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Abstract

We apply a refined framework of mean-variance efficiency (MVE) and mean-variance spanning

(MVS) following Gungor and Luger (2016) to assess the efficiency and risk-return properties

of top ESG-rated stocks without imposing restrictive parametric assumptions on return distribu-

tions. Using daily U.S. equity returns, covering the period from January 2014 to December 2022

from CRSP, we test whether ESG-focused groups optimize the risk-return tradeoff and span the

broader stock universe. Our results show that while most ESG-heavy groups do not reject the

MVE hypothesis, only a carefully selected subset of ESG stocks fails to reject the MVS hypothe-

sis. Additionally, we find that ESG scores outperform the Media Climate Change Concerns Index

(MCCC) in terms of stability and long-term efficiency.

JEL Classification: C12, C14, C53, G11, G23.

Keywords: ESG, Socially responsible investing, Mean-variance spanning, Mean-variance effi-

ciency.
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1 Introduction

In recent years, socially responsible investing (SRI) —defined as an investment approach that in-

tegrates Environmental, Social, and Governance (ESG) factors—has been growing exponentially

in the asset management industry. By integrating ESG factors, SRI promises to align finan-

cial performance with broader societal goals. A pivotal moment in this evolution came when

181 CEOs from major U.S corporations endorsed the Business Roundtable’s 2019 statement, re-

defining corporate purpose to prioritize the welfare of stakeholders, including communities, the

environment, and investors.1

Global interest in ESG investing is further underscored by the urgent need to address climate

change, one of humanity’s most pressing challenges. With countries like Canada pledging to

reduce its greenhouse gas emissions under the Paris Agreement.2, understanding how investments

impact the environment and society has become critical to achieving a sustainable, carbon-neutral

economy. Reflecting this urgency, global ESG assets under management (AUM) surpassed $30

trillion in 2022 and are projected to hit $40 trillion by 2030, making up over a quarter of predicted

total AUM.3 These trends reflect a growing consensus that ESG investing supports sustainable

goals and is a pivotal part of long-term financial performance and risk management.

Despite the momentum, key questions remain unanswered: Do top-rated ESG stocks offer

an optimal risk-return tradeoff? Are these stocks sufficient to achieve mean-variance efficiency,

or does including medium- and low-rated ESG stocks enhance the efficiency of the investment

universe? Understanding this is crucial as investors seek to balance sustainability goals with

financial performance.

This study seeks to address these gaps by employing mean-variance efficiency (MVE) and

mean-variance spanning (MVS) frameworks to evaluate the performance of asset groups based

1Business Roundtable Redefines the Purpose of a Corporation to Promote ‘An Economy That Serves All Ameri-

cans’ Business Roundtable, August 19, 2019.
2Adoption of the Paris Agreement UNFCCC, December 12, 2015.
3Global ESG assets predicted to hit $40 trillion by 2030, despite challenging environment, forecasts Bloomberg

Intelligence. Bloomberg, February 8, 2024.
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on ESG ratings and Media Coverage on Climate Change (MCCC) exposure. Using U.S. stock

returns from January 2014 to December 2022, we construct K benchmark and N test universes

of stocks, ranked according to ESG scores and MCCC exposure. Building on the methodology of

Gungor and Luger (2016), this research examines whether top-rated ESG stocks or those ranked

by MCCC exposure can span the broader investment universe or if including lower-rated ESG

stocks enhances the mean-variance frontier. The methodology overcomes traditional limitations,

such as the reliance on i.i.d. disturbances and multivariate normality, by applying equation-

by-equation F-statistics in the multivariate linear model (MLR), thus eliminating disturbance

covariance. Additionally, we employ non-parametric bounds tests with Monte Carlo resampling

to account for nuisance parameters. This approach makes the method well-suited for large asset

universes where the number of stocks exceeds the available periods. The findings contribute

to academic research and investment strategies by offering empirical evidence on the efficiency

and spanning capabilities of ESG- and MCCC-based groups. Top ESG-rated stocks demonstrate

mean-variance efficiency while expanding the universe to include lower-rated stocks diminishes

this efficiency. By contrast, MCCC-based asset groups show less consistent results, with frequent

rejections of efficiency and spanning hypotheses, reflecting sensitivity to short-term sentiment on

climate change.

This paper makes three key contributions. First, it provides empirical insights into the mean-

variance efficiency of ESG and MCCC-based stock groups. Second, it evaluates their ability

to span larger investment universes. Third, it highlights the trade-offs between relying on ESG

ratings for long-term stability and using the MCCC index as a supplementary tool for monitoring

climate-related sentiment shifts.

The remainder of this thesis is organized as follows. Section 2 underlines the relevant liter-

ature review. Section 3 details the adopted methodologies. Section 4 discusses the data used.

Results and analysis are displayed in Section 5, and finally, Section 6 concludes.
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2 Literature Review

This section motivates the main empirical questions explored in this research. We begin with

an overview of the growing relevance of ESG investing, followed by a review of the mixed

findings on the performance of ESG-focused stocks. We then explore the two methodologies

for evaluating the performance of stock universes: mean-variance efficiency and mean-variance

spanning tests.

2.1 Overview

The assets under management committed to ESG investment strategies have been surging, rising

from less than $10 trillion in 2006 to over $120 trillion by 2021.4 This massive growth follows

the creation of the term “ESG,” which was first created by major financial institutions in 2004

as a response to a request from Kofi Annan, the UN Secretary-General. Since its introduction,

“ESG” has become the standard term for environmental, social, and governance practices.

ESG issues are difficult to measure financially, yet they can decisively affect investments’

risk-return profiles. Environmental issues, for instance, directly impact a company’s financial

performance. Concerns about fossil fuel assets and climate change express themselves in share-

holder resolutions at the annual meetings of large oil corporations, such as Shell. The Gulf of

Mexico oil spill in 2010 represents the most significant environmental disaster in U.S. history

(Nima, 2011), exemplifies this impact, costing BP $23 billion due to the careless cost-cutting

corporate culture and excessive risk-taking that caused the spill (Griggs, 2011). Regarding social

risks, the Google sexual harassment scandal sparked outrage among workers and led over 20,000

employees globally to leave Google offices in 2019. This incident also prompted shareholders to

file a lawsuit against the corporation over its treatment of allegations of executives’ sexual mis-

conduct, which resulted in a $310 million settlement (Brown and Peterson, 2022). Highlighting

the importance of effective governance, Volkswagen’s admission of the emissions cheating scan-

4UNPRI’s Anuual Report 2021 “Enhance our global footprint” UNPRI, 2021.
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dal in 2015 resulted in equity market value losses of more than $20 billion within five trading days

and abnormal losses for its suppliers due to spillover effects (Barth et al., 2022). This scandal

damaged consumer confidence in diesel vehicles and had a lasting impact on the brand’s reputa-

tion. In recognition of the importance of these issues and the worldwide government support for

ESG principles, the United Nations adopts the Sustainable Development Goals.5 In addition to

these extreme events, other ongoing megatrends, such as natural resource scarcity and changing

demographics, influence investment strategies. Consequently, detecting and assessing ESG risks

have become an integral part of investment decision-making.

The term “ESG investing” is used almost interchangeably with relatively traditional “socially

responsible investing,” “impact investing,” or the most recent “responsible investing” and “sus-

tainable investing.” Socially Responsible Investing (SRI) identifies investment risks and opportu-

nities based on ESG metrics (Widyawati, 2020). Over recent years, the market for ESG investing

has grown exponentially. The share of global asset owners applying ESG criteria to at least 25%

of their total investments increases from 48% in 2017 to 75% in 2019.6 A report by CNBC in

early 2020 also indicates unprecedented inflows into sustainability-focused funds following the

outbreak of the COVID-19 pandemic. Therefore, the need to address ESG criteria becomes clear

(Krueger et al., 2020); however, what is less clear is the evidence that ESG factors relate, in a

causal sense, to higher returns.

2.2 A Review of ESG Stocks and Returns

The consideration of ESG issues in investing for economic gain is a phenomenon that has been

around for a while. Research on governance (G) is well-established and shows that better gover-

nance increases firm value (Gompers et al., 2003). Research on the effect of the environmental (E)

dimension on stock returns is likewise developing and ongoing (Bolton and Kacperczyk, 2021,

2023; Pastor et al., 2021, 2022). The social dimension (S) is still a relatively new area of re-

search (Briscoe-Tran et al., 2024). While sustainable investing undergoes extensive scholarship,

5Transforming our world: the 2030 Agenda for Sustainable Development UN, September 25, 2021.
6ESG Global Survey 2019: investing with Purpose for Performance BNP Paribas, May 20, 2019.
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a consensus does not yet exist on the performance of ESG-based investments.

Alexander and Osthoff (2007) demonstrate a simple trading strategy using socially responsi-

ble ratings from KLD Research, showing that portfolios formed by purchasing high-rated stocks

and selling low-rated stocks yield significant abnormal returns. In a broader analysis, Gunnar

et al. (2015) conduct a meta-analysis of the existing literature and confirm the positive relation-

ship between ESG factors and corporate financial performance. Pedersen et al. (2020) find that

only portfolios based on governance aspects yield significant abnormal returns. At the same time,

integrating the environmental and social criteria or overall ESG scores does not improve portfolio

performance. Conversely, Harisson and Kacperczyk (2009) show that so-called sin stocks (i.e.,

companies operating in industries viewed as unethical such as alcohol, tobacco, gambling, and

firearms) have higher expected returns due to their neglect by constrained investors. Also, Chava

(2010) finds no significant relationship between expected returns and a firm’s environmental fac-

tors. Rob et al. (2007) establish that the performance gap between ethical and conventional mu-

tual funds remains statistically insignificant, challenging the belief that ESG investing inherently

guarantees superior returns. Statman (2006) also reports no statistically significant distinctions

between the returns of conventional indexes and social responsibility stock indices.

Other scholars bring different insights in their search for ESG investing trends. Madhavan

et al. (2021) highlight the significance of factor exposures in ESG funds as they reveal that high

ESG-rated portfolios exhibit distinct factor profiles that lead to superior risk-adjusted returns and

that the systematic effects of factors indicate a correlation between ESG metrics and fund per-

formance characteristics. Additionally, the study employs traditional asset pricing models such

as Fama and French (2015) and M.Cahart (1997) models and proves that quality factors further

delineate the performance expectations based on profitability and investment growth. Pedersen

et al. (2020) further propose a model that combines traditional risk-return optimization with ESG

considerations. They introduce the "ESG-efficient frontier" to illustrate how different investor

types prioritize ESG factors in their portfolio choices. Their findings support the notion that we

need a more sophisticated understanding of the efficiency of stock universes when integrating
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ESG factors into investment strategies. Additionally, Pastor et al. (2021) predict that green firms

outperform brown firms when climate change concerns increase unexpectedly. Ardia et al. (2023)

test this prediction and develop a daily Media Climate Change Concerns (MCCC) index from ten

leading newspapers and newswires. Unlike the ESG ratings that are provided annually or semi-

annually by different rating agencies that could diverge (Dimson et al., 2020) and be relatively

noisy (Berg et al., 2022), the MCCC index is built on daily and gives a more detailed view of the

market reactions to climate change news.

Given these mixed findings, more research is necessary to fully comprehend the function of

the sustainability matrices in optimizing asset universes, especially in relation to well-established

financial theories such as mean-variance efficiency and spanning.

2.3 Mean-Variance Efficiency

Central to portfolio theory is the notion of mean-variance efficiency (MVE) introduced by Markowitz

(1952), which forms the basis of Modern Portfolio Theory (MPT). It states that a portfolio is

mean-variance efficient when no other portfolio offers the same expected return with a lower

level of risk. Building on this framework, The Capital Asset Pricing Model (CAPM), devel-

oped by Sharpe (1964), Treynor (1999), Lintner (1965) and Mossin (1966), extends this concept,

suggesting that the market portfolio should be mean-variance efficient in an efficient market. Ex-

tensive research has since focused on testing portfolio mean-variance efficiency, particularly with

the development of multivariate tests.

One of the central challenges in testing mean-variance efficiency has been dealing with cross-

sectional dependence of the errors when running individual tests. Roll (1977) highlights that

grouping individual stocks into portfolios can result in a loss of information about the cross-

sectional behavior of individual stocks, as deviations from expected returns may cancel out, re-

ducing the power of the test. To address this, Gibbons et al. (1989) demonstrate the importance

of multivariate tests in mean-variance efficiency studies and propose the GRS test, a multivariate

version of the t-statistics designed to account for cross-sectional dependence of the errors and
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improve the power test, leading to more robust asset pricing models. However, the GRS test has

several limitations: it first assumes independent and identically distributed (i.i.d) and normally

distributed. Second, it requires the number of assets (N ) to be smaller than the time-series ob-

servations (T ) to avoid singularity in the covariance matrix. Finally, it focuses on unconditional

efficiency, and neglects conditional efficiency under different market dynamics.

Several studies have attempted to address the limitations of the conventional mean-variance

efficiency tests. Beaulieu et al. (2007), for instance, use simulations to relax the normality as-

sumptions required by GRS by proposing a likelihood ratio test that accommodates non-Gaussian

disturbances. The BDK test improves finite-sample methods and leads to fewer rejections of

mean-variance efficiency compared to Gaussian-based tests. However, t requires the error distri-

bution to be specified with a finite set of nuisance parameters, which can be restrictive in practice.

In contrast, Gungor and Luger (2009) introduce two distribution-free non-parametric sign tests

for single-factor models that allow non-normal error distributions but necessitate it to be cross-

sectionally independent and conditionally symmetrically distributed around zero. In their later

work, Gungor and Luger (2013) broaden this approach to accommodate multiple-factor mod-

els.In another approach, Pesaran and Yamagata (2012) develop a new multivariate asymptotic

test (i.e., a test that becomes more accurate and reliable as the sample size increases) that out-

performs the GRS test for large test sets where N > T . The PY test aggregates t-statistics for

individual assets and deploys a threshold estimator to account for cross-sectional correlations in

the disturbances. However, it assumes weakly and sparsely correlated disturbances, making it

less effective as correlation increase

2.4 Mean-Variance Spanning

Mean-variance spanning (MVS) extends the MVE framework by testing whether adding new as-

sets to a benchmark group improves the minimum-variance frontier. Introduced by Huberman

and Kandel (1987), this approach evaluates whether the minimum-variance frontier of a given set

of benchmark assets changes when new test assets are added, meaning if the new assets are redun-
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dant in improving the investment opportunity set. The HK method assesses whether expanding

the asset group enhances the risk-return tradeoff by testing whether the frontier with additional

assets matches the original one. Transitioning from MVE to MVS thus helps investigate the

efficiency of the benchmark group and whether including additional assets can meaningfully al-

ter the efficiency frontier. Furthermore, the HK framework validates linear factor models like the

CAPM and the Asset Pricing Theory (APT) to ensure that the integration of test assets aligns with

these models’ assumptions. The HK test uses a likelihood ratio to examine the mean-variance

spanning hypothesis. The findings show that the spanning hypothesis holds over short intervals

but is not supported over long periods due to instability in the coefficients.

Building on Huberman and Kandel (1987)’s foundational work, Kan and Zhou (2012) intro-

duce two new mean-variance spanning tests based on the Wald and Lagrange multiplier principles

to address the limitations in the original likelihood ratio test, particularly with respect to normality

assumptions. They also propose a step-down test and a generalized method of moments (GMM)

test for cases where normality does not hold. Gungor and Luger (2016) further contribute to

this discourse by developing a finite-sample procedure for testing both the mean-variance effi-

ciency and spanning hypotheses without requiring parametric assumptions about the distribution

of disturbances. This methodology employs an equation-by-equation approach to derive exact

distribution-free tests for MLR models, accommodating non-normality and time-varying covari-

ances. The procedure improves test power as the time and cross-sectional dimensions increase.

Compared to traditional tests (GRS, HK), which struggle with large asset numbers, the Gungor

and Luger (2016) framework employs Monte Carlo simulations to allow for computationally in-

expensive testing regardless of sample size even when N exceeds T . Their method allows for

analyzing financial models that exhibit time-varying conditional covariance structures, such as

Multivariate Generalized Autoregressive Conditional Heteroscedasticity (GARCH).

Despite the growing body of literature on ESG investing, little research has focused on

whether universes of stocks selected using ESG criteria are mean-variance efficient or if they

span the broader investment universe. This study aims to fill this gap by applying the methodolo-
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gies developed by Gungor and Luger (2016) to ESG universes.

3 Methodology

This section outlines the methodology from Gungor and Luger (2016), adopting their notations

and procedures as the foundation. We first introduce the mean-variance efficiency (MVE) and

mean-variance spanning (MVS) hypotheses testing, along with the traditional GRS and HK para-

metric tests. Next, we present the GL test procedure, an extension of conventional tests within the

general MLR framework. We later apply this non-parametric test to test MVE and MVS hypothe-

ses on ESG and MCCC-based stock groups. We incorporate the Fama and French (2015) factors

and the MCCC index in regression models to further refine our analysis. The exposure to media

sentiment on climate change allows us to construct MCCC-based stock groups and compare them

to the ESG stock groups.

3.1 Parametric Tests

We introduce the mean-variance efficiency and spanning hypotheses along with the exact GRS

and HK tests, as they provide the foundational framework for the analysis and are essential for

understanding the subsequent non-parametric approach.

3.1.1 Mean-Variance Efficiency

Let (Ω,F ,F,P) be a probability filtered space endowed with the filtration F = {t ∈ T : Ft}

represent the evolution of information available up to time t. We are particularly interested in un-

derstanding how the information flow encapsulated by the filtration F affects the return dynamics

of an investment universe that includes a risk-free asset, a set of K benchmark risky assets, and

an additional set of N test assets. We would like to see whether there is a relationship between the

minimum-variance frontier spanned by the K benchmark assets and the frontier of the combined

N +K assets. We use their excess returns to evaluate the relationship between the test and the

benchmark assets. At time t, the risk-free return is given by rft, the benchmark asset returns are
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given by rKt, and the test asset returns are given by rt. Accordingly, the excess returns on bench-

mark assets are zKt = rKt− rft, while the excess returns on test assets are given by zt = rt− rft.

We assume the following linear relationship:

zt = a+ βzKt + εt, (1)

where a is an N -vector of intercepts, β is an N × K matrix of sensitivities to the benchmark

assets, and εt is an N -vector of disturbances with E[εt | Ft] = 0 and E[εtε
′
t | Ft] = Σ. If a group

of K benchmark assets is mean-variance efficient, then E[zt] = βE[zKt]. The usual expected

return-beta representation’s N conditions can be evaluated by testing the null hypothesis:

HE : a = 0, (2)

This implies that all pricing errors are zero, meaning the test assets offer no additional ex-

planatory power beyond the benchmark assets.

A multivariate F test of HE is proposed by the classic mean-variance efficiency test, GRS

test, introduced by Gibbons et al. (1989), which states that all the pricing errors comprising

the vector a are jointly equal to zero. Conditional on the T × K collection of components

ZK = [zK1, ..., zKT ]
′, their test implies that the vectors of disturbance terms εt, t = 1, ..., T , are

independent and normally distributed around zero with a cross-sectional covariance matrix that

is time-invariant; i.e., εt | ZK ∼ i.i.dN(0,Σ).

MVE Unconstrained Model

Here, the intercept term a is estimated freely without any restrictions. If a ̸= 0, then the

benchmark assets K are not mean-variance efficient. Under normality, the methods of maximum

likelihood and ordinary least squares (OLS) yield the same unconstrained estimates for a and β:

â = z̄ − β̂z̄K ,

β̂ =

[
T∑
t=1

(zt − z̄)(zKt − z̄K)
′

][
T∑
t=1

(zKt − z̄K)(zKt − z̄K)
′

]−1

,
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where z̄ = 1
T

∑T
t=1 zt and z̄K = 1

T

∑T
t=1 zKt. The unconstrained estimate of the disturbance

covariance matrix is:

Σ̂ =
1

T

T∑
t=1

(zt − â− β̂zKt)(zt − â− β̂zKt)
′. (3)

MVE Constrained Model

For the constrained model, the intercept term a = 0, means that we assume that the bench-

mark assets are sufficient to describe the return dynamics of the test assets. The estimates are:

β̂0 =

[
T∑
t=1

zKtz
′
Kt

]−1 [ T∑
t=1

zKtz
′
t

]
,

Σ̂0 =
1

T

T∑
t=1

(zt − β̂0zKt)(zt − β̂0zKt)
′. (4)

The GRS test statistic for HE is

JE,1 =
(T −N −K)

N

[
1 + z̄′KΩ̂

−1z̄K

]−1

â′Σ̂−1â, (5)

where JE,1 tests whether the vector of alphas (â) is significantly different from zero, indicating

inefficiencies. The term Ω̂ = 1
T

∑T
t=1(zKt − z̄K)(zKt − z̄K)

′ is the estimated covariance matrix

of the benchmark returns. The GRS test statistic can similarly be expressed as:

JE,1 =
(T −N −K)

N

[
|Σ̂0|
|Σ̂|

− 1

]
, (6)

which shows that JE,1 can be interpreted as a Likelihood Ratio test. Under the null hypothesis

HE , the statistic JE,1 follows a central F distribution with N degrees of freedom in the numerator

and (T − N − K) degrees of freedom in the denominator (Billou, 2004). We can use it to test

whether the test assets provide additional explanatory power beyond the benchmark assets.

3.1.2 Mean-Variance Spanning

Mean-variance spanning occurs when the minimum-variance frontier formed by a set of K

benchmark assets (with K ≥ 2) remains unchanged after adding N test assets. This implies

that the K benchmark assets fully represent the diversification opportunities, and the N test as-

sets do not enhance the risk-return tradeoff.
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To develop the spanning hypothesis, consider the following statistical model of returns:

rt = a+ βrKt + εt, (7)

where the disturbance vector εt now satisfies E[εt | Ft] = 0 and E[εtε
′
t | Ft] = Σ. Here, rt

and rKt are specified in terms of returns, not excess returns. Following Huberman and Kandel

(1987), the mean-variance spanning hypothesis imposes the 2N restrictions:

HS : a = 0, δ = 0, (8)

where δ = ιN − βιK and ιi is an i-vector of ones. The first condition ensures that the benchmark

assets can span returns on the test assets up to a zero-mean, orthogonal factor. The second

condition implies that, for each test asset, a combination of the benchmark assets with the same

mean return as the test asset but with no additional diversification benefit exists. So the null

hypothesis HS holds: for every test asset, there exists an asset universe of the K benchmark

assets with the same mean return as the test asset (since a = 0 and βιK = ιN ), but with a lower

variance (as Cov(rKt, εt) = 0 and Σ is positive definite). In such a case, the test assets do not

enhance the mean-variance frontier spanned by the benchmark assets (Kan and Zhou, 2012).

Huberman and Kandel (1987) propose a procedure similar to the GRS test to test this hypoth-

esis. Given the T ×K matrix of benchmark returns RK = [rK1, . . . , rKT ]
′, the HK test requires

that εt | RK ∼ i.i.d.N(0,Σ).

MVS Unconstrained Model

In the unconstrained version of the model, the OLS estimates of the parameters are analogous

to those in the GRS test for mean-variance efficiency, given by:

â = r̄ − β̂r̄Kt,

β̂ =

[
T∑
t=1

(rt − r̄)(rKt − r̄Kt)
′

][
T∑
t=1

(rKt − r̄Kt)(rKt − r̄Kt)
′

]−1

,

where r̄ = 1
T

∑T
t=1 rt and r̄Kt = 1

T

∑T
t=1 rKt. The unconstrained estimate of the disturbance

covariance matrix is found as

Σ̂ =
1

T

T∑
t=1

(rt − â− β̂rKt)(rt − â− β̂rKt)
′. (9)
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MVS Constrained Model

We can apply the restrictions in the null hypothesis by splitting the matrix β into two [b1, C].

Here, b1 represents an N × 1 vector, while C corresponds to an N × (K− 1) matrix. Partitioning

the vector rKt into the first row r1t and the remaining K − 1 rows r(K−1)t,

rt = a+ b1r1t + Cr(K−1)t + εt,

subject to the constraint βlN = lN , which implies that b1 + ClK−1 = lN . Substituting the

restrictions a = 0 and b1 = lN − ClK−1, the model becomes:

rt − lNr1t = C(r(K−1)t − lK−1r1t) + εt. (10)

The constrained estimates are given by:

Ĉ0 =

[
T∑
t=1

(rt − lNr1t)(r(K−1)t − lK−1r1t)
′

][
T∑
t=1

(r(K−1)t − lK−1r1t)(r(K−1)t − lK−1r1t)
′

]−1

,

b̂1,0 = lN − Ĉ0lK−1,

Σ̂0 =
1

T

T∑
t=1

(rt − β̂0rKt)(rt − β̂0rKt)
′, (11)

where β̂0 = [b̂1,0, Ĉ0]. Following the LR form, the HK test can be written as:

JS =
(T −N −K)

N

[√
|Σ̂0|
|Σ̂|

− 1

]
, (12)

and under the null hypothesis HS , this statistic follows a central F distribution with 2N degrees

of freedom in the numerator and 2(T −N −K) degrees of freedom in the denominator.

3.2 Non-Parametric Tests

We present the non-parametric bounds test of efficiency and spanning introduced by Gungor

and Luger (2016), which relaxes the four assumptions of the exact JE and JS tests outlined

in the previous section. Specifically, these tests address the limitations of (i) independence of

disturbances, (ii) identically distributed disturbances, (iii) normally distributed disturbances, and

(iv) the condition N ≤ T −K − 1.
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3.2.1 MLR Framework

The analysis is conducted within a MLR framework, represented by:

Y = XB + ε, (13)

where Y is a T × N matrix of dependent variables, X is a T × (K + 1) matrix of regressors,

and ε = [ϵ1, . . . , ϵT ]
′ is the T × N matrix of residuals. The parameter matrix B = [a, β]′, has

dimensions (K + 1) × N . For model (1), Y = [z1, . . . , zT ]
′ and X = [ιT , Zk]. In contrast, for

model (7), Y = [r1, . . . , rT ]
′ and X = [ιT , Rk].

The parameter matrix B is estimated subject to linear constraints to test the null hypothesis:

H0 : HB = D, (14)

where H is an h× (K +1) matrix of constants of rank h, and D is an h×N matrix of constants.

Specifically, the efficiency hypothesis in (2) is obtained by setting H = [1, 0, . . . , 0] and D =

[0, . . . , 0]. For the spanning hypothesis in equation (8):

H =

1 0 . . . 0

0 1 . . . 1

 , D =

0 . . . 0

1 . . . 1

 .

The same hypothesis is tested across all equations in the MLR system.

MLR Unrestricted Model

With the MLR model, we can derive the unrestricted OLS estimates and residuals as follows:

B̂(Y ) = (X ′X)−1X ′Y, (15)

ε̂(Y ) = Y −XB̂(Y ) = MY = Mε,

where M = I−X(X ′X)−1X ′. Here the ithe column of B̂(Y ) = [B̂1(Y ), . . . , B̂N(Y )] minimizes

the ithe diagonal element of the sum-of-squares and cross-products matrix

E = (Y −XB)′(Y −XB),

16



and its estimate is

Ê(Y ) = ε̂′(Y )ε̂(Y ). (16)

MLR Restricted Model

We minimize the residual sum-of-squares in E subject to the restrictions in the null hypothesis

(14), resulting in the constrained estimates and residuals:

B̂0(Y ) = B̂(Y )− (X ′X)−1H ′[H(X ′X)−1H ′]−1[HB̂(Y )−D], (17)

ε̂0(Y ) = Y −XB̂0(Y ) = M0Y = M0ε,

with M0 = M + X(X ′X)−1H ′[H(X ′X)−1H ′]−1H(X ′X)−1X ′. The corresponding restricted

residual sum-of-squares and cross-products matrix is

Ê0(Y ) = ε̂′0(Y )ε̂0(Y ). (18)

We want to allow for time-varying conditional covariance structures of unknown form while

maintaining flexibility in the distribution of disturbances. We would also like to avoid the singu-

larity problem for the matrices Ê(Y ) and Ê0(Y ) when N > T to compute the usual statistics.

Gungor and Luger (2016) provide a test procedure that is also derived from (16)) and (18),

but avoids the singularity problem by not requiring the determinants |Σ̂t| and |Σ̂0| shown in (6)

and (12) for the GRS and HK tests. The distributional theory underlying their approach rests on

a multivariate Assumption 1, which includes the normal distribution assumed by GRS and HK as

a special case.

Assumption 1 (Reflective Symmetry). The cross-sectional disturbance vectors εt, t = 1, . . . , T ,

are jointly continuous and reflectively symmetric so that

(ε1, ε2, . . . , εT | X)
d
= (±ε1,±ε2, . . . ,±εT | X),

where each εt is assigned either a positive or negative sign with equal probability and the symbol

“ d
=” stands for the equality in distribution.
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The assumption states that conditional on X , εt has the same distribution as −εt. This al-

lows for a broad class of distributions, including elliptically symmetric distributions, which are

compatible with expected utility maximization regardless of investor preferences. Several time-

varying covariance models, such as multivariate GARCH or stochastic volatility models, also

satisfy the assumption.

3.2.2 Test Procedure

The test procedure described here uses equation-by-equation F-statistics, which can be computed

from the abovementioned unrestricted and restricted OLS estimates. These F-statistics evaluate

whether imposing restrictions on the model (i.e., MVE hypothesis and MVS hypothesis) results

in a loss of explanatory power. The N × 1 vector of F statistics is given by:

F (Y ) =

(
diag

{
Ê0(Y )

}
− diag

{
Ê(Y )

})
/h

diag
{
Ê(Y )

}
/(T −K − 1)

, (19)

where diag{·} extracts the diagonal elements of a square matrix, which means we are considering

only the variances of the residuals for each equation; h is the number of rows of the restriction

matrix H in the MLR null hypothesis, and the division in the numerator and denominator is

carried out element by element. The single-equation F statistic is represented by the i-the element

of the N -vector F (Y ) = [F1(Y ), . . . , FN(Y )]′ which takes the usual form of:

Fi(Y ) =

(
RSS0,i(Y )− RSSi(Y )

)
/h

RSSi(Y )/(T −K − 1)
,

where the terms RSSi(Y ) and RSS0,i(Y ) represent the residual sum-of-squares of each model.

Here, the degrees-of-freedom term (T −K − 1)/h could be omitted from (19) since it is just a

constant under the proposed permutation approach. We consider the maximum F statistics:

Fmax(Y ) = max{F1(Y ), . . . , FN(Y )}, (20)

which selects the individual F statistic that indicates the greatest violation from the null hypoth-

esis. The Fmax(Y ) statistic highlights the equation where the restriction has the most significant

impact, which helps to pinpoint potential inefficiencies. It is important to mention that Fmax(Y )
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can be computed even when N > T , as the Fi(Y ) statistics can be derived from individual

equations. As the sample size increases, the precision of the estimates ai improves.

3.2.3 Building blocks

The Fmax(Y ) statistic under H0 is influenced by the nuisance parameters B that are not specified

by the null hypothesis, which can affect the distribution of the test statistic, making it diffi-

cult to derive accurate critical values for hypothesis testing. To enable hypothesis testing in a

distribution-free way, we establish exact bounds for the distribution of the test statistics under

H0. These bounds address the unrestricted elements of B using a point null hypothesis:

H∗
0 : H0, B = B∗, (21)

where B∗ represents specified values chosen to satisfy the null hypothesis, ensuring H∗
0 ⊆ H0.

Let ε∗ = Y − XB∗, which, under H∗
0 , aligns with ε, the true model residuals. Notably, the

structure of H∗
0 depends on the choice of B∗, which in turn affects the H0-restricted residuals ε∗.

Bootstrap Sample Construction

We employ the bootstrap approach to generate samples. We introduce s̃ = [s̃1, . . . , s̃T ]
′ a T -

vector consisting of independent Bernoulli random variables with Pr[s̃t = 1] = Pr[s̃t = −1] = 1
2

for all t. A bootstrap sample of dependent variables is defined as:

Ỹ = XB∗ + s̃ · ε∗, (22)

where s̃ ·ε∗ represents the modified residuals. So by applying the random signs s̃, we are generat-

ing a new dataset Ỹ that is a random perturbation of the original model but still retains the same

underlying covariance structure. This construction preserves the contemporaneous covariance

structure among the elements of ε∗. Under H∗
0 in (21) and conditional on X , we have Y

d
= Ỹ

(i.e, Y and Ỹ have the same distribution). From Theorem 1.3.7 in Randles and Wolfe (1979),

if Y d
= Ỹ and F(·) is a measurable function defined on the common support of Y and Ỹ , then

F(Y )
d
= F(Ỹ ). This means that if we compute a test statistic F (Ỹ ), it will have the same dis-
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tribution as F(Y ), allowing us to use Ỹ to approximate the behavior of the test statistic under

H0.

Proposition 1 (Equally Likely Property). Suppose the MLR model in (13) holds with the Re-

flective Summary Assumption. Let Ỹ be a bootstrap sample generated according to Equation

(21) for a specific realization of s̃, and consider the statistic F (Ỹ ) computed from this bootstrap

sample. Then, under H∗
0 in (21) and given X , the 2T values of F(Ỹ ) obtained from all possible

realizations of s̃ are equally likely values for F(Y ).

The Proposition shows that F(Y ) is pivotal under H0, meaning its bootstrap distribution does

not depend on any unknown nuisance parameters. Critical values can, in principle, be derived

from the conditional distribution of F(Y ) based on the 2T equally likely possibilities represented

by F(Ỹ ). However, obtaining this distribution by enumerating all realizations of s̃ is impractical.

Monte Carlo Test Procedure

We employ the Monte Carlo (MC) test technique (Barnard, 1963; Birnbaum, 1974; Dwass,

1957) to approximate the distribution under the null hypothesis H0. Instead of enumerating all

possible bootstrap samples, we randomly generate M − 1 bootstrap samples Ỹ1, . . . , ỸM−1. For

each sample, we compute the F(·) statistic to yield F(Ỹm) for m = 1, . . . ,M − 1. When using

the MC test procedure, we generate several bootstrap samples and compute a test statistic for

each sample. However, since the statistic F(·) is calculated from a finite set of values, some

of them may be the same across different bootstrap samples, which leads to ties. These ties

complicate ranking the observed F(Y ) among bootstrap values, affecting the accuracy of our p-

value calculation. To manage this, we adopt a tie-breaking rule (Dufour, 2006). We draw M i.i.d.

variables Um from a continuous uniform distribution on [0, 1], independent of the F(·) statistics,

and pair the U and F(·) statistics. We compute the lexicographic rank of (F(Y ), UM) as follows:

R̃M(F(Y )) = 1 +
M−1∑
m=1

I[F(Y ) > F(Ỹm)] +
M−1∑
m=1

I[F(Y ) = F (Ỹm)]I[UM > Um], (23)

where I[A] denotes the indicator function of event A. Recognizing that the pairs

(F(Ỹ1), U1), . . . , (F(ỸM), UM−1), (F(Y ), UM)
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are exchangeable under H0, we can derive from Lemma 2.3 in (Dufour, 2006) that the lexico-

graphic ranks are uniformly distributed across the integers 1, . . . ,M , specifically:

Pr[R̃M [F(Y )] = m] =
1

M
, form = 1, . . . ,M.

Thus, the MC p-value can be expressed as

p̃M [F(Y )] =
M − R̃M(F(Y )) + 1

M
. (24)

where R̃M [F(Y )] is the rank of (F(Y ), UM) given by Equation (23). This p-value allows us to

determine whether the observed statistic F(Y ) is extreme relative to the bootstrap distribution.

If αM is an integer then

Pr[p̃M [F(Y )] ≤ α | H0] = α.

The MC test for H∗
0 enables the formulation of our proposed bounds tests for H0, the hy-

pothesis of interest. The main idea is to derive both a liberal and a conservative test, each with a

nominal level α. The null hypothesis H0 will not be rejected when the liberal test does not reject

it, and it will be rejected when the conservative test yields a significant result.

3.2.4 Liberal and Conservative Tests

The null hypothesis assumes that B∗ = B̂0, which represents the OLS estimate of B under

H0. By construction, we have HB̂0 = D, meaning that H∗
0 is compatible with the original null

hypothesis H0. The residuals, denoted by ε∗, are equivalent to those obtained under H0, which

simplifies to ε∗ = ε̂0.

For the liberal test, denote by P̃L
M(F(Y )) the associated MC p-value computed according to

(24). This liberal p-value satisfies Pr
[
P̃C
M(F(Y )) > α | X

]
≤ 1 − α under H0, implying that

the decision rule to do not reject H0 when P̃L
M(F(Y )) > α is valid. This decision rule is based

on the observation that H∗
0 ⊆ H0; thus, if H∗

0 is not rejected, neither is H0.

For the conservative test, we introduce a test statistic specific to this point null hypothesis (21).

Let the residual sum-of-squares and cross-products matrix to H∗
0 be expressed as Ê∗ = ε̂∗

′
ε̂∗. We
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then consider the N × 1 vector of test statistics:

FC(Y) =
(diag {ε̂∗} − diag {ε̂(Y)}) /h
diag {ε̂(Y)} /(T −K − 1)

, (25)

where the superscript C denotes that this is a conservative test statistic. When computed with the

original sample Y , we have FC(Y ) = F (Y ) as we set B∗ = B̂0.For any bootstrap sample Ỹ ,

generated according to (25), the following inequalities hold:

diag {ε∗} ≥ diag
{
ε̂0(Ỹ )

}
≥ diag

{
ε̂(Ỹ )

}
, (26)

where these comparisons are element-wise. This means that an OLS residual sum of squares cal-

culated with restrictions cannot be smaller than one calculated with fewer restrictions (Davidson

and MacKinnon, 2004). From these inequalities, it follows that:

F (Ỹ ) ≤ FC(Y). (27)

As with the liberal statistics, the conservative statistics FC(·) can be aggregated using a p-

norm. Denote this aggregation as FC(·), which could either represent FC
p (·) or FC

max(·). The

relationships we described imply that Pr[F(·) > θ] ≤ Pr[FC(·) > θ], for any threshold value

θ ∈ R. Define θα as a critical value such that Pr[F(Y ) > θα | X] = α whenH∗
0 holds,

and similarly define θCα via: Pr[FC(Y) > θCα | X] = α underH∗
0 . It follows that: θα ≤ θCα ,

implying that:

Pr[F(Y ) > θCα | X] ≤ α whenF(Y ) follows itsH0-distribution. (28)

Thus, if the joint F bounds test based on θCα is significant, then the exact joint F test based on

θα is also significant at level α. We apply the MC test technique to implement the bounds test.

Proposition 2 (Bounds MC p-values). Suppose the MLR model in (13) with Assumption 1 holds.

Further, consider a statistic F(Y ) for testing H0 and the corresponding conservative test statistic

FC(Y ). Define the liberal and conservative MC p-values as

p̃LM [F(Y )] =
M − R̃M [F(Y )] + 1

M
and p̃CM [F(Y )] =

M − R̃C
M [F(Y )] + 1

M
,
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where R̃M [F(Y )] and R̃C
M [F(Y )] are the lexicographic ranks of F(Y ) among F(Ỹm) and FC(Ỹm),

respectively, for m = 1, . . . ,M − 1. The bootstrap samples Ỹm are generated according to the

model (22), and the lexicographic ranks are computed as

R̃M [F(Y )] = 1 +
M−1∑
m=1

I
[
F(Y ) > F(Ỹm)

]
+

M−1∑
m=1

I
[
F(Y ) = F(Ỹm)

]
× I[UM > Um],

R̃C
M [F(Y )] = 1 +

M−1∑
m=1

I
[
F(Y ) > FC(Ỹm)

]
+

M−1∑
m=1

I
[
F(Y ) = FC(Ỹm)

]
× I[UM > Um],

where Um, m = 1, . . . ,M , are i.i.d. uniform variates on [0, 1], independently of the F statistics.

If αM is an integer, then Pr
[
p̃LM(F(Y )) > α | X

]
≤ 1− α and Pr

[
p̃CM(F(Y )) ≤ α | X

]
≤ α,

under H0 in the null hypothesis (14).

This conclusion is derived from Proposition 2.4 in Dufour (2006), which addresses the va-

lidity of MC tests for general statistics. Notably, in Proposition 2, it is essential that the same

bootstrap sample Ỹm is used to compute both F(Ỹm) and FC(Ỹm). Additionally, the same set of

uniform random variables U1, . . . , UM should be applied when calculating both R̃M [F(Y )] and

R̃C
M [F(Y )]. These conditions are necessary to ensure consistency and prevent any contradictory

results between the liberal and conservative MC p-values.

Bounds MC Test Decision Rule

The decision rule for the MC bounds test of H0 : HB = D at level α is as follows:

• Reject H0 if P̃C
M(F(Y )) ≤ 5%.

• Do not reject H0 if P̃L
M(F(Y )) > 5%.

• Inconclusive if neither condition is met.

The logic behind this rule is similar to the well-known bounds test of Durbin and Watson

(1950, 1951) for detecting autocorrelation in regression models.

To sum up, the non-parametric test presents the foundational framework of our study evalu-

ating the efficiency and spanning properties of top ESG-rated and MCCC-based stocks. The fol-

lowing section builds on this framework by introducing the methodology for extracting stocks’

exposure to climate sensitivity.
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3.3 Fama French Model With Media Climate Change Concerns Sensitivity

The Fama and French (2015) model takes the following form:

Rit −RFt = ai + bi(RMt −RFt) + si SMBt + hi HMLt + ri RMWt + ci CMAt + εit (29)

where Rit is the return of the stock at time t, RFt is the risk-free rate, and RMt is the market

return. SMBt is the return spread of small-cap stocks minus large-cap stocks; HMLt is the

return spread of high book-to-market (B/M) ratio stocks minus low (B/M) ratio stocks; RMWt

is the return spread of stocks with robust profitability minus those with weak profitability, and

CMAt is the return spread of stocks with conservative investment policies minus those with

aggressive investment policies. The error term εit follows a normal distribution, εit ∼ N (0, σ2).

If the exposures to the five factors bi, si, hi, ri, and ci capture all variation in expected returns,

the intercept ai is zero for all securities and portfolios i. We extend the model by incorporating

a new variable, mi, which represents the exposure of each stock to the Market Climate Change

Component (MCCC), which captures market reactions to climate-related events and policies.

The extended model is represented as follows:

Rit−RFt = ai+bi(RMt−RFt)+si SMBt+hiHMLt+ri RMWt+ciCMAt+miMCCCt+εit

(30)

The Fama-French factors account for broad systematic risks, including market, size, value,

profitability, and investment factors. This isolates climate sensitivity from broader market risks

and allows the MCCC variable to capture the specific exposure of stocks to climate-related events

and policies. This ensures that the impact of climate change on stock returns is captured inde-

pendently of other risk factors.

4 Data

This section provides a detailed overview of our analysis’s data sources and types. We first

describe the stock returns data, followed by ESG ratings, and then the finalized datasets for ESG
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hypotheses testing. The primary data source is Wharton Research Data Services (WRDS). In

addition to the ESG data, we incorporate explanatory variables that capture systematic risk factors

–Fama and French (2015) Factors and MCCC index, where the latter serves as an alternative

dynamic measure to ESG to assess mean-variance efficiency and mean-variance spanning.

4.1 Returns Data

We source the stock returns data from the Center for Research in Security Prices (CRSP), which

provides comprehensive security price, return, and volume data for the NYSE, AMEX, and NAS-

DAQ stock markets. The database is free from survivorship bias and accounts for organizational

events, including name changes, mergers, and liquidations. We use US-listed firms’ daily returns

from January 2, 2014, to December 31, 2022.

We retrieve daily returns data and the CRSP unique permanent security level identifiers

(PERMNO) from the daily stock returns database to obtain the dataset. We do not consider ESG

factors at this stage, so the initial dataset compromises both ESG-rated and ESG-unrated stocks.

We also retrieve stock tickers from the stock names database and merge them with the data. We

consider only the latest available ticker for each company to avoid any potential biases caused by

historical tickers. Furthermore, we aggregate the returns by date and ticker to construct a time

series dataset in an extended format. Finally, we transform the data into a panel data format, with

each column representing the return of an individual stock, to facilitate efficient analysis. Table

1 summarizes the number of stocks with available daily returns from 2014 to 2022. The number

of stocks included in the dataset increased steadily over the sample period.

Table 1: Evolution of the Stock Return Database
This table provides an overview of the number of individual stocks with available daily return data for each year
from 2014 to 2022.

Year 2014 2015 2016 2017 2018 2019 2020 2021 2022

Stocks with Returns 1881 1997 2076 2124 2209 2298 2352 2401 2469

25



4.2 ESG Data

We use Trucost ESG Disclosure Scores, also known as S&P Global ESG Scores, to obtain ESG

scores of the U.S.-listed companies. Unlike other ESG datasets that rely solely on publicly avail-

able information, S&P Global ESG Scores are generated from a combination of verified com-

pany disclosures, media, stakeholder analysis, and in-depth company engagement through the

S&P Global Corporate Sustainability Assessment (CSA), providing unparalleled access to ESG

insights before they reach others.

We collect ESG scores for U.S-listed companies classified as “Operating” from the Trucost

database that matched the tickers obtained from our initial returns dataset. The time series data

is monthly. The ESG data is monthly, and to ensure consistency, we generate all possible year-

month combinations from January 2014 to December 2022 and fill any gaps using a forward-fill

method. Subsequently, we remove unrated stocks to obtain monthly ESG scores. We repeat

this process for each ESG dimension—Environmental, Social, and Governance— by adjusting

the criteria in the extraction query. Table 2 illustrates the evolution of the number of ESG-rated

stocks in our dataset from 2014 to 2022. The size of the datasets significantly increased after

2020, showcasing the increasing corporate transparency and reporting on ESG factors.

Table 2: Evolution of ESG-Rated Stocks
This table presents the number of U.S.-listed stocks with available ESG ratings, segmented by Environmental, Social,
and Governance factors, from 2014 to 2022. The dataset is sourced from Trucost (S&P Global ESG Scores).

Year 2014 2015 2016 2017 2018 2019 2020 2021 2022

Size of ESG data 389 455 493 542 584 705 1058 1895 1579
Size of Environmental data 389 455 493 542 584 705 1058 1895 1579
Size of Social data 389 455 493 542 584 705 1058 1895 1579
Size of Governance data 389 455 493 542 584 705 1058 1895 1579

The S&P Global ESG Scores range from 0 to 100. Table 3 summarizes the descriptive statis-

tics of ESG metrics and their dimensions—Environmental, Social, and Governance. Over the

years, the mean ratings have declined, notably in 2020. This decline coincides with a sharp in-

crease in ESG-rated stocks (Table 2), many of which received lower ESG scores. Among the ESG

dimensions, governance maintains higher statistics than environmental and social scores. Gov-
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ernance practices are well-established due to longstanding regulatory and stakeholder demands.

In contrast, Environmental and Social metrics are newer focus areas, with many companies still

developing tracking and disclosure frameworks.

Table 3: Descriptive Statistics of ESG, Environmental, Social, and Governance Ratings
The table presents descriptive statistics for ESG metrics over the years 2014 to 2022, including minimum (Min), first
quartile (Q1), median, mean, third quartile (Q3), and maximum (Max) values.

Year ESG
Min Q1 Median Mean Q3 Max

2014 0 32 41 43.8 53 86
2015 0 32 40 43.6 52 88
2016 17 30 38 41.3 49 89
2017 15 29 37 40.9 49.3 89
2018 7 26 35 38.0 46 87
2019 3 18 29 31.8 42 90
2020 3 11 21.7 24.1 31 91
2021 0 12 23 24.7 31 91
2022 0 15 24 26.7 34 89

Year Environmental
Min Q1 Median Mean Q3 Max

2014 0 16 30 34.0 48 94
2015 0 19.9 32 35.8 50 94
2016 2 19 31 35.2 48 93
2017 0 20 31 36.0 50.7 96
2018 0 14.2 27 32.3 45 98
2019 0 10 23.7 28.6 43 98
2020 0 1 18 20.8 28 98
2021 0 1 18 20.9 28 98
2022 0 5 18 22.2 31 98

Year Social
Min Q1 Median Mean Q3 Max

2014 10 26 35 37.8 46 86
2015 9 24 32 36.1 44 91
2016 6 22 29 34.3 42 92
2017 0 20 28 33.1 43 92
2018 0 18.5 28 32.0 41.8 91
2019 0 10 22 25.1 36 90
2020 0 4 16 17.8 25 92
2021 0 5 16 18.1 25 92
2022 0 9 18.9 21.1 29 87

Year Governance
Min Q1 Median Mean Q3 Max

2014 0 46 54 55.4 63 90
2015 0 46 54 55.1 63 88
2016 26 42 49.4 51.4 58.4 91
2017 0 40 48 50.1 56 91
2018 0 35 43 45.1 52 87
2019 5 27 37 38.8 48 88
2020 5 20 27.6 30.1 36 88
2021 6 21 29 31.2 37 88
2022 6 23 31 33.5 40 89

4.3 Filtered and Aligned Data

To conduct the mean-variance efficiency and mean-variance spanning tests, we align the returns

data from CRSP and the ESG data from Trucost into matrices with identical T ×N dimensions,

where T = 2266 daily observations from 2 January September 2014 to 31 December 2022, and N

denotes the number of stocks. We include only stocks with available ESG ratings from Trucost

and return data from CRSP. Table 4 provides an overview of the selected stocks.

Table 4: Evolution of ESG-Rated Stocks After Data Filtration
This table presents the number of stocks with both daily returns and ESG ratings available after filtering for missing
or incomplete values in the Trucost ESG database and CRSP return dataset from 2014 to 2022.

Year 2014 2015 2016 2017 2018 2019 2020 2021 2022

Size of ESG data 389 453 493 538 584 705 1055 1892 1575
Size of Environmental data 389 453 493 538 584 705 1055 1892 1575
Size of Social data 389 453 493 538 584 705 1055 1892 1575
Size of Governance data 389 453 493 538 584 705 1055 1892 1575
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4.4 Systematic Risk Factors and Climate Concerns

For our research, we incorporate exposure to the Media Climate Change Concerns Index (MCCC)

to perform mean-variance spanning (MVS) and mean-variance efficiency (MVE) test developed

by Ardia et al. (2023) sourced from the Sentometrics Research website7 which captures media

attention on climate change and its potential influence on market dynamics. We regress stocks

return on the MCCC and the Fama and French (2015) five-factor mimicking portfolios, avail-

able on Kenneth French’s website.8 These factors—market excess return, size (SMB), value

(HML), profitability (RMW), and investment (CMA)— account for traditional systematic risks.

Afterward, we utilize the MCCC index to rank stocks based on their exposure to this to this

climate-related risk measure. Figure 1 shows the index’s daily evolution from 2014 to 2022.

Figure 1: Trends in Media Climate Change Concerns (MCCC) Index With Key Climate Events

This figure shows the daily Media Climate Change Concerns (MCCC) index (gray points) with its 30-day moving

average (black line) from January 2014 to December 2022. Key climate events, including notable conferences and

policy announcements, are highlighted (in boxes).

7Sentometrics Research: MCCC Data, November 14, 2020.
8Kenneth R. French: Fama/French 5 Factors (2x3)
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5 Empirical Application

This section is divided into two main parts. In one part, we conduct mean-variance efficiency

(MVE) and mean-variance spanning (MVS) tests using ESG scores. We also examine the effi-

ciency and spanning capacity of ESG as well as Environmental (E), Social (S), and Governance

(G) stock groups across different sizes. In the other part, we test the same hypotheses using

the exposure to the Media Climate Change Concerns (MCCC) index as an alternative dynamic

measure to evaluate sustainability-driven stock selection.

5.1 Hypothesis Testing Using ESG Score

We construct our ESG universes of stocks from a forward-looking perspective. At the start of

each year, we rank stocks based on their ESG (or E, S, and G) scores and form two main groups:

the benchmark universe, which consists of the top K ESG-rated stocks, and the test universe,

which include the following top N stocks. We hold the groups for one year, then re-form them

based on updated ESG rankings. This strategy incorporates all available information at a given

time and avoids future data or forecasts.

Using the framework of Gungor and Luger (2016), we perform mean-variance efficiency

(MVE) and spanning (MVS) tests to evaluate the performance of ESG stock groups. MVE tests

assess whether the top K ESG stocks offer optimal risk-adjusted returns, while MVS, examines

whether adding the next group of stocks, the top N ESG stocks, improves the risk-return trade-

off of the benchmark universe. We examine various stock group configurations for K = 10, 20,

30, and N = 10, 20, 30 to evaluate the ability of top ESG universes to "span" the subsequent top

N stocks. The actual number of stocks in the benchmark (K) and test (N ) groups may exceed

the target values due to tied ESG scores at selection thresholds. In such cases, all stocks with

the same score are included, resulting in larger group sizes. Table 5 captures this consideration,

with each group’s actual number of stocks adjusted to account for tied ESG scores in the top K

and top N selections. The adopted methodology accommodates hypothesis testing even when
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the number of stocks exceeds the number of days T – cases where K +N > 252.

Table 5: The Size of the Groups Ranked Based on ESG Scores
This table presents the composition of a benchmark universe (K) that consists of the top ESG stocks and test universe
(N ) that includes the following top ESG stocks in the context of mean-variance spanning.

Year K N K N K N

10 10 20 30 20 10 20 30 30 10 20 30

2014 33 46 95 177 79 49 131 216 128 82 167 254
2015 33 42 89 181 75 47 139 270 122 92 223 320
2016 22 30 82 156 52 52 126 264 104 74 212 340
2017 15 35 77 132 52 42 97 187 92 55 145 236
2018 20 42 87 138 62 45 96 200 107 51 155 307
2019 22 38 90 178 60 52 140 299 112 88 247 425
2020 16 25 113 224 41 88 199 338 129 111 250 375
2021 20 24 64 116 44 40 92 186 84 52 146 244
2022 19 33 76 164 52 43 131 226 95 88 183 310

The sizes of the benchmark and the test group also differ across the Environmental (E), Social

(S), and Governance(G) dimensions. Tables A.1, A.2, and A.3 in the Appendix show these sizes.

5.1.1 ESG Mean-Variance Efficiency Test

We apply the non-parametric test developed by Gungor and Luger (2016) as outlined in Section

3.2 for mean-variance efficiency with Fmax statistics described in (20) using M = 500 Monte

Carlo simulations, so the smallest possible MC p-value is 0.2%. We perform the MC test at the

nominal α = 5% significance level.

Table 6 summarizes the results of the mean-variance efficiency tests. Most results across

all panels (K = 10, 20, and 30) do not reject the MVE hypothesis and indicate that the top

ESG-rated benchmark universes are mean-variance efficient across various test sets (N = 10, 20,

and 30) for most of the years from 2014 to 2022. A few inconclusive outcomes in 2017 may

reflect the effect of the Paris Agreement in 2016. The absence of rejections, combined with the

Liberal Monte-Carlo (LMC) p-values remaining above the significance threshold for most cases,

suggest that the top ESG-rated stock groups optimally balance risk and return. These universes

of stocks cover the efficient universe space, with no evidence of superior combinations among

the test sets. Therefore, the mean-variance efficiency test results validate the hypothesis that
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ESG-focused groups formed using top-rated stocks are efficient in the risk-return tradeoff. This

finding supports the idea that integrating ESG criteria does not compromise performance.

Table 6: ESG Mean-Variance Efficiency Test Results: Gungor and Luger (2016) Test
This table presents results for three benchmark stock sets (K = 10, 20, 30) and test stocks (N = 10, 20, 30) from 2014
to 2022. Key metrics include the Fmax statistic, BMC p-value, LMC p-value, and final decision on mean-variance
efficiency. With α = 5%, the conservative MC p-value is reported if P̃C

M (Fmax(Y )) ≤ 5%, the liberal MC p-value
if P̃L

M (Fmax(Y )) > 5%, and both if inconclusive. The symbol "-" is used whenever the p-values are not reported.
Decisions are denoted by (✓) for "Do not reject," (✗) for "Reject," and (?) for "Inconclusive," based on p-values.

K = 10

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision

2014 0.013 - 0.970 ✓ 0.036 - 0.322 ✓ 0.045 - 0.250 ✓

2015 0.030 - 0.310 ✓ 0.031 - 0.502 ✓ 0.031 - 0.750 ✓

2016 0.009 - 0.992 ✓ 0.040 - 0.156 ✓ 0.040 - 0.306 ✓

2017 0.017 - 0.754 ✓ 0.022 - 0.766 ✓ 0.056 1.000 0.036 ?
2018 0.017 - 0.862 ✓ 0.043 - 0.142 ✓ 0.043 - 0.200 ✓

2019 0.019 - 0.730 ✓ 0.019 - 0.960 ✓ 0.019 - 0.730 ✓

2020 0.010 - 0.960 ✓ 0.010 - 1.000 ✓ 0.010 - 1.000 ✓

2021 0.012 - 0.922 ✓ 0.026 - 0.608 ✓ 0.026 - 0.608 ✓

2022 0.014 - 0.886 ✓ 0.014 - 0.992 ✓ 0.014 - 0.992 ✓

K = 20

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision

2014 0.028 - 0.754 ✓ 0.054 - 0.284 ✓ 0.054 - 0.410 ✓

2015 0.026 - 0.784 ✓ 0.026 - 0.984 ✓ 0.034 - 0.974 ✓

2016 0.039 - 0.244 ✓ 0.039 - 0.504 ✓ 0.039 - 0.722 ✓

2017 0.029 - 0.572 ✓ 0.029 - 0.796 ✓ 0.054 - 0.222 ✓

2018 0.043 - 0.184 ✓ 0.043 - 0.338 ✓ 0.043 - 0.618 ✓

2019 0.013 - 0.998 ✓ 0.019 - 1.000 ✓ 0.021 - 1.000 ✓

2020 0.016 - 0.990 ✓ 0.016 - 1.000 ✓ 0.026 - 0.994 ✓

2021 0.019 - 0.830 ✓ 0.022 - 0.944 ✓ 0.025 - 0.980 ✓

2022 0.014 - 0.980 ✓ 0.014 - 1.000 ✓ 0.019 - 1.000 ✓

K = 30

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision

2014 0.034 - 0.980 ✓ 0.034 - 1.000 ✓ 0.068 - 0.654 ✓

2015 0.036 - 0.958 ✓ 0.050 - 0.872 ✓ 0.052 - 0.942 ✓

2016 0.030 - 0.940 ✓ 0.047 - 0.884 ✓ 0.047 - 0.950 ✓

2017 0.016 - 0.998 ✓ 0.094 1.000 0.032 ? 0.094 1.000 0.044 ?
2018 0.017 - 0.998 ✓ 0.030 - 1.000 ✓ 0.031 - 1.000 ✓

2019 0.023 - 0.996 ✓ 0.049 - 0.882 ✓ 0.049 - 0.960 ✓

2020 0.038 - 0.938 ✓ 0.038 - 0.994 ✓ 0.055 - 0.916 ✓

2021 0.020 - 0.966 ✓ 0.035 - 0.870 ✓ 0.035 - 0.956 ✓

2022 0.025 - 0.992 ✓ 0.025 - 1.000 ✓ 0.029 - 1.000 ✓

5.1.2 ESG Mean-Variance Spanning Test

We test the mean-variance spanning (MVS) hypothesis using the non-parametric Fmax test by

Gungor and Luger (2016) to assess whether benchmark stocks span the test universe for different
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values of K and N . The goal is to determine whether certain benchmark universes efficiently

represent the risk-return tradeoff of a broader set of risky stocks.

Table 7 displays the results of the MVS test. The test rejects the spanning hypothesis in

approximately 70% of the cases. For the smallest benchmark universe (K = 10), spanning out-

comes are mostly inconclusive when tested against different N test universes, with only one

non-rejecting decision per N . Expanding the benchmark universe to K = 20 increases the fre-

quency of non-rejection spanning, particularly for N = 10 and N = 20. Notably, we observe

fewer inconclusive results during 2016–2018 (post-Paris Agreement) and 2020 (COVID-19 cri-

sis). When the benchmark size increases to K = 30, spanning outcomes improve further, with

non-rejections of the MVS hypothesis observed more consistently and fewer inconclusive out-

comes. Notably, for N = 10, the hypothesis is not rejected across all observed years, whereas

for larger N , it is not the case. While expanding to a larger group of stocks enhances spanning

initially, excessively including lower-ranked ESG stocks dilutes efficiency and does not improve

the universe’s performance.

5.1.3 Tests for Environmental, Social, and Governance Ratings

We examine whether focusing on top-rated Environmental (E), Social (S), or Governance (G)

scores brings different results compared to ESG for mean-variance efficiency (MVE) and mean-

variance spanning (MVS). Tables A.4 and A.5 in Appendix I present the Environmental (E)

results. The MVE tests for E scores consistently show non-rejection, similar to the outcomes

for overall ESG scores. However, the MVS test results in rejections approximately two-thirds of

the time, slightly less frequent than for comprehensive ESG scores. Notably, when K = 30, we

observe more non-rejection decisions, particularly for cases involving N = 10 and also N = 20.

In 2017, the MVS hypothesis is rejected for K = 10 with N = 10 and N = 20. This decision

is likely influenced by the 2016 Paris Agreement on climate change, as it logically influences

Environmental scores. Tables A.6 and A.7 summarize the hypothesis testing results for the Social

(S) dimension. The MVE and MVS results for Social ratings are similar to those for overall ESG,

with mostly inconclusive outcomes and some non-rejection of the spanning hypothesis for larger
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N and K values. Tables A.8 and A.9 present the results for the Governance (G) dimension. This

dimension also displays higher non-rejection rates, similar to the Environmental (E) scores, with

no noteworthy deviations from the ESG outcomes.

Table 7: ESG Mean-Variance Spanning Test Results: Gungor and Luger (2016) Test
This table presents results for three benchmark stock sets (K = 10, 20, 30) and test stocks (N = 10, 20, 30) from 2014
to 2022. Key metrics include the Fmax statistic, BMC p-value, LMC p-value, and final decision on mean-variance
efficiency. With α = 5%, the conservative MC p-value is reported if P̃C

M (Fmax(Y )) ≤ 5%, the liberal MC p-value
if P̃L

M (Fmax(Y )) > 5%, and both if inconclusive. The symbol "-" is used whenever the p-values are not reported.
Decisions are denoted by (✓) for "Do not reject," (✗) for "Reject," and (?) for "Inconclusive," based on p-values.

K = 10

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision

2014 0.070 1.000 0.028 ? 0.070 - 0.082 ✓ 0.070 - 0.138 ✓

2015 0.118 1.000 0.002 ? 0.118 1.000 0.002 ? 0.198 1.000 0.002 ?
2016 0.084 1.000 0.012 ? 0.086 1.000 0.018 ? 0.103 1.000 0.002 ?
2017 0.192 0.180 0.002 ? 0.192 0.180 0.002 ? 0.212 0.134 0.002 ?
2018 0.110 1.000 0.002 ? 0.110 1.000 0.002 ? 0.110 1.000 0.002 ?
2019 0.081 1.000 0.004 ? 0.081 1.000 0.014 ? 0.081 1.000 0.003 ?
2020 0.050 - 0.352 ✓ 0.121 1.000 0.034 ? 0.138 1.000 0.036 ?
2021 0.060 1.000 0.042 ? 0.091 1.000 0.002 ? 0.091 1.000 0.002 ?
2022 0.067 1.000 0.018 ? 0.091 1.000 0.006 ? 0.161 0.998 0.002 ?

K = 20

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision

2014 0.035 - 0.944 ✓ 0.056 - 0.728 ✓ 0.121 1.000 0.012 ?
2015 0.081 - 0.054 ✓ 0.096 0.126 0.048 ? 0.126 1.000 0.018 ?
2016 0.117 1.000 0.002 ? 0.126 1.000 0.002 ? 0.126 1.000 0.002 ?
2017 0.099 1.000 0.004 ? 0.099 1.000 0.010 ? 0.133 1.000 0.004 ?
2018 0.117 1.000 0.006 ? 0.117 1.000 0.012 ? 0.126 1.000 0.126 ?
2019 0.039 - 0.798 ✓ 0.039 - 0.982 ✓ 0.169 1.000 0.002 ?
2020 0.104 1.000 0.026 ? 0.119 1.000 0.034 ? 0.3 1.000 0.003 ?
2021 0.078 - 0.102 ✓ 0.078 - 0.056 ✓ 0.078 - 0.102 ✓

2022 0.039 - 0.620 ✓ 0.124 1.000 0.002 ? 0.83 0.004 - ✗

K = 30

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision

2014 0.077 - 0.512 ✓ 0.154 1.000 0.026 ? 0.154 1.000 0.044 ?
2015 0.120 - 0.060 ✓ 0.132 1.000 0.046 ? 0.132 - 0.066 ✓

2016 0.073 - 0.358 ✓ 0.124 1.000 0.040 ? 0.124 - 0.052 ✓

2017 0.043 - 0.852 ✓ 0.157 1.000 0.004 ? 0.157 1.000 0.004 ?
2018 0.067 - 0.354 ✓ 0.126 1.000 0.040 ? 0.126 - 0.072 ✓

2019 0.098 - 0.144 ✓ 0.209 1.000 0.006 ? 0.209 1.000 0.006 ?
2020 0.086 - 0.490 ✓ 0.154 1.000 0.024 ? 0.154 1.000 0.042 ?
2021 0.057 - 0.370 ✓ 0.111 1.000 0.028 ? 0.111 1.000 0.042 ?
2022 0.101 - 0.056 ✓ 0.771 1.000 0.002 ? 0.771 1.000 0.002 ?
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In summary, MVE evaluates the standalone performance of the top K ESG-rated stocks and

consistently shows non-rejection across most years, indicating that these stocks independently

achieve optimal risk-return tradeoffs. In contrast, MVS examines whether adding test stocks en-

hances the risk-return frontier. Frequent rejections suggest insufficient diversification for smaller

K values (K = 10 or 20). However, as K increases to 30, non-rejection rates improve signif-

icantly, demonstrating that larger benchmark groups better span the investment universe’s effi-

cient frontier. Adding lower-ranked ESG stocks beyond the top 30 can dilute efficiency and yield

less conclusive results. Overall, focusing on the top-rated ESG stocks, particularly the top 30,

achieves a better balance of efficiency and market representation.

5.2 Hypothesis Testing Using MCCC Exposure

We run time series regressions for all stocks each year using the five factors from Fama and

French (2015) along with the MCCC index as explanatory variables, as outlined in Section 3.3.

We extract and store the coefficients associated with the MCCC index to measure the stocks’

sensitivity to media sentiment related to climate change. Using this sensitivity, we construct

the benchmark and test universes of stocks following the same methodology applied to ESG

rankings. At the start of each year, we rank stocks based on their MCCC exposures to form

benchmark universes of the top K stocks and test universes comprising the next top N . Unlike

the ESG-based rankings, the MCCC approach precisely matches the K and N specifications

(e.g., K = 10 results in precisely ten stocks) due to the variability in stock exposures to the

MCCC index.

5.3 MCCC Mean-Variance Efficiency Test

Unlike the consistent non-rejection observed in the MVE hypothesis testing for ESG (or E, S,

and G) scores, MCCC results showcase inconclusive decisions in more than half of the cases. We

observe consistency in the values and the decisions within each benchmark size K regardless of

the sizes of the test stocks N . Rejections are present for 2017, 2018, and 2019, while 2016 saw
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full non-rejection. We observe partial non-rejection in 2022 for K = 20 and K = 30. The MCCC

index, susceptible to short-term market sentiment, proves less effective than ESG in providing a

robust risk-return tradeoff.

Table 8: MCCC Mean-Variance Efficiency Test Results: Gungor and Luger (2016) Test
This table presents results for three benchmark stock sets (K = 10, 20, 30) and test stocks (N = 10, 20, 30) from 2014
to 2022. Key metrics include the Fmax statistic, BMC p-value, LMC p-value, and final decision on mean-variance
efficiency. With α = 5%, the conservative MC p-value is reported if P̃C

M (Fmax(Y )) ≤ 5%, the liberal MC p-value
if P̃L

M (Fmax(Y )) > 5%, and both if inconclusive. The symbol "-" is used whenever the p-values are not reported.
Decisions are denoted by (✓) for "Do not reject," (✗) for "Reject," and (?) for "Inconclusive," based on p-values.

K = 10

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision

2014 0.039 0.042 0.150 ? 0.039 0.042 0.150 ? 0.039 0.042 0.150 ?
2015 0.120 0.002 0.052 ? 0.120 0.002 0.052 ? 0.120 0.002 0.052 ?
2016 0.021 - 0.422 ✓ 0.021 - 0.422 ✓ 0.021 - 0.422 ✓

2017 0.091 0.010 - ✗ 0.091 0.010 - ✗ 0.091 0.010 - ✗

2018 0.008 - 0.882 ✓ 0.008 - 0.882 ✓ 0.008 - 0.882 ✓

2019 0.010 0.010 0.678 ? 0.010 0.010 0.678 ? 0.010 0.010 0.678 ?
2020 0.023 0.016 0.33 ? 0.023 0.016 0.33 ? 0.023 0.016 0.33 ?
2021 0.009 0.002 0.728 ? 0.009 0.002 0.728 ? 0.009 0.002 0.728 ?
2022 0.016 0.002 0.282 ? 0.0158 0.002 0.282 ? 0.0158 0.002 0.282 ?

K = 20

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision

2014 0.011 0.004 0.936 ? 0.011 0.004 0.936 ? 0.011 0.004 0.936 ?
2015 0.041 - 0.402 ✓ 0.041 - 0.402 ✓ 0.041 - 0.402 ✓

2016 0.015 - 0.896 ✓ 0.015 - 0.896 ✓ 0.015 - 0.896 ✓

2017 0.111 0.008 - ✗ 0.111 0.008 - ✗ 0.111 0.008 - ✗

2018 0.016 0.004 0.834 ? 0.016 0.004 0.834 ? 0.016 0.004 0.834 ?
2019 0.199 0.004 - ✗ 0.038 0.004 0.304 ✗ 0.038 0.004 0.304 ✗

2020 0.032 0.002 0.268 ? 0.032 0.002 0.268 ? 0.032 0.002 0.268 ?
2021 0.011 0.006 0.914 ? 0.011 0.006 0.914 ? 0.011 0.006 0.914 ?
2022 0.028 - 0.31 ✓ 0.028 - 0.31 ✓ 0.028 - 0.31 ✓

K = 30

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision

2014 0.015 0.004 0.926 ? 0.015 0.004 0.926 ? 0.015 0.004 0.926 ?
2015 0.044 0.568 0.008 ? 0.044 0.568 0.008 ? 0.044 0.568 0.008 ?
2016 0.035 - 0.684 ✓ 0.035 - 0.684 ✓ 0.035 - 0.684 ✓

2017 0.031 0.040 0.706 ? 0.031 0.040 0.706 ? 0.031 0.040 0.706 ?
2018 0.089 0.004 - ✗ 0.089 0.004 - ✗ 0.089 0.004 - ✗

2019 0.038 0.004 0.304 ? 0.038 0.004 0.304 ? 0.038 0.004 0.304 ?
2020 0.019 - 0.808 ✓ 0.019 - 0.808 ✓ 0.019 - 0.808 ✓

2021 0.019 0.002 0.844 ? 0.019 0.002 0.844 ? 0.019 0.002 0.844 ?
2022 0.032 - 0.386 ✓ 0.032 - 0.386 ✓ 0.032 - 0.386 ✓
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5.4 MCCC Mean-Variance Spanning Test

The MVS test results for MCCC exposure highlight consistent decisions across different N values

within each benchmark size K. Overall, MCCC results show a higher frequency of rejections

compared to ESG or individual E, S, and G scores. The MCCC-based groups of stocks often fail

to span the test stocks. We highlight a notable non-rejection of the spanning hypothesis 2016

for K = 10 and K = 20, a finding that aligns with the mean-variance efficiency hypothesis. In

2020, non-rejection decisions were present for K = 20 and K = 30. However, the spanning test

outcomes for 2014, 2015 and 2017 remain inconclusive.

In summary, the MCCC hypothesis testing results are less consistent than ESG, with more

frequent rejections and inconclusive outcomes in MVE and MVS tests. MVE results show fre-

quent standalone inefficiencies for benchmark stocks, except in 2016 and 2022, where larger

benchmark sizes achieved partial non-rejection of the hypothesis. MVS results, however, exhibit

even higher rejection rates, particularly for smaller K, indicating that MCCC benchmarks fail to

span the test stocks effectively. Overall, sustainable investors should prioritize ESG ratings as the

primary sustainable criterion for stock selection when making yearly investment decisions. We

suggest taking the MCCC index as a supplementary tool to monitor short-term sentiment shifts

and assess climate-related risks. Still, it should not replace ESG scores in strategic investment

decisions.
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Table 9: MCCC Mean-Variance Spanning Test Results: Gungor and Luger (2016) Test
This table presents results for three benchmark stock sets (K = 10, 20, 30) and test stocks (N = 10, 20, 30) from 2014
to 2022. Key metrics include the Fmax statistic, BMC p-value, LMC p-value, and final decision on mean-variance
efficiency. With α = 5%, the conservative MC p-value is reported if P̃C

M (Fmax(Y )) ≤ 5%, the liberal MC p-value
if P̃L

M (Fmax(Y )) > 5%, and both if inconclusive. The symbol "-" is used whenever the p-values are not reported.
Decisions are denoted by (✓) for "Do not reject," (✗) for "Reject," and (?) for "Inconclusive," based on p-values.

K = 10

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision

2014 0.048 0.028 0.186 ? 0.048 0.028 0.186 ? 0.048 0.028 0.186 ?
2015 0.103 0.002 0.604 ? 0.103 0.002 0.604 ? 0.103 0.002 0.604 ?
2016 0.069 - 0.452 ✓ 0.069 - 0.452 ✓ 0.069 - 0.452 ✓

2017 0.091 0.010 0.616 ? 0.091 0.010 0.616 ? 0.091 0.010 0.616 ?
2018 0.048 - 0.716 ✓ 0.048 - 0.716 ✓ 0.048 - 0.716 ✓

2019 0.068 0.004 0.600 ? 0.068 0.004 0.600 ? 0.068 0.004 0.600 ?
2020 0.112 0.002 0.072 ? 0.112 0.002 0.072 ? 0.112 0.002 0.072 ?
2021 0.075 0.002 0.126 ? 0.075 0.002 0.126 ? 0.075 0.002 0.126 ?
2022 0.089 0.002 0.282 ? 0.089 0.002 0.282 ? 0.089 0.002 0.282 ?

K = 20

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision

2014 0.088 0.002 0.380 ? 0.088 0.002 0.380 ? 0.088 0.002 0.380 ?
2015 0.137 0.014 0.064 ? 0.137 0.014 0.064 ? 0.137 0.014 0.064 ?
2016 0.069 0.660 - ✓ 0.069 0.660 - ✓ 0.069 0.660 - ✓

2017 0.111 0.004 0.190 ? 0.111 0.004 0.190 ? 0.111 0.004 0.190 ?
2018 0.092 0.002 0.528 ? 0.092 0.002 0.528 ? 0.092 0.002 0.528 ?
2019 0.303 0.002 - ✗ 0.303 0.002 - ✗ 0.303 0.002 - ✗

2020 0.077 0.002 0.536 ✓ 0.077 0.002 0.536 ✓ 0.077 0.002 0.536 ✓

2021 0.075 0.002 0.290 ? 0.075 0.002 0.290 ? 0.075 0.002 0.290 ?
2022 0.171 0.028 - ✗ 0.171 0.028 - ✗ 0.171 0.028 - ✗

K = 30

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision

2014 0.074 0.002 0.454 ? 0.074 0.002 0.454 ? 0.074 0.002 0.454 ?
2015 0.098 0.002 0.356 ? 0.098 0.002 0.356 ? 0.098 0.002 0.356 ?
2016 0.081 0.044 0.280 ? 0.081 0.044 0.280 ? 0.081 0.044 0.280 ?
2017 0.094 0.016 0.416 ? 0.094 0.016 0.416 ? 0.094 0.016 0.416 ?
2018 0.064 0.010 0.786 ? 0.064 0.010 0.786 ? 0.064 0.010 0.786 ?
2019 0.053 0.020 0.816 ? 0.053 0.020 0.816 ? 0.053 0.020 0.816 ?
2020 0.029 - 0.900 ✓ 0.029 - 0.900 ✓ 0.029 - 0.900 ✓

2021 0.136 0.002 - ✗ 0.136 0.002 - ✗ 0.136 0.002 - ✗

2022 0.058 - 0.420 ✓ 0.058 - 0.420 ✓ 0.058 - 0.420 ✓

6 Conclusion

Traditional methods for analyzing mean-variance efficiency and spanning are constrained by as-

sumptions of independent and identically distributed disturbances, multivariate normality, and

limited scalability to large stock universes. This research adopts the advanced framework of
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Gungor and Luger (2016), which eliminates restrictions on the MLR residual distributions and

operates equation by equation, so it remains applicable to any stock size. We evaluate whether

socially responsible stocks optimize the risk-return tradeoff and span the broader investment uni-

verse. We apply this approach to different groups of stocks, using the comprehensive ESG ratings,

the E, S, and G dimensions, and the exposure to the MCCC index as an alternative measure.

We find that the top 30 ESG-rated stocks are mean-variance efficient and adequately span

the investment universe. However, expanding these universes to include lower-rated ESG stocks

diminishes efficiency, so diversification beyond top-rated stocks does not improve risk-return

tradeoffs. Although the MCCC index helps capture short-term market sentiment, it is less useful

for long-term investment strategies due to its higher volatility and less reliable efficiency results

than ESG ratings. ESG ratings, with their comprehensive yearly assessments, provide a more

reliable foundation for long-term sustainable stock selection strategies.

This research adds to the expanding literature on sustainable investing and practical invest-

ment strategies by offering empirical evidence on the efficiency and spanning capabilities of

ESG-focused stock groups. A limitation is that it depends solely on annual ESG ratings, which

may overlook the dynamic changes in businesses’ sustainability practices throughout the year.

Future research could extend the U.S. analysis to global markets to further explore sustainable

investment opportunities.
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Appendix



I Environmental, Social, and Governance Tests

Table A.1: The Size of the Groups Ranked Based on Environmental Scores
This table presents the composition of benchmark stocks (K) that consist of the top Environmental stocks and test
stocks (N ) that include the following top Environmental stocks in the context of mean-variance spanning.

Year K N K N K N

10 10 20 30 20 10 20 30 30 10 20 30

2014 19 35 74 114 54 39 79 130 123 93 91 157
2015 28 28 73 113 56 45 85 132 103 101 87 194
2016 28 32 77 131 60 45 99 173 96 105 128 222
2017 17 34 75 130 51 41 96 147 92 55 106 170
2018 20 44 82 128 64 38 84 156 102 46 118 194
2019 19 29 73 122 48 44 93 154 92 49 110 198
2020 11 17 41 81 28 24 64 148 52 40 124 327
2021 20 45 78 130 65 33 85 146 98 52 113 201
2022 24 32 77 132 56 45 100 157 101 55 112 212

Table A.2: The Size of the Groups Ranked Based on Social Scores
This table presents the composition of benchmark stocks (K) that consist of the top Social stocks and test stocks
(N ) that include the following top Social stocks in the context of mean-variance spanning.

Year K N K N K N

10 10 20 30 20 10 20 30 30 10 20 30

2014 22 36 68 141 58 32 105 185 90 73 153 236
2015 22 31 72 119 53 41 88 208 94 47 167 295
2016 16 28 59 108 44 31 80 149 75 49 118 236
2017 18 28 64 108 46 36 80 146 82 44 110 157
2018 17 32 78 133 49 46 101 178 95 55 132 241
2019 16 29 69 145 45 40 116 209 85 76 169 330
2020 18 36 127 222 54 91 186 365 145 95 274 330
2021 14 24 59 91 38 35 67 146 73 32 84 160
2022 16 36 75 134 52 39 98 157 91 59 185 297

1



Table A.3: The Size of the Groups Ranked Based on Governmental Scores
This table presents the composition of benchmark stocks (K) that consist of the top Governmental stocks and test
stocks (N ) that include the following top Governmental stocks in the context of mean-variance spanning.

Year K N K N K N

10 10 20 30 20 10 20 30 30 10 20 30

2014 38 52 112 239 90 60 79 130 123 93 91 157
2015 39 53 156 296 92 103 85 132 103 101 87 194
2016 25 45 139 305 70 94 99 173 96 105 128 222
2017 32 53 102 195 85 49 96 147 92 55 106 170
2018 26 51 116 225 77 65 84 156 102 46 118 194
2019 24 44 124 287 68 80 93 154 92 49 110 198
2020 18 26 109 242 44 83 64 148 52 40 124 327
2021 24 32 69 136 65 46 37 146 98 52 113 201
2022 15 41 76 168 56 56 35 157 101 55 112 212
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Table A.4: Environmental Mean-Variance Efficiency Test Results: Gungor and Luger (2016) Test
This table presents results for three benchmark stock sets (K = 10, 20, 30) and test stocks (N = 10, 20, 30) from 2014
to 2022. Key metrics include the Fmax statistic, BMC p-value, LMC p-value, and final decision on mean-variance
efficiency. With α = 5%, the conservative MC p-value is reported if P̃C

M (Fmax(Y )) ≤ 5%, the liberal MC p-value
if P̃L

M (Fmax(Y )) > 5%, and both if inconclusive. The symbol "-" is used whenever the p-values are not reported.
Decisions are denoted by (✓) for "Do not reject," (✗) for "Reject," and (?) for "Inconclusive," based on p-values.

K = 10

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision

2014 0.021 - 0.612 ✓ 0.020 - 0.862 ✓ 0.045 - 0.118 ✓

2015 0.009 - 0.986 ✓ 0.032 - 0.408 ✓ 0.032 - 0.572 ✓

2016 0.017 - 0.806 ✓ 0.032 - 0.448 ✓ 0.032 - 0.612 ✓

2017 0.015 - 0.852 ✓ 0.0178 - 0.942 ✓ 0.019 - 0.970 ✓

2018 0.015 - 0.956 ✓ 0.0401 - 0.178 ✓ 0.040 - 0.248 ✓

2019 0.015 - 0.830 ✓ 0.023 - 0.760 ✓ 0.023 - 0.894 ✓

2020 0.006 - 0.976 ✓ 0.007 - 1.000 ✓ 0.025 - 0.678 ✓

2021 0.019 - 0.774 ✓ 0.019 - 0.928 ✓ 0.019 - 0.980 ✓

2022 0.018 - 0.754 ✓ 0.019 - 0.946 ✓ 0.021 - 0.966 ✓

K = 20

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision
2014 0.015 - 0.948 ✓ 0.028 - 0.788 ✓ 0.043 - 0.378 ✓

2015 0.038 - 0.212 ✓ 0.038 - 0.380 ✓ 0.038 - 0.564 ✓

2016 0.031 - 0.476 ✓ 0.031 - 0.780 ✓ 0.031 - 0.926 ✓

2017 0.026 - 0.638 ✓ 0.034 - 0.586 ✓ 0.039 - 0.556 ✓

2018 0.045 - 0.136 ✓ 0.045 - 0.246 ✓ 0.045 - 0.434 ✓

2019 0.0154 - 0.966 ✓ 0.015 - 0.998 ✓ 0.019 - 1.000 ✓

2020 0.008 - 0.992 ✓ 0.023 - 0.800 ✓ 0.023 - 0.952 ✓

2021 0.027 - 0.566 ✓ 0.027 - 0.872 ✓ 0.027 - 0.972 ✓

2022 0.012 - 0.998 ✓ 0.012 - 1.000 ✓ 0.015 - 1.000 ✓

K = 30

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision
2014 0.021 - 0.936 ✓ 0.049 - 0.416 ✓ 0.049 - 0.580 ✓

2015 0.036 - 0.564 ✓ 0.037 - 0.826 ✓ 0.043 - 0.892 ✓

2016 0.030 - 0.864 ✓ 0.035 - 0.968 ✓ 0.037 - 0.978 ✓

2017 0.021 - 0.954 ✓ 0.049 - 0.480 ✓ 0.054 - 0.468 ?
2018 0.026 - 0.872 ✓ 0.044 - 0.670 ✓ 0.044 - 0.842 ✓

2019 0.024 - 0.910 ✓ 0.032 - 0.928 ✓ 0.032 - 0.988 ✓

2020 0.023 - 0.806 ✓ 0.023 - 0.982 ✓ 0.023 - 1.00 ✓

2021 0.022 - 0.968 ✓ 0.025 - 0.992 ✓ 0.046 - 0.810 ✓

2022 0.023 - 0.962 ✓ 0.028 - 0.970 ✓ 0.028 - 1.00 ✓
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Table A.5: Environmental Mean-Variance Spanning Test Results: Gungor and Luger (2016) Test
This table presents results for three benchmark stock sets (K = 10, 20, 30) and test stocks (N = 10, 20, 30) from 2014
to 2022. Key metrics include the Fmax statistic, BMC p-value, LMC p-value, and final decision on mean-variance
efficiency. With α = 5%, the conservative MC p-value is reported if P̃C

M (Fmax(Y )) ≤ 5%, the liberal MC p-value
if P̃L

M (Fmax(Y )) > 5%, and both if inconclusive. The symbol "-" is used whenever the p-values are not reported.
Decisions are denoted by (✓) for "Do not reject," (✗) for "Reject," and (?) for "Inconclusive," based on p-values.

K = 10

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision

2014 0.090 1.000 0.008 ? 0.129 1.000 0.004 ? 0.129 1.000 0.004 ?
2015 0.095 1.000 0.002 ? 0.095 1.000 0.006 ? 0.105 1.000 0.008 ?
2016 0.105 1.000 0.002 ? 0.105 1.000 0.002 ? 0.105 1.000 0.004 ?
2017 0.179 0.408 0.002 ? 0.331 0.004 - ✗ 0.331 0.004 - ✗

2018 0.240 0.322 0.002 ? 0.24 0.452 0.002 ? 0.240 0.512 0.002 ?
2019 0.116 0.996 0.004 ? 0.229 0.112 0.002 ? 0.229 0.170 0.002 ?
2020 0.106 0.998 0.016 ? 0.192 0.784 0.004 ? 0.192 0.916 0.006 ?
2021 0.036 - 0.554 ✓ 0.078 1.000 0.022 ? 0.102 1.000 0.002 ?
2022 0.195 0.784 0.002 ? 0.185 0.972 0.002 ? 0.195 0.996 0.002 ?

K = 20

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision
2014 0.069 - 0.062 ✓ 0.070 - 0.118 ✓ 0.070 - 0.208 ✓

2015 0.079 1.000 0.026 ? 0.107 1.000 0.012 ? 0.107 1.000 0.022 ?
2016 0.064 - 0.150 ✓ 0.064 - 0.284 ✓ 0.091 - 0.052 ✓

2017 0.115 1.000 0.004 ? 0.115 1.000 0.004 ? 0.119 1.000 0.008 ?
2018 0.138 1.000 0.002 ? 0.138 1.000 0.002 ? 0.138 1.000 0.002 ?
2019 0.086 1.000 0.008 ? 0.086 1.000 0.016 ? 0.086 1.000 0.050 ?
2020 0.121 1.000 0.004 ? 0.167 1.000 0.002 ? 0.167 1.000 0.006 ?
2021 0.1 - 0.002 ? 0.100 - 0.012 ✓ 0.100 1.000 0.028 ?
2022 0.039 - 0.620 ✓ 0.065 - 0.200 ✓ 0.065 - 0.274 ✓

K = 30

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision
2014 0.045 - 0.734 ✓ 0.059 - 0.642 ✓ 0.125 1.000 0.020 ?
2015 0.066 - 0.254 ✓ 0.066 - 0.510 ✓ 0.123 1.000 0.028 ?
2016 0.069 - 0.338 ✓ 0.069 - 0.618 ✓ 0.124 - 0.052 ✓

2017 0.084 - 0.098 ✓ 0.084 - 0.188 ✓ 0.069 - 0.796 ?
2018 0.060 - 0.416 ✓ 0.154 1.000 0.008 ? 0.154 1.000 0.012 ?
2019 0.052 - 0.532 ✓ 0.054 - 0.780 ✓ 0.098 - 0.106 ✓

2020 0.122 1.000 0.010 ? 0.122 1.000 0.030 ? 0.098 0.106 0.002 ?
2021 0.112 1.000 0.020 ? 0.112 - 0.064 ✓ 0.218 1.000 0.002 ?
2022 0.046 - 0.802 ✓ 0.760 - 0.374 ✓ 0.670 1.000 0.002 ?
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Table A.6: Social Mean-Variance Efficiency Test Results: Gungor and Luger (2016) Test
This table presents results for three benchmark stock sets (K = 10, 20, 30) and test stocks (N = 10, 20, 30) from 2014
to 2022. Key metrics include the Fmax statistic, BMC p-value, LMC p-value, and final decision on mean-variance
efficiency. With α = 5%, the conservative MC p-value is reported if P̃C

M (Fmax(Y )) ≤ 5%, the liberal MC p-value
if P̃L

M (Fmax(Y )) > 5%, and both if inconclusive. The symbol "-" is used whenever the p-values are not reported.
Decisions are denoted by (✓) for "Do not reject," (✗) for "Reject," and (?) for "Inconclusive," based on p-values.

K = 10

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision

2014 0.019 - 0.756 ✓ 0.019 - 0.910 ✓ 0.029 - 0.666 ✓

2015 0.028 - 0.300 ✓ 0.028 - 0.504 ✓ 0.034 - 0.398 ✓

2016 0.038 - 0.074 ✓ 0.038 - 0.156 ✓ 0.037 - 0.252 ✓

2017 0.020 - 0.580 ✓ 0.021 - 0.794 ✓ 0.021 - 0.920 ?
2018 0.017 - 0.764 ✓ 0.036 - 0.200 ✓ 0.036 - 0.314 ✓

2019 0.024 - 0.374 ✓ 0.024 - 0.664 ✓ 0.024 - 0.888 ✓

2020 0.007 - 1.000 ✓ 0.007 - 1.000 ✓ 0.019 - 1.000 ✓

2021 0.009 - 0.954 ✓ 0.023 - 0.600 ✓ 0.024 - 0.736 ✓

2022 0.016 - 0.860 ✓ 0.016 - 0.952 ✓ 0.021 - 0.944 ✓

K = 20

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision
2014 0.021 - 0.754 ✓ 0.047 - 0.244 ✓ 0.047 - 0.364 ✓

2015 0.018 - 0.924 ✓ 0.021 - 0.964 ✓ 0.031 - 0.942 ✓

2016 0.013 - 0.960 ✓ 0.015 - 1.000 ✓ 0.015 - 1.000 ✓

2017 0.028 - 0.526 ✓ 0.028 - 0.782 ✓ 0.070 1.000 0.030 ?
2018 0.052 1.000 0.046 ? 0.052 - 0.098 ✓ 0.052 - 0.194 ✓

2019 0.019 - 0.838 ✓ 0.019 - 0.994 ✓ 0.019 - 1.000 ✓

2020 0.011 - 1.000 ✓ 0.033 - 0.864 ✓ 0.033 - 0.964 ✓

2021 0.025 - 0.482 ✓ 0.025 - 0.720 ✓ 0.025 - 0.898 ✓

2022 0.013 - 0.986 ✓ 0.013 - 1.000 ✓ 0.019 - 1.000 ✓

K = 30

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision
2014 0.038 - 0.594 ✓ 0.039 - 0.834 ✓ 0.046 - 0.758 ✓

2015 0.021 - 0.964 ✓ 0.032 - 0.980 ✓ 0.031 - 1.000 ✓

2016 0.018 - 0.964 ✓ 0.022 - 0.994 ✓ 0.035 - 0.936 ✓

2017 0.017 - 0.986 ✓ 0.123 1.000 0.004 ? 0.123 1.000 0.004 ?
2018 0.019 - 0.986 ✓ 0.025 - 0.996 ✓ 0.028 - 1.000 ✓

2019 0.026 - 0.928 ✓ 0.028 - 0.992 ✓ 0.035 - 0.992 ✓

2020 0.041 - 0.946 ✓ 0.042 - 0.996 ✓ 0.054 - 0.974 ✓

2021 0.016 - 0.950 ✓ 0.016 - 1.000 ✓ 0.016 - 1.000 ✓

2022 0.022 - 0.964 ✓ 0.034 - 0.970 ✓ 0.034 - 0.994 ✓
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Table A.7: Social Mean-Variance Spanning Test Results: Gungor and Luger (2016) Test
This table presents results for three benchmark stock sets (K = 10, 20, 30) and test stocks (N = 10, 20, 30) from 2014
to 2022. Key metrics include the Fmax statistic, BMC p-value, LMC p-value, and final decision on mean-variance
efficiency. With α = 5%, the conservative MC p-value is reported if P̃C

M (Fmax(Y )) ≤ 5%, the liberal MC p-value
if P̃L

M (Fmax(Y )) > 5%, and both if inconclusive. The symbol "-" is used whenever the p-values are not reported.
Decisions are denoted by (✓) for "Do not reject," (✗) for "Reject," and (?) for "Inconclusive," based on p-values.

K = 10

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision

2014 0.078 1.000 0.010 ? 0.080 1.000 0.014 ? 0.088 1.000 0.024 ?
2015 0.156 0.988 0.002 ? 0.156 1.000 0.002 ? 0.262 0.324 0.002 ?
2016 0.180 0.362 0.002 ? 0.180 0.596 0.002 ? 0.207 0.468 0.002 ?
2017 0.109 1.000 0.002 ? 0.109 1.000 0.002 ? 0.131 1.000 0.002 ?
2018 0.114 0.994 0.002 ? 0.114 1.000 0.002 ? 0.125 1.000 0.002 ?
2019 0.129 0.830 0.002 ? 0.150 0.790 0.002 ? 0.150 0.974 0.002 ?
2020 0.255 0.858 0.002 ? 0.288 0.942 0.002 ? 0.606 0.006 - ✗

2021 0.043 - 0.156 ✓ 0.060 - 0.052 ✓ 0.086 1.000 0.006 ?
2022 0.093 1.000 0.006 ? 0.129 0.982 0.002 ? 0.223 0.224 0.002 ?

K = 20

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision
2014 0.062 - 0.114 ✓ 0.062 - 0.328 ✓ 0.126 - 0.002 ✓

2015 0.083 1.000 0.026 ? 0.153 1.000 0.002 ? 0.153 1.000 0.002 ?
2016 0.117 1.000 0.002 ? 0.117 1.000 0.002 ? 0.117 - 0.002 ✓

2017 0.050 - 0.288 ✓ 0.070 - 0.092 ✓ 0.156 1.000 0.002 ?
2018 0.079 1.000 0.014 ? 0.082 1.000 0.026 ? 0.092 1.000 0.002 ?
2019 0.079 1.000 0.020 ? 0.079 - 0.058 ✓ 0.090 1.000 0.024 ?
2020 0.117 1.000 0.016 ? 0.370 1.000 0.002 ? 0.370 1.000 0.002 ?
2021 0.065 - 0.066 ✓ 0.069 - 0.072 ✓ 0.069 - 0.120 ?
2022 0.048 - 0.368 ✓ 0.109 1.000 0.004 ? 0.120 1.000 0.008 ✓

K = 30

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision
2014 0.060 - 0.478 ✓ 0.154 1.000 0.002 ? 0.154 1.000 0.002 ?
2015 0.127 1.000 0.006 ? 0.127 1.000 0.008 ? 0.127 1.000 0.016 ?
2016 0.104 1.000 0.008 ✓ 0.104 1.000 0.022 ? 0.161 1.000 0.002 ?
2017 0.093 1.000 0.030 ? 0.231 1.000 0.002 ? 0.231 1.000 0.002 ?
2018 0.046 - 0.816 ✓ 0.076 - 0.358 ✓ 0.107 - 0.096 ✓

2019 0.046 - 0.860 ✓ 0.076 - 0.322 ✓ 0.090 - 0.244 ✓

2020 0.224 - 0.004 ? 0.224 1.000 0.006 ? 0.224 0.100 0.006 ?
2021 0.069 - 0.092 ? 0.080 - 0.100 ✓ 0.112 1.000 0.010 ?
2022 0.112 1.000 0.014 ✓ 0.112 1.000 0.044 ? 0.112 - 0.066 ✓
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Table A.8: Governance Mean-Variance Efficiency Test Results: Gungor and Luger (2016) Test
This table presents results for three benchmark stock sets (K = 10, 20, 30) and test stocks (N = 10, 20, 30) from 2014
to 2022. Key metrics include the Fmax statistic, BMC p-value, LMC p-value, and final decision on mean-variance
efficiency. With α = 5%, the conservative MC p-value is reported if P̃C

M (Fmax(Y )) ≤ 5%, the liberal MC p-value
if P̃L

M (Fmax(Y )) > 5%, and both if inconclusive. The symbol "-" is used whenever the p-values are not reported.
Decisions are denoted by (✓) for "Do not reject," (✗) for "Reject," and (?) for "Inconclusive," based on p-values.

K = 10

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision

2014 0.021 - 0.840 ✓ 0.024 - 0.918 ✓ 0.034 - 0.828 ✓

2015 0.025 - 0.668 ✓ 0.030 - 0.830 ✓ 0.031 - 0.894 ✓

2016 0.033 - 0.254 ✓ 0.032 - 0.518 ✓ 0.032 - 0.894 ✓

2017 0.033 - 0.290 ✓ 0.033 - 0.488 ✓ 0.038 - 0.486 ?
2018 0.022 - 0.290 ✓ 0.037 - 0.348 ✓ 0.54 - 0.372 ✓

2019 0.011 - 0.992 ✓ 0.012 - 1.000 ✓ 0.019 - 1.00 ✓

2020 0.007 - 0.996 ✓ 0.016 - 0.998 ✓ 0.022 - 0.986 ✓

2021 0.013 - 0.938 ✓ 0.017 - 0.908 ✓ 0.019 - 0.982 ✓

2022 0.015 - 0.898 ✓ 0.028 - 0.524 ✓ 0.030 - 0.636 ✓

K = 20

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision
2014 0.036 - 0.584 ✓ 0.057 - 0.396 ✓ 0.057 - 0.484 ✓

2015 0.0240 - 0.732 ✓ 0.040 - 0.944 ✓ 0.040 - 0.976 ✓

2016 0.017 - 1.000 ✓ 0.019 - 1.000 ✓ 0.042 - 0.890 ✓

2017 0.018 - 0.978 ✓ 0.022 - 1.000 ✓ 0.033 - 0.990 ✓

2018 0.044 - 0.316 ✓ 0.044 - 0.586 ✓ 0.044 - 0.818 ✓

2019 0.017 - 0.992 ✓ 0.042 - 0.730 ✓ 0.042 - 0.876 ✓

2020 0.014 - 0.998 ✓ 0.022 - 1.000 ✓ 0.023 - 1.000 ✓

2021 0.043 - 0.098 ✓ 0.043 - 0.278 ✓ 0.043 - 0.464 ✓

2022 0.017 - 0.910 ✓ 0.017 - 1.000 ✓ 0.023 - 1.000 ✓

K = 30

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision
2014 0.059 - 0.862 ✓ 0.059 - 0.946 ✓ 0.059 - 0.958 ✓

2015 0.114 - 0.730 ✓ 0.138 - 0.668 ✓ 0.138 - 0.708 ✓

2016 0.043 - 0.996 ✓ 0.057 - 0.994 ✓ 0.057 - 0.996 ✓

2017 0.058 - 0.572 ✓ 0.061 - 0.780 ✓ 0.068 - 0.732 ✓

2018 0.035 - 0.992 ✓ 0.051 - 0.990 ✓ 0.055 - 0.998 ✓

2019 0.050 - 0.976 ✓ 0.053 - 0.994 ✓ 0.060 - 0.996 ✓

2020 0.026 - 1.000 ✓ 0.076 - 0.408 ✓ 0.076 - 0.514 ✓

2021 0.015 - 0.998 ✓ 0.037 - 0.862 ✓ 0.042 - 0.922 ✓

2022 0.023 - 0.998 ✓ 0.036 - 0.980 ✓ 0.036 - 0.998 ✓
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Table A.9: Governance Mean-Variance Spanning Test Results: Gungor and Luger (2016) Test
This table presents results for three benchmark stock sets (K = 10, 20, 30) and test stocks (N = 10, 20, 30) from 2014
to 2022. Key metrics include the Fmax statistic, BMC p-value, LMC p-value, and final decision on mean-variance
efficiency. With α = 5%, the conservative MC p-value is reported if P̃C

M (Fmax(Y )) ≤ 5%, the liberal MC p-value
if P̃L

M (Fmax(Y )) > 5%, and both if inconclusive. The symbol "-" is used whenever the p-values are not reported.
Decisions are denoted by (✓) for "Do not reject," (✗) for "Reject," and (?) for "Inconclusive," based on p-values.

K = 10

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision

2014 0.074 1.000 0.038 ? 0.074 - 0.080 ✓ 0.114 1.000 0.008 ?
2015 0.131 1.000 0.002 ? 0.142 1.000 0.002 ? 0.233 1.000 0.002 ?
2016 0.110 1.000 0.002 ? 0.117 1.000 0.002 ? 0.117 1.000 0.002 ?
2017 0.095 1.000 0.002 ? 0.097 1.000 0.004 ? 0.097 1.000 0.012 ?
2018 0.083 1.000 0.083 ? 0.101 1.000 0.008 ? 0.018 1.000 0.018 ?
2019 0.075 1.000 0.075 ? 0.075 1.000 0.050 ? 0.075 - 0.074 ?
2020 0.092 1.000 0.034 ? 0.132 1.000 0.014 ? 0.192 0.916 0.006 ?
2021 0.085 1.000 0.002 ? 0.085 - 0.004 ? 0.106 1.000 0.002 ?
2022 0.084 1.000 0.010 ? 0.101 - 0.002 ? 0.229 0.046 - ✗

K = 20

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision
2014 0.041 - 0.934 ✓ 0.085 - 0.258 ✓ 0.085 - 0.340 ✓

2015 0.076 0.252 0.026 ? 0.188 0.002 0.048 ? 0.188 1.000 0.002 ?
2016 0.121 1.000 0.121 ? 0.121 1.000 0.018 ? 0.121 1.000 0.002 ?
2017 0.039 - 0.844 ✓ 0.067 - 0.506 ✓ 0.067 - 0.716 ✓

2018 0.094 1.000 0.050 ? 0.094 - 0.104 ✓ 0.201 1.000 0.002 ?
2019 0.055 - 0.055 ✓ 0.133 1.000 0.002 ? 0.198 1.000 0.004 ?
2020 0.097 0.038 0.004 ? 0.285 1.000 0.002 ? 0.285 1.000 0.002 ?
2021 0.074 1.000 0.012 ? 0.074 - 0.052 ✓ 0.083 - 0.060 ✓

2022 0.038 - 0.636 ✓ 0.145 1.000 0.002 ? 0.145 1.000 0.002 ?

K = 30

Year N = 10 N = 20 N = 30

Fmax BMC LMC Decision Fmax BMC LMC Decision Fmax BMC LMC Decision
2014 0.111 - 0.338 ✓ 0.111 - 0.562 ✓ 0.111 - 0.622 ✓

2015 0.211 - 0.382 ✓ 0.211 - 0.554 ✓ 0.211 - 0.590 ✓

2016 0.109 - 0.920 ✓ 0.109 - 0.890 ✓ 0.109 - 0.920 ✓

2017 0.091 - 0.414 ✓ 0.107 - 0.414 ✓ 0.127 - 0.222 ✓

2018 0.101 - 0.442 ✓ 0.142 - 0.180 ✓ 0.210 1.000 0.01 ?
2019 0.189 1.000 0.020 ? 0.189 1.000 0.040 ? 0.189 - 0.068 ✓

2020 0.143 1.000 0.024 ? 0.368 1.000 0.002 ? 0.368 0.106 0.002 ?
2021 0.092 1.000 0.036 ? 0.099 - 0.066 ✓ 0.942 0.218 0.002 ?
2022 0.138 - 0.008 ✓ 0.138 1.000 0.014 ? 0.138 1.000 0.018 ?
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