an SSP value is not reported. Similar to the previous

works on SSP using HRS data, our results suggest that missing SSP values are not

random and, in fact, that they are significantly and positively with an increase in

mortality risk.

This finding suggests that individuals who do not report an SSP may differ

systematically from those who do, potentially indicating a form of self-selection that

correlates with mortality risk. A potential explanation for this might be that those
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Table 5.1.2: Self-Reported Health

Dependent variable: Mortality Risk (mean=0.0195)
(4) (6) (5)

SSP 75 -0.002∗ -0.0014 0.0
(0.001) (0.001) (0.001)

Smoker 0.008∗∗∗ 0.008∗∗∗

(0.001) (0.001)
Obesity -0.001 -0.001

(0.001) (0.001)
Overweight -0.002∗∗ -0.002∗

(0.001) (0.001)
Cancer 0.01∗∗∗ 0.009∗∗∗

(0.001) (0.001)
Diabetes 0.013∗∗∗ 0.011∗∗∗

(0.001) (0.001)
Stroke 0.009∗∗∗ 0.008∗∗∗

0.002) (0.002)
Heart disease 0.006∗∗∗ 0.005∗∗∗

(0.001) (0.001)
Lung disease 0.009∗∗∗ 0.008∗∗∗

(0.001) (0.001)
High blood pres. 0.004∗∗∗ 0.003∗∗∗

(0.001) (0.001)
Psych condition 0.005∗∗∗ 0.003∗∗∗

(0.001) (0.001)
SRH: fair -0.0058∗∗∗ -0.002∗∗

(0.001) (0.001)
SRH: good -0.0124∗∗∗ -0.006∗∗∗

(0.001) (0.001)
SRH: very good -0.0170∗∗∗ -0.009∗∗∗

(0.001) (0.001)
SRH: excellent -0.0213∗∗∗ -0.012∗∗∗

(0.001) (0.002)
Observations 193,799 193,799 193,799
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5.1.3: Socio-Demographic Predictors

Dependent variable: Mortality Risk (mean=0.0195)
(1) (2) (3) (4) (5)

Age 55-59 -0.01∗∗∗ -0.011∗∗∗ -0.011∗∗∗ -0.012∗∗∗ -0.012∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
Age >60 0.008∗∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.006∗∗∗ 0.006∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)
Male 0.005∗∗∗ 0.007∗∗∗ 0.005∗∗∗ 0.006∗∗∗ 0.006∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)
Black 0.003∗∗∗ -0.001 -0.0 -0.0 -0.001

(0.001) (0.001) (0.001) (0.001) (0.001)
Hispanic -0.009∗∗∗ -0.011∗∗∗ -0.01∗∗∗ -0.008∗∗∗ -0.009∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)
College -0.007∗∗∗ -0.003∗∗∗ -0.002∗∗ -0.002∗∗ -0.001

(0.001) (0.001) (0.001) (0.001) (0.001)
High school -0.004∗∗∗ -0.001∗ -0.001 -0.0 0.0

(0.001) (0.001) (0.001) (0.001) (0.001)
Parents’ edu >12 -0.002∗∗ -0.001 -0.001 -0.001 -0.001

(0.001) (0.001) (0.001) (0.001) (0.001)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

who do not provide an SSP estimate are aware of the private circumstances that

reduce their survival chance.

Focal SSP values, which are those reported as 0, 0.5, or 1, also show a positive

association with mortality risk. This result may indicate accuracy of the systematic

heuristic thinking adopted by individuals who report focal probabilities.

The fact that both missing and focal SSP values are significant predictors of

mortality risk indicates the complexity of how individuals perceive and report

their survival chances. The missing SSP values suggest there might be unobserved

heterogeneity among respondents, while the focal SSP values imply that overly

simplified or rounded assessments of survival probability are informative of mortality

risk.
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5.1.4 Socio-Demographic Predictors

Socio-demographic variables such as age, race, and education level have been

shown to influence mortality risk. Our analysis confirms these trends, with older age

categories and certain racial demographics having higher mortality risks. The results

for marginal effects of the variables is presented in Table 5.1.3.

Age is a fundamental determinant of mortality risk, which is demonstrated by

the significance and persistence of its estimates. However, our results suggest that,

depending on the grouping, age may have a non-linear relationship with the mortality

risk. A potential explanation could be that individuals in these groups may belong

to distinct risk profiles due to a variety of biological, social, economic and behavioral

factors (eg. variation in the stress levels of individuals of pre- and post-retirement).

Being male increases the mortality risk of an individual in our sample by 0.5-0.7

percentage points. This observation aligns with the well-documented phenomenon in

demographic and health studies, where male individuals have a shorter life expectancy

compared to females.

Black individuals in the sample have a higher risk of mortality compared to

non-black individuals. This finding is in line with existing literature that often

shows disparities in health outcomes by race, with black individuals typically facing

higher mortality rates. However, this association diminishes and becomes statistically

non-significant once income and wealth are controlled for. This change indicates

that the initial higher mortality risk associated with being black may be largely

attributable to differences in income and wealth rather than race itself.

The consistent and strong negative association between being hispanic and mortal-

ity risk suggests that Hispanic individuals in the sample have a lower risk of mortality

compared to the reference group of white individuals. This phenomenon, often

referred to as the "Hispanic paradox," suggests that despite potential socioeconomic

disadvantages, Hispanic populations tend to have lower mortality rates and better

health outcomes in certain respects compared to other ethnic groups (Franzini et al.,

2001). Various hypotheses have been proposed to explain this paradox, including
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cultural factors, dietary habits, stronger social networks, and the "healthy migrant

effect," where immigrants may be healthier than the average population of their

home countries. The strength and persistence of the effect suggest that the lower

mortality risk for Hispanics is not fully explained by the covariates included in the

model.

The negative coefficients for educational attainment suggest that higher levels

of education are associated with a reduced risk of mortality. The marginal effect

sizes indicate that the reduction in mortality risk is stronger for individuals with at

least a college education compared to those with at least a high school education.

Education has a protective effect on mortality due to a variety of factors such as

better health behaviors, greater access to healthcare, a higher likelihood of engaging

in preventive health measures. Much of these factors are also linked to individuals’

wealth and income, presence of which in our model shrinks the effect of education

significantly. Similarly, the effect of parents’ education is significant until the model

controls for individuals’ economic status.

5.1.5 Economic Predictors

Income and wealth influence the ability to access healthcare services, maintain a

healthy lifestyle, live in safer environments, and manage stress — all of which can

contribute to longevity. Results for income and wealth predictors are presented in

Table 5.1.4.

We observe that income has a more persistent and stronger effect on mortality

outcomes than wealth. This could be because, unlike income, individuals’ wealth

are more likely to be tied up in illiquid assets, in which case accessibility of health

and preventative care reduces. Compared to being in the bottom quartile, being in

the top quartile of income is associated with the reduction of mortality risk by 0.7 -

1.0 percentage points. These effects remain statistically significant at 1% across all

model specifications, indicating a robust association between income and mortality.

Wealth indicators, except for being in the top quartile (Q4) of wealth, stop having a

significant association with mortality risk when health variables are introduced.
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Table 5.1.4: Economic Predictors

Dependent variable: Mortality Risk (mean=0.0195)
(1) (2) (3) (4) (5)

Income in Q2 -0.005∗∗∗ -0.005∗∗∗ -0.004∗∗∗ -0.003∗∗∗

(0.001) (0.001) (0.001) (0.001)
Income in Q3 -0.007∗∗∗ -0.007∗∗∗ -0.006∗∗∗ -0.005∗∗∗

(0.001) (0.001) (0.001) (0.001)
Income in Q4 -0.01∗∗∗ -0.01∗∗∗ -0.009∗∗∗ -0.007∗∗∗

(0.001) (0.001) (0.001) (0.001)
Wealth in Q2 -0.003∗∗∗ -0.002∗∗ -0.001 0.0

(0.001) (0.001) (0.001) (0.001)
Wealth in Q3 -0.004∗∗∗ -0.003∗∗∗ -0.002 -0.001

(0.001) (0.001) (0.001) (0.001)
Wealth in Q4 -0.006∗∗∗ -0.004∗∗∗ -0.002∗ -0.001

(0.001) (0.001) (0.001) (0.001)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

5.1.6 Parents’ Longevity

As we show in Table 5.1.5, having longer lived parents is significantly and

persistently associated with a reduction in of one’s mortality risk. The effect might

be due to inherited genetic predispositions towards a longer life, or other confounding

factors that might have helped the parents live longer in the first place, such as

socioeconomic status or behavioral factors. For instance, if an individual’s parents’

longevity is partially attributed to their better healthcare access, lifestyle choices

and habits, the individual is more likely to have been nurtured to have similar

attributes. Controlling for parents’ longevity in our model decreases the effect of

SSP on mortality risk by 10%, from 1.0 to 0.9 percentage points.

5.1.7 Lifestyle and Objective Health Indicators

Smoking has a significant and persistent association with mortality risk, which

have been confirmed by the vast body of medical literature. Conversely, the effect of

being overweight or obese is not consistent in our model. The statistical significance of

the effect, and even the sign, changes, which might be because substantial confounding
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Table 5.1.5: Parents’ Longevity

Dependent variable: Mortality Risk (mean=0.0195)
(1) (2) (3) (4) (5)

Mother lived >75 -0.003∗∗∗ -0.003∗∗∗ -0.002∗∗∗ -0.002∗∗∗

(0.001) (0.001) (0.001) (0.001)
Father lived >75 -0.002∗∗∗ -0.002∗∗∗ -0.002∗∗∗ -0.002∗∗∗

(0.001) (0.001) (0.001) (0.001)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

effect of other variables in the model, in particular objective and subjective health

measures.

Health conditions are significant predictors of mortality risk, among them being

diagnosed with diabetes and cancer having the strongest positive effect, followed by

having had a stroke and lung disease.

Together the lifestyle and objective health measures are responsible for a decrease

in the explanatory power of SSP by 70% (from 0.7 to 0.2 percentage points). As a

reference, adding self-reported health indicators alone, without the lifestyle variables,

decreases the predictive power of SSP by 80% (from 0.7 to 0.14), suggesting it may

have a stronger link with SSP.

5.2 Epigenetic Clock Analysis

We start this section by comparing the explanatory power of the models that

don’t and do include epigenetic clocks. Table 5.2.1 presents the results for adjusted R-

squared for models (1) with no epigenetic clocks, represented by the equation (4.2.3),

(2) with all five epigenetic clocks included collectively represented by the equation

(4.2.4), and (3) with each clock included individually, represented by equation (4.2.2).

All models are presented in 5 specification of covariates.

The number of variables included in our models varies across these three settings,

depending on the inclusion of epigenetic clocks and whether they are included

collectively or individually. We use adjusted R-squared to compare the explanatory
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Table 5.2.1: Comparison of Adjusted R-Squared Results

Model Specifications
(1) (2) (3) (4) (5)

(1) Without clocks 0.143 0.165 0.164 0.168 0.175
(2) With all clocks 0.209 0.222 0.226 0.237 0.248
(3) Individual clocks

GrimAge 0.206 0.219 0.223 0.233 0.243
Hannum 0.189 0.202 0.208 0.216 0.227
Levine 0.184 0.197 0.203 0.209 0.218
Horvath Skin 0.179 0.193 0.199 0.208 0.219
Horvath 0.167 0.182 0.188 0.195 0.205

Observations 3,329 3,329 3,329 3,319 3,319

power of the models, as it provides a more accurate measure of fit by accounting for

the number of variables included in the model.

The first setting, which excludes the clocks, serves as our baseline. In this model,

the covariates account for 14.3% to 17.5% of the variation in SSP.

Including all epigenetic clocks in the model improves the adjusted R-squared

in the first specification that controls only for socio-demographic characteristics by

6.6% (or 46% of of the original power). However, the increase is less pronounced, at

7.7% (or 42% of the original power), in the last specification that includes variables

on individuals’ objective and subjective health, lifestyle and parents’ longevity. This

suggests that the epigenetic clocks and health measures share similar informational

content that explains the variation in SSP.

Interestingly, the incremental explanatory power provided by individual clocks

is closely comparable to that of the combined clocks. The effect of GrimAge is

particularly noteworthy. The model’s explanatory power with GrimAge alone is only

5% less than when all clocks are included. This implies that adding the other four

clocks additional to GrimAge provides minimal additional benefit. Compared to the

baseline, GrimAge alone improves the model’s explanatory power by 6.3-6.8% across

our basic (1) and most comprehensive (5) model specifications, respectively. For

context, the covariates on health, lifestyle and parents’ longevity collectively increase

the model’s explanatory power by 6.4%.
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Continuing the hierarchy of the strongest predictors among the epigenetic clocks,

individually, Hannum adds an additional 5.2% to the baseline model’s explanatory

power. Levine and Horvath Skin clocks have similar effects, each improving the

adjusted R-squared by 4.3% and 4.4%, respectively. Lastly, Horvath’s contribution

is 3%.

While the clocks offer the most explanatory power when used together, the

individual contributions of most clocks are largely similar, leading to an antagonistic

cumulative effect.

We now discuss the results of the models that include individual epigenetic clocks.

Tables 5.2.2 and 5.2.3 present the coefficient estimates of the epigenetic clocks from

the models where the clocks are included collectively and individually, respectively.

Table 5.2.2: Aggregate Model Results

Dependent variable: SSP 75 (mean=0.49)
(1) (2) (3) (4) (5)

GrimAge -0.076∗∗∗ -0.074∗∗∗ -0.073∗∗∗ -0.079∗∗∗ -0.079∗∗∗

(0.010) (0.010) (0.010) (0.010) (0.010)
Hannum -0.034∗∗∗ -0.032∗∗∗ -0.032∗∗∗ -0.031∗∗∗ -0.032∗∗∗

(0.012) (0.012) (0.012) (0.012) (0.012)
Levine -0.014 -0.014 -0.014 -0.012 -0.011

(0.009) (0.009) (0.009) (0.009) (0.009)
Horvath Skin 0.002 0.002 0.001 -0.004 -0.007

(0.013) (0.013) (0.013) (0.013) (0.013)
Horvath 0.006 0.005 0.005 0.004 0.002

(0.010) (0.010) (0.010) (0.010) (0.010)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

When we include all epigenetic clocks in the same model, the results are statis-

tically significant only for the GrimAge and Hannum clocks, both of which show

a strong negative correlation with SSP (at the 1% level). We standardized the

epigenetic clock values, therefore the result for GrimAge suggests that, holding

everything else equal, a one standard deviation increase in GrimAge is associated

with a 7.6-7.9% decrease in the SSP (equivalent to 16% of the mean SSP). The
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estimate for Hannum is nearly twice as small as the estimate for GrimAge.

This indicates that individuals who perceive their chances of survival to be lower

indeed have a greater epigenetic clocks, suggesting that they might be aware of their

biological age. Given that epigenetic clocks are strongly and positively correlated

with mortality outcomes (Lu et al., 2019; Horvath, 2013; Levine et al., 2018; Hannum

et al., 2013), the significant negative relationship between SSPs and these clocks

provides important evidence of the predictive power of SSPs regarding individuals’

survival outcomes

Table 5.2.3: Single-Clock Model Results

Dependent variable: SSP 75 (mean=0.49)
(1) (2) (3) (4) (5)

GrimAge -0.105∗∗∗ -0.102∗∗∗ -0.100∗∗∗ -0.110∗∗∗ -0.113∗∗∗

(0.006) (0.006) (0.006) (0.007) (0.007)
Hannum -0.089∗∗∗ -0.086∗∗∗ -0.084∗∗∗ -0.091∗∗∗ -0.094∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.006)
Levine -0.079∗∗∗ -0.076∗∗∗ -0.075∗∗∗ -0.078∗∗∗ -0.080∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.006)
Horvath Skin -0.079∗∗∗ -0.077∗∗∗ -0.076∗∗∗ -0.083∗∗∗ -0.087∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.006)
Horvath -0.062∗∗∗ -0.059∗∗∗ -0.059∗∗∗ -0.064∗∗∗ -0.067∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.006)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In contrast to the aggregate model, the results from the single-clock model

analysis, where each epigenetic clock was included separately, demonstrate significant

estimates at the 1% level for all clocks, across all models. This indicates that the

information content of these clocks largely overlaps. Each clock, while distinct

in its specific measurement, appears to capture a similar underlying factors of an

individual’s biological age, which is significantly associated with subjective survival

probabilities.

GrimAge shows the strongest negative correlation with SSPs, which is aligned

with the fact that it was specifically developed to predict longevity. The coefficients
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range from -0.105 to -0.113, indicating that a one standard deviation increase in

GrimAge is associated with a decrease in SSPs, ranging from 10.5% to 11.3% (21-23%

of the mean SSP). It is followed by Hannum, which has an effect of 8.9 - 9.4% (18-19%

of the mean SSP). Horvath shows the smallest effect of the five clocks which ranges

from 6.2-6.7% (12.7-13.7% of the mean SSP).

5.3 Implications and Applications of Findings

In the broader context of annuity markets and public policy, the findings of this

thesis, specifically, the predictive validity of SSPs regarding mortality risk and their

strong correlation with epigenetic clocks are important findings for several reasons.

First, as discussed in the initial chapters of this thesis, the predictive power

of SSPs about mortality may indicate the presence of asymmetric information in

annuity markets. Our findings suggest that the informational content of individuals’

SSPs is predictive of mortality, over and above the combined effect of socio-economic

status, genetic factors (approximated by parental longevity), lifestyle, and objective

health characteristics. Moreover, this information is private, being reflected through

individuals’ perception about their longevity and health status.

Biological age, as measured by the epigenetic clocks, is likely to be a more

precise predictor of life expectancy than chronological age alone. However, there

are significant legal and economical challenges associated with obtaining DNA data

and its use. Given that SSPs are significantly correlated with epigenetic clocks, they

could serve as a proxy for biological age. This could be used to improve economic

models, in particular estimating the longevity risk, as well as inform public policy

on retirement age, social security, and healthcare planning.

The insights have practical applications, especially in the context of actuarial

considerations and pricing insurance products. This involves incorporating SSP into

a basic pricing model to create alternative fair pricing distributions. This process

allows for a comparison between fair pricing distributions generated from different

mortality models, considering the presence or absence of subjective risk. Integrating
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SSPs, which have shown a strong negative correlation with mortality risk, refines

these fair pricing distributions to better align with individuals’ subjective perceptions

of mortality risk. This method can improve our understanding of how subjective risk

influences pricing dynamics, and offer insights for designing more accurate and fair

pricing structures.

An additional application of the findings involves dissecting the components of

subjective beliefs that are uncorrelated with epigenetic clocks from those that exhibit

correlation. This separation allows for examination of their distinct impacts on

market equilibrium, particularly in the context of adverse selection. By isolating the

subjective beliefs portion that is unrelated to epigenetic clocks and contrasting it with

those correlating with clocks, one can gain insights into the differential influences

on market dynamics. This analytical approach contributes to understanding how

individuals’ private health information, reflected in their subjective beliefs and

biological age estimations, collectively shape market equilibrium. Such insights are

important for refining models of adverse selection.

Lastly, the differences in the accuracy of SSPs could reveal systematic prejudices

held by certain socio-demographic groups, possibly due to their misinformation or

misperceptions about personal health. This could influence retirement planning

and financial decision-making. Policymakers could leverage these findings to better

understand and course-correct behaviors related to retirement savings and annuity

purchases.
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6 Conclusion

Some economists believe that individuals are unlikely to accurately quantify

probabilities of uncertain future events. This is attributed to the fact that, although

individuals may possess a somewhat articulated internal scale for assessing risks,

their perceptions are often biased (Machina, 1990). However, previous research

on individuals’ perceptions about their mortality risk has provided evidence that

these assessments can indeed have significant predictive power regarding actual

mortality risks, suggesting that they may not be as biased as previously thought.

This thesis contributes by further exploring the predictive power of subjective survival

probabilities in relation to actual mortality risk.

Our findings reveal a significant negative correlation between subjective survival

probabilities and mortality risk, even after accounting for a comprehensive set of

socio-demographic, economic, and health variables. This suggests that individuals’

subjective risk perceptions may be based on their private health information and

overall well-being, which are not fully captured by observable characteristics. The

robustness of subjective survival probabilities as a predictor of mortality risk was

further confirmed by its significant association with mortality, even when controlling

for self-reported health.

We also observe that the missing values of subjective survival probabilities have

a non-random nature and are positively correlated with mortality risk, aligning

with existing literature. This emphasizes complexity of how individuals perceive

and report their survival chances, with those not providing a survival probability

potentially being aware of factors reducing their survival odds. Additionally, our

findings suggest that income has a stronger effect on mortality than wealth, and

confirm the presence of the "Hispanic paradox".

Our epigenetic clock analysis added a new dimension to the study. The strong

correlation between subjective survival probabilities and epigenetic clocks, in partic-

ular the GrimAge clock, indicates the potential of subjective survival probabilities as

predictors of individuals’ biological age and actual mortality outcomes. The costliness
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associated with collecting DNA data and calculating epigenetic clocks highlights

the significance and practicality of this finding. Using SSP in predictive models is

economically feasible, offering valuable information about individuals’ biological age.

This study findings have important implications for annuity markets and public

policy. The predictive validity of SSP in predicting the mortality risk suggests the

presence of asymmetric information in annuity markets. Understanding this could

improve models predicting longevity risk, which is crucial for designing and pricing

annuity products. Moreover, subjective survival probabilities could serve as a proxy

for biological age and help to formulate policies related to retirement savings and

annuity purchases. Recognizing the heterogeneity in the accuracy of subjective

risk perceptions across different demographic groups could help policymakers better

understand prejudices that are common to certain groups and offer targeted education

to reduce those distortions.

In summary, this thesis contributes to understanding the information content of

SSP and emphasizes the value of integrating them into economic and policy models,

potentially leading to more efficient and equitable outcomes in the financial and

public sectors. Future research focusing on the exploration of residuals, achieved by

incorporating within the model additional subjective variables, such as beliefs and

attitudes, or other unexplored dimensions, could unveil valuable insights and further

enrich our understanding of subjective risk perceptions.
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Appendix

Table A1.1: Logistic Regression Result for SSP 75

Dependent variable: mortality status (mean=0.0195)
(1) (2) (3) (4) (5)

SSP 75 -0.523∗∗∗ -0.399∗∗∗ -0.373∗∗∗ -0.128∗ 0.010
(0.072) (0.072) (0.072) (0.072) (0.074)

Missing SSP -0.562∗∗∗ -0.442∗∗∗ -0.409∗∗∗ -0.273∗∗∗ -0.206∗∗

(0.081) (0.082) (0.084) (0.085) (0.085)
Focal SSP 0.193∗∗∗ 0.158∗∗ 0.157∗∗ 0.156∗∗ 0.151∗∗

(0.075) (0.075) (0.075) (0.075) (0.075)
Age >60 0.416∗∗∗ 0.407∗∗∗ 0.414∗∗∗ 0.320∗∗∗ 0.321∗∗∗

(0.037) (0.038) (0.038) (0.038) (0.038)
Age in [55, 59] -0.534∗∗∗ -0.556∗∗∗ -0.569∗∗∗ -0.645∗∗∗ -0.658∗∗∗

(0.079) (0.079) (0.080) (0.080) (0.080)
Male 0.289∗∗∗ 0.362∗∗∗ 0.283∗∗∗ 0.310∗∗∗ 0.315∗∗∗

(0.033) (0.034) (0.035) (0.036) (0.036)
Black 0.138∗∗∗ -0.024 -0.007 -0.016 -0.049

(0.043) (0.045) (0.046) (0.047) (0.047)
Hispanic -0.461∗∗∗ -0.596∗∗∗ -0.550∗∗∗ -0.431∗∗∗ -0.459∗∗∗

(0.066) (0.067) (0.068) (0.068) (0.068)
High school -0.194∗∗∗ -0.071∗ -0.040 -0.019 0.021

(0.041) (0.042) (0.043) (0.043) (0.043)
College -0.370∗∗∗ -0.142∗∗∗ -0.112∗∗ -0.098∗∗ -0.038

(0.045) (0.048) (0.048) (0.048) (0.049)
Parents’ edu >12 -0.086∗∗ -0.057 -0.060 -0.046 -0.031

(0.037) (0.037) (0.038) (0.038) (0.038)
Income in Q2 -0.244∗∗∗ -0.249∗∗∗ -0.202∗∗∗ -0.161∗∗∗

(0.045) (0.045) (0.046) (0.046)
Income in Q3 -0.372∗∗∗ -0.360∗∗∗ -0.297∗∗∗ -0.246∗∗∗

(0.051) (0.051) (0.051) (0.052)
Income in Q4 -0.517∗∗∗ -0.510∗∗∗ -0.460∗∗∗ -0.383∗∗∗

(0.059) (0.059) (0.060) (0.061)
Wealth in Q2 -0.140∗∗∗ -0.108∗∗ -0.029 -0.006
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Table A1.1 continued from previous page
Dependent variable: mortality risk (mean=0.0195)
(1) (2) (3) (4) (5)

(0.045) (0.046) (0.046) (0.046)
Wealth in Q3 -0.216∗∗∗ -0.180∗∗∗ -0.080 -0.046

(0.052) (0.052) (0.053) (0.053)
Wealth in Q4 -0.296∗∗∗ -0.228∗∗∗ -0.110∗ -0.073

(0.057) (0.057) (0.058) (0.058)
Mother lived >75 -0.149∗∗∗ -0.140∗∗∗ -0.104∗∗∗ -0.109∗∗∗

(0.034) (0.034) (0.035) (0.035)
Father lived >75 -0.120∗∗∗ -0.115∗∗∗ -0.091∗∗∗ -0.099∗∗∗

(0.034) (0.034) (0.034) (0.034)
Smoker 0.455∗∗∗ 0.410∗∗∗ 0.406∗∗∗

(0.038) (0.038) (0.038)
Obesity 0.116∗∗∗ -0.029 -0.058

(0.042) (0.044) (0.044)
Overweight -0.049 -0.079∗∗ -0.078∗∗

(0.039) (0.040) (0.040)
Cancer 0.536∗∗∗ 0.490∗∗∗

(0.068) (0.068)
Diabetes 0.663∗∗∗ 0.589∗∗∗

(0.048) (0.048)
Stroke 0.485∗∗∗ 0.414∗∗∗

(0.082) (0.083)
Heart disease 0.342∗∗∗ 0.255∗∗∗

(0.049) (0.050)
Lung disease 0.505∗∗∗ 0.422∗∗∗

(0.064) (0.064)
High blood pres. 0.214∗∗∗ 0.167∗∗∗

(0.036) (0.037)
Psych condition 0.244∗∗∗ 0.177∗∗∗

(0.060) (0.061)
SRH: fair -0.128∗∗

(0.062)
SRH: good -0.309∗∗∗

(0.064)
SRH: very good -0.459∗∗∗
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Table A1.1 continued from previous page
Dependent variable: mortality risk (mean=0.0195)
(1) (2) (3) (4) (5)

(0.071)
SRH: excellent -0.629∗∗∗

(0.079)
Constant -3.568∗∗∗ -3.207∗∗∗ -3.574∗∗∗ -4.083∗∗∗ -3.843∗∗∗

(0.061) (0.068) (0.077) (0.082) (0.093)

Observations 195263 195263 193799 193799 193799
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A1.2: Logistic Regression Result for SSP 85

Dependent variable: mortality status (mean=0.0195)
(1) (2) (3) (4) (5)

SSP 85 -0.261∗∗∗ -0.160∗∗ -0.135∗ -0.020 0.073
(0.073) (0.073) (0.073) (0.073) (0.073)

Missing SSP 0.391∗∗∗ 0.305∗∗∗ 0.270∗∗∗ 0.167∗∗ 0.125∗

(0.069) (0.070) (0.071) (0.072) (0.072)
Focal SSP 0.293∗∗∗ 0.240∗∗∗ 0.228∗∗∗ 0.126∗∗ 0.093∗

(0.055) (0.055) (0.055) (0.055) (0.056)
Age >60 0.423∗∗∗ 0.416∗∗∗ 0.421∗∗∗ 0.323∗∗∗ 0.324∗∗∗

(0.037) (0.037) (0.038) (0.038) (0.038)
Age in [55, 59] -0.536∗∗∗ -0.564∗∗∗ -0.577∗∗∗ -0.652∗∗∗ -0.664∗∗∗

(0.079) (0.079) (0.080) (0.080) (0.080)
Male 0.289∗∗∗ 0.368∗∗∗ 0.292∗∗∗ 0.320∗∗∗ 0.325∗∗∗

(0.033) (0.034) (0.035) (0.036) (0.036)
Black 0.156∗∗∗ -0.023 -0.008 -0.019 -0.055

(0.043) (0.045) (0.046) (0.047) (0.047)
Hispanic -0.436∗∗∗ -0.556∗∗∗ -0.512∗∗∗ -0.397∗∗∗ -0.427∗∗∗

(0.065) (0.066) (0.067) (0.068) (0.068)
High school -0.197∗∗∗ -0.070∗ -0.037 -0.012 0.029

(0.041) (0.042) (0.043) (0.043) (0.043)
College -0.369∗∗∗ -0.128∗∗∗ -0.098∗∗ -0.087∗ -0.026

(0.045) (0.048) (0.048) (0.048) (0.049)
Parents’ edu >12 -0.081∗∗ -0.045 -0.049 -0.036 -0.022

(0.037) (0.037) (0.037) (0.038) (0.038)
Income in Q2 -0.252∗∗∗ -0.257∗∗∗ -0.209∗∗∗ -0.165∗∗∗

(0.045) (0.045) (0.046) (0.046)
Income in Q3 -0.378∗∗∗ -0.366∗∗∗ -0.303∗∗∗ -0.249∗∗∗

(0.050) (0.051) (0.051) (0.052)
Income in Q4 -0.521∗∗∗ -0.516∗∗∗ -0.467∗∗∗ -0.388∗∗∗

(0.059) (0.059) (0.060) (0.060)
Wealth in Q2 -0.143∗∗∗ -0.111∗∗ -0.031 -0.005

(0.045) (0.046) (0.046) (0.046)
Wealth in Q3 -0.225∗∗∗ -0.189∗∗∗ -0.085 -0.049

(0.052) (0.052) (0.053) (0.053)
Wealth in Q4 -0.302∗∗∗ -0.235∗∗∗ -0.112∗ -0.072
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Table A1.2 continued from previous page
Dependent variable: mortality risk (mean=0.0195)
(1) (2) (3) (4) (5)

(0.057) (0.057) (0.058) (0.058)
Mother lived >85 -0.259∗∗∗ -0.254∗∗∗ -0.214∗∗∗ -0.219∗∗∗

(0.036) (0.036) (0.037) (0.037)
Father lived >85 -0.245∗∗∗ -0.233∗∗∗ -0.208∗∗∗ -0.217∗∗∗

(0.045) (0.046) (0.046) (0.046)
Smoker 0.449∗∗∗ 0.407∗∗∗ 0.405∗∗∗

(0.038) (0.038) (0.038)
Obesity 0.117∗∗∗ -0.032 -0.063

(0.042) (0.043) (0.044)
Overweight -0.052 -0.080∗∗ -0.079∗∗

(0.039) (0.039) (0.040)
Cancer 0.536∗∗∗ 0.485∗∗∗

(0.067) (0.067)
Diabetes 0.650∗∗∗ 0.574∗∗∗

(0.048) (0.048)
Stroke 0.494∗∗∗ 0.414∗∗∗

(0.082) (0.082)
Heart disease 0.337∗∗∗ 0.247∗∗∗

(0.049) (0.049)
Lung disease 0.513∗∗∗ 0.427∗∗∗

(0.063) (0.064)
High blood pres. 0.216∗∗∗ 0.168∗∗∗

(0.036) (0.037)
Psych condition 0.254∗∗∗ 0.182∗∗∗

(0.060) (0.061)
SRH: fair -0.141∗∗

(0.062)
SRH: good -0.327∗∗∗

(0.063)
SRH: very good -0.473∗∗∗

(0.070)
SRH: excellent -0.649∗∗∗

(0.079)
Constant -3.840∗∗∗ -3.449∗∗∗ -3.799∗∗∗ -4.170∗∗∗ -3.868∗∗∗
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Table A1.2 continued from previous page
Dependent variable: mortality risk (mean=0.0195)
(1) (2) (3) (4) (5)

(0.056) (0.061) (0.071) (0.074) (0.087)

Observations 195624 195624 194160 194160 194160
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A1.3: Marginal Effects for SSP 75

Dependent variable: mortality status (mean=0.0195)
(1) (2) (3) (4) (5)

SSP 75 -0.01∗∗∗ -0.008∗∗∗ -0.007∗∗∗ -0.002∗ 0.0
(0.001) (0.001) (0.001) (0.001) (0.001)

Missing SSP 0.011∗∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.005∗∗∗ 0.004∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
Focal SSP 0.004∗∗ 0.003∗∗ 0.003∗∗ 0.003∗∗ 0.003∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)
Age in [55, 59] -0.01∗∗∗ -0.011∗∗∗ -0.011∗∗∗ -0.012∗∗∗ -0.012∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
Age >60 0.008∗∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.006∗∗∗ 0.006∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)
Male 0.005∗∗∗ 0.007∗∗∗ 0.005∗∗∗ 0.006∗∗∗ 0.006∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)
Black 0.003∗∗∗ -0.001 -0.0 -0.0 -0.001

(0.001) (0.001) (0.001) (0.001) (0.001)
Hispanic -0.009∗∗∗ -0.011∗∗∗ -0.01∗∗∗ -0.008∗∗∗ -0.009∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)
College -0.007∗∗∗ -0.003∗∗∗ -0.002∗∗ -0.002∗∗ -0.001

(0.001) (0.001) (0.001) (0.001) (0.001)
High school -0.004∗∗∗ -0.001∗ -0.001 -0.0 0.0

(0.001) (0.001) (0.001) (0.001) (0.001)
Parents’ edu >12 -0.002∗∗ -0.001 -0.001 -0.001 -0.001

(0.001) (0.001) (0.001) (0.001) (0.001)
Income in Q2 -0.005∗∗∗ -0.005∗∗∗ -0.004∗∗∗ -0.003∗∗∗

(0.001) (0.001) (0.001) (0.001)
Income in Q3 -0.007∗∗∗ -0.007∗∗∗ -0.006∗∗∗ -0.005∗∗∗

(0.001) (0.001) (0.001) (0.001)
Income in Q4 -0.01∗∗∗ -0.01∗∗∗ -0.009∗∗∗ -0.007∗∗∗

(0.001) (0.001) (0.001) (0.001)
Wealth in Q2 -0.003∗∗∗ -0.002∗∗ -0.001 0.0

(0.001) (0.001) (0.001) (0.001)
Wealth in Q3 -0.004∗∗∗ -0.003∗∗∗ -0.002 -0.001

(0.001) (0.001) (0.001) (0.001)
Wealth in Q4 -0.006∗∗∗ -0.004∗∗∗ -0.002∗ -0.001
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Table A1.3 continued from previous page
Dependent variable: mortality risk (mean=0.0195)
(1) (2) (3) (4) (5)

(0.001) (0.001) (0.001) (0.001)
Mother lived >75 -0.003∗∗∗ -0.003∗∗∗ -0.002∗∗∗ -0.002∗∗∗

(0.001) (0.001) (0.001) (0.001)
Father lived >75 -0.002∗∗∗ -0.002∗∗∗ -0.002∗∗∗ -0.002∗∗∗

(0.001) (0.001) (0.001) (0.001)
Smoker 0.009∗∗∗ 0.008∗∗∗ 0.008∗∗∗

(0.001) (0.001) (0.001)
Obesity 0.002∗∗∗ -0.001 -0.001

(0.001) (0.001) (0.001)
Overweight -0.001 -0.002∗∗ -0.002∗

(0.001) (0.001) (0.001)
Cancer 0.01∗∗∗ 0.009∗∗∗

(0.001) (0.001)
Diabetes 0.013∗∗∗ 0.011∗∗∗

(0.001) (0.001)
Stroke 0.009∗∗∗ 0.008∗∗∗

(0.002) (0.002)
Heart disease 0.006∗∗∗ 0.005∗∗∗

(0.001) (0.001)
Lung disease 0.009∗∗∗ 0.008∗∗∗

(0.001) (0.001)
High blood pres. 0.004∗∗∗ 0.003∗∗∗

(0.001) (0.001)
Psych condition 0.005∗∗∗ 0.003∗∗∗

(0.001) (0.001)
SRH: fair -0.002∗∗

(0.001)
SRH: good -0.006∗∗∗

(0.001)
SRH: very good -0.009∗∗∗

(0.001)
SRH: excellent -0.012∗∗∗

(0.002)
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A1.4: Marginal Effects for SSP 85

Dependent variable: mortality status (mean=0.0195)
(1) (2) (3) (4) (5)

SSP 85 -0.005∗∗∗ -0.003∗∗ -0.003∗ -0.0 0.001
(0.001) (0.001) (0.001) (0.001) (0.001)

Missing SSP 0.007∗∗∗ 0.006∗∗∗ 0.005∗∗∗ 0.003∗∗ 0.002∗

(0.001) (0.001) (0.001) (0.001) (0.001)
Focal SSP 0.006∗∗∗ 0.005∗∗∗ 0.004∗∗∗ 0.002∗∗ 0.002∗

(0.001) (0.001) (0.001) (0.001) (0.001)
Age in [55, 59] -0.01∗∗∗ -0.011∗∗∗ -0.011∗∗∗ -0.012∗∗∗ -0.013∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
Age >60 0.008∗∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.006∗∗∗ 0.006∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)
Male 0.005∗∗∗ 0.007∗∗∗ 0.005∗∗∗ 0.006∗∗∗ 0.006∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)
Black 0.003∗∗∗ -0.0 -0.0 -0.0 -0.001

(0.001) (0.001) (0.001) (0.001) (0.001)
Hispanic -0.008∗∗∗ -0.011∗∗∗ -0.01∗∗∗ -0.007∗∗∗ -0.008∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)
High school -0.004∗∗∗ -0.001 -0.001 -0.0 0.001

(0.001) (0.001) (0.001) (0.001) (0.001)
College -0.007∗∗∗ -0.002∗∗∗ -0.002∗∗ -0.002∗ -0.001

(0.001) (0.001) (0.001) (0.001) (0.001)
Parents’ edu >12 -0.002∗∗ -0.001 -0.001 -0.001 -0.0

(0.001) (0.001) (0.001) (0.001) (0.001)
Mother lived >85 -0.005∗∗∗ -0.005∗∗∗ -0.004∗∗∗ -0.004∗∗∗

(0.001) (0.001) (0.001) (0.001)
Father lived >85 -0.005∗∗∗ -0.004∗∗∗ -0.004∗∗∗ -0.004∗∗∗

(0.001) (0.001) (0.001) (0.001)
Income in Q2 -0.005∗∗∗ -0.005∗∗∗ -0.004∗∗∗ -0.003∗∗∗

(0.001) (0.001) (0.001) (0.001)
Income in Q3 -0.007∗∗∗ -0.007∗∗∗ -0.006∗∗∗ -0.005∗∗∗

(0.001) (0.001) (0.001) (0.001)
Income in Q4 -0.01∗∗∗ -0.01∗∗∗ -0.009∗∗∗ -0.007∗∗∗

(0.001) (0.001) (0.001) (0.001)
Wealth in Q2 -0.003∗∗∗ -0.002∗∗ -0.001 -0.0
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Table A1.4 continued from previous page
Dependent variable: mortality risk (mean=0.0195)
(1) (2) (3) (4) (5)

(0.001) (0.001) (0.001) (0.001)
Wealth in Q3 -0.004∗∗∗ -0.004∗∗∗ -0.002 -0.001

(0.001) (0.001) (0.001) (0.001)
Wealth in Q4 -0.006∗∗∗ -0.004∗∗∗ -0.002∗ -0.001

(0.001) (0.001) (0.001) (0.001)
Smoker 0.009∗∗∗ 0.008∗∗∗ 0.008∗∗∗

(0.001) (0.001) (0.001)
Obesity 0.002∗∗∗ -0.001 -0.001

(0.001) (0.001) (0.001)
Overweight -0.001 -0.002∗∗ -0.002∗∗

(0.001) (0.001) (0.001)
Cancer 0.01∗∗∗ 0.009∗∗∗

(0.001) (0.001)
Diabetes 0.012∗∗∗ 0.011∗∗∗

(0.001) (0.001)
Stroke 0.009∗∗∗ 0.008∗∗∗

(0.002) (0.002)
Heart disease 0.006∗∗∗ 0.005∗∗∗

(0.001) (0.001)
Lung disease 0.01∗∗∗ 0.008∗∗∗

(0.001) (0.001)
High blood pres. 0.004∗∗∗ 0.003∗∗∗

(0.001) (0.001)
Psych condition 0.005∗∗∗ 0.003∗∗∗

(0.001) (0.001)
SRH: fair -0.003∗∗

(0.001)
SRH: good -0.006∗∗∗

(0.001)
SRH: very good -0.009∗∗∗

(0.001)
SRH: excellent -0.012∗∗∗

(0.001)
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A2.1: Single-Clock Model for GrimAge

Dependent variable: SSP 75 (mean=0.49)
(1) (2) (3) (4) (5)

GrimAge -0.105∗∗∗ -0.102∗∗∗ -0.100∗∗∗ -0.110∗∗∗ -0.113∗∗∗

(0.006) (0.006) (0.006) (0.007) (0.007)
Age in [55, 59] 0.009 0.010 0.010 0.017 0.017

(0.012) (0.012) (0.012) (0.012) (0.011)
Age >60 -0.034∗∗ -0.021 -0.022 -0.005 -0.011

(0.016) (0.017) (0.017) (0.017) (0.017)
Male 0.009 0.010 0.009 0.009 0.006

(0.011) (0.011) (0.011) (0.011) (0.011)
Black 0.105∗∗∗ 0.105∗∗∗ 0.110∗∗∗ 0.113∗∗∗ 0.117∗∗∗

(0.015) (0.015) (0.015) (0.015) (0.015)
Hispanic -0.068∗∗∗ -0.058∗∗∗ -0.061∗∗∗ -0.067∗∗∗ -0.056∗∗∗

(0.017) (0.017) (0.017) (0.017) (0.017)
College 0.091∗∗∗ 0.077∗∗∗ 0.075∗∗∗ 0.078∗∗∗ 0.063∗∗∗

(0.016) (0.016) (0.016) (0.016) (0.016)
High school 0.042∗∗∗ 0.034∗∗ 0.033∗∗ 0.032∗∗ 0.023

(0.016) (0.016) (0.015) (0.015) (0.015)
Parents’ edu >12 0.043∗∗∗ 0.043∗∗∗ 0.041∗∗∗ 0.038∗∗∗ 0.036∗∗∗

(0.012) (0.012) (0.012) (0.012) (0.012)
Income in Q2 0.038∗∗ 0.030∗∗ 0.029∗ 0.028∗ 0.018

(0.015) (0.015) (0.015) (0.015) (0.015)
Income in Q3 0.075∗∗∗ 0.068∗∗∗ 0.065∗∗∗ 0.061∗∗∗ 0.047∗∗∗

(0.016) (0.016) (0.016) (0.016) (0.016)
Income in Q4 0.093∗∗∗ 0.083∗∗∗ 0.082∗∗∗ 0.076∗∗∗ 0.059∗∗∗

(0.018) (0.018) (0.018) (0.018) (0.018)
Wealth in Q2 -0.009 -0.008 -0.007 -0.016 -0.019

(0.015) (0.015) (0.015) (0.015) (0.015)
Wealth in Q3 0.016 0.013 0.012 0.001 -0.005

(0.016) (0.016) (0.016) (0.016) (0.016)
Wealth in Q4 0.014 0.017 0.014 0.002 -0.005

(0.017) (0.017) (0.017) (0.017) (0.017)
Mother lived >75 0.026∗∗ 0.022∗∗ 0.018
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Table A2.1 continued from previous page
Dependent variable: SSP 75 (mean=0.49)

(1) (2) (3) (4) (5)

(0.011) (0.011) (0.011)
Father lived >75 0.038∗∗∗ 0.034∗∗∗ 0.036∗∗∗

(0.010) (0.010) (0.010)
Smoker 0.028∗∗∗ 0.029∗∗∗

(0.011) (0.011)
Obesity -0.003 0.007

(0.013) (0.013)
Overweight 0.006 0.008

(0.013) (0.013)
Cancer -0.004 0.009

(0.025) (0.025)
Diabetes -0.066∗∗∗ -0.052∗∗∗

(0.018) (0.018)
Stroke 0.019 0.036

(0.032) (0.032)
Heart disease -0.042∗∗ -0.020

(0.019) (0.019)
Lung disease -0.057∗∗ -0.041

(0.028) (0.028)
High blood pres. -0.019∗ -0.006

(0.011) (0.012)
Psych condition -0.053∗∗∗ -0.030

(0.018) (0.018)
SRH: fair 0.014

(0.026)
SRH: good 0.086∗∗∗

(0.026)
SRH: very good 0.101∗∗∗

(0.027)
SRH: excellent 0.143∗∗∗

(0.029)
Missing SSP -0.071∗∗ -0.069∗∗ -0.056∗ -0.044

(0.029) (0.029) (0.029) (0.029)
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Table A2.1 continued from previous page
Dependent variable: SSP 75 (mean=0.49)

(1) (2) (3) (4) (5)

Focal SSP -0.155∗∗∗ -0.150∗∗∗ -0.133∗∗∗ -0.115∗∗∗

(0.025) (0.025) (0.025) (0.025)
Constant 0.350∗∗∗ 0.376∗∗∗ 0.343∗∗∗ 0.362∗∗∗ 0.284∗∗∗

(0.018) (0.019) (0.020) (0.023) (0.033)

Observations 3329 3329 3329 3319 3319
R2 0.209 0.223 0.227 0.240 0.251
Adjusted R2 0.206 0.219 0.223 0.233 0.243
Residual Std. Error 0.297 0.295 0.294 0.292 0.290
F Statistic 58.479∗∗∗ 55.766∗∗∗ 51.252∗∗∗ 35.747∗∗∗ 33.346∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A2.2: Single-Clock Model for Hannum

Dependent variable: SSP 75 (mean=0.49)
(1) (2) (3) (4) (5)

Hannum -0.089∗∗∗ -0.086∗∗∗ -0.084∗∗∗ -0.091∗∗∗ -0.094∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.006)
Age in [55, 59] 0.001 0.002 0.002 0.008 0.008

(0.012) (0.012) (0.012) (0.012) (0.012)
Age >60 -0.054∗∗∗ -0.041∗∗ -0.041∗∗ -0.028∗ -0.034∗∗

(0.016) (0.017) (0.017) (0.017) (0.017)
Male -0.012 -0.011 -0.012 -0.007 -0.010

(0.011) (0.011) (0.011) (0.011) (0.011)
Black 0.080∗∗∗ 0.080∗∗∗ 0.087∗∗∗ 0.088∗∗∗ 0.091∗∗∗

(0.015) (0.015) (0.015) (0.015) (0.015)
Hispanic -0.042∗∗ -0.032∗ -0.036∗∗ -0.042∗∗ -0.030∗

(0.017) (0.017) (0.017) (0.017) (0.017)
College 0.106∗∗∗ 0.091∗∗∗ 0.088∗∗∗ 0.089∗∗∗ 0.074∗∗∗

(0.016) (0.016) (0.016) (0.016) (0.016)
High school 0.047∗∗∗ 0.039∗∗ 0.038∗∗ 0.038∗∗ 0.028∗

(0.016) (0.016) (0.016) (0.016) (0.016)
Parents’ edu >12 0.047∗∗∗ 0.048∗∗∗ 0.045∗∗∗ 0.044∗∗∗ 0.042∗∗∗
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Table A2.2 continued from previous page
Dependent variable: SSP 75 (mean=0.49)

(1) (2) (3) (4) (5)

(0.012) (0.012) (0.012) (0.012) (0.012)
Income in Q2 0.040∗∗∗ 0.032∗∗ 0.031∗∗ 0.030∗∗ 0.021

(0.015) (0.015) (0.015) (0.015) (0.015)
Income in Q3 0.079∗∗∗ 0.071∗∗∗ 0.068∗∗∗ 0.065∗∗∗ 0.052∗∗∗

(0.016) (0.016) (0.016) (0.016) (0.016)
Income in Q4 0.111∗∗∗ 0.101∗∗∗ 0.099∗∗∗ 0.094∗∗∗ 0.077∗∗∗

(0.018) (0.018) (0.018) (0.018) (0.018)
Wealth in Q2 -0.001 -0.001 0.000 -0.010 -0.013

(0.015) (0.015) (0.015) (0.015) (0.015)
Wealth in Q3 0.020 0.016 0.016 0.002 -0.004

(0.016) (0.016) (0.016) (0.016) (0.016)
Wealth in Q4 0.023 0.026 0.023 0.007 0.000

(0.017) (0.017) (0.017) (0.017) (0.017)
Mother lived >75 0.029∗∗ 0.025∗∗ 0.022∗

(0.011) (0.011) (0.011)
Father lived >75 0.041∗∗∗ 0.037∗∗∗ 0.039∗∗∗

(0.010) (0.010) (0.010)
Smoker -0.010 -0.010

(0.011) (0.011)
Obesity 0.001 0.012

(0.013) (0.013)
Overweight 0.006 0.008

(0.013) (0.013)
Cancer -0.004 0.008

(0.025) (0.025)
Diabetes -0.060∗∗∗ -0.045∗∗

(0.018) (0.018)
Stroke 0.020 0.037

(0.032) (0.032)
Heart disease -0.044∗∗ -0.022

(0.019) (0.019)
Lung disease -0.067∗∗ -0.051∗

(0.029) (0.029)
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Table A2.2 continued from previous page
Dependent variable: SSP 75 (mean=0.49)

(1) (2) (3) (4) (5)

High blood pres. -0.020∗ -0.007
(0.012) (0.012)

Psych condition -0.049∗∗∗ -0.025
(0.018) (0.019)

SRH: fair 0.015
(0.027)

SRH: good 0.087∗∗∗

(0.027)
SRH: very good 0.103∗∗∗

(0.028)
SRH: excellent 0.145∗∗∗

(0.029)
Missing SSP -0.073∗∗ -0.070∗∗ -0.057∗ -0.046

(0.029) (0.029) (0.029) (0.029)
Focal SSP -0.158∗∗∗ -0.153∗∗∗ -0.138∗∗∗ -0.119∗∗∗

(0.025) (0.025) (0.025) (0.025)
Constant 0.342∗∗∗ 0.369∗∗∗ 0.333∗∗∗ 0.371∗∗∗ 0.292∗∗∗

(0.019) (0.019) (0.021) (0.023) (0.033)

Observations 3329 3329 3329 3319 3319
R2 0.193 0.206 0.212 0.223 0.234
Adjusted R2 0.189 0.202 0.208 0.216 0.227
Residual Std. Error 0.300 0.298 0.297 0.295 0.293
F Statistic 52.715∗∗∗ 50.661∗∗∗ 46.880∗∗∗ 32.556∗∗∗ 30.491∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A2.3: Single-Clock Model for Levine

Dependent variable: SSP 75 (mean=0.49)
(1) (2) (3) (4) (5)

Levine -0.079∗∗∗ -0.076∗∗∗ -0.075∗∗∗ -0.078∗∗∗ -0.080∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.006)
Age in [55, 59] -0.005 -0.003 -0.003 0.001 0.000
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Table A2.3 continued from previous page
Dependent variable: SSP 75 (mean=0.49)

(1) (2) (3) (4) (5)

(0.012) (0.012) (0.012) (0.012) (0.012)
Age >60 -0.070∗∗∗ -0.055∗∗∗ -0.055∗∗∗ -0.046∗∗∗ -0.052∗∗∗

(0.016) (0.016) (0.016) (0.017) (0.017)
Male -0.022∗∗ -0.020∗ -0.021∗∗ -0.019∗ -0.022∗∗

(0.011) (0.011) (0.011) (0.011) (0.011)
Black 0.105∗∗∗ 0.105∗∗∗ 0.110∗∗∗ 0.113∗∗∗ 0.117∗∗∗

(0.015) (0.015) (0.015) (0.015) (0.015)
Hispanic -0.039∗∗ -0.030∗ -0.034∗∗ -0.038∗∗ -0.026

(0.017) (0.017) (0.017) (0.017) (0.017)
College 0.105∗∗∗ 0.090∗∗∗ 0.088∗∗∗ 0.090∗∗∗ 0.076∗∗∗

(0.016) (0.016) (0.016) (0.016) (0.016)
High school 0.044∗∗∗ 0.036∗∗ 0.035∗∗ 0.035∗∗ 0.026∗

(0.016) (0.016) (0.016) (0.016) (0.016)
Parents’ edu >12 0.052∗∗∗ 0.052∗∗∗ 0.050∗∗∗ 0.049∗∗∗ 0.049∗∗∗

(0.012) (0.012) (0.012) (0.012) (0.012)
Income in Q2 0.039∗∗ 0.031∗∗ 0.030∗∗ 0.030∗ 0.021

(0.015) (0.015) (0.015) (0.015) (0.015)
Income in Q3 0.076∗∗∗ 0.068∗∗∗ 0.066∗∗∗ 0.063∗∗∗ 0.051∗∗∗

(0.017) (0.016) (0.016) (0.016) (0.016)
Income in Q4 0.110∗∗∗ 0.100∗∗∗ 0.098∗∗∗ 0.094∗∗∗ 0.079∗∗∗

(0.018) (0.018) (0.018) (0.018) (0.018)
Wealth in Q2 -0.011 -0.010 -0.009 -0.019 -0.022

(0.015) (0.015) (0.015) (0.015) (0.015)
Wealth in Q3 0.014 0.011 0.011 -0.002 -0.008

(0.016) (0.016) (0.016) (0.016) (0.016)
Wealth in Q4 0.015 0.018 0.015 0.001 -0.005

(0.017) (0.017) (0.017) (0.017) (0.017)
Mother lived >75 0.025∗∗ 0.022∗ 0.019

(0.011) (0.011) (0.011)
Father lived >75 0.043∗∗∗ 0.040∗∗∗ 0.042∗∗∗

(0.010) (0.010) (0.010)
Smoker -0.007 -0.007

(0.011) (0.011)
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Table A2.3 continued from previous page
Dependent variable: SSP 75 (mean=0.49)

(1) (2) (3) (4) (5)

Obesity 0.006 0.016
(0.013) (0.013)

Overweight 0.009 0.011
(0.013) (0.013)

Cancer -0.001 0.010
(0.025) (0.025)

Diabetes -0.053∗∗∗ -0.039∗∗

(0.018) (0.018)
Stroke 0.017 0.034

(0.032) (0.032)
Heart disease -0.041∗∗ -0.020

(0.019) (0.019)
Lung disease -0.056∗ -0.040

(0.029) (0.029)
High blood pres. -0.016 -0.003

(0.012) (0.012)
Psych condition -0.044∗∗ -0.022

(0.018) (0.019)
SRH: fair 0.016

(0.027)
SRH: good 0.087∗∗∗

(0.027)
SRH: very good 0.097∗∗∗

(0.028)
SRH: excellent 0.135∗∗∗

(0.029)
Missing SSP -0.066∗∗ -0.064∗∗ -0.053∗ -0.042

(0.030) (0.029) (0.030) (0.030)
Focal SSP -0.158∗∗∗ -0.152∗∗∗ -0.140∗∗∗ -0.122∗∗∗

(0.025) (0.025) (0.025) (0.026)
Constant 0.350∗∗∗ 0.377∗∗∗ 0.343∗∗∗ 0.372∗∗∗ 0.295∗∗∗

(0.019) (0.019) (0.021) (0.023) (0.034)
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Table A2.3 continued from previous page
Dependent variable: SSP 75 (mean=0.49)

(1) (2) (3) (4) (5)
Observations 3329 3329 3329 3319 3319
R2 0.187 0.202 0.207 0.216 0.225
Adjusted R2 0.184 0.197 0.203 0.209 0.218
Residual Std. Error 0.301 0.299 0.298 0.297 0.295
F Statistic 50.864∗∗∗ 49.176∗∗∗ 45.512∗∗∗ 31.175∗∗∗ 28.977∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A2.4: Single-Clock Model for Horvath Skin

Dependent variable: SSP 75 (mean=0.49)
(1) (2) (3) (4) (5)

Horvath Skin -0.079∗∗∗ -0.077∗∗∗ -0.076∗∗∗ -0.083∗∗∗ -0.087∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.006)
Age in [55, 59] -0.001 0.001 0.001 0.006 0.007

(0.012) (0.012) (0.012) (0.012) (0.012)
Age >60 -0.059∗∗∗ -0.045∗∗∗ -0.045∗∗∗ -0.031∗ -0.036∗∗

(0.017) (0.017) (0.017) (0.017) (0.017)
Male -0.022∗∗ -0.020∗ -0.021∗∗ -0.017 -0.020∗

(0.011) (0.011) (0.011) (0.011) (0.011)
Black 0.098∗∗∗ 0.099∗∗∗ 0.105∗∗∗ 0.107∗∗∗ 0.110∗∗∗

(0.015) (0.015) (0.015) (0.015) (0.015)
Hispanic -0.042∗∗ -0.033∗ -0.037∗∗ -0.043∗∗ -0.031∗

(0.017) (0.017) (0.017) (0.017) (0.017)
College 0.108∗∗∗ 0.093∗∗∗ 0.090∗∗∗ 0.091∗∗∗ 0.076∗∗∗

(0.016) (0.016) (0.016) (0.016) (0.016)
High school 0.048∗∗∗ 0.040∗∗ 0.038∗∗ 0.038∗∗ 0.028∗

(0.016) (0.016) (0.016) (0.016) (0.016)
Parents’ edu >12 0.051∗∗∗ 0.051∗∗∗ 0.048∗∗∗ 0.047∗∗∗ 0.045∗∗∗

Income in Q2 0.042∗∗∗ 0.033∗∗ 0.032∗∗ 0.032∗∗ 0.022
(0.016) (0.015) (0.015) (0.015) (0.015)

Income in Q3 0.080∗∗∗ 0.073∗∗∗ 0.070∗∗∗ 0.066∗∗∗ 0.053∗∗∗

(0.017) (0.016) (0.016) (0.016) (0.016)
Income in Q4 0.114∗∗∗ 0.104∗∗∗ 0.102∗∗∗ 0.096∗∗∗ 0.079∗∗∗
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Table A2.4 continued from previous page
Dependent variable: SSP 75 (mean=0.49)

(1) (2) (3) (4) (5)

(0.018) (0.018) (0.018) (0.018) (0.018)
Wealth in Q2 -0.002 -0.002 -0.000 -0.010 -0.013

(0.015) (0.015) (0.015) (0.015) (0.015)
Wealth in Q3 0.020 0.017 0.017 0.003 -0.003

(0.016) (0.016) (0.016) (0.016) (0.016)
Wealth in Q4 0.021 0.024 0.021 0.006 -0.001

(0.017) (0.017) (0.017) (0.017) (0.017)
Mother lived >75 0.032∗∗∗ 0.028∗∗ 0.024∗∗

(0.011) (0.011) (0.011)
Father lived >75 0.041∗∗∗ 0.038∗∗∗ 0.039∗∗∗

(0.011) (0.010) (0.010)
Smoker -0.011 -0.011

(0.011) (0.011)
Obesity 0.003 0.014

(0.013) (0.013)
Overweight 0.009 0.012

(0.013) (0.013)
Cancer -0.005 0.008

(0.025) (0.025)
Diabetes -0.065∗∗∗ -0.051∗∗∗

(0.018) (0.018)
Stroke 0.020 0.037

(0.032) (0.032)
Heart disease -0.037∗ -0.015

(0.019) (0.019)
Lung disease -0.068∗∗ -0.052∗

(0.029) (0.029)
High blood pres. -0.021∗ -0.008

(0.012) (0.012)
Psych condition -0.046∗∗ -0.022

(0.018) (0.019)
SRH: fair 0.020

(0.027)
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Table A2.4 continued from previous page
Dependent variable: SSP 75 (mean=0.49)

(1) (2) (3) (4) (5)

SRH: good 0.092∗∗∗

(0.027)
SRH: very good 0.106∗∗∗

(0.028)
SRH: excellent 0.150∗∗∗

(0.029)
(0.012) (0.012) (0.012) (0.012) (0.012)

Missing SSP -0.073∗∗ -0.070∗∗ -0.058∗ -0.046
(0.030) (0.030) (0.030) (0.030)

Focal SSP -0.162∗∗∗ -0.156∗∗∗ -0.142∗∗∗ -0.122∗∗∗

(0.025) (0.025) (0.025) (0.025)
Constant 0.341∗∗∗ 0.369∗∗∗ 0.331∗∗∗ 0.367∗∗∗ 0.283∗∗∗

(0.019) (0.019) (0.021) (0.023) (0.033)

Observations 3329 3329 3329 3319 3319
R2 0.183 0.197 0.203 0.215 0.226
Adjusted R2 0.179 0.193 0.199 0.208 0.219
Residual Std. Error 0.302 0.299 0.298 0.297 0.295
F Statistic 49.376∗∗∗ 47.861∗∗∗ 44.470∗∗∗ 30.997∗∗∗ 29.118∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A2.5: Single-Clock Model for Horvath

Dependent variable: SSP 75 (mean=0.49)
(1) (2) (3) (4) (5)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Horvath -0.062∗∗∗ -0.059∗∗∗ -0.059∗∗∗ -0.064∗∗∗ -0.067∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.006)
Age in [55, 59] -0.012 -0.010 -0.010 -0.006 -0.006

(0.012) (0.012) (0.012) (0.012) (0.012)
Age >60 -0.087∗∗∗ -0.071∗∗∗ -0.070∗∗∗ -0.059∗∗∗ -0.065∗∗∗

(0.016) (0.017) (0.016) (0.017) (0.017)
Male -0.021∗∗ -0.020∗ -0.021∗ -0.016 -0.019∗
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Table A2.5 continued from previous page
Dependent variable: SSP 75 (mean=0.49)

(1) (2) (3) (4) (5)

(0.011) (0.011) (0.011) (0.011) (0.011)
Black 0.115∗∗∗ 0.115∗∗∗ 0.121∗∗∗ 0.124∗∗∗ 0.128∗∗∗

(0.015) (0.015) (0.015) (0.015) (0.015)
Hispanic -0.032∗ -0.022 -0.027 -0.031∗ -0.020

(0.017) (0.017) (0.017) (0.017) (0.017)
High school 0.052∗∗∗ 0.044∗∗∗ 0.042∗∗∗ 0.042∗∗∗ 0.033∗∗

(0.016) (0.016) (0.016) (0.016) (0.016)
College 0.113∗∗∗ 0.098∗∗∗ 0.095∗∗∗ 0.096∗∗∗ 0.081∗∗∗

(0.016) (0.016) (0.016) (0.016) (0.016)
Parents’ edu >12 0.060∗∗∗ 0.060∗∗∗ 0.057∗∗∗ 0.056∗∗∗ 0.055∗∗∗

(0.012) (0.012) (0.012) (0.012) (0.012)
Income in Q2 0.043∗∗∗ 0.035∗∗ 0.034∗∗ 0.034∗∗ 0.024

(0.016) (0.016) (0.015) (0.015) (0.015)
Income in Q3 0.087∗∗∗ 0.078∗∗∗ 0.075∗∗∗ 0.073∗∗∗ 0.060∗∗∗

(0.017) (0.017) (0.017) (0.017) (0.017)
Income in Q4 0.124∗∗∗ 0.113∗∗∗ 0.111∗∗∗ 0.107∗∗∗ 0.091∗∗∗

(0.018) (0.018) (0.018) (0.018) (0.018)
Wealth in Q2 -0.016 -0.016 -0.014 -0.024 -0.027∗

(0.015) (0.015) (0.015) (0.015) (0.015)
Wealth in Q3 0.011 0.008 0.008 -0.005 -0.011

(0.016) (0.016) (0.016) (0.016) (0.016)
Wealth in Q4 0.009 0.013 0.010 -0.004 -0.011

(0.017) (0.017) (0.017) (0.017) (0.017)
Mother lived >75 0.029∗∗ 0.026∗∗ 0.022∗

(0.011) (0.011) (0.011)
Father lived >75 0.045∗∗∗ 0.042∗∗∗ 0.043∗∗∗

(0.011) (0.011) (0.011)
Smoker -0.011 -0.011

(0.011) (0.011)
Obesity 0.004 0.014

(0.013) (0.013)
Overweight 0.005 0.007

(0.013) (0.013)
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Table A2.5 continued from previous page
Dependent variable: SSP 75 (mean=0.49)

(1) (2) (3) (4) (5)

Cancer -0.005 0.007
(0.025) (0.025)

Diabetes -0.060∗∗∗ -0.046∗∗

(0.018) (0.018)
Stroke 0.019 0.037

(0.033) (0.033)
Heart disease -0.041∗∗ -0.019

(0.019) (0.019)
High blood pres. -0.016 -0.003

(0.012) (0.012)
Lung disease -0.060∗∗ -0.043

(0.029) (0.029)
Psych condition -0.037∗∗ -0.014

(0.019) (0.019)
SRH: fair 0.028

(0.027)
SRH: good 0.099∗∗∗

(0.027)
SRH: very good 0.111∗∗∗

(0.028)
SRH: excellent 0.150∗∗∗

(0.030)
Missing SSP -0.063∗∗ -0.061∗∗ -0.049∗ -0.037

(0.030) (0.030) (0.030) (0.030)
Focal SSP -0.160∗∗∗ -0.154∗∗∗ -0.142∗∗∗ -0.122∗∗∗

(0.026) (0.025) (0.026) (0.026)
Constant 0.337∗∗∗ 0.366∗∗∗ 0.328∗∗∗ 0.360∗∗∗ 0.272∗∗∗

(0.019) (0.019) (0.021) (0.024) (0.034)

Observations 3329 3329 3329 3319 3319
R2 0.171 0.186 0.193 0.202 0.213
Adjusted R2 0.167 0.182 0.188 0.195 0.205
Residual Std. Error 0.304 0.301 0.300 0.299 0.297
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Table A2.5 continued from previous page
Dependent variable: SSP 75 (mean=0.49)

(1) (2) (3) (4) (5)

F Statistic 45.494∗∗∗ 44.562∗∗∗ 41.566∗∗∗ 28.686∗∗∗ 26.891∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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