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Abstract

Credit stress testing has become an important risk management practice in the financial

industry and is required for financial institutions by the regulator. It plays a crucial role in

monitoring a portfolio’s resilience against severe macroeconomic shocks. The challenges

in constructing a model for these stress tests lie in the quantitative representation of the

credit risk that is related to the macroeconomic variables as well as the model accuracy

in times of stressed economic conditions. I have chosen a one-parameter model based on

rating transitions to represent the systematic credit risk. To estimate this credit risk using

macroeconomic variables, I will present a machine learning model, taking into account

a broad range of macroeconomic variables, that is able to explore non-linearities. Addi-

tionally, I have implemented a covariate shift adaptation, to further increase the model

accuracy for times of economic stress. It will be shown that the model accuracy increases

by roughly 50% with the machine learning model compared to a linear benchmark model.

Keywords

Credit Risk, Risk Management, Stress Testing, Z-Factor, Machine Learning, SVR, Co-

variate Shift, Lasso Regression

i





Résumé

Les tests de résistance du risque de crédit sont devenus une pratique importante de ges-

tion des risques dans le secteur financier et sont exigés des institutions financières par le

régulateur. Ils jouent un rôle crucial dans le suivi de la résilience d’un portefeuille face

aux chocs macroéconomiques sévères. Les défis de la construction d’un modèle pour ces

tests de résistance résident dans la représentation quantitative du risque de crédit liée aux

variables macroéconomiques ainsi que dans la précision du modèle en périodes de con-

ditions économiques difficiles. J’ai choisi un modèle à un facteur basé sur des transitions

de notations pour représenter le risque de crédit systématique. Pour estimer ce risque de

crédit à l’aide de variables macroéconomiques, je présente un modèle d’apprentissage au-

tomatique, prenant en compte un large éventail de variables macroéconomiques, capables

d’explorer les non-linéarités. De plus, j’ai implémenté une adaptation de décalage de co-

variables, pour augmenter encore plus la précision du modèle pour les périodes de stress

économique. Il est démontré que la précision du modèle augmente d’environ 50% avec le

modèle d’apprentissage automatique par rapport à un modèle de référence linéaire.

Mots-clés

Risque de crédit, gestion des risques, tests de résistance, facteur Z, apprentissage automa-

tique, SVR, changement de covariable, régression par lasso
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Introduction

The importance of stress testing has increased dramatically ever since the Great Financial

Crisis and is an important pillar of the regulatory framework for financials institutions

today. In the US, this is known as Comprehensive Capital Analysis and Review (CCAR)

which is required for bank holding corporations since the 2010 Dodd-Frank-Act and over-

seen by the Fed. These stress test play an important role in assessing the sufficiency of

banks’ capital requirement when facing severe economic shocks. The stress tests are ap-

plied to all of a bank’s holdings, including corporate credit portfolios which I will focus

on.

The main challenge in creating a stress testing model arises in accurately linking the

macroeconomic environment to the creditworthiness of the corporate credit portfolio.

To quantify the systematic credit risk, I will implement the framework of Belkin et al.

(1998b) which relies on a conditional transition matrix approach. The transition matrices

are constructed with corporate credit rating data. I will use the internal rating data for a

corporate credit portfolio of an international financial institution. Based on this portfo-

lio, with a 10-year history of quarterly ratings, an indicator for systematic credit risk can

be obtained. This so-called Z-Factor can then be linked to the macroeconomic environ-

ment as in Bangia et al. (2002). However, it is quite challenging to precisely model this

relationship.

Traditionally, the systematic credit risk is estimated with a linear regression and classi-

cal macroeconomic variables such as GDP growth, unemployment rate and interest rates.

In this master thesis, I will apply a machine learning model for the estimation of the Z-



Factor and extend the macroeconomic variable candidates. The use of a machine learning

model aims to explore non-linearities in the relationship between the systematic credit risk

and the macroeconomic environment. The extended scope of macroeconomic variables

intends to improve the accuracy when modeling this relationship, by providing informa-

tion not previously considered. Further, I will introduce the concept of covariate shift, to

improve the model accuracy for periods of adverse economic conditions. A model with

covariate shift adaptation can take into account a different distribution of the independent

variables for new observations. This is clearly of particular interest when applying a stress

scenario. The results of this approach will be compared to a linear Lasso regression. The

Lasso regression has previously been successfully applied in the context of credit stress

testing as Chan-Lau (2017) shows.

The remainder of the thesis is organized as follows. The next chapter provides an

overview of the existing literature regarding credit stress testing and machine learning

application in this field. Chapter 2 describes the economic and rating data that is used in

the thesis. In chapter 3 the model and methodology are presented. Chapter 4 reports the

empirical results of the various models applied to the data. In Chapter 5 these results are

discussed and interpreted, followed by a brief conclusion and future research topics.
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Chapter 1

Literature Review

Credit stress testing models allow financial institutions to simulate economic events and

evaluate their impact on their credit portfolio. Since the Great Financial Crisis, the ma-

jority of central banks, including the Fed, have regulatory requirements for stress testing

of financial institutions. Stress testing of corporate credit portfolios is also included in

the Basel III framework. Therefore, the models used for those stress tests have become

more important and have drawn researchers’ interests as well. Two model types exist

that allow the analysis of credit risk for the stress testing purpose. One is a reduced form

model where a credit event is triggered by an exogenous macroeconomic shock, the other

is a structural model that is based on firm specific metrics. A commonly used reduced

form model for the credit stress testing methodology in financial institutions is the one-

parameter model. This model quantifies a portfolio’s systematic credit risk in a single

number, based on the credit migrations. It is founded on the framework developed by

Vasicek (1987) who demonstrated that the credit risk of a firm’s debt can be split into an

idiosyncratic and a systematic component.

z = bx+a∑εi (1.1)

Equation 1.1 from Vasicek (1987) displays this decomposition with x as the systematic

component and εi as the idiosyncratic component. This framework is based on Merton

(1974) who describes the underlying asset value as a geometric Brownian motion over



time which leads to the debt holders actually holding a put option on the firm’s value.

Belkin et al. (1998b) adopt this framework to extract a single synthetic credit indicator

from credit rating transitions by decomposing the change of creditworthiness, X, in the

same two components as Vasicek (1987).

X =
√

1−ρY +
√

ρZ (1.2)

With Y representing the idiosyncratic component, Z representing the systematic com-

ponent and ρ as the correlation coefficient between Z and X, as seen in equation 1.2.

This is founded on the assumption that the credit risk has a standard normal distribution,

which implies the the systematic credit risk, Z-Factor, and the idiosyncratic credit risk

are standard normal distributed as well. As Bandt et al. (2013) point out, this assump-

tion is appropriate and can be relaxed for the Z-Factor. Based on this framework, Belkin

et al. (1998b) determine the systematic credit risk component as the distance between

the long-term average transition matrix and the transition matrix at any point in time. The

long-term average transition matrix is the so called through-the-cycle matrix. For this ma-

trix, the continuous time duration method is to be preferred over the discrete-time cohort

method as Schuermann and Hanson (2004) show. They conclude that the cohort method

can be inaccurate and produce inefficiencies, both in statistical and economic terms. This

is caused by two characteristics of credit rating data, observed over a limited period. It is

unknown what happened to firms before or after the observed period. This is unaccounted

for in the cohort method. Further, the duration method attributes positive but small prob-

abilities to all transitions even when no such transition is observed, whereas the cohort

method would assign a zero probability to those transitions. This is important as credit

rating data often lacks observed transitions, especially, form high ratings to low ratings or

default, but it is safe to say those probabilities are not zero in reality. The duration method

is based on a Markov process which assumes time-homogeneity. This is not necessarily

given, specifically with downgrade movements as Lando and Skødeberg (2002) point out.

Schuermann and Hanson (2004), however, prove that the impact between a parametric

4



duration method, assuming time homogeneity, and a non-parametric approach, relaxing

the time homogeneity assumption, is marginal.

When constructing rating transition matrices, it is important to account for the dif-

ferent characteristics of the obligors, to obtain stable rating transition probabilities, as

Nickell et al. (2000) demonstrate. Credit rating distributions vary across obligor origin

and industry. They find significant variations between financial and industrial obligors

as well as between US and non-US entities. These results are confirmed by Kadam and

Lenk (2008) who find significant differences for the transition matrices between the finan-

cial, industrial and utility sector. Therefore, the portfolio of obligors in this work consists

only of US entities and only industrial obligors are considered, with financial and energy

obligors filtered out.

Once a systematic credit risk indicator, the Z-Factor, is obtained from the transition

matrices, utilizing the framework of Belkin et al. (1998b), the construction of the ac-

tual stress testing model becomes the focus. The challenge here is accurately linking the

systematic credit risk to the macroeconomic environment. Figlewski et al. (2012) use a

reduced-form Cox hazard model, to estimate rating transition intensities. They find that

macroeconomic variables are highly significant in the estimation and their incorporation

leads to an increase in the explanatory power. They employ a total of 14 macroeconomic

variables, grouped in three categories: general macroeconomic conditions, direction of

the economy and financial market conditions. In order to reduce the number of variables

and only select the most important ones for their final model, they apply backward se-

lection as a feature selection method. Further, they emphasize the importance of lags,

as these economic variables mostly don’t have an instantaneous impact on the credit rat-

ing transitions. To avoid a further expansion of the number of variables, Figlewski et al.

(2012) implement a lag structure. They discover that the general macroeconomic condi-

tions, such as unemployment rate, NBER recession indicator and inflation, have a much

smaller impact on the rating transitions than the other categories. This is not an adequate

model to conduct credit stress testing but proves the existence of a relationship between

macroeconomic conditions and credit rating transitions.

5



An early application of the Z-Factor in a credit stress test can be found in the work

of Bangia et al. (2002). They only use the NBER recession indicator as a representa-

tion of the macroeconomic conditions and introduce a regime switching mechanism to

decide between expansion and recession transition matrices. Using a Monte Carlo simu-

lation, they achieve a high in-sample accuracy for the default rate and rating distribution.

Bandt et al. (2013) expand the range of macroeconomic variables considered and present

a model for credit stress testing, applying an OLS regression approach for the model con-

struction. They use the variables GDP growth, unemployment rate, inflation and a 10-year

over 3-month yield spread as well as an autoregressive component. However, they do not

directly estimate the Z-Factor but use the S&P corporate annual default rate as an inter-

mediary between macroeconomic variables and Z-Factor. This is an unnecessary step and

only distorts an already approximated indicator, so I will directly estimate the Z-Factor.

GDP growth and inflation are statistically significant in all their models, whereas the un-

employment rate and yield spread don’t show significance. This confirms the results of

Figlewski et al. (2012) in terms of the unemployment rate being insignificant. However,

Figlewski et al. (2012) find inflation to be insignificant and yield spread significant but

they also use a lot more covariates which can explain these different findings. It is inter-

esting to observe that the autoregressive component is significant and models that leave

it out display low Durbin-Watson statistics which is evidence for autocorrelation in the

error term. This suggests credit rating transitions display autoregressive behavior.

Machine learning has become increasingly more popular in recent years and its use

has expended to the field of risk management as well. Leo et al. (2019) presents a very

good overview of the existing applications that include all aspects of risk management

and often offer an improvement over traditional methods. Prominent applications of ma-

chine learning in risk management feature credit scoring and predicting the probability of

default. Machine learning has been successfully applied to classify corporate credit rating

as in Lee (2007) or Huang et al. (2004). One of the advantages machine learning presents,

is the ability to explore the non-linear relationships that are common in credit risk. The

support vector machine algorithm is proven to be very successful in determining credit
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risk. Lee (2007) shows that a support vector machine achieves the highest accuracy in

predicting credit ratings and is achieving this, despite a relatively small dataset to train

the model. Hajek and Michalak (2013) apply a variety of machine learning models to

the same classification problem. They try an extensive list of firm specific explanatory

variables for the credit scoring and highlight the importance of feature selection prior to

the classification problem, as it is shown to improve the model accuracy. The prediction

of credit ratings, however, is a classification problem and not a regression problem, like

the Z-Factor estimation. Yao et al. (2015) use a support vector regression to estimate the

loss given default with accounting and macroeconomic variables. The macroeconomic

variables include GDP, unemployment rate, S&P 500 return and treasury bill rate. They

find the support vector regression to be more accurate than a linear regression, fractional

response regression and a two-stage method. This demonstrates that the relationship be-

tween credit risk and economic factors can be described with high accuracy using support

vector machines. In Jacobs Jr (2018) a machine learning model is applied to the credit

stress testing methodology and shows an improvement over a traditional VAR model in

terms of model performance due to its ability to reflect non-linearities. Jacobs Jr (2018)

uses the macroeconomic variables, proposed by the Fed stress testing framework, with a

74 quarter history. The variables are transformed, and only stationary ones are considered.

Further, variable coefficients have to match their economically intuitive sign. The stress

test is applied to three different portfolios: Commercial real estate, consumer credit and

commercial & industrial. The later most closely resembles the corporate portfolio used in

this thesis. The target variables in this model is the credit loss rate and not a systematic

credit risk indicator. The best model for the commercial & industrial portfolio consists of

the variables real GDP growth and BBB spread.

As mentioned in Leo et al. (2019), Lasso regressions present a good modeling ap-

proach to obtain sparse and approximately unbiased results for the relationship between

macroeconomic variables and credit losses. Chan-Lau (2017) presents the application of

a Lasso regression to a credit stress testing framework where the probability of default is

predicted. The dataset consists of median probabilities of default for ten industrial sectors
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in an advanced emerging market economy. The estimations are done separately for each

of the sectors, using 13 macroeconomic variables. The variables including exchange rates,

interest rates, GDP growth and unemployment rate. The data is on a quarterly bases and

includes 96 observations with up to four lags included for each variable. The advantage

of the Lasso regression over OLS is the ability to handle high dimensional datasets. The

work by Chan-Lau (2017) shows that a Lasso model is adequate as a benchmark model.

8



Chapter 2

Data

This chapter will describe the data that has been used in this thesis. Two different datasets

were required: Credit rating data from a portfolio of corporate bonds to calculate the

Z-Factor and macroeconomic data to build a model for the estimation of that Z-Factor.

2.1 Credit Rating Data

The credit rating data was obtained from the corporate bond portfolio of a large interna-

tional financial institution. The portfolio solely includes U.S. entities. In the scope of this

thesis, only the corporate segment of the portfolio is considered which excludes financial

institutions, and oil and gas companies. The dataset consists of 6035 obligors which are

rated on a monthly basis. When analyzing rating transitions, it is common to analyze

these over smaller frequencies than monthly. This is due to the fact that rating changes

tend to happen gradually, as ratings are commonly reviewed yearly and therefore most

studies of rating transitions look at these transitions on a quarterly or yearly basis. For

the majority of this thesis, I will consider ratings on a quarterly basis, but I will test the

model performance with monthly frequency. The observed ratings range from October

2007 until June 2020 which leads to 51 quarters or 153 months of observations. For the

quarterly ratings, the last monthly rating of each quarter is taken. This leads to 52,866

quarterly ratings and 131,725 monthly ratings.



External Ratings Internal Ratings
Moody’s S&P Rating Rating Bucket

Aaa AAA 1 1
Aa1 AA+ 2+

2Aa2 AA 2
Aa3 AA- 2-
A1 A+ 3+

3A2 A 3
A3 A- 3-

Baa1 BBB+ 4+
4Baa2 BBB 4

Baa3 BBB- 4-
Ba1 BB+ 5+

5Ba2 BB 5
Ba3 BB- 5-
B1 B+ 6+

6B2 B 6
B3 b- 6-

Caa1 CCC+ 7+
7Caa2 CCC 7

Caa3 CCC- 7-
Default Default 8

8Default Default 9
Default Default 10

Table 2.1: Rating Overview

In the process of preparing the data it became apparent that some obligors have a gap

in their rating history of 1 or 2 month, caused by ratings not being updated in time. To

create a more complete dataset, these ratings were filled according to the more conser-

vative out of the rating before and after the gap. This leads to 4,008 quarterly and 8,212

monthly ratings getting filled. Ratings in the data range from 1-20 with 1 being the best

rating. These correspond to the typical rating agency ratings as shown in Table 2.1. To

reduce noise and increase the number of observations per rating, the ratings are grouped

into 8 buckets. The buckets are formed with the 3 ratings that correspond to one letter of

the typical agency rating scale. The 8th bucket is the default bucket and contains compa-

nies that have defaulted. A default is defined as a counterparty that under International

Financial Reporting Standards (IFRS) accounting standards is determined impaired. The
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Figure 2.1: Rating per Quarter

development of the quarterly ratings over time can be observed in Figure 2.1.

2.1.1 Sectors

The corporate segment of companies can further be divided into more granular sections.

An overview of the sections can be found in Table 2.2. Since the number of obligors

are small and to reduce the number of sections, some sections are combined into one

for the purpose of this work. The sections particular services and business services are

combined to a service section, the construction and real estate sections are coupled to form

a housing section and finally the auto industry and multi activity group sections form a

miscellaneous section.

2.2 Economic Data

Since the Z-Factor is a systematic factor it can be estimated using macroeconomic vari-

ables as pointed out by Bangia et al. (2002). Typically only a few classical macroeco-

nomic variables are considered for the estimation of the Z-Factor in other research. The

Fed proposes a variety of variables in the CCAR framework which I will use as a ba-

sis. However, I will extend the range of macroeconomic variables and indicators further,
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Section Obligors

Agriculture 376

Consumption Goods 326

Capital Goods 589

Intermediate Goods 639

Utilities 486

Commerce 1035

Transportation 402

Media & Telecommunications 264

Real Estate 499

Services 1262

Miscellaneous 310

Table 2.2: Section Overview

specifically to credit related ones. Since the portfolio only concerns U.S. entities, all vari-

ables are specific to the U.S. Not all data is available on a monthly basis and therefore the

monthly estimation will be based on a smaller set of variables.

2.2.1 Economic Fundamentals

Income is a standard economic variable and offers a broad indicator of the state of the

economy which affects credit quality. The real and nominal GDP growth rate as well as

the real disposable income growth rate in the U.S. are considered as a proxy for income.

This data is officially published on a quarterly basis but IHS Markit provides monthly

nominal and real GDP calculations that resemble the official ones. The IHS Markit data

is used for the monthly and quarterly estimation to avoid differences due to different

sources. The real disposable income growth is sourced from the FRED database and only

available on a quarterly basis.

To consider the labor market effects on the economy and the consequences this has on

credit quality, the unemployment rate, initial jobless claims and continuous jobless claims
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are sourced from the FRED database. The seasonally adjusted series are chosen for all

three variables. While the unemployment rate is published on a monthly basis, the jobless

claims statistics are weekly, and the average is taken to obtain the monthly or quarterly

value, respectively.

To account for the effect, the real estate sector can have on the economy and credit

quality, a commercial real estate and housing price index are taken into consideration.

The commercial real estate price index from the FRED database is selected as well as the

house price index published by the federal housing finance agency. The commercial real

estate price index is only available on a quarterly basis.

Another economic variable considered is the U.S. export goods volume from the di-

rection of trade statistic, published monthly by the IMF.

2.2.2 Financial Market Data

Financial market data such as stock price indices can be good indicators for the economy

and interest rates impact credit quality through their pricing power on debt. Two stock

market indices are utilized here: The Dow Jones total stock market index from the FRED

database and the S&P 500 industrial index where the last price for the respected month or

quarter is observed.

Four interest rates are considered and used to calculate: The BBB corporate bond

spread over the 10-year US treasury yield, the 10-year US treasury yield over the 3-month

US T-bill and the 5-year US treasury over the 3-month US T-bill. This is done using the

monthly and quarterly average rates, respectively. All rates are constant maturity rates.

The market volatility index (VIX) is also considered as it indicates periods of stress

in financial markets which coincide with periods of stressed credit conditions. The US

dollar index is used to represent the impact of US dollar weakness or strength. Finally,

the WTI Crude Oil Price is applied as a proxy for commodity prices.
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2.2.3 Government Data

The recent decades have seen financial markets and the economy being increasingly af-

fected by government intervention through fiscal spending or central bank policy. To

capture this effect, fiscal and federal reserve balance sheet data is considered. The US

treasury general account at the federal reserve which indicates future fiscal spending is

used to capture government spending.

The impact of federal reserve policy is difficult to quantify, as often the announce-

ment of policies and the forward guidance have a bigger effect, for example on yields,

than the programs themselves. For this reason, several different positions on the central

bank balance sheet are tested as variables. The treasury securities and mortgage backed

securities that the federal reserve purchased on the secondary market are each used as an

input variable. These two holdings combine for the total securities held by the federal re-

serve which is also used as a variable. Repos with commercial banks which occur mostly

in times of financial distress for banks are considered. Additionally, liquidity swaps with

other central banks, which also occur mostly in times of financial distress, are used as a

variable. Loans given out by the federal reserve directly to companies are also consid-

ered. Finally, the total assets on the balance sheet are taken as a variable. Further, the M2

money supply and M2 velocity are considered as measures that capture fiscal and central

bank spending. M2 velocity is only published quarterly.

2.2.4 Corporate Balance Sheet Data

To incorporate in detail the profitability of companies and with that their ability to repay

their debt, the profit of all corporations and more specific non-financial corporations is

obtained form the National Income and Product Account (NIPA). Additionally, the debt

burden is measured using the debt service ratio of non-financial corporations, the private

non-financial sector and households, and NPISH from the bank of international settlement

(BIS). All of this data is only available quarterly.
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2.2.5 Survey Data

Surveys can often be used as good leading indicators compared to GDP which is a lagging

variable, as it is only calculated and published after the fact. A popular survey is the

Institute for Supply Management’s purchasing manager index (PMI). In this work, the

manufacturing and services PMIs are considered. Further, the federal reserve publishes

a senior loan officer survey among bankers. From this survey, the lending tightening

standards for commercial and industrial loans to large and middle market firms, and for

consumer loans and credit cards are used as indicators for tighter credit conditions. These

two lending tightening surveys are only available quarterly.

An overview of all the variables with their expected coefficient in the Z-Factor esti-

mation, based on economic theory, can be found in Table 2.3.
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Variable Quarterly Monthly Format
Expected

Coefficient
Real GDP Growth X X rate +

Nominal GDP Growth X X rate +
Real Disposable Income Growth X X rate +

Unemployment Rate X X rate -
Continuous Jobless Claims X X level -

Initial Jobless Claims X X level -
Commercial Real Estate Price Index X x level +

House Price Index X X level +
US Export Volume Goods X X level +

Recession Dummy X X binary -
Dow Jones Total Stock Market Index X X level +

S&P Industrial X X level +
BBB Spread X X rate -

10 year - 3 month Spread X X rate -
5 year - 3 month Spread X X rate -

VIX X X level -
WTI Oil Price X X level -

M2 X X level -
M2 Velocity X X level +

Treasury Securities X X level -
MBS X X level -

Total Securities X X level -
Repos X X level -

Liquidity Swaps with other central bank X X level -
Loans X X level -

Total Assets X X level -
US Treasury General Account X X level -

US Dollar Index X X level -
NIPA Profitability X x level +

NIPA non-financial Profitability X x level +
DSR (non-financial Corporate) X x level -

DSR (PNFS) X x level -
DSR (PNFS, Households &NPISH X x level -

ISM Manufacturing PMI X X level +
ISM Services PMI X X level +

DBTS for Commercial and Industrial Loans X x level -
DBTS on Consumer Loans and Credit Cards X x level -

Table 2.3: Variable Overview

16



Chapter 3

Methodology

This chapter will present the methodology applied to calculate the Z-Factor from the port-

folio of corporate bonds and then use these to build a model that accurately predict future

Z-Factors. The calculation of the Z-Factor is based on the methodology, presented by Va-

sicek (1987), which represents a simple one-parameter model to describe the credit risk

of a portfolio. It is based on the Merton (1974) framework, with the Z-Factor as a proxy

for the change in the underlying asset value. Vasicek (1987) defines the portfolio default

rate as a function of the correlation of asset values, the single firm default probability

and a systematic risk factor. This framework is widely used today in banks’ economic

capital models, credit stress testing models and the Basel framework for Advanced In-

ternal Rating-Based (AIRB) regulatory credit risk capital. In the one-parameter model,

the continuous normally distributed credit indicator X , can be split into an idiosyncratic

component, Y , and a systematic component, Z, as shown by Belkin et al. (1998b) These

components form X using the correlation coefficient, ρ , between Z and X :

X =
√

1−ρY +
√

ρZ (3.1)

Belkin et al. (1998b) then go on to define the Z-Factor as the deviation in the transition of

ratings from a long-term historical average transition of ratings.



3.1 Z-Factor calculation

Since the Z-Factor represents the deviation of rating transitions from a historical average

of rating transitions, it is necessary to calculate a historical transition matrix and matrices

for every quarterly observation of ratings. In this work, I will construct a Trough-The-

Cycle (TTC) transition matrix as the historical average, and I will construct Point-In-Time

(PIT) transition matrices for every observation date. By calculating the deviation between

the respective PIT matrix and the TTC matrix at every observation, the Z-Factors will be

obtained. There are two common methods to construct transition matrices: the cohort

method and the duration method. The transition probabilities in the cohort method are

obtained, by observing the changes of ratings in each bucket from one period to another.

For the duration method, the rating changes are compared to the time an obligor remains

in a certain rating bucket.

3.1.1 Through-The-Cycle transition matrix

The TTC matrix represents the average transition matrix over the observed time frame.

It is generated using the duration method. The duration method is chosen here because

unlike the cohort method it gives small but non-zero probabilities to transitions, even if

there are no observations for such a transition. In a risk context, it is important to capture

even such rare events that are not represented in the data but can possible be realized. For

the duration method, the rating changes over the whole timeframe are counted and then

divided by the amount of time spent in each rating state, to obtain a matrix of transition

intensities. This matrix is also called the generator matrix and is assumed to be time

homogenous. With this assumption, the generator matrix can be assumed to follow a

Markov process. Given that the generator matrix follows a Markov process, the following

formula proposed by Lando and Skødeberg (2002) can be used to calculate the transition

matrix, P(t), using the generator matrix by applying the matrix exponential function:

P(t) = P(0, t) = exp(Λt) =
∞

∑
k=0

Λktk

k!
= I + tΛ+

(tΛ)2

2!
+ ... (3.2)
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Figure 3.1: Graphical presentation of the Z-Factor as in Belkin et al. (1998b)

In equation 3.2, Λ is the generator matrix, t is the timeframe and k is the rating bucket.

Table 3.1 shows the obtained TTC matrix.

3.1.2 Point-In-Time Transition Matrices

The PITs are calculated between every two consecutive observation dates. Consequently,

there is one transition per obligor and therefore, the time component captured in the du-

ration method can be disregarded here. It is therefore logical, to apply the cohort method.

The transition probabilities with the cohort method are computed as the number of ratings

per bucket at the end of the period as a share of the total number of ratings in the bucket at

the start of the period. This leads to the probabilities in each row in the transition matrix

adding up to 100%.
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3.1.3 Z-Factor Extraction

Having calculated the TTC and PITs, the Z-Factor can be calculated as the deviation in the

rating distribution between the PIT and TTC at every observation as visualized in Figure

3.1. First, bins are defined for each rating transition according to the normal distribution.

The borders of the bins are defined as the difference between the Z-scores of the normal

distribution of the end-of-period and initial transition probabilities:

P(G,g) = Φ(REop)−Φ(Rinit) (3.3)

This leads to the bins for the TTC matrix shown in Table 3.2.

These rating transitions still represent the X , the credit indicator. In the next step, the

decomposition of this indicator into the systematic (Z) and idiosyncratic component(Y )

takes place.

X =
√

1−ρY +
√

ρ ∗Z (3.4)

Since the portfolio consists of a large number of obligors, the idiosyncratic component

(Y) can be assumed to be eliminated through diversification as Belkin et al. (1998a) argue

and thus, Z is a sufficient estimate to determine X . Now, a value for Z can be found, so

that the borders of the bins are best approximating the transition probabilities of every

PIT. To determine the difference, the fitted transition probabilities need to be calculated

first. They are defined as follows:

∆(REop,Rinit ,Zt) = Φ(
REop−√ρZt√

1−ρ
)−Φ(

Rinit−√ρZt√
1−ρ

) (3.5)

For every Z, the difference between the long-term TTC and the fitted PIT transition

probabilities is minimized with a negative maximum likelihood estimation instead of the

weighted mean squared difference as Belkin et al. (1998b) use:

L(ρ,Z1, ...,ZT ) =
7

∏
i=1

8

∏
j=1

T

∏
t=1

(MZt ,ρ
i, j )ni, j,t (3.6)

where ni, j,t represents the number of observed migrations from rating i to rating j between

t and t +1.
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The negative Maximum Likelihood Estimator is chosen here because it penalizes pre-

diction errors in accordance to the likelihood with which they appear. Though it does

not necessarily minimize the error on a cell level, like a squared difference, the squared

difference does not minimize on an overall level. Further, a numerical process for differ-

ent correlations, ρ , between 0 and 0.3 is tested in 0.001 increments, to find the optimal

Z-Factors series as ρ can not be known before a Z-Factor series is calculated. The range

for ρ is chosen to reduce the computational power required. Should the optimal ρ be

at the upper bound of 0.3, the range is extended. Since the Z-Factor is assumed to have

a unit variance, only the possible Z-Factor series with a variance between 0.95 and 1.1

are considered before the Z-Factor with the highest likelihood estimation is chosen. To

include this constraint, the limited-memory BFGS optimization is applied. The resulting

optimal Z-Factor series is presented in Figure 3.2 and it can be seen that it corresponds

with the evolution of ratings shown in Figure 2.1.

Figure 3.2: Z-Factor time series
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3.2 Variable Pre-Selection

The large number of variables considered requires a pre-selection of variables before the

final variables can be selected using the respective model. Further, a number of transfor-

mations and lags are performed for each variable which increases the number of variables

and makes a pre-selection even more important. The selection is done based on criteria

such as stationarity and single factor analysis (SFA), similar to Jacobs Jr (2018).

3.2.1 Transformation of Variables

In order to obtain stationary variables, several transformations are applied. For each level

variable, the quarterly and yearly difference is computed and for all rate variables, the

quarterly and yearly growth is computed. Consequently, for each variable two additional

transformations now exist. Due to the fact that some of the macroeconomic variables

don’t have a contemporaneous relationship with credit risk, as Figlewski et al. (2012)

point out, four lags are included for each variable, ranging from one to four quarters. This

leads to 14 transformations per variable as seen in Table 3.3.

BBB Spread Lag 3m BBB Spread Quarterly Difference BBB Spread Yearly Difference
BBB Spread Lag 6m BBB Spread QD Lag 3m BBB Spread YD 3m
BBB Spread Lag 9m BBB Spread QD Lag 6m BBB Spread YD 6m
BBB Spread Lag 12m BBB Spread QD Lag 9m BBB Spread YD 9m

BBB Spread QD Lag 12m BBB Spread YD 12m

Table 3.3: Transformations of the variable ‘BBB Spread’:

3.2.2 Stationarity Selection

Stationarity can be tested using multiple statistical tests. In the scope of this thesis, three

tests were considered: The Phillips-Perron (PP) test, the Augmented Dickey-Fuller (ADF)

test and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test. The ADF test is part of the

unit root tests, designed to test for stationarity. It tests the presence of a unit root, which is

the null hypothesis and concludes a series is non-stationary if the null hypothesis cannot
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be rejected. To reject the null hypothesis the p-value must be below 0.1. The PP test also

belongs to the group of unit root tests. The null hypothesis of the test assumes the presence

of a unit root and therefore needs to be rejected for the series to be stationary. The PP

test is non-parametric and thus does not require a level of serial correlation as the ADF

test does. It is similar to the ADF test though, as it is also based on the Dickey-Fuller test

but corrects for autocorrelation and heteroskedasticity. The critical p-value to reject the

null hypothesis is also 0.1. The KPSS test differs from the PP test and ADF test because

it tests for trend stationarity and not level stationarity. It is based on a linear regression

and examines whether a time series is stationary around a mean or a deterministic trend.

Similar to the ADF and PP tests, the KPSS test is testing for the presence of a unit root but

opposite to the ADF test, the alternative hypothesis represents the presence of a unit root,

so that the null hypothesis must not be rejected for stationarity. The critical p-vale is once

again 0.1. For each variable transformation, the three stationarity tests are performed. The

variables that pass at least two tests are considered as stationary while the other ones are

considered non-stationary and discarded.

3.2.3 Single Factor Analysis

For the single factor analysis, only the stationary variables are considered. The goal of

the single factor analysis is to determine the direction of the relationship between each

explanatory variable and the independent variable, the Z-Factor, and compare it with the

expected direction between the two. The expected direction of the relationship is based

on common economic understanding. To determine the relationship between a variable

and the Z-Factor, a simple linear regression is used. If the coefficient is statistically sig-

nificant with a p-value below 0.05, its sign is compared with the expected direction of the

relationship. Only variables where the sign of the coefficient match the expected direc-

tion are further considered. This step ensures that only variables are considered where the

relationship can be explained by economic theory.
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3.2.4 Selection of Transformation of Variable

At this point, it would be possible to estimate a model using the stationary and econom-

ically sound variables. However, there can be multiple transformations of each variable,

so in order to reduce the variables considered for the model, further selection is applied.

The goal of this selection is to find the best transformation of each variable with multi-

ple transformations remaining. I have chosen three separate measures to select the best

transformation.

Spearman Rank Correlation

To select the best transformation for each variable, the Spearman rank correlation with

the Z-Factor is calculated. Then the transformation with the highest correlation will be

chosen for each variable. Spearman rank correlation is preffered to Pearson correlation

as it is less of a linear measure. Strictly linear measures are avoided since the purpose

of using an SVR model, is the ability to explore non-linear features. Selecting variables

based on a strictly linear relationship therefore might neglect non-linear features.

Random Forest Importance

In order to avoid introducing linearity in the selection, like Spearman correlation, the ran-

dom forest feature importance is utilized as an alternative for the selection of the best

transformation of each variable. A simple random forest algorithm is applied to the fea-

ture set and the permutation importance is calculated for each feature. The permutation

importance measures the impact a variable has on the R2, the explanatory power of the

model. Then the R2 of the model is compared with the R2 of a model where the values

of the variable are randomly permuted. A worse performance of the model in terms of

R2, when the variable is permuted, suggest a higher contribution of the variable to the ex-

planatory power of the model. Based on the permutation importance the transformation

with the highest score is selected for each variable.
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SVR Importance

Similarly, to the random forest importance, the SVR importance is determined by ap-

plying an SVR model to the feature set. The permutation importance of each feature is

calculated and the transformation with the highest score is selected for each variable.

3.2.5 Multicollinearity

Finally, the pre-selection of variables is further reduced by decreasing multicollinearity

between the explanatory variables. The multicollinearity is measured using the variance

inflation factor (VIF). The VIF quantifies by how much the variance of the coefficient of

a variable is increased due to correlation with the other variables in a multivariate regres-

sion. This is calculated by regressing each variable on the other explanatory variables.

Then the variance inflation factor for the jth explanatory variable is defined, using the R2
i

from that regression:

V IFj =
1

1−R2
i

(3.7)

With the VIF calculated for all explanatory variables, the variable with the highest VIF

is dropped. This process is repeated with the remaining variables until the highest VIF

factor is below a threshold of 10. The threshold of 10 is considered as a rule of thumb and

was suggested, for example by, Hayden (2005).

3.3 Machine Learning Model

Machine learning algorithms are generally divided into two classes. There are algorithms

that solve classification problems and other that are designed for regressions problems.

Since the Z-Factor is a continuous and known target variable, the estimation of the Z-

Factor is a regression problem. In the scope of this work, I have considered three popular

supervised machine learning regression algorithms: Random Forest (RF) Regressions,

Support Vector Machine (SVM) Regressions and Neural Network (NN) Regressions. In
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the following, I will examine the characteristics and structure of all three algorithms and

explain my choice for the SVM Regression. Every machine learning model is built by

splitting the available dataset into training and test set. The training dataset is employed

for the in-model variable selection, utilizing three different feature importance measures;

permutation importance, drop-column importance and Shapley value. To control the

learning process, machine learning models possess hyperparameters. The final model

will be selected by tuning these hyperparameters through grid search cross validation,

which is also done on the training set. Finally, the accuracy of the model is evaluated on

the test dataset, using accuracy measures and the explanatory power, R2.

3.3.1 ML algorithms considered

The RF regression is a tree-based algorithm that uses an ensemble technique to reduce

overfitting and the variance. A decision tree is mapping the input features to the target

variable by creating decision rules to split the data at different levels. To decide which

feature to choose and what condition on the feature to use for a split, the Gini index is

used as a measure. For a continuous target variable, the output at the end of each branch

of the decision tree is the average of all target variables in the training set that land at

the respective end of a branch. This leads to a comprehensible and non-linear model.

Such decision trees are sensitive to the data they are trained on and therefore prone to

overfit. To prevent overfitting, Breiman (2001) proposed an ensemble method, known as

random forests. Random forests utilize the bagging technique, to combine many decision

trees in one model. Bagging or bootstrap aggregation creates a number of subsamples

with replacement and then trains a decision tree for each subsample. The output of the

model for a continuous target variable is then computed as the average of the individual

tree outputs. These trees can be structurally very similar with a high correlation of the

outputs. Therefore, at each split the random forests randomly limits the pool of features,

to select from. This reduces the correlation between the trees in the random forest. Due to

its construction, the random forest regressor provides a potentially efficient estimator for
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the Z-Factor that can explore non-linearities and is transparent with feature importance

measures that can explain the algorithms decisions. However, this construction brings

with it, a big drawback. Due to the averaging of the output of the individual trees, it is not

possible for random forest algorithms to extrapolate. For the application of the Z-Factor

estimation this presents a crucial drawback, as the model will not be able to predict a

Z-Factor outside of the past observation. This is an issue that is yet to be resolved. Zhang

et al. (2019) provide an approach, where they combine a linear regression with a random

forest algorithm to solve the extrapolation issue. They build a linear regression model and

use a random forest to explain the non-linearities in the residuals of the regression. Since

the variable selection and the majority of the explanation is using the linear model, I have

not considered this as a fitting model to explore non-linearities.

Neural network algorithms are often referred to as deep learning algorithms. Their

structure is built to resemble the human brain, consisting of nodes that are interconnected

like neurons in the brain. These nodes are set up in different layers. The input layer, with

a node for each input feature, the hidden layers with an arbitrary number of nodes and

finally the output layer, with one node representing the result in case of a regression prob-

lem. The deep learning refers to the hidden layers of nodes that can consist of millions of

nodes and can produce very powerful models but as the name suggests, the explanation of

such a model is very difficult, as it cannot be retraced how the model arrives at its output.

The nodes assign weights to each input they receive and when data is feed through the

network, the weights are multiplied with the input and added, so that the node gives one

number to the next node. This can be suppressed though if the number is below a certain

threshold. When the model is trained, these weights and threshold, which are random

initially, are learned for each node. This little initial structure leads to neural networks

being prone to overfitting and requiring large datasets to be trained on, to ensure that they

give consistent results. Additionally, there are 6 hyperparameters that also require a large

amount of data to be optimally tuned. Due to the limited data available, neural networks

do not present an appropriate algorithm for the Z-Factor estimation.

Support vector machines classify data by creating decision boundaries between ho-
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mogenous groups. The algorithm takes the input space and translates it into a feature

space of higher dimension in order to perform linear separation. These boundaries are

called hyperplanes. In this work, I will focus on the so-called ε-intensive support vector

machine, introduced by Vapnik et al. (1997). This algorithm allows for a margin of error

when fitting data to theses hyperplanes. This margin is called epsilon and observations

that lie in the margin of error are not considered when the error is minimized. Finally, a

constant C determines the trade-off between the flatness of the function and the margin

of error allowed, by penalizing errors outside of the tolerated margin. In the case of a

regression problem, like the one at hand with the Z-Factor estimation, the algorithm re-

sembles a linear regression in a higher dimension as the framework by Basak et al. (2007)

describes. The ε-intensive support vector regression (SVR) looks for a function F(x) that

allows a margin of error of maximum ε from the target variables using the training data,

while trying to keep the function as flat as possible. A linear kernel function looks as

follows:

F(x) = 〈w,x〉+b (3.8)

with w ∈ ℵ and b ∈ ℜ, 〈...〉 is the dot product. Then the optimization problem can be

described as:

min
1
2
|w2| (3.9)

s.t.

yi−〈w,xi〉−b)≤ ε

〈w,xi〉+b− yi ≤ ε

(3.10)

This optimization problem is only feasible though, if all observations lie in the error

margin of the approximated function. With observations outside of the margin of error,
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the optimization problem becomes the following, with a slack variable, ξ :

min
1
2
|w2|+C

l

∑
i=1

(ξi +ξ
∗
i ) (3.11)

s.t.


yi−〈w,xi〉−b≤ ε +ξi

〈w,xi〉+b− yi ≤ ε +ξ ∗i

ξi,ξ
∗
i ≥ 0

(3.12)

Here the constant C is introduced as a penalization term for observations outside of the

allowed margin and therefore represents the trade-off between this error and the flatness

of the function f . It allows for the regression to fit a line and boundaries with a worse fit to

certain observations but a better fit for the majority of observations. Figure 3.3 visualizes

the optimization problem. The ε-intensive loss function that gives this type of SVR its

name, consequently looks as follows:

|ξ |ε =

0 i f |ξ |< ε

|ξ |− ε otherwise
(3.13)

Extending this framework to non-linear kernel functions, dual formulation is applied,

as presented by Basak et al. (2007). The nonlinear kernel function can take polynomial

form:

K〈Xi,x j〉= (ε〈x,x′〉+ r)d (3.14)

As well as sigmoid form:

K〈Xi,x j〉= (tanh(ε〈x,x′〉+ r)) (3.15)

And finally a gaussian radial basis function (RBF) can be used for the kernel:

K〈Xi,x j〉= exp(−ε|x− x′|2) (3.16)

A visualizing of the nonlinear kernel can be seen in Figure 3.4. This shows the SVM

process of transforming a nonlinear feature space into a higher dimension linear space.

Mapping features into a higher dimension can be computationally very expensive but the
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Source: https://www.saedsayad.com/support_vector_machine_reg.htm

Figure 3.3: Linear SVM

kernel functions makes it possible to directly calculate a non-linear relation between the

features.

This kernel trick makes the exploration of non-linearities possible which is an im-

portant part of this thesis. SVR models allow forecasting and extrapolation as shown in

Guajardo et al. (2006) which are other important characteristics in the scope of the Z-

Factor estimation and is not possible, for example with random forests. This is the main

reason for my choice of the support vector regression algorithm.

3.3.2 Variable Selection

Before the variable selection is performed, the data is divided into test and training dataset.

The training dataset will be used to select the variables of the model, while the test dataset

will be held out until the final evaluation of the model candidates. The training dataset

represents 70% of the observations and ranges from 2007-2016. The test dataset contains

the remaining 30% of observations from 2016-2020. The initial hyperparameters of the
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Source: https://www.jeremyjordan.me/support-vector-machines/

Figure 3.4: Non-linear SVM

SVM model, used to perform the variable selection, are set according to the suggestion by

Cherkassky and Ma (2004). Following their approach, the selection of C, the penalization

of errors, depends solely on the target variable:

C = |ȳ|+ |3σy| (3.17)

The selection of epsilon depends on the number of training samples as well as the noise

of the input data, σ :

ε =
3σ√

ln(n)/n
(3.18)

The noise is estimated with the residuals of a simple linear regression of the target variable

on the explanatory variables. The noise is then defined as the sum of squared residuals,

adjusted for sample size and degrees of freedom:

σ̂
2 =

n
n−d

1
n

n

∑
i=1

(yi− ŷi)
2 (3.19)

To select the initial kernel, an experimental approach is chosen, as suggested by Gua-

jardo et al. (2006). The four possible kernels, linear, polynomial, sigmoid and RBF are
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tested and the kernel with the lowest mean absolute error and mean squared error is se-

lected. The gamma for the RBF and sigmoid kernels is set as 1 over the number of

variables:

γ =
1
k

(3.20)

Machine learning algorithms are often considered black boxes and it is indeed much

more challenging to attribute the outcomes of a machine learning model to the input vari-

ables than it is, for example, for a linear regression model. However, there are certain

methods that can be implemented for machine learning models that attribute an impor-

tance to the input variables.

Permutation Importance

The permutation importance measures the contribution of a variable by randomly permut-

ing a variable’s values. The model is then estimated with the permuted variable and the

R2 of the model calculated. Next, this R2 is subtracted from the R2 of the model with-

out any permutation. Consequently, a large difference between the R2s indicates that the

model’s explanatory power is reduced when the variable is permuted, while a very low or

negative difference suggests the model’s explanatory power does not or barely depends

on the variable. The random permutation is repeated 100 times, independently for each

variable to obtain a consistent score. Then, the variables can be ranked by their average

importance of the 100 repetitions.

Drop-column Importance

The drop-column importance measure is computed similarly to the permutation impor-

tance. Instead of permuting a variable’s values, the drop-column importance is calculated,

estimating the model without the variable in question. Then, the difference between the

R2 in this model and the original model, including the variable, can be calculated. Again,

a higher positive difference indicates the variable provides an important contribution to

34



the model’s explanatory power. Each variable is left out of the model once to determine

its drop-column importance, according to which the variables can then be ranked.

Shapley Value

The Shapley value has its origin in game theory where each variable represents a player

and the prediction represents the payout. The Shapley value aims to quantify how much

each variable contributed to the prediction compared to the average prediction. This can

be done based on the method introduced by Shapley (1953) who assigned a payout to

players according to their contribution. The contribution of a variable according to this

method is calculated as the average absolute difference in the target variable for each of

the variable’s values, with all other variables’ values constant at one possible combina-

tion. This is repeated for all possible combination of holding the other variables constant

and the average over all contributions is taken. This process is performed for all vari-

ables which allows to rank the contribution of each variable with the Shapley value. The

Shapley value, φ j(val), is mathematically defined as follows:

φ j(val) = ∑
S⊆{x1,...,xp} {x j}

|S|(p−|s|−1)!
p!

(val(S∪{x j)− val(S)) (3.21)

where S is one possible combination of variables, x are the variable values corresponding

to the p variables selected and valx(S) is defined as:

valx(S) =
∫

f̂ (x1, ...,Xp)dPx/∈S−EX( f̂ (X)) (3.22)

With three different importance measures for each variable, the 3-4 variables that are

ranked highest across these measures are selected as the input variables for the model.

The reason for the selection of 3-4 variables is on the one hand to maintain the explana-

tory power of the model and on the other hand the limited observations available with 36

data points in the training set. This allows for roughly 10 observations per variable with

3-4 variables selected which is the general rule of thumb for multivariate regression prob-

lems based on Harrell (2017). Since the variable ranking is not always consistent across

importance measures, different variable sets are tested on their performance.
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Hyperparameter Tuning with Cross Validation

Once the features for the model are selected, setting the optimal hyperparameters is the

last step in the model building process and optimization. I have deployed grid search,

an exhaustive method, to find the optimal hyperparameters. This method can be compu-

tationally expensive but not in the the case of this model. Since the training dataset is

relatively small with 3-4 variables and 36 observations, and there are only 2 or 3 hyper-

parameters to tune, depending on the kernel: the kernel, C, ε and γ for RBF and sigmoid

kernels or the degree for the polynomial kernel. The grid search is applied over the 4

kernels with a range of possibilities for each parameter.

C = [1,2,3,4,5,6,7,10,15,20,100,1000] (3.23)

ε = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8] (3.24)

γ = [1e−5,1e−4,0.001,0.01,0.1,0.2,0.5,0.6,0.9] (3.25)

degree = [2,3,4,5,6,7] (3.26)

Since the number of observations is small, cross validation is implemented. Cross valida-

tion uses the available data more efficiently by splitting the data into training and test set

multiple times. Since the data is time sensitive, it is important these splits don’t happen

randomly, as it is the case for the popular k-fold cross validation. To respect the time com-

ponent and train the model to make forecasts, the initial training set of 36 observations is

split into an initial set of the first 8 observations to predict the next 7 observations. Then

these 7 observations are included in the training set to predict the next 7 and so on. This

can be repeated four times with the training set size of 36.

To decide between models, a scoring parameter has to be defined. I have used the

means squared error (MSE), mean absolute error (MAE) and adjusted R2 as such a pa-

rameter. For each parameter setting, there are four scores, one for each cross validation

split. The average of these is taken to obtain one score per parameter setting. Then the

model with the lowest score is selected in the case of the mean squared error and the mean

absolute error and the model with the highest score is selected in the case of R2.
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3.3.3 Model Evaluation

To evaluate the final model, the out-of-sample test set that has been put aside so far, is

utilized. Three measures are used to evaluate the accuracy of the model on the out-of-

sample data. The MSE takes the mean of the squared difference between the prediction

and the actual observation of the target variable, the Z-Factor. Thus, the MSE puts more

weight on large deviations. The MAE gives the same weight to all errors by taking the

mean of the absolute difference between the prediction and the actual observation. Finally,

the adjusted R2 is used to measure the percentage of variation explained by the features,

while controlling for the number of features.

MSE =
1
N

N

∑
i=1

(yi− ŷi)
2 (3.27)

MAE =
1
N

N

∑
i=1
|yi− ŷi| (3.28)

Ad justed R2 = 1− [
(1−R2)(n−1)

n− k−1
] (3.29)

3.4 Linear Model

The linear model will serve as a benchmark, mainly to evaluate the ability of the SVR

model to explore non-linearities in the variable selection process as well as the perfor-

mance of the different model types. The benchmark model is applied to the same set of

pre-selected variables as the machine learning model. This means only stationary vari-

ables that passed the single factor analysis are considered. Further, the VIF filtering is ap-

plied to reduce multicollinearity. This results in the first variable set. As for the machine

learning model, another set of variables is constructed by selecting one transformation per

variable. Similar to the Spearman correlation selection previously, the transformations are

selected according to the highest Pearson correlation. The Pearson correlation is used here

as the criterion because this is a linear model, so a linear pre-selection is appropriate. To

reduce multicollinearity in this variable set as well, the VIF filtering is also applied here.
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Before the model varaiable selection is applied, the explanatory variables and the

independent variable are standardized, to allow for coefficients to be interpretable. The

mean and variance of each variable is calculated and then the variables are standardized

by subtracting each observation by the mean and dividing by the standard deviation. This

leads to the data being centered around zero with a variance of 1, so it has the properties

of a standard normal distribution.

3.4.1 Lasso Variable Selection

Despite the pre-selection, the variable sets used for the linear model are still too large to

run a significant linear regression and further variable selection is necessary. The ma-

chine learning model utilizes three different importance measure to do this selection, as

described above. For the linear model, I will make use of the lasso regression, first in-

troduced by Tibshirani (1996). Lasso stands for least absolute shrinkage and selection

operator and is a linear regression with shrinkage. The use of shrinkage results in the

coefficients of unimportant variables shrinking to zero. It minimizes the sum of squared

residuals, like OLS, but adds a penalty term to the loss function, as seen in the equation

below.
N

∑
i=1

(yi−β0−
p

∑
j=1

xi jβ j)
2 +λ

p

∑
j=1
|β j| (3.30)

This technique is also known as L1 regularization where the penalization consists of

the sum of absolute coefficients and a shrinkage parameter, lambda. This optimization

leads to coefficients with the value of zero. Clearly the lasso regression equals an OLS

regression when lambda is zero. Further, a higher lambda causes a higher penalization of

coefficients and therefore, the optimization will result in more coefficients with a value of

zero. An increase in lambda and accordingly less non-zero coefficients increases the bias

but decreases the variance.

Consequently, the lasso regression strongly depends on the shrinkage parameter, lambda.

Therefore, hyperparameter tuning is used to find the optimal lambda. Similar to the hyper-

parameter tuning for the machine learning model, a grid search over a range of possible
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lambdas is utilized. The considered range for lambda starts at 0 and takes steps of 0.1

until 10. If the optimal lambda is below 1, a more detailed range from 0 to 1 in intervals

of 0.01 is applied, to select the optimal lambda. To find the optimal lambda, a 4-fold

time series cross validation like in the machine learning model is used with the MSE and

MAE as scorers. If the selected lambdas are different between the MSE and MAE cross

validation, the average between the two is taken.

Now that the optimal lambda is known, the lasso regression can be applied to the

variable set to obtain the non-zero coefficients. If there are non-significant variables in

the regression these are removed by step-wise backward selection, until all coefficients

are statistically significant. This represents an additional model alternative.

3.4.2 OLS Model Evaluation

The variables selected with the lasso regression are then used to perform an OLS linear

regression. The OLS regression is fit to the training dataset and the model is evaluated on

the out of sample test set. The split between training and test set is the same as for the

machine learning model. Further, the same three evaluation measures are used in MSE,

MAE and adjusted R2

3.4.3 Gauss Markov Assumptions

Finally, the Gauss Markov assumptions of the model are tested to ensure the OLS regres-

sion is the best linear unbiased estimator (BLUE). First, the Z-Factor and the predicted

Z-Factor are plotted to establish, that the relationship between the explanatory variables

and the independent variable is indeed linear. Next, the absence of multicollinearity is

tested using the VIF as described above. If the VIF for all explanatory variables is below

5, the absence of multicollinearity can be assumed. The homoscedasticity of the residuals

is tested using the Breusch-Pagan test and the Goldfeld-Quandt test. The Breusch-Pagan

test is defined as and approximately follows a chi-square distribution. The null hypoth-

esis of homogeneity is accepted for p-values larger than 0.05. The Goldfeld-Quandt test
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compares the sum of squared residuals of two subsets regression on the data and performs

an F-Test to determine whether the two differ significantly. Consequently, the null hy-

pothesis represents homogeneity and is accepted for p-values larger than 0.05. To test the

normality of the residuals, the Jarque-Bera test is utilized which is based on the kurtosis

and skewness. The null hypothesis assumes normality with the kurtosis and skewness

equal to 0 and can be accepted with a p-value above 0.05. Finally, the Durbin-Watson test

is used to test for autocorrelation in the error term. The presence of autocorrelation would

not lead to a bias in the estimation but influences the standard error of the estimator and

it would therefore not be BLUE, as it is not the lowest variance estimator anymore. A

test statistic between 1.5 and 2.5 indicates there is no autocorrelation in the error term. To

assure the relationship between the explanatory variables and the target variable is linear,

the predicted and actual observations are plotted.

3.5 Covariate Shift Adaptation

In machine learning it is commonly assumed that the training and test datasets follow the

same probability distributions. However, in many applications this is not the case and it is

therefore important to test this assumption. If there is a drift in the probability distribution

between training and test set, the covariate shift adaptation provides a method to correct

this drift. The drift in the data can be detected with a classification mechanism that is

described below. Once a drift is detected, it is important to find importance weights to

adjust for the different distributions when fitting the model. Sugiyama and Kawanabe

(2012) propose the use of the density ratio between the test and training set as an impor-

tance estimation. To estimate the density ratio, I estimate the individual densities for test

and train set using a Gaussian kernel density estimation. Then the estimates for the test

set are divided by the training set estimates to obtain the density ratio. This density ratio

is then used as the sample weights in the model cross validation.
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3.5.1 Data Drift Detection

To determine drift between the training and test sample, a new target variable is created.

This variable is set at 0 for the training set and 1 for the test set. The estimation of this

variable presents a classification problem and the same independent variables are used for

the estimation. If these variables classify the target variable with a high accuracy, it is an

indication for the presence of a drift in the data. I use a simple random forest classifier to

determine the accuracy.

3.5.2 Density Ratio Estimation

To estimate the density ratio or importance weight, the density for the training set and for

the test set are calculated separately. To do so, the Gaussian kernel density estimation is

used. The gaussian kernel density estimator has a hyperparameter, the bandwidth, that

requires to be optimized. Leave-one-out cross validation on the respective dataset is used

to optimize the bandwidth. With the optimal bandwidth known, the density function of the

test and training set can be calculated respectively. Finally, the density ratio is computed

as the test density function divided by the training density function, both applied to the

training set.

3.5.3 Sample Weight Implementation

Once the density ratio is known, the new model with covariate shift adaptation can be

constructed. As described in Sugiyama and Kawanabe (2012), the covariate shift can

be applied to an e-intensive support vector regression. They call this method adaptive

importance-weighted support vector regression (AIWSVR).

θ̂γ = argmin
θ

[
1

ntr

ntr

∑
i=1

(
pte(xtr

i )

ptr(xtr
i )

)γ

| f̂ (xtr
i ;θ)− ytr

i |ε

]
(3.31)

Equation 3.31 shows the corresponding loss function, where the term pte(xtr
i )

ptr(xtr
i )

represents

the density ratio. The power of the density ratio, γ , is assumed to be 1, to fully incorporate
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the different training and test distribution. The adjusted loss function is now implemented

in the cross validation, previously described to select the optimal model. This is now

called an importance weighted cross validation and is almost unbiased as Sugiyama and

Kawanabe (2012) show.
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Chapter 4

Results

In this chapter, I will present the results of the application of the models, introduced in

the previous chapter, to the data, described in chapter 2. I will begin with the results of

the variable pre-selection process. Then, I will show the results of the different models,

starting with the SVR model. I will display the model performance of the linear bench-

mark model and the covariate shift model. Finally, I will briefly go over the results of the

model with monthly data.

4.1 Variable Pre-Selection

The first attained results are the macroeconomic variable sets obtained from the different

variable pre-selection methods. The first results will display the difference in these sets

before and after the VIF filtering is applied. For the variables, listed in Table 4.1, no

stationary transformation that passed the single factor analysis is found.

When the Spearman correlation pre-selection is applied, the VIF filter removes three

variables: Initial Claims QGrowth Lag9m, DJ Total SM Index YGrowth Lag3m, Lending

TS LM Corps Lag9m. For the random forest pre-selection, the variables Nominal GDP

Growth YD Lag6m, DJ Total SM Index YGrowth Lag3m are filtered out by the VIF. With

the SVR pre-selection method, the variables DJ Total SM Index YGrowth Lag3m, Total

Assets QGrowth Lag3m, Real GDP Growth Lag3m, Liq. Swaps w/ CBs Lag3m, Loans



Real Disposable Income Growth
Unemployment Rate

Continuous Jobless Claims
House Price Index

WTI Price
M2

Repos
U.S. Treasuries

MBS
DSR (PNFS, Households & NPISH)

DSR (PNFS)
US Dollar Index

10 year - 3 month Treasury Spread
5 year - 3 month Treasury Spread

Table 4.1: Variables without stationary Transformation that passes the SFA

Lag3m are dropped by the VIF filtering. The lists of selected variable sets can be found

in the Appendix in Tables A1 - A3.

4.2 SVR Model

In this section, the results for the machine learning model using quarterly data are pre-

sented. This includes the model performance comparison between the different variable

sets regarding the impact of the pre-selection method and the VIF filter. Further, the

kernel and hyperparameter selection are shown as well as the model performance in and

out-of-sample. Finally, the variable importance will show the relative impact each of the

selected variables have on the estimation. The initial hyperparameters for the model per

variable set are reported in Table 4.2. The penalization parameter, C, is the same for all

sets, as it only depends on the target variable. The gamma changes according to the num-

ber of variables in the respective set. For all variable sets, the RBF kernel is selected as it

provides the lowest MSE and MAE among the four possible kernels. The epsilon varies

between all variables sets.
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Variable Set Kernel C ε Gamma

Spearman Correlation Pre-VIF Filter RBF 3.4 0.19 1/22
Spearman Correlation Post-VIF Filter RBF 3.4 0.22 1/19
RF Importance Pre-VIF Filter RBF 3.4 0.13 1/22
RF Importance Post-VIF Filter RBF 3.4 0.24 1/20
SVR Importance Pre-VIF Filter RBF 3.4 0.11 1/22
SVR Importance Post VIF Filter RBF 3.4 0.14 1/17

Table 4.2: Pre-Selection Hyperparameters

4.2.1 VIF Filter performance Comparison

To demonstrate the impact, the VIF filtering has on the variable selection, Table A4 in

the Appendix shows the importance ranking for the RF pre-selection method before and

Table A5 after the VIF filter. It can be observed that the variable ranking is more consistent

across the importance measures after the VIF filter is applied. While the variables, Debt-

Service-Ratio, BBB Spread and Profitability are consistently ranked highest before the

VIF Filter, the variable selection changes to S&P Industrial, BBB Spread and Export

Volume. Especially, the S&P Industrial drop-column importance rank rises substantially,

as well as the Shapley values of the Export Volume and BBB Spread. The increased drop-

column importance of the S&P Industrial can be explained by the removal of the highly

correlated Dow Jones Total Stock Market Index by the VIF filter.

To evaluate the impact of the VIF filter on the performance, Tables A6-A8 in the Ap-

pendix show the best performing model before and after the filter for each pre-selection

method. For the Spearman correlation pre-selection, the variable selection does not change

even though 3 variables are removed by the VIF filter. Consequently, the model perfor-

mance does not differ. The RF pre-selection model performance does not improve with

the variables selected in the VIF filtered set while the SVR pre-selection model perfor-

mance is better with the variables selected from the VIF filtered set.
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4.2.2 Pre-selection performance comparison

The best performing models for each of the three pre-selection methods are shown in

Table 4.3 and display some similarities in their selected variables with the BBB Spread

selected by each method. Further, the Debt-Service-Ratio, Export Volume and Profitabil-

ity are selected twice. The optimal hyperparameters for the three cross validation scorers,

MSE, MAE and adjusted R2 are shown in the second row. Depending on the variable

selection, the scorers select the same model or slightly different ones. The variables of

the SVR importance pre-selection return the same model candidate for all three scorers,

whereas the other two variable selection lead to two candidates each. For the Spearman

correlation selected variables, model candidate 2, which has a different kernel function,

maximizes the adjusted R2, while model candidate 1 minimizes the MSE and MAE. In

case of the RF importance selected variables, the MAE is minimized by a model with a

slightly different epsilon. The respective cross-validation score can be found in rows 3-5

of Table 4.3. It can be observed that the kernel functions are linear as in the case of the

SVR importance pre-selection, or close to linear, since a sigmoid or RBF with a very low

gamma is almost linear. The margin of error, ε , is quite large in case of the RF and SVR

importance pre-selection, while the penalization parameter is small. For the Spearman

correlation pre-selection, the margin of error and penalization parameter are both small.

The rows 6-7 present the out-of-sample performance of each of the model candidates. It

can be seen that the RF importance pre-selection model candidates perform significantly

worse than the other two models with respect to all measures. The SVR importance pre-

selection model performs better than the two Spearman correlation pre-selection model

candidates in terms of MSE, MAE and adjusted R2. The SVR importance pre-selection is

also the only one where the same model candidate is chosen by all three cross-validation

scorers. For the Spearman correlation pre-selection, the model selected by the MSE and

MAE performs better than the one selected by adjusted R2 based on all measures. The

best performing model, from the SVR pre-selection, displays a lower MSE than MAE,

suggesting that there are no large errors due to outliers. By squaring the errors the MSE
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Figure 4.1: In-Sample Performance of best SVR Model

Figure 4.2: Out-of-Sample Performance of best SVR Model

puts more weight on large errors but their presence can be ruled out here as the MSE

is low compared to the MAE. This is also confirmed in the Figure 4.2 where the largest

deviation is in Q1 2018. To put these errors into context, a look at how they relate to the

Z-Factor values is helpful. The Z-Factor for the whole observation period ranges from -3

to 1.5 with an average close to 0. The standard deviation is 1.05 and therefore the MAE

of 0.45 represents a deviation of the prediction from the actual value of a little less than

half a standard deviation on average.

The fit of the best performing model, the SVR importance pre-selection model, is visu-

alized for the in and out-of-sample period in Figures 4.1 and 4.2. The largest discrepancies

between estimation and actual Z-Factor occur in Q3 2011 and Q1 2016 during the energy

crisis in the in-sample and in Q1 2018 out-of-sample. The in- and out-of-sample compar-

ison between the Z-Factor and its estimate for the other two best performing pre-selection
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Transformation Pre-
Selection

Spearman
Correlation

RF Importance SVR Importance

Variables

US export goods
vol QGrowth,

NIPA Profitability
QGrowth Lag12m,

NIPA Profitability
non financial
QGrowth Lag12m,

DSR Corps non
financial QGrowth
Lag12m,

DSR Corps non
financial QGrowth
Lag12m,

Commercial RE PI
QGrowth,

BBB Spread QD
Lag12m

BBB Spread QD
Lag12m,

BBB Spread QD
Lag12m,

Loans QGrowth
Lag12m

US export goods
vol QGrowth

Hyperparameters

Candidate Model 1 Kernel=sigmoid,
C=3, ε=0.1,
γ=0.001

Kernel=sigmoid,
C=1, ε=0.6,
γ=0.0001

Kernel=linear, C=1,
ε=0.5

Candidate Model 2 Kernel=rbf, C=2,
ε=0.1, γ=0.001

Kernel=sigmoid,
C=1, ε=0.8,
γ=0.0001

CV-MSE 1.0340 3.9498 0.4579

CV-MAE 0.7258 0.8581 0.5382

CV-adj. R2 0.174 -2.1501 0.6348

OOS Performance - Candidate Model 1

MSE 0.4 0.71 0.3

MAE 0.5 0.71 0.45

adj. R2 0.49 0 0.62

OOS Performance - Candidate Model 2

MSE 0.43 0.74

MAE 0.50 0.93

adj. R2 0.46 0

Table 4.3: Model Results for each Pre-Selection Method
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methods can be found in A4 - A9 in the Appendix Figures. For the Spearman correlation

pre-selection model, the estimation shows little variation and therefore presents more an

average of the actual Z-Factor. The bad performance of the RF importance pre-selection

model can be clearly observed in the graphical representation of the Z-Factor and its

estimate. The estimation shows large swings, especially during the time of the Great Fi-

nancial Crisis, between 2008 and 2010. This can be explained by the variable Loans as

seen in Figure A8. This variable represents the loan facility of the federal reserve and had

extreme variations during the Great Financial Crisis. The estimates do not fit the actual

Z-Factor well, as the performance measures in Table 4.3 suggest

4.2.3 Cross-Validation

The cross-validation shows a similar pattern for all model candidates. A graphical presen-

tation of the cross-validation scorer over the splits for the SVR-importance pre-selection

is shown in Figure 4.3. The graphical presentation for the other models can be found in

Figures A1 - A2 in the Appendix. In case of the MSE and MAE, the error is reduced with

every split until the last split. In contrast, the adjusted R2 increases with every split after

the first one. This suggests the cross validation is working well as the model is improving

with more data added. The lack of improvement in the last split can be explained with

a visualization of the actual Z-Factor and its estimation as seen in Figure 4.1. The last

cross-validation split contains the 2016 energy crisis and this outlier is not estimated well

by the selected macroeconomic variables.

4.2.4 Variable Importance

The variable importance measures in Table 4.4 show that the Commercial Real Estate

Price Index has the biggest impact on the estimation followed by the Export Volume, the

BBB Spread and the Profitability for the SVR importance pre-selection model. All the

variables have a significant impact on the model with the high importance measures, indi-

cating most of the variation in the estimation can be explained by the variables. The rank-
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(a) MSE CV of best SVR Model

(b) MAE CV of best SVR Model

(c) R2 CV of best SVR Model

Figure 4.3: Cross-Validation Results of best SVR Model
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ing is also consistent across the measures except for the Shapley value but here the differ-

ences between variables are minor anyways. A graphical representation of the macroeco-

nomic variables and the Z-Factor can be found in Figures 4.4 and 4.5. All variables are

standardized, to make the macroeconomic variables comparable with the Z-Factor. The

sign of the effect for each variable can already be inferred by observing the co-movement

between the variables and the Z-Factor in these figures. Additionally, the Shapley value

also offers insight into the relationship through dependence plots. These are shown in

the Appendix in Figure A20 and confirm that the relationship between the Z-Factor and

the explanatory variables is positive except for the BBB Spread which is in line with the

economic understanding. These figures can explain the main discrepancies observed be-

tween the estimation and the actual Z-Factor. As previously mentioned there is a lack of

fit for Q3 2011, with the estimate pointing lower that the actual Z-Factor. This is mainly

caused by the low Commercial Real Estate PI which has the largest impact according to

the importance measures. The Profitability also reduces the Z-Factor estimation but as

seen in Table 4.4, it has a much smaller effect on the estimation. For the other major

discrepancy between estimated and actual Z-Factor in the in-sample can be found in Q1

2016 where the variables all point in the right direction but their magnitude is not large

enough which results in the estimate being less negative than the actual Z-Factor. In the

out-of-sample the main divergence between estimated and actual Z-Factors can be found

in Q1 2018. Here, solely the Commercial Real Estate PI displays the appropriate move

for an accurate estimate. Even though it has the highest influence on the estimation, it is

not enough to offset the too small magnitude in the Export Volume move down. Further,

the high Profitability and low BBB Spread lead to a higher estimate for the Z-Factor.

The variable importance measure and the graphical presentation containing the macroe-

conomic variables for the Spearman correlation and RF pre-selection model can be found

in the Appendix in Tables A10 & A11 and Figures A6 - A11. For the Spearman correla-

tion pre-selection, it shows that the BBB Spread has the biggest impact on the estimation,

followed by the Debt-Service-Ratio and the Export Volume has the lowest impact. How-

ever, the relatively low importance for all the variables shows that none have a large

51



Figure 4.4: In-Sample Performance of best SVR Model with MEVs

Figure 4.5: Out-of-Sample Performance of best SVR Model with MEVs
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Variable Permutation
Importance

Drop-Column
Importance

Shapley
Value

Commercial RE PI QGrowth 0.43 0.17 0.12
US export goods vol QGrowth 0.21 0.10 0.12
BBB Spread QD Lag12m 0.18 0.09 0.11
NIPA Profitability non financial
QGrowth Lag12m

0.13 0.05 0.12

Table 4.4: Variable Importance

impact by themselves. For the RF pre-selection the large impact of the Loan variable is

only present at certain point in time, and for the entire time frame, the BBB Spread repre-

sents the most important variable as in the Spearman correlation pre-selection model. It is

followed by the Profitability, Loans and finally the Debt-Service-Ratio. The importance

measure for permutation and drop-column importance are extremely close to zero and

indicate none of the variables have a large impact by themselves.

4.3 Linear Benchmark Model

This section will present the results for the linear benchmark model for the two pre-

selected variable sets considered in the linear approach; the VIF filtered initial variable

set (30 variables) and the Pearson correlation transformation selection and VIF filtered set

(20 variables). First, the results of the Lasso cross-validation are presented. Then, I will

show the variable selection and model performance for each variable set in detail. Finally,

the test results of the Gauss-Markov assumption for the models will be displayed.

4.3.1 Variable Selection

Before the Lasso can be implemented for the variable selection, the optimal lambda for

shrinkage must be determined. The results of the cross-validation for each of the two

variable sets are shown graphically in Figure A3 in the Appendix. For the VIF filtered

variable set, the optimal lambda is 0.02, using the MSE and MAE as the scorer in the

cross-validation. In the second variable set the optimal lambda differs between the MSE
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and MAE as the scorer. For the MSE it is again 0.02 but for the MAE it is 0.17, so the

average, 0.1, is used. Since the lambda is very low for the first variable set, the Lasso

variable selection results in a large amount of 22 variables left, as only 8 coefficients are

shrunk to 0. Even the further reduction, using the stepwise selection of significant vari-

ables, leaves 11 variables in the model. Therefore, I increase the lambda until 4 or 3

variables remain, respectively. This is achieved with lambdas of 0.5 and 0.55. In case of

the second variable set, the smaller number of initial variables and higher lambda result in

a set of seven variables. After the stepwise selection, only two variables remain as signifi-

cant: S&P Industrial YGrowth Lag3m and US export goods vol YGrowth Lag3m. As for

the previous set, I increase the lambda until only 4 or 3 variables remain to obtain further

model candidates. The lambdas of 0.3 and 0.4 achieve this, respectively. The four variable

sets selected can be found in the Appendix in Table A9 as well as the four variable sets

selected for the VIF filter pre-selection set. It is important to note that the variable sets for

the model candidates of the VIF filtered pre-selection include several transformations of

the same variable. This displays the importance of the transformation selection which en-

sure only one transformation per variable is selected. Including multiple transformations

of a variable usually adds little informational gain but a lot of noise to the model.

4.3.2 Model Performance

The model candidates with a large number of variables, as one would expect, show a

very good fit in-sample with low errors and large adjusted R2s as seen in the Appendix

in Table A9. However, out of sample these models perform poorly with large errors and

adjusted R2s of 0. As mentioned above, using only the VIF filter as a pre-selection leads to

several transformations of one variable selected which results in bad model performance

for the three models where this is the case. The best performing model in terms of the

lowest out-of-sample errors is the one where 3 variables are selected by an increase in

lambda and does not include multiple transformations of the same variable. However, the

errors are just slightly lower and the adjusted R2 is 0 as for the other models. For the
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second variable set, the model including all non-zero coefficients belongs to the models

that display a good in-sample performance and a poor out-of-sample performance due to

a large number of variables selected. The other three models show much less discrepancy

between in-sample and out-of-sample performance. As for the models resulting from the

VIF filtered pre-selection, the models resulting from the second variable set all have an

out-of-sample adjusted R2 of 0 but the errors are significantly lower. According to the

different error measures the model with four variables selected, through a lambda of 0.3,

performs best as shown in Table 4.5. The error rates at 0.66 and 0.69 for the MSE and

MAE, respectively, do not suggest a very good fit. Relating this to the Z-Factor standard

deviation, the MAE represents an average deviation between the prediction and the actual

Z-Factor of a little more than half the standard deviation. This can also be seen in the

graphical presentation of the estimate and the Z-Factor in the Appendix in Figures A12 &

A13. The fit is good in the in-sample, especially in the period from 2008 – 2014. Then the

estimate becomes more of an average of the actual Z-Factor, as it does not fit the peaks and

troughs well which is particularly evident in 2016 with the oil glut crisis. This behavior

continues into the out-of-sample and only the deep deterioration in the Z-Factor in Q2

of 2020 is also reflected in the estimate. Since the data is standardized, the coefficients

magnitude informs about the weight in the estimation. The S&P Industrial YGrowth

Lag3m has by far the biggest influence on the estimation with 0.43. It is followed by the

US export goods vol YGrowth Lag3m with 0.21, ISM PMI Services YGrowth Lag12m

with 0.18 and Liq. Swaps w/ CBs Lag3m with -0.15. When plotting these variables

with the estimated and actual Z-Factor, it becomes evident why the Liq. Swaps w/ CBs

Lag3 has the lowest influence as it only differs significantly from 0 in times of stress

as during the financial crisis and most recently in 2020. However, in those periods it

plays an important role as the estimates in these periods are more accurate. The S&P

Industrial YGrowth Lag3m tracks the Z-Factor very well until about 2014 which explains,

the discrepancy in accuracy after 2014, as it is the variable with the by far biggest influence

on the estimation. The US export goods vol YGrowth Lag3m shows a fairly good fit

across the whole sample which justifies the higher coefficient compared to the ISM PMI
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Transformation
Selection

VIF Filtered VIF Filtered &
significant

Reduction to 4
Variables

Reduction to 3
variables

Variables S&P Industrial
YGrowth
Lag3m, Liq.
Swaps w/ CBs
Lag3m, ...

S&P Industrial
YGrowth
Lag3m, US
export goods
vol YGrowth
Lag3m

S&P Industrial
YGrowth
Lag3m, US
export goods
vol YGrowth
Lag3m, Liq.
Swaps w/ CBs
Lag3m, ISM
PMI Services
YGrowth
Lag12m

S&P Industrial
YGrowth
Lag3m, US
export goods
vol YGrowth
Lag3m, Liq.
Swaps w/ CBs
Lag3m

Lambda 0.1 0.1 0.3 0.4

IS-MSE 0.3277 0.4243 0.3669 0.3999
IS-MAE 0.4341 0.5318 0.4812 0.5188
IS-adj.R2 0.6386 0.5632 0.6345 0.6141

OOS-MSE 0.6821 0.7542 0.6619 0.7155
OOS-MAE 0.7207 0.7395 0.6925 0.7156
OOS- adj.R2 0 0 0 0

Table 4.5: Linear Model Performance

Services YGrowth Lag12 which fits to a lesser degree specifically in 2016.

4.3.3 Gauss-Markov Assumptions

The results of the Gauss-Markov assumption tests for all the linear model candidates can

be found in the Appendix in Table A12. A majority of the models passes these tests

and satisfy the assumptions. One exception is the first model from the VIF filter pre-

selection set which contains 22 variables. It exhibits multicollinearity and autocorrelation

in the residuals and therefore violates 2 of the Gauss-Markov assumptions. The best

performing benchmark model passes the Jarque-Bera test for normality by accepting the

null hypothesis with a high p-value of 0.95. The 4 VIFs are all well below 5 and the

Durbin-Watson test statistic of 2.16 suggests no autocorrelation in the error term. The
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homogeneity assumption for the error terms is satisfied at a 5% significance level with a

p-value for the Breush-Pagan test of 0.15 and a p-value for the Goldfeld-Quandt test of

0.08. Therefore, all Gauss-Markov assumptions are fulfilled.

4.4 Covariate Shift Adaptation

In this section, I will present the results of the covariate shift implementation for the best

performing model of the three pre-selection methods. First, I will present the results for

the detection of a drift in the data that would justify a covariate shift adaptation. Then,

I will present the results of the covariate shift adaptation to show the effect it has on the

model performance and the variable importance.

4.4.1 Data Drift Determination

The results of the classification problem between test and training set to determine whether

there is drift in the data is measured by the classification accuracy. The in-sample accu-

racy is 100% for all three models and the out-of-sample accuracy is very high as well with

92% for the Spearman correlation pre-selection, 94% for the RF importance pre-selection

and 90% for the SVR importance pre-selection. This clearly indicates a drift in the data

between the training and test set and therefore a covariate shift adaptation is appropriate.

This requires the determination of sample weights which are calculated using the Gaus-

sian kernel density estimation as described above. The results of the weights can be found

in Figure A21 in the Appendix. It is interesting to note that the observations of the Great

Financial Crisis get small weights attributed while the observations during the Oil Crisis

get higher weights.

4.4.2 Covariate Shift Models’ Performance

In Table 4.6 the results of the covariate shift adaptation for the three models are summa-

rized. The variable selection is not impacted by this adaptation, but it can be observed
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that the hyperparameters change. Compared to the previously selected models, the al-

lowed margin of error is smaller for the RF and SVR pre-selection with a higher penal-

ization term, C. The penalization term is also larger than previously for the Spearman

pre-selection model but the margin of error increases from 0.1 to 0.2. The functions for

all models are again linear or close to linear, as again sigmoid functions with a very low

gamma parameter are selected. The RF importance pre-selection model candidates 2&3

with an RBF function are less linear with a gamma of 0.2. However, these models do not

perform well once again even though there is an improvement, they are overfitting with

the MAE more than doubling from in-sample to out-of-sample for the model candidate 2.

The adjusted R2 for model candidate 3 is drastically dropping from in-sample to out-of-

sample also suggesting overfitting. The Spearman correlation pre-selection model does

not show any improvement with the covariate shift implementation. The previously best

performing model candidates, the SVR importance pre-selection, remains the best per-

forming model and shows further improvement with the covariate shift implementation.

The best model, candidate 2, improves the previously best performing model by reducing

the MSE by 0.03 and the MAE by 0.1 and increasing the adjusted are square by 0.03.

Recalling that the standard deviation of the Z-Factor is 1.05, the MAE of 0.35 presents

roughly an average deviation of the prediction from the actual value of as little as a third

of a standard deviation. This further improved fit can, for example, be observed at Q2

2020 as shown in the Appendix in Figure A17.

4.4.3 Variable Importance

The variable importance measures allow a more detailed look on how the explanatory

variable contribute to the estimation and are shown in Table 4.7. According to the permu-

tation and drop-column importance, the Commercial Real Estate Price Index and Export

Volume remain the most important variables, followed by Profitability and then BBB

Spread. The BBB Spread provides the least to the estimation according to all measures.

Previously this was the Profitability which is now closely ranked to the first two and even
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Transformation
Pre-Selection

Spearman
Correlation

RF Importance SVR Importance

Variables US export goods
vol QGrowth, DSR
Corps non financial
QGrowth Lag12m,
BBB Spread QD
Lag12m

NIPA Profitability
QGrowth Lag12m,
DSR Corps non
financial QGrowth
Lag12m, BBB
Spread QD
Lag12m, Loans
QGrowth Lag12m

NIPA Profitability
non financial
QGrowth Lag12m,
Commercial RE PI
QGrowth, BBB
Spread QD
Lag12m, US export
goods vol QGrowth

Hyperparameters
Candidate Model 1 Kernel=sigmoid,

C=15, ε=0.2,
γ=0.01

Kernel=linear, C=2,
ε=0.6

Kernel=linear, C=1,
ε=0.3

Candidate Model 2 Kernel=sigmoid,
C=20, ε=0.2,
γ=0.01

Kernel=rbf, C=100,
ε=0.1, γ=0.2

Kernel=sigmoid,
C=1000, ε=0.2,
γ=0.0001

Candidate Model 3 Kernel=rbf,
C=1000, ε=0.5,
γ=0.2

CV-MSE 1.011 3.4247 0.4968
CV-MAE 0.7087 0.26033 0.6166
CV-adj.R2 0.2028 0.7278 0.5096

OOS Performance - Candidate Model 1
MSE 0.44 1.98 0.3
MAE 0.55 1.14 0.4
adj. R2 0.44 0 0.62

OOS Performance - Candidate Model 2
MSE 0.43 0.71 0.27
MAE 0.55 0.65 0.35
adj. R2 0.45 0.09 0.65

OOS Performance - Candidate Model 3
MSE 0.70
MAE 0.68
adj. R2 0.1

Table 4.6: Performance of Covariate Shift Models
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Variable Permutation
Importance

Drop-Column
Importance

Shapley
Value

Commercial RE PI QGrowth 0.26 0.2 0.2
US export goods vol QGrowth 0.25 0.09 0.32
NIPA Profitability non financial
QGrowth Lag12m

0.22 0.06 0.34

BBB Spread QD Lag12m 0.06 0.06 0.06

Table 4.7: Covariate Shift Model Importance Measures

the most important according to the Shapley Value. The Shapley value allows a more

detailed look at individual observations such as the last out-of-sample observation, Q2

2020. Figures 4.6 and 4.7 display the contribution of the four explanatory variables to the

Z-Factor estimation of -1.55 and -1.76 for the model with the covariate shift adaptation.

The variables Export Goods and Commercial Real Estate Price have a negative impact

on the estimation, indicated by the blue color, while Profitability and BBB Spread have

a positive impact on the estimation, indicated by the red color. When comparing the two

model estimations, it can be seen as the Shapley values in the importance measure tables

indicate, that the BBB Spread gets relatively less weight in the covariate shift model with

the smaller bar, as Figure 4.7 shows. Despite a higher weight given, the Profitability is the

main cause for the lower estimation and outweighs the smaller weight given to the Com-

mercial Real Estate Price. The weight of the Export Goods stays roughly the same. This

shows how the results of the different models are composed by the explanatory variables.

4.5 Model using Monthly Data

The monthly Z-Factor serious is very volatile which makes the estimation with economic

variables difficult. Especially, since many of these variables cannot be used, as they are

computed and published on a quarterly basis, the resulting models perform poorly with

high errors and low explanatory power of the variance. The monthly approach was origi-

nally considered because of the concern that the quarterly observations might not provide
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Figure 4.6: Shapley Contributions 2020/Q2 SVR Model

Figure 4.7: Shapley Contributions 2020/Q2 SVR Model with Covariate Shift

enough data points for an accurate estimation. However, this is not the case as the pre-

vious results show. It is also uncommon to look at defaults and rating transitions on a

monthly basis, since credit cycles last several years, and rating transitions usual do not

happen that frequently. For these reasons, I will not further explore this approach.
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Chapter 5

Discussion

In this chapter, I will discuss the previously presented results and interpret their meaning

in regard to the research question. I will asses the impact of the chosen methodology

on the results and explain the economic intuition behind the selected variables. Further,

I will compare the model performance between the machine learning model, the linear

benchmark model and the covariate shift model.

5.1 SVR Model

In the first section of this chapter, I will focus on the best machine learning model based

on the findings in Chapter 4.2. This is the model resulting from the SVR importance

pre-selection, presented in column 4 of Table 4.3. It is performing significantly better in

all three evaluation measures than the second best candidate from the Spearman corre-

lation pre-selection. Further, all three measures lead to the same model which provides

confidence in the hyperparameter specification.



5.1.1 Model Performance Evaluation

VIF Filter

The reason for the application of the VIF filter on the pre-selection sets is the reduc-

tion in multicollinearity, before the importance measures are applied because high mul-

ticollinearity between variables distorts their drop-column and permutation importance.

This is due to these two measures relying on the difference in R2 when the variable is

dropped or permuted. For highly correlated variables this difference and therefore, the

importance is smaller than for less correlated variables. Thus, the ranking is more reflec-

tive of the impact a variable has individually after the VIF filter application. This has the

biggest impact in the SVR pre-selection as evident by the better model performance for

the VIF filtered set. Here, 5 variables are removed, indicating multicollinearity present in

the initial variable set.

Between pre-selection methods, the SVR was shown to outperform the RF and Spear-

man correlation methods. This is plausible as the final algorithm is an SVR algorithm and

using it in the pre-selection is a coherent approach. The RF algorithm represents a quiet

different mechanism as it is based on a decision tree and not a kernel function which leads

to a disconnect between the pre-selection and final algorithm. The Spearman correlation

represents a monotonic method that is more appropriate as a pre-selection method than

the RF importance but the SVR importance represents the most consistent approach as

the final algorithm is an SVR.

Variable Selection

The variables selected by the best performing model provide four diverse economic indi-

cators that have a large explanatory power of systematic credit risk. The profitability ex-

presses the ability of companies to generate capital, to service their debt. The profitability

of non-financial companies is selected instead of all companies which is consistent with

financial companies being filtered out of the portfolio and therefore, it is coherent that the

non-financial variable delivers a higher accuracy. Further, the one-year lag of the variable
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is selected, indicating that it takes some time between a reduction in profits to affect the

ability to service debt. The commercial real estate price index presents a good proxy for

companies expenses, with higher costs obviously limiting companies abilities to service

their debt. Besides labour cost, the real estate cost represents a major component in a com-

pany’s cost structure. The commercial real estate price falls when the demand for office

and other commercial real estate space declines. This represents a cost sensitive indicator

for companies’ ability to service their debt as there is no lag selected. The BBB Spread

is a measure for the risk premium of BBB rated corporate bonds and commonly used as

a benchmark for financial markets’ evaluation of corporate credit risk. It has a one year

lag which shows the predictive power of financial markets. Finally, the US Export Goods

variable represent the state of the exporting economy which indicates the competitiveness

of the US economy and therefore the relative strength of US companies as well as the state

of global trade. With the commercial real estate price index as the most impactful variable

according to the variable importance measures and the profitability with the lowest, it is

evident that the systematic credit risk is more sensitive to cost than to profit. Further, the

US export goods volume, as a more general indicator for the economy, is a better gauge

than the BBB spread, as the financial market view of systematic credit risk. The selected

variables differ from the classical variables such as GDP growth and unemployment rate

and more accurately describe the systematic credit risk. Compared with the risk factors,

the Fed provides in its annual stress test, only the BBB Spread and commercial real estate

price index are present. This justifies the extensive amount of variables considered and

should encourage future researchers and model developers to consider a wider scope of

variables.

Kernel and Hyperparameters

In this analysis, I will focus on the best performing model, the one resulting from the SVR

importance pre-selection. The model is based on an RBF function in the variable selection

with a gamma of 0.06 as shown in Table 4.2. The following hyperparameter tuning via

cross-validation however, leads to a linear kernel function. This result as well as the
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Model Linear
Benchmark

SVR Model SVR Variables
in OLS

Covariate Shift
Model

OOS-MSE 0.683 0.3011 0.3267 0.27
OOS-MAE 0.6628 0.4464 0.4391 0.3546
OOS-adj.R2 0 0.6154 0.5828 0.6510

Table 5.1: Out-of-Sample Performance Measures for Best Models

linear kernel functions of the best models with different pre-selection methods allows to

conclude that the relationship between the macroeconomic variables and the Z-Factor is

linear. With an epsilon of 0.5 the allowed margin of error is fairly large which means there

is a wide channel around the fitted line where observations that lie in that channel are not

penalized. However, the penalization for observations outside of the range is low with a

C of 1. The impact these hyperparamters have on the model performance compared to

a simple linear OLS model are shown in Table 5.1. Here the previous SVR results are

displayed in column 3 and column 4 shows the results of the same four selected variables

in a simple OLS regression. It is clear that these two model differ only slightly in respect

to each of the measures with the SVR model performing marginally better except in the

MAE. In terms of adjusted R2 and MSE the SVR model performs 5.6% and 7.8% better

than the OLS model. A small but significant outperformance is achieved with the use of

SVR as the final model.

5.2 Linear Benchmark Model

In this section, I will discuss the results from the linear benchmark approach with a focus

on the model in column 4 of Table 4.5. This model presents the best linear model in term

of the performance measures and fulfills all of the Gauss-Markov assumptions.

5.2.1 Variable Selection

The best linear model consists of four variables. The US export volume is selected again

as in the best machine learning model. As explained above it is an indicator for the
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competitiveness of US economy and the state of global trade. Unlike in the machine

learning model, the one-quarter lag of the variable is selected here which represent a

minor difference and simply indicates the US export volume moves slightly ahead of the

credit cycle. Further, the variables S&P Industrial and the Services PMI reflect two main

sectors of the economy. The S&P Industrial represents the stock performance of the 73

largest listed industrial companies in the US and is a good gauge for the manufacturing

sector of the economy. It has a one-quarter lag as well and thus, is slightly ahead of the

credit cycle. The Services PMI is representative of the service sector in the economy.

The nature of the variables, as a survey, is aiming to predict future economic outcomes.

It is therefore not surprising that a long lag of one year is the best predictor for the Z-

Factor since it is constructed as leading the business and credit cycle. Finally, Liquidity

Swaps by the Fed with other central banks is among the selected variables, representing

the impact of Fed actions on credit risk. However, there is no direct economic link as this

balance sheet item does not directly affect the US market but rather international markets.

An increase in liquidity swap lines can often be observed in times of financial distress

and thus this variable shows a strong correlation with the Z-Factor but there is no direct

causation. Again, the one-quarter lag of the variable is selected. It is noticeable that all

of the variables have at least a lag of one quarter. The selection of the transformation of a

variable is happening in the pre-selection step, which is done using the Pearson correlation

as a criteria in this model and the cause for the different lag selection. With the Service

PMI and Fed Liquidity Swaps with other central banks as the final variables selected, it is

confirmed in the benchmark model that the consideration of a broad scope of variables is

advantageous, to build an accurate model.

5.2.2 Performance Comparison with SVR Model

The benchmark model and the machine learning both return their best results for the vari-

able set that is obtained through a transformation selection followed by VIF filtering. This

confirms that this is the appropriate methodology to reduce the variable candidates. When
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it comes to the model performance however, there are significant differences between the

two models. While the in-sample performance of the linear model is good and better than

the one of the SVR model, the large drop in the the out-of-sample performance for the

linear model makes it significantly worse than the SVR model. The linear model displays

a clear case of overfitting where the model loses flexibility to accurately predict new ob-

servations, due to a too tight fit in-sample. This leads to the SVR model substantially

outperforming the linear model with 50% smaller out-of-sample prediction errors.

As previously shown in Table 5.1, by applying an OLS regression to the four variables

of the best SVR model, the results only slightly differs from the SVR model results. This

is evidence that the relationship between the macroeconomic variables is linear or at least

close to linear. The large difference in performance between the linear benchmark and

the machine learning model can therefore be attributed to the variable selection process.

Here, the use of the SVR importance to select the transformation and the SVR algorithm

used for the final variable selection make the difference compared to the linear variable

selection approach using the Pearson correlation for the transformation selection and then

the lasso regression. These selection methods are more appropriate to choose between

the large amount of variables considered for this research since they avoid overfitting as

observed in the benchmark model. The allowed margin of error is the mechanism in the

SVR algorithm that allows for a more generalized mapping function between explanatory

and independent variable. A more strict mapping function such as the Pearson correlation

or the lasso regression result in variable selections that lead to overfitting models. As

mentioned above the expansion of macroeconomic variables considered played an impor-

tant part in the improvement of the model. Therefore, it is advisable to follow the variable

selection approach with an allowed margin of error, even if the final model is a linear OLS

model.
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5.3 Covariate Shift Adaptation Model

In this section, I will discuss the results of the covariate shift adaptation on the three

machine learning models presented in Table 4.6. The results of the implementation are

discussed and interpreted with regard to the simple machine learning models.

5.4 Performance Comparison with SVR Model

The covariate shift adaptation requires a new hyperparameter optimization which leads to

slightly different kernel functions but the majority remain linear, confirming the relation-

ship between the macroeconomic variables and Z-Factor is linear. Further, the allowed

margins of error are smaller and the penalization is higher for all three variable selections,

suggesting a tighter fit of the mapping function to the observations. This is consistent

with the use of sample weights in the covariate shift adaptation. The sample weights

take into account the distribution of the out-of-sample observations which allows for the

function to leave less room for observations to deviate which in turn is more accurate out-

of-sample. This is evident by the significantly better out-of-sample performance across

all three measures for the SVR pre-selection model which undoubtedly remains the best

performing model. The covariate shift implementation here reduces the MSE by 10%, the

MAE is reduced by 20% and the adjusted R2 increases by 6%. Surprisingly, the Spearman

correlation pre-selection model does not improve with the covariate shift implementation,

despite the selected variables showing a large drift between train and test sample. The RF

importance pre-selection model shows a slight improvement across the performance mea-

sures with the adjusted R2 increasing from 0 to 0.06, while the MSE is reduced marginally

by 1% and the MAE is reduced by 8%.

69





Conclusion

The approach presented in this study aims to improve the current stress testing method-

ology for corporate bonds. As Leo et al. (2019) mention, there is a lack of literature

applying machine learning techniques to identify relationships between data, and use it

for model selection and forecasting in stress testing. The presented approach offers a

more accurate credit stress testing model, adapting a machine learning methodology.

The SVR machine learning model is clearly outperforming the linear benchmark

model, due to the benchmark model strongly overfitting. The overfitting can be attributed

to the variable selection process since the SVR model variables show a similar perfor-

mance in an OLS regression as demonstrated in Table 5.1 and the relationship between

the selected variables and the Z-Factor is shown to be linear. The characteristics of the

SVR to allow for a margin of error in the regression, is better suited for the extensive

list of macroeconomic variable candidates. This results in a 50% higher out-of-sample

accuracy for the SVR model compared to the benchmark model. Both models profit from

the extensive list of considered variables, as variables that are not common in the liter-

ature or proposed by the CCAR framework are selected in the best performing models.

With the covariate shift adaptation which can account for the different distributions of the

macroeconomic variables as evident between the training and test sample, the SVR model

performance can further be improved.

With the obtained results the next step would be an application of the final model to a

base and adverse economic scenario for the selected macroeconomic variables. However,

since the NIPA profitability and Export Goods are not part of the stress testing scenarios



published by the Fed, a model would have to be constructed to obtain such scenarios.

Once the Z-Factor is estimated with such a scenario, the PIT can be derived from the

Z-Factor and with that the estimated default probability determined. Consequently, the

impact of the shock on the portfolio’s exposure at default and other measures can be

obtained.

For future research, it would be interesting to extend the model application to the

financial and the oil & gas portfolio. For these different sectors, most likely different

variables would be selected for the best model, for example one of the Fed balance sheet

variables could have a high predictive power for the financial portfolio. Energy related

variables such as the WTI price could be an important variable in the oil & gas portfolio.

Another possible research topic would be to estimate models of the corporate portfolio on

a more granular level as done by Chan-Lau (2017) for the probability of default prediction.

This could mean dividing the portfolio into industry sectors according to Table 2.2 and

using sector specific variables for the Z-Factor estimation. This has the potential for a

more accurate estimation of sector specific credit risks but a challenge that arises with

such an approach is data scarcity. A large number of obligors in each sector is required

to obtain stable transition matrices for the Z-Factor extraction and this is not the case for

every sector.

Further, a longer observation period can confirm the selected model and therefore,

testing the model on a dataset with a larger history can provide further insights. The

impact, the selection of the test and train time frame can have, becomes evident if solely

the last two observations, Q1 and Q2 of 2020 are removed. The modified test set leads

to a reduction in adjusted R2 by almost 50% compared to the previous SVR model. This

shows the sensitivity of the results to the selection of the test and training dataset and the

need for a validation of the results over a longer time frame.

The extracted Z-Factor displays first order autocorrelation as evident by the ACF and

PACF in Figure A22 in the Appendix. This is well known in the credit rating literature

as rating drift. As Bandt et al. (2013) show, an incorporation of this characteristic could

further improve the accuracy of the model. A possibility to integrate the autocorrelation
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in the model presented here, could be a hybrid ARIMA SVR model as proposed by Pai

and Lin (2005).
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Appendix

Table A1: Spearman Correlation Pre-Selection

Pre VIF Filter Post VIF Filter
US export goods vol QGrowth US export goods vol QGrowth
DSR Corps non financial QGrowth
Lag12m

DSR Corps non financial QGrowth
Lag12m

Commercial RE PI QGrowth Commercial RE PI QGrowth
BBB Spread QD Lag12m BBB Spread QD Lag12m
NIPA Profitability non financial YGrowth
Lag3m

S&P Industrial YGrowth Lag3m

Nominal GDP Growth YD Lag12m NIPA Profitability non financial YGrowth
Lag3m

S&P Industrial YGrowth Lag3m US Treasury general account YGrowth
NIPA Profitability QGrowth Lag12m ISM PMI Manufacturing YGrowth

Lag6m
Total Securities QGrowth Initial Claims QGrowth Lag9m
ISM PMI Manufacturing YGrowth
Lag6m

NIPA Profitability QGrowth Lag12m

Loans YGrowth Lag3m Total Securities QGrowth
US Treasury general account YGrowth VIX YGrowth Lag3m
ISM PMI Services YGrowth Lag12m Loans YGrowth Lag3m
VIX YGrowth Lag3m Nominal GDP Growth YD Lag12m
M2 Velocity QGrowth Lag9m Real GDP Growth Lag3m
Total Assets YGrowth M2 Velocity QGrowth Lag9m
Lending TS LM Corps Lag9m Liq. Swaps w/ CBs Lag3m
Liq. Swaps w/ CBs Lag3m Lending TS ConsCC Lag9m
Initial Claims QGrowth Lag9m ISM PMI Services YGrowth Lag12m
DJ Total SM Index YGrowth Lag3m
Lending TS ConsCC Lag9m
Real GDP Growth Lag3m

i



Table A2: Variables Selected with RF

Pre VIF Filter Post VIF Filter
Loans QGrowth Lag12m Loans QGrowth Lag12m
BBB Spread QD Lag12m S&P Industrial YGrowth Lag3m
US export goods vol YGrowth Lag3m BBB Spread QD Lag12m
Commercial RE PI QGrowth DSR Corps non financial QGrowth

Lag12m
DSR Corps non financial QGrowth
Lag12m

US export goods vol YGrowth Lag3m

ISM PMI Services YGrowth Lag12m Commercial RE PI QGrowth
NIPA Profitability QGrowth Lag12m NIPA Profitability QGrowth Lag12m
S&P Industrial YGrowth Lag3m Real GDP Growth YD Lag6m
NIPA Profitability non financial YGrowth
Lag3m

ISM PMI Services YGrowth Lag12m

Initial Claims QGrowth Lag6m Initial Claims QGrowth Lag6m
M2 Velocity QGrowth Lag9m NIPA Profitability non financial YGrowth

Lag3m
Real GDP Growth YD Lag6m M2 Velocity QGrowth Lag9m
DJ Total SM Index YGrowth Lag3m Total Securities QGrowth
Total Securities QGrowth Recession Dummy
ISM PMI Manufacturing YGrowth
Lag6m

US Treasury general account YGrowth
Lag3m

Recession Dummy Total Assets YGrowth
Total Assets YGrowth Lending TS ConsCC Lag9m
Lending TS ConsCC Lag9m VIX QGrowth Lag6m
Nominal GDP Growth YD Lag6m Lending TS LM Corps Lag9m
US Treasury general account YGrowth
Lag3m

Liq. Swaps w/ CBs Lag3m

Lending TS LM Corps Lag9m ISM PMI Manufacturing YGrowth
Lag6m

VIX QGrowth Lag6m
Liq. Swaps w/ CBs Lag3m
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Table A3: Support Vector Regression Pre-Selection

Pre VIF Filter Post VIF Filter
BBB Spread QD Lag12m BBB Spread QD Lag12m
NIPA Profitability non financial QGrowth
Lag12m

NIPA Profitability non financial QGrowth
Lag12m

US export goods vol QGrowth ISM PMI Manufacturing YGrowth
Lag3m

Commercial RE PI QGrowth DSR Corps non financial QGrowth
Lag12m

ISM PMI Manufacturing YGrowth
Lag3m

M2 Velocity QGrowth Lag12m

DSR Corps non financial QGrowth
Lag12m

Commercial RE PI QGrowth

ISM PMI Services YGrowth Lag12m NIPA Profitability YGrowth Lag3m
NIPA Profitability YGrowth Lag3m S&P Industrial YGrowth Lag3m
M2 Velocity QGrowth Lag12m US Treasury general account QGrowth

Lag3m
US Treasury general account QGrowth
Lag3m

US export goods vol QGrowth

Initial Claims QGrowth Initial Claims QGrowth
Recession Dummy Total Securities QGrowth
DJ Total SM Index YGrowth Lag3m Lending TS ConsCC Lag9m
S&P Industrial YGrowth Lag3m ISM PMI Services YGrowth Lag12m
Total Securities QGrowth Lending TS LM Corps Lag9m
Lending TS ConsCC Lag9m Nominal GDP Growth Lag3m
Loans Lag3m Recession Dummy
Total Assets QGrowth Lag3m VIX QGrowth Lag6m
Liq. Swaps w/ CBs Lag3m
Lending TS LM Corps Lag9m
Real GDP Growth Lag3m
Nominal GDP Growth Lag3m
VIX QGrowth Lag6m
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Table A4: Importance Measures for Variable Selection in RF Pre-Selection Model before
VIF Filter

Permutation Importance Drop-Column Importance Shapley Value
S&P Industrial
YGrowth Lag3m

0.09 Loans QGrowth
Lag12m

0.03 NIPA Profitability
QGrowth Lag12m

0.10

DSR Corps non
financial QGrowth
Lag12m

0.09 BBB Spread QD
Lag12m

0.01 DSR Corps non
financial QGrowth
Lag12m

0.09

BBB Spread QD
Lag12m

0.09 US export goods
vol YGrowth
Lag3m

0.01 S&P Industrial
YGrowth Lag3m

0.09

NIPA Profitability
QGrowth Lag12m

0.08 Commercial RE PI
QGrowth

0.01 US export goods
vol YGrowth
Lag3m

0.08

Loans QGrowth
Lag12m

0.08 DSR Corps non
financial QGrowth
Lag12m

0.01 BBB Spread QD
Lag12m

0.08

US export goods
vol YGrowth
Lag3m

0.08 ISM PMI Services
YGrowth Lag12m

0.01 Loans QGrowth
Lag12m

0.07

Liq. Swaps w/ CBs
Lag3m

0.08 NIPA Profitability
QGrowth Lag12m

0.01 ISM PMI Manu-
facturing YGrowth
Lag6m

0.07

ISM PMI Manu-
facturing YGrowth
Lag6m

0.06 S&P Industrial
YGrowth Lag3m

0.01 Nominal GDP
Growth YD Lag6m

0.06

Commercial RE PI
QGrowth

0.06 NIPA Profitabil-
ity non financial
YGrowth Lag3m

0.00 Commercial RE PI
QGrowth

0.06

Nominal GDP
Growth YD Lag6m

0.05 Initial Claims
QGrowth Lag6m

0.00 NIPA Profitabil-
ity non financial
YGrowth Lag3m

0.06
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Figure A1: Cross-Validation Results for best Spearman Correlation Model

(a) MSE

(b) MAE

(c) R2
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Figure A2: Cross-Validation Results for best RF Model

(a) MSE

(b) MAE

(c) R2
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Figure A3: Cross-Validation Results for lambda Selection in Lasso

(a) VIF Filtered Set - MSE

(b) VIF Filtered Set - MAE

(c) Pearson Correlation Set - MSE

(d) Pearson Correlation Set - MSE
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Table A5: Importance Measures for Variable Selection in RF Pre-Selection Model after
VIF Filter

Permutation Importance Drop-Column Importance Shapley Value
S&P Industrial
YGrowth Lag3m

0.11 Loans QGrowth
Lag12m

0.03 S&P Industrial
YGrowth Lag3m

0.11

BBB Spread QD
Lag12m

0.10 S&P Industrial
YGrowth Lag3m

0.01 US export goods
vol YGrowth
Lag3m

0.09

Liq. Swaps w/ CBs
Lag3m

0.09 BBB Spread QD
Lag12m

0.01 BBB Spread QD
Lag12m

0.09

Loans QGrowth
Lag12m

0.09 DSR Corps non
financial QGrowth
Lag12m

0.01 NIPA Profitability
QGrowth Lag12m

0.09

US export goods
vol YGrowth
Lag3m

0.08 US export goods
vol YGrowth
Lag3m

0.01 Real GDP Growth
YD Lag6m

0.09

DSR Corps non
financial QGrowth
Lag12m

0.08 Commercial RE PI
QGrowth

0.01 DSR Corps non
financial QGrowth
Lag12m

0.08

NIPA Profitability
QGrowth Lag12m

0.08 NIPA Profitability
QGrowth Lag12m

0.01 Loans QGrowth
Lag12m

0.08

Real GDP Growth
YD Lag6m

0.08 Real GDP Growth
YD Lag6m

0.01 Commercial RE PI
QGrowth

0.07

Commercial RE PI
QGrowth

0.07 ISM PMI Services
YGrowth Lag12m

0.01 ISM PMI Services
YGrowth Lag12m

0.06

US Treasury
general account
YGrowth Lag3m

0.06 Initial Claims
QGrowth Lag6m

0.00 NIPA Profitabil-
ity non financial
YGrowth Lag3m

0.06
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Table A6: Spearman Correlation Pre-Selection Model Performance before and after VIF
Filter

Transformation Selection Pre VIF Filter Post VIF Filter

Variables US export goods vol
QGrowth, DSR Corps non
financial QGrowth
Lag12m, BBB Spread QD
Lag12m

US export goods vol
QGrowth, DSR Corps non
financial QGrowth
Lag12m, BBB Spread QD
Lag12m

Hyperparameters Kernel=sigmoid, C=3,
ε=0.1, γ=0.001
Kernel=sigmoid, C=3,
ε=0.1, γ=0.001
Kernel=rbf, C=2, ε=0.1,
γ=0.001

Kernel=sigmoid, C=3,
ε=0.1, γ=0.001
Kernel=sigmoid, C=3,
ε=0.1, γ=0.001
Kernel=rbf, C=2, ε=0.1,
γ=0.001

CV-MSE 1.0340 1.0340
CV-MAE 0.7258 0.7258
CV-adj. R2 0.174 0.174

OOS Performance - Candidate Model 1
MSE 0.4 0.4
MAE 0.5 0.5
adj. R2 0.49 0.49

OOS Performance - Candidate Model 2
MSE 0.43 0.43
MAE 0.50 0.5
adj. R2 0.46 0.46
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Table A7: RF Importance Pre-Selection Model Performance before and after VIF Filter

Transformation Selection Pre VIF Filter Post VIF Filter

Variables NIPA Profitability
QGrowth Lag12m, DSR
Corps non financial
QGrowth Lag12m, BBB
Spread QD Lag12m,
Loans QGrowth Lag12m

US export goods vol
YGrowth Lag3m, BBB
Spread QD Lag12m, S&P
Industrial YGrowth
Lag3m

Hyperparameters Kernel=sigmoid, C=1,
ε=0.6, γ=0.0001
Kernel=sigmoid, C=1,
ε=0.8, γ=0.0001
Kernel=sigmoid, C=1,
ε=0.6, γ=0.0001

Kernel=linear, C=2, ε=0.4
Kernel=linear, C=2, ε=0.4
Kernel=linear, C=2, ε=0.4

CV-MSE 3.9498 0.4628
CV-MAE 0.8581 0.5750
CV-adj.R2 -2.1501 0.6308

OOS Performance - Candidate Model 1
MSE 0.71 0.8
MAE 0.71 0.74
adj.R2 0 0

OOS Performance - Candidate Model 2
MSE 0.74
MAE 0.93
adj. R2 0
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Table A8: SVR Importance Pre-Selection Model Performance before and after VIF Filter

Transformation Selection Pre Vif Filter Post VIF Filter

Variables US export goods vol
QGrowth, NIPA
Profitability non financial
QGrowth Lag12m

NIPA Profitability non
financial QGrowth
Lag12m, Commercial RE
PI QGrowth, BBB Spread
QD Lag12m, US export
goods vol QGrowth

Hyperparameters Kernel=rbf, C=5, ε=0.5,
γ=0.001 Kernel=rbf, C=5,
ε=0.5, γ=0.001
Kernel=rbf, C=5, ε=0.5,
γ=0.001

Kernel=linear, C=1, ε=0.5
Kernel=linear, C=1, ε=0.5
Kernel=linear, C=1, ε=0.5

CV-MSE 0.8384 0.4579
CV-MAE 0.6494 0.5382
CV-adj.R2 0.3223 0.6348

OOS Performance - Candidate Model 1
MSE 0.34 0.3
MAE 0.43 0.45
adj. R2 0.57 0.62
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Table A9: Linear Model Performance for VIF filtered Pre-selection

Transformation
Selection

Variables VIF
Filtered
Variables

VIF Filtered &
significant

Reduction to 4
Variables

Reduction to 3
Variables

Variables No variable
removes (22)

S&P Industrial
QGrowth
Lag3m, S&P
Industrial
QGrowth
Lag6m, S&P
Industrial
QGrowth
Lag9m, . . .
(11)

S&P Industrial
QGrowth
Lag9m, VIX
Ygrowth
Lag3m, VIX
Ygrowth
Lag12m, Real
GDP Growth
YD Lag6m

S&P Industrial
QGrowth
Lag9m, VIX
Ygrowth
Lag12m, Real
GDP Growth
YD Lag6m

Lambda 0.02 0.02 0.5 0.55

IS-MSE 0.0954 0.142 0.4181 0.4851
IS-MAE 0.2265 0.3055 0.4922 0.5647
IS-adj.R2 0.8772 0.8102 0.4621 0.3758

OOS-MSE 1.033 1.059 1.121 1.111
OOS-MAE 0.9438 0.9391 0.9008 0.8883
OOS-R2 adj. 0 0 0 0

Table A10: Best Spearman Correlation Model Importance Measures

Variable Permutation
Importance

Drop-Column
Importance

Shapley
Value

BBB Spread QD Lag12m 0.04 0.04 0.10
DSR Corps non financial QGrowth
Lag12m

0.03 0.01 0.12

US export goods vol QGrowth 0.02 0.02 0.11

Table A11: Best RF Model Importance Measures

Variable Permutation
Importance

Drop-Column
Importance

Shapley
Value

BBB Spread QD Lag12m 0.001 0.001 0.11
NIPA Profitability QGrowth Lag12m 0.0006 0.0007 0.08
Loans QGrowth Lag12m 0.0007 0.0006 0.025
DSR Corps non financial QGrowth
Lag12m

0.0003 0.0003 0.09
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Figure A4: In-Sample Performance of best Spearman Correlation Model

Figure A5: Out-of-Sample Performance of best Spearman Correlation Model
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Figure A6: In-Sample Performance of best Spearman Correlation Model with MEVs

Figure A7: Out-of-Sample Performance of best Spearman Correlation Model with MEVs
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Figure A8: In-Sample Performance of best RF Model

Figure A9: Out-of-Sample Performance of best RF Model
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Figure A10: In-Sample Performance of best RF Model with MEVs

Figure A11: Out-of-Sample Performance of best RF Model with MEVs
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Figure A12: In-Sample Performance of best Benchmark Model

Figure A13: Out-of-Sample Performance of best Benchmark Model
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Figure A14: In-Sample Performance of best Benchmark Model with MEVs

Figure A15: Out-of-Sample Performance of best Benchmark Model with MEVs
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Figure A16: In-Sample Performance of best Covariate Shift Model

Figure A17: Out-of-Sample Performance of best Covariate Shift Model
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Figure A18: In-Sample Performance of best Covariate Shift Model with MEVs

Figure A19: Out-of-Sample Performance of best Covariate Shift Model with MEVs
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Figure A20: Dependency Plots for best SVR Model

(a) BBB Spread (b) Commercial RE PI

(c) NIPA non-financial Profitability (d) US Export Goods Volume

Figure A21: Sample Weights for SVR Covariate Shift Model
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Table A12: Gauss-Markov Assumptions for VIF Filtered Variable Set

Transformation
Selection

VIF Filtered VIF Filtered &
significant

Reduction to 4
variables

Reduction to 3
Variables

Normality of
residuals
(Jarque Bera
Test, SW)

JB p-Value
=0.67 X, SW
p-value = 0

JB p-Value
=0.95 X, SW
p-value = 0

JB p-Value
=0.94 X, SW
p-value =
0.002

JB p-Value
=0.89 X, SW
p-value = 0.03

Multicollineari-
ty
(VIFs)

Multiple VIFs
above 5

All VIFs
below 5 X

All VIFs
below 5 X

All VIFs
below 5 X

Homoskedasti-
city (Breusch-
Pagan &
Goldfeld-
Quandt
Test)

BP P-Value =
0.99 X, GQ
P-Value = nan

BP P-Value =
0.80 X, GQ
P-Value = 0.19
X

BP P-Value =
0.34 X, GQ
P-Value = 0.25
X

BP P-Value =
0.26 X, GQ
P-Value = 0.46
X

Autocorrelation
of Residuals
(Durbin
Watson Test)

Test statistic =
2.69

Test statistic =
2.32X

Test statistic =
1.47 X

Test statistic =
1.47 X
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Table A13: Gauss-Markov Assumptions for VIF Filtered & Pearson Correlation Selection
Variable Set

Transformation
Selection

VIF Filtered VIF Filtered &
significant

Reduction to 4
variables

Reduction to 3
Variables

Normality of
residuals
(Jarque Bera
Test)

JB p-Value
=0.38 X, SW
p-value = 0.00

JB p-Value
=0.65 X, SW
p-value = 0.1
X

JB p-Value
=0.38 X, SW
p-value = 0.00

JB p-Value
=0.79 X, SW
p-value = 0.00

Multicollineari-
ty
(VIFs)

All VIFs
below 5 X

All VIFs
below 5 X

All VIFs
below 5 X

All VIFs
below 5 X

Homoskedasti-
city (Breusch-
Pagan &
Goldfeld-
Quandt
Test)

BP P-Value =
0.24 X, GQ
P-Value = 0.08
X

BP P-Value =
0.26 X, GQ
P-Value = 0.25
X

BP P-Value =
0.15 X, GQ
P-Value = 0.08
X

BP P-Value =
0.35 X, GQ
P-Value = 0.2
X

Autocorrelation
of Residuals
(Durbin
Watson Test)

Test statistic =
2.03 X

Test statistic =
2.11 X

Test statistic =
2.16 X

Test statistic =
2.05 X
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Figure A22: Z-Factor Autocorrelation
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