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Résumé

Ce mémoire présente une extension du modèle hybride avec changement de régime

de Bégin et al. (2014) afin d’étudier la contagion financière à l’intérieur d’un portefeuille

composé de 24 grandes banques américaines. Plus précisément, le projet consiste à im-

plémenter la version bivariée du modèle hybride avec changement de régime permettant

de capter les corrélations endogènes entre chaque paire de firmes composant le porte-

feuille à l’étude. En utilisant des séries chronologiques de primes de CDS de Janvier

2005 à Décembre 2012, le modèle déduit les ratios d’endettement et les régimes basé

sur le filtre de Kalman inodore et l’estimation du maximum de vraisemblance. Ensuite,

les corrélations endogènes entre les firmes sont estimées à partir des co-mouvements des

ratios d’endettement. Les résultats de l’analyse empirique stipulent que les entreprises

sont plus corrélées pendant le régime de forte volatilité suggérant l’existence de conta-

gion au sein du secteur financier américain au cours de la dernière crise de 2007-2009.

De plus, le modèle est capable de dériver les séries chronologiques des probabilités de

défaut qui indiquent la tendance du risque au niveau individuel. Bref, ces résultats

présentent des implications majeures pour la gestion du risque de crédit puisque la

contagion financière peut avoir des conséquences importantes dans les portefeuilles sen-

sibles au crédit.

Mots clés : changement de régime, risque de crédit, probabilité de défaut, estima-

tion de corrélations, contagion financière, filtre de Kalman inodore.
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Abstract

This thesis presents an empirical analysis of contagion within the financial sector in

the United States during the last global crisis of 2007-2009. To this end, we propose a

multivariate extension of the Markov-switching hybrid credit risk model of Bégin et al.

(2014), which allows to study the interdependence among a group of major U.S. finan-

cial institutions. Using time series of credit default swap (CDS) premiums from January

2005 to December 2012, the model infers the market log-leverage ratios and regimes, and

allows to endogenously capture pairwise correlations from log-leverages’ co-movements

based on the unscented Kalman filter (UKF) and quasi-maximum likelihood estimation.

The results of the empirical analysis show that firms are more correlated during high

volatility regime suggesting the existence of contagion within the U.S. financial sector

during the last crisis. In addition, the model is able to derive the firms’ probabilities of

default as well as the recovery risk that indicate the risk trend at the individual level.

These results present major implications for risk management practices since financial

contagion can lead to important consequences in credit-sensitive portfolios.

Keywords : Regime switching ; Portfolio credit risk ; Probability of default ; Cor-

relation ; Contagion ; Credit ratings ; Unscented Kalman filter (UKF).
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Introduction

Le risque de crédit est défini comme étant le risque de perte financière inhérent au

défaut d’un emprunteur par rapport au remboursement de ses dettes. Depuis la fin des

années 1990, le marché du risque de crédit est en pleine expansion. Dans ce marché, des

produits dérivés financiers sont échangés dans le but d’obtenir une protection contre

le risque de défaut d’une ou de plusieurs contreparties, généralement des entreprises.

Parmi ces produits dérivés, le Credit Default Swap (CDS) est le plus répandu. Ce der-

nier est un contrat d’échange par lequel le vendeur de protection s’engage à dédommager

l’acheteur en cas de défaut d’une contrepartie et ce, contre le paiement d’une prime.

En raison de la popularité toujours grandissante des CDS, les recherches se sont multi-

pliées quant à la modélisation et à l’évaluation du risque de crédit. Il n’en demeure pas

moins que la crise financière de 2007-2009 a témoigné d’un énorme manque d’efficacité

des modèles déjà existants. En effet, le défaut d’importants vendeurs de protection a

affecté de nombreux participants de marché et a entrainé des effets de domino en raison

de l’interdépendance entre les différentes entreprises. Par conséquent, la modélisation

du risque de crédit doit impérativement considérer l’interdépendance qui existe entre

les grandes institutions financières afin d’assurer la stabilité du secteur bancaire.

Dans le cadre du présent projet de recherche, l’implémentation d’une extension bi-

variée du modèle hybride avec changement de régime de Markov proposé par Bégin

et al. (2014) permet d’estimer le risque de contagion de 24 grandes firmes américaines

durant la période 2005-2012. Pour ce faire, deux paramètres clé sont considérés afin

de déterminer le profile de risque du portefeuille. Tout d’abord, le premier paramètre
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indique la tendance du risque au niveau individuel et il réfère à la probabilité de défaut

de l’entreprise ainsi qu’à son inter-relation avec le taux de recouvrement. Ensuite, le

deuxième paramètre consiste en l’interdépendance entre les firmes et il est mesuré à

partir de la structure de corrélation des log-ratios d’endettements.

Le modèle hybride avec changement de régime de Markov est basé sur l’approche

de Boudreault et al. (2013) dans laquelle le taux de recouvrement, advenant un défaut,

est endogène. Ce dernier permet de capter l’effet de surprise dans le moment de défaut

ainsi que le processus d’intensité qui dépend de la valeur des actifs et des passifs de

l’entreprise. À partir de ce modèle, Bégin et al. (2014) introduisent une dynamique de

changement de régime de Markov au log-ratio d’endettement permettant de distinguer

les périodes stables des périodes à haute volatilité.

La contribution principale de ce mémoire consiste en une nouvelle approche d’ana-

lyse de l’interdépendance dans le secteur financier aux États-Unis pendant la dernière

crise de 2007-2009. Basé sur une version bivariée à changement de régime, le modèle in-

fère les log-ratios d’endettement et les régimes à partir de primes de CDS observées sur

le marché. Les paires de corrélations sont ensuite estimées à partir des co-mouvements

dans les séries chronologiques des log-ratios d’endettement en utilisant des techniques

de filtrage ainsi que la méthode du maximum de vraisemblance. Finalement, l’applica-

tion empirique à un groupe d’importantes institutions financières américaines montre

une augmentation de la corrélation pendant le régime à haute volatilité, ce qui suggère

l’existence de la contagion durant la dernière crise financière.
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Correlation Analysis of Financial Contagion in
a Markov-Switching Hybrid Credit Risk Model

Boudreault Mathieu ∗ , Doljanu Delia Alexandra † , Gauthier Geneviève ‡

February 2015

Abstract
This paper presents an empirical analysis of contagion within the financial sector in the

United States during the last global crisis of 2007-2009. To this end, we propose a multivari-
ate extension of the Markov-switching hybrid credit risk model of Bégin et al. (2014), which
allows to study the interdependence among a group of major U.S. financial institutions. Using
time series of credit default swap (CDS) premiums from January 2005 to December 2012, the
model infers the market log-leverage ratios and regimes, and allows to endogenously capture
pairwise correlations from log-leverages’ co-movements based on the unscented Kalman filter
(UKF) and quasi-maximum likelihood estimation. The results of the empirical analysis show
that firms are more correlated during high volatility regime suggesting the existence of conta-
gion within the U.S. financial sector during the last crisis. In addition, the model is able to
derive the firms’ probabilities of default as well as the recovery risk that indicate the risk trend
at the individual level. These results present major implications for risk management prac-
tices since financial contagion can lead to important consequences in credit-sensitive portfolios.

Keywords: Regime switching; Portfolio credit risk; Probability of default; Correlation; Con-
tagion; Credit ratings; Unscented Kalman filter (UKF).

1 Introduction
The recent financial crisis of 2007-2009 has highlighted serious negative consequences for the

global economy due to interconnectedness of large financial institutions. Indeed, the crisis clearly
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demonstrated the lack of adequate indicators for monitoring and measuring the risk of contagion
within the financial industry. Since Basel II failed to provide a regulatory framework at the macro-
prudential level, Basel III introduced enhanced requirements to mitigate the risk of contagion from
the banking sector throughout the whole financial system.

Given the importance of the topic, there is an extensive literature focusing on contagion analysis
during periods of financial distress. On one hand, numerous studies are devoted to find evidence
to the existence of contagion. On the other hand, other researches try to uncover the drivers of
transmission of the crisis across different firms or countries. For complete surveys on contagion
analysis methodologies, we refer to Pericoli and Sbracia (2003), Dungey et al. (2005) and Forbes
(2012). In addition, an extensive review of the literature is presented in the next section. However,
the starting point of all models measuring and monitoring financial contagion is to set a credit
risk framework allowing to capture the main determinants of default. To this end, various credit
risk models have been proposed in the literature that have been historically divided into two cate-
gories. First, structural models link the credit events to the firm’s economic fundamentals assuming
default occurs when the firm’s value falls through some boundary. Second, reduced-form models
consider the surprise element of the default trigger, which is exogenously given through a default
rate or intensity. Although they provide a better fit to market data than structural approach does,
reduced-form methodology lacks the economic and financial intuition of the structural framework.

To overcome the limitations of both traditional approaches while retaining the main strengths
of each, hybrid credit risk models have recently emerged in the literature. Duffie and Lando (2001)
have introduced one major class of hybrid models, known as incomplete information models. Their
approach mainly addresses the structural framework’s issue about the unavailability of observations
on the firm’s value process. Then, the authors propose a first-passage time model where market
participants have noisy estimates of the firm value and the default intensity depends on observ-
able variables related to the balance-sheet fundamentals of the firm. In a similar way, Çetin et al.
(2004) study the case where investors receive a reduced version of the information available to firm’s
managers rather than noisy information. Other significant contributions to this class of models in-
clude papers of Giesecke and Goldberg (2003) and Giesecke (2006), where the default threshold,
considered random or constant respectively, is unobserved. However, the main idea of incomplete
information models is that the firm’s assets and/or the default barrier are not observable data to
investors.

Other innovations have been devoted to hybrid credit risk models. Among others, let us mention
the papers of Madan and Unal (2000) and Boudreault et al. (2013). In the former paper, authors
propose a model based on the reduced-form methodology with the additional feature that directly
links the hazard rate of default event to the current firm’s value. This implies that the likelihood
of default increases as the firm’s value approaches some threshold. In the latter paper, authors
describe a hybrid credit risk model in which both the recovery rate and the default intensity, which
is defined from a simple transformation of the firm’s leverage, are driven by a Markov-process.
However, inspired by the structural framework, both papers link the default intensity to the firm’s
fundamentals.
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Although numerous single-firm approaches exist for measuring the credit risk, it is now well
known that the stability of the banking system cannot be guaranteed by simply considering the
individual bank level. Indeed, distress of a single bank may cause a cascade of defaults throughout
the financial system that results in greater damage to the banking system than the initial bank
distress. Therefore, measuring dependence between firms is an essential feature of a credit risk
model. As a result, several studies have investigated the interrelations between different entities
in a portfolio approach. For example, Boudreault et al. (2014) consider two layers of dependence
within a bond portfolio. First, authors analyze the presence of correlations among firm leverage ra-
tios as well as the interrelation between default probabilities and recovery rates. Second, a Clayton
copula is used to further create dependence between credit events. The main finding is that corre-
lations between leverage ratios lead to default clusters along with low recovery rates responsible for
extreme loss events, which are mainly observed in the extreme tail of the distribution. However,
the model assumes that correlation among firms is constant over time. Another contribution to this
strand of literature includes the work of Duffie and Gârleanu (2001). Within a portfolio of financial
contracts, the authors consider a reduced-form model and address the dependence among defaults
through correlated intensities driven by common factors. However, this approach assumes a condi-
tional independence structure, i.e. defaults are independent conditionally on the evolution of the
common variables and therefore, contagion effects cannot be captured. In addition to academic re-
searches, other contributions include professional models such as Moody’s-KMV and CreditMetrics.

In this paper, we propose a multivariate extension of the Markov-switching hybrid model of Bé-
gin et al. (2014) for measuring the credit risk among 24 major U.S. financial institutions during the
sample period 2005-2012. Three key parameters are considered to determine the risk profile of the
portfolio. The first ones indicate the risk trend at the individual level and refer to the probability
of default and the recovery risk, as well as the link between both of them. The third parameter
is related to the interdependence among institutions and is measured through regime-dependent
correlations between firm’s log-leverages.

The Markov-switching hybrid credit risk model is based on the shell approach of Boudreault
et al. (2013). Essentially, the shell allows for an endogenous recovery rate to capture the surprise
element in the default trigger, as well as an intensity process that depends on the firm’s assets
and liabilities. However, Bégin et al. (2014) introduce Markov-switching dynamics to the firm’s
log-leverage allowing the model to capture stable and turbulent time periods, depending on low and
high volatility respectively 1. Moreover, the model is forward-looking since it uses current market
information that reflects future prospects of the firms.

The main contributions of this paper are as follows. First, a novel approach is proposed to
analyze the interdependence within the financial sector in the United States during the last global
crisis. Based on a bivariate regime-switching framework, the model infers the market log-leverage
ratios and regimes from CDS time series, and allows to endogenously capture pairwise correlations
from log-leverages’ co-movements using filtering techniques and maximum likelihood estimation.

1. According to Ericsson et al. (2009), the main determinants of default are firm leverage, volatility and the
riskless interest rate.
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Second, the empirical application on a set of top U.S. financial institutions shows that firms are
more correlated during high volatility regime suggesting the existence of contagion during the last
financial crisis.

The remainder of this paper is organized as follows. Section 2 provides a review of the literature
devoted to contagion analysis methodologies. Section 3 describes the bivariate framework of the
Markov-switching hybrid credit risk model. Section 4 first introduces the data and estimation
procedure. Then, empirical results based on a portfolio constituted of 24 major U.S. financial
institutions are presented. Finally, the last section concludes.

2 Review of the Literature
There is an extensive literature focusing on contagion analysis during periods of financial dis-

tress. While views on the precise definition of contagion differ in the empirical literature, there
is a consensus that the phenomenon is generally associated with the increased co-movements in
the returns of risky assets. According to Forbes and Rigobon (2002), contagion occurs when the
correlation between two economic or financial entities increases significantly after a financial shock
in comparison to the stable period preceding that shock. However, the authors mention that tests
for contagion may be biased since crises tend to generate high volatility and therefore, stronger
co-movements do not necessarily reflect transmission shocks. Without correcting for the effects of
heteroskedasticity, the increase in correlation may simply represent an increase in market volatility.
More precisely, Boyer et al. (1999) specify that bias occurs when a data sample is split according
to the observed values alone, without respect to the stationarity properties of the sample. In order
to avoid such problems in terms of correlation tests for contagion analysis, the authors mention,
among other methods, the use of Markov regime switching models with different parameters for
both stable and turbulent time periods.

Following the definition of contagion mentioned above, numerous papers have contributed to
contagion phenomena analysis during periods of financial distress. For example, Chiang et al.
(2007) apply a multivariate GARCH model to measure time-varying conditional correlations dur-
ing the Asian crisis of the late 1990s. The shift in the level as well as in the variance of correlation
coefficients during the crisis indicates the existence of contagion in the Asian market. Another
contribution is the paper of Corsetti et al. (2005) that uses a standard factor model to study the
international transmission of shocks from the Hong Kong stock market crisis in 1997. The authors
find empirical evidence of contagion during the crisis by analyzing correlations of market returns in
Hong Kong with the market returns for other emerging economies and G7 countries. There are also
several studies on contagion covering times of financial turmoil that rely on the use of copulas to
add dependence in credit events. A major contribution is the work of Rodriguez (2007) that uses
a copula approach with regime-switching parameters based on returns of stock indices in Asia and
Latin America. In terms of Forbes and Rigobon’s (2002) definition, the author provides evidence of
contagion during the Asian and Mexican crises explained by significant changes in the dependence
structure between stock market returns. More recently, Brechmann et al. (2013) use vine copulas to
explore contagion and interdependencies of CDS spreads in the global financial market. By studying



7

an international portfolio of 20 insurers and 18 banks, authors find that the default of a bank seems
to constitute a more important systemic risk than the default of an insurer.

As contagion phenomena are usually associated to systemic risk, many empirical studies devoted
to that field are relevant to our paper. According to Bandt and Hartmann (2000), « the notion of
contagion is at the heart of the systemic risk concept and can be defined as a particularly strong
propagation of failures from one institution, market or system to another ». In what follows, the
empirical systemic risk literature focusing on financial contagion is divided into two parts: mod-
els based on the network approach and models studying co-movements in the returns of risky assets.

First, models based on network analysis have recently become very popular in the empirical
systemic risk literature. By considering the structure of financial linkages between banks, network
models allow for easy tracking of the domino effects triggered by individual bank failures and pro-
vide quantitative methodology for capital losses estimation. To date, several interesting results have
emerged from this research area. First, Chan-Lau (2010) finds that highly interconnected institu-
tions are a major source of contagion during the last financial crisis. In the same vein, Markose et al.
(2012) claim that applying stress in the core of the network, which presents the highest density of
interconnections, has extremely bad consequences on the financial system while peripheral stress
has little effect. Second, Nier et al. (2008) argue that the banking system is more resilient against
contagion defaults when institutions are better capitalized. Furthermore, authors show evidence,
along with Gai and Kapadia (2010), that greater connectivity within networks may reduce the prob-
ability of contagion, but it can also increase the shocks’ spread when failures occur. Network models
also highlight that bank size is part of the main sources of contagion, but needs to be considered
along with other determinants such as interconnectedness and concentration of exposures across
counterparties [see Cont et al. (2010) and Moussa (2011)] or firm-specific probability of default and
exposures to common risk factors [see Tarashev et al. (2010)]. This result is in accordance with a
recent study of Fund et al. (2009) arguing that systemically important financial institutions are not
limited to those that are the largest, but also financial institutions that present higher interconnect-
edness. Finally, let us mention the recent contribution of Billio et al. (2012). By using principal
components analysis and Granger-causality networks, authors quantify the interdependence during
the recent crisis between four groups of financial institutions: hedge funds, brokers, banks and in-
surers. As mentioned by authors, such indirect measures are capable to capture periods of market
dislocation and distress. Their empirical results suggest that the banking and insurance sectors
are more important sources of connectedness than other financial institutions. Although network
approach presents interesting results, it suffers from the major drawback that detailed information
about interbank exposures is required to construct the financial linkages between banks. As a re-
sult, such models have to deal with extremely complex networks of relationships. Moreover, the
behaviour of financial institutions is generally considered static over time.

Second, there are several studies on systemic risk during periods of financial distress that rely,
directly or indirectly, on the degree of co-movements in the returns of risky assets. For exam-
ple, Huang et al. (2009) and Huang et al. (2012) construct a systemic risk indicator based on the
probability of default of individual banks and the asset return correlations among banks, which
are estimated from CDS spreads and equity price co-movements, respectively. Both studies cover
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the last financial crisis and are conducted on 12 large U.S. banks and 22 large Asia-Pacific banks,
respectively. The first paper shows evidence of a substantial increase in systemic risk corresponding
to the inception of the subprime crisis. The second paper validates that the size effect is a major
factor in assessing the systemic importance of individual banks.

Finally, important contributions in systemic risk literature rely on other mechanisms than con-
tagion to study the role played by interconnectedness across the U.S. financial sector during the last
global crisis. For example, Adrian and Brunnermeier (2009) introduce the concept of CoVaR that
measures the value at risk (VaR) of the financial system conditional on the distress of a specific
firm. By using correlation, this measure captures spillovers of risk across all financial institutions.
However, authors do not take into consideration the different behaviour of CoVaR during stable
and crisis periods over which correlations are measured. Another contribution in that field is the
systemic expected shortfall (SES) proposed by Acharya et al. (2010) that measures the expected
loss to each institution conditional on the undercapitalization of the entire financial system. Based
on an empirical study conducted among 102 U.S. financial firms, authors demonstrate the ability
of SES to predict systemic risk during the last financial crisis.

In light of the extensive review of methodologies exploring financial contagion and systemic risk,
this paper contributes to the existing literature in twofold. First, the empirical study on contagion
focuses exclusively on the financial sector in the United States and covers three time periods: a
pre-crisis period, a crisis period and a post-crisis period. Based on CDS spreads, the paper analyzes
the systematic risk rather than systemic risk as generally investigated in the current literature.
More specifically, the portfolio’s systematic risk refers to an increase in risk that occurs through an
uniform reaction at the firm level following a common shock. For the purpose of contagion analysis,
a second contribution of this paper consists in the multivariate extension of the Markov-switching
hybrid credit risk framework providing a complete and flexible tool in terms of risk management.
Indeed, while being able to model at a firm level an endogenous stochastic recovery rate negatively
correlated with the probability of default (both depending on the leverage ratio), the framework is
also capable to capture the contagion effect in a portfolio approach.

3 Bivariate Markov-Switching Model
The bivariate Markov-switching model combines the regime-switching univariate framework of

Bégin et al. (2014), as well as the portfolio hybrid default risk approach of Boudreault et al. (2014).
Therefore, the first part of this section is devoted to the bivariate extension of the univariate Markov-
switching framework, while the second part describes the portfolio hybrid credit risk model.

3.1 Bivariate Markov-Switching Framework
As a starting point to the model, assume that the total value of the assets of a specific firm is

described by the discrete-time stochastic process {At : t ∈ {1, 2, ..., T}}, and its obligations toward
creditors are represented by the liabilities discrete-time stochastic process {Lt : t ∈ {1, 2, ..., T}}.
Moreover, the behaviour of both assets and liabilities is assumed to be driven by a hidden Markov



9

process {st : t ∈ {1, 2, ..., T}}. Suppose now that we have K firms across the portfolio and assume
that st are K independent first-order Markov chains. If p(i)

11 denotes P
(
s

(i)
t = 1 | s(i)

t−1 = 1
)
and p(i)

22

denotes P
(
s

(i)
t = 2 | s(i)

t−1 = 2
)
for a specific firm i with i ∈ {1, ..., K}, the regime state s(i)

t has the
following transition matrix

P(i) =
[

p
(i)
11 1− p(i)

11
1− p(i)

22 p
(i)
22

]
. (1)

Then, define Gt = σ(Au, Lu, su : u ∈ {1, 2, ..., t}) as the σ–field generated by A, L, and s with
the usual regularity conditions. Thus, the leverage ratio Xt ≡ Lt/At results in a Gt–adapted
discrete-time stochastic process {Xt : t ∈ {1, 2, ..., T}}. Finally, the model also assumes that the
log-leverage time series of a specific firm i, denoted by x(i)

t ≡ ln(X(i)
t ), follows a first-order two-state

Markov-switching process such as

x
(i)
t = x

(i)
t−1 +

(
µ(i) − 1

2
(
σ

(i)
s

(i)
t

)2
)

∆t+ σ
(i)
s

(i)
t

√
∆tε(i)t , i ∈ {1, ..., K} , (2)

where s(i)
t ∈ {1, 2} is the regime state at time t of firm i, ∆t represents the elapsed time between

two consecutive observations, and
(
ε

(i)
t

)∞
t=1

is a standardized Gaussian noise series. The drift µ(i)

as well as regime diffusions σ(i)
1 and σ(i)

2 are firm-specific parameters to be estimated. Recall that,
depending on the modelling objective, the log-leverage dynamics evolves either under risk-neutral
pricing measure Q, or under physical measure P for risk management purposes.

When it comes to a portfolio approach, one must consider the interrelation among firms that can
lead to clusters of defaults and may significantly impact the future value distribution of the portfolio.
To this end, the model captures the firms’ interconnections through the correlation between noise
terms of log-leverage described in Eq. (2), i.e.

ρ(i,j)
st = CorrP(ε(i)t , ε

(j)
t ), (3)

with st ∈
{
s

(i)
t , s

(j)
t

}
, or st ∈ {(1, 1), (1, 2), (2, 1), (2, 2)}. Thus, four correlation values have to be es-

timated for each pair of firms depending on their specific regimes, i.e. ρ(i,j)
st = (ρ(i,j)

1,1 , ρ
(i,j)
1,2 , ρ

(i,j)
2,1 , ρ

(i,j)
2,2 ).

3.2 Hybrid Default Risk Framework
The bivariate Markov-switching model is based on a hybrid default risk framework, which com-

bines features of both structural and reduced-form approaches. On the one hand, the model links
the credit events to the firm’s capital structure, i.e. the firm’s assets and liabilities. On the other
hand, the model considers the surprise element of the default trigger, which is exogenously given
through a default intensity process. In addition, the firm’s leverage and regimes are latent variables
that are implied by the term structure of CDS premiums. Finally, the model also features an en-
dogenous stochastic recovery rate that depends on the firm’s probability of default.



10

The model first relies on the assumption that default is driven by an intensity process Ht that
depends on the leverage ratio Xt such as

H
(i)
t = β(i) +


X

(i)
t

θ(i)



α(i)

, (4)

where α(i) > 0, β(i) > 0 and θ(i) > 0 are firm specific constants to be estimated. The intensity
process increases with the leverage ratio, making the default more likely to occur. Furthermore,
H

(i)
t allows defining the default time as a reduced-form default trigger, that is, the first jump of a

Cox process

τ (i) ≡ inf
{
t ∈ {1, 2, ..., T} :

t−1∑

u=0
H(i)
u ∆t > E

(i)
1

}
, (5)

where E(i)
1 is an exponential random variable with mean 1 that is independent of σ–field Gt. Hence,

default is highly correlated with the leverage ratio of the firm. Indeed, since α(i), β(i) and θ(i) are
positive constants, the likelihood of default tends to increase with the leverage ratio.

The model also defines an endogenous recovery rate that depends on the capital structure of the
firm at the moment of default. Considering the liquidation and legal fees as a fraction κ(i) of the
market assets’ value at default, one can approximate this value by min

(
(1− κ(i))A(i)

τ ;L(i)
τ

)
. Given

the leverage’s dynamics, the random behaviour of the recovery rate at the moment of default is

R(i)
τ = min

(
(1− κ(i)) 1

X
(i)
τ

; 1
)
. (6)

The endogenous recovery rate distribution is consistent with the empirical literature since it is
a decreasing function of the leverage ratio meaning that default probability is negatively correlated
with the recovery rate at the moment of default 2. Finally, the stochastic behaviour of the recovery
rate as well as regime switching dynamics imply that corporate coupon bond prices and CDS
premiums cannot be calculated in closed form. Therefore, a numerical method that is based on a
trinomial lattice approach is used. Details about pricing bonds and CDSs are provided in Appendix
A.

4 Estimation
4.1 Data and assumptions

Since the late 1990s, the credit risk market has substantially grown and the CDS has become
the new instrument for banks to manage and measure their risk. Considering that the CDS spread
is directly linked to the credit quality of the bond issuer, it is expected to reflect a pure measure
of default risk. In the recent literature, many authors challenge this argument [see Friewald et al.
(2012) and Bielecki et al. (2011), among others]. However, empirical researches suggest that default

2. See Altman et al. (2004) and Altman (2006).
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risk is one of the most important risks involved in the CDS spread and therefore, it provides a good
proxy in studying the credit risk of a firm. Indeed, Ericsson et al. (2009), Tang and Yan (2007)
and Longstaff et al. (2005), among others, show that an important portion of CDS spreads can
be directly attributed to credit risk. In this paper, the CDS is the underlying instrument of the
Markov-switching hybrid credit risk model.

The CDS prices are provided by MarkIt for maturities of 1, 2, 3, 5, 7, and 10 years. The weekly
term structure of CDS data starts on January 5, 2005 and ends on December 26, 2012 for a total
of 417 observations. Prices correspond to Wednesday data since it is the least likely day to be a
holiday. The CDS’s tier is chosen as senior and refers to the level of debt in the capital structure of
the reference entities. Furthermore, the restructuring clause is XR meaning that all restructuring
events are excluded as trigger events. Note that this type of clause is generally suggested for U.S.
reference entities.

Table 1 presents the descriptive statistics of CDS premiums for each entity across the portfolio.
Among the firms, AIG and Washington Mutual have the widest average spreads reaching maximum
values of 6052.36 for 1-year tenor and 9463.68 for 2-years tenor respectively, while minimum values
are below 10. To the extent that the spread is a compensation for credit risk, this indicates that
both AIG and Washington Mutual were considered the riskiest firms by the market during the
sample period. This is consistent with the near collapse of AIG and the failure of Washington Mu-
tual, which was the largest commercial bank failure in American history. Conversely, Fannie Mae
and Freddie Mac, for which CDS data were considered up to September 2008, have the narrowest
average spreads. Although the holders of CDS triggered the default clauses for both entities, the
debt was guaranteed by the U.S. government which mitigated the risk associated to these firms in
the CDS market. Finally, descriptive statistics provided in Table 1 also show very high standard
deviations compared to mean values. This reflects the deterioration of the entire financial sector
during the crisis.

In addition to CDS data, the model requires other inputs such as the risk-free interest rate and
the initial log-leverages of the firms. First, the risk-free interest rate is assumed to be constant over
time at 1.75%. This value represents the average rate of the daily 1-month and 3-month Treasury
constant maturity series obtained from the Federal Reserve Bank of St. Louis. Second, the log-
leverages as of January 2005 are approximated from the logarithm of the total liabilities divided
by the total assets of each firm in the sample. More specifically, the firms’ financial information is
extracted from the Wharton Research Data Services (WRDS) Compustat database as of the fourth
quarter of 2004’s accounting data.

4.2 Empirical Results
4.2.1 Markov-Switching Parameters

Since log-leverage ratio time series and Markov regimes are unobservable variables, filtering
techniques need to be applied in order to infer these quantities from observable CDS data. Our
approach consists in a two-step estimation procedure: i) parameters for each specific firm are esti-
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mated in an univariate manner, and ii) correlation coefficients for each possible pair of firms across
the portfolio are obtained by a bivariate approach. In both univariate and bivariate steps, model
parameters are recovered by applying filtering techniques and quasi-likelihood maximization.

First, the model parameters are obtained on a firm-by-firm basis by applying M parallel un-
scented Kalman filters (UKF) described in Appendix B. For a detailed version of the regime-
switching hybrid default risk model, we refer to Bégin et al. (2014). The set of Markov-switching
parameters to be estimated for each firm in the first stage is

φ1 = (µP, µQ, σ1, σ2, p
P
11, p

P
22, p

Q
11, p

Q
22, α, β, θ, κ, δ

(1), δ(2), δ(3), δ(5), δ(7), δ(10)),

where δ(1), δ(2), δ(3), δ(5), δ(7), and δ(10) are standard errors of the noise terms for tenors of 1, 2,
3, 5, 7 and 10 years respectively. To obtain φ̂1, the quasi-maximum likelihood estimation (QMLE)
approach is used. Table 2 presents the model parameters for each financial institution under study.
First, empirical results show strong persistence for both low and high volatility regimes. Indeed,
transition probabilities pP11 and pP22 are greater than 92% for all firms, with the majority exceeding
98%. In particular, Bear Stearns, Merrill Lynch and Washington Mutual transition probabilities pP22
reach 100%, suggesting permanent regime changes during the crisis. This is because CDS data are
truncated at the effective acquisition date, which corresponds to the high volatility regime. Recall
that these three firms were acquired during the late 2008 by JPMorgan Chase and Bank of America.
Second, the positive drift of the leverage ratio indicates the tendency of the firm to contract debt or
could be associated to a deterioration of the firms’ assets. In both cases, it means that the riskiness
increases over time. In the sample under study, both Merrill Lynch and Countrywide present the
highest drifts of 12.9% and 9.5% respectively. Recall that Bank of America acquired both failing
companies in 2008 preventing their potential bankruptcy.

Univariate step procedure also allows to estimate the firm specific constants α, β and θ that
define the intensity process Ht of Eq. (4). Parameters α and θ gauge the sensitivity of the firm’s
survival toward its leverage ratio. The convexity of the default intensity is guided by α, while the
critical leverage threshold is defined by θ. The parameter β captures a part of the default drivers,
and ensures that Ht is a positive function when β > 0. With all other variables being the same,
the larger the β, the greater the intensity and default probability. As shown in Table 2, all firms
have positive values for each constant. The estimated α has minimum and maximum values of 4.6
and 16.6 respectively, implying that the intensity process is strongly convex with the leverage ratio.
The critical leverage value θ lies between 1.1 and 1.9, which is realistic since a part of the default
risk is captured by the parameter β and the standardized leverage ratio X/θ affects the default in-
tensity in a non-linear fashion. Finally, the estimated β has a minimum value of around 0.06% and
is generally smaller than 1%. However, four firms present larger values, i.e. Fannie Mae, Freddie
Mac, Goldman Sachs, and Schwab Charles, which reflect the financial difficulties encountered by
those firms during and/or after the global crisis. Fannie Mae and Freddie Mac have been placed in
government conservatorship in September 2008 in order to ensure their financial soundness. More-
over, the federal takeover of both companies resulted in a bankruptcy status in contracts traded in
the CDS market. Financial trouble also appeared in 2010 for Goldman Sachs after fraud charges
related to the U.S. subprime mortgage crisis. The Securities and Exchange Commission (SEC),
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Table 2: First step parameter estimates.

Firm x̂0|0 µP(%) µQ(%) σ1 σ2 pQ11(%) pP11(%) pQ22(%) pP22(%)

1. AIG 0.89 0.00 0.17 0.0794 0.3373 99.71 99.06 96.80 96.47
2. Allstate Corp 0.85 0.53 -0.39 0.0738 0.3381 99.35 99.56 93.61 99.40
3. American Express 0.92 0.20 -0.90 0.0736 0.3050 99.30 99.62 95.70 99.38
4. Bank of America 0.91 2.77 -0.18 0.0613 0.2712 99.48 98.45 94.75 99.00
5. BB&T Corp 0.89 2.74 -1.20 0.0891 0.3502 98.96 98.75 98.53 96.42
6. Bear Stearns 0.96 2.06 -0.27 0.0918 0.4962 99.83 99.23 94.31 100.00
7. Citigroup 0.93 3.30 -0.15 0.0819 0.3395 99.34 98.74 94.38 98.99
8. Chubb Corp 0.77 -1.66 -0.55 0.0914 0.3911 99.37 99.76 93.55 99.55
9. Countrywide Finl Corp 0.92 9.46 -0.74 0.1278 0.4524 99.89 98.48 95.22 98.25
10. Capital One Finl Corp 0.84 0.01 -0.86 0.1131 0.3341 99.79 99.26 94.40 99.25
11. Freddie Mac 0.96 -7.65 -0.64 0.0483 0.4376 98.71 98.05 97.73 99.97
12. Fannie Mae 0.96 -4.85 -2.12 0.0552 0.3720 98.08 96.23 98.00 99.61
13. Goldman Sachs 0.95 0.38 -1.57 0.0973 0.3105 95.87 94.56 95.19 96.27
14. Hartford Finl Serv. Gp. 0.95 -0.06 -0.11 0.0654 0.2894 99.51 99.19 96.65 98.13
15. JPMorgan Chase & Co 0.91 -5.70 -0.68 0.0898 0.3636 99.48 99.20 94.62 98.99
16. Lehman Brothers 0.96 2.15 -0.42 0.0759 0.3538 99.82 99.83 93.72 99.98
17. Merrill Lynch & Co 0.95 12.94 -0.73 0.0966 0.3879 99.78 99.03 93.56 100.00
18. Morgan Stanley 0.96 -7.11 0.09 0.0792 0.4776 99.38 98.64 95.88 97.67
19. Schwab Charles Corp 0.91 0.00 0.01 0.0919 0.3011 95.49 95.84 96.45 94.42
20. SunTrust Banks 0.90 0.10 -1.03 0.0425 0.3213 95.99 98.67 89.69 92.66
21. U S Bancorp 0.90 -0.07 -0.53 0.0513 0.3567 98.60 98.46 94.60 92.82
22. Wachovia Corp 0.90 -0.79 -0.58 0.0689 0.3541 99.16 97.29 95.84 99.54
23. Washington Mutual 0.93 5.96 -1.03 0.1082 0.3872 99.91 99.31 95.07 100.00
24. Wells Fargo & Co 0.91 -2.18 -1.12 0.0891 0.3078 99.56 98.47 91.88 98.90

Firm α β (%) θ κ δ(1) δ(2) δ(3) δ(5) δ(7) δ(10)

1. 14.8211 0.2063 1.5066 0.4444 0.3023 0.1564 0.0933 0.0401 0.0185 0.0536
2. 13.9489 0.2557 1.4033 0.4463 0.2449 0.1656 0.1133 0.0401 0.0009 0.0383
3. 11.8259 0.1463 1.4938 0.4987 0.2681 0.1593 0.1060 0.0316 0.0319 0.0579
4. 15.5117 0.0971 1.4653 0.4942 0.2525 0.1632 0.1026 0.0544 0.0025 0.0422
5. 8.1043 0.5949 1.7016 0.6152 0.6259 0.3766 0.2299 0.1006 0.1390 0.1621
6. 10.1853 0.0754 1.2463 0.5580 0.1683 0.1137 0.0649 0.0454 0.0301 0.0493
7. 11.6777 0.2227 1.4868 0.4776 0.2201 0.1344 0.0770 0.0332 0.0257 0.0462
8. 11.7652 0.2195 1.3253 0.5405 0.2285 0.1432 0.0960 0.0420 0.0145 0.0314
9. 12.9686 0.7768 1.3704 0.3409 0.2029 0.1426 0.0877 0.0381 0.0451 0.0730
10. 11.2272 0.2849 1.5056 0.3226 0.1996 0.1213 0.0836 0.0011 0.0440 0.0706
11. 10.7463 1.6248 1.6364 0.7000 0.4027 0.1700 0.0927 0.0678 0.0236 0.0598
12. 14.4007 2.1155 1.8595 0.5500 0.4084 0.1553 0.0950 0.0611 0.0289 0.0562
13. 4.6301 3.4856 1.4367 0.6028 0.3320 0.1162 0.0366 0.0919 0.1195 0.1531
14. 9.7247 0.0828 1.6456 0.5555 0.2758 0.1505 0.0884 0.0363 0.0101 0.0348
15. 12.1609 0.1174 1.5010 0.5422 0.2677 0.1873 0.1165 0.0495 0.0170 0.0507
16. 14.0191 0.1426 1.2084 0.3944 0.1818 0.0988 0.0564 0.0311 0.0405 0.0604
17. 12.3407 0.2098 1.4649 0.3584 0.1375 0.0687 0.0354 0.0317 0.0532 0.0787
18. 9.9342 0.4239 1.1129 0.6639 0.3079 0.1673 0.0936 0.0273 0.0441 0.0775
19. 6.4679 4.1490 1.5000 0.6837 0.3313 0.1997 0.1121 0.0717 0.0514 0.0804
20. 6.3683 0.2716 1.4660 0.6285 0.2688 0.2255 0.1083 0.0656 0.1090 0.0851
21. 5.6271 0.2178 1.3201 0.6638 0.2427 0.2150 0.1290 0.0955 0.0900 0.1221
22. 7.2337 0.1156 1.2386 0.6840 0.1844 0.1098 0.0558 0.0393 0.0341 0.0635
23. 11.9365 0.1485 1.3690 0.4092 0.1493 0.1130 0.0555 0.0373 0.0497 0.0727
24. 16.6132 0.0577 1.7067 0.5284 0.2517 0.1612 0.1060 0.0304 0.0375 0.0620

The table shows firms’ parameters estimates obtained from CDS data from January 2005 to December 2012 by applying
filtering techniques and quasi-likelihood maximization. More specifically, the following parameters are reported: the
initial debt x̂0|0 calculated from Compustat accounting information, the drifts µ under both measures P and Q, the
diffusions σ for each regime, p11 and p22 which are the probabilities to stay in low and high volatility regime respectively,
the constants α, β and θ that define the intensity process, the liquidation and legal fees parameter κ, and finally the
standard errors of the trading noise for tenors of 1, 2, 3, 5, 7 and 10 years.

as well as the UK’s Financial Services Authority, fined Goldman Sachs with the biggest fine ever
imposed. Finally, Schwab Charles also encountered financial difficulties in early 2008 when one of
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its fund lost hundreds of millions of dollars due to the default of many mortgage bonds. Because the
fund was marketed as being safe, when in fact the major part of the fund’s assets were invested in
mortgage-backed securities, Schwab Charles settled SEC allegations that it misled investors about
the fund’s risks.

Table 2 also shows the parameter κ, which is related to liquidation and legal fees. The esti-
mated value across firms is around 30%-70% and represents a fraction of the market assets’ value
at default. Therefore, the value of κ tends to increase with riskiness.

Finally, standard errors of the trading noise are relatively low for tenors longer than two years
with an average value lying between 4.4% and 9.3%. However, short tenors have higher variations
that may be related to lower trading frequency of 1- and 2-years CDS contracts. One can also
mention the very high volatility period of time during which the analysis is performed, implying
higher standard errors than stable period would generate. Furthermore, since the model estimates
credit derivative prices for seven maturities simultaneously, it is possible that the fitting step has
an impact on the quality of the fit of each derivative.

The estimation of univariate parameters presented above is based on the Markov-switching hy-
brid credit risk model described in Bégin et al. (2014). In what follows, results obtained from the
bivariate extension of the univariate Markov-switching framework are discussed. With the objec-
tive to test the bivariate approach used in this study, a validation procedure (not reported here)
has been performed. This procedure consists in the simulation of correlated log-leverage ratios to
obtain CDS time series, which are then used as inputs to the model in order to validate that results
are unbiased. As a starting point to the bivariate step, suppose that we have K firms across the
portfolio and correlations are recovered from log-leverage ratios of all possible pair of firms (i, j),
with 1 ≤ i, j ≤ K. Thus, the number of estimated values is K(K − 1)/2 for each regime state
leading to 2K(K − 1) total values. The set of parameters for the bivariate estimation stage is

φ2 = (ρ(i,j)
1,1 , ρ

(i,j)
1,2 , ρ

(i,j)
2,1 , ρ

(i,j)
2,2 ).

Since the leverage ratio time series are inferred from the set of CDS prices by the UKF method,
recovering correlation from smoothed leverage data would result in under-estimated coefficients.
Therefore, dependence among firms must be captured endogenously or prior to the filtering process.
Details about UKF equations are provided in Appendix B, while details on endogenous correlation
coefficients are presented in Appendix C.

Table 3 presents correlation estimates between log-leverage ratios for each possible pair of firms
across the portfolio depending on the regime state. Figure 2 of Appendix D also depicts the filtered
log-leverages and regimes for each firm, which allows to observe the co-moving trend between time
series.

First, panels (a) and (b) of Table 3 report the correlation structure amongst financial institutions
for si,jt = {(1, 1), (2, 2)} respectively. The results highlight positive pairwise correlations when both
firms are in the same regime, with some exceptions for Schwab Charles (SCH) and Washington Mu-
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tual (WM). Results also display a higher degree of interdependence when regime switches from
stable to volatile for both entities. In particular, Fannie Mae (FNMA) and Freddie Mac (FHLMC)
are significantly more correlated with the others during the crisis, reflecting the linkages between
subprime mortgages and the financial sector downturn. For example, the increase in correlation is
as large as 74% and 87% between FNMA-SCH and FHLMC-SCH respectively. Strong interdepen-
dence changes also arise, among others, between AIG-SCH, AXP-STI, BACORP-BBT, MWD-COF,
USB-SCH and WFC-MWD, for which coefficients increase by more than 50%. For further analysis,
Table 4 provides descriptive statistics of pairwise correlation estimates for each state, as well as
descriptive statistics of the average increase in correlation between si,jt = (1, 1) and si,jt = (2, 2). As
pointed out earlier, results suggest a strong potential channel for transmitting shocks from FNMA
and FHLMC to other firms. Table 4 strengthens this finding by showing that mean correlations
of both government-sponsored entities during the crisis are approximately double what they are
in the stable regime. Morgan Stanley (MWD) also exhibits a significant increase in correlation
during the turmoil displaying a rise of 27%, followed by BBT (22%), STI (19%), BACORP and
ALL (18%), COF (17%), AIG (16%), AXP and JPM (13%), CB, USB and WFC (12%), as well
as SCH (10%). Although the degree of interdependence between institutions is generally higher
during the highly volatile period, three firms within the entire portfolio provide different results.
As reported in Table 4, Countrywide Financial (CCR) presents an estimated mean correlation with
other firms of 66% prior to the crisis, while it decreases to 41% afterwards. This is explained by
CCR’s leverage tendency to decrease starting from the beginning of 2008, while other institutions
seem to react in the opposite direction, as shown in Figure 2 of Appendix D. The decrease in
leverage is due to the announcement of Bank of America (BACORP) to purchase CCR in January
2008. Then, Table 4 reveals that WM is also less correlated with other entities in the sample during
the highly volatile period. The mean pairwise correlation reaches 68% when the regime state is
si,jt = (1, 1) in comparison with a coefficient of 57% for si,jt = (2, 2). In this case, WM’s leverage
tends to rise during the crisis much faster than other firms’ leverages, as illustrated in Figure 2.
Finally, descriptive statistics also suggest that Goldman Sachs is in average 2% less correlated with
the portfolio during the volatile period, but this difference is not as significant as for CCR and WM.

Second, Table 3 (c) combines correlation estimates for si,jt = {(1, 2), (2, 1)} in the lower left
matrix and upper right matrix respectively. In some specific cases, CDS price dynamics as well
as univariate parameter estimates are such that the joint probability of pairwise firms to be in
different regimes is too low. Consequently, the estimation procedure is unable to adequately recover
the coefficients leading to missing values in the correlation matrix. As an example, one can see in
Figure 2 that during the period of time FNMA and FHLMC are in the first regime, few institutions
belong to the second one. Conversely, when both government-sponsored entities are in the highly
volatile period, the model is able to estimate correlations for almost all pairwise combinations.
Interestingly, coefficients are quite similar between FNMA/FHLMC and the rest of the portfolio
reflecting the similar role both firms had within the U.S. financial sector. Table 3 (c) also reports
larger correlation spreads than Table 3 (a) and Table 3 (b). As expected, the pattern of co-
movements across log-leverage ratios of firms in different regimes is associated with wider spreads
in the correlation structure. This is also shown in Table 4 by larger standard deviations for ρ1,2
and ρ2,1 in comparison to ρ1,1 and ρ2,2. In addition, the mean value is generally lower reflecting less
inter-connectedness among financial institutions in different regimes.



20

In summary, empirical results clearly show that firms are more correlated during the high volatil-
ity regime suggesting the existence of contagion within the U.S. financial sector during the last crisis.
These results present major implications for risk management practices since financial contagion
can lead to important consequences in credit-sensitive portfolios.

4.2.2 Probabilities of Default

Here, the evolution of default probabilities estimated by the model is investigated. More pre-
cisely, we examine how well the model derives these probabilities by focusing our analysis on im-
portant dates such as the near default of AIG, the bankruptcy of Lehman Brothers, as well as
mergers and acquisitions. For this purpose, Table 5 summarizes the major events of U.S. financial
institutions under study during the global crisis of 2007-2009. This analysis also covers the default
probability time series inferred from Moody’s databases of historical default frequencies.

First, the hybrid default risk framework links default probabilities to firms’ leverage ratios
through the intensity process described in Equation (4). Since the leverage of the firm is not di-
rectly observable from market data, CDS premiums are used to infer the model’s latent variables
(i.e. hidden regimes and leverages). Therefore, the model estimates a forward-looking measure
of the firm-specific default probability. In contrast, Moody’s approach is based on historical data
rather than current market prices. In this approach, default counts are aggregated over time by
rating category across all industries and are provided in transition matrices, which can be com-
pounded for multiple periods to produce n-year default probabilities. In this analysis, Moody’s
default probabilities for all credit ratings are obtained from monthly transition matrices using the
generator estimation approach with a window length of 3 years ex ante data (see Dionne et al.
(2010) for more details). Finally, Moody’s transition matrices include banking, finance and insur-
ance industries from January 2002 to December 2012.

To visualize the evolution of default probabilities for each firm across the portfolio, we depict
the time series in Figure 3 of Appendix D. For sake of comparison, default probabilities generated
by both the model and Moody’s are illustrated for time horizons of 1, 5, and 10 years. Note that
each event described in Table 5 is labeled by a letter in order to simplify the notation in Figure 3.
The main observation is that model’s estimates are significantly higher for the entire period of time
under study, and especially prior to major events that happened during the crisis. First, this obser-
vation supports the fact that CDS-implied default probabilities have a predictive power. Second,
one can observe that Moody’s estimates tend to increase starting from the beginning of 2009 (when
data is available). This might be due to rating changes that may capture credit quality deterioration
with a certain time lag, which is incorporated in Moody’s default probabilities. Although both time
series seem to get closer over time, the difference is significantly high for the entire sample period
but the logarithmic scale makes large differences appear proportionally much less. To have a better
idea of the term structure of default probabilities retrieved by both the model and Moody’s, Table
6 shows the descriptive statistics. The large differences between both approaches’ estimates can
easily be illustrated by taking two examples: the bankruptcy of Lehman Brothers (LEH) and the
near default of AIG. For both firms, the model estimates default probabilities as large as 43% and
34% respectively for 10-year horizon. In contrast, the rating agency displays values close to zero
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Table 5: Timeline of major events during the financial crisis of 2007-2009.
Source: Federal Reserve Bank of St. Louis website.

Event A January 11, 2008 Bank of America announces that it will purchase Countrywide Financial in an all-stock transaction worth
approximately $4 billion.

Event B March 14, 2008 The Federal Reserve Board approves the financing arrangement between JPMorgan Chase and Bear Stearns.
Event C March 24, 2008 The Federal Reserve Bank of New York announces a term financing to facilitate JPMorgan Chase’s acqui-

sition of Bear Stearns. A limited liability company (Maiden Lane) is formed to control $30 billion of Bear
Stearns assets that are pledged as security for $29 billion in term financing from the New York Fed at its
primary credit rate. JPMorgan Chase will assume the first $1 billion of any losses on the portfolio.

Event D June 05, 2008 The Federal Reserve Board announces approval of the notice of Bank of America to acquire Countrywide
Financial Corporation.

Event E July 13, 2008 The Federal Reserve Board authorizes the Federal Reserve Bank of New York to lend to the Federal National
Mortgage Association (Fannie Mae) and the Federal Home Loan Mortgage Corporation (Freddie Mac),
should such lending prove necessary. The U.S. Treasury Department announces a temporary increase in the
credit lines of Fannie Mae and Freddie Mac and a temporary authorization for the Treasury to purchase
equity in either GSE if needed.

Event F July 15, 2008 The Securities Exchange Commission (SEC) issues an emergency order temporarily prohibiting naked short
selling in the securities of Fannie Mae, Freddie Mac, and primary dealers at commercial/investment banks.

Event G September 7, 2008 The Federal Housing Finance Agency (FHFA) places Fannie Mae and Freddie Mac in government conser-
vatorship. The U.S. Treasury Department announces 3 additional measures to complement the FHFA’s
decision: 1) Preferred stock purchase agreements between the Treasury/FHFA and Fannie Mae and Freddie
Mac to ensure GSEs positive net worth; 2) new secured lending facility which will be available to Fannie
Mae, Freddie Mac, and the Federal Home Loan Banks; and 3) temporary program to purchase GSE MBS.

Event H September 15, 2008 Bank of America announces its intent to purchase Merrill Lynch & Co. for $50 billion. Lehman Brothers
Holdings Incorporated files for Chapter 11 bankruptcy protection.

Event I September 16, 2008 The Federal Reserve Board authorizes the Federal Reserve Bank of New York to lend up to $85 billion to
the American International Group (AIG) under Section 13(3) of the Federal Reserve Act.

Event J September 19, 2008 The Federal Reserve Board announces the creation of the Asset-Backed Commercial Paper Money Market
Mutual Fund Liquidity Facility (AMLF) to extend non-recourse loans at the primary credit rate to U.S.
depository institutions and bank holding companies to finance their purchase of high-quality asset-backed
commercial paper from money market mutual funds. The Federal Reserve Board also announces plans to
purchase federal agency discount notes (short-term debt obligations issued by Fannie Mae, Freddie Mac,
and Federal Home Loan Banks) from primary dealers.

Event K September 21, 2008 The Federal Reserve Board approves applications of investment banking companies Goldman Sachs and
Morgan Stanley to become bank holding companies.

Event L September 25, 2008 The Office of Thrift Supervision closes Washington Mutual Bank. JPMorgan Chase acquires the banking
operations of Washington Mutual in a transaction facilitated by the FDIC.

Event M September 29, 2008 The FDIC announces that Citigroup will purchase the banking operations of Wachovia Corporation. The
FDIC agrees to enter into a loss-sharing arrangement with Citigroup on a $312 billion pool of loans, with
Citigroup absorbing the first $42 billion of losses and the FDIC absorbing losses beyond that. In return,
Citigroup would grant the FDIC $12 billion in preferred stock and warrants.

Event N October 3, 2008 Wells Fargo announces a competing proposal to purchase Wachovia Corporation that does not require
assistance from the FDIC.

Event O October 12, 2008 The Federal Reserve Board approves an application of Wells Fargo & Co to acquire Wachovia Corporation.
Event P October 24, 2008 PNC Financial Services Group Inc. purchases National City Corporation, creating the 5th largest U.S. bank.
Event Q November 17, 2008 Three large U.S. life insurance companies seek TARP funding: Lincoln National, Hartford Financial Services

Group, and Genworth Financial announce their intentions to purchase lenders/depositories and thus qualify
as savings and loan companies to access TARP funding.

Event R November 20, 2008 Fannie Mae and Freddie Mac announce that they will suspend mortgage foreclosures until January 2009.
Event S November 23, 2008 The U.S. Treasury Department, Federal Reserve Board, and FDIC announce an agreement with Citigroup

to provide a package of guarantees, liquidity access, and capital. Citigroup will issue preferred shares to the
Treasury and FDIC in exchange for protection against losses on a $306 billion pool of commercial/residential
securities held by Citigroup. The Federal Reserve will backstop residual risk in the asset pool through a
non-recourse loan, and the Treasury will invest an additional $20 billion in Citigroup from the TARP.

Event T November 26, 2008 The Federal Reserve Board announces approval for Bank of America to acquire Merrill Lynch & Co.
Event U December 15, 2008 The Federal Reserve Board announces that it has approved the application of PNC Financial Services to

acquire National City Corporation.
Event V January 5, 2009 The Federal Reserve Bank of New York begins purchasing fixed-rate mortgage-backed securities guaranteed

by Fannie Mae, Freddie Mac and Ginnie Mae under a program first announced on November 25, 2008.
Event X January 16, 2009 The U.S. Treasury Department, Federal Reserve, and FDIC announce a package of guarantees, liquidity

access, and capital for Bank of America. The U.S. Treasury and the FDIC will enter a loss-sharing arrange-
ment with Bank of America on a $118 billion portfolio of loans, securities, and other assets in exchange
for preferred shares. In addition, and if necessary, the Federal Reserve will provide a non-recourse loan
to back-stop residual risk in the portfolio. Separately, the U.S. Treasury will invest $20 billion in Bank of
America from the TARP in exchange for preferred stock.
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Table 6: Descriptive statistics of default probability estimates.

1-YR PD 5-YR PD 10-YR PD

Firm mean std min max mean std min max mean std min max
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

AIG 5.07 8.81 0.21 49.83 22.46 19.52 2.40 83.33 33.68 21.29 7.42 88.16
ALL 2.10 2.89 0.27 16.55 16.04 8.54 4.72 43.58 28.37 9.21 13.43 53.78
AXP 2.07 3.53 0.15 19.08 13.83 10.37 2.43 47.72 24.58 11.26 8.04 57.43
BACORP 3.80 3.72 0.12 18.48 30.66 12.94 9.23 55.07 48.31 12.74 26.24 68.51
BBT 0.75 0.21 0.60 1.50 7.65 4.12 3.39 19.51 20.21 9.02 9.43 41.44
BSC 3.03 4.61 0.54 27.59 24.73 7.57 18.15 55.06 39.24 4.78 34.02 61.78
C 3.59 3.94 0.24 21.18 26.83 13.50 7.02 56.38 43.75 14.05 21.31 68.95
CB 1.00 0.96 0.23 4.94 9.38 5.42 2.72 23.07 16.04 5.71 7.17 29.91
CCR 9.15 11.10 1.62 61.66 50.36 10.46 36.05 85.87 71.39 5.99 62.16 91.97
COF 4.18 4.68 0.47 19.79 24.91 9.46 10.96 49.02 38.48 8.37 24.05 58.78
FHLMC 1.61 0.01 1.61 1.65 8.51 0.65 7.98 10.94 16.70 1.00 15.67 20.15
FNMA 2.09 0.00 2.09 2.12 10.91 0.69 10.30 13.45 21.36 1.15 20.12 25.16
GS 4.54 1.06 3.52 9.39 24.38 5.84 17.30 43.53 43.64 7.11 33.59 62.99
HIG 2.44 3.68 0.10 21.72 15.57 11.90 1.89 53.09 27.11 15.11 6.59 63.95
JPM 1.01 0.96 0.13 4.94 7.97 3.83 2.38 18.35 12.07 4.37 5.12 22.97
LEH 4.80 7.38 0.33 33.11 23.14 15.96 10.29 63.04 42.88 10.23 31.45 70.72
MER 6.87 8.33 0.89 34.82 57.10 5.93 47.47 75.09 77.29 2.65 67.40 85.50
MWD 2.53 2.89 0.44 23.68 11.04 6.63 3.44 41.42 15.92 7.38 6.92 46.30
SCH 4.08 0.01 4.07 4.11 19.04 0.25 18.79 19.82 35.39 0.84 34.40 37.66
STI 1.41 1.01 0.31 4.52 9.23 6.17 1.82 23.85 19.01 11.12 4.54 40.01
USB 0.92 0.56 0.29 2.80 6.65 3.77 1.85 17.33 14.90 7.04 4.94 32.61
WB 1.08 1.96 0.16 15.64 11.13 8.22 4.91 46.40 20.03 9.03 12.55 55.45
WM 8.56 14.22 0.69 80.04 42.44 13.51 29.01 91.48 62.86 7.37 53.77 93.84
WFC 2.14 2.04 0.09 10.90 16.40 6.96 5.09 34.02 24.97 7.64 11.75 42.36

(a) Model’s estimates

1-YR PD 5-YR PD 10-YR PD

Firm mean std min max mean std min max mean std min max
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

AIG 0.02 0.04 0.00 0.09 0.62 0.85 0.00 2.13 2.81 3.72 0.00 9.71
ALL 0.20 0.25 0.00 0.52 1.53 1.83 0.00 4.49 5.00 5.83 0.04 15.45
AXP 0.20 0.25 0.00 0.52 1.53 1.83 0.00 4.49 5.00 5.83 0.04 15.45
BACORP 0.21 0.25 0.00 0.52 1.71 2.01 0.00 5.30 5.52 6.54 0.00 16.92
BBT 0.16 0.24 0.00 0.52 1.39 1.81 0.00 4.49 4.69 5.88 0.00 15.45
BSC 0.00 0.00 0.00 0.00 0.03 0.08 0.00 0.36 0.21 0.37 0.04 1.75
C 0.20 0.24 0.00 0.52 1.57 1.81 0.00 4.49 5.05 5.83 0.00 15.45
CB 0.20 0.25 0.00 0.52 1.53 1.83 0.00 4.49 5.00 5.83 0.04 15.45
CCR 0.00 0.00 0.00 0.02 0.09 0.14 0.00 0.53 0.43 0.56 0.04 2.14
COF 0.40 0.43 0.00 1.08 3.54 3.94 0.01 10.50 10.05 10.94 0.04 29.90
FHLMC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.05
FNMA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.05
GS 0.18 0.24 0.00 0.52 1.47 1.83 0.00 4.49 4.83 5.90 0.00 15.45
HIG 0.41 0.44 0.00 1.08 3.53 4.03 0.00 10.50 9.84 11.29 0.04 29.90
JPM 0.03 0.03 0.00 0.09 0.67 0.84 0.00 2.13 2.97 3.66 0.00 9.71
LEH 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.07 0.14 0.12 0.04 0.50
MER 0.04 0.14 0.00 0.50 0.22 0.73 0.00 2.71 0.52 1.59 0.00 6.34
MWD 0.22 0.25 0.00 0.52 1.64 1.81 0.00 4.49 5.17 5.80 0.00 15.45
SCH 0.20 0.25 0.00 0.52 1.53 1.83 0.00 4.49 5.00 5.83 0.04 15.45
STI 0.16 0.24 0.00 0.52 1.39 1.81 0.00 4.49 4.68 5.89 0.00 15.45
USB 0.03 0.04 0.00 0.09 0.69 0.86 0.00 2.13 3.09 3.75 0.00 9.71
WB 0.04 0.14 0.00 0.50 0.22 0.73 0.00 2.71 0.51 1.59 0.00 6.34
WM 0.47 3.21 0.00 21.74 1.46 9.40 0.00 63.84 2.11 11.72 0.04 79.74
WFC 0.17 0.24 0.00 0.52 1.41 1.82 0.00 4.49 4.72 5.90 0.00 15.45

(b) Moody’s estimates

This table shows descriptive statistics of 1-, 5-, and 10-year default probabilities for each firm across the portfolio
over the period of time 2005-2012. Model’s time series are inferred from CDS premiums market data. Moody’s time
series are obtained from monthly transition matrices for banking, finance and insurance industries using the generator
estimation approach with window length of 3 years ex ante default data.
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and therefore, do not reflect the financial situation of distressed firms during the turmoil. This is
explained by the rarity of the observed default events that constitutes the main difficulty in the
Moody’s empirical estimation.

In what follows, we examine how well the model derives the probabilities of default (PD) by
focusing our analysis on important events during the crisis. Let first take the case of AIG that
almost defaulted on September 16, 2008. One month prior to that date, the model derives 1-year
PD of approximately 7% (28% and 41% for 5- and 10-year PD respectively) 3. Then, the estimate
reaches 11% (35% and 48% for 5- and 10-year PD respectively) on September 10, followed by a spike
of 50% (73% and 79% for 5- and 10-year PD respectively) one week later. The same behaviour is
observed for LEH prior to its collapse on September 15, 2008. Indeed, high levels are reached four
months prior to the bankruptcy event (average values of 21%, 54% and 63% for 1-, 5-, and 10-years
PD respectively), followed by a jump in the probability of default of approximately 10% for all time
horizons on September 10, 2008. When it comes to acquired firms such as Bear Stearns (BSC),
Countrywide (CCR), Merrill Lynch (MER), Wachovia (WB), and Washington Mutual (WM), the
same characteristic jump pattern is displayed close to major events preceded by relatively large PD.
Moreover, one can observe higher estimates when examining PD measures of firms that have been
acquired during the crisis and distressed firms in comparison to the others in the sample. Indeed,
the maximum values displayed in Table 6 a) correspond to the ones of purchased institutions BSC,
CCR, MER, and WM as well as to AIG (62%, 92%, 86%, 94%, and 88% respectively for 10-year
PD). Although default is more likely to occur over a long time horizon, some acquired firms also
outline large 1-year PD. For example, CCR and WM display maximum values of 62% and 80%,
while other acquired firms such as BSC and MER present values exceeding 25%.

In summary, we conclude that major events of financial difficulties are well reflected in the
model’s empirical results by an upward trend of the default probabilities. These results are con-
sistent with the idea of financial contagion between distressed institutions since the unpredicted
default of some firm affects the remaining firms, whose default probabilities are more likely to
increase. Furthermore, the term structure estimated by the model appears to contain additional
information in comparison to the one generated by Moody’s. Therefore, we conclude that Moody’s
PD estimation is not well adapted in the context of our analysis considering the crisis period.

5 Conclusion
The empirical study presented in this paper finds supportive evidence of contagion within the

financial sector in U.S. during the last global crisis of 2007-2009. The proposed framework is a
bivariate extension of the Markov-switching hybrid credit risk model of Bégin et al. (2014) that
is able to endogenously capture pairwise correlations from log-leverages’ co-movements by UKF
processing and quasi-maximum likelihood estimation. The methodology is based on correlation
analysis which allows to study the interdependence among 24 major U.S. financial institutions. The
results of the empirical analysis show an increase in correlation during the high volatility regime

3. Note that weekly time series of default probabilities are not reported here. However, their descriptive statistics
are provided in Table 6.
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in comparison to the stable regime for 21 firms within the portfolio. In particular, Fannie Mae
and Freddie Mac are significantly more correlated with the others during the crisis, reflecting the
linkages between subprime mortgages and the financial sector downturn. These empirical results
suggest the existence of contagion among the U.S. financial institutions under study during the last
crisis. In addition, the model derives the firms’ probabilities of default that indicate the risk trend
at the individual level. The results show larger default probabilities for distressed firms reflecting
their financial difficulties in the turmoil period. To conclude, the empirical analysis studied in this
paper presents major implications for risk management practices since financial contagion can lead
to important consequences in credit-sensitive portfolios.

Appendix A Credit derivative pricing
This appendix presents the numerical method used to price credit derivatives. Since the frame-

work assumes stochastic endogenous recovery rates and regime switching dynamics, CDS premiums
cannot be calculated in closed form. Therefore, a numerical method that is based on a trinomial
lattice approach is used.

A.1 Credit default swaps
Since the estimation procedure is based on time series of CDS premiums, a pricing equation is

required for such credit sensitive derivatives. Basically, a CDS contract is an agreement between
two counterparties whereby the protection seller insures the buyer against a possible credit event
of an underlying bond issuer. In exchange for the insurance, the buyer pays a premium (the CDS
spread) to the seller until the contract expires or the bond issuer’s default occurs. In the latter
case, the seller compensates the buyer and takes possession of the defaulted loan. The CDS spread
is usually fixed such that the expected present value of losses equals the expected present value of
premiums. According to Duffie and Singleton (1999), the expected present value of losses, given a
CDS contract that matures at T and considering a constant risk-free rate r, is

EQ
[

exp
(
− r(τ − t)

)
(1−Rτ )I{t<τ≤T} | Ft

]

= EQ
[ ∑

t≤tk<T
(1−Rk) exp

(
− r(tk − t)

)
exp

(
−

∑

t≤tu<tk
Hu∆t

)(
1− exp(−Hk∆t)

)
| Gt

]
I{τ>t}.

(7)

Assume now that a premium of 1 is paid. The expected present value of premiums is

EQ
[∑

ti

exp
(
− r(ti − t)

)
I{t≤ti<τ} | Ft

]

= EQ
[∑

ti

exp
(
− r(ti − t)

)
exp

(
−

∑

t≤tu<ti
Hu∆t

)
| Gt

]
I{τ>t},

(8)
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where ti are premium payment dates and the time step is 1 week (i.e. ∆t = 1/52). Then, it follows
that the periodic premium is the ratio of (7) over (8). Numerical methods are required to price CDS
contracts since Rk and Hk are dependent random variables and therefore, no closed-form solution
is available.

A.2 Trinomial lattice approach
This appendix is highly inspired from Bégin et al. (2014) and describes the numerical method

used to price credit default swaps and corporate bonds. The method is based on the trinomial
lattice approach proposed by Yuen and Yang (2010) for Markov-switching dynamics. The branch-
ing structure when two regimes are considered is shown in Figure 1. The idea of the multi-state
trinomial tree model is to change the risk neutral probability measure if the regime state changes
rather than increasing the branches of the tree.

The actual value of the log-leverage at a typical node in the tree is x. Assuming constant risk-
free interest rate and volatility, the log-leverage is allowed either to remain unchanged to xm = x,
increase to xu = x eσ

√
∆t, or decrease to xd = x e−σ

√
∆t. Furthermore, the volatility for a two-regime

trinomial tree is

max
1≤i≤2

(
σi + (

√
1.5− 1)σ̄

)
, (9)

where σ̄ is the arithmetic mean of σ. Then, the risk neutral probabilities corresponding to each
branch for the regime i are

πim = 1− 1
λ2
i

,

πiu =
eµQi ∆t− e−σ

√
∆t−

(
1− 1

λ2
i

)(
1− e−σ

√
∆t
)

eσ
√

∆t− e−σ
√

∆t
,

πid =
eσ
√

∆t− eµQi ∆t−
(
1− 1

λ2
i

)(
eσ
√

∆t−1
)

eσ
√

∆t− e−σ
√

∆t
,

(10)

where λi = σ
σi
.

Finally, the key contribution of Bégin et al. (2014) is the addition of a default branch in the
trinomial tree so that survival and default payoffs are taken into consideration when pricing deriva-
tives. The idea behind this additional branch is similar to the one applied to the standard trinomial
tree in Schönbucher (2002). At each node, the default probability is given by

p = 1− exp
(
−Ht∆t

)
, (11)

where Ht is the intensity process from Equation (4).
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Figure 1: Two-state trinomial lattice branching structure (source: Bégin et al. (2014)).
This figure shows the branching structure at a typical node in the tree when the number of regimes is set to two.
Note that both trees represent the same lattice: only the weights change across different regimes.
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Appendix B Estimation based on filtering techniques
This appendix outlines the unscented Kalman filter (UKF) equations that have been applied to

estimate parameter sets and model’s latent variables (i.e. leverage ratios and hidden regimes) on a
firm-by-firm basis.

B.1 State-space representation
Filtering techniques require that the model is represented in state space form. First, the state

equation that describes the evolution of leverage ratios depending on the hidden regime is given in
Equation (2). Second, the measurement equation linking the state of the model to CDS observations
is a non-linear function of the log-leverage xk that depends on the regime sk, and is given by

y
(m)
k = f (m)(xk, sk) + v

(m)
k

= ln
(
g(m)(exp (xk), sk)

)
+ v

(m)
k ,

(12)

where m ∈ {1, 2, 3, 5, 7, 10} refers to CDS tenors used in the estimation, and v
(m)
k is a Gaussian

random variable with standard deviation δ(m) that is assumed to be independent across maturities.
Moreover, g(m) is the theoretical price of an m-year CDS, in which dynamics of leverage ratios
evolve under the risk neutral measure Q.

B.2 Unscented Kalman filter
The standard Kalman filter is generally limited to linear transformations. Given the non-linearity

of the measurement equation, one needs to apply other statistical and recursive algorithms to obtain
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the best estimate of state variables (i.e. leverage ratios and regimes). According to Christoffersen
et al. (2013), the UKF produces better state estimation and parameter identification than both
extended Kalman filter (EKF) and particle filter in many applications in finance. In this paper,
M = Nd parallel UKFs are applied to filter both unobserved variables, where N is the number of
possible regime states in the model and d is determined by computation and storage capabilities.
This method is based on an extension of the Tugnait (1982)’s detection-estimation algorithm, which
is described in more details in Bégin et al. (2014). The bivariate framework implies N = 4 regime
states, while d ≥ 4 produces robust results, and therefore d = 4 is selected for providing the best
processing efficiency.

The unscented transform (UT) refers to a method that allows to propagate mean and covariance
information through non-linear transformations. The main idea consists in producing a set of
weighted points, namely sigma points, around the current state estimate based on its covariance.
Then, the sigma points are propagated through the non-linear system to get more accuracy on
the mean and covariance estimates. Next, the UKF equations are described based on Boudreault
(2009), but adapted for the bivariate framework. As a starting point, let define the augmented state
vector on which the UT is applied

(xat )> ≡
[
xt, ε

∗
t ,v>t

]
, (13)

where xt = (x(i)
t , x

(j)
t ), ε∗t ≡ σ

√
∆tεt with σ = (σ(i)

st , σ
(j)
st ) εt = (ε(i)t , ε

(j)
t ), vt = (v(i)

t ,v(j)
t ) is the noise

vector, and i and j refer to the pairwise firms. Note that for simplification purposes, the following
notation is considered next

Yt = {y(i)
1 , ...,y

(i)
t−1,y

(i)
t ,y(j)

1 , ...,y(j)
t−1,y

(j)
t }.

Define now the first two moments of the augmented state vector as

(x̂at|u) ≡ E
[
xat | Yu

]
,

(Pa
t|u) ≡ Cov

[
xat | Yu

]
,

(14)

for u = t− 1 or t. Then, define the set of sigma points of the augmented state vector xat−1 as

St−1|t−1 ≡ x̂at−1|t−1 ⊕
[
−
√

2(D + 2) + λ× chol(Pa
t−1|t−1),0,

√
2(D + 2) + λ× chol(Pa

t−1|t−1)
]
, (15)

where D refers to the number of CDS maturities available for each firm, λ is an UKF-specific pa-
rameter 4, and chol is the Cholesky decomposition of a positive-definite symmetric square matrix.
The operator ⊕ means that the column vector x̂at−1|t−1 is added to each column of the matrix on its
right-hand side, leading to a sigma points matrix of dimension 2(D + 2)× (4(D + 2) + 1). There-
fore, the first two rows of St−1|t−1 correspond to the propagation of xt, the next two rows are the
propagation of ε∗t , and the last 2D rows are the propagation of the noise vector vt.

4. The parameter λ depends on UKF-scaling parameters and is given by λ = α2
UKF (D + 2 + κUKF ) − (D + 2).

Note that scaling parameters have been assumed to be κUKF = 2, αUKF = 0.1, and βUKF = 0.



28

In what follows, the prediction and update steps of the UKF are presented. The first step allows
to predict a priori state estimate xt | Yt−1 and its covariance using a discrete sample of points pro-
vided by Xt|t−1. Then, the second step approximates the measurement residual and its covariance,
which allow to update a posteriori state estimate yt | Yt−1 and its covariance using Yt|t−1. In the
literature, Yt|t−1 refers to weighted sigma points.

As a starting point to the prediction stage, let define the c-th element of the column vector
Xt|t−1 as

X (c)
t|t−1 = S

(1:2,c)
t−1|t−1 +

(
µ− 1

2σ
2
)
∆t+ S

(3:4,c)
t−1|t−1, (16)

where c = (1, 2, ..., 4(D+2)+1), and upper index (l1 : l2, c) refers to rows from l1 to l2 and column
c of elements in matrix St−1|t−1. Applying the UT allows to obtain the predicted value of xt given
the weighted average of its sigma points y1, ...yt−1, i.e.

x̂t|t−1 = E
[
xt | Yt−1

] ∼=
4(D+2)+1∑

c=1
W (n)
c X (c)

t|t−1, (17)

where the weights W (n)
c are defined as

W (n)
c =





λ
2(D+2)+λ if c = 2(D + 2) + 1

1
2(2(D+2)+λ) otherwise

.

Equation (17) is similar to a discretization of the random variable xt | y1, ...,yt−1 with realizations
X (c)
t|t−1 and associated probabilities W (n)

c . Then, the variance of the predicted state estimate is

Pt|t−1 = Cov
[
xt | Yt−1

] ∼=
4(D+2)+1∑

c=1
W (z)
c

(
X (c)
t|t−1x̂t|t−1

)2
, (18)

where the weights W (z)
c are defined as

W (z)
c =





λ
2(D+2)+λ + (1− α2

UKF + βUKF ) if c = 2(D + 2) + 1

W (n)
c otherwise

,

where λ = α2
UKF

(
2(D+2)+κUKF

)
−2(D+2). Once again, Equation (18) is similar to the variance

of a discrete random variable xt | Yt−1 with probabilities W (z)
c .

In a similar manner to the prediction stage, the update step consists in first defining the l-th
row and c-th column element of the matrix Yt|t−1 by

Y(l,c)
t|t−1 = f (l)

(
X (c)
t|t−1

)
+ S

(l+4,c)
t−1|t−1, (19)

where l = 1, 2, ..., 2D and c = (1, 2, ..., 4(D + 2) + 1). The l-th row of matrix Yt|t−1 corresponds
to the discretized distribution of y(l)

t | Yt−1 with realizations given by each column c. Then, the



29

predicted value of yt given Yt−1 is the expectation of some discrete multivariate random variable
such as

ŷt|t−1 = E
[
yt | Yt−1

] ∼=
4(D+2)+1∑

c=1
W (n)
c Y(c)

t|t−1. (20)

The next two equations describe the covariance between elements of Yt|t−1, as well as the covariance
between Xt|t−1 and Yt|t−1 respectively

Pyy =
4(D+2)+1∑

c=1
W (z)
c

(
Y(c)
t|t−1 − ŷt|t−1

)(
Y(c)
t|t−1 − ŷt|t−1

)>
, (21)

Pxy =
4(D+2)+1∑

c=1
W (z)
c

(
X (c)
t|t−1 − x̂t|t−1

)(
Y(c)
t|t−1 − ŷt|t−1

)>
. (22)

The Kalman gain that minimizes the a posteriori error covariance is

Kt = PxyP−1
yy . (23)

Then, the predicted value of xt given Yt is updated to

x̂t|t = E
[
xt | Yt

]

= x̂t|t−1 + Kt

(
yt − ŷt|t−1

)
,

(24)

with variance

Pt|t = Cov
[
xt | Yt

]

= Pt|t−1 −KtPyyK>t .
(25)

Finally, the recursion process starts at t = 1 with the following augmented state vector and
variance

x̂a0|0 =
[
x̂0|0 0 0

]
1×2(D+2)

,

Pa
0|0 =



P0|0 0 0
0 Σs0 0
0 0 R




2(D+2)×2(D+2)

,

(26)

where P0|0 is the initial covariance matrix of the predicted state variable, Σs0 is the covariance
matrix of leverage noise terms associated to the initial regime state s0 = (1, 1), and R is the trading
noise variance matrix. For more details on the estimation procedure, please refer to Appendix C.
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Appendix C Endogenous correlation coefficients

To obtain endogenous correlation estimates, correlation coefficients are introduced in the co-
variance matrix of the augmented state vector on which the unscented transformation (UT) is
performed. Details about UKF equations and the UT are provided in Appendix B. As a starting
point, one can write the second order moment of the augmented state vector as

Pa
t|t =



Pt|t 0 0
0 Σst 0
0 0 R




2(D+2)×2(D+2)

, (27)

where [Pt|t]2×2 is the covariance matrix of predicted state variables (x̂(i)
t|t , x̂

(j)
t|t ) updated at each time

step, [Σst ]2×2 is the covariance matrix of leverage noise terms associated with regimes st = (s(i)
t , s

(j)
t ),

and [R]2D×2D is the trading noise variance matrix. Furthermore, dimension D refers to the number
of CDS maturities available for each firm. More precisely, covariance and variance matrices can be
expressed as

Σst =
[
(σ(i)

st )2 σ(i)
st σ

(j)
st ρ

(i,j)
st (σ(j)

st )2
]
×∆t,

R = diag(δ2).

Note that diag(δ2) is the operator that creates a square matrix with diagonal elements corre-
sponding to δ2, and δ =

[
δ(i,1) δ(i,2) ... δ(i,10) δ(j,1) δ(j,2) ... δ(j,10)

]
is the vector of the noise

terms’ standard deviation. Maximizing the log-likelihood function, one obtains the correlation co-
efficients estimates.

According to Hamilton (1994) and considering the M parallel UKF in the bivariate framework,
the log-likelihood function based on observations yt = (y(i)

t ,y(j)
t ) up to time step T for all possible

paths M is computed by

`(φ2;yT , φ̂1) =
T∑

t=1

M∑

l=1
lnf(yt | Yt−1;φ2), (28)

where the conditional likelihood f(yt | Yt−1;φ2) given Yt−1 = {y(i)
1 , ...,y

(i)
t−1,y

(j)
1 , ...,y(j)

t−1} is the prob-
ability density function of a 2D-variate normal distribution valued at (y(i)

t ,y(j)
t ) on path l with mean

and covariance obtained from the filtering procedure. More specifically, the mean (ŷ(i)
t|t−1, ŷ

(j)
t|t−1) is a

(1×2D) vector obtained from E[(y(i)
t ,y(j)

t ) | Yt−1], and the covariance matrix of dimension (2D×2D)
is Pyy = Cov[(y(i)

t ,y(j)
t ), (y(i)

t ,y(j)
t ) | Yt−1]. Appendix B describes these equations in more details.

By using Bayes rule, one can express the conditional likelihood function as
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f(yt | Yt−1;φ2) = f(yt, Yt−1;φ2)
f(Yt−1;φ2)

=
∑

st f(yt, st, Yt−1;φ2)
f(Yt−1;φ2)

=
∑

st
f(yt | st, Yt−1;φ2)× f(st | Yt−1;φ2)

=




f(yt | (1, 1), Yt−1;φ2)
f(yt | (1, 2), Yt−1;φ2)
f(yt | (2, 1), Yt−1;φ2)
f(yt | (2, 2), Yt−1;φ2)




>

×




f((1, 1) | Yt−1;φ2)
f((1, 2) | Yt−1;φ2)
f((2, 1) | Yt−1;φ2)
f((2, 2) | Yt−1;φ2)


 .

(29)

The conditional likelihood of yt = (y(i)
t ,y(j)

t ) is computed analytically using the 2D-variate Normal
density function. From the Markov property, the likelihood function given yt−1 = (y(i)

t−1,y
(j)
t−1) and

the actual regimes st = (s(i)
t , s

(j)
t ) of firms i and j can be expressed as

f(yt | st,yt−1;φ2) = 1

(2π)D
∣∣∣Pyy

∣∣∣
1/2 exp

(
− 1

2e
>
stP
−1
yyest

)
, (30)

where est is the error between observations and their forecasted values. Second, the conditional
likelihood of st = (s(i)

t , s
(j)
t ) given yt−1 = (y(i)

t−1,y
(j)
t−1) is obtained recursively. Let denote η>t =∑

st f(yt | st,yt−1;φ2) and ξt|t−1 = f(st | yt−1;φ2), one can use the following recursion equations

ξt+1|t = P(i,j)>ξt|t, (31a)

ξt|t = ηt(×)ξt|t−1

η>t ξt|t−1
, (31b)

where (×) refers to the element-by-element multiplication and P(i,j) is the following transition
matrix

P(i,j) =




p
(i)
11p

(j)
11 p

(i)
11p

(j)
12 p

(i)
12p

(j)
11 p

(i)
12p

(j)
12

p
(i)
11p

(j)
21 p

(i)
11p

(j)
22 p

(i)
12p

(j)
21 p

(i)
12p

(j)
22

p
(i)
21p

(j)
11 p

(i)
21p

(j)
12 p

(i)
22p

(j)
11 p

(i)
22p

(j)
12

p
(i)
21p

(j)
21 p

(i)
21p

(j)
22 p

(i)
22p

(j)
21 p

(i)
22p

(j)
22



. (32)

Finally, in order to obtain an estimate of φ2, one can write

φ̂2 = argmax
{
`(φ2;yT , φ̂1)

}

= argmax
{

T∑

t=1

M∑

l=1

∑

st
ln(ξt|t−1)−Dln(2π)− 1

2ln
∣∣∣Pyy

∣∣∣− 1
2e
>
stP
−1
yyest

}
.

(33)
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Appendix D Empirical results time series
D.1 Log premium, filtered leverage and filtered regime

Figure 2: Log premium, filtered leverage and filtered regime.
This figure shows time series of CDS log-premium, filtered leverage and regime for each firm across the portfolio over the period
of time starting on January 5, 2005 and ending on December 26, 2012. Shaded areas illustrate the crisis period that extends
from June 30, 2007 to February 28, 2009. Note that filtered leverage refers to its standardized value defined as the ratio between
X

(i)
t and θ(i).
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(a) AIG: American International Group
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(b) ALL: Allstate Corp
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(c) AXP: American Express
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(d) BACORP: Bank of America
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(e) BBT: BB&T Corp
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Figure 2: Log premium, filtered leverage and filtered regime (cont’d).
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Figure 2: Log premium, filtered leverage and filtered regime (cont’d).
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Figure 2: Log premium, filtered leverage and filtered regime (cont’d).
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D.2 Probabilities of default

Figure 3: Model versus Moody’s probabilities of default.
This figure shows time series of 1-, 5-, and 10-year default probabilities for each firm across the portfolio over the period of time
starting on January 5, 2005 and ending on December 26, 2012. Model’s time series are inferred from CDS premiums market
data. Moody’s time series are obtained from monthly transition matrices for banking, finance and insurance industries using the
generator estimation approach with window length of 3 years ex ante default data.
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Figure 3: Model versus Moody’s probabilities of default (cont’d).

10
−10

10
−6

10
−2

10
2

1YR -PD

L
o
g
[P

D
(%

)]

Event(s) M ,S

10
−10

10
−6

10
−2

10
2

5YR -PD

L
o
g
[P

D
(%

)]

10
−10

10
−6

10
−2

10
2

10Y-PD

L
o
g
[P

D
(%

)]

Mod e l M ood y s

2005 2006 2007 2008 2009 2010 2011 2012

(g) C: Citigroup

10
−10

10
−6

10
−2

10
2

1YR -PD

L
o
g
[P

D
(%

)]

10
−10

10
−6

10
−2

10
2

5YR -PD

L
o
g
[P

D
(%

)]

10
−10

10
−6

10
−2

10
2

10Y-PD

L
o
g
[P

D
(%

)]

Mod e l M ood y s

2005 2006 2007 2008 2009 2010 2011 2012

(h) CB: Chubb Corp

10
−10

10
−6

10
−2

10
2

1YR -PD

L
o
g
[P

D
(%

)]

Event(s) A ,D

10
−10

10
−6

10
−2

10
2

5YR -PD

L
o
g
[P

D
(%

)]

10
−10

10
−6

10
−2

10
2

10Y-PD

L
o
g
[P

D
(%

)]

Mod e l M ood y s

2005 2006 2007 2008 2009 2010 2011 2012

(i) CCR: Countrywide Finl Corp

10
−10

10
−6

10
−2

10
2

1YR -PD

L
o
g
[P

D
(%

)]

10
−10

10
−6

10
−2

10
2

5YR -PD

L
o
g
[P

D
(%

)]

10
−10

10
−6

10
−2

10
2

10Y-PD

L
o
g
[P

D
(%

)]

Mod e l M ood y s

2005 2006 2007 2008 2009 2010 2011 2012

(j) COF: Capital One Finl Corp

10
−10

10
−6

10
−2

10
2

1YR -PD

L
o
g
[P

D
(%

)]

Event(s) E,F ,G,J ,R ,V

10
−10

10
−6

10
−2

10
2

5YR -PD

L
o
g
[P

D
(%

)]

10
−10

10
−6

10
−2

10
2

10Y-PD

L
o
g
[P

D
(%

)]

Mod e l M ood y s

2005 2006 2007 2008 2009 2010 2011 2012

(k) FHLMC: Freddie Mac

10
−10

10
−6

10
−2

10
2

1YR -PD

L
o
g
[P

D
(%

)]

Event(s) E,F ,G,J ,R ,V

10
−10

10
−6

10
−2

10
2

5YR -PD

L
o
g
[P

D
(%

)]

10
−10

10
−6

10
−2

10
2

10Y-PD

L
o
g
[P

D
(%

)]

Mod e l M ood y s

2005 2006 2007 2008 2009 2010 2011 2012

(l) FNMA: Fannie Mae



38

Figure 3: Model versus Moody’s probabilities of default (cont’d).
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Figure 3: Model versus Moody’s probabilities of default (cont’d).
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Appendix E Bivariate framework validation
The aim of this appendix is to describe the validation procedure that has been implemented to

evaluate the capability of the bivariate approach to estimate correlation coefficients. The first step
consists in generating correlated log-leverages between two firms for specific sequences of regime
states. Note that regimes are considered persistent since both P and Q transition probability ma-
trices are concentrated over the diagonal as reported in Table 2. More precisely, 100 paths of
correlated log-leverages have been simulated as per equations (2) and (3) with K = 2, ∆t = 1/52,
ρ(1,2)

st = (−0.75, 0.30,−0.15, 0.60) and firm-specific parameters given in Table 7. Then, the time
series of both log-leverages and regimes allow to price the CDS premiums for maturities of 1, 2, 3,
5, 7, and 10 years as described in Appendix A. The second step of the validation procedure consists
in using these time series of CDS premiums to endogenously capture the pairwise correlations from
inferred log-leverages’ co-movements based on the UKF and quasi-maximum likelihood estimation.
Table 8 presents the descriptive statistics of the correlation estimates obtained by the validation
procedure, while Table 9 shows the detailed results for the 100 paths.

Table 7: Firms’ parameters for bivariate framework validation.

Firm x̂0|0 µP(%) µQ(%) σ1 σ2 pQ11(%) pP11(%) pQ22(%) pP22(%)

1. Firm1 0.77 -2.00 -0.50 0.0700 0.2000 99.40 99.00 98.00 99.40
2. Firm2 0.92 2.00 -1.00 0.0500 0.2600 99.00 99.30 92.00 95.00

Firm α β (%) θ κ δ(1) δ(2) δ(3) δ(5) δ(7) δ(10)

1. 13.00 2.00 1.3700 0.6000 0.2500 0.1600 0.1020 0.0540 0.0025 0.0421
2. 10.00 0.20 1.5000 0.3000 0.1800 0.1000 0.0150 0.0990 0.1007 0.1261

Table 8: Descriptive statistics of the validation procedure’s correlation estimates.

ρ̂
(1,2)
(1,1) ρ̂

(1,2)
(1,2) ρ̂

(1,2)
(2,1) ρ̂

(1,2)
(2,2)

mean -0.7898 0.3136 -0.1557 0.6122
std 0.0326 0.0807 0.1011 0.0456
min -0.8594 0.1556 -0.4237 0.5160
max -0.6837 0.5374 0.1049 0.7276

By means of the validation procedure, one can conclude that the bivariate framework is reliable
since estimated results approach theoretical values. Indeed, ρ̂(1,2)

st = (−0.79, 0.31,−0.16, 0.61) with
standard deviation of (0.03, 0.08, 0.10, 0.05) respectively, while ρ(1,2)

st = (−0.75, 0.30,−0.15, 0.60).
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Table 9: Correlation estimates of the validation procedure.

Path ρ̂
(1,2)
(1,1) ρ̂

(1,2)
(1,2) ρ̂

(1,2)
(2,1) ρ̂

(1,2)
(2,2) Path ρ̂

(1,2)
(1,1) ρ̂

(1,2)
(1,2) ρ̂

(1,2)
(2,1) ρ̂

(1,2)
(2,2)

1 -0.8133 0.1950 -0.1448 0.6620 51 -0.8176 0.3321 -0.0963 0.6386
2 -0.8322 0.2042 -0.0621 0.5777 52 -0.8291 0.4407 -0.2075 0.6270
3 -0.7747 0.2370 0.1049 0.5445 53 -0.7813 0.1810 -0.3371 0.5649
4 -0.7916 0.1556 -0.1203 0.6658 54 -0.8385 0.2725 -0.0954 0.5428
5 -0.7994 0.2095 -0.0715 0.6158 55 -0.7924 0.3151 -0.2160 0.6272
6 -0.7936 0.3482 -0.1140 0.5962 56 -0.7909 0.2987 -0.3057 0.5978
7 -0.7965 0.3251 -0.2573 0.6768 57 -0.7887 0.2642 -0.1327 0.5779
8 -0.8002 0.3580 -0.2160 0.6815 58 -0.7804 0.3781 -0.2254 0.5935
9 -0.7602 0.2808 0.0034 0.6226 59 -0.7686 0.3160 -0.1486 0.6304
10 -0.7920 0.3788 -0.0634 0.5980 60 -0.7401 0.3894 -0.1579 0.5160
11 -0.8033 0.2990 -0.0695 0.5700 61 -0.7877 0.3320 -0.1391 0.5819
12 -0.8357 0.2306 -0.1814 0.6262 62 -0.7720 0.5374 -0.2775 0.5203
13 -0.8231 0.3247 -0.2453 0.6739 63 -0.7531 0.2738 -0.1674 0.6185
14 -0.7718 0.2468 -0.1633 0.6010 64 -0.7929 0.3612 -0.1898 0.5899
15 -0.8066 0.2868 -0.3406 0.6067 65 -0.8119 0.2634 0.0051 0.5505
16 -0.8070 0.2961 -0.1456 0.5899 66 -0.7798 0.1582 -0.1276 0.5779
17 -0.8225 0.2124 -0.1160 0.6522 67 -0.7549 0.2371 0.0368 0.5853
18 -0.7650 0.3994 -0.4237 0.5523 68 -0.7712 0.3032 -0.1241 0.5918
19 -0.7207 0.2987 -0.3252 0.6268 69 -0.8004 0.3838 -0.3204 0.6018
20 -0.8435 0.2066 -0.2036 0.6859 70 -0.8086 0.3285 -0.1384 0.7046
21 -0.7914 0.3086 -0.0732 0.6478 71 -0.8546 0.3852 -0.0868 0.5969
22 -0.7557 0.2633 -0.2170 0.6066 72 -0.7403 0.2701 -0.1837 0.6078
23 -0.7469 0.4463 -0.3781 0.5342 73 -0.7552 0.4712 -0.2273 0.6394
24 -0.8387 0.3552 -0.2731 0.5863 74 -0.8383 0.2304 -0.1926 0.6083
25 -0.7209 0.2505 -0.1542 0.6302 75 -0.7555 0.3578 -0.2417 0.5738
26 -0.7815 0.4640 -0.0795 0.6389 76 -0.7983 0.3606 -0.2045 0.6610
27 -0.7279 0.3736 -0.0903 0.6371 77 -0.8290 0.3826 -0.1429 0.6042
28 -0.8312 0.3984 -0.0659 0.6125 78 -0.8019 0.4996 -0.1361 0.6237
29 -0.8103 0.2165 -0.2725 0.6574 79 -0.8093 0.3554 -0.1884 0.6425
30 -0.7828 0.3012 -0.1946 0.6874 80 -0.7737 0.3258 -0.1629 0.6678
31 -0.8594 0.3900 0.0378 0.5899 81 -0.8186 0.2927 -0.2478 0.6942
32 -0.7518 0.1779 -0.1842 0.5556 82 -0.7857 0.2830 -0.1146 0.6364
33 -0.7601 0.3452 -0.2256 0.5491 83 -0.7817 0.2940 0.0152 0.5247
34 -0.7834 0.4683 -0.1078 0.5330 84 -0.7453 0.3638 -0.1060 0.6606
35 -0.7656 0.1860 -0.0713 0.5927 85 -0.7954 0.3281 -0.2821 0.6997
36 -0.7791 0.3049 -0.3116 0.6064 86 -0.8035 0.2747 -0.1114 0.6399
37 -0.7832 0.3019 -0.2173 0.6955 87 -0.7923 0.2532 -0.2442 0.6368
38 -0.8363 0.4335 -0.2120 0.6189 88 -0.7881 0.3029 -0.2021 0.6076
39 -0.8120 0.3590 -0.1212 0.6118 89 -0.7512 0.2401 -0.1640 0.6486
40 -0.8152 0.2816 -0.0086 0.6041 90 -0.7934 0.4549 -0.2297 0.5928
41 -0.8511 0.2236 -0.0633 0.6023 91 -0.7934 0.3219 -0.1328 0.6584
42 -0.8027 0.4235 -0.2487 0.5733 92 -0.7726 0.3439 -0.2019 0.5503
43 -0.7588 0.3960 -0.1694 0.6093 93 -0.7564 0.2724 0.0684 0.5842
44 -0.7344 0.1792 -0.2542 0.5800 94 -0.8089 0.1969 0.0467 0.5620
45 -0.7765 0.2983 -0.1240 0.6413 95 -0.8448 0.3395 -0.0127 0.6532
46 -0.8332 0.2115 -0.0099 0.5820 96 -0.8173 0.4269 -0.2373 0.6209
47 -0.8167 0.3532 -0.0664 0.7276 97 -0.7999 0.3888 -0.2772 0.6312
48 -0.7629 0.2612 -0.0020 0.5216 98 -0.7700 0.3145 -0.1415 0.6237
49 -0.7800 0.2638 -0.1477 0.5804 99 -0.7615 0.2772 -0.2043 0.5600
50 -0.8001 0.4129 -0.1076 0.6640 100 -0.6837 0.2408 -0.0862 0.6716
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Conclusion

L’étude empirique présentée dans ce mémoire porte sur la présence de contagion au

sein du secteur financier aux États-Unis durant la dernière crise de 2007-2009. Pour ce

faire, une extension bivariée est apportée au modèle hybride de risque de crédit avec

changement de régime de Bégin et al. (2014). La méthodologie est basée sur l’ana-

lyse des corrélations endogènes entre les co-mouvements des ratios d’endettement de 24

grandes institutions financières américaines permettant d’étudier leur interdépendance.

Les résultats de l’analyse empirique montrent une augmentation de la corrélation dans

le régime de haute volatilité en comparaison avec le régime stable pour 21 firmes du

portefeuille. En particulier, les résultats stipulent que Fannie Mae et Freddie Mac sont

beaucoup plus corrélés avec les autres entreprises pendant la tourmente, ce qui reflète

les liens entre les prêts hypothécaires risqués et la crise du secteur financier américain

durant cette période. Les résultats empiriques suggèrent donc la présence de contagion

lors de la dernière crise de 2007-2009 au sein du secteur financier aux États-Unis. En

plus de la structure de corrélation, le modèle permet également d’estimer les séries

chronologiques des probabilités de défaut qui indiquent la tendance du risque de crédit

au niveau individuel. En effet, les résultats montrent de plus grandes probabilités de

défaut pour les entreprises les plus vulnérables reflétant leurs difficultés financières du-

rant la crise. Pour conclure, les travaux de recherche menés dans le cadre de ce mémoire

présentent des implications majeures dans le domaine de la gestion du risque de crédit

puisque la présence de contagion financière peut avoir des conséquences importantes

dans les portefeuilles sensibles au crédit.






