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Abstract 

As the exchange rate market trades trillions of dollars on a daily basis, it is a prime 

candidate for proper risk management. Common practice for financial institutions is to 

calculate Value-at-Risks (VaRs). We propose using alternative techniques for exchange 

rate VaRs, which have previously been used for equity risk. We compare GARCH 

models, models derived from quantile regressions and conditional autoregressive value at 

risks (CAViaRs). We also include deviations from macroeconomic “fundamentals” as 

additional regressors to lagged returns, in order to better estimate the VaRs. Our results 

suggest that CAViaR techniques with proper regressors are appropriate for exchange rate 

risk as well as using macroeconomic variables as independent variables. Furthermore, our 

results also seem to support the continued use of semi-parametric approaches to VaR 

modeling.  

 

 

Keywords:  

Risk management, Value-at-Risk, Quantile regression, Nonlinear regression, Exchange 

rates, Macroeconomic fundamentals, Backtesting  
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Sommaire 

Le marché des taux de change transige des milliards de dollars en transactions par jour, 

ce qui justifie une bonne utilisation de pratiques de gestion de risque. Les institutions 

financières évaluent habituellement le risque en estimant des valeurs-à-risque (VaR). 

Nous proposons des techniques alternatives de VaR pour le risque de taux de change, qui 

sont généralement utilisées en modélisant des risques de marchés. En plus des modèles 

traditionnels GARCH, nous utilisons des modèles à base de régressions quantiles, ainsi 

que modèles conditionnels autorégressifs de valeur-à-risque (CAViaR). En plus de ces 

techniques, nous ajoutons des déviations de fondamentaux macroéconomiques aux retards 

des rendements des taux de change afin de mieux estimer les VaRs. Nos résultats 

empiriques démontrent que ces techniques alternatives sont en effet appropriées pour le 

risque de taux de change, ainsi que semblent justifier l’utilisation de variables 

macroéconomiques en tant que variables indépendantes. Par ailleurs, nos résultats 

semblent aussi supporter l’utilisation continue de modèles semi-paramétriques dans la 

modélisation de VaRs. 

 

 

Mots clés:  

Gestion de risque, Valeur-à-Risque, Régression quantile, Régression non linéaire, Taux 

de change, Fondamentaux macroéconomiques, Backtests. 
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1 Introduction 

The importance of effective market risk management practices continues to grow. One of 

the most popular methods for evaluating risk is with Value-at-Risk (VaR) models. We 

consider different VaR models for foreign exchange risk. According to the Bank of 

International Settlements (BIS), trading in the foreign exchange markets averaged more 

than $3 trillion per day since 2007 and has steadily increased year over year to $5.3 trillion 

per day in April 2013. Such a high trading volume combined with exchange rate volatility 

can lead to devastating potential losses. Furthermore, the continued use of carry trade and 

investments into emerging markets, made profitable in part by the “forward premium 

puzzle” (Brunnermeier et al., 2008), has continued to increase exchange rate exposure. 

This thesis will evaluate different VaR models and attempt to find the best suited for 

foreign exchange risk. 

 

Key innovations in this thesis is the use of quantile regression VaR methods for exchange 

rate risk. More precisely, we estimate CAViaR models on foreign exchange data with 

macroeconomic variables as explanatory variables. Quantile regressions have been 

getting more attention over the last decades since Koenker & Basset (1978) seminal paper 

and are now widely used in many fields. The concept of quantile regressions is to estimate 

parameters using the least absolute deviations (LAD) methodology, based on a particular 

quantile and putting weights on the quantiles. Assuming a given quantile 𝜃, we use a 

weighted sum of absolute deviations, where a quantile 𝜃 is chosen and used for positive 

deviations while (1 − 𝜃) is then used for negative deviations. There are now many 

different algorithms to solve the linear programming problem associated to quantile 

regressions which we will mention in greater detail in sections 2 & 4. A distinctive feature 

of such models is that they allow for different behaviors for each quantile of interest. 

 

This thesis is therefore based on comparing different VaR models estimated by different 

techniques. We first include more classical models, such as standard GARCH models. 

Then, we construct different VaR models based on quantile regressions. Finally, we build 
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on the Conditional Autoregressive Value at Risk (CAViaR) models by Engle & 

Manganelli (2004), more complex models based on quantile regressions, models that have 

not been widely studied for foreign exchange rate risk. Also, in the comparison of models, 

we estimate each one with different regressors, including macroeconomic variables: 

deviations from fundamental PPP levels, interest rate differentials and exchange market 

pressures (EMP). Engle & Manganelli use a lag of returns in their market risk analysis 

and we also include the lag change variable in our different models. 

 

Part of the innovation of this work on exchange rate risk is the addition of macroeconomic 

factors that influence exchange rates. The purchasing power parity (PPP) has been studied 

and analysed for many years, a concept that stipulates that the exchange rate between two 

currencies is directly linked to the prices of a basket of goods. If the PPP holds true, then 

it should be equivalent to purchase the same number of goods in a foreign country, starting 

with domestic currency. The general consensus is that it should hold true in the very long 

run, while having big volatility swings in the short run (Rogoff, 1996). There has also 

been a lot written on the effects of the deviations from the PPP on exchange rates, which 

will be further detailed in section 2. 

 

While the CAViaR model is now more widely used and reproduced, it has been done 

seemingly exclusively for equity risk. There seems to be little to no literature on the use 

of the CAViaR models in foreign exchange risk. The same can be said about simple 

quantile regressions in estimating VaRs. While Nikolaou (2008) used quantile regressions 

with exchange rates, she looked at the individual quantiles and their likelihood of mean 

reversion. This is an important paper in giving us fuel to pursue quantile regressions as a 

method for estimating VaR models, as well as wanting to use deviations from 

fundamentals as a way of potentially observing mean reversion in the tails. 

 

As such, we use the daily changes in different exchange rates over the US dollar from 

1995 to 2012 inclusively. In order to ensure that the proper data was available for all of 
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our models, we selected 6 countries: Canada, Japan, Norway, South Africa, Switzerland 

and United Kingdom. Using the returns facilitates our assumption that the data is 

stationary and most suitable to manipulate our different models. We use the common PPP 

formulas in order to find the real exchange rates, formulas that are available in section 3. 

 

After estimating the different models, we put them through extensive backtesting 

methodology. We use a combination of different tests that are both regularly used and 

more suited for the use of quantile regressions. We decided to use the traditional ones 

established by Kupiec (1995), Christoffersen (1998) as well as the more recent tests by 

Engle & Manganelli (2004) and Gaglianone et al. (2011). The former (Unconditional, 

Independent and Conditional coverage tests) are the more common backtests used and the 

latter (Dynamic Quantile and VaR by Quantile Regression tests) are adapted for quantile 

regressions, but not exclusive to them. We will document them further in section 4. 

 

The results seem to confirm the usefulness of quantile regressions in VaR modeling both 

with and without the inclusion of deviations. As well, the results indicate that the use of 

deviations from fundamentals in VaR modeling may be more effective when modeling by 

quantile regressions rather than with traditional GARCH models, where we see little 

additional impacts by the deviations. In addition, the deviations from fundamentals as 

regressors in quantile regressions seem to perform fairly well in estimating VaRs, 

especially at the 1% level, despite certain caveats that will be explored. 

 

Furthermore, when observing more complex quantile regression models we see that the 

CAViaR model seems to perform the best and outperforms the IGARCH, a traditional 

method of estimating VaRs. Additionally, at the 5% and 1% quantiles, the model that 

performs the best according to our criteria, is the model that includes the lagged returns 

and the deviations from the fundamental PPP. Moreover, while this does not seem to be 

the case at the 20% and 10% quantiles, it may in fact indicate a stronger importance of 

the effects of fundamentals on the tails of the returns. 
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All in all, we demonstrate that it may be useful to use semi-parametric techniques to 

estimate VaRs rather than parametric methods. Furthermore, we demonstrate the 

usefulness of additional regressors that may prove to be especially relevant in estimating 

particular quantiles of exchange rate risk. 

 

The rest of the thesis is organized as follows. In the next section, we will go over a 

literature review of general VaR models, present the CAViaR models and their 

extensions, as well as previous research on deviations from fundamentals and different 

types of market pressure. The third section will demonstrate in further detail our data. The 

fourth section will show the models in more depth as well as the methodology used to 

estimate the different models. Finally, section 5 presents empirical results to the study, 

followed by a brief conclusion.  
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2 Literature Review 

In this following section, we will introduce previous work that has been the basis of this 

thesis, as well as information pertinent to our models and methodology, in addition to our 

assumptions. We begin with an overview of VaRs in general, followed by a presentation 

of the CAViaR models and a few extensions. Then, we continue with a review of 

empirical work done on exchange rates. Within that subsection, we first mention 

deviations from the PPP, continue with a review of exchange market pressure (EMP) and 

finish with a description of potential conflicts between different types of investors. 

 

2.1 VaR 

As mentioned, VaR models are now the most common measure for risk management, by 

financial institutions and their regulators. VaR is a measure of how much a certain 

portfolio can lose in a given time period at a given confidence level. We obtain 𝑉𝑎𝑅𝑡 such 

that: 

 Pr [𝑟𝑡  <  𝑉𝑎𝑅𝑡 | Ω𝑡] = 𝜃       ( 1 ) 

where rt are returns and Ωt denotes the information set available at time t. Also, with the 

equation and our notation, it is clear the VaR1 is essentially calculating the 𝜃 th quantile 

of 𝑟𝑡 based on Ωt. 

 

Models to calculate VaRs may also be separated into two different classes. The first class 

is the parametric approach, such as RiskMetrics (1996) for example, which must model 

the conditional volatility. The use of a GARCH or especially an IGARCH model is often 

used. However, in order to properly forecast using this method, there is still the need to 

assume a certain distribution of the shocks, which is difficult to do accurately. The second 

class is a non-parametric approach, which does not necessarily assume any particular 

distribution. However, it usually makes the assumption that the returns are iid, something 

                                                           
1 We will use a negative VaR as opposed to a positive one. 
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that is also uncommon. This class of technique requires many observations to be able to 

measure accurately the probability of extreme but rare events. As both classes have their 

pros and cons, the methods which will be generally used throughout this paper is a 

compromise between these two types of models: a semi-parametric approach based on the 

work by Engle & Manganelli (2004) called CAViaR and quantile regressions2. 

 

2.2 Conditional Autoregressive Value at Risk by Regression Quantiles (CAViaR) 

Engle & Manganelli (2004) build on quantile regressions in a way that allows them to 

directly model the evolution of the quantiles 𝑄𝑡(𝜃), without having to first estimate the 

distribution. They thus proposed a conditional autoregressive quantile specification for 

value at risk, CAViaR. The general specification of the CAViaR model is the following: 

 𝑄𝑡
𝐶𝐴𝑉(𝜃)  = β0 + ∑ β𝑖𝑄𝑡−𝑖(𝜃)𝑘

𝑖=1  + ∑ β𝑗ℎ(𝑥𝑡−𝑗)𝑟
𝑗=1     ( 2 ) 

where h is a function of the regressor and Xt-j is a vector of independent variables, the 

notation being adapted for this paper. The autoregressive terms of the quantile allows the 

VaR to change smoothly over time. In their adaptation of the CAViaR model, Engle & 

Manganelli (2004) provide four different versions of the model but we will first focus on 

two: the adaptive and the asymmetric slope. We expect that negative returns should have 

a greater impact on the VaR estimates than positive returns, a result that would seem 

expected by prior research. Engle & Manganelli (2004) demonstrate this effect on their 

equity data with News Impact Curves (Engle & Ng, 1993). For a given estimated VaR, 

the News Impact Curves (NIC) show how the VaR changes as the regressors vary. Engle 

& Manganelli (2004) find that there is a strong asymmetry in the NIC of the asymmetric 

slope VaRs, which supports our hypothesis that negative returns might have a greater 

impact on the VaRs than positive returns. 

                                                           
2 There is also the semi-parametric approach by extreme value theory (EVT), for which VaR models try to 

find the specific behavior of large returns and looks to provide a parametric overview of the distribution of 

the extremes. There has been quite a bit of work on EVT (see among others, Danielsson & de Vries, 2000; 

McNeil & Frey, 2000; de Jesus, Ortiz, & Cabello, 2013) but it will not be the focus here. 

Engle & Manganelli (2004) also show that their method is preferable to the EVT methodology due to 

unresolved assumptions that are made. 

See Engle & Manganelli (2004) for a more technical justification of quantile regressions vs EVT. 
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The adaptive model is on that is capable of adjusting based on whether the VaR threshold 

was hit or not. It is defined as: 

 𝑄𝑡
𝐶𝐴𝑉(𝜃) = 𝑄𝑡−1

𝐶𝐴𝑉(𝜃) + β {[1 + 𝑒𝑥𝑝(𝜅[𝑟𝑡−1 − 𝑄𝑡−1
𝐶𝐴𝑉(𝜃)])]−1 −  𝜃}  ( 3 ) 

where 𝜅 is a positive finite number, which allows the model to be a logistically-smoothed 

version of a step function. As a functions, whenever the series exceeds the VaR, its level 

should be increased. However, when the series does not exceed the VaR, its level should 

be decreased slightly. 

 

The asymmetric slope model simply allows for asymmetric impacts of the returns, where 

the positive and negative returns can have different effects: 

 𝑄𝑡
𝐶𝐴𝑉(𝜃) = β0 + β1𝑄𝑡−1(𝜃) + β2 max(𝑟𝑡−1, 0) + β3 𝑚𝑖𝑛(𝑟𝑡−1, 0)  ( 4 ) 

The parameters of either model are then estimated as the solution to: 

 min
𝛽

 
1

𝑇
∑ [𝜃 − 𝐼(𝑟𝑡 < 𝑄𝑡(𝜃))]𝑇

𝑖=1 [𝑟𝑡 − 𝑄𝑡(𝜃)]     ( 5 ) 

where 𝐼 is the indicator function. This can be minimized using many different methods 

such as the interior point algorithm proposed by Koenker & Bassett (1978) or simplex 

algorithms. 

 

However, while it is our assumption that the two previous models would be the best of 

the four CAViaR models, the other two are nonetheless estimated and are: the symmetric 

slope model and the GARCH type model. The difference with these last two CAViaR 

models is that they treat positive and negative returns with simple equal weights as 

opposed to the first two. We continue with the section where we will also further justify 

our preference for the first two models. The equations for the other two CAViaR models 

are shown in section 4, Eq. (9) and Eq. (10). 
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In using the CAViaR models, we ensure that each quantile 𝑄𝑡
𝐶𝐴𝑉(𝜃) is dependent on its 

lagged quantile. This allows to mitigate shocks and not to over adjust the VaRs in response 

to potential shocks observed by regressors. 

 

Engle & Manganelli (2004) then demonstrate how CAViaR estimators are also consistent 

and asymptotically normal, using earlier proofs where White (1994) established that 

nonlinear regression quantiles are consistent in both iid and stationary dependent cases3. 

 

2.3 Extensions of CAViaR 

One of the main extensions to the use of CAViaR models is for volatility forecasting. 

Taylor (2005) describes the models from which he builds his research and further justifies 

the use of CAViaR over using GARCH models, based on Poon & Granger (2003) who 

show that the latter fail to properly account for tail thickness, even when using a Student 

t distribution with maximum likelihood. Taylor (2005) mentions that the simplest way to 

obtain the volatility forecasts is to proceed with two steps. The first, is to estimate the 

quantile parameters of the quantile models (for example by using the CAViaR models) 

and the second is to plug the results into the corresponding expressions for the volatility 

forecasting.  

 

In his work, Taylor (2005) focuses on individual stocks and stock indices and like Engle 

& Manganelli (2004), he uses lagged returns. In the end, according to his work, the best 

results were achieved by the asymmetric slope CAViaR model, which demonstrates the 

different impacts between the positive and the negative returns on the VaRs. Engle & 

Manganelli (2004), however, reported their best results from the adaptive model. Both of 

these models demonstrate the notion that returns do not follow symmetric properties when 

estimating the VaRs. Other authors, such as Nikolaou (2008), Huang et al. (2011), 

                                                           
3 For further explanation and proofs, see the Appendix in Engle & Manganelli (2004). 

Taylor (2005) also shows how the CAViaR model has the same robust properties as simple quantile 

regressions. 
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Altavilla & de Grauwe (2013) and de Jesus, Ortiz, & Cabello (2013), have also noted the 

different impacts of positive and negative returns with exchange rates. This reinforces our 

original assumption of focusing primarily on the adaptive and asymmetric slope models. 

 

Huang et al. (2011) built off the work of Taylor (2005) but looked to apply the CAViaR 

model towards exchange rate volatility4. To differentiate exchange rates from other 

financial assets, they point out that exchange rate volatility seems to be more volatile for 

emerging markets than for developed countries5 and that there can be bodies at work that 

look to stabilize price movements6. This also reinforces the idea of using different types 

of countries and their currencies7. The authors found that overall, on average, the 

regressions by quantile with adaptive function and their weighted composition perform 

the best, as the model had the highest explanatory power. However, while their results 

seem encouraging, the authors mention that no model was overwhelmingly more 

appropriate than the others in estimating the volatility.  

 

Jeon & Taylor (2013) also provided an extension to the CAViaR model, also using it with 

implied volatility, in order to predict volatility and VaR estimation. They extended the 

model in order to add a predictive variable, which is also what we are looking to do. Their 

results are encouraging as an additional regressor may help in the predictability of the 

models and can further support this thesis as we also look to add additional regressors to 

the CAViaR models. An interesting result of their work on the S&P 500, is that the 

explanatory power of the implied quantiles increased as they got further into the left tail 

but decreased as they got further into the right tail. Again, this is further evidence 

                                                           
4 They tried to model a uniformly spaced series of quantiles, which they believe allows them to follow the 

whole distributional pattern rather than only reflect the tail behaviors. This could be interesting for further 

research but was not used for this paper. 
5 This result was also reported by Rufino & de Guia (2011), who used different models. 
6 Nikolaou (2008) presents and shows other articles that speculate on Central bank intervention.  

Vigfusson (1997), Altavilla & De Grauwe (2010) among others, on the other hand, offer the alternative of 

a sort of game between different types of exchange rate traders (trading): fundamentalits and chartists 

(technical analysis). 
7 While we use a mix of currencies, comparing different blocks, or types of currencies may be a notable 

extension to this work. 
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supporting our assumption that there may be a greater impact by negative returns as 

opposed to positive returns in the estimation of VaRs. 

 

2.4 Fundamentals and exchange rates 

In this section, there are two subsections, each generally developed historically and 

demonstrating a certain evolution in the literature, pertinent for this thesis. The first 

subsection will reflect the nature of the deviation from the fundamental levels of the PPP 

and its effects on exchange rates. We begin by mentioning different views on the 

importance of different impacts to the exchange rates by deviations from the PPP. We 

then move on to articles that identify different portions of the models used in this thesis, 

to establish the utility of using the deviations as a regressor on changes in exchange rates. 

At the end of the subsection, we also focus on two articles that explain why we choose to 

observe different quantiles and their expected effects on the deviations from fundamental 

levels. 

 

The second subsection will touch on different types of market pressures. We begin by 

presenting exchange market pressure, a technique attempting to model pressures in the 

exchange rates. Then, we mention the market pressures that ensue from two different 

classes of investors: fundamentalists and chartists. Establishing that there are different 

types of investors, we are trying to further justify the importance of observing results at 

different quantiles. This will allow us to expect different results by quantile and be able 

to make links to other areas of research that could extend this work, such as bubbles and 

crises. 

 

2.4.1 Deviation from fundamentals - PPP 

There is a lot of information linking the use of economic fundamentals to exchange rates, 

some of it conflicting, as it often is. Engel and West (2005) reported that it was difficult 

to find evidence that economic fundamentals, such as real money balances, outputs, 

interest rates, etc. can Granger-cause exchange rates. However, they acknowledge that 
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other papers, such as MacDonald & Taylor (1994), Mark (1995), Mark & Sul (2001) and 

Groen (2000) seem to find some evidence in the predictability of the exchange rate by the 

use of fundamentals, most notably through long horizons and panel data. There is 

nonetheless a seemingly general consensus that there is little to no linear relationship 

between exchange rates and fundamentals. 

 

Taylor, Peel, & Sarno (2001) wrote a widely-cited article demonstrating the nonlinear 

relationship between exchange rates and their deviation from the PPP8. They look at the 

real exchange rate and the level of mean reversion when it gets far from its fundamental 

levels. Their results demonstrated that the level and speed of mean reversion is faster 

when it is estimated in a nonlinear fashion than when it is estimated linearly. Their results 

also first concluded that in their limited testing, there seems to be a stronger sense of mean 

reversion when the deviations are further from the fundamental levels. 

 

Kilian & Taylor (2003) find some evidence of a nonlinear relationship between exchange 

rates and economic fundamentals9. Their evidence was strongest in the longer run (2 to 3 

years) and less clear over shorter horizons. They also found that there seems in fact to be 

a nonlinear mean reversion tendency in real exchange rates. They note that the mean 

reversion is particularly strong when exchange rates are far from their fundamental values 

and weak to non-existent when closer to their fundament levels, in a case where the real 

exchange rate is a function estimated by nonlinear least squares. We can thus hope to see 

the deviations have an effect on the estimation of VaRs, at least in the outer quantiles 

where the deviations from fundamental levels are bigger and there may be greater pressure 

of mean reversion. 

 

Nikolaou (2008) used quantile regressions in order to demonstrate the behaviour of real 

exchange rates in more depth. Like other authors, she looked at the possibility of mean 

                                                           
8 They look at Smooth Transition Autoregressive (STAR) models and their variations, LSTAR, ESTAR. 
9 Their work also focused on forecasting the real exchange rate with nonlinear models. 
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reversion but noted the possibility of asymmetries in the mean reversion process, which 

could differ by quantiles. She mentions that this could be due to interventions by central 

banks10. Her results are similar to those of Kilian & Taylor (2003) in that she also found 

evidence of mean reversion as a whole. However, the use of quantile regressions allowed 

her to decompose the mean reversion process by quantile, thus where the distribution of 

the mean reversion process is nonlinear.  

 

Her work is based on two methods, one that observes the size of the shock effect (semi-

parametric) and the other for the size of both the shocks and the deviation effects (non-

parametric)11. The first is based on a standard autoregressive, AR(1)12 model that she then 

turns into a quantile autoregressive, QAR(1) model, which she writes in the form of 

Koenker & Xiao (2004)13. Her second model is a method of quantile smoothing splines 

with total variation roughness penalty (Koenker et al., 1994)14.again leads us to believe 

 

Nikolaou (2008) found that in her results there is some evidence of mean reversion, but 

its presence was not detected in every quantile. In fact, the results demonstrate that mean 

reversion is mainly present in the outside quantiles. In the middle quantiles, the estimators 

would statistically and consistently be results close to unity – indicating the possible 

presence of unit roots, and thus not rejecting the idea that a random walk model could be 

the most efficient model. This also seems to confirm that the presence of a mean reversion 

process would usually take place when there are big shocks or when the deviations get 

further from their fundamental values. Furthermore, Nikolaou (2008) was also able to 

demonstrate a possible asymmetric relationship in the mean reversion process. This 

asymmetric relationship is established by the fact that even with the presence of 

                                                           
10 See further down and the work by Altavilla & De Grauwe (2010). 
11 The introduction of a non-parametric model is to offer greater flexibility within each quantile and allow 

for nonlinearity. 
12 rt = αrt-1 + εt, where rt = qt – μ with qt the log of the real exchange rate and μ its unconditional mean. She 

also follows the typical definition for the real exchange rate where qt = st – pt + pt*, where st is the log of 

the nominal exchange rate and pt and pt*, respectively the log of the domestic and foreign prices. 
13 𝑄𝑡 (𝜃) = ε(𝜃) + β𝑄𝑡−1 (𝜃) in our notation where ε(𝜃)  captures the magnitude of the shocks. 
14 This problem is a trade-off between “fidelity” and “roughness” for a certain level of smoothness. 
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symmetric (positive or negative) shocks, their impacts appear asymmetric. This was 

shown by the positive shocks (depreciation) that seem to demonstrate stronger mean 

reversion properties than by the negative shocks (appreciation)15. All in all, the author 

demonstrates the advantages of using quantile regressions, further establishes the 

potential importance of deviations from the PPP at different quantiles and the greater 

impacts of negative returns over the impact of positive returns. 

 

Finally, Altavilla & de Grauwe (2010) again looked for nonlinearity in the relationship 

between the exchange rate and fundamentals. This nonlinear relationship is a case where 

the expected value of the exchange rates could be explained in part by macroeconomic 

variables. Continuing on the extensions proposed by Taylor, Peel, & Sarno (2001) and by 

Sarno et al. (2007)16, Altavilla & de Grauwe (2010) also look to include theoretical 

framework. The basis of their work is to include different agents that forecast future 

exchange rates differently: with fundamentals, and with charts (technical analysis). They 

then chose to focus on three fundamental values: the relative GDP, the relative inflation 

rate and the interest rate differential. They first built a standard linear vector error 

correcting model (VECM) of the form: 

 Δ𝑥𝑡 = 𝑐 +  ∑ Γ𝑖Δ𝑥𝑡−𝑖 + Π𝑥𝑡−𝑘 + Υ𝜀𝑡
𝑘−1
𝑖=1  

 𝑥𝑡 = [yt πt it et]′ 

where Γ, Π and Υ are estimators, yt is the GDP differential, πt is the inflation rate 

differential, it is the short term interest rate differential and et is the euro-dollar exchange 

rate. Also, Π = 𝛼β′ where 𝛼 and β are m by n matrices, where m is the number of variables 

and n is the number of cointegrating relationships, containing the adjustment coefficient 

and the cointegrating vector. 

 

                                                           
15 This could be due to central bank intervention. 

This could also be due to heterogeneous agent models (HAMs), a review in Hommes (2006). 
16 They used a Markov-switching vector error correcting model (MS-VECM). There was an earlier paper 

by Vigfusson (1997) that also used a Markov regime-switching approach between chartists and 

fundamentalists. 
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In their nonlinear model to analyze exchange rate dynamics, they found three different 

regimes and demonstrate the model as follows: 

 Δ𝑦𝑡 = 𝑐(𝑠𝑡) + ∑ Γ𝑖(𝑠𝑡)Δ𝑦𝑡−𝑖 + 𝛼(𝑠𝑡)β′𝑦𝑡−𝑘 + Υ(𝑠𝑡)𝜀𝑡
𝑘−1
𝑖=1  

where 𝑠𝑡 is a latent state variable that allows to capture the different regimes in all the 

terms: the intercept, the autoregressive coefficients, the speed of the adjustment 

component in the cointegration matrix and the variance-covariance matrix. In their 

analysis, the regime-dependent cointegrating vector provides information about the long-

term relationship between the exchange rate and economic fundamentals, and its 

evolution across different periods of time. 

 

The results by Altavill & de Grauwe (2010) demonstrate that for each of the three different 

regimes, there is a specific conclusion and impact. In the first regime, a shock to the 

equilibrium is adjusted by the GDP differential and the interest rate differential. The first 

regime also seems to coincide with a period where there has been an appreciation of the 

exchange rate. In the second regime, only the exchange rate has an impact on the 

equilibrium and thus not any economic fundamentals. In the third regime, a shock is 

adjusted by the inflation rate differential and interest rate differential. The last regime also 

seems to coincide with a period where there has been an exchange rate depreciation. The 

authors also find that with this framework, the exchange rates seem to also be affected by 

economic fundamentals in the short and medium run. However, this leads the authors to 

conclude that when the exchange rates are close to their fundamental values, exchange 

rate movements are not based on economic fundamentals, rather it is when they are based 

on chartist speculation, expectations and self-fulfilling beliefs. Once again, this further 

emphasises the observations of different quantiles and the subsequent impacts of the 

deviations from fundamentals. 

 

Similarly to Nikolaou (2008), Altavill & de Grauwe (2010) find that a random walk model 

is more efficient when the exchange rate is close to its equilibrium value but that the 

nonlinear models are more accurate when the exchange rates are far from their 
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fundamental value. Two of their three regimes could be directly linked to fundamental 

levels, while the other would be little or unaffected by the fundamentals. These results 

further support the idea of the presence of a nonlinear relationship between exchange rates 

and fundamentals. It would seem that when the deviations are far from their fundamental 

value, they have a greater impact on exchange rates, something that we hope to capture in 

modelling VaRs with quantile regressions. 

These are a few of the reasons why we are using economic fundamentals in trying to 

estimate the CAViaR model in connexion with exchange rates of various countries. The 

use of this technique will allow us to obtain a nonlinear look at the different quantiles 

based on the exchange rates and economic fundamentals, while not having to contend 

with estimating distributions. Also, being able to use a time varying model could not only 

help with the link between exchange rates and economic fundamentals, but also be 

important for the calculation of VaRs. 

 

2.4.2 Market Pressures 

In this subsection, we look at two different types of market pressures. We begin with a 

review of a few different ways of analysing exchange market pressures with regards to 

exchange rates. Then, we focus on a type of pressure that confronts different types of 

investors. We turn our attention to fundamentalists and chartists, which includes technical 

analysis. 

 

2.4.2.1 Exchange Market Pressure (EMP) 

Exchange market pressure was pioneered by Girton & Roper (1977), which tackles the 

issue of shocks to foreign exchange markets. In theory, the EMP should usually be close 

to, or at zero. As the exchange rates suffer a greater deviation from their market levels, 

there may be an adjustment made by reserves and absorbed by the EMP. We speculate 

that the adjustment can come from countries themselves, or from the market pressures 

between investors, which will be developed in the next subsection. The first model of 

EMP was summarized by Hall et al. (2013) as: 
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𝐸𝑀𝑃𝑡 = −(−∆𝑠𝑡 + ∆𝑅𝑒𝑠𝑡)  

where ∆𝑠𝑡 is the log change in exchange rate and ∆𝑅𝑒𝑠𝑡 =
𝑆𝑡𝑟𝑒𝑠𝑡−𝑆𝑡−1𝑟𝑒𝑠𝑡−1

𝑀𝑡−1
 is the change 

in reserves (minus gold) in regard to the money supply 𝑀𝑡. EMP can be referred to as a 

magnitude of money market disequilibrium (Weymark, 1998) and Balakrishnan et al. 

(2011) establish that the IMF monitors EMP as one of its five components to measure 

financial stress. We follow the work by Aizenman & Pasricha (2012)17 and define EMP 

for this exercise as: 

𝐸𝑀𝑃𝑡 = (
𝑠𝑡−𝑠𝑡−1

𝑠𝑡
−

𝑟𝑒𝑠𝑡−𝑟𝑒𝑠𝑡−1

𝑟𝑒𝑠𝑡
) ∗ 100      ( 6 ) 

This method was also used by Aizenman & Hutchison (2012) and Feldkircher et al. 

(2013), the former who established that it had a high significant correlation rate (0.63) 

with the Weighted EMP used by the IMF’s World Economic Outlook (2009) 18. 

 

As EMP is a measure of financial stress, we hope to establish a link between EMP and 

the changes in exchange rates, in the estimation process of VaRs. We may expect to see 

a greater impact on the outer quantiles of the VaRs, as EMP is more likely to capture the 

greater swings of the changes in exchange rates. 

 

2.4.2.2 Fundamentalists and Chartists  

The issue of the two classes, fundamentalists and chartists, has been studied for some 

time. Frankel & Froot (1986) were among the first to emphasize the differences between 

the two. They also started to investigate the possibility of speculative bubbles in exchange 

rates and the ability of switching investment strategies (Frankel & Froot, 1988, 1990). 

Kirman (1991, 1993) then continued the work of Frankel & Froot (1986) with the addition 

of a micro-foundation of asset demand. He concluded that in periods where the market is 

                                                           
17 We used the nominal exchange rates as opposed to nominal exchange rates against Special Drawing 

Rights (SDR). Also, the reserves can be scaled for total money supply minus gold. 
18 Some EMP models choose to include interest rates which we did not. Among other reasons, Tanner (2001) 

establishes that interest rates can be considered more of a response variable than an indicator. 
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driven by fundamentalists, the values are more stable and will be pushed towards 

fundamental levels. However, when the market is driven by chartists, the exchange rate 

is driven by a stable, random-walk process19. Based on subsection 2.4.1, we hypothesize 

that the market is more likely to be driven by fundamentalists in the tails of deviations 

from fundamental levels. We will continue to develop this thought with the following 

articles. 

 

Continuing on the switches between chartists and fundamentalists, Vigfusson (1997) used 

a Markov regime-switching approach to try and further model what Frankel & Froot 

(1988) began. Concentrating on the Canada-US exchange rate, Vigfusson (1997) found 

some evidence confirming the separation of the fundamentalists and the chartists. He 

contends that a moving average (MA) model outperforms the autoregressive (AR) model 

for chartists but finds no evident model preference for the fundamentalists. He also 

mentions how it could be pertinent to use ARCH effects in order to further improve his 

model specification.  

 

Brock & Hommes (1998) developed an adaptive belief system (ABS) to continue to model 

the different strategies20. They took three agents: fundamentalists, optimists and 

pessimists, who can invest in risky or risk-free assets21. The authors demonstrated that 

even when there are no information costs to fundamentalists, chartists tend to cause 

different ‘bifurcations’ where different steady states arise deviating from fundamentals. 

Furthermore, the changes between states becomes irregular and seems to be caused by 

chartists. 

 

                                                           
19 Kirman (1993) mentions a parallel between ants and the markets, how investors are not always rational, 

even when there are no noise traders. 
20 An ABS is a standard discounted value asset pricing model derived from mean-variance maximization, 

with the possibility of heterogeneous beliefs and the ability of being formulated in terms of deviations from 

fundamentals, see Hommes (2006). 
21 Here, both optimists and pessimists are types of chartists. 
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Hommes (2006) also points out the importance of realising and explaining that the 

fundamentalists and chartists also switch between their different strategies. He expresses 

that the switches seem to be led by expected or realized excess profits. Goodhart (1988) 

mentioned that this asymmetry may push certain traders towards chartist strategies. Also, 

Boswijk et al. (2007), found further evidence insisting that the performance of the 

chartists’ strategy incites more investors to choose that method over fundamental analysis, 

even forcing some to switch strategies. These factors could seemingly further explain the 

‘forward premium puzzle’, one that permits positive expected gains from carry trade, 

where certain currencies do not seem to revert back toward their uncovered interest parity 

(UIP) fundamentals (Brunnermeier et al. (2008). The author also observed that this could 

be consistent when the deviations are small from the fundamental levels. This further 

supports our idea of also including possible models with interest rate differentials. We 

would thus expect that the UIP would behave in a similar manner than the PPP in regards 

to affecting changes in exchange rates. 

 

Boswijk et al. (2007) expanded on the work by Brock & Hommes (1998) with a model 

based on the deviations from market fundamentals22. Also investigating the differences 

between a linear and a nonlinear world, they found that in the nonlinear world, the mean 

reversion process begins later than in a linear world in response to good news. The 

investors seem to have a greater tendency to overreact and continue to overreact in the 

periods following the news. Furthermore, they also have the ability to neglect or forget 

the news and focus more and more on chartist strategies while neglecting fundamentals. 

While the fundamentalists continue to expect the prices to fall (increase), the chartists can 

continue to drive the market. 

 

We can continue to link the previous articles to little bubbles, as mentioned by Boswijk 

et al. (2007). When the exchange rates are close to the fundamental levels, their changes 

are seemingly unpredictable and can be affected in a self-fulfilling manner, which can 

                                                           
22 Working with stock prices, they used the simple Gordon model and a dynamic version of the model. 



19 
 

 

lead them to continue to deviate from fundamental levels. However, once the exchange 

rates gravitate far from their fundamentals and the mini-bubble bursts, the exchange rates 

will return (faster) to their fundamental levels, as if a shock had sent them back to their 

fundamental levels. Concentrating on the bubble effect, if all the investors decided that 

the exchange rates were too far from their fundamental levels, the investors could 

immediately burst the bubble and return the exchange rates closer to their fundamental 

value. However, investors prefer to continue to take advantage of potential gains until the 

last possible moment. This is a known issue with bubbles that is due to available 

information and common knowledge (Abreu and Brunnermeir, 2003). However, Boswijk 

et al. (2007) also contend that the further the absolute deviation from fundamental levels, 

the higher the probability that the bubble collapses23. Finally, the authors mention that 

while the bubbles are usually triggered by the allure of short term profits, there is the odd 

possibility of creating a much longer lasting bubble. Boswijk et al. (2007) mention the 

Dot-com bubble as an example of a long lasting bubble and how its probability of bursting 

kept growing. 

  

                                                           
23For further analysis, see van Norden & Schaller (1999), who also mention the greater presence of 

speculative behavior when observed in a nonlinear world and the greater chances of collapse of a bubble 

when the deviation from the fundamental levels is high in the previous period. 
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3 Data 

The time series that are used to estimate the different models are available from 

Bloomberg and The Organization for Economic Co-operation and Development (OECD). 

We found pertinent data for the following 7 countries: United States of America (USA), 

Canada (CAD), Japan (JAP), Norway (NOK), South Africa (SA), Switzerland (SWZ) and 

United Kingdom (UK). The observed sample window is from 1995 to 2012, inclusively. 

This allows us to have a fairly large sample that can include different economic periods, 

including the 2007-2008 crisis that saw a flight towards safe haven currencies such as the 

American dollar (Brunnermeir et al., 2008).  All the VaRs that are estimated from the 

changes in exchange rates are reported on a daily basis and were calculated using all, less 

1000 observations that were reserved for out-of-sample testing. This leaves us with an 

out-of-sample window from March 2009 to December 2012. In using 1000 observations, 

we are doubling the out-of-sample size used by Engle & Manganelli (2004) in their 

estimation of CAViaR models on stock market data. In the figures that are shown, the 

vertical black line separates the in-sample and the out-of-sample testing.  

 

3.1 Regressors 

First, we obtained from Bloomberg spot exchange rates (𝑆 = country/USA), where USA 

is the domestic country and as such, an increase in the exchange rate 𝑆, is a depreciation 

of the other country’s currency and an appreciation of the USA dollar (USD). We then 

used the log of the exchange rates (𝑠 = ln 𝑆) and took the first difference to find the 

changes in exchange rate (𝑟𝑡 = ∆𝑠). 

 

Second, the price levels for each country are necessary to construct the real exchange rate 

and find the deviations from the PPP. We obtained the consumer price index (𝑃 = CPI) 

for each of the countries from the OECD statistics library. The CPI for a given month was 

used for daily results for the particular month. Once the daily results were available, we 

again used the log of the prices (𝑝 = ln 𝑃). From these first two series, we can construct 

the log of the daily real exchange rate 𝑞𝑡 = 𝑠𝑡 − 𝑝𝑡 + 𝑝𝑡
∗ where the * denotes the foreign 
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currency. Then, from the real exchange rate, we obtained the deviations from the PPP as 

𝑑𝑡 = 𝑞𝑡 − 𝜇 where 𝜇 is the mean of the real exchange rate. 

 

We introduce two other regressors that required different series. First, we introduce 

exchange rate market pressure (EMP) as a regressor. We use the model from equation (6) 

that requires a country’s reserves and their exchange rate. This information was also 

gathered from the OECD database on a monthly basis and interpolated to a daily basis24. 

 

Lastly, we want to observe certain effects from interest rates. As we presented a few 

articles that note a certain importance in changes in the UIP and changes interest rate 

differential. Thus, we want to observe certain deviations from interest rates and the UIP. 

We obtained daily interest rates for the USA from the Wharton Research Data Service 

(WRDS). However, it was necessary to estimate the interest rates for the remaining 

countries using the covered interest rate parity (CIP)25. 

 

Being unable to obtain daily forward rates for the next day, we use 30 day forward rates 

on exchange rates since they are available daily. Since short-term maturity rates are highly 

correlated, results are not expected to be sensitive to this choice. This allows us to obtain 

the interest rate differential between the USA and a given country: 

𝑖𝑡−1 − 𝑖𝑡−1
∗ 26. 

 

                                                           
24 Once again, this poses little problem as a whole. However, in the case of fixed currencies this would not 

be the best solution as the reserves could evaporate in a matter of days rather than over months. Nonetheless, 

as the currencies that are observed are classified as de facto independent floating currencies by the IMF, 

changing the monthly rates into daily rates should not cause any problems. There are also no FX crisis in 

the sample. 
25𝐹𝑡+1 = 𝑆𝑡

1+𝑖𝑡

1+𝑖𝑡
∗  where 𝑖𝑡 is the USA’s interest rate, 𝑖𝑡

∗ is the interest rate for the other country and 𝐹𝑡 is the 

forward rate of the exchange rate at the next period. 
26 We also tried the opposite relation in difference and the results were largely unaffected. The main 

difference was in the asymmetric model where the positive and negative Betas were inverted. 
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We present in Table 1 a few noteworthy statistics over the full sample. The remaining 

descriptive statistics for the four different series are available in Appendix A1. The 

statistics are available for each country. 

TABLE 1: SELECTED CURRENCY DESCRIPTIVE STATISTICS 

Data Statistics 

 Canada Japan Norway South 

Africa 

Switzerland United 

Kingdom 

Statistics       

Mean  
returns 

7.40E-05 3.18E-05 4.26E-05 -1.85E-04 7.77E-05 8.27E-06 

Mean 
deviations 
from PPP 

1.18E-05 -6.02E-05 -6.65E-06 -7.04E-05 -2.20E-05 1.47E-07 

Mean 
int. rate diff. 

4.05E-05 0.0028 -0.0007 -0.0064 0.0019 -0.0008 

Mean 
EMP 

-0.0239 -0.0453 -0.0092 -0.0746 -0.0407 -0.0129 

Kurtosis 
returns 

6.9106 8.7618 5.8180 20.6512 10.9931 5.4205 

Kurtosis 
deviations 
from PPP 

1.7490 4.0082 2.6935 3.9909 2.5207 2.4367 

Kurtosis  
int. rate diff. 

6.8610 5.6211 3.8796 104.8185 19.0758 4.6241 

Kurtosis 
EMP 

156.3495 31.0328 80.7173 257.6080 324.1652 125.8357 

K-S / J-B  
tests 

Rejects 
null 

Rejects 
null 

Rejects 
null 

Rejects null Rejects null Rejects 
null 

Note: The ** denotes a rejection at 5%. 
The K-S test is the Kolmogorov-Smirnov test of normality. The J-B test is the Jarque-Bera test of normality. 
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FIGURE 1: DISTRIBUTIONS 

 

 

We can see from Table 1 that with both the Kolmogorov-Smirnov and the Jarque-Bera 

tests, for all the series we reject the null that the series are normally distributed. This 

further fuels our hypothesis that it is best not to require assumptions on distributions of 

returns and their errors. We can also see from Table 1 & Fig.1 that the returns (and all the 

other series) have a high kurtosis and do not quite fit the normal distribution. We also 

notice that all the series have a mean very close to, or at zero. From Fig.1 we also see that 

the SA returns can vary more than the CAD returns, but continue to be mainly around 

zero. While the other currencies are not shown, they all follow similar distributions that 

gravitate around zero but have longer tails than normal distributions. 

FIGURE 2: QQ PLOTS 
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Fig.2 shows two QQ-plots for CAD/USD27 and we can notice that they are very similar 

to the exchange rates of the other 5 countries. We can see that over the normal distribution, 

the returns are quite close in the middle quantiles but very far away in the outer quantiles. 

In contrast, with the Generalized Extreme Value (GEV)28 distribution, we see that it 

manages to capture some of the positive outer quantiles but does poorly with the negative 

outer quantiles.  

                                                           
27 These graphs are very similar to those of the other five countries. 
28 A generalization between the three extreme value distribution families: Gumbel, Weibull, Fréchette, it 

can emulate them depending on its shape parameter 𝜉. Here the GEV parameters were estimated by MLE 

with gevfit from MATLAB. We obtain a shape parameter of -0.14, a scale parameter of 0.006 and a location 

parameter of -0.002 



25 
 

 

4 Models and Methodology 

4.1 Models 

The final model that has not yet been presented is the GARCH type VaR model. Let us 

assume that the returns follow a simple AR(1) model:  

 𝑟𝑡 = 𝛼0 + 𝛼1𝑟𝑡−1 + 𝑢𝑡 where 𝑢𝑡~𝑖𝑖𝑑  

 

A traditional GARCH model will account for time-varying volatility clustering in the 

error term as follows: 

 𝑢𝑡 = 𝜎𝑡𝜖𝑡 where 𝜖𝑡~𝑖𝑖𝑑 𝑁(0,1) 

 𝜎𝑡
2 = 𝛾 + ∑ 𝛼𝑖𝑢𝑡−𝑖

2𝑞
𝑖=1 + ∑ 𝛽𝑗𝜎𝑡−𝑗

2𝑝
𝑗=1  

where 𝑢𝑡 is the error term of the AR(1) model. Once we estimate the volatility, in order 

to construct the actual VaR, we have that: 

 𝑉𝑎𝑅𝑡 = 𝑟𝑡 − Φ−1(𝜃) ∗ √𝜎𝑡
2        ( 7 ) 

where Φ−1(𝜃) is the inverse of a normal cumulative density function (cdf) for a given 𝜃. 

 

As the most common used variable to model returns is a lag of returns, it is the basis of 

our models and we build on the presented AR(1) model. We then add additional 

regressors: 

𝑟𝑡 = 𝛼0 + 𝛼1𝑟𝑡−1 + ∑ 𝛼𝑖𝑋𝑖
𝑧
𝑖=2 + 𝑢𝑡  

where 𝑋𝑖 can be a vector of the different regressors that can include the deviation from its 

fundamental PPP level, the interest rate differential and the EMP, and 𝑧 is the total number 

of regressors. In our models, we use a traditional GARCH(1,1) that follows: 

𝜎𝑡
2 = 𝛽0 + 𝛽1𝑢𝑡−1

2 + 𝛽2𝜎𝑡−1
2   
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In order for the GARCH model to be weakly stationary, the sum of 𝛽1and 𝛽2 must be 

smaller than 1. We also use the IGARCH method which resembles RiskMetrics (1996) 

and is almost identical to the GARCH with the exception that 𝛽1and 𝛽2 sum to 1. The 

IGARCH(1,1) will be the basis of comparison for our results. 

 

Next, we have the standard quantile regressions (QR), which do not require any 

assumptions about the actual distributions, as opposed to the parametric GARCH 

methods. Following our notations, the general model of a quantile regression in order to 

model a VaR is: 

 𝑄𝑡
𝑄𝑅(𝜃) = 𝛼0(𝜃) + ∑ 𝛼𝑖(𝜃)𝑋𝑖

ℎ
𝑖=1 + 𝑢𝑡      ( 8 ) 

where 𝑋𝑖 can be a vector of the regressors, including the lagged returns and 𝛼𝑖 each of the 

coefficients of the quantile regression. This is the general model that we will follow for 

quantile regressions, from which we can see that: 

𝑉𝑎𝑅𝑡 = 𝑄𝑡
𝑄𝑅(𝜃)  

We estimated 14 different VaRs by quantile regressions with the different combinations 

of the regressors presented and results are available upon request as more interesting 

results are presented in the Appendix.  

 

Finally, there are the traditional CAViaR models. Despite our original focus on two 

models, all four models were estimated at each quantile and for the different independent 

variables. The tables of other CAViaR estimations with certain additional regressors are 

available in Appendix A2. We defined the general CAViaR model in Eq.(2) and the VaRs 

are obtained in similarly to those of estimated by quantile regressions: 

𝑉𝑎𝑅𝑡 = 𝑄𝑡
𝐶𝐴𝑉(𝜃)  

As we have presented the asymmetric slope model in Eq. (4), we now show the remaining 

two models, the symmetric slope (Eq. 9) and indirect GARCH models (Eq. 10):  
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𝑄𝑡
𝐶𝐴𝑉(𝜃) = β0 + β1𝑄𝑡−1(𝜃) + β2|𝑟𝑡−1| + ∑ β𝑖

𝑤
𝑖=3 |𝑋𝑖|    ( 9 ) 

𝑄𝑡
𝐶𝐴𝑉(𝜃) = (β0 + β1𝑄𝑡−1

2 (𝜃) + β2(𝑟𝑡−1
2 ) − ∑ β𝑖

𝑤
𝑖=3 (𝑋𝑖

2))1/2   ( 10 ) 

In these models, there is always the lagged changes of the exchange rates as omitting this 

variable caused abnormal VaR results29. Finally, while the adaptive model was presented 

in Eq.(3), adding extra variables may not be as obvious as for the other models: 

𝑄𝑡(𝜃) = 𝑄𝑡−1(β) + β0 {[1 + 𝑒𝑥𝑝(𝜅[𝑟𝑡−1 − 𝑄𝑡−1(𝜃)])]−1 −  𝜃} + ∑ β1
𝑤
𝑖=2  {[1 +

𝑒𝑥𝑝(𝜅[𝑋𝑡−1 − 𝑄𝑡−1(𝜃)])]−1 −  𝜃}       ( 11 ) 

 

4.2 Estimation Methodology 

In order to estimate the models, MATLAB was used exclusively. So as to estimate the 

GARCH models, we used the function estimate after previously specifying the choice of 

model. However, as there is no integrated function to model an IGARCH, we used Kevin 

Sheppard’s econometrics toolbox. Then, in order to forecast the volatility and calculate 

the VaRs, we used Eq.(7). 

 

In regards to the quantile regression, there is no formal code provided by MathWorks. We 

therefore wrote a function that would minimize Eq.(5). We decided to utilize the Nelder-

Mead Simplex algorithm provided by MATLAB’s fminsearch as well as a quasi-newton 

optimizing algorithm fminunc30. 

 

Next, we were able to use the code from Engle & Manganelli (2004) for the CAViaR. 

However, their code was designed for two quantiles (1% and 5%) and for the single use 

of the lagged returns. We thus built on their code in order to accept the additional 

regressors, the additional quantiles and to ensure that it was robust with exchange rate 

                                                           
29 In Appendix A2 there are the results for individual independent variable, but not any combination of 

variables that do not include the lagged returns. 
30 both of which are the algorithms used by Engle & Manganelli (2004) 
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returns31. We continued their method of using C to run the loops to compute the recursive 

quantile functions of the CAViaR models. Thanks to their code, we also followed their 

general method of optimizing the models that we discuss below. 

 

After extensive verifications, when estimating quantile regressions, with our data as well 

as with Engle & Manganelli’s data, we confirm that by simple use of the simplex 

algorithm or even both the simplex and the quasi-newton algorithm, in certain cases may 

be insufficient to achieve results as precise as ones obtained by different minimization 

methods. Furthermore, as Engle & Manganelli alternated in their estimation of the 

CAViaR model between the two algorithms: fminsearch and fminunc, we have ultimately 

verified that MATLAB will often find a false convergence, obtain results that are inferior 

in precision to other methods. In the end, the use of these algorithms must be with caution. 

The combination of the two algorithms in MATLAB can eventually yield the most precise 

results possible, however it can be difficult knowing when, especially if enough 

precautions are not taken. We discovered that it is usually in extreme quantiles that there 

can be the greatest problem, which can be partially solved by continuing to alternate 

between optimization methods, despite the software thinking it has already found results 

that converge32. In order to properly verify our suspect quantile regressions results, we 

compared the results with a linear programming method we wrote using linprog from 

MATLAB, as well as using other statistical software such as Stata and R, for which Roger 

Koenker provided his quantile regression code. 

 

We first encountered this issue using the code provided by Engle & Manganelli (2004) 

without any modifications, but using our returns. While MATLAB was providing results 

that indicated convergence, in reality, it did not always find appropriate estimators. We 

found these anomalies with robustness checks by adding second and third best estimators 

                                                           
31 Their direct code did not always converge for our data, even for just lagged returns. 
32It does not seem possible to use the same algorithm alone as it will not continue to search for a better 

result. 
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found by the model, and discovered significant discrepancies33. In the end, in order to 

ensure that the program had finally properly converged towards the right estimators, it 

was necessary to begin with a greater number of initial conditions. For the symmetric, 

asymmetric, GARCH and adaptive CAViaR models, Engle & Manganelli (2004) used m 

initial conditions = [10, 15, 10, 5] for the four models respectively. We increased the 

number of initial conditions for the four models to m = [100, 25, 100, 25]34. We also 

ensured that the algorithms were used at least twice as many time in order to feel satisfied 

with the results. To confirm that the proper estimators were found, we used our robustness 

verification and ensured that the three best estimators were (almost) identical. 

 

4.3 Backtesting 

Backtests, also known as diagnostic tests, are used to establish the validity of VaR models. 

Their goal is to test the null hypothesis, that the models are properly specified based on a 

given 𝜃 and thus to see if the models properly approximate the conditional quantile. The 

first mainstream backtests were the coverage tests by Kupiec (1995) and Christoffersen 

(1998). Their three tests (unconditional, independent and conditional coverage) were 

mainly based on binary variables, whether or not there is a “hit” and the loss exceeds the 

VaR or not. We can define the hit sequence 𝐻𝑡 as follows: 

 𝐻𝑡 = {
1, 𝑖𝑓 𝑟𝑡 < 𝑉𝑎𝑅𝑡

0, 𝑖𝑓 𝑟𝑡 > 𝑉𝑎𝑅𝑡
 

Of course, the probability of violating the VaR should always be: 

 𝑃𝑟(𝐻𝑡 = 1| Ω𝑡) = 𝜃 

 

                                                           
33 We confirm using our verification that Engle & Manganelli’s coefficients are robust with their data, only 

their code did not work directly with our data. 
34 The number of initial conditions was selected arbitrarily in a manner that satisfied our verification of the 

estimators. 



30 
 

 

Kupiec (1995) proposed a nonparametric test based on the hit sequence and the total 

number of observations T. The test reflects whether �̂� ≡ ∑ 𝐻𝑡
𝑇
𝑡=1 /𝑇 is equal to 𝜃. As such 

the test verifies: 

 𝐻0: 𝑝 = 𝐸[𝐻𝑡] =  𝜃 

which can be verified through a likelihood ratio (LR) test. This test is known as the 

unconditional coverage (uc) and is known for its lower power because it does not capture 

time series dependence in the violations, especially in smaller samples. 

Christoffersen (1998) went beyond the unconditional coverage test and extended the 

previous LR statistic to see if the hit sequence is independent (ind) over time. The author 

argues that if there is no independence, it should be possible to construct a better model. 

The proposed statistic thus first includes an additional variable, 𝑇𝑖𝑗 as the number of days 

where state j occurred in one day after being in state i the previous day. Another variable 

needed for the test statistic is 𝜋𝑖 which is the probability of observing state i, conditional 

on state i the previous day. The author then assumes that the hit sequence follows a first 

order Markov sequence with transition matrix: 

 Π =
𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑑𝑎𝑦

[
1 − 𝜋0 1 − 𝜋1

𝜋0 𝜋1
]
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑎𝑦 (𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛)

𝑁𝑜 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛
  

where under the null hypothesis of independence, we have Π = 𝜋0 = 𝜋1 =  (𝑇01 + 𝑇11)/

𝑇. From this, the LR statistic can be defined: 

 LRind = 2𝑙𝑛 (
(1−𝜋0)𝑇00𝜋0

𝑇01(1−𝜋1)𝑇10𝜋1
𝑇11

(1−𝜋)(𝑇00+𝑇10𝜋(𝑇01+𝑇11) ) ~𝜒2((𝑠 − 1)2) = 𝜒2(1) 

 

Christoffersen (1998) also worked on a conditional coverage (cc) test that could be written 

as the sum of the unconditional coverage test and independence test. Berkowitz, 

Christoffersen & Pelletier (2009) extended and unified the existing three tests by 

specifying that the de-meaned violations 𝐻𝑖𝑡𝑡 = 𝐻𝑡 – 𝜃 form a martingale difference 

sequence (mds). By definition, it implies that 𝐻𝑖𝑡𝑡 is uncorrelated at all leads and lags. 

This allowed them to test the violations by calculating statistics based on sample 
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autocorrelations as opposed to only the autocorrelation of order 1 by Christoffersen 

(1998). This is the same approach that Engle & Manganelli (2004) used in the creation of 

their backtest. 

 

Engle & Manganelli (2004) developed the Dynamic Quantile (DQ) test to have better 

power against certain forms of misspecifications that can arise from quantile regression 

models and in a way that could be incorporated and extended to suit additional models 

beyond quantile regressions. Their test uses the mds established earlier with respect to Ω𝑡 

and using the previous notation we have: 

 𝐻𝑖𝑡𝑡 = 𝐻𝑡 − 𝜃  

where the 𝐻𝑖𝑡𝑡 function takes the value (1 − 𝜃) when 𝑟𝑡 is less than the quantile and −𝜃 

otherwise. As Berkowitz, Christoffersen, & Pelletier (2009) confirm, since 𝐻𝑖𝑡𝑡 must be 

uncorrelated to both lags and leads, past information can be included. Their in-sample (IS) 

statistic is: 

 𝐷𝑄𝐼𝑆 =
𝐻𝑖𝑡𝑡

′𝑋𝑡[𝑋𝑡
′𝑋𝑡]−1𝑋𝑡

′𝐻𝑖𝑡𝑡

𝜃(1−𝜃)
~𝜒𝑄

2       ( 12 ) 

In this model, the vector of instruments 𝑋𝑡 can include lags of 𝐻𝑖𝑡𝑡, the VaR and its lags. 

Berkowitz, Christoffersen, & Pelletier (2009) found that based on their Monte Carlo 

simulations, the DQ test was the best test for 1% VaR models and also performed quite 

well at the 5% level. 

 

Lastly, Gaglianone et al. (2011) establish that the DQ test is a Lagrange Multiplier (LM) 

test and propose an alternative Wald-type test statistic. Their test is named VaR by 

quantile regressions (VQR) and is based on a quantile regression: 

𝑄𝑟𝑡(𝜃|Ω𝑡−1) =  𝛼0(𝜃) + 𝛼1(𝜃)𝑉𝑡  

where 𝑉𝑡 is the VaR they are trying to test and should be equal to the conditional quantile 

if the model is properly specified. From this, their null hypothesis becomes: 



32 
 

 

 𝐻0: {
𝛼0(𝜃) = 0

𝛼1(𝜃) = 1
 

In order to more easily test the null, it is redefined as: 𝐻0: β(𝜃) = 0, where β(𝜃) = 

[𝛼0(𝜃), (𝛼1(𝜃) − 1)]′. Their test statistic is then: 

 𝑉𝑄𝑅(𝜉) = 𝑇[�̂�(𝜃)′(𝜃(1 − 𝜃)𝐻(𝜃)−1𝐽𝐻(𝜃)−1)−1�̂�(𝜃)]   ( 13 ) 

where J = plim
𝑇→∞

∑ 𝑥𝑡𝑥′𝑡
𝑇
𝑡=1  and 𝐻(𝜃) = plim

𝑇→∞

1

𝑇
 ∑ 𝑥𝑡𝑥′𝑡[𝑓𝑟𝑡

(𝜃|𝑥𝑡)]𝑇
𝑡=1 . Specifying that 

here 𝑥𝑡
′ = [1, 𝑉𝑡] and 𝑓𝑟𝑡

(𝜃|𝑥𝑡) is the conditional density of 𝑟𝑡 at the quantile 𝜃. Using 

techniques from Koenker & Machado (1999), J and 𝐻(𝜃) can be computed as consistent 

estimators35. 

 

Gaglianone et al. (2011) contend that the DQ test and VQR methods are asymptotically 

equivalent under the null hypothesis and local alternatives, but that the use of the Wald 

specification for the VQR seems to have more power in finite samples. We chose to use 

both tests on our models. 

 

Most of the backtesting was done without any issues as the models shown in the previous 

section are quite straightforward. However, the VQR test requires a particular assumption 

that can require specific attention. The issue is finding the true distribution for 𝑟𝑡 which is 

unknown. As Gaglianone et al. (2011) mention, there are many ways of estimating the 

distribution that are shown in Koenker & Machado (1999)36. They also mention the 

potential of using average values but we decided to use a known distribution. There are 

also many suitable distribution candidates that can easily be used thanks to statistical 

                                                           
35 For more assumptions and proofs, see Gaglianone et al. (2011). 
36 Their most prevalent estimation technique is using a jump function as the bandwidth. Using this function 

allows to model plus or minus the bandwidth for a given quantile: 𝑓𝑟𝑡
(𝜃|𝑥𝑡) =

2ℎ𝑇

𝑋𝑡(𝛃(𝜃+ℎ𝑇)−𝛃(𝜃−ℎ𝑇))
 . 

However, in the outer quantiles, 𝜃 − ℎ𝑇 tends to zero with their technique: ℎ𝑇 =

𝑇−1/3 𝑧𝜃
2/3

[
1.5𝜙2(Φ−1(𝜃))

(2(Φ−1(𝜃))
2

+1)
]

1/3

 where z is the absolute value of the inverse cdf of a normal distribution for a 

given 𝜃. 
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software. We have already shown that the returns do not follow a normal distribution as 

they all seem to have higher kurtosis. Based on our previous results and observations, we 

choose to mainly continue using the generalized extreme value (GEV) distribution with 

the same parameters estimated earlier, such a shape parameter 𝜉 = −0.014. With such a 

shape parameter, it allows to account for a tail that may go a little more towards the 

negative returns. Having a negative shape parameter allows for a finite upper bound and 

resembles a Weibull family distribution. Furthermore, the fact that it is bigger than −0.5 

allows for potential GEV estimators to have normal asymptotic properties37. 

  

                                                           
37 However, we take note that the previous fit was not perfect for the returns and further work can be done 

to better the GEV distribution parameters chosen here; this was not the main aspect of this work. However, 

other distributions were also used and we obtained similar results. 
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5 Empirical Results 

Many different VaRs were estimated in trying to establish the best possible VaR model, 

we estimated many different VaRs. We first show GARCH results, then we present the 

best quantile regression models, and finally the best CAViaR models, at each of the four 

quantiles.  

 

In order to choose the best models, we first base our criteria on VaR hit percentages from 

out-of-sample data. Since we are dealing with six different countries, we chose the model 

that seemed to properly represent appropriate VaRs for all the different countries at once, 

as opposed to choosing a model that worked best for each country. We used our judgement 

in order to choose the model that we felt best fit each quantile. Our criteria in selecting 

each model was subjectively which has the lowest discrepancy between the maximum 

and minimum in hit percentages, while maintaining an average close to the desired 

quantile for the different countries. Finally, we compare the results across models, taking 

the IGARCH(1,1) as the main point of comparison. 

 

TABLE 2: IGARCH ESTIMATES AND RELEVANT STATISTICS AT 20% 

IGARCH (1,1) 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

20% VaR 

Hit 
(%) 

18.00% 15.90% 16.80% 18.60% 15.20% 16.70% 

LR uc 
(p val) 

0.1126 0.0007*** 0.0102** 0.2708 0.0001*** 0.0080*** 

LR ind 
(p val) 

0.1589 0.4491 0.0907* 0.9386 0.7810 0.8064 

LR cc 
(p val) 

0.1053 0.0023*** 0.0088*** 0.5437 0.0005*** 0.0288** 

DQ 
(p val) 

0.2907 0.0223** 0.0138** 0.8910 0.0029*** 0.0716* 

VQR 
(p val) 

0.9039 0.6439 0.7784 0.7020 0.2184 0.8372 

Note: The results shown were performed on out-of-sample data. 
The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 
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TABLE 3: IGARCH ESTIMATES AND RELEVANT STATISTICS AT 10% 

IGARCH (1,1) 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

10% VaR 

Hit 
(%) 

8.90% 6.90% 8.40% 8.70% 7.10% 8.80% 

LR uc 
(p val) 

0.2424 0.0006*** 0.0855* 0.1651 0.0014*** 0.2011 

LR ind 
(p val) 

0.2259 0.6994 0.2510 0.8166 0.1866 0.7640 

LR cc 
(p val) 

0.2425 0.0026*** 0.1180 0.3715 0.0025*** 0.4222 

DQ 
(p val) 

0.3065 0.0319** 0.2663 0.8255 0.0248** 0.7199 

VQR 
(p val) 

0.7474 0.4013 0.3183 0.4548 0.1472 0.7416 

Note: The results shown were performed on out-of-sample data. 
The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 

 

TABLE 4: IGARCH ESTIMATES AND RELEVANT STATISTICS AT 5% 

IGARCH (1,1) 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

5% VaR 

Hit 
(%) 

4.80% 3.50% 4.60% 3.90% 2.90% 4.40% 

LR uc 
(p val) 

0.7758 0.0221** 0.5614 0.0989* 0.0010*** 0.3784 

LR ind 
(p val) 

0.8287 0.8272 0.5478 0.0750* 0.2649 0.4404 

LR cc 
(p val) 

0.9380 0.0712* 0.7052 0.0525* 0.0024*** 0.5038 

DQ 
(p val) 

0.0561* 0.2942 0.9264 0.2632 0.0485** 0.6141 

VQR 
(p val) 

0.6366 0.0136** 0.1853 0.0089*** 0.0048*** 0.8106 

Note: The results shown were performed on out-of-sample data. 
The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 
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TABLE 5: IGARCH ESTIMATE AND RELEVANT STATISTICS AT 1% 

IGARCH (1,1) 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

1% VaR 

Hit 
(%) 

0.60% 0.80% 0.90% 0.10% 0.70% 0.70% 

LR uc 
(p val) 

0.1705 0.5121 0.7488 0.0002*** 0.3150 0.3150 

LR ind 
(p val) 

0.7877 0.7193 0.6858 0.9643 0.7533 0.7533 

LR cc 
(p val) 

0.3771 0.7562 0.8754 0.0012*** 0.5745 0.5745 

DQ 
(p val) 

0.8913 0.9878 0.9953 0.1486 0.9599 0.9599 

VQR 
(p val) 

0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 

Note: The results shown were performed on out-of-sample data. 
The *, **, *** denote significant coefficients or rejection of models (DQ, VQR) at 10%, 5% and 1% respectively. 

 

Tables 2-5 present standard IGARCH results. We observe that while they have results that 

are fairly accurate in hit percentages for certain countries, overall there are notable 

exceptions and little consistency. This is especially evident across the different quantiles. 

For example, the IGARCH VaR models for Japan at 20%, 10% and 5% are rejected by 

most tests, however at 1%, the VaR model is not rejected. This also holds true for SWZ 

while the opposite is true for SA. Only CAD is not rejected at any quantile. 

 

In the case of the IGARCH, the LR (uc and cc) tests are usually consistent in their rejection 

of the models (most VaRs are not dependant). Also, the DQ test usually follows the same 

rejection pattern as the LR tests. Nonetheless, the DQ test does not reject any IGARCH 

model at the 1% quantile, despite SA displaying a rather poor 0.1% hit percentage. In 

addition, the VQR seemingly has difficulties with power as it possibly incorrectly rejects 

no models at 20% and 10% and rejects all the models at 1% where for example the model 

for SA appears to be acceptable. 
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Tables 6-9 show the best quantile regression models, mainly according to hit percentage. 

For the quantile regressions and the CAViaR estimates, we present the Betas associated 

with the VaRs. In the case of the quantile regressions, Beta1 is the constant and the 

following Betas are the estimators for each regressor, listed in the order presented at the 

top of each table. 

 

TABLE 6: QR ESTIMATES AND RELEVANT STATISTICS AT 20% 

Quantile Regression with interest rate differential and EMP 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

20% VaR 

Beta1 
(Const) 

-0.0032*** 

(0.0001) 
-0.0049*** 

(0.0004) 
-0.0049*** 

(0.0002) 
-0.0055*** 

(0.0004) 
-0.0056*** 

(0.0003) 
-0.0037*** 

(0.0002) 

Beta2 
(Int diff) 

0.4870*** 

(0.0950) 
-0.0516 
(0.1083) 

0.1530** 

(0.0697) 
0.0283 

(0.0552) 
0.2274** 

(0.0994) 
0.0677 

(0.1300) 

Beta3 
(EMP) 

0.0000 
(0.0001) 

-0.0004*** 

(0.0002) 
-0.0002** 

(0.0001) 
-0.0001 
(0.0001) 

-0.0005*** 

(0.0001) 
-0.0001 
(0.0001) 

Hit 
(%) 

25.50% 16.60% 22.60% 26.00% 17.40% 23.30% 

LR uc 
(p val) 

0.0000*** 0.0048*** 0.0413** 0.0000*** 0.0379** 0.0100*** 

LR ind 
(p val) 

0.7511 0.0565* 0.2190 0.9565 0.0383** 0.8118 

LR cc 
(p val) 

0.0001*** 0.0031*** 0.0586* 0.0000*** 0.0136** 0.0353** 

DQ 
(p val) 

0.0007*** 0.0298** 0.1389 0.0001*** 0.0823* 0.1652 

VQR 
(p val) 

0.3146 0.5219 0.7142 0.0107** 0.4952 0.6040 

Note: The results shown were performed on out-of-sample data. 
The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 
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TABLE 7: QR ESTIMATES AND RELEVANT STATISTICS AT 10% 

Quantile Regression with interest rate differential and EMP 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

10% VaR 

Beta1 
(Const) 

-0.0052*** 

(0.0002) 
-0.0079*** 

(0.0004) 
-0.0083*** 

(0.0003) 
-0.0096*** 

(0.0007) 
-0.0092*** 

(0.0003) 
-0.0061*** 

(0.0002) 

Beta2 
(Int diff) 

0.7132*** 

(0.1359) 
-0.0634 
(0.1137) 

0.3482*** 

(0.1183) 
0.1876** 

(0.0939) 
0.4224*** 

(0.1242) 
0.1432 

(0.1726) 

Beta3 
(EMP) 

-0.0001 
(0.0001) 

-0.0004** 

(0.0002) 
-0.0002** 

(0.0001) 
0.0001 

(0.0002) 
-0.0005*** 

(0.0002) 
-0.0002 
(0.0002) 

Hit 
(%) 

15.50% 7.90% 12.90% 12.50% 8.40% 12.30% 

LR uc 
(p val) 

0.0000*** 0.0167** 0.0032*** 0.0105** 0.0855* 0.0183** 

LR ind 
(p val) 

0.6175 0.2416 0.7083 0.9175 0.0036*** 0.7350 

LR cc 
(p val) 

0.0000*** 0.0288** 0.0120** 0.0377** 0.0033*** 0.0583* 

DQ 
(p val) 

0.0000*** 0.0761* 0.0181** 0.0928* 0.0107** 0.1825 

VQR 
(p val) 

0.0001*** 0.3861 0.0396** 0.0089*** 0.0293** 0.3514 

Note: The results shown were performed on out-of-sample data. 
The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 

 

TABLE 8: QR ESTIMATES AND RELEVANT STATISTICS AT 5% 

Quantile Regression with lagged returns, deviations and interest rate differential 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

5% VaR 

Beta1 
(Const) 

-0.0084*** 

(0.0006) 
-0.0115*** 

(0.0012) 
-0.0113*** 

(0.0006) 
-0.0149*** 

(0.0023) 
-0.0125*** 

(0.0009) 
-0.0083*** 

(0.0008) 

Beta2 
(Lag ret) 

0.0815** 

(0.0901) 
-0.1213*** 

(0.0711) 
0.0333 

(0.0661) 
0.1255*** 

(0.1077) 
-0.0502 
(0.0537) 

0.0247 
(0.1094) 

Beta3 
(PPP) 

-0.0147*** 

(0.0042) 
-0.0109*** 

(0.0039) 
-0.0053** 

(0.0047) 
0.0235*** 

(0.0064) 
-0.0045** 

(0.0037) 
0.0054** 

(0.0069) 

Beta4 
(int diff) 

1.4294*** 

(0.4250) 
0.2359* 

(0.3276) 
0.5778*** 

(0.2811) 
0.1910 

(0.3043) 
0.6193*** 

(0.3357) 
0.6335*** 

(0.5962) 



39 
 

 

Hit 
(%) 

6.00% 2.90% 6.80% 7.50% 3.20% 6.40% 

LR uc 
(p val) 

0.1567 0.0005*** 0.0128** 0.0007*** 0.0054*** 0.0502* 

LR ind 
(p val) 

0.7284 0.2484 0.5104 0.4367 0.0970 0.2239 

LR cc 
(p val) 

0.3454 0.0013*** 0.0363** 0.0023*** 0.0053*** 0.0701* 

DQ 
(p val) 

0.0000*** 0.0022*** 0.0506* 0.0000*** 0.0066*** 0.1668 

VQR 
(p val) 

0.0000*** 0.0000*** 0.0000*** 0.0013*** 0.0001*** 0.2663 

Note: The results shown were performed on out-of-sample data. 
The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 

 

TABLE 9: QR ESTIMATES AND RELEVANT STATISTICS AT 1% 

Quantile Regression with deviations and interest rate differential 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

1% VaR 

Beta1 
(Const) 

-0.0059*** 

(0.0002) 
-0.0086*** 

(0.0006) 
-0.0083*** 

(0.0003) 
-0.0092*** 

(0.0010) 
-0.0093*** 

(0.0005) 
-0.0061*** 

(0.0003) 

Beta2 
(PPP) 

-0.0093*** 

(0.0017) 
-0.0067*** 

(0.0019) 
-0.0034*** 

(0.0023) 
0.0129*** 

(0.0024) 
-0.0032** 

(0.0020) 
0.0010*** 

(0.0030) 

Beta3 
(Int diff) 

0.9827** 

(0.2161) 
0.1094 

(0.1493) 
0.3819*** 

(0.1365) 
0.2027*** 

(0.1377) 
0.4271*** 

(0.1602) 
0.1748* 

(0.2411) 

Hit 
(%) 

1.00% 0.90% 1.70% 1.00% 0.60% 0.50% 

LR uc 
(p val) 

0.9975 0.7488 0.0428** 0.9975 0.1705 0.0791* 

LR ind 
(p val) 

0.6529 0.6858 0.4430 0.6529 0.0246** 0.8225 

LR cc 
(p val) 

0.9038 0.8754 0.0957* 0.9038 0.0313** 0.2087 

DQ 
(p val) 

0.0778* 0.9953 0.0000*** 0.1190 0.0000*** 0.7698 

VQR 
(p val) 

0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 

Note: The results shown were performed on out-of-sample data. 
The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 
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We can see that for the quantile regressions, there is greater volatility in the hit percentages 

than for the IGARCH. It is apparent that while certain VaRs estimated by quantile 

regressions have proper hit percentages for certain countries at the 20%, 10% and 5% 

quantiles, they do not seem to outperform the IGARCH VaRs. However, at the 1% 

quantile, the quantile regression VaRs perform noticeably better than at the other 

quantiles. The models are not rejected for the majority of the countries, although the 

model for NOK seems to greatly overestimate the VaRs. On average, at the 1% quantile, 

the quantile regression estimated VaRs using deviations from the PPP and interest rate 

differentials perform better than with other regressors. At the 1% quantile, the VaRs 

estimated by quantile regressions outperforms the IGARCH for certain countries but 

underperforms for others according to our presented criteria.  

 

As the VaRs presented are the best quantile regression models, it is clear that in its simple 

form, there are generally better options to model VaRs, especially in the middle quantiles. 

Nonetheless, it is noteworthy that using the additional regressors constantly outperforms 

the simple use of lagged returns. It is also of interest that the deviations from the PPP are 

important regressors at the 5% and 1% quantiles and that the interest rate differential is 

part of the best models at each quantile. 

 

We can see that all the constants (Beta1) for the VaRs estimated by quantile regression 

are statistically significant at 1%. We also notice that for most models, the estimators for 

the regressors are also generally statistically significant. This is especially true for the 

estimators of the deviations from the PPP, who are all statistically significant at 5%. 

Furthermore, it is also evident that for the quantile regression VaRs, as the accuracy of 

the whole model increases, so does the occurrence of statistically significant estimators. 

We established that the 1% quantile is the most accurate of the VaR estimation by quantile 

regression and it is also noticeable that all but a single estimator is statistically significant 

at 10% significance. 
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Tables 10-13 demonstrate the best CAViaR models for each quantile. We can observe a 

few important distinctions between the four tables, such that it is not always the same 

model type, nor is it always the same regressors that seem to be the most accurate in the 

selection of the best VaRs, mainly according to hit percentage. All the results in the tables 

that are discussed below can be compared with certain results of the other CAViaR 

models, also shown as tables included in Appendix A2. While not all regressors used in 

estimating the different CAViaR models are shown, most models estimated with only 

lagged returns are presented in Appendix A2, as well as other next best CAViaR models: 

 

TABLE 10: CAVIAR ESTIMATES AND RELEVANT STATISTICS AT 20% 

Symmetric CAViaR Model with lagged returns and interest rate differential 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

20% VaR 

Beta1 
(Const) 

-0.0000 
(0.0000) 

-0.0001* 
(0.0001) 

0.0000 
(0.0000) 

-0.0002** 
(0.0001) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

Beta2 
(VaRt-1) 

0.9303*** 
(0.0296) 

0.9279*** 
(0.0240) 

0.9640*** 
(0.0159) 

0.8582*** 
(0.0504) 

0.9699*** 
(0.0090) 

0.9455*** 
(0.0185) 

Beta3 
(Lag ret) 

-0.0610*** 
(0.0242) 

-0.0509*** 
(0.0156) 

-0.0379*** 

(0.0150) 
-0.1238*** 

(0.0519) 
-0.0309*** 

(0.0087) 
-0.0556** 

(0.0245) 
Beta4 

(Int diff) 
-0.0018 
(0.0125) 

-0.0088 
(0.0080) 

0.0035 
(3.94E-03) 

0.0160** 
(8.31E-03) 

-0.0060* 

(4.20E-03) 
-0.0009 

(8.56E-03) 
Hit 
(%) 

20.30% 19.60% 18.30% 20.10% 19.00% 19.80% 

LR uc 
(p val) 

0.8006 0.7033 0.1791 0.9244 0.4354 0.8867 

LR ind 
(p val) 

0.8065 0.7997 0.2345 0.9307 0.8595 0.1416 

LR cc 
(p val) 

0.9400 0.9006 0.2001 0.9918 0.7262 0.3360 

DQ 
(p val) 

0.7454 0.8811 0.2420 0.2553 0.6507 0.1573 

VQR 
(p val)  

0.9390 0.9932 0.7469 0.4143 0.7368 0.8271 

Note: The results shown were performed on out-of-sample data. For the estimators, see Eq. (9) 
The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 
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TABLE 11: CAVIAR ESTIMATES AND RELEVANT STATISTICS AT 10% 

Symmetric CAViaR Model with lagged returns and interest rate differential 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

10% VaR 

Beta1 
(Const) 

-0.0000 
(0.0000) 

-0.0001* 
(0.0001) 

-0.0001 
(0.0001) 

-0.0003** 
(0.0001) 

-0.0000 
(0.0000) 

0.0001 
(0.0000) 

Beta2 
(VaRt-1) 

0.9315*** 
(0.0239) 

0.9539*** 
(0.0142) 

0.9588*** 
(0.0246) 

0.8699*** 
(0.0349) 

0.9691*** 
(0.0095) 

0.9638*** 
(0.0092) 

Beta3 
(Lag ret) 

-0.0996** 
(0.0487) 

-0.0559*** 
(0.0204) 

-0.0591*** 
(0.0245) 

-0.1802*** 
(0.0643) 

-0.0468*** 
(0.0128) 

-0.0745*** 
(0.0215) 

Beta4 
(Int diff) 

0.0117 
(0.0129) 

-0.0027 
(0.0064) 

0.0074 
(0.0101) 

0.0180 
(0.0142) 

-0.0006 
(0.0068) 

-0.0043 
(0.0090) 

Hit 
(%) 

10.10% 9.20% 9.20% 10.40% 8.90% 8.90% 

LR uc 
(p val) 

0.9078 0.3991 0.3991 0.6673 0.2424 0.2424 

LR ind 
(p val) 

0.0482** 0.5678 0.2036 0.3192 0.1346 0.2259 

LR cc 
(p val) 

0.1411 0.5953 0.3123 0.5552 0.1648 0.2425 

DQ 
(p val) 

0.2613 0.6157 0.4348 0.1193 0.3009 0.0521* 

VQR 
(p val)  

0.9687 0.7121 0.7137 0.0177** 0.5930 0.0159** 

Note: The results shown were performed on out-of-sample data. For the estimators, see Eq. (9) 
The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 

 

TABLE 12: CAVIAR ESTIMATES AND RELEVANT STATISTICS AT 5% 

Symmetric CAViaR Model with lagged returns and deviation from fundamental PPP 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

5% VaR 

Beta1 
(Const) 

-0.0000 
(0.0000) 

-0.0001 
(0.0001) 

-0.0002 
(0.0002) 

-0.0004*** 

(0.0002) 
-0.0000 
(0.0001) 

3.01E-05* 

(2.21E-05) 

Beta2 
(VaRt-1) 

0.9232*** 

(0.0244) 
0.9547*** 

(0.0154) 
0.9583*** 

(0.0208) 
0.8665*** 

(0.0261) 
0.9755*** 

(0.0081) 
0.9570*** 

(0.0102) 

Beta3 
(Lag ret) 

-0.1579*** 

(0.0478) 
-0.0778*** 

(0.0202) 
-0.0613** 

(0.0264) 
-0.2636*** 

(0.0639) 
-0.0473*** 

(0.0153) 
-0.1036*** 

(0.0242) 

Beta4 
(PPP) 

-0.0003** 

(0.0002) 
-0.0001 
(0.0002) 

0.0001 
(0.0002) 

0.0005* 

(0.0003) 
0.0001 

(0.0001) 
0.0001 

(0.0002) 

Hit 
(%) 

4.40% 5.30% 5.80% 4.50% 4.10% 4.50% 
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LR uc 
(p val) 

0.3784 0.6610 0.2540 0.4652 0.1805 0.4652 

LR ind 
(p val) 

0.4404 0.9066 0.3743 0.4059 0.3359 0.4059 

LR cc 
(p val) 

0.5038 0.9021 0.3516 0.5422 0.2568 0.5422 

DQ 
(p val) 

0.2115 0.3122 0.5566 0.0507* 0.4407 0.3061 

VQR 
(p val)  

0.5851 0.1233 0.2638 0.0000*** 0.4269 0.0526* 

Note: The results shown were performed on out-of-sample data. For the estimators, see Eq. (9) 
The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 

 

 

TABLE 13: CAVIAR ESTIMATES AND RELEVANT STATISTICS AT 1% 

Asymmetric CAViaR Model with lagged returns and deviation from fundamental PPP 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

1% VaR 

Beta1 
(Const) 

-0.0001 
(0.0002) 

-0.0009*** 

(0.0003) 
-0.0010* 

(0.0008) 
-0.0002 
(0.0006) 

-0.0000 
(0.0001) 

-0.0002 
(0.0005) 

Beta2 
(VaRt-1) 

0.9393*** 

(0.0327) 
0.8966*** 

(0.0358) 
0.8846*** 

(0.0834) 
0.9074*** 

(0.0354) 
0.9809*** 

(0.0195) 
0.9233*** 

(0.0644) 

Beta3 
(Lag ret)+ 

-0.1640*** 

(0.0689) 
-0.3101*** 

(0.0759) 
-0.0468 
(0.0886) 

-0.1706* 

(0.1156) 
-0.0590** 

(0.0333) 
-0.2077** 

(0.1152) 

Beta4 
(Lag ret)- 

-0.1703*** 

(0.0442) 
-0.0209 
(0.0903) 

-0.2933 
(0.2742) 

-0.4448*** 

(0.0696) 
-0.0403 
(0.0591) 

-0.2336* 

(0.1564) 

Beta5 
(PPP)+ 

-2.74E-05 
(0.0007) 

-0.0014 
(0.0013) 

-0.0020 
(0.0017) 

-0.0007 
(0.0028) 

-0.0003 
(0.0007) 

0.0002 
(0.0009) 

Beta6 
(PPP)- 

0.0005* 

(0.0004) 
0.0022** 

(0.0011) 
0.0003 

(0.0008) 
-0.0009 
(0.0008) 

-0.0003 
(0.0004) 

0.0004 
(0.0009) 

Hit 
(%) 

0.80% 0.80% 1.20% 0.90% 0.80% 0.90% 

LR uc 
(p val) 

0.5121 0.5121 0.5356 0.7488 0.5121 0.7488 

LR ind 
(p val) 

0.7193 0.7193 0.5891 0.6858 0.7193 0.6858 

LR cc 
(p val) 

0.7562 0.7562 0.7133 0.8754 0.7562 0.8754 

DQ 
(p val) 

0.9838 0.9959 0.9779 0.1063 0.9878 0.9937 

VQR 
(p val)  

0.0662* 0.0000*** 0.0000*** 0.0000*** 0.0293** 0.2192 

Note: The results shown were performed on out-of-sample data. For the estimators, see Eq. (4) 
The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 
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In tables 10-12 (20%, 10% and 5% quantiles), we can see that the model that seems to 

best estimate VaRs is the symmetric CAViaR model38. For the symmetric model, the 

Beta1 is the constant, Beta2 is the autoregressive property, Beta3 is the estimator for 

lagged returns and Beta4 is the estimator for the additional regressor, in this case either 

the interest rate differential or the deviations from the PPP. Nonetheless, we can also see 

that at the 1% quantile, the asymmetric slope model seems to perform best in estimating 

the VaRs. For the asymmetric slope model, Beta2 and Beta 3 are positive and negative 

lagged returns, and Beta4 and Beta5 are the positive and negative additional regressor, in 

this case the deviations from the PPP.  

 

In tables 10 and 11 (20% and 10%), the model that seems to best satisfy our criteria for 

the VaRs is the symmetric model with lagged returns and with the interest differential as 

regressors. However, in tables 12 and 13 (5% and 1%), the most appropriate models seem 

to be the symmetric and asymmetric models respectively, both with the lagged returns 

and the deviation from the PPP as regressors. While the differences are not immense with 

other CAViaR models and other independent variables, these are the regressors that 

provide the models that best satisfy the hit percentage. Although the estimators for the 

macroeconomic variables (deviations from the PPP in tables 12 and 13) are but 

sporadically statistically significant, as opposed to those of the lagged returns, it does not 

diminish the importance added by these variables to the models. The addition of the extra 

variables beyond only using the lagged returns not only modifies the actual estimators but 

also improves the average accuracy of out-of-sample testing and minimizes the variance 

of hit percentage across the countries. As we can see in Appendix A2, other models can 

perform well for individual countries, however the above tables demonstrate the best 

overall performance for the different quantiles across the countries39. 

                                                           
38 This was a result that was not anticipated when we began this exercise. We had originally believed that 

the symmetric model would not be as interesting as the asymmetric and adaptive models, as it treats the 

positive and negative changes in the exchange rate with the same weight. We had anticipated that there 

could have been a greater importance on negative returns than positive returns. 
39 There was a debate about the best 1% CAViaR model. The issue in question is the debate between over 

or under estimating the hit percentages. While Table 13 mostly underestimates the percentages, the GARCH 
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While the CAViaR estimators are not as frequently statistically significant as those 

estimated by simple quantile regressions, it does not hinder the overall effectiveness of 

the CAViaR models. A possible hypothesis, is that the autoregressive property of the 

CAViaR manages to capture most of the importance of the changes in exchange rates, a 

portion that is missed by simple quantile regressions. Nonetheless, as it was mentioned, 

the importance of the other regressors must not be overlooked in the CAViaR models, as 

we establish that they improve the overall performance of hit percentages40. 

 

The last main result to be taken away from tables 11-13 is that they all seem to perform 

well in estimating the VaRs out-of-sample at the different quantiles, based on hit 

percentage. The results however, are a little murkier when it comes to the backtest scores. 

When using the traditional backtests with Likelihood Ratios (LR) that do not account for 

the intricacies of quantile regressions, the tests seem to almost never reject any of the 

models presented by the different CAViaRs at each quantile41. The tests reject one model, 

for independence at 5% significance. However, there are a slightly more rejections when 

using the other two backtests (DQ and VQR). Similarly to the LR tests, the DQ test only 

rejects two models at 10% significance, but overall seems to not reject the other models 

with high test coefficients. Conversely, while the VQR rejects no model at the 20% 

quantile, it was more frequent with the rejection of models at the other quantiles. We 

hypothesise that it is due to the assumption of a particular distribution in the test, which 

has the greatest impact at the 1% quantile, where it rejects five out of the six models. 

 

Taking a closer look at the estimated coefficients, the most noticeable result is that Beta2, 

the autoregressive property is always statistically significant at 1% in every model, at 

                                                           
CAViaR with lagged returns, deviations and interest rate differential from Table 33 often slightly 

overestimates as can be seen in Appendix A2. This was a case of judgement where it is difficult to assess 

the different relative costs. Because the deviations from the PPP are also present, it still demonstrates the 

importance of the estimator in the tails, as it was necessary for the two best models, both models are 

nonetheless close to the 1% hit percentage. 
40 Subjectively, we believe that the interest rate differential and the deviations from PPP may be the two 

most important regressors. While the deviations from PPP seems most useful in the tails, the interest rate 

differentials may offer explanatory power at all quantiles. 
41 Especially the unconditional coverage (uc) and the conditional coverage (cc) tests from section 4.3 
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every quantile. Furthermore, most of those estimates are close to unity and can thus be of 

some interest. While in their original paper, Engle & Manganelli (2004) also had 

autoregressive Betas close to unity, they were not quite as close as ours. This particular 

estimator is of great interest as it is the one that represents the lagged VaR. This obviously 

raises questions about the possibility that the true path of the models follow is a random 

walk and can thus be difficult to predict. Although, as the IGARCH equation resembles 

that of a random walk, it could warrant further attention. It could be interesting to use 

IGARCH equations with a CAViaR model, which could allow another way of accounting 

for persistence in volatility shocks. Nonetheless, the existing CAViaR models all 

generally performed better, according to our standards than did the IGARCH(1,1), 

especially in the tails.  

 

We also observe that the Beta3 estimator, the lagged change in exchange rate, is also 

almost always statistically significant. There is one model where this estimator is not 

statistically significant at 10% significance, but most are usually statistically significant 

at 1% significance. We also notice that the estimators are always negative. This means 

that positive returns will decrease the VaR. Furthermore, the coefficients grow in absolute 

value as we move into the tails. Thus, as we go further into the tails, we expect a bigger 

negative impact of a positive return. 

 

In regards to the 1% asymmetric CAViaR model, it is also interesting to notice the 

different impacts by the positive and negative returns. First, we notice that both the 

estimators for positive and negative lagged returns are always negative, as the lagged 

return (Beta3) estimators in the symmetric models. Nevertheless, we notice that the 

estimators have different impacts for different countries. For CAD, NOK, SA and the UK, 

the impacts are stronger for negative returns than they are for positive returns. However, 

for JPY and SWZ we notice that the positive returns have a stronger impact than the 

negative returns. This is an interesting result because both the JPY and the SWZ are safe 

haven currencies that have historically had lower interest rates. This may demonstrate the 

distinctions between countries with historically lower interest rates and those with 
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historically higher rates. This could potential be a way of distinguishing countries that are 

be used for carry trade and further reason to group certain countries together. 

 

As previously mentioned, while the additional regressors do not have significant impacts 

individually, they improve the hit percentage for each country as opposed to the 

equivalent model with just lagged returns as a regressor. Moreover, as it has been 

mentioned, the VQR test continues to seemingly over reject models at the 1%42, even 

when the hit percentage is equal to the desired quantile. It is noteworthy that the test 

performed similarly with many different types of distributions. Beyond the GEV, the test 

was also performed with normal, Student t and Weibull distributions43. Something that 

we can take away from these results, is that this may demonstrate certain limits of using 

known distributions and further strengthens the use of semi-parametric methods in 

estimating VaRs, rather than relying on purely parametric models. 

FIGURE 3: NEWS IMPACT CURVES FOR CANADA AT 5% 

 

                                                           
42 More work should be conducted as the hit percentages are not the only criteria of evaluation. 
43 As we have used the GEV distribution throughout, it is the only one presented in the tables. 
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In order to further compare our results with the ones from Engle & Manganelli (2004), 

we also plot News Impact Curves (NIC) in the same manner as they used them on stock 

market data. Fig.3 shows CAViaR NIC for Canada with lagged returns and see how the 

estimated VaRs change as the regressors vary. While the results from the NIC found in 

Engle & Manganelli (2004) led us to focus on the asymmetric and adaptive models, we 

can see in these NIC that there is little to no difference in the impact between the positive 

and the negative returns. The NIC results are similar for different quantiles and with the 

use of different regressors. These NIC also seem to explain the results from tables 10-12 

showing the symmetric model as the “best” CAViaR model at three different quantile. 

Based on the NIC, the impacts of positive and negative returns are very similar and almost 

not discernable. It is thus understandable that the results obtained by the symmetric and 

asymmetric models are not too different and seems to dispel our original assumption that 

negative returns would always have a stronger impact than positive returns. 

FIGURE 4: BEST CAVIAR MODELS FOR CAD 
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We can see in Fig. 4 how well-behaved the CAViaRs are per quantile. First, the estimated 

CAViaRs do not cross over by quantile. Second, we notice that the estimated CAViaRs 

become more volatile as they get closer to the tails. This is something that can also be 

observed for the different countries. We also notice that there is no visible discernable 

difference between the in-sample CAViaR estimation and the out-of-sample estimation.  

FIGURE 5: BEST QR VARS FOR CAD 

 

Also, as we can see in Fig. 5, the QR VaR models also become more volatile as they go 

further into the outer quantiles, thus the 1% percent quantile is the most volatile of the QR 

VaR models that we have estimated. This is something that is more apparent for the QR 

VaR models than for the CAViaRs because the former are generally much less volatile. 

Nonetheless, the QR VaRs display some of the same general well-behaved properties 

shown by the CAViaRs. 
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FIGURE 6: QR & CAVIAR MODELS FOR CAD AT 1% 

 

We can confirm from Fig. 6 that between the QR VaR and the CAViaR, the CAViaR 

model is the more volatile of the two. As a result of being more volatile but correctly 

sized, the CAViaR is almost always closer to zero than the QR VaRs. This is a property 

that demonstrates the usefulness of the additional conditioning information in the 

CAViaR model. It would also seem to generally be a more affordable way to cover 

positions than the other models, notably than the QR VaRs. We can see that the two 

models follow different paths, despite both of them being efficient in hit percentages. 

Moreover, the QR VaR model seems to drift off in the out-of-sample period, something 

that does not happen with the CAViaR model. This may be in part due to the 

autoregressive property of the CAViaR model. While the drift may diminish the accuracy 

of the QR VaR model as the out-of-sample increases, this does not seem to always hurt 

the overall validity of using quantile regressions in estimating VaRs, especially in the 

outer quantiles. While the CAViaR is overall a better choice than the QR VaR as a 

coverage technique, it is not always the case for each country. As the QR VaR generally 



51 
 

 

is less accurate in terms of hit percentage and has a higher cost to cover positions, it can 

still outperform the CAViaR out of sample in terms of hit percentages, as it does here for 

the CAD (1% to 0.8% hit percentage). This result may be due to the lower volatility of 

the QR VaR and the fact that the VaR remains far from zero. 

 

FIGURE 7: DIFFERENCE BETWEEN GARCH MODELS AT 1% 

 

Figure 7 shows the visual differences (similarities) between the IGARCH(1,1) and the 

CAViaR indirect GARCH model. It is very difficult to discern any differences 

graphically, especially in the in-sample portion of the data. However, in the out-of-sample 

portion we notice a few differences in the spikes. It is noteworthy that the CAViaR 

indirect GARCH performs better or as well as the IGARCH(1,1) in hit percentage in all 

but one of the countries. The reason why the CAViaR GARCH model was not selected 

as the best CAViaR 1% model is that it has a slightly bigger range than the asymmetric 

slope model over the six countries. 
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6 Conclusion 

This thesis demonstrates previously untested VaR techniques such as the CAViaR models 

used on exchange rate data, combined with macroeconomic variables as regressors. The 

goal was not only to utilize these techniques, but also to ensure the proper regressors are 

used when estimating the models. In attempting to model exchange rate risk, we used four 

independent variables: lagged returns, deviations from fundamental PPP levels, interest 

rate differential, and exchange market pressure. 

 

As a method of comparing our results, we used six different currencies over the USD. We 

also compared our results against a baseline method for exchange rate risk, an 

IGARCH(1,1). The results demonstrate that while quantile regressions can be a powerful 

tool in the estimation of VaRs, they may lack the autoregessive property observed by the 

CAViaR. This may be a reason that the CAViaR models performed on average, better 

than the QR VaRs and the IGARCH VaRs. 

 

However, when it comes down to the best CAViaR model, it is less conclusive. Based on 

our criteria, we found that for three of the four quantiles, the symmetric model was the 

best of the four CAViaR models, mainly based on hit percentage. As it was mentioned, 

especially with the indirect GARCH and the asymmetric model, the differences were 

sometimes fairly small and it came down to judgement, based on the mix of the six 

different countries. Furthermore, the best regressors used was also difficult to select. 

Nonetheless, it is our conclusion that at the 20% and 10% quantiles, the regressors that 

performed the best are the lagged returns with the interest rate differential. However, at 

the 5% and the 1% quantiles, the regressors that performed the best are the lagged returns 

with the deviations from fundamental PPP levels44. 

 

                                                           
44 This is also true if the GARCH model is selected over the asymmetric model at the 1% quantile. 
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These results seem to confirm our hypothesis that the deviations from the PPP could have 

a predictive power on the estimation of VaRs, especially in the tails of the changes of 

exchange rates. The regressors that were chosen as part of the best QR VaR models also 

seem to demonstrate this conclusion. Similarly, the CAViaR models, at 5% and 1% 

demonstrate the usefulness of using the deviation from PPP levels as independent 

variables. However, at the 20% and 10% quantiles, the deviations from the PPP are not 

part of the most useful regressors. 

 

Another conclusion taken from the results is that it may be challenging to use parametric 

models with known distributions. They must be carefully used, as we have shown that not 

only normal distributions do not seem to properly fit the returns, neither do distributions 

for extreme values such as the GEV. 

 

Finally, it would be interesting to continue the search for appropriate VaR estimation 

techniques for exchange rate risk. While we have demonstrated that CAViaR estimates 

the best type of model in modeling VaRs between those tested, no specific CAViaR model 

and no combination of regressors have clearly stood out ahead of the others for all the 

countries together. Certain models capture almost perfectly the VaRs for particular 

countries, but have difficulties with others. It would be interesting to further investigate 

the relationship between different types of countries and different currency types. 

 

Also, while our work on existing distributions demonstrate certain caveats, it would be 

interesting to explore more work that is done in EVT in connexion with our current 

models. A problem that we mentioned and was not resolved, is the difference between 

observing the unconditional and conditional distributions. It seems as though these returns 

have very high kurtosis that suffer certain extreme events, something that is never easy to 

model.  
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Appendix A: Tables 

A1: Statistics 

Data Statistics 

 Canada Japan Norway South 

Africa 

Switzerland United 

Kingdom 

Statistics       

Median 
returns 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 

Median 
deviations 
from PPP 

-0.0282 -0.0060 0.0252 0.0153 -0.0119 0.0016 

Median  
int. rate diff. 

0.0000 0.0031 -0.0009 -0.0059 0.0018 -0.0005 

Median 
EMP 

0.0000 -0.0125 0.0000 0.0000 0.0000 0.0000 

Std. Dev. 
returns 

0.0054 0.0070 0.0075 0.0106 0.0071 0.0055 

Std. Dev. 
deviations 
from PPP 

0.1407 0.1321 0.1292 0.1860 0.1408 0.0801 

Std. Dev.  
int. rate diff. 

0.0010 0.0020 0.0019 0.0032 0.0015 0.0009 

Std. Dev. 
EMP 

1.0296 0.8685 1.4950 2.0541 1.5206 0.9790 

Skewness 
returns 

-0.1293 0.3741 -0.0723 -0.8716 -0.2611 -0.2301 

Skewness 
deviations 
from PPP 

0.1448 0.7345 -0.5992 -0.7828 -0.1094 -0.1391 

Skewness  
int. rate diff. 

0.4679 0.3524 -0.1717 3.6496 -0.2413 -0.2053 

Skewness 
EMP 

0.5317 -1.9956 2.6978 3.5037 0.0030 1.5430 
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A2: CAViaR 

Lagged Returns 

TABLE 14: APPENDIX - SYMMETRIC MODEL WITH LAGGED RETURNS AT 20% 

Symmetric CAViaR Model with lagged returns 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

20% VaR 

Beta1 
(Const) 

-3.15E-05*** 

(0.0000) 

-0.0001*** 

(0.0000) 

0.0000 

(0.0000) 

-0.0001** 

(0.0000) 

-4.32E-05* 

(0.0000) 

0.0000 

(0.0000) 

Beta2 
(VaRt-1) 

0.9320*** 

(0.0284) 

0.9172*** 

(0.0157) 
0.9555*** 

(0.0141) 
0.8652*** 

(0.0329) 
0.9654*** 

(0.0120) 
0.9448*** 

(0.0143) 
Beta3 

(Lag ret) 
-0.0566** 

(0.0263) 

-0.0547*** 

(0.0088) 
-0.0416*** 

(0.0147) 
-0.1127*** 

(0.0362) 
-0.0266*** 

(0.0092) 
-0.0492*** 

(0.0137) 
Hit 
(%) 

21.60% 18.20% 18.00% 22.00% 17.00% 20.60% 

LR uc 
(p val) 

0.5707 0.1322 0.2708 0.3789 0.0672 0.8006 

LR ind 
(p val) 

0.5751 0.6724 0.3267 0.6454 0.8898 0.1492 

LR cc 
(p val) 

0.7277 0.2945 0.3371 0.6108 0.1854 0.3424 

DQ 
(p val) 

0.8215 0.2608 0.4352 0.4512 0.1110 0.6550 

VQR 
(p val)  

0.9634 0.8999 0.9298 0.4272 0.8027 0.9064 

Note: The results shown were performed on out-of-sample data. 
The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 

 

TABLE 15: APPENDIX - ASYMMETRIC MODEL WITH LAGGED RETURNS AT 20% 

Asymmetric CAViaR Model with lagged returns 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

20% VaR 

Beta1 
(Const) 

-3.16E-
05*** 

(0.0000) 

-0.0005*** 

(0.0000) 
0.0000 

(0.0000) 
-0.0001** 

(0.0000) 
0.0000 

(0.0000) 
0.0000 

(0.0000) 

Beta2 
(VaRt-1) 

0.9281*** 

(0.0235) 
0.8216*** 

(0.0442) 
0.9570*** 

(0.0169) 
0.8730*** 

(0.0233) 
0.9659*** 

(0.0179) 
0.9409*** 

(0.0143) 

Beta3 
(Lag ret)+ 

-0.0553*** 

(0.0169) 
-0.1217*** 

(0.0241) 
-0.0373** 

(0.0184) 
-0.0751*** 

(0.0245) 
-0.0403*** 

(0.0139) 
-0.0553*** 

(0.0184) 
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Beta4 
(Lag ret)- 

-0.0663** 

(0.0307) 
-0.0499** 

(0.0247) 
-0.0436** 

(0.0212) 
-0.1433*** 

(0.0346) 
-0.0107 
(0.0171) 

-0.0488*** 

(0.0126) 

Hit 
(%) 

21.20% 16.80% 18.40% 21.40% 17.00% 20.40% 

LR uc 
(p val) 

0.6818 0.0672* 0.3470 0.3789 0.0462** 0.9874 

LR ind 
(p val) 

0.5491 0.7379 0.2576 0.9343 0.6104 0.1048 

LR cc 
(p val) 

0.7683 0.1770 0.3385 0.6768 0.1203 0.2682 

DQ 
(p val) 

0.9224 0.1644 0.4733 0.8519 0.1207 0.7085 

VQR 
(p val)  

0.9472 0.8619 0.9363 0.4058 0.8676 0.9037 

Note: The results shown were performed on out-of-sample data. 
The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 

 

TABLE 16: APPENDIX - GARCH MODEL WITH LAGGED RETURNS AT 20% 

GARCH CAViaR Model with lagged returns 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

20% VaR 

Beta1 
(Const) 

0.0000** 

(0.0000) 
9.31E-07*** 

(0.0000) 
0.0000 

(0.0000) 
1.57E-07** 

(0.0000) 
0.0000 

(0.0000) 
0.0000 

(0.0000) 
Beta2 

(VaRt-1) 
0.9309*** 

(0.0065) 
0.9036*** 

(0.0087) 
0.9617*** 

(0.0054) 
0.8556*** 

(0.0119) 
0.9640*** 

(0.0076) 
0.9450*** 

(0.0069) 
Beta3 

(Lag ret) 
0.0358 

(0.0341) 
0.0334 

(0.0300) 
0.0229 

(0.0342) 
0.0776* 

(0.0601) 
0.0176*** 

(0.0067) 
0.0314* 

(0.0209) 
Hit 
(%) 

21.60 17.40 18.20 21.40 16.80 21.00 

LR uc 
(p val) 

0.4693 0.0954 0.4354 0.4227 0.0803* 0.6252 

LR ind 
(p val) 

0.7406 0.3545 0.1343 0.2698 0.9511 0.2836 

LR cc 
(p val) 

0.7286 0.1621 0.2404 0.3944 0.2162 0.4994 

DQ 
(p val) 

0.8215 0.1438 0.3423 0.4022 0.0999* 0.7352 

VQR 
(p val)  

0.9560 0.9141 0.9426 0.4092 0.5795 0.8726 

Note: The results shown were performed on out-of-sample data. 
The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 
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TABLE 17: APPENDIX - SYMMETRIC MODEL WITH LAGGED RETURNS AT 10% 

Symmetric CAViaR Model with lagged returns 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

10% VaR 

Beta1 
(Const) 

-3.53E-05** 

(0.0000) 
-0.0001** 

(0.0001) 
-0.0001* 

(0.0000) 
-0.0002** 

(0.0001) 
0.0000 

(0.0001) 
0.0000 

(0.0000) 
Beta2 

(VaRt-1) 
0.9322*** 

(0.0080) 
0.9511*** 

(0.0117) 
0.9512*** 

(0.0099) 
0.8759*** 

(0.0172) 
0.9646*** 

(0.0134) 
0.9524*** 

(0.0132) 
Beta3 

(Lag ret) 
-0.0968*** 

(0.0095) 
-0.0559*** 

(0.0120) 
-0.0659*** 

(0.0108) 
-0.1694*** 

(0.0199) 
-0.0487*** 

(0.0138) 
-0.0779*** 

(0.0148) 
Hit 
(%) 

11.4000 9.2000 9.2000 11.6000 8.8000 9.4000 

LR uc 
(p val) 

0.5237 0.2424 0.6791 0.3985 0.2891 0.4621 

LR ind 
(p val) 

0.0220** 0.7127 0.3296 0.5750 0.1553 0.2966 

LR cc 
(p val) 

0.0593* 0.4718 0.5708 0.5983 0.2077 0.4426 

DQ 
(p val) 

0.4442 0.2874 0.0752* 0.7511 0.2083 0.9558 

VQR 
(p val)  

0.9643 0.6673 0.7764 0.0138** 0.8698 0.1570 

Note: The results shown were performed on out-of-sample data. 

The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 

 

TABLE 18: APPENDIX - ASYMMETRIC MODEL WITH LAGGED RETURNS AT 10% 

Asymmetric CAViaR Model with lagged returns 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

10% VaR 

Beta1 
(Const) 

0.0000 
(0.0000) 

-0.0001** 

(0.0001) 
-0.0001** 

(0.0000) 
-0.0002*** 

(0.0001) 
0.0000 

(0.0000) 
0.0000 

(0.0000) 

Beta2 
(VaRt-1) 

0.9256*** 

(0.0154) 
0.9450*** 

(0.0154) 
0.9577*** 

(0.0105) 
0.8910*** 

(0.0177) 
0.9697*** 

(0.0108) 
0.9527*** 

(0.0101) 

Beta3 
(Lag ret)+ 

-0.0903*** 
(0.0207) 

-0.0747*** 
(0.0137) 

-0.0475*** 
(0.0194) 

-0.1011*** 
(0.0381) 

-0.0552*** 
(0.0154) 

-0.0617*** 
(0.0155) 

Beta4 
(Lag ret)- 

-0.1277*** 
(0.0323) 

-0.0433*** 
(0.0146) 

-0.0671*** 
(0.0123) 

-0.2000*** 
(0.0276) 

-0.0265* 

(0.0177) 
-0.0909*** 

(0.0198) 

Hit 
(%) 

11.00% 8.20% 9.20% 11.20% 8.00% 9.20% 
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LR uc 
(p val) 

0.6673 0.0400** 0.7587 0.5237 0.1341 0.2891 

LR ind 
(p val) 

0.0787* 0.8556 0.2163 0.2585 0.1717 0.3975 

LR cc 
(p val) 

0.1944 0.1193 0.4441 0.4310 0.1280 0.3986 

DQ 
(p val) 

0.7728 0.0433** 0.0855* 0.3467 0.0966 0.9569 

VQR 
(p val)  

0.9777 0.6900 0.7123 0.1148 0.7964 0.2300 

Note: The results shown were performed on out-of-sample data. 
The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 

 

TABLE 19: APPENDIX - GARCH MODEL WITH LAGGED RETURNS AT 10% 

GARCH CAViaR Model with lagged returns 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

10% VaR 

Beta1 
(Const) 

0.0000 
(0.0000) 

8.46E-07*** 

(0.0000) 
0.0000 

(0.0000) 
6.90E-07** 

(0.0000) 
0.0000 

(0.0000) 
0.0000 

(0.0000) 
Beta2 

(VaRt-1) 
0.9239*** 

(0.0069) 
0.9506*** 

(0.0034) 
0.9471*** 

(0.0065) 
0.8843*** 

(0.0111) 
0.9616*** 

(0.0041) 
0.9555*** 

(0.0060) 
Beta3 

(Lag ret) 
0.1152 

(0.1745) 
0.0501 

(0.0475) 
0.0725** 

(0.0433) 
0.1546** 

(0.0776) 
0.0495** 

(0.0298) 
0.0753 

(0.0811) 
Hit 
(%) 

11.00% 8.40% 9.20% 13.20% 8.20% 10.00% 

LR uc 
(p val) 

0.5237 0.0855 0.8407 0.0498** 0.3413 0.7587 

LR ind 
(p val) 

0.0592 0.7052 0.4076 0.7202 0.1783 0.8793 

LR cc 
(p val) 

0.1377 0.2123 0.6956 0.1370 0.2570 0.9430 

DQ 
(p val) 

0.8215 0.2608 0.4352 0.4512 0.1110 0.6550 

VQR 
(p val)  

0.9693 0.7504 0.6167 0.0482** 0.4168 0.1798 

Note: The results shown were performed on out-of-sample data. 
The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 
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TABLE 20: APPENDIX - SYMMETRIC MODEL WITH LAGGED RETURNS AT 5% 

Symmetric CAViaR Model with lagged returns 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

5% VaR 

Beta1 
(Const) 

0.0000 
(0.0000) 

-0.0001** 

(0.0001) 
-0.0002*** 

(0.0001) 
-0.0003** 

(0.0002) 
0.0000 

(0.0000) 
0.0000 

(0.0000) 
Beta2 

(VaRt-1) 
0.9170*** 

(0.0207) 
0.9534*** 

(0.0128) 
0.9459*** 

(0.0205) 
0.8776*** 

(0.0279) 
0.9738*** 

(0.0067) 
0.9533*** 

(0.0071) 
Beta3 

(Lag ret) 
-0.1675*** 

(0.0388) 
-0.0702*** 

(0.0243) 
-0.0822** 

(0.0381) 
-0.2319*** 

(0.0526) 
-0.0493*** 

(0.0089) 
-0.1025*** 

(0.0129) 
Hit 
(%) 

5.40% 5.20% 6.40% 5.60% 2.60% 5.80% 

LR uc 
(p val) 

0.5615 0.8900 0.2540 0.9942 0.0492** 0.7758 

LR ind 
(p val) 

0.9601 0.6958 0.3743 0.7298 0.2064 0.3132 

LR cc 
(p val) 

0.8438 0.9176 0.3516 0.9421 0.0651 0.5774 

DQ 
(p val) 

0.2020 0.0884* 0.1576 0.2083 0.3034 0.8132 

VQR 
(p val)  

0.7354 0.2705 0.3345 0.0000*** 0.3649 0.1942 

Note: The results shown were performed on out-of-sample data. 

The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 

 

TABLE 21: APPENDIX - ASYMMETRIC MODEL WITH LAGGED RETURNS AT 5% 

Asymmetric CAViaR Model with lagged returns 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

5% VaR 

Beta1 
(Const) 

-0.0001* 

(0.0000) 
-0.0001*** 

(0.0000) 
-0.0002** 

(0.0001) 
-0.0003** 

(0.0002) 
0.0000 

(0.0000) 
0.0000 

(0.0001) 
Beta2 

(VaRt-1) 
0.9211*** 

(0.0138) 
0.9576*** 

(0.0067) 
0.9436*** 

(0.0214) 
0.8860*** 

(0.0320) 
0.9742*** 

(0.0064) 
0.9577*** 

(0.0165) 

Beta3 
(Lag ret)+ 

-0.1213*** 
(0.0241) 

-0.0913*** 
(0.0161) 

-0.0726** 

(0.0340) 
-0.1266*** 

(0.0533) 
-0.0518*** 

(0.0099) 
-0.0792*** 

(0.0258) 
Beta4 

(Lag ret)- 
-0.1872*** 

(0.0152) 
-0.0407*** 

(0.0162) 
-0.1027*** 

(0.0332) 
-0.2970*** 

(0.0510) 
-0.0437*** 

(0.0144) 
-0.1130*** 

(0.0314) 
Hit 
(%) 

4.40% 5.80% 6.40% 5.20% 2.80% 5.40% 
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LR uc 
(p val) 0.9942 0.9942 0.2010 0.9942 0.0492** 0.6655 
LR ind 
(p val) 

0.7475 0.7298 0.4144 0.7475 0.2064 0.0312** 

LR cc 
(p val) 

0.9495 0.9421 0.3164 0.9495 0.0651 0.0894 

DQ 
(p val) 

0.2019 0.0001*** 0.1674 0.2326 0.3868 0.6007 

VQR 
(p val)  

0.9752 0.2244 0.2653 0.0000*** 0.3121 0.1106 

Note: The results shown were performed on out-of-sample data. 
The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 

 

 

TABLE 22: APPENDIX - GARCH MODEL WITH LAGGED RETURNS AT 5% 

GARCH CAViaR Model with lagged returns 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

5% VaR 

Beta1 
(Const) 

3.56E-07* 

(0.0000) 
1.23E-06*** 

(0.0000) 
2.36E-06** 

(0.0000) 
1.85E-06* 

(0.0000) 
0.0000 

(0.0000) 
0.0000 

(0.0000) 
Beta2 

(VaRt-1) 
0.9139*** 

(0.0058) 
0.9560*** 

(0.0049) 
0.9340*** 

(0.0103) 
0.8748*** 

(0.0112) 
0.9736*** 

(0.0039) 
0.9572*** 

(0.0067) 
Beta3 

(Lag ret) 
0.2402*** 

(0.0834) 
0.0768* 

(0.0557) 
0.1278 

(0.1361) 
0.3763 

(0.3294) 
0.0641 

(0.0558) 
0.1358 

(0.2289) 
Hit 
(%) 

5.40 4.60 6.00 5.60 2.60 6.00 

LR uc 
(p val) 

0.6610 0.6655 0.2010 0.5615 0.0706* 0.9942 

LR ind 
(p val) 

0.9066 0.8797 0.4144 0.5488 0.2353 0.2603 

LR cc 
(p val) 

0.9021 0.9004 0.3164 0.7059 0.0964 0.5307 

DQ 
(p val) 

0.0248** 0.2409 0.2758 0.2186 0.2974 0.7257 

VQR 
(p val) 

0.8684 0.6128 0.0923* 0.0000*** 0.0076*** 0.1218 

Note: The results shown were performed on out-of-sample data. 

The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 
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TABLE 23: APPENDIX - SYMMETRIC MODEL WITH LAGGED RETURNS AT 1% 

Symmetric CAViaR Model with lagged returns 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

1% VaR 

Beta1 
(Const) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

-0.0004 
(0.0005) 

-0.0004** 

(0.0002) 
0.000 

(0.0001) 
-0.0001*** 

(0.0001) 
Beta2 

(VaRt-1) 
0.9410*** 

(0.0097) 
0.9865*** 

(0.0021) 
0.9157*** 

(0.0426) 
0.8690*** 

(0.0328) 
0.9834*** 

(0.0047) 
0.9250*** 

(0.0162) 
Beta3 

(Lag ret) 
-0.1732*** 

(0.0206) 
-0.0478*** 

(0.0068) 
-0.2055*** 

(0.0552) 
-0.4295*** 

(0.1119) 
-0.0510*** 

(0.0094) 
-0.2147*** 

(0.0471) 
Hit 
(%) 

0.60% 2.40% 1.20% 1.40% 0.40% 0.60% 

LR uc 
(p val) 

0.7488 0.0428 0.9975 0.5121 0.1705 0.7488 

LR ind 
(p val) 

0.6858 0.2897 0.6529 0.7193 0.7877 0.6858 

LR cc 
(p val) 

0.8754 0.0733 0.9038 0.7562 0.3771 0.8754 

DQ 
(p val) 

0.9884 0.0000*** 0.8646 0.0311** 0.8343 0.9884 

VQR 
(p val)  

0.8891 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0050*** 

Note: The results shown were performed on out-of-sample data. 

The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 

 

TABLE 24: APPENDIX - ASYMMETRIC MODEL WITH LAGGED RETURNS AT 1% 

Asymmetric CAViaR Model with lagged returns 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

1% VaR 

Beta1 
(Const) 

0.0000 
(0.0001) 

0.0000 
(0.0000) 

-0.0007*** 

(0.0002) 
-0.0004** 

(0.0002) 
0.0000 

(0.0001) 
-0.0002** 

(0.0001) 
Beta2 

(VaRt-1) 
0.9415*** 

(0.0134) 
0.9759*** 

(0.0051) 
0.8972*** 

(0.0157) 
0.9123*** 

(0.0287) 
0.9848*** 

(0.0046) 
0.9260*** 

(0.0130) 

Beta3 
(Lag ret)+ 

-0.1693*** 
(0.0396) 

-0.1207*** 
(0.0208) 

-0.1028*** 
(0.0330) 

-0.1391* 

(0.1000) 
-0.0492*** 

(0.0089) 
-0.1832*** 

(0.0518) 
Beta4 

(Lag ret)- 
-0.1727*** 

(0.0210) 
-0.0142 
(0.0144) 

-0.2960*** 
(0.0363) 

-0.3944*** 
(0.0901) 

-0.0386*** 
(0.0151) 

-0.2324*** 
(0.0373) 

Hit 
(%) 

0.60% 3.00% 2.00% 1.60% 0.40% 0.60% 

LR uc 
(p val) 

0.7488 0.0051*** 0.1381 0.7488 0.1705 0.7488 
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LR ind 
(p val) 

0.6858 0.4135 0.4989 0.6858 0.7877 0.6858 

LR cc 
(p val) 

0.8754 0.0141 0.2649 0.8754 0.3771 0.8754 

DQ 
(p val) 

0.9884 0.0000*** 0.2696 0.0409** 0.8118 0.9910 

VQR 
(p val)  

0.8677 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0111** 

Note: The results shown were performed on out-of-sample data. 

The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 

 

TABLE 25: APPENDIX - GARCH MODEL WITH LAGGED RETURNS AT 1% 

GARCH CAViaR Model with lagged returns 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

1% VaR 

Beta1 
(Const) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

1.74E-05** 

(0.0000) 
7.63E-06** 

(0.0000) 
0.0000 

(0.0000) 
1.95E-06** 

(0.0000) 
Beta2 

(VaRt-1) 
0.9384*** 

(0.0021) 
0.9754*** 

(0.0045) 
0.8700*** 

(0.0239) 
0.8378*** 

(0.0216) 
0.9794*** 

(0.0059) 
0.9132*** 

(0.0051) 
Beta3 
(Lag 
ret) 

0.3713*** 
(0.0938) 

0.1250 
(0.1661) 

0.4765*** 
(0.1310) 

1.2676** 

(0.5749) 
0.1143 

(0.3015) 
0.5018 

(0.5258) 
Hit 
(%) 

0.60% 1.60% 2.00% 1.80% 0.40% 0.60% 

LR uc 
(p val) 

0.9975 0.3604 0.1381 0.5356 0.3150 0.7488 

LR ind 
(p val) 

0.6529 0.1570 0.4989 0.5891 0.7533 0.6858 

LR cc 
(p val) 

0.9038 0.2418 0.2649 0.7133 0.5745 0.8754 

DQ 
(p val) 

0.9879 0.0037*** 0.1064 0.0301** 0.8288 0.9840 

VQR 
(p val)  

0.2550 0.0002*** 0.0000*** 0.0000*** 0.0000*** 0.0725* 

Note: The results shown were performed on out-of-sample data. 
The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 
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Lagged Returns & Deviations 

TABLE 26: APPENDIX - ASYMMETRIC MODEL WITH LAGGED RETURNS AND DEVIATIONS AT 5% 

Asymmetric CAViaR Model with lagged returns and deviations from fundamental PPP 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

5% VaR 

Beta1 
(Const) 

0.0000 
(0.0001) 

-0.0001* 

(0.0001) 
-0.0001 

(0.0002) 
-0.0005* 

(0.0004) 
0.0000 

(0.0000) 
-0.0000 

(0.0000) 
Beta2 

(VaRt-1) 
0.9411*** 

(0.0300) 
0.9550*** 

(0.0129) 
0.9574*** 

(0.0245) 
0.8751*** 

(0.0354) 
0.9769*** 

(0.0103) 
0.9566*** 

(0.0146) 
Beta3 

(Lag ret)+ 
-0.0743** 

(0.0486) 
-0.0981*** 

(0.0180) 
-0.0492** 

(0.0268) 
-0.1390** 

(0.0611) 
-0.0487*** 

(0.0157) 
-0.0925*** 

(0.0315) 
Beta4 

(Lag ret)- 
-0.1543** 

(0.0886) 
-0.0350** 

(0.0203) 
-0.0753*** 

(0.0311) 
-0.3233** 

(0.1723) 
-0.0400** 

(0.0233) 
-0.1183** 

(0.0562) 
Beta5 
(PPP)+ 

-0.0007 
(0.0006) 

-0.0003 
(0.0006) 

-0.0005 
(0.0005) 

0.0011 
(0.0010) 

-0.0001 
(0.0001) 

0.0000 
(0.0002) 

Beta6 
(PPP)- 

-0.0002 
(0.0002) 

0.0003 
(0.0003) 

0.0000 
(0.0002) 

0.0007** 

(0.0004) 
0.0001 

(0.0001) 
0.0001 

(0.0002) 

Hit 
(%) 

3.30% 4.40% 5.10% 4.90% 3.20% 4.80% 

LR uc 
(p val) 

0.0089*** 0.3784 0.8792 0.8900 0.0054*** 0.7758 

LR ind 
(p val) 

0.9280 0.4404 0.1594 0.7787 0.0970* 0.0277** 

LR cc 
(p val) 

0.0325** 0.5038 0.3673 0.9521 0.0053*** 0.0851* 

DQ 
(p val) 

0.0253** 0.1373 0.3062 0.1159 0.0983* 0.1715 

VQR 
(p val)  

0.1531 0.2641 0.4123 0.0000*** 0.0215** 0.0458* 

Note: The results shown were performed on out-of-sample data. 
The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 

 

TABLE 27: APPENDIX - GARCH MODEL WITH LAGGED RETURNS AND DEVIATIONS AT 1% 

GARCH CAViaR Model with lagged returns and deviations from fundamental PPP 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

1% VaR 

Beta1 
(Const) 

0.0000 

(0.0000) 
0.0000 

(0.0000) 
0.0000 

(0.0000) 
0.0000 

(0.0000) 
0.0000 

(0.0000) 
0.0000 

(0.0000) 

Beta2 
(VaRt-1) 

0.9389*** 
(0.0096) 

0.9446*** 
(0.0096) 

0.9397*** 
(0.0156) 

0.8439*** 
(0.0319) 

0.9665*** 
(0.0078) 

0.9113*** 
(0.0198) 
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Beta3 
(Lag ret) 

0.3653 
(0.2996) 

0.2585** 

(0.1174) 
0.3424*** 

(0.1184) 
1.2852 

(1.7207) 
0.1414 

(0.5141) 
0.5244** 

(0.3117) 
Beta4 
(PPP) 

0.0000 
(0.0003) 

0.0000 
(0.0008) 

0.0000 
(0.0005) 

0.0000 
(0.0010) 

0.0001 
(0.0010) 

0.0001 
(0.0008) 

Hit 
(%) 

1.10% 1.40% 1.10% 1.00% 0.80% 1.00% 

LR uc 
(p val) 

0.7520 0.2292 0.7520 0.9975 0.5121 0.9975 

LR ind 
(p val) 

0.6207 0.5281 0.6207 0.6529 0.7193 0.6529 

LR cc 
(p val) 

0.8416 0.3978 0.8416 0.9038 0.7562 0.9038 

DQ 
(p val) 

0.9899 0.5620 0.2073 0.0940* 0.9801 0.9916 

VQR 
(p val)  

0.2182 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0257** 

Note: The results shown were performed on out-of-sample data. 

The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 

Lagged Returns & Interest Rate Differential 

TABLE 28: APPENDIX - SYMMETRIC MODEL WITH LAGGED RETURNS AND INTEREST RATE DIFFERENTIAL AT 5% 

Symmetric CAViaR Model with lagged returns and interest rate differential 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

5% VaR 

Beta1 
(Const) 

-0.0001 

(0.0000) 
-0.0001* 

(0.0001) 
-0.0002 
(0.0002) 

-0.0004*** 
(0.0002) 

0.0000 
0.0001) 

0.0000 
(0.0000) 

Beta2 
(VaRt-1) 

0.9198*** 

0.0282 
0.9559*** 

0.0143 
0.9518*** 

0.0207 
0.8740*** 

0.0199 
0.9763*** 

0.0104 
0.9550*** 

0.0122 
Beta3 

(Lag ret) 
-0.1623*** 

0.0515 
-0.0724*** 

0.0171 
-0.0735*** 

0.0259 
-0.2554*** 

0.0463 
-0.0466*** 

0.0164 
-0.1082*** 

0.0283 
Beta4 

(Int diff) 
0.0171 
0.0243 

0.0047 
0.0085 

0.0054 
0.0078 

0.0250* 

0.0190 
0.0013 
0.0054 

0.0059 
0.0079 

Hit 
(%) 

5.20% 4.60% 5.80% 4.50% 3.50% 4.50% 

LR uc 
(p val) 

0.7675 0.5614 0.2540 0.4652 0.0221** 0.4652 

LR ind 
(p val) 

0.6362 0.5478 0.3743 0.4059 0.1559 0.4059 

LR cc 
(p val) 

0.8559 0.7052 0.3516 0.5422 0.0266** 0.5422 

DQ 
(p val) 

0.3134 0.4389 0.7459 0.0585* 0.2074 0.2983 

VQR 
(p val)  

0.7227 0.1266 0.3062 0.0000*** 0.1917 0.0363** 

Note: The results shown were performed on out-of-sample data. 
The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 
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TABLE 29: APPENDIX - SYMMETRIC MODEL WITH LAGGED RETURNS AND INTEREST RATE DIFFERENTIAL AT 1% 

Symmetric CAViaR Model with lagged returns and interest rate differential 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

1% VaR 

Beta1 
(Const) 

-0.0000 

(0.0001) 
-0.0000 

(0.0000) 
-0.0003 
(0.0005) 

-0.0004 
(0.0008) 

-0.0001 
0.0001) 

-0.0002 
(0.0004) 

Beta2 
(VaRt-1) 

0.9460*** 

(0.0144) 
0.9853*** 

(0.0030) 
0.9303*** 

(0.0491) 
0.8469*** 

(0.0571) 
0.9846*** 

(0.0071) 
0.9208*** 

(0.0390) 
Beta3 

(Lag ret) 
-0.1646*** 

(0.0336) 
-0.0535*** 

(0.0092) 
-0.1875*** 

(0.0762) 
-0.5040*** 

(0.1804) 
-0.0385*** 

(0.0130) 
-0.2279*** 

(0.0899) 
Beta4 

(Int diff) 
0.0099 

(0.0474) 
0.0075** 

(0.0042) 
0.0058 

(0.0316) 
-0.0378 
(0.0649) 

0.0111 
(0.0090) 

0.0510 
(0.0477) 

Hit 
(%) 

0.70% 1.20% 0.90% 0.90% 0.40% 0.80% 

LR uc 
(p val) 

0.3150 0.5356 0.7488 0.7488 0.0303** 0.5121 

LR ind 
(p val) 

0.7533 0.1302 0.6858 0.6858 0.8577 0.7193 

LR cc 
(p val) 

0.5745 0.2627 0.8754 0.8754 0.0941* 0.7562 

DQ 
(p val) 

0.9843 0.0665* 0.9985 0.0943* 0.3840 0.9882 

VQR 
(p val)  

0.0416* 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 

Note: The results shown were performed on out-of-sample data. 
The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 

 

Lagged Returns & EMP 

 

TABLE 30: APPENDIX - SYMMETRIC MODEL WITH LAGGED RETURNS AND EMP AT 5% 

Symmetric CAViaR Model with lagged returns and EMP 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

5% VaR 

Beta1 
(Const) 

0.0000 

(0.0001) 
-0.0001 

(0.0000) 
-0.0001 
(0.0001) 

-0.0003** 

(0.0001) 
0.0000 

(0.0001) 
0.0000 

(0.0000) 

Beta2 
(VaRt-1) 

0.9228*** 

(0.0416) 
0.9619*** 

(0.0112) 
0.9528*** 

(0.0189) 
0.8756*** 

(0.0334) 
0.9757*** 

(0.0101) 
0.9557*** 

(0.0103) 
Beta3 

(Lag ret) 
-0.1514** 

(0.0801) 
-0.0327** 

(0.0182) 
-0.0636*** 

(0.0226) 
-0.2557*** 

(0.0887) 
-0.0414 
(0.0337) 

-0.0874*** 
(0.0200) 
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Beta4 
(EMP) 

-0.0001 
(0.0002) 

-0.0003** 

(0.0001) 
-0.0001 
(0.0001) 

0.0000 
(0.0002) 

-0.0001 
(0.0003) 

-0.0002*** 
(0.0000) 

Hit 
(%) 

5.20% 5.70% 5.80% 4.60% 3.30% 4.90% 

LR uc 
(p val) 

0.7675 0.3164 0.2540 0.5614 0.0089*** 0.8900 

LR ind 
(p val) 

0.6362 0.8807 0.3743 0.3732 0.1145 0.2859 

LR cc 
(p val) 

0.8559 0.5986 0.3516 0.5682 0.0094*** 0.5604 

DQ 
(p val) 

0.0713* 0.0112** 0.7446 0.0423** 0.1345 0.1323 

VQR 
(p val)  

0.5873 0.2782 0.3350 0.0000*** 0.1003 0.0127** 

Note: The results shown were performed on out-of-sample data. 
The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 

 

TABLE 31: APPENDIX - ADAPTIVE MODEL WITH LAGGED RETURNS AND EMP AT 1% 

Adaptive CAViaR Model with lagged returns and EMP 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

1% VaR 

Beta1 
(Lag ret) 

-0.0046*** 

(0.0000) 
-0.0034*** 

(0.0000) 
-0.0106*** 

(0.0000) 
-0.0228*** 

(0.0000) 
-0.0039*** 

(0.0000) 
-0.0070*** 

(0.0000) 
Beta2 
(EMP) 

0.0005*** 
(0.0000) 

0.0002*** 
(0.0000) 

0.0005*** 
(0.0000) 

0.0006*** 
(0.0000) 

0.0002*** 
(0.0000) 

0.0006*** 
(0.0000) 

Hit 
(%) 

1.80% 0.90% 1.10% 1.20% 0.80% 0.90% 

LR uc 
(p val) 

0.0221** 0.7488 0.7520 0.5356 0.5121 0.7488 

LR ind 
(p val) 

0.3288 0.6858 0.6207 0.5891 0.0009 0.6858 

LR cc 
(p val) 

0.0452** 0.8754 0.8416 0.7133 0.0034 0.8754 

DQ 
(p val) 

0.0164** 0.9987 0.9558 0.2934 0.0000*** 0.9977 

VQR 
(p val)  

0.0000*** 0.0000*** 0.0003*** 0.0000*** 0.0000*** 0.5666 

Note: The results shown were performed on out-of-sample data. 

The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 
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Lagged Returns, Deviations & Interest Rate Differential 
TABLE 32: APPENDIX - SYMMETRIC MODEL WITH LAGGED RETURNS, DEVIATIONS AND INTEREST RATE DIFFERENTIAL AT 5% 

Symmetric CAViaR Model with lagged returns, deviations from PPP and interest rate differential 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

5% VaR 

Beta1 
(Const) 

0.0000 

(0.0001) 
-0.0001* 

(0.0001) 
-0.0002* 

(0.0001) 
-0.0005*** 

(0.0002) 
0.0000 

(0.0000) 
0.0000 

(0.0000) 

Beta2 
(VaRt-1) 

0.9247*** 

(0.0241) 
0.9581*** 

(0.0119) 
0.9582*** 

(0.0188) 
0.8738*** 

(0.0417) 
0.9766*** 

(0.0060) 
0.9552*** 

(0.0148) 
Beta3 

(Lag ret) 
-0.1550*** 

(0.0428) 
-0.0698*** 

(0.0296) 
-0.0618*** 

(0.0238) 
-0.2463*** 

(0.1026) 
-0.0460*** 

(0.0078) 
-0.1076*** 

(0.0394) 
Beta4 
(PPP) 

-0.0003 
(0.0002) 

-0.0001 
(0.0001) 

0.0001 
(0.0001) 

0.0004 
(0.0004) 

0.0001 
(0.0001) 

0.0000 
(0.0003) 

Beta5 
(Int diff) 

-0.0014** 

(0.0238) 
0.0076*** 

(0.0076) 
0.0026*** 

(0.0091) 
0.0269** 

(0.0174) 
0.0014*** 

(0.0044) 
0.0038** 

(0.0149) 

Hit 
(%) 

4.50% 4.50% 5.80% 4.40% 4.00% 4.40% 

LR uc 
(p val) 

0.4652 0.4652 0.2540 0.3784 0.1351 0.3784 

LR ind 
(p val) 

0.5015 0.5015 0.3743 0.4404 0.3000 0.4404 

LR cc 
(p val) 

0.6111 0.6111 0.3516 0.5038 0.1914 0.5038 

DQ 
(p val) 

0.2624 0.5792 0.5562 0.0603* 0.3944 0.3664 

VQR 
(p val)  

0.1606 0.2845 0.0000*** 0.2748 0.0411** 0.0106** 

Note: The results shown were performed on out-of-sample data. 
The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 

TABLE 33: APPENDIX - GARCH MODEL WITH LAGGED RETURNS, DEVIATIONS AND INTEREST RATE DIFFERENTIAL AT 1% 

GARCH CAViaR Model with lagged returns, deviations from PPP and interest rate differential 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

1% VaR 

Beta1 
(Const) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

0.0000 
 (0.0000) 

0.0000 
 (0.0000) 

0.0000 
(0.0000) 

0.0000 
 (0.0000) 

Beta2 
(VaRt-1) 

0.9386*** 

(0.0031) 
0.9484*** 

(0.0070) 
0.9427*** 

(0.0220) 
0.8383*** 

(0.0276) 
0.9705*** 

(0.0055) 
0.9046*** 

(0.0052) 
Beta3 

(Lag ret) 
0.3649*** 

(0.1034) 
0.2374* 

(0.1508) 
0.3196*** 

(0.1030) 
1.3013** 

(0.7025) 
0.1265 

(0.3104) 
0.5594* 

(0.3461) 
Beta4 
(PPP) 

0.0000 
(0.0002) 

0.0000 
(0.0004) 

0.0000 
(0.0007) 

0.0000 
(0.0004) 

0.0001 
(0.0007) 

0.0001 
(0.0017) 
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Beta5 
(Int diff) 

-0.1925 
(0.2236) 

-0.0676 
(1.0130) 

0.0340 
(0.4027) 

0.0786 
(0.4992) 

-0.0838 
(0.3553) 

-0.2624 
(2.9942) 

Hit 
(%) 

1.10% 1.30% 1.10% 1.10% 0.80% 0.90% 

LR uc 
(p val) 

0.7520 0.3604 0.7520 0.7520 0.5121 0.7488 

LR ind 
(p val) 

0.6207 0.5582 0.6207 0.6207 0.7193 0.6858 

LR cc 
(p val) 

0.8416 0.5545 0.8416 0.8416 0.7562 0.8754 

DQ 
(p val) 

0.9899 0.8069 0.2045 0.0989* 0.9837 0.9544 

VQR 
(p val)  

0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0226** 0.0252** 

Note: The results shown were performed on out-of-sample data. 
The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 

Lagged Returns, Deviations & EMP 

TABLE 34: APPENDIX - SYMMETRIC MODEL WITH LAGGED RETURNS, DEVIATIONS AND EMP AT 5% 

Symmetric CAViaR Model with lagged returns, deviations from PPP and EMP 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

5% VaR 

Beta1 
(Const) 

0.0000 

(0.0000) 
0.0000 

(0.0001) 
-0.0001* 

(0.0001) 
-0.0004 

(0.0003) 
0.0000 

(0.0000) 
-0.0000 
(0.0000) 

Beta2 
(VaRt-1) 

0.9264*** 

(0.0245) 
0.9631*** 

(0.0090) 
0.9545*** 

(0.0220) 
0.8677*** 

(0.0332) 
0.9754*** 

(0.0077) 
0.9561*** 

(0.0197) 
Beta3 

(Lag ret) 
-0.1395*** 

(0.0408) 
-0.0282 
(0.0516) 

-0.0612** 

(0.0338) 
-0.2587*** 

(0.0799) 
-0.0428*** 

(0.0101) 
-0.0873** 

(0.0468) 
Beta4 
(PPP) 

-0.0003* 

(0.0002) 
0.0000 

(0.0002) 
0.0000 

(0.0001) 
0.0005 

(0.0007) 
0.0001 

(0.0001) 
0.0001 

(0.0002) 
Beta5 
(EMP) 

-0.0001*** 
(0.0001) 

-0.0003 
(0.0006) 

-0.0001 
(0.0001) 

0.0000 
(0.0004) 

-0.0001 
(0.0001) 

-0.0001*** 
(0.0000) 

Hit 
(%) 

4.70% 6.00% 5.80% 4.50% 3.50% 4.80% 

LR uc 
(p val) 

0.6655 0.1567 0.2540 0.4652 0.0221** 0.7758 

LR ind 
(p val) 

0.8797 0.4566 0.3743 0.4059 0.1559 0.3132 

LR cc 
(p val) 

0.9004 0.2781 0.3516 0.5422 0.0266 0.5774 

DQ 
(p val) 

0.4412 0.0045*** 0.7457 0.0512* 0.2111 0.1903 

VQR 
(p val)  

0.6680 0.1217 0.3405 0.0000*** 0.2898 0.0106** 

Note: The results shown were performed on out-of-sample data. 
The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 
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TABLE 35: APPENDIX - ASYMMETRIC MODEL WITH LAGGED RETURNS, DEVIATIONS AND EMP AT 1% 

Asymmetric CAViaR Model with lagged returns, deviations from PPP and EMP 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

1% VaR 

Beta1 
(Const) 

-0.0001 
(0.0001) 

-0.0001 

(0.0002) 
-0.0011** 

(0.0005) 
-0.0003 

(0.0003) 
0.0000 

(0.0000) 
-0.0001 

(0.0001) 
Beta2 

(VaRt-1) 
0.9489*** 

(0.0066) 
0.9502*** 

(0.0103) 
0.8782*** 

(0.0432) 
0.9120*** 

(0.0410) 
0.9822*** 

(0.0053) 
0.9319*** 

(0.0143) 
Beta3 

(Lag ret)+ 
-0.1126*** 

(0.0222) 
-0.1573 
(0.1451) 

0.0212 
(0.0980) 

-0.0540 
(0.1166) 

-0.0614*** 
(0.0127) 

-0.1941** 

(0.1171) 
Beta4 

(Lag ret)- 
-0.1746*** 

(0.0170) 
0.2127* 

(0.1315) 
-0.2925*** 

(0.0741) 
-0.3957*** 

(0.1063) 
-0.0191** 

(0.0092) 
-0.1524 
(0.1262) 

Beta5 
(PPP)+ 

0.0001 
(0.0004) 

0.0001 
(0.0002) 

-0.0019 
(0.0020) 

0.0001 
(0.0009) 

-0.0003 
(0.0002) 

0.0000 
(0.0007) 

Beta6 
(PPP)- 

0.0004* 

(0.0003) 
0.0003 

(0.0004) 
0.0006 

(0.0007) 
-0.0003 
(0.0010) 

-0.0003** 

(0.0002) 
0.0005 

(0.0008) 
Beta7 
(EMP)+ 

-0.0002 
(0.0005) 

-0.0002 
(0.0009) 

-0.0007 
(0.0009) 

-0.0013 
(0.0016) 

0.0001** 

(0.0000) 
0.0000 

(0.0001) 

Beta8 
(EMP)- 

0.0001* 

(0.0001) 
-0.0024*** 

(0.0009) 
-0.0001 
(0.0001) 

0.0001*** 
(0.0000) 

-0.0003* 

(0.0002) 
-0.0005 
(0.0014) 

Hit 
(%) 

0.80% 2.20% 1.20% 1.00% 0.40% 0.90% 

LR uc 
(p val) 

0.5121 0.0010 0.5356 0.9975 0.0303** 0.7488 

LR ind 
(p val) 

0.7193 0.5054 0.5891 0.6529 0.8577 0.6858 

LR cc 
(p val) 

0.7562 0.0035*** 0.7133 0.9038 0.0941* 0.8754 

DQ 
(p val) 

0.9871 0.0000*** 0.9778 0.1421 0.1974 0.9941 

VQR 
(p val)  

0.0989* 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.1474 

Note: The results shown were performed on out-of-sample data. 

The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 
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Lagged Returns, Interest Rate Differential & EMP 

 

TABLE 36: APPENDIX - SYMMETRIC MODEL WITH LAGGED RETURNS, INTEREST RATE DIFFERENTIAL AND EMP AT 5% 

Symmetric CAViaR Model with lagged returns, interest rate differential and EMP 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

5% VaR 

Beta1 
(Const) 

0.0000 

(0.0001) 
-0.0001* 

(0.0001) 
-0.0001* 

(0.0001) 
-0.0004* 

(0.0002) 
0.0000 

(0.0001) 
0.0000 

(0.0000) 

Beta2 
(VaRt-1) 

0.9231*** 

(0.0253) 
0.9616*** 

(0.0079) 
0.9535*** 

(0.0235) 
0.8758*** 

(0.0243) 
0.9765*** 

(0.0068) 
0.9528*** 

(0.0130) 
Beta3 

(Lag ret) 
-0.1488*** 

(0.0378) 
-0.0317* 

(0.0239) 
-0.0638** 

(0.0375) 
-0.2465*** 

(0.0571) 
-0.0398*** 

(0.0067) 
-0.0942*** 

(0.0317) 
Beta4 

(Int diff) 
0.0095 

(0.0227) 
0.0033 

(0.0066) 
0.0071 

(0.0106) 
0.0253* 

(0.0165) 
0.0019 

(0.0052) 
0.0053 

(0.0154) 
Beta5 
(EMP) 

-0.0001** 

(0.0001) 
-0.0003*** 

(0.0001) 
-0.0001 
(0.0001) 

-0.0001 
(0.0003) 

-0.0001 
(0.0000) 

-0.0002*** 
(0.0000) 

Hit 
(%) 

5.10% 4.90% 5.80% 4.50% 3.10% 4.90% 

LR uc 
(p val) 

0.8792 0.8900 0.2540 0.4652 0.0032*** 0.8900 

LR ind 
(p val) 

0.6822 0.6958 0.3743 0.4059 0.0814* 0.2859 

LR cc 
(p val) 

0.9091 0.9176 0.3516 0.5422 0.0028*** 0.5604 

DQ 
(p val) 

0.0629** 0.3341 0.7457 0.0596* 0.0735* 0.1265 

VQR 
(p val)  

0.5758 0.3035 0.3788 0.0000*** 0.0463** 0.0090*** 

Note: The results shown were performed on out-of-sample data. 

The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 
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TABLE 37: APPENDIX - SYMMETRIC MODEL WITH LAGGED RETURNS, INTEREST RATE DIFFERENTIAL AND EMP AT 1% 

Symmetric CAViaR Model with lagged returns, interest rate differential and EMP 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

1% VaR 

Beta1 
(Const) 

0.0000 

(0.0000) 
-0.0001* 

(0.0001) 
-0.0003* 

(0.0004) 
-0.0004* 

(0.0004) 
0.0000 

(0.0001) 
-0.0002 
(0.0001) 

Beta2 
(VaRt-1) 

0.9463*** 

(0.0037) 
0.9460*** 

(0.0081) 
0.9228*** 

(0.0346) 
0.8509*** 

(0.0736) 
0.9864*** 

(0.0039) 
0.9208*** 

(0.0113) 
Beta3 

(Lag ret) 
-0.1513*** 

(0.0124) 
0.1013*** 

(0.0322) 
-0.1904*** 

(0.0684) 
-0.4286** 

(0.2565) 
-0.0533*** 

(0.0108) 
-0.2239*** 

(0.0320) 
Beta4 

(Int diff) 
0.0266* 

(0.0196) 
0.0088 

(0.0137) 
0.0198 

(0.0390) 
-0.0021 
(0.0342) 

0.0049 
(0.0070) 

0.0494** 

(0.0221) 
Beta5 
(EMP) 

-0.0002*** 
(0.0000) 

-0.0024*** 
(0.0003) 

-0.0002* 

(0.0001) 
-0.0008* 

(0.0005) 
0.0001*** 

(0.0000) 
-0.0001** 

(0.0000) 
Hit 
(%) 

0.70% 1.60% 0.80% 1.00% 1.10% 0.90% 

LR uc 
(p val) 

0.3150 0.0788* 0.5121 0.9975 0.7520 0.7488 

LR ind 
(p val) 

0.7533 0.2528 0.7193 0.6529 0.0043*** 0.6858 

LR cc 
(p val) 

0.5745 0.1110 0.7562 0.9038 0.0161** 0.8754 

DQ 
(p val) 

0.9842 0.0535* 0.9954 0.1170 0.0000*** 0.9911 

VQR 
(p val)  

0.1470 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 

Note: The results shown were performed on out-of-sample data. 
The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 
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Lagged Returns, Deviations, Interest Rate Differential & EMP 

 

TABLE 38: APPENDIX - ASYMMETRIC MODEL WITH LAGGED RETURNS, DEVIATIONS, INTEREST RATE DIFFERENTIAL AND EMP AT 5% 

Asymmetric CAViaR Model with lagged returns, deviations from PPP, int. rate. diff and EMP 

 Canada Japan Norway South Africa Switzerland United 

Kingdom 

1% VaR 

Beta1 
(Const) 

0.0000 
(0.0000) 

-0.0001** 

(0.0001) 
-0.0001* 

(0.0001) 
-0.0004 

(0.0003) 
0.0000 

(0.0000) 
4.13E-05* 

(0.0000) 
Beta2 

(VaRt-1) 
0.9420*** 

(0.0068) 
0.9531*** 

(0.0135) 
0.9592*** 

(0.0065) 
0.8902*** 

(0.0165) 
0.9786*** 

(0.0054) 
0.9624*** 

(0.0041) 
Beta3 

(Lag ret)+ 
-0.0521 
(0.0473) 

-0.1082 
(0.1092) 

-0.0430** 

(0.0219) 
-0.0955* 

(0.0699) 
-0.0454*** 

(0.0161) 
-0.0644** 

(0.0299) 
Beta4 

(Lag ret)- 
-0.1527*** 

(0.0233) 
0.0201 

(0.1073) 
-0.0730*** 

(0.0306) 
-0.3037*** 

(0.0229) 
-0.0131 
(0.0223) 

-0.0616** 

(0.0302) 
Beta5 
(PPP)+ 

-0.0007*** 
(0.0003) 

-0.0002 
(0.0007) 

-0.0005* 

(0.0003) 
0.0007 

(0.0007) 
0.0000 

(0.0002) 
-0.0001 
(0.0002) 

Beta6 
(PPP)- 

-0.0002 
(0.0002) 

0.0002 
(0.0003) 

0.0001 
(0.0001) 

0.0002 
(0.0007) 

0.0001 
(0.0001) 

0.0001 
(0.0002) 

Beta7 
(Int diff)+ 

0.0020 
(0.0212) 

0.0040 
(0.0147) 

0.0237 
(0.0290) 

0.3840*** 
(0.1396) 

0.0006 
(0.0070) 

0.0389 
(0.1007) 

Beta8 
(Int diff)- 

-0.0265 
(0.0503) 

-0.5251 
(0.6261) 

0.0026 
(0.0086) 

0.0088 
(0.0156) 

-0.0086 
(0.6724) 

-0.0016 
(0.0126) 

Beta9 
(EMP)+ 

-0.0002*** 
(0.0001) 

0.0000 
(0.0007) 

0.0000 
(0.0001) 

-0.0003*** 
(0.0000) 

0.0000 
(0.0000) 

-0.0002*** 
(0.0001) 

Beta10 
(EMP)- 

0.0000 
(0.0001) 

-0.0005 
(0.0010) 

0.0000 
(0.0002) 

0.0000 
(0.0001) 

-0.0002** 

(0.0001) 
-0.0003** 

(0.0002) 

Hit 
(%) 

3.10% 4.40% 4.70% 4.80% 1.30% 4.60% 

LR uc 
(p val) 

0.0021 0.0032 0.4704 0.4652 0.0492 0.0221 

LR ind 
(p val) 

0.5001 0.9683 0.5712 0.5015 0.2064 0.1109 

LR cc 
(p val) 

0.0329 0.0129 0.6564 0.6111 0.0651 0.0205 

DQ 
(p val) 

0.0088*** 0.0346** 0.3914 0.0732* 0.0000*** 0.1819 

VQR 
(p val)  

0.0000 0.0003 0.1386 0.0000 0.1400 0.0000 

Note: The results shown were performed on out-of-sample data. 

The *, **, *** denote significant coefficients or rejection of models (LR, DQ, VQR) at 10%, 5% and 1% respectively. 
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Appendix B: Figures 
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