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Abstract

This review paper surveys recent development in software implementations for extreme value
analyses since the publication of Stephenson and Gilleland (2006) and Gilleland et al. (2013). We
provide a comparative review by topic and highlight differences in existing numerical routines, along
with listing areas where software development is lacking. The online supplement contains two vi-
gnettes comparing implementations of frequentist and Bayesian estimation of univariate extreme
value models.
This version of the article has been accepted for publication, after peer review (when applicable)
and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not
reflect post-acceptance improvements, or any corrections. The Version of Record is available on-
line at: https://doi.org/10.1007/s10687-023-00475-9

1. Introduction

Extreme value analysis has seen strong development over the years. While software development
typically lags behind methodological developments due in part to lack of recognition of the effort
needed to provide reliable software, reproducibility requirements and individual efforts have led to
a growth in the coverage of statistical methods. Many procedures developed in the last decades are
now available, but the diversity of numerical implementations complicates somewhat the choice of
routine to adopt.

Our intention, rather than to solely provide a catalog of existing software, is to discuss and com-
pare existing implementations of statistical methods and to highlight numerical issues that are of
practical importance yet are not typically discussed in theoretical or methodological papers. Our
work also provides an update to the reviews of Stephenson and Gilleland (2006); Gilleland et al.
(2013); Gilleland (2016) by including the most recent software development.

Given its ongoing popularity, we focus on implementations using the R programming language,
unless stated otherwise. The Comprehensive R Archive Network (CRAN) Task View on Extreme Value
Analysis (Dutang, 2023) provides an extensive list of package functionalities organized by topics; we
follow this approach and broadly separate implementations into univariate, multivariate and func-
tional extremes rather than present functionalities package by package. Using the RWsearch package
(Kiener, 2022), we automated the process of searching for extreme-related packages on the CRAN and
inspected all of the packages that have “extreme value” or “peak over threshold” as keywords in the
package description. Additional searches were done for unpublished packages.

As the software landscape evolves quickly, our review is but a snapshot in time. Indeed, mainte-
nance of R packages on the CRAN requires dedicated efforts given the increased number of checks
and the relatively short time granted to correct inconsistencies signaled by these checks in order to
avoid removal.

2. Univariate extremes

2.1. Asymptotic theory for univariate extremes

The starting point for univariate extreme value analysis is the extremal types theorem: let Yi , i =
1,2, . . . be independent and identically distributed random variables with distribution function F . If
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there exist normalizing sequences {an ,bn}n∈N satisfying an > 0 and bn ∈ R such that, as n goes to
infinity, the limit distribution of the rescaled sample maximum is non-degenerate, then

lim
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where x+ = max{x,0}. The right-hand side of Equation (1) is the distribution function of the gener-
alized extreme value (GEV) distribution with location parameter µ ∈ R, scale parameter σ ∈ R+ and
shape parameter ξ ∈R, with support {x ∈R : ξ(x −µ)/σ>−1}. For historical reasons, the distribution
is categorized based on the sign of ξ in so-called “domains of attraction”. If ξ < 0, the distribution
has a bounded upper tail, ξ = 0 leads to an exponential “light” tail and ξ > 0 to a “heavy tail” with
polynomial decay and with finite moments only of order r < 1/ξ.

If the extremal types theorem holds for a distribution F , then we can equivalently consider condi-
tional exceedances of Y ∼ F above a threshold u, as there exists au > 0 such that

lim
u→x∗

Pr(a−1
u Y > x +u)

Pr(a−1
u Y > u)

= Ḡ(x), (2)

where x∗ = sup{x : F (x) < 1} is the upper endpoint of F and

Ḡ(x) =
{

(1+ξx/σu)−1/ξ
+ , ξ ̸= 0,

exp(−x/σu), ξ= 0,
(3)

with σu =σ+ξ(u −µ). The right-hand side of Equation (3) is the survival function of the generalized
Pareto distribution with scale σu and shape ξ ∈ R. The unconditional distribution of F above u is
Pr(Y > x +u) ≈ Ḡ(x)Pr(Y > u). The probability of exceedance above the threshold is typically esti-
mated empirically based on a binomial distribution. The threshold may be either a fixed value or an
observation. An equivalent statement of the extremal types theorem is in terms of a point process
representation, from which different likelihoods can be derived; see Coles (2001, Chapter 7) for more
details.

2.2. Maximum likelihood estimation

Let θ denote the p-vector of parameters of the extreme value model under consideration, e.g., θ =
(µ,σ,ξ)⊤ for the generalized extreme value distribution. We can approximate the log likelihood ℓ(θ)
by taking the limiting relations of, e.g., Equations (1) and (2), as exact for the maximum of a finite
block of m observations or for exceedances above a large quantile u; the unknown normalizing con-
stants an , bn , etc., are absorbed by the location and scale parameters. If users have access to the
full data (as opposed to say only threshold exceedances), they could choose to model extremes using
either block maxima or peaks over threshold: even in the independent and identically distributed
scenario, either method may be more suitable (Bücher and Zhou, 2021). Readers wishing to learn
more about likelihood-based methods in the context of extremes are referred to Coles (2001).

Optimization: Likelihood-based inference for extreme value distributions is in principle straightfor-
ward, even if there is no closed-form solution for the maximum likelihood estimators (MLE). Prop-
erties of maximum likelihood estimators imply that the gradient of the log likelihood ∂ℓ(θ)/∂θ must
be zero when evaluated at the MLE unless ξ̂ = −1. Constrained gradient-based optimization algo-
rithms are logical choices for finding the MLE, as the support translates into nonlinear inequality
constraints: for example, when fitting a generalized extreme value distribution to a sample of block
maxima z1, . . . , zn , one must impose {µ,σ,ξ :σ+ξ(zi −µ) ≥ 0}, which depends on the maximum obser-
vation if ξ < 0 and on the minimum if ξ > 0. Many numerical implementations of the log likelihood
simply return very large finite values for parameter combinations outside of the support, which can
impact the convergence of gradient-based optimization routines: the user is invited to check con-
vergence of whichever software is employed. Even then, the solution returned may not be a global
maximum. For example, Figure 1 shows the conditional log likelihood surface for an inhomogeneous
Poisson process model, obtained by fixing the scale. The feasible region is defined by a hyperbola and
features two local maxima; depending on the starting value, a gradient algorithm would converge to
different values.
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Numerical implementation: Particular attention must be paid to numerical overflow when imple-
menting the likelihood, score and information matrix of the generalized extreme value distribution,
especially for terms of the form log(1+ξx) when ξ→ 0 for the information and cumulants. For exam-
ple, the entries of the expected information matrix for the shape, Iξξ = f (ξ)/ξ−4 (Prescott and Walden,
1980), and the limit as ξ→ 0 is well-defined, but this expression is numerically unstable when ξ≈ 0.
High precision functions such as log1p can be used to alleviate this somewhat, but interpolation of
the cumulants based on Taylor series expansions around ξ≈ 0 is nevertheless recommended.

Dimension reduction: We can sometimes deploy dimension reduction strategies to facilitate numeri-
cal optimization. For the generalized Pareto distribution, Grimshaw (1993) uses a profile likelihood to
reduce the problem to a one-dimensional optimization. This is arguably one of the safest maximum
likelihood estimation procedures and the exponential sub-case, for which the profile likelihood is
unbounded, can be easily handled separately. The left panel of Figure 1 shows profile log likelihoods
for two simulated datasets, including one for which ξ̂ lies on the boundary of the parameter space.

Reparametrization: We can sometimes reparametrize models to facilitate interpretation and make
explicit the equivalence between various representations of the extremal types theorem. Suppose we
model the nu largest observations from the observed n sample, denoted y(n) ≥ ·· · ≥ y(n−nu+1) > u ≥
y(n−nu ). Coles (2001, Section 7.5) suggests to write the log-likelihood obtained through the limiting
inhomogeneous Poisson point process as

ℓ(µ,σ,ξ; y) =−nu log(cσ)−
nu∑
i=1

(
1+ 1

ξ

)
log

{
1+ξ

( y(n−i+1) −µ
σ
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+

− c
{

1+ξ
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σ

)}−1/ξ

+
, µ,ξ ∈R,σ> 0. (4)

The constant c is introduced as a way to relate the parameters of the point process likelihood to those
of the generalized extreme value distribution fitted to the maximum of blocks of m observations if
one sets c = n/m. This parametrization however induces strong correlation between the parameters
(µ,σ,ξ) so isn’t suitable for optimization: the right panel of Figure 1 shows how the support con-
straints lead to a multiple local maxima.

The MLE of the parameters of the inhomogeneous Poisson point process are notably hard to ob-
tain because of this: the optimization in packages such as ismev (Heffernan and Stephenson., 2018;
Coles, 2001) or evd (Stephenson, 2002) often fails to converge, mostly because of poor starting val-
ues. The invariance property of maximum likelihood estimators means that we can reparametrize
the model to facilitate optimization: for example, Moins et al. (2023) propose a reparametrization
that ensures orthogonality of the parameters of Equation (4), but the following trick can also help fa-
cilitate convergence: if the estimated probability of exceedance is small, the Poisson approximation
implies

c
{

1+ξ
(u −µ

σ

)}−1/ξ
≈ nu .

We can thus fit a generalized Pareto distribution to threshold exceedances, whose maximum likeli-
hood estimates we denote (σ̂u , ξ̂), and then use as starting values for the point-process optimization
routine

µ0 = u −σ0{(nu/c)−ξ̂−1}/ξ̂, σ0 = σ̂u(nu/c)ξ̂, ξ0 = ξ̂.

Regularity conditions and implications: Moments of some of the kth order derivatives of the log like-
lihood of extreme value distributions exist only if the shape ξ > −1/k. Thus, when ξ ≤ −1, the MLE

does not solve the score equation. The likelihood functions for the generalized extreme value and
the generalized Pareto, the inhomogeneous Poisson point process of exceedances and the r -largest
observations are unbounded if ξ̂ < −1, as there exists a combination of parameters that lead to infi-
nite log likelihood values. This means one should restrict the parameter space S to S∩ {ξ : ξ ≥ −1}
and check that the solution does not lie on the boundary of the parameter space: for the gener-
alized extreme value distribution, the conditional maximum likelihood estimator when ξ = −1 is
µ̂ξ=−1(x1, . . . , xn) = x, the sample mean, and σ̂ξ=−1(x1, . . . , xn) = maxi xi − x. Similarly, for the general-
ized Pareto distribution, σ̂ξ=−1(x1, . . . , xn) = maxi xi . For the likelihood of the r -largest order statistics
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Figure 1: Left: profile log likelihood of η = −ξ/σ for a generalized Pareto distribution with scale σ and
shape ξ. The lines show one data set for which the conditional maximum likelihood of the shape param-
eter lies on the boundary of the parameter space (ξ̂η̂ = −1, black) and one where it exceeds −1 (grey).
Right: conditional log likelihood surface for the inhomogeneous Poisson process at σ̂ for simulated data
(larger values have darker grey-scale shade). The white dot indicates the maximum likelihood estimate,
while the hyperbola defines the feasible region of the parameter space given by the support constraints.

fitted to vectors of size r , σ̂ξ=−1(x1, . . . , xn) = {maxi x(n),i − x(n−r+1)}/r, µ̂ξ=−1 = maxi x(n),i − σ̂, where
x(n−r+1) is the mean of the r -largest observations.

The (lack of) existence of cumulants also impacts the calculation of standard errors, as elements
of the Fisher information matrix are defined only if ξ > −1/2. Most software implementations com-
pute standard errors based on the numerically observed inverse Hessian matrix obtained via finite
differences, but these are misleading if ξ ∈ (−1,−1/2] (Smith, 1985).

2.2.1 Case study

There is a plethora of implementations for univariate extremes, so we performed some sanity checks
for various implementations of maximum likelihood estimation routines and parametric models.
Specifically, we verified that density functions are non-negative and evaluate to zero outside of the
domain of the distribution, and that distribution functions are non-decreasing and map to the unit
interval. Certain packages have or had incorrect implementations of density and distribution func-
tions; since authors were notified and the corresponding packages may get updated soon, we do not
list such implementations here but only report them in the online supplementary material.

To assess the quality of the optimization routines for extreme value distributions, we simulated
exceedances and block maxima from parametric distributions with varying tail behaviors. We com-
pared the maximum likelihood estimates returned by default estimation procedures for different
packages for simulated data, checking that the log likelihood value returned is a global optimum by
comparing with other implementations and the gradient evaluated at the value is approximately zero
whenever ξ̂ > −1. The purpose of the exercise was to check the reliability of the numerical routines
for a range of sample sizes. When systematic differences in maximum log likelihood values and/or
parameter estimates arose compared to other packages, they are often attributable to poor starting
values, incorrect implementation of the density function, lack of handling of boundary constraints
or to problems with optimization algorithms.

As an illustration, we generated 1000 samples of size n = 500 from a gamma distribution with
shape 3 and scale 2 and considered exceedances above the theoretical 0.95 quantile of this distribu-
tion, leading to an average of 25 exceedances. We then fitted by maximum likelihood the parameters
of the generalized Pareto distribution. The dot plots in the left panel of Figure 2 show that the sam-
pling distribution of the shape parameter is quite dispersed. The astute reader may notice some odd-
ities: the QRM package has unexpected small spread and a positive bias for estimation of ξ, different
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Figure 2: Left: sampling distribution (dot plots) of generalized Pareto shape parameter estimates ac-
cording to different packages. Right: absolute value of log gradient ∂ℓ/∂ξ evaluated at the maximum
likelihood estimator (σ̂, ξ̂) on the log-scale with base 10. Results for samples for which the numerical
routines failed to converge are omitted.

from other packages because it fails more often when ξ is negative due to poor starting values. Like-
wise, both ercv and extRemes (Gilleland and Katz, 2016) fits have noticeable point masses at ξ = 0,
suggesting something is amiss as this value should be returned with probability zero. We can also see
this by inspecting differences between the returned log likelihood values and the actual maximum
log likelihood: ercv returns 9% of the time values that are more than 0.05 units away, extRemes 3.5%
and 1.5% for tea and eva from the maximum. The maximum likelihood estimator of the shape can-
not be less than −1, but only SpatialExtremes (Ribatet, 2022) and mev correctly return −1 by default
and Renext when shapeMin = -1.0.

The right panel of Figure 2 shows the distribution of the gradient of the log likelihood of the gen-
eralized Pareto distribution evaluated at the maximum likelihood estimate over all replicates for the
shape parameter, omitting non-zero gradients attributable to boundary cases ξ̂ < −1: non-zero gra-
dients are in most cases due to differences in numerical tolerance, as the differences in log likelihood
relative to the maximum are negligible. It also suggests that convergence for most routines is based
on log likelihood differences being small rather than gradients being zero.

The optimization routines for the generalized extreme value distribution yielded similar behavior
and nearly all packages gave identical results. However, we noticed that some packages fare poorly
when location or scale parameters are orders of magnitude larger than scaled components: since the
generalized extreme value distribution is a location-scale family, scaling the data before passing them
to the routine and back-transforming the MLE after the optimization may solve such issues.

2.3. Regression modelling

Most data encountered display various forms of nonstationarity, including trends, seasonality and
covariate effects, which the extreme value distributions cannot capture without modification. One
can thus consider regression models in which the parameters of the extreme value distributions are
functions of covariates or vary smoothly in space or time. These parameters may be suitably trans-
formed via a link function to ensure that the functions satisfy the usual range or positivity constraints.
If we assume independent observations, then maximum likelihood estimates, standard errors, etc.
are obtained as before by maximizing the log likelihood function, which is now a function of the re-
gression coefficients and of other parameters arising in the nonstationary formulation of the extreme
value distribution. In models with a relatively large number of parameters, it becomes useful to in-
clude an additive penalty term in the log likelihood: for example, generalized additive models for
the parameters include smooth functions (smooths in short) via basis function representations (e.g.,
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B-splines), with a penalty that controls the wiggliness of the estimated predictor functions. Fitting re-
gression (or multilevel) models is natural in the Bayesian setting, and many of the packages discussed
in the next section have capabilities for fitting multilevel models. There usually is a natural Bayesian
interpretation to such penalties: for example, quadratic penalty terms correspond to multivariate
Gaussian prior distribution on the regression coefficients.

The obvious difficulty for numerical maximization of the log likelihood is again the presence of
support constraints, since there are now potentially as many inequality constraints as there are ob-
servations. A general advice for models with covariates is that inputs should be centered and scaled
to facilitate the optimization. Table 1 provides the list of packages allowing for regression models:
the value in the column ‘type’ is either ‘linear’ for generalized linear models, ‘GAM’ for generalized
additive models or ‘neural network’; the column ‘link’ takes values in ‘custom’ for user-supplied func-
tions or a link function as in base R. The ismev, texmex, eva and extRemes packages allow users
to provide a model matrix (containing one covariate in each of its columns) for each parameter of
the generalized Pareto and generalized extreme value distributions, thus enabling generalized linear
modelling of the parameters, while the evd package only allows for linear modelling of the location
parameter of the generalized extreme value distribution and bivariate counterparts; in both cases,
no penalty terms are added to the log likelihood, while texmex allows for L1 and L2 penalties for the
coefficients. The lax package (Northrop and Yin, 2021) supplements the functionality of these, and
other, packages by providing robust sandwich estimation of parameter covariance matrix and log
likelihood adjustment (Chandler and Bate, 2007) for their fitted model objects. The GEVcdn pack-
age uses a neural network to relate the parameters of the generalized extreme value distribution with
covariates (Cannon, 2010), while the recent pinnEV package allows fitting of “partially-interpretable”
neural networks for parameters using suitably penalized log likelihood functions for the generalized
Pareto (different parametrizations), the blended generalized extreme value model and point process
representation of the latter. The Matlab package PPL-model performs penalised piecewise-linear
peaks-over-threshold regression modelling using one- or two-dimensional covariates (Barlow et al.,
2023).

The scale parameter of the generalized Pareto distribution, σu , varies with the threshold u: it is
recommendable to pay special attention to the parametrization of the scale and shape functions with
covariates to ensure that the threshold stability property, which is used for extrapolation, is not lost
(Eastoe and Tawn, 2009). It may be tempting to use directly the likelihood of eq. (4) instead (see
Northrop et al., 2016). Chavez-Demoulin and Davison (2005) use an orthogonal reparametrization
(η,ξ), where η = σ(1+ξ) along with bootstrap routines for uncertainty quantification; their general-
ized additive modelling framework is available via ismev.

Many general packages implement generalized additive modelling with some support for extreme
value distributions, including VGAM (Yee and Stephenson, 2007). The recent evgam package (Young-
man, 2022), dedicated to extreme value models, uses the methodology of Wood et al. (2016) for gen-
eral distributions to marginalize out the regression coefficients using Laplace’s method to obtain esti-
mates of the hyperparameters (e.g., variance and autocorrelation of regression coefficients) control-
ling the penalty strength and shape — these are estimated simultaneously with all of the other pa-
rameters through maximum likelihood. The evgam package builds on generic model building tools
available in packages such as mgcv (Wood, 2017) and provides state-of-the-art methodology tailored
for extremes, including generalized additive models for extreme value distributions, quantile regres-
sion and in addition functionalities for obtaining return levels for nonstationary models. Carrer and
Gaetan (2022) propose an extension of the gamlss package for regression modelling of parameters of
the extended generalized Pareto model of Naveau et al. (2016).

2.4. Bayesian modelling

2.4.1 Generalities

In the Bayesian paradigm, the likelihood of a random sample Y is combined with prior distributions
for the model parameters θ = (θ1, . . . ,θm)⊤ ∈Θ, with prior density p(θ); we use the generic notation
p(. . .) for various conditional and unconditional densities and mass functions. The distribution of the
data given the parameter vector, p(Y | θ) is encoded by the likelihood function exp{ℓ(θ;Y )}, while the
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package functions type link par. model

eva gevrFit, gpdFit linear custom all GEVR, GP

evd fgev linear identity µ GEV

evgam evgam GAM logistic, probit, cloglog all GEVR, GP, *
extRemes fevd linear identity, log all —
GEVcdn gevcdn.fit NN all GEV

ismev gpd.fit, gev.fit linear custom all GEV, GP

ismev gamGPDfit GAM identity, log σ, ξ GP

texmex evm linear identity, log all —
VGAM gev, gp GAM identity, log, power all GEV, GP, *

Table 1: Functionalities for modelling parameters of extreme value distributions using generalized lin-
ear models, generalized additive models (GAM) or neural network (NN). Model families supported in-
clude generalized extreme value distribution (GEV), generalized Pareto (GP), r -largest extremes (GEVR)
and more general families or special cases of extreme value distributions (*). The column par. denotes
the set of parameters which can vary, either all, location (µ), scale (σ) or shape (ξ) parameters.

posterior distribution,

p(θ | Y ) = p(Y | θ)p(θ)∫
p(Y | θ)p(θ)dθ

, (5)

is proportional, as a function of θ, to the product of the likelihood and the priors in the numerator.
The posterior density p(θ | Y ) usually does not correspond to any well-known distribution family and
the integral appearing in the denominator of Equation (5) is therefore untractable in general. Poste-
rior inferences about the components of θ further involve marginalizing out the other components.
For instance, to obtain the posterior density p(θ1 | Y ) of the first parameter in θ, we have to evaluate
the (m − 1)-dimensional integral

∫
p(θ | Y )d(θ2, . . . ,θm). Most of the field of Bayesian statistics re-

volves around the creation of algorithms that circumvent the calculation of the normalizing constant
(or else provide accurate numerical approximation of the latter) or that allow for marginalizing out
all parameters except for one.

Rather than a point estimator of the parameter vector, the target of Bayesian inference is the whole
posterior distribution. The majority of estimation algorithms are simulation-based, and their typical
output is an (approximate) sample drawn from the posterior distribution p(θ | Y ), from which any
functional of interest can be estimated by Monte Carlo methods. Of particular interest is the posterior
predictive distribution, which is obtained by simulating new observations from the response model
by forward-sampling from p(Y | θ(b)) one new observation for each draw of θ(b) from the posterior.

In simple problems, exact sampling algorithms can provide independent and identical samples
from the posterior, but this is the exception rather than the norm. Most of the time, users resort
to Markov chain Monte Carlo (MCMC) algorithms for more complex settings: these algorithms ad-
mit the posterior distribution as the stationary distribution of a Markov chain with appropriately
designed transition probabilities and provide auto-correlated samples from it. Another popular so-
lution is through Laplace approximation for regression models when multivariate Gaussian priors
are put on the vector of regression coefficients arising in the latent layer of the model, from which
observations are conditionally independent; see the discussion in Section 2.3. In this setting, Laplace
approximations give fast deterministic approximation of high-dimensional integrals, which avoids
resorting to simulation-based estimation. Laplace approximations are particularly accurate when
they are applied twice in a certain nested way, which is known as the integrated nested Laplace ap-
proximation (INLA, Rue et al., 2009), implemented in the general INLA package (Martins et al., 2013)
offering extreme value functionality for generalized Pareto and generalized extreme value distribu-
tions.

Despite the computational overhead associated, the Bayesian paradigm has many benefits, in-
cluding the capacity to incorporate physical constraints and expert opinion through the prior dis-
tributions (Coles and Tawn, 1996). It is easier and more natural to define hierarchical structures for
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parameters to pool information. For multivariate and functional extremes, priors can be used for
regularization purposes to pool information, for instance across time and space.

2.4.2 Speci�city of extremes

Readers wishing to learn more about Bayesian modelling for extreme values are referred to the ex-
tensive overview in Stephenson (2016). While Bayesian inference for extreme value models does not
differ much from that of general models, additional care is required with prior specification. For ex-
ample, in order to get a well-defined posterior distribution, improper reference priors such as the
maximal data information (MDI) and Jeffreys priors for ξ may need to be truncated (Northrop and
Attalides, 2016) to result in proper (i.e., integrable) posterior distributions or else do not yield proper
posteriors regardless of the sample size. Martins and Stedinger (2000) proposed using a shifted Beta
distribution for ξ to constrain the support of the latter to [−0.5,0.5]. Other popular choices are
vague normal priors for location, log-scale and shape parameters, or else penalized complexity pri-
ors (Simpson et al., 2017; Opitz et al., 2018). To avoid issues related to the finite and parameter-
dependent lower endpoint in the generalized extreme value distribution for ξ> 0, the INLA package
implements so-called blended generalized extreme value distribution that replaces the bounded lower
distribution tail with the unbounded one of a Gumbel distribution through a mixture representation
(Castro-Camilo et al., 2022).

Table 2 lists packages for Bayesian univariate models, where the ‘covariates’ column lists the pa-
rameters which are allowed to depend on covariates (loc refers to the location parameter of the gen-
eralized extreme value distribution, while threshold refers to the threshold parameter of the gen-
eralized Pareto distribution). Three packages, evdbayes, extRemes and MCMC4Extremes, provide
MCMC algorithms for extreme value distributions, which implement so-called random walk Metropolis–
Hastings steps. The underlying implementation of the MCMC algorithm for the function posterior

in evdbayes, detailed in the user guide, allows for a linear trend in the location parameter. Gamma
priors for quantile differences, used for expert prior elicitation, are also provided. Contrary to most
implementations, evdbayes returns a list of posterior samples and relies on methods implemented
in coda (Plummer et al., 2006) for diagnostic, summary and plots. The extRemes package also has
functionalities for computing posterior summaries for univariate extremes through the fevd func-
tion, which allows users to specify their own priors and proposal distributions, but the sampling is
notably slower than in other packages and more cumbersome to set up, as the default values are
not adequate in most cases. Linear modelling of the parameters with covariates is also possible,
and Bayes factors for comparisons between models are also supported even if the methods used to
compute them are not recommended. For all relevant purposes, MCMC4Extremes (do Nascimento
and Moura e Silva, 2016) is superseded by competitors as the latter have default tuning of proposal
standard deviations and more flexible choices of priors. Package texmex also includes maximum a
posteriori estimation and simulation from the posterior for extreme value distributions (with linear
modelling of covariates) via the function evm, but only with normal priors. Behind the scenes, the
texmex implementation uses an independent Metropolis–Hastings step with multivariate Cauchy or
normal proposals with location vector and scale matrix based on a normal approximation to the pos-
terior, using maximum a posteriori estimates. This translates into smaller autocorrelation (and thus
larger effective sample size) than other package implementations, and it is the fastest of all MCMC
implementations.

The data-driven prior proposed by Zhang and Stephens (2009), reputed to give better results than
maximum likelihood, is implemented in mev and is the default method for Pareto-smoothed impor-
tance sampling (Vehtari et al., 2017) from the loo package (Vehtari et al., 2020). However, because
it uses the data to construct the prior, performance benchmarks alleging superior performances are
misleading because of double dipping.

The current state-of-the-art method for sampling from the posterior of univariate models in sim-
ple analyses without covariates is the revdbayes package, which relies on the ratio-of-uniforms method
to generate independent samples from the posterior distribution of the models. Use of advanced
techniques such as mode relocation, marginal Box–Cox transformations and rotation can drasti-
cally improve the efficiency of this accept-reject scheme and make it very competitive. The ratio-
of-uniforms method generates independent draws, thus avoiding the need to monitor convergence
to the stationary distribution of the Markov chain and removing tuning parameters. The sampling is
also an order of magnitude faster than other implementations.
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package function models covariates sampling prior choice

evdbayes posterior 1–4 loc./thresh RWMH multiple
extRemes fevd 1–4,* all RWMH custom
INLA inla 1–2,* loc./thresh – PC
MCMC4Extremes ggev, . . . 1–2,* no RWMH fixed
revdbayes rpost 1–4 no RU custom
texmex evm 1–2,* all IMH Gaussian

Table 2: Comparison of R packages for Bayesian univariate extreme value modelling. Families: gener-
alized extreme value distribution (1), generalized Pareto distribution (2), inhomogeneous Poisson pro-
cess (3), order statistics/r -largest (4) or custom/other (*). Sampling: random walk Metropolis–Hastings
(RWMH), exact sampling ratio-of-uniforms (RU), independent Metropolis–Hastings (IMH); the INLA
package uses deterministic Laplace approximations. “PC” priors refer to penalized complexity priors.
All packages, except evdbayes, also provide S3 methods (notably plot and summary). All packages re-
turn a matrix of posterior draws.

While the aforementioned packages are dedicated to extreme value distributions, other popu-
lar programming languages could be used even if they would require users to implement likelihood
functions themselves. Notably, theStanprogramming language (Stan Development Team, 2023) uses
Hamiltonian Monte Carlo, a state-of-the-art MCMC method, for simulating samples from the poste-
rior distribution. The latter can easily be combined with multilevel models, but requires implemen-
tation of bespoke code for likelihood and priors that are specific to extreme value analysis; sample
code is provided online. The Hamiltonian Monte Carlo sampling algorithm leads to rejection due to
boundary constraints and leads to incorrect posterior draws for, e.g., the generalized extreme value
distribution when ξ ≈ 0; this can be corrected by using a Taylor series approximation. The Matlab

package NEVA uses a differential evolution Markov chain algorithm for estimating univariate non-
stationary models (Cheng et al., 2014).

Some splicing models, which combine a distribution for the bulk of the data with a generalized
Pareto tail, can also be fitted using Markov chain Monte Carlo methods; example includes extremix
for the Gamma mixture model of do Nascimento et al. (2012).

2.5. Semiparametric inference for univariate extremes

In the semiparametric approach to extremes, some components of the probability structure are han-
dled through a relatively general (and nonparametric) asymptotic structure, which can be extrapo-
lated towards higher yet unobserved quantile levels, for instance for the purpose of extreme-quantile
estimation. The parametric form includes the shape parameter ξ and potentially second-order reg-
ular variation indices, ρ. Caeiro and Gomes (2016) provides a review of many estimators discussed
next with an emphasis on the choice of the number of order statistics to keep for inference, which
has close ties to threshold selection methods discussed in Section 2.6.

Consider a sample of independent and identically distributed variables Y1, . . . ,Yn ∼ F with quan-
tile function Q and order statistics Y(1) ≤ ·· · ≤ Y(n). Assuming that the extremal types theorem holds
for F with positive limiting shape parameter ξ > 0, we can write the survival function as S(x) =
x−1/ξLF (x) and the quantile function as Q(1−1/x) = xξLU (x), with LF and LU slowly varying func-
tions, meaning limx→∞ L(t x)/L(x) = 1 for any t > 0 (e.g., Ledford and Tawn, 1996, § 5). Nonparamet-
ric estimators of the extreme value index are widespread, most of them variants of the Hill (1975) esti-
mator for positive shape parameters. The Hill estimator is the mean excess value of log-transformed
data of the k largest values,

Hk,n = 1

k

k∑
j=1

log

(
Y(n− j+1)

Y(n−k)

)
. (6)

Hill’s estimator is generally computed for a wide range of values of k, which leads to so-called Hill
plots (k, Hk,n), k = 1, . . . ,n. A large number of R packages provides functions to estimate (6) and
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to make Hill plots such as evir (Pfaff and McNeil, 2018), evmix (Hu and Scarrott, 2018), extremefit
(Durrieu et al., 2019), ExtremeRisks (Padoan and Stupfler, 2020), ptsuite (Munasinghe et al., 2019),
QRM (Pfaff and McNeil, 2020), ReIns (Reynkens and Verbelen, 2023) and tea (Ossberger, 2020).

The performance of the Hill estimator strongly depends on the number of observations kept to
estimate the tail index: Hk,n has a large variance if k is too small, whereas the Pareto-type tail behavior
might not be verified for the selected k largest values if k is too large. The choice of k is typically based
either on an empirical rule to find the area where Hk,n is “stable” or by minimizing the asymptotic
mean squared error (AMSE). A large number of those algorithms to minimize the latter are provided
in tea along with the bootstrap methods of Hall and Welsh (1985), Hall (1990), Danielsson et al. (2001),
Caeiro and Gomes (2014) and Caeiro and Gomes (2016).

Since the Hill estimator has nondifferentiable sample paths with respect to the threshold value,
the choice of threshold is notoriously difficult. Resnick and Stǎricǎ (1997) proposed a smoothed ver-
sion of the Hill estimator based on averaging consecutive estimates via a moving window; these plots
are provided in evmix and tea. The random block maximum estimator (Wager, 2014) in rbm, con-
structed as a U statistic, has infinitely differentiable sample paths and is thus much less sensitive
to the choice of k than most Hill-type estimators. Packages evt0 (Manjunath and Caeiro, 2013) and
ReIns implement the generalized Hill estimator based on a uniform kernel estimation (Beirlant et al.,
1996). evt0 also provides functions for the location-scale invariant version of the Hill estimator in-
troduced by Santos et al. (2006) and the biased-reduced version of Figueiredo et al. (2012), as well as
a mixed moment estimator and location invariant alternative. The package extremefit implements
the kernel-weighted version of the Hill estimator of Grama et al. (2008); the authors provide an au-
tomatic selection procedure for the threshold u, with functions to handle these weighted estimators
either for user-supplied weights or for weights automatically selected using an adaptative selection.

2.5.1 Moment estimators and other alternative estimators

While maximum likelihood estimation and Hill-type estimators are most commonly used for the
shape parameter, other estimators are available and may be more robust in small samples. One such
was proposed by Dekkers et al. (1989) and evt0 provides a generalization of the latter by Santos et al.
(2006). Since moments of extreme value distributions may not exist if ξ > 0, we can consider in-
stead a bijection between the parameter vector θ and probability weighted moments of the form
E[Y p F (Y )q {1−F (Y )}r ] for integers p, q,r (Hosking and Wallis, 1987). Another avenue is to match
sample linear combinations of order statistics with their theoretical counterparts using (trimmed) L-
moments (Hosking, 1990). A group ofRpackages, including lmom (Hosking, 2019), lmomco (Asquith,
2021), TLMoments (Lilienthal, 2022) implement these approaches for a variety of common distribu-
tions (as does the Python package lmoments), but some also allow custom distribution functions.
extRemes also implements L-moments, while RobExtremes (Ruckdeschel et al., 2019) provides ro-
bust estimators of the extreme value parameters and laeken (Alfons and Templ, 2013) proposes ro-
bust modelling of Pareto data. Package extremeStat (Boessenkool, 2017) includes functionalities to
compute extreme quantiles based on L-moments estimator.

2.5.2 Quantile, expectile and extremiles

In the heavy-tailed setting, Weissman (1978) proposed estimating the tail quantile at level 1−p, Q(1−
p), for small p, using the estimator

QW
k,n(1−p) = Y(n−k)

{
k +1

p(n +1)

}Hk,n

,

where Hk,n is the Hill estimator eq. (6) of the shape parameter and the threshold is Y(n−k),the (n−k)th
order statistic. ReIns implements the Weissman estimator either specified by the probability level p
or by the return period 1/p. The Weissman-type estimator for the class of estimators proposed by
Santos et al. (2006) are provided by evt0, whereas extremefit gives the quantile corresponding to
weighted Hill estimator. Bias-corrected versions of the Weissman estimator also exist, yet are seem-
ingly not implemented in software.

Quantiles can be formulated as the solution of an asymmetric piecewise linear loss function. Tak-
ing instead an asymmetric quadratic loss function yields expectiles (Newey and Powell, 1987), an-
other risk measure gaining popularity in risk management (Bellini and Di Bernardino, 2017). Many
recent work studies their extremal property: on the software side, ExtremeRisks implements the
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methodology of Davison et al. (2022); Padoan and Stupfler (2022), including estimation of expec-
tiles using Hill-type estimators, test of equality of tail expectiles and confidence regions for extreme
expectiles. An alternative risk measure, the so-called extremile, has been developed recently (e.g.,
Daouia et al., 2022). An implementation of expectiles of common distributions and of estimators for
the heavy-tailed setting is provided in Expectrem, which also allows for the possibility to use bias-
reduced tail index estimators.

package estimation function features

evir — hill e,p
evmix smoothing hillplot p
evt0 location invariant gh, PORT.Hill p, q
extremefit weighted, time series hill, hill.adapt, hill.ts e, p, q, o
ExtremeRisks time series, CI HTailIndex, EBTailIndex e, o
fExtremes — hillPlot, shaparmHill e, p
ptsuite — alpha_hills e
QRM — hill, hillPlot e, p
rbm random block rbm, rbm.plot e, p
ReIns conditional, censoring (c)Hill, (c)genHill, crHill, . . . e, p
tea smoothing althill, avhill p

Table 3: Main functionalities of R packages for nonparametric Hill-type estimators of the shape param-
eter, including functionalities for estimation of the shape or tail index (e), Hill threshold diagnostic plots
(p), quantile estimates (q) and other methods (o).

2.6. Threshold selection

Many methods are driven by analyses of the most extreme observations. In the univariate case, these
are the k largest order statistics or, equivalently, observations that exceed a threshold u as presented
in the previous section. The underlying theory considers limiting behavior as the threshold increases.
In practice, a suitably high threshold is set empirically, balancing the bias from using a low threshold
that violates the theory with statistical imprecision from using a threshold that is unnecessarily high.
For information about many of the following methods, see the review of Scarrott and MacDonald
(2012). Methods for semiparametric estimators based on variants of Hill’s estimator for the shape
were presented in Section 2.5.

2.6.1 Visual threshold selection diagnostics

In a threshold stability plot, point and interval estimates of parameters are plotted against a range
of threshold values. A particular example is the Hill plot featured in Section 2.5 (see Table 3 for an
overview of available implementations). In the univariate case, the focus is often on the shape pa-
rameter ξ: we choose the lowest threshold above which we judge the point estimates of ξ to be ap-
proximately constant in threshold, bearing in mind statistical uncertainty quantified by the interval
estimates. These inferences may be based on the generalized Pareto distribution (3) for threshold
excesses or the inhomogeneous Poisson process model, using a frequentist or Bayesian analysis. In
the generalized Pareto case, the threshold-independent scale parameter σ∗

u =σu −ξu is used. In the
frequentist case, it is useful to have the option to calculate the intervals using profile likelihoods, be-
cause they tend to have better coverage properties than Wald intervals, especially for high thresholds.

If a generalized Pareto distribution with ξ< 1 applies at threshold u then the mean excess E(Y −v |
Y > v) is a linear function of v for all v > u. This motivates the mean residual life (MRL) plot, in which
the sample mean of excesses of a range of thresholds are plotted against the threshold, with pointwise
confidence intervals superimposed. We choose the lowest threshold above which the plot appears
linear. Table 4 summarises the functionality of R packages in terms of these plots.

The lmomplot function in the POT (Ribatet and Dutang, 2022) package can help to identify for
which thresholds the sample L-skewness and L-kurtosis of excesses are related as expected under
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package stability models profile inference MRL

eva gpdDiag 1 yes MLE mrlPlot

evd tcplot 1,2 no MLE/B mrlplot

evir shape 1 no MLE meplot

evmix tcplot 1 no MLE mrlplot

extRemes threshrange.plot 1,2 no MLE mrlplot

fExtremes gpdShapePlot, . . . 1 no MLE mrlPlot

ismev gpd.fitrange, pp.fitrange 1,2 no MLE mrl.plot

mev tstab.egp, tstab.gpd 1,3 yes MLE/B automrl

POT tcplot 1 no MLE mrlplot

QRM xiplot 1 no MLE MEplot

ReIns 1Dmle 1 — MLE MeanExcess

texmex egp3RangeFit, gpdRangeFit 1,3 no MLE/B mrl

threshr stability 1 yes MLE —

Table 4: Comparison of R packages for classical visual methods. Stability: function name for a thresh-
old stability plot; models: either generalized Pareto (1), inhomogeneous Poisson process (2) or extended
generalized Pareto model of Papastathopoulos and Tawn (2013) (3); profile: whether confidence inter-
vals are computed using the profile likelihood or not; inference: method of inference, either maximum
likelihood estimation (MLE) or Bayesian (B); MRL: mean residual life plot, if applicable.

a generalized Pareto distribution. These plots require the use of subjective judgement to select a
threshold. More formal methods seek to reduce subjectivity and perhaps introduce a greater degree
of automation.

2.6.2 More formal methods

Penultimate models. Formal testing procedures compare the null hypothesis of having a generalized
Pareto distribution above a threshold u against an alternative model. Theoretically-justified alter-
native models can be derived from the penultimate approximation to extremes, either by selecting
piecewise constant shape (Northrop and Coleman, 2014) or by using tilting function to provide more
general models that should have faster convergence. The models proposed in Papastathopoulos and
Tawn (2013) lead to a threshold stability plot for an additional parameter. These approaches are im-
plemented in mev.

Goodness-of-fit diagnostics. One drawback of the threshold stability plot and tests is that they do not
entirely indicate whether the tail model fits the data well. Goodness-of-fit diagnostics can thus com-
plement other diagnostics. The eva package (Bader and Yan, 2020) provides multiple testing methods
with the Cramér–von Mises and Anderson–Darling criteria and Moran’s tests, all with control for the
false discovery rate (Bader et al., 2018). The benefit of this approach, compared to visual diagnos-
tics, is that it does not require user input and is more readily implementable with large multivariate
or spatial data sets. The approach of Dupuis (1999), based on examination of the weights attached
to the largest observations from the sample and obtained using a robust fitting procedure, can be
obtained via mev.

Sequential analysis and changepoints. Parameter estimates obtained by fitting a tail model at mul-
tiple consecutive thresholds are dependent because of the non-negligible sample overlap. The mev
package provides the method of Wadsworth (2016), which exploits a technique from sequential anal-
ysis by fitting a point process over a range of thresholds and building an approximate white noise
sequence from the differences between consecutive estimates using their asymptotic covariance ma-
trix, suitably rescaled to be standard normal. The tea package provides the Pearson χ2 test of nor-
mality applied to sequences of differences of scale estimates, following Thompson et al. (2009), while
threshold stability plots based on estimates of the coefficient of variation and sequential testing of
del Castillo and Padilla (2016) are included in ercv (del Castillo et al., 2019).
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type methods package function

penultimate
Northrop and Coleman (2014) mev NC.diag

Papastathopoulos and Tawn (2013) mev tstab.egp

goodness-of-fit
Gerstengarbe and Werner (1989) tea ggplot

Hosking and Wallis (1997) POT lmomplot

Bader et al. (2018) eva gpdSeqTests

sequential
Wadsworth (2016) mev W.diag

Thompson et al. (2009) tea TH

del Castillo and Padilla (2016) ercv cvplot, thrselect

predictive Northrop et al. (2017) threshr ithresh

mixture
Hu and Scarrott (2018) evmix —
Durrieu et al. (2015) extremefit ·paretomix
Naveau et al. (2016) mev fit.extgp

Table 5: Overview of formal threshold selection methods and numerical implementations

Predictive performance. The threshr package (Northrop et al., 2017) looks at the predictive perfor-
mance of the generalized Pareto for a binomial-generalized Pareto model fitted using the Bayesian
approach. The scheme uses a leave-one-out cross validation scheme for values at a fixed validation
threshold v at or above the range of potential thresholds considered.

Mixture models. The generalized Pareto specifies a distribution only for exceedances above a thresh-
old u, but having a model below this threshold may be desirable, with some options enabling auto-
matic threshold selection. The evmix package (Hu and Scarrott, 2018) provides implementations of
most of the mixture models listed in Scarrott and MacDonald (2012): this includes parametric models
for the bulk of the data (for which users can inform threshold selection by looking at the profile like-
lihood for u), nonparametric and kernel-based approaches for the data below the threshold. Many
such models are discontinuous at the threshold and require choosing a fixed threshold. The extrem-
efit package (Durrieu et al., 2019) provides a mixture model implementation with a kernel-based
bulk model and adaptive selection rules for the bandwidth parameter. The mev package provides
the extended generalized Pareto model of Naveau et al. (2016) for modelling rainfall. The extension
proposed in Gamet and Jalbert (2022) comes with Julia code.

Univariate extremes implementations in other programming languages

WhileR is arguably the programming language boasting the most software implementations used for
extreme value analyses, some basic routines are available elsewhere for estimation of univariate mod-
els using maximum likelihood or probability weighted moments: these include the Julia package Ex-
tremes, the Matlab EVIM package and the Python packages wafo, pyextremes and scikit-extremes.

3. Multivariate extremes

The lack of ordering ofRD leads to multiple definitions of extremes (Barnett, 1976). We focus on com-
ponentwise maxima and concomitant exceedances, which lead to the multivariate analog of block
maximum and peaks over threshold methods. Another option, structure variables, reduces the data
to univariate summaries and can be dealt with using tools presented before.

3.1. Multivariate maxima

Consider an independent and identically distributed sequence of D-variate random vectors {Y i }i≥1,
where each vector Y i has marginal distribution functions F j ( j = 1, . . . ,D). By analogy with the uni-
variate case, we consider the random vector of componentwise maxima M n = (Mn,1, . . . , Mn,D ), where
Mn, j = max{Y1, j , . . . ,Yn, j }. If there exists sequences of location and scale vectors an ∈RD+ and bn ∈RD
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such that

lim
n→∞Pr

{
a−1

n (M n −bn)
}=G(y),

with non-degenerate limit distribution G , then G is a multivariate extreme value distribution, or
equivalently a max-stable distribution with generalized extreme value distributed margins. Suppose
without loss of generality that the normalizing constants are chosen so that the limiting location and
scale marginal parameter vectors are µ = 0D and σ = 1D . With t (y) denoting a transformed vector

whose j th component is (1+ξ j y j )
1/ξ j
+ , the limiting max-stable distribution is

G(y) = exp

{
−D

∫
SD

max

{
w

t (y)

}
dH(w )

}
, (7)

where the so-called spectral measure H is a probability measure on the D-simplex SD = {ω ∈ RD+ :
∥ω∥1 = 1}. The distribution H must only satisfy the moment constraints E(S j ) = 1/D ( j = 1, . . . ,D) for
S ∼ H : the set of probability measures satisfying these is infinite, unlike in the univariate case. The
copula package includes three tests of the max-stability assumption; see Kojadinovic et al. (2011);
Kojadinovic and Yan (2010); Ben Ghorbal et al. (2009), while the graphical diagnostic proposed by
Gabda et al. (2012) is part of mev.

Likelihood-based estimation. The likelihood of a simple max-stable random vector Z with a para-
metric model for V is obtained by differentiating the distribution function exp{−V (z)} with respect
to each z1, . . . , zD . The number of terms in the likelihood is the Dth Bell number, which is the total
number of partitions of D elements into k (k = 1, . . . ,D) elements. Even in moderate dimensions, the
number of distinct likelihood contributions is huge and the calculations become prohibitive. One
way to circumvent this problem is to add the information about the partition if occurrence times are
recorded (Stephenson and Tawn, 2005). The likelihood is biased unless n ≫ D since the empirical
partition also needs to converge to the limiting hitting scenario; for weakly dependent processes, use
of the observed partition may induce bias (Wadsworth, 2015). Instead, Thibaud et al. (2016) propose
to impute the partition using a Gibbs sampler, while Huser et al. (2019) use a stochastic expectation-
maximisation algorithm; the E-step for the missing partition uses a Monte-Carlo estimator, where
approximate draws are obtained from the Gibbs sampler of Dombry et al. (2013). None of these ex-
tensions have been implemented in publicly available software packages.

Parametric models. While max-stable models have been around for a while, there are few software
implementations for estimating such models. The evd and copula packages provide functionalities
that are restricted to the bivariate setting, while ExtremalDep (Beranger et al., 2023) includes com-
posite likelihood estimation via it’s function fExtDep for a variety of models. The SpatialExtremes
and CompRandFld packages have methods for fitting max-stable processes using pairwise compos-
ite likelihood for spatial models; see Section 4.

There are only handful of useful parametric models that generalize to dimension D > 2. The prime
example is the logistic multivariate extreme value model, which is overly simplistic and lacks flex-
ibility since the distribution is exchangeable. Many existing models are special cases of a Dirichlet
family of distributions (Belzile and Nešlehová, 2017) and obtained through tilting (Coles and Tawn,
1991) to satisfy the moment constraint. These all have the drawback that the number of parame-
ters is constant or grows linearly with the number of dimensions O(D) and this typically isn’t enough
for characterizing complex data. Two models derived from elliptical distributions, the Hüsler–Reiss
model (Hüsler and Reiss, 1989) and the extremal Student-t (Nikoloulopoulos et al., 2009), are more
useful in large dimensions because their scale matrix can be used to parametrize the pairwise de-
pendence individually with O(D2) entries, and they can be more readily adapted to the functional
setting, with extensions for skew-symmetric families (Beranger et al., 2017). The last parametric fam-
ily, of which the most prominent example is the asymmetric logistic distribution, are max-mixtures
(Stephenson and Tawn, 2005) that assign different weights to multiple simultaneous combinations of
extremes. This allows for some degree of asymmetry and asymptotic independence, but such models
are overparametrized with O(2D ) coefficients.

Joint estimation of all marginal and dependence parameters is complicated because of the poten-
tial high-dimensionality of the optimization problem, but also because of potential model misspec-
ification that leads to unplausible parameter estimates. It is therefore common to use a two-stage
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approach, whereby data are first transformed to standardized margins and then dependence param-
eters are fitted separately. The function fbvevd in evd allows the user to pass fixed values for some
parameters. The tailDepFun package contains routines for fitting the continuous updating weighted
least squares estimator, along with goodness-of-fit tests, for multivariate and functional models in-
cluding max-linear models (Einmahl et al., 2018).

A different avenue is to estimate an equivalent form of H in eq. (7) termed the Pickands depen-
dence function (cf., Falk et al., 2011, p. 150). The latter has properties, notably convexity and known
values on the corners of the simplex, that can be enforced to improve estimation. The evd package
allows users to estimate nonparametrically the bivariate dependence function based on the estima-
tors of Pickands (1981) and Caperaa et al. (1997) for block maxima; additional options correct for
boundary and convexity constraints. The function An in copula provides generalization of estima-
tors of Pickands dependence function to higher dimensions (Gudendorf and Segers, 2012). Multi-
variate estimators based on Bernstein polynomials that guarantee convexity (Marcon et al., 2017b)
are provided by the beed procedure in ExtremalDep, along with the madogram estimator. Bayesian
estimation is also available in the bivariate case, imposing a prior on the order of the Bernstein poly-
nomials. The package also includes a procedure for computing pointwise confidence intervals using
a nonparametric bootstrap. The plot_ExtDep.np function with parameter type="Qsets" from Ex-
tremalDep provides credible intervals for bivariate extreme quantile regions (Beranger et al., 2021a),
estimated using an extension of this approach. Lastly, fCopulae (Wuertz et al., 2023) provides para-
metric dependence function, correlation coefficient and tail dependence measures for bivariate ex-
treme value copulas.

Unconditional simulation algorithms. For a long time, exact unconditional simulation algorithms for
max-stable processes were elusive outside of special cases (Schlather, 2002). Both mev and graphi-
calExtremes (Engelke et al., 2022) implement the algorithm of Dombry et al. (2016) for selected mul-
tivariate models (including for the latter extremal graphical models on trees) ensuring exact simula-
tion, whereas evd uses dedicated algorithms for logistic and asymmetric logistic models in arbitrary
dimensions (Stephenson, 2003). The copula (evCopula objects) (Yan, 2007) and SimCop packages
(Tajvidi and Turlach, 2018) have functionalities for simulation of some bivariate extreme value dis-
tributions and the multivariate logistic model, or Gumbel copula, and the package ExtremalDep
generates observations from a semiparametric dependence model in the bivariate setting by using
its spectral measure (Marcon et al., 2017a) and from elliptical extreme-value models by using com-
ponentwise maxima of simulations of the underlying elliptical models. Packages mev and BMAmevt
(Sabourin and Naveau, 2014) provide simulators for selected parametric angular density models.

3.2. Threshold models

Multivariate regular variation, which underlies the max-stable distribution of Equation (7) for the
case where marginal distributions have been standardized such that ξ j = α > 0 for j = 1, . . . ,D , can
also be used for threshold exceedances by considering the associated Poisson point process of ex-
tremes with intensity measure Λ on a risk region R ⊂ RD+ \ {0D }, i.e., the positive orthant excluding
the origin (Resnick, 1987). Assuming the intensity measure is absolutely continuous, the intensity
function λ(x) = ∂DΛ(x)/(∂x1 · · ·∂xD ) exists and we can define a density over R by renormalizing λ(x)
by the measure of the risk region, Λ(R). The resulting likelihoods of the point process, multivari-
ate generalized Pareto distributions and more general threshold models are much simpler than their
max-stable counterpart, but there are typically two numerical bottlenecks associated to fitting these
models. The first arises from the calculation of the measure of the risk region, which is often in-
tractable and must thus be estimated using Monte Carlo methods. There are closed-form expressions
for few risk regions, notably R = {x ∈RD+ : xi > u}; if ξ= 1D , then R = {x ∈RD+ : ∥x∥1 > u} has risk mea-
sure Λ(R) = Du−1 irrespective of the model for Λ. The second bottleneck is due to censoring: not all
components of a random vector may be extreme and the limiting model may be a poor approxima-
tion at finite levels for weakly dependent vectors (Ledford and Tawn, 1996). To reduce the bias arising
from consideration of the asymptotic distribution, it is customary to left-censor observations falling
below marginal thresholds. Most multivariate peaks over threshold models are based on the mul-
tivariate generalized Pareto (Rootzén and Tajvidi, 2006), defined over R = {x ∈ RD+ : maxD

j=1 x j > u}.

Alternative constructions of multivariate generalized Pareto are described in Rootzén et al. (2018).
Kiriliouk et al. (2019) provide expressions for the likelihood of many parametric models with strate-
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gies for diagnostics; these are not currently implemented in software. The point process likelihood
can also be used in place of the multivariate generalized Pareto: the evd package proposes it for the
bivariate case (Smith et al., 1997), but the censored likelihood implemented therein actually uses the
max-stable copula (Ledford and Tawn, 1996).

Most implementations are restricted to the bivariate setting or are reserved for spatial data. The
graphicalExtremes package (Engelke and Hitz, 2020) is a notable exception: it implements the mul-
tivariate Hüsler–Reiss generalized Pareto distribution for graphical models. Exploiting the relation
between the model and conditional extremal dependence, the parameters of the Hüsler–Reiss or
Brown–Resnick process are directly related to the variogram matrix, whose entries are estimated em-
pirically using pairwise empirical estimators of χ. The full likelihood can be used (including censor-
ing), but the factorization of the likelihood over cliques allows for higher-dimensional models to be
fitted through maximum likelihood at reasonable cost, since each component is low dimensional.
The bvtcplot function in the evd package provides threshold stability plots in the bivariate case
based on the spectral measure. mev provides composition sampling algorithms for threshold mod-
els for various risk functionals R in the multivariate setting (Ho and Dombry, 2019).

Rather than condition on the maximum component exceeding a threshold, we can focus instead
on exceedances of the j th component, i.e., consider a limiting model for Y − j | Y j > u. Heffernan
and Tawn (2004) showed that a particular choice of normalizing sequences allows for the existence
of non-degenerate limiting measure, including for asymptotically independent models. Inference
for the conditional extremes model is usually performed in two stages. In the first, the marginal
distributions are estimated semiparametrically and data are transformed to Laplace margins (Keef
et al., 2013). In the second step, the dependence parameter vectors are estimated using a nonlinear
regression model under the assumption of Gaussian residuals. Inference for the conditional extremes
model as implemented in the texmex package relies on simulation: the probability of extreme events
is obtained by calculating the fraction of simulated points falling in the risk region and uncertainty
quantification is done using the bootstrap scheme described in Heffernan and Tawn (2004).

The multivariate regular variation representation provides another modelling approach for peaks
over threshold using radial exceedances. For this, random vectors are first transformed so that their
marginal distributions are standardized with ξ = 1, say Y 7→ Y ⋆, and then mapped to radius and
pseudo-angles (R,Ω), with, e.g., R = ∥Y ⋆∥1 and Ω = Y ⋆

−D /R. Since R and Ω become stochastically
independent as R tends to infinity, one can focus on modelling the spectral measure H(ω) appear-
ing in eq. (7). ExtremalDep, through fExtDep, supports composite likelihood maximum estimation
with pseudo-angles for D-dimensional distributions, with composite likelihood information crite-
ria to compare models, density functions, plots, etc., for multiple parametric models. Nonparamet-
ric estimation of the spectral measure only requires the user to impose mean contraints. Starting
from a sample of pseudo-angles, these can be enforced through empirical likelihood method (Ein-
mahl and Segers, 2009) or Euclidean likelihood (de Carvalho et al., 2013). The extremis package (de
Carvalho et al., 2020) implements these functionalities in the bivariate setting, and mev in higher di-
mensions. The unpublished EVcopula package implements the bivariate model of Wadsworth (2016)
along with likelihood-based estimation methods and can be used to estimate probabilities of large
bivariate quantiles for both asymptotic (in)dependence scenarios. The BMAmevt package is ded-
icated to the implementation of a Bayesian model averaging based on semiparametric models for
pseudo-angles in moderate dimensions (Sabourin et al., 2013). The Matlab package ECSADES per-
forms penalised piecewise-constant marginal generalised Pareto and conditional extremes regres-
sion modelling (Ross et al., 2020).

3.3. Coefficients of tail dependence and structural variables

In multivariate settings, knowing the speed of decay of the dependence between pairs of random
variable is useful for risk assessment. This also helps validate empirically if asymptotic multivariate
extreme value models are warranted or not. The tail correlation coefficient is χ= limv→1χ(v) (Coles
et al., 1999), where

χ(v) = Pr[mini {Fi (Yi ) > v}]

1− v
. (8)

The latter is used to assess whether extremes are asymptotically independent (χ = 0) or dependent
(χ> 0). Equation (8) suggests replacing the unknown distribution functions by their empirical coun-

post-print, version of July 25, 2023 Author’s final, peer-reviewed manuscript

https://www.lancaster.ac.uk/~wadswojl/
https://github.com/ECSADES/ecsades-matlab


A modeler’s guide to extreme value software 17

terpart to estimate the coefficient. In the bivariate case, the estimator is often rather defined as
2− log[Pr{F1(Y1) < v,F2(Y2) < v}]/ log(v) for v ≈ 1.

A related coefficient measuring dependence is the coefficient of tail dependence, often denoted η,
which can be used to characterize the speed of decay for asymptotically independent variables. With
random vectors transformed to unit Pareto margins, say Y p, the structural variable T = minD

j=1 Y p
j is

such that, for large u (Ledford and Tawn, 1996, eq. 5.6),

Pr(T > u + t | T > u) ≈ L(u + t )

L(u)
(1+ t/u)−1/η, (9)

with L(x) a slowly varying function. The coefficient of tail dependence can be estimated by fitting
a generalized Pareto distribution with shape η and scale ηu to exceedances of T above u. If data
are transformed to the exponential scale instead, the scale parameter of the structural variable is
η and the maximum likelihood estimator of the latter coincides with Hill’s estimator (Section 2.5).
The coefficient of tail dependence takes values in (0,D−1) if the variables are negatively associated,
η = D−1 for independent variables, and η ∈ (D−1,1] if the variables exhibit positive association. In
the multivariate setting, the coefficients ηC for subsets C ⊂ {1, . . . ,D} satisfy ordering constraints (de
Haan and Zhou, 2011, § 4.2).

In the bivariate setting, it is customary to consider χ̄ = 2η−1 instead of η, which gives χ̄ ∈ (−1,1]
(Coles et al., 1999). The evd package function chiplot provides plots of χ and χ̄ based on the em-
pirical distribution of the minimum, with approximate pointwise standard errors through the delta-
method. The mev package provides various estimators of η and χ, while graphicalExtremes includes
empirical estimators emp_chi that can be used to obtain empirical estimates of the dependence ma-
trix of the Hüsler–Reiss distribution.

Extensions that consider different tail decays have emerged in the last decade, leading to angular
dependence function. For example, Beirlant et al. (2011) and Dutang et al. (2014) consider projec-
tions of the form Zω = min{Y p

1 ,Y p
2 ω/(1−ω)} for ω ∈ (0,1) a fixed angle. Under a regular variation

assumption, the distribution of Zω can be approximated by the so-called extended Pareto distribu-
tion. The parameters of the latter can be estimated using the minimum density power divergence
(MDPD) criterion (Dutang et al., 2014), which includes the maximum likelihood estimator as a spe-
cial case. The RTDE package (Dutang, 2020) provides various functions to estimate the parameters
of this model, and the returned objects allow users to summarize/plot fitted outputs, to compute the
bivariate tail probability as well as to perform a simulation analysis. A similar approach is consid-
ered in Wadsworth and Tawn (2013) and implemented in lambdadep function of the mev package;
the authors look at different extrapolation paths by replacing the multivariate regular variation by
a collection of univariate regular variation assumptions. Mhalla et al. (2019) also use such ideas to
implement generalized additive regression for extremal dependence parameters. The drawback of
these approaches, termed structural variables since they use univariate projections, is that estima-
tion is carried independently for every angle ω, but alternative estimators based on limit sets (Nolde
and Wadsworth, 2022) are being proposed at the time of writing.

3.4. Time series and graphical models

Data on a single variable collected over time often exhibit short-term temporal dependence, which
can lead to extremes occurring in clusters. As a minimum, statistical methods for time series ex-
tremes need to account for dependence in the data and to estimate the extent to which extremes
cluster, either directly or using a dependence model. For reviews of this area see Chavez-Demoulin
and Davison (2012) and Reich and Shaby (2016).

3.4.1 Extremal index estimation

For stationary processes satisfying the D(un) condition, which limits long-range dependence at ex-
treme levels, the strength of local serial extremal dependence is commonly measured by the extremal
index. The latter can be interpreted as the reciprocal of the limiting mean cluster size in a Poisson
cluster process of exceedances of increasingly high thresholds. Table 6 gives basic information about
the direct estimators of the extremal index that feature in this section, while Table 7 summarises im-
plementations of these estimators, including information about diagnostics for the choice of tuning
parameters. When a threshold is involved these diagnostics can be used for threshold selection. The
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estimator reference tuning parameter(s)

runs Smith and Weissman (1994) run length, threshold
blocks (blocks 1) Smith and Weissman (1994) block size, threshold
modified blocks (blocks 2) Smith and Weissman (1994) block size, threshold
intervals (FS) Ferro and Segers (2003) threshold
iterative least squares (ILS) Süveges (2007) threshold
K -gaps Süveges and Davison (2010) run length K , threshold
semiparametric maxima (SPM) Northrop (2015) block size

Table 6: Overview of some direct estimators of the extremal index with associated references and tuning
parameters.

diagnostics in the evd, evir, exdex, fExtremes (Wuertz et al., 2017) and texmex packages are thresh-
old stability plots for the extremal index. The information matrix test of Süveges and Davison (2010),
which is based on a model for truncated inter-exceedance times called K -gaps, is provided by the
exdex and mev packages. The packages evd (function clusters), extRemes (decluster), fExtremes
(deCluster), POT (clust) and texmex (declust) use an estimate of the extremal index to decluster
exceedances of a threshold to form a series of sample cluster maxima.

3.4.2 Marginal modelling

Suppose that interest is limited to marginal extremes. The limiting distributions of cluster max-
ima and a randomly chosen threshold exceedance are identical, so inferences can be made using
a marginal generalized Pareto model for sample cluster maxima or for all exceedances. The texmex
(Southworth et al., 2020) package is the most complete implementation of the analysis of cluster max-
ima: it uses a semi-parametric bootstrap procedure to account for uncertainty in declustering and in
marginal inference and can also accommodate covariate effects. The declustering approach is waste-
ful of data and Fawcett and Walshaw (2012) show that the difficulty of identifying clusters reliably can
lead to substantial bias. When using all exceedances appropriate adjustment must be made for de-
pendence in the data and for the value of the extremal index (Fawcett and Walshaw, 2012): the lite
package (Northrop, 2022) uses the methodology of Chandler and Bate (2007) to estimate a marginal
log likelihood that has been adjusted for clustering using a sandwich estimator of the covariance ma-
trix of the marginal parameters and combines this with a log likelihood for the extremal index under
the K -gaps model. The extremefit package provides a semiparametric procedure for time series ex-
tremes, as described in Section 2.5. Table 8 gives summaries of these packages and the packages that
enable the estimation of time series dependence.

3.4.3 Models for dependence

In some applications it is important to infer more about the behavior of an extreme event than the
size of a cluster of extreme values. For example, the duration of an extreme event or an accumulation
of the extreme values may be of interest. This requires the nature of serial extremal dependence to
be modeled. The extremogram (Frolova and Cribben, 2016) package implements the extremogram
(Davis and Mikosch, 2009; Davis et al., 2011, 2012) to inform modelling by exploring quantitatively se-
rial extremal dependence within stationary time series and between different time series. In the uni-
variate case, it gives estimates of the conditional probabilities that a variable exceeds a user-supplied
high threshold at time t + l given that it exceeded this threshold at time t . The stationary bootstrap is
used to provide confidence intervals.

The fitmcgpd function in the POT package performs maximum likelihood inference using a first-
order Markov chain model, in which one of several bivariate extreme value distributions is used as a
model for successive threshold exceedances (Smith et al., 1997). The function simmc simulates from
this type of model, as does the evmc function in the evd package. The tsxtreme package models time
series dependence using the conditional extremes approach of Heffernan and Tawn (2004), which
enables a greater range of dependence structures to be modeled. Inferences are performed using
two-step maximum likelihood fitting and a Bayesian approach in which inferences are made about a
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package estimator(s) estimation UQ diagnostics

evd runs, FS exi no exiplot

evir blocks 2 exindex no exindex

extRemes runs, FS extremalindex yes —

exdex
ILS iwls no —
K -gaps kgaps yes choose_uk

SPM spm yes choose_b

fExtremes

runs runTheta no exindexPlot

blocks 1 clusterTheta no exindexesPlot

blocks 2 blocktheta no
intervals ferrosegersTheta no

mev
ILS, FS ext.index no ext.index

K -gaps ext.index no infomat.test, ext.index

POT runs fitexi no exiplot

revdbayes K -gaps kgaps_post yes —
texmex FS extremalIndex yes extremalIndexRangeFit

tsxtreme runs thetaruns yes —

Table 7: Comparison of R packages for the direct estimation of the extremal index. Estimator(s): name(s)
of the estimators available; estimation: function name(s) for estimation; uncertainty quantification
(UQ): are methods for estimating uncertainty provided?; diagnostics: function names(s) for choosing
tuning parameters.

more flexible model in which all inferences are performed simultaneously (Lugrin et al., 2016). The
functions theta2fit (MLE) and thetafit (Bayesian) provide inferences for the sub-asymptotic ex-
tremal index of Ledford and Tawn (2003).

The ev.trawl package implements the modelling approach described in Noven et al. (2018), which
is based on the representation of a generalized Pareto distribution as a mixture of exponential dis-
tributions in which the exponential rate has a gamma distribution. An exponential trawl process
introduces time series dependence in a latent gamma process, while a marginal probability integral
transform allows both negative and positive shape parameter values. The CTRE package deals with
processes for which inter-exceedance times have a heavy-tailed distribution and therefore a Poisson
cluster representation is not appropriate (Hees et al., 2021). Parameter stability plots are provided to
guide the selection of a suitable threshold.

3.4.4 Graphical extremes

Under the first-order Markov chain model for time series extremes of Smith et al. (1997), the value of
a variable at time t +1 is assumed to be conditionally independent of its value prior to time t given
the value at time t . This simple dependence structure could be represented as a graphical model in
which nodes representing the value of the variable are only connected by an edge if they correspond
to adjacent time points.

The packages graphicalExtremes (Engelke and Hitz, 2020) and gremes (Asenova et al., 2021) pro-
vide more general graphical modelling frameworks for extremes, based on a multivariate Hüsler–
Reiss generalized Pareto model for peaks over thresholds; see also Section 3.2. A graph represents
conditional independences between variables. If the graph is sparse then the joint distribution de-
composes into the product of lower-dimensional distributions, which results in a more parsimonious
and tractable model. If the graph is a tree, that is, there is exactly one path along edges between any
pair of nodes, then this decomposition is particularly simple. The graphicalExtremes and gremes
packages provide functions to fit a multivariate Hüsler–Reiss generalized Pareto model given a user-
supplied graph and functions to simulate from this model. The specifics of the theory underlying
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reference package function(s) area

Fawcett and Walshaw (2012) texmex declust, evm m
Fawcett and Walshaw (2012) lite flite m
Durrieu et al. (2019) extremefit hill.ts m
Davis and Mikosch (2009) extremogram extremogram1, bootconf1, . . . e
Lugrin et al. (2016) tsxtreme depfit, dep2fit d
Smith et al. (1997) evd evmc d
Smith et al. (1997) POT fitmcgpd, simmc d
Noven et al. (2018) ev.trawl FullPL, rtrawl d
Hees et al. (2021) CTRE MLestimates d

Table 8: Overview of packages and main functions for modelling time series extremes by area: marginal
modelling (m); exploratory analysis (e); dependence modelling (d).

these packages differ but the resulting model structures coincide when based on a tree.
In some applications, such as the analysis of extreme river flows, there is a physical network from

which the graph can be constructed. In other cases the graph is conceptual: graphicalExtremes also
provides a means to infer the structure of a graph from data.

4. Functional extremes (including spatial extremes)

Functional extremes designates a relatively recent branch of extreme value analysis concerned with
stochastic processes over infinite-dimensional spaces, especially spatial and spatio-temporal extremes
in geographic space (Davison et al., 2012; Huser and Wadsworth, 2022). We here use the term space
for Rd with d ≥ 1, including the combination of geographic space and time (d = 3), and we explicitly
refer to time only where necessary. In practice, we usually work with finite discretizations of the study
domain, such that many multivariate results and techniques carry over to the functional setting, al-
though usually in relatively high dimension.

Common exploratory tools for extremal dependence are coefficients for bivariate distributions
assessed as a function of spatial distance or temporal lag (e.g., extremal coefficient function based
on bivariate extremal coefficients θ2, tail correlation function based on the χmeasure, F -madogram,
concurrence probability for maxima).

The asymptotic mechanisms for functional maxima and threshold exceedances are similar to the
multivariate setting. Available statistical implementations are summarized in Section 4.1. Marginal
and dependence modelling is discussed in Section 4.3. Aspects that we consider as still underdevel-
oped in existing implementations are listed in Section 4.4.

We use Y (s) for stochastic processes indexed by s ∈S ⊂ Rd , representing the process of the orig-
inal event data. Usually we have a random sample of observations Yi (s j ) for j = 1, . . . ,D locations
observed at i = 1, . . . ,n time points and denote a realization in space by Y = {Y (s1), . . . ,Y (sD )}, by
analogy with the multivariate case.

Max-stable processes are the natural class of models for locationwise maxima taken over tempo-
ral blocks of the same length, such as annual maxima observed at fixed spatial locations. A max-
stable process possesses finite-dimensional max-stable distributions, and convergence to a max-
stable process can be defined through the convergence of all finite-dimensional distributions, such
that strong links arise with the univariate and multivariate setting. If there exist sequences of nor-
malizing functions an(s) > 0 and bn(s) such that the law of the scaled maximum converges for all
finite-dimensional distributions,

lim
n→∞Pr[an(s){Mn(s)−bn(s)} ≤ x] = Pr{Z (s) ≤ x}, s ∈S , (10)

with Z (s) a nondegenerate limit process, then Z (s) is max-stable.
The most widely used setting for functional peaks over threshold follows the multivariate setting

by assuming that data have been standardized to Y ⋆(s) , i.e., marginally transformed with a trans-
formation g that is strictly monotonic (i.e., g (x2) > g (x1) if x2 > x1), and that ensures positivity (i.e.,
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g (x) ≥ 0) with standardized tails of transformed random variables for which limx→∞ x Pr[g {Y (s)} >
x] = 1. For example, we can choose Y ⋆(s) = gs {Y (s)} = 1/[1− Fs {Y (s)}], where Fs is the marginal
distribution of Y (s). Risk-Pareto processes (Ferreira and de Haan, 2014; Thibaud and Opitz, 2015;
Dombry and Ribatet, 2015; de Fondeville and Davison, 2018; Engelke et al., 2019) arise asymptoti-
cally when a functional r of the standardized process Y ⋆(s) exceeds a threshold that tends towards
the upper endpoint of the probability distribution of r .

Typically, summary functionals are homogeneous, meaning r (t x) = tr (x) for t > 0; examples in-
clude the average r (x) = |S |−1

∫
S x(s)ds, the minimum r (x) = mins∈S x(s), the maximum r (x) =

maxs∈S x(s), or the median. Convergence is assumed in the space of continuous functions over
compact S , such that the distribution of the functional r [gs {Y (s)}] is well defined. Functional con-
vergence of maxima in (10) implies functional convergence to r -Pareto processes Zr (s):

lim
u→∞Pr

[
u−1Y ⋆(s) ≤ x | r {Y ⋆(s)} ≥ u

]= Pr{Zr (s) ≤ x}, s ∈S . (11)

Max-stable and generalized Pareto processes have different probabilistic structures, but there
always is a one-to-one correspondence between their dependence structures. Estimation of the
marginal distributions and of the dependence structure is often conducted in two separate steps. The
space-time dependence between sites is normally captured by correlation functions or variograms,
which leads to much fewer parameters to infer than in the unstructured multivariate setting.

These asymptotic models can accommodate either asymptotic dependence or full independence
among the variables Y (s1) and Y (s2) at locations s1, s2 ∈ S . However, many stochastic processes,
for example non-degenerate Gaussian processes, exhibit dependence at finite levels even if they are
asymptotically independent in the limit, so the above characterization is too restrictive for accurate
modelling. The coefficient of tail dependence introduced in (9), if considered for D sites s1, . . . , sd ,
is therefore restricted to values η ∈ {1/D,1}. More flexible dependence structures can be achieved
within the conditional extremes framework with conditioning on a fixed location (Wadsworth and
Tawn, 2022; Simpson et al., 2023). Finally, so-called subasymptotic models do not arise as classical
extreme value limits but focus on flexibly capturing dependence remaining at subasymptotic levels,
for instance with asymptotic independence where 1/D < η(s1, s2) < 1 is possible; for example, the
class of max-infinitely divisible processes (Huser et al., 2021), which is useful for flexible modelling
of location-wise maxima. Most such proposals do not come with packaged and generic software
implementations so far.

4.1. Max-stable processes for maxima data

Suppose that data consist of locationwise block maxima Mi (s j ), where i = 1, . . . ,m indexes the blocks,
e.g., the observation year in case of annual block maxima. The SpatialExtremes package provides
the most comprehensive collection of functions for exploration and statistical inference with max-
stable processes for spatial maxima data in geographical space (d = 2). While standard full like-
lihoods are not tractable even for moderately many locations with the common models, pairwise
likelihood has become the standard approach for fitting max-stable processes, with implementa-
tions in SpatialExtremes and CompRandFld. ExtremalDep offers estimation routines using the
Stephenson–Tawn likelihood and composite likelihoods for (skewed) extremal-t processes, includ-
ing the Schlather model. The unpublished package BRdac accompanying Hector and Reich (2023)
offers pairwise composite likelihood estimation via distributed learning using using a divide-and-
conquer procedure for Brown–Resnick max-stable processes, offering a scalable estimation strategy
through local likelihoods.

Global dependence measures such as concurrence maps (Dombry et al., 2018), available from
concurrencemap in SpatialExtremes, can be constructed from bivariate summaries. The intractabil-
ity of the multivariate max-stable distribution function G , described in eq. (7), has led to pairwise
likelihood becoming the standard estimation method for spatial max-stable processes. In SpatialEx-
tremes, joint frequentist estimation of marginal and dependence parameters is possible, where aux-
iliary variables can be flexibly included in the three parameters of the marginal generalized extreme
value distribution. Similar to generalized additive models, smoothness penalties can be imposed on
nonlinear effects modeled through spline functions. In contrast to the aforementioned generalized
additive model approach without dependence, the numerical optimization becomes more involved
here, such that only a moderate number of marginal parameters can be reasonably estimated.
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RandomFields (Schlather et al., 2015) provides a large variety of max-stable models and particu-
larly of tail correlation functions, with a focus on implementing simulation from such models. More-
over, the package encapsulates vast functionality, especially simulation, for Gaussian random fields,
which are often the building blocks for the more sophisticated extreme value models. The package
provides multiple state-of-the-art algorithms for simulating Brown–Resnick max-stable processes.
Exact unconditional simulation of max-stable processes is available in RandomFields, mev and Spa-
tialExtremes, but only the latter offers conditional simulation of max-stable random fields (condi-
tional on observed values at given locations) using Gibbs sampling (Dombry et al., 2013). Com-
pRandFld’s simulation routine for max-stable processes uses an interface to RandomFields. For a
particular hierarchically structured max-stable dependence model, known as the Reich–Shaby model
(Reich and Shaby, 2012) that is constructed using spatial kernel functions and is derived from the
spectral representation of a max-stable process based on a lp -norm (Oesting, 2018), estimation tools
are available in the hkevp package. It is difficult to fit because of the dual role of its nugget parameter
α> 0. The hkevp package provides a Metropolis-within-Gibbs algorithm for Bayesian estimation of
the model and for simulation.

4.2. Peaks-over-threshold modelling

For functional peaks over threshold, mvPot provides parametric simulation and estimation tools
for various r -Pareto processes using Brown–Resnick and extremal Student-t dependence structures
(de Fondeville and Davison, 2018, 2022). Parameter estimates are computed using optimization of
either full likelihood or gradient score functions; the latter remains computationally tractable for set-
tings where full likelihood does not. Estimation of the marginal transformation T is not implemented
and has to be performed prior to estimating the extremal dependence parameters using mvPot. A
competitive estimation procedure is the gradient score estimating equation of de Fondeville and
Davison (2018), which does not require calculation of the normalizing constant of the model and
also replaces censoring with downweighting. While statistically less efficient than full likelihood es-
timation, the procedure is more robust and can be applied in very high-dimensional settings. For
estimation, numerical implementations are currently restricted to the Brown–Resnick model. The
package mvPot also offers tools for simulation and calculation of likelihoods for the extremal-t de-
pendence model. The mev package also proposes likelihood functions and unconditional simulation
routines for generalized r -Pareto processes (de Fondeville and Davison, 2022).

Some other implementations allowing estimation of asymptotic dependence structures use orig-
inal event data Yi (s j ) and can be viewed as working on the interface of max-stable and peaks over
threshold models. For example, moment-based estimation of parametric models, based on con-
trasting empirical and parametric versions of a variant of the so-called tail dependence function, is
implemented in the package tailDepfun (Einmahl et al., 2018).

4.3. Modeling spatially varying marginal distributions

In practice, marginal distributions Fs in functional data are usually not stationary, such that varia-
tion of marginal extreme value parameters with respect to space and time, or with respect to other
available auxiliary variables, has to be captured. In the locationwise maxima setting, we can use use
the generalized extreme value distribution and consider its parameters as functions of space, i.e.,
ξ(s),µ(s),σ(s). Different options exist in the peaks over threshold setting. A common approach is
to fix a high, potentially nonstationary threshold u(s), and then estimate the threshold exceedance
probability p(s) = Pr{Y (s) > u(s)} = 1 − Fs {u(s)} and the generalized Pareto parameters ξ(s),σ(s)
based on observations of the exceedances Y (s)−u(s) > 0.

The regression framework discussed in Section 2.3 are relevant for modelling marginal extreme
value parameters that vary with location in a first modelling step. Generalized additive modelling al-
lows capturing complex nonlinear patterns of spatial nonstationarity using relatively large numbers
of parameters. Some care may be required in tuning smoothing hyperparameters since in this step
one usually assumes independence of observations Yi (s j ), so functional dependence across space or
time is disregarded. Specifically, MCMC-based Bayesian estimation of marginal parameters (using
Gaussian process priors) for generalized extreme value distributions for maxima is possible through
SpatialExtremes, and hkevp (Sebille, 2016) includes a similar function. The SpatialGEV package
(Chen et al., 2021) provides a template for fitting latent spatial models with marginal generalized ex-
treme value distributions and Gaussian process priors on the parameters using quadratic approxima-
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tions to the marginal posterior. The unpublished package SpatGEVBMA fits a latent model with gen-
eralized extreme value margins whose parameters follow Gaussian process priors with explanatory
variables. Its defining functionalities are the use of Laplace approximations for automating propos-
als, and Bayesian model averaging of regression models to account for variable selection uncertainty
(Dyrrdal et al., 2014).

An important alternative to Monte Carlo methods is to estimate complex integrals arising from
Equation (5) through the integrated nested Laplace approximation (INLA). The INLA package pro-
poses computationally convenient representations of the spatial Matérn covariance function through
the stochastic partial differential equation approach of Lindgren et al. (2011) for spatial and spatio-
temporal latent Gaussian modelling. As mentioned in Section 2.4, INLA provides implementation
for generalized extreme value distributions (with covariates and random effects in the location pa-
rameter) and the generalized Pareto distribution (with covariates and random effects in a quantile
at a probability level α ∈ (0,1) specified by the user; see Opitz et al. (2018) and Krainski et al. (2018,
Chapter 6).

The package further allows joint estimation of several regression designs where some of the ran-
dom effects can be in common (i.e., shared through a scaling coefficient) among these, which is ben-
eficial to obtain cross-correlation in the posteriors of the predictors of several response types. For
example, we could combine a logistic regression for the exceedance probability with a generalized
Pareto regression for the excess above the threshold, and a shared random effect with a positive shar-
ing coefficient would entail positive posterior correlation between the exceedance probability and
the size of the excess.

4.4. Outlook for functional extremes

The coverage of max-stable processes, which remains an area of very active research, is much more
comprehensive than others, with the notable exception of composite or full log likelihood infer-
ence for max-stable processes. Formulae exist for many partial derivatives of the exponent func-
tion V arising in the multivariate max-stable cumulative distribution functions and, in principle, the
Stephenson–Tawn likelihood (or a bias-corrected version thereof) could be programmed for full like-
lihood inference beyond the bivariate case. Most of the models are also implemented with spatial
applications in mind, even if temporal or spatio-temporal applications are possible. Max-infinitely
divisible models are not covered in software yet, and Bayesian models with latent processes are often
not provided with numerical implementation because of the complexity of implementation and also
sometimes very long execution times of codes.

There are much fewer implementations for threshold models. Whereas their construction can be
viewed as more flexible and intuitive than the one of the corresponding max-stable processes, they
are conditional models with respect to threshold exceedance of the summary functional r . In the
finite-sample setting of statistical practice, this means that observations at some locations may not
correspond to marginal exceedances and may therefore not be coherent with the asymptotic model.
A common remedy is censoring, but this makes estimation more costly because the likelihood func-
tions now include high-dimensional distribution functions which typically must be calculated via
Monte-Carlo methods for each vector of observation. Generic full likelihood estimation procedures
have been proposed, and are available (though computationally costly) for some models. However,
available implementations do not yet come with a comprehensive set of models and methods for
parameter inference, model validation and comparison. An obvious solution to facilitate such im-
plementation, provided that parameters are identifiable from lower-dimensional summaries, would
be to use composite likelihood. Likewise, Bayesian generalized Pareto models with latent Gaussian
process priors could be easily coded in many probabilistic programming languages outside ofR, such
as Stan, but no general-purpose routines exist so far.

Simulation algorithms for unconditional simulation from generalized r -Pareto processes with ar-
bitrary risk functionals r are still elusive, as designing efficient accept-reject methods requires case-
by-case analysis. Available conditional simulation code typically amounts to simulation of elliptical
distributions (log-Gaussian or Student-t ) with linear constraints.

Implementations with documented code are often available as supplementary material to method-
ological papers but have not been encapsulated in officially validated packages; see Huser and Wadsworth
(2019); Bacro et al. (2020); Simpson et al. (2023) for recent examples. Huser and Wadsworth (2019) has
companion code for frequentist estimation of a flexible subasymptotic spatial model in the unpub-
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methods package functions scope

copula rCopula∗ b, m
Tajvidi and Turlach (2018) SimCop — b
Stephenson (2003) evd rbvevd, rmvevd b, m
Dombry et al. (2016) mev rmev, rmevspec a, m, f
Engelke and Hitz (2020) graphicalExtremes rmstable m, f
Beranger et al. (2017) ExtremalDep rExtDep, rExtDepSpat m, f
Padoan and Bevilacqua (2015) CompRandFld RFsim∗ f
Dombry et al. (2013) SpatialExtremes condrmaxstab f
Dombry et al. (2016) SpatialExtremes rmaxstab f
Schlather et al. (2015) RandomFields RFsimulate∗ f
Reich and Shaby (2012) hkevp hkevp.rand f
Ballani and Schlather (2011) BMAmevt rnestlog, rpairbeta a
Ho and Dombry (2019) mev rparpcs p
de Fondeville and Davison (2018) mev rparp p
de Fondeville and Davison (2018) mvPot — p
de Fondeville and Davison (2022) mev rgparp p

Table 9: Overview of simulation algorithms for bivariate (b) and multivariate (m) max-stable distribu-
tions and for max-stable processes (f), and for angular (a) and Pareto processes (p) with associated ref-
erences. Some of the listed functions (∗) are generic and include specific classes for max-stable models,
but other models as well.

lished package spatialADAI. The Matlab package SpatialConditionalExtremesSatellite fits univari-
ate and multivariate spatial conditional extremes models (Shooter et al., 2021, 2022). An INLA-based
implementation for Bayesian conditional extremes models for spatial and spatio-temporal data is
provided as supplementary material of Simpson et al. (2023). The implementation of many Bayesian
extreme value models in the literature is achieved with standard MCMC algorithms that are tailored
to the particular data application, but often generic and easily reusable or reproducible code is not
provided, which hinders reproducibility.

5. Specialized topics

While our review has ranged mostly over software providing implementation of relatively generic
methods that can be useful in various application contexts, there also has been active development
of software libraries targeting specific application fields, and we here cite some of them.

Hydrology and climate: Regional frequency analysis using L-moments is possible with the lmomrfa
(Hosking, 2023) package. The climextRemes (Paciorek et al., 2018) package leverages extRemes for
climate extremes and implements methods highly relevant for this field, such as local likelihood fit-
ting; the package is also available in Python. IDF provides intensity-duration-frequency (IDF) curves
(Ulrich et al., 2020). jointPm implements the method of Zheng et al. (2015) for evaluating bivariate
probabilities of exceedance. An example of a highly specialized package is futureheatwaves (Ander-
son et al., 2016) and facilitates finding, characterizing and exploring heatwaves in climate projec-
tions, while the Python package teca is dedicated to tracking extremes of large scale climate models.
Renext includes methods for peaks over threshold with a variety of distributions and the possibility
to include historical maximum records, along with tests of exponentiality and goodness-of-fit.

Financial and actuarial science: Some packages provide implementation of various generic models
and methods for extreme values, but make strong use the semantics of those fields in their documen-
tation. The packages QRM, its successor qrmtools (Hofert et al., 2022) and ReIns implement various
functions to accompany the books McNeil et al. (2015) and Albrecher et al. (2017), respectively.

The package fExtremes provides functions for financial analysis used by the Rmetrics project.
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reference package functions dim data

Coles and Tawn (1991) evd fbvevd b max
Coles and Tawn (1991) copula fitCopula b max
Einmahl et al. (2018) tailDepFun Estimation· · · m, f max
Pickands (1981) and

evd abvnonpar b ang
Caperaa et al. (1997)

Gudendorf and Segers (2012) copula An b, m ang
Einmahl and Segers (2009) and extremis angcdf b ang

de Carvalho et al. (2013) mev angmeas m ang
Marcon et al. (2017b) ExtremalDep madogram, beed m ang
Beranger et al. (2021a) ExtremalDep fExtDep.np b ang
Wadsworth (2016) EVcopula fit.EV.copula b ang
Sabourin and Naveau (2014) BMAmevt posteriorMCMC m ang
Smith et al. (1997) evd fbvpot b pot
Engelke et al. (2019) graphicalExtremes fmpareto_graph_HR m pot
Heffernan and Tawn (2004) texmex mex m pot
Davison et al. (2012) SpatialExtremes fitcopula, fitmaxstab f max
Padoan and Bevilacqua (2015) CompRandFld FitComposite f max
Reich and Shaby (2012) hkevp hkevp.fit f max
Reich and Shaby (2012) extRemes abba f max
Beranger et al. (2021b) ExtremalDep fExtDep, fExtDepSpat m, s max

Table 10: Overview of multivariate and functional estimation procedures for extremes according to di-
mension, either bivariate (b), multivariate (m) or functional (f) and data type/paradigm, one of block
maximum (max), pseudo-angles (ang) or threshold exceedances (pot). Packages which only include
likelihood but no optimization wrapper are excluded.
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The package VaRES (Nadarajah et al., 2023) provides two popular risk measures (value at risk and
expected shortfall) for a large collection of probability distributions, including many heavy-tailed
distributions. The extremis package proposes functionalities to cluster multivariate financial time
series based on their frequency and magnitude of extreme events.

Machine learning: The interface between statistical machine learning and extreme values has been
growing in recent years, with proposals encompassing the use of gradient boosting for extremes
(Velthoen et al., 2021, gbex) and of extremal random forests (Gnecco et al., 2022, erf) for modelling
high quantiles of a univariate distribution. Another area of active research is open-set classification,
dealing with classification of observations in categories not observed in training data: the Python

package EVM implements the extreme value machine of Rudd et al. (2018), whereas R package evt-
class includes the algorithms described in Vignotto and Engelke (2020).

Survival analysis: Presence of censoring or truncation mechanisms, common in survival analysis, re-
quire dedicated software implementations because they affect the likelihood contribution of obser-
vations. TheMatlab LATools (Rootzén and Zholud, 2017) proposes an interface for interval-truncated
generalized Pareto observations, while the longevity package (Belzile et al., 2022) handles more gen-
eral partial observation schemes.

6. Discussion and conclusion

We have covered in this review a wide range of available software implementations for extremes, and
we sincerely hope without omissions that are considered as important by authors or users. The de-
velopment of extreme value software is key to extreme value analysis in practice and has become an
active area of research, but the availability of implementations tends to lag behind methodological
innovations since these are often not accompanied by generic, easily reusable and validated codes.
To encourage modelers in applied sciences and in operational services to make use of the most ad-
vanced methods and models, off-the-shelf implementations are desirable. However, generic code
may be difficult to provide due to the high sophistication of approaches as, for instance, with func-
tional extremes. Designing generic estimation procedures that are flexible enough to be useful while
at the same time being robust requires particular care. Writing this review made us aware of how
challenging it is for the extreme value community to develop tested and easily reusable software that
keeps pace with methodological progress: most software was written more than a decade ago, there
are only handful of active maintainers, and most models proposed in the literature are not put to-
gether with software.

Many methods proposed recently are still not available and this is a major impediment for their
adoption. The most obvious gap is in software for fitting multivariate max-stable models (with com-
posite likelihood) and multivariate generalized Pareto distributions with censoring in moderate di-
mensions for the parametric models with suitable tools. The conditional spatial extremes model,
which extends the Heffernan–Tawn approach to the spatial setting, has been used in many recent
papers but no software has been released.

More refined tools are also required for the nonstationary exploration and inference of extreme
values. In many application fields, physical change processes (e.g., climate change, land-use change)
require tools to explore, model and infer nonstationary behavior in extremes, for instance for climate-
change detection and attribution. Currently, nonstationary modelling is implemented for marginal
distributions through regression designs, but implementations providing dedicated methods for ex-
treme value detection and attribution under climate change are scarce, and easily reusable codes for
nonstationary extreme value dependence structures are yet missing.
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Table 11: Evaluation of generalized Pareto model density and distribution functions.

package location density distribution function

eva yes correct correct
evd yes incorrect for x = u correct
evir yes incorrect for x < u incorrect outside support
extraDistr yes incorrect for x = u correct
extRemes yes incorrect for x = u correct
fExtremes yes incorrect for x = u correct
lmom yes incorrect outside support
lmomco yes correct incorrect outside support
mev yes correct correct
POT yes incorrect for x = u correct
QRM no incorrect for x = u correct
qrmtools no correct correct
ReIns yes correct correct
Renext yes incorrect for x = u correct
revdbayes yes correct correct
SpatialExtremes yes incorrect for x = u correct
tea yes correct correct
texmex yes correct correct
TLMoments yes correct correct

A. Likelihood inference for univariate extremes

A.1. Density and distribution function checks

We performed some sanity checks for various maximum likelihood estimation routines and para-
metric model implementations. Specifically, we verified that density functions are non-negative and
evaluate to zero outside of the domain of the distribution, and that distribution functions are non-
decreasing and map to the unit interval.

The generalized Pareto distribution has lower bound at the location parameter u and is bounded
above at u−σ/ξwhenever ξ< 0. Many software implementations forgo the location parameter, since
for modelling large quantiles of a random variable Y above threshold u, it suffices to look at threshold
exceedances Y −u > 0. No threshold exceedance should be exactly equal to zero so the value of the
density at that point is immaterial, even if it should be set to zero in practice.

Certain packages, listed in Table 11 and Table 12, have incorrect implementations of density and
distribution functions.

A.2. Optimization routines

We compared the maximum likelihood estimates returned by default estimation procedures for dif-
ferent packages for simulated data, checking that the value returned is a global optimum and the
gradient is approximately zero whenever ξ̂>−1.

A.2.1 Generalized Pareto distribution

For threshold exceedances, we simulated 50 exceedances from a generalized Pareto distributionGP(σ=
1000,ξ=−0.5) and from an exponential distribution with σ= 1000. The large scale value is intended
to check the robustness of gradient-based algorithms; from an optimization perspective, it is wise to
ensure that the gradient of each component, scale and shape, are not magnitudes apart. The data
can easily be scaled prior to the optimization in case this is problematic.

Figure 3 shows the distribution of the score vector, i.e., the gradient of the log likelihood. The latter
should vanish when evaluated at the maximum likelihood estimator (σ̂, ξ̂) provided ξ̂>−1. Most in-
stances of non-zero gradient are attributable to boundary cases with ξ̂=−1 not accounted for. Other
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Figure 3: Magnitude of the shape component of the score vector at the value returned by the optimiza-
tion routine. The density plots are based on 1000 samples simulated from a generalized Pareto distri-
bution with shape ξ = −0.5 and scale σ = 1000, split by simulations yielding a boundary case (ξ̂ = −1,
gray) and regular case (ξ̂>−1, black); the y-axis scale for each package is different to ease visualization.
Results for samples for which the numerical routines failed to converge or the gradient is unevaluated
are not shown.
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Table 12: Evaluation of generalized extreme value density and distribution functions.

package density distribution function

EnvStats correct correct
evd correct correct
evir
extraDistr correct correct
ExtremalDep
extRemes correct correct
fExtremes correct correct
lmomco incorrect for x <µ incorrect for x <µ
mev correct correct
QRM correct correct
qrmtools correct correct
revdbayes correct correct
SpatialExtremes correct correct
texmex correct correct
TLMoments correct correct

discrepancies are due to numerical tolerance for convergence, but the differences in log likelihood
relative to the maximum over all routines are negligible in most non-boundary cases investigated.
Some routines, based on Nelder–Mead simplex algorithm, do not check the gradient but this is im-
material if the value of the function is nearly identical to that at the maximum likelihood estimate.

Figure 4 shows these differences through survival function plots, highlighting instances where the
package fails to return correct values. Most packages do fine, except for a handful: evd, extRemes
and POT (which uses routines from evd) stand out of the lot.

We can figure out the source of some of these oddities by plotting the distribution of the shape
parameter estimates over all 1000 replications (see Figure 5). Both POT and evd return sampling
distributions that are underdispersed relative to other implementations, while ercv and extRemes

both have a large number of runs that return exactly zero for the shape parameter. The QRM package
has unexpectedly small spread and a positive bias for estimation of ξ, different from other packages
because it fails more often when ξ is negative. Both ercv and extRemes routines return zero shape
estimates, leading to noticeable point masses. Only SpatialExtremes and mev correctly return ξ=
−1, while Renext returns a hard-coded lower bound which can also be set to ξ=−1.

Some packages have routines that fail to converge often when the shape is negative; the most
likely culprit for this is poor starting values. The routines in ercv and fExtremes (same as evir) fail
often in small samples: for n = 20 exceedances, the function returned an error in 225 simulations.
For the latter, the error is due to poor implementation of the log-likelihood that leads to infinite finite
differences between estimates. For QRM, the choice of starting values, which cannot be modified by
the user, is not adequate with strong negative shapes: it failed in more than 50 (n = 20), 122 (n = 50),
169 (n = 100) and 253 (n = 1000) times for negative shapes, indicating that the issue is not sample
size. The qrmtools package, which supersedes QRM, has no such problems.

A.2.2 Generalized extreme value distribution

The optimization routines for the generalized extreme value distribution with scale σ = 1000 and
shape parameters ξ ∈ {−0.5,0,0.5} are better behaved and nearly all packages give identical results:
only evd and texmex failed to converge and returned abnormally high shape values in a handful of
instances out of 1000 simulations.

Unsurprisingly, the portrait (see Figures 6 and 7) is the same for the generalized extreme value
distribution when it comes to boundary constraints: for example, climextRemes does not return
shapes less than or equal to −1. extRemes has odd behaviour with a visible point mass at ξ = 0 in
the simulations, even when this value has measure zero. Only mev and SpatialExtremes handle the

post-print, version of July 25, 2023 Author’s final, peer-reviewed manuscript



A modeler’s guide to extreme value software 39

tea

POT

fExtremes

extRemes

evir

evd

eva

0 5 10 15 20
difference to maximum log likelihood

POT

extRemes

evd

ercv

0.0 2.5 5.0 7.5
difference to maximum log likelihood

Figure 4: Differences between the likelihood evaluated at the parameters returned by the routines and
the maximum likelihood over all routines for generalized Pareto samples with negative shape (ξ=−0.5,
left) and exponential samples (right), both with large scale parameter σ = 1000. Results for samples
for which the numerical routines failed to converge are not shown. Only packages with 90% percentile
giving a discrepancy larger than 10−4 are shown.
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Figure 5: Dot plots of shape parameter estimates returned by optimization routine for generalized Pareto
samples with negative shape (ξ = −0.5, left) and exponential samples (right). Results for samples for
which the numerical routines failed to converge are not shown.
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Figure 6: Differences between the likelihood evaluated at the parameters returned by the routine and the
maximum likelihood over all routines for generalized extreme value samples with negative shape (left)
and exponential samples (right), both with large scale parameterσ= 1000. Results for samples for which
the numerical routines failed to converge are not shown. Only packages with 90% percentile giving a
discrepancy larger than 10−4 are shown.

boundary constraints. Figure 6 shows the difference in maximum likelihood returned by the pack-
ages, excluding cases with ξ̂=−1 for which the log likelihood becomes unbounded for combinations
of σ and ξ <−1. Some packages, such as evd, also sometimes return a local optimum (perhaps due
to use of the BFGS routine) and this in turn leads to erroneous comparisons of nested models.

Table 14 gives a breakdown of the number of instances for which the maximisation routine failed:
two packages, climextRemes and EnvStats, stand out for negative shapes and the percentage of
failures increases with the sample size.
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Figure 7: Dot plots of shape parameter estimates returned by optimization routines for generalized ex-
treme value samples with negative shape (ξ=−0.5, left) and Gumbel samples (right). Results for samples
for which the numerical routines failed to converge are not shown.

Table 13: Number of failures for the optimization routine for maximum likelihood-based estimation of
the generalized Pareto model (out of 1000 simulations).

(a) bounded tail (ξ=−0.5)

20 50 100 1000

evir 225 15 0 0
fExtremes 225 15 0 0
QRM 50 122 169 253

(b) exponential (ξ= 0)

20 50 100 1000

evir 37 0 0 0
fExtremes 37 0 0 0
QRM 4 12 7 0

(c) heavy tail (ξ= 0.5)

20 50 100 1000

evir 7 0 0 0
fExtremes 7 0 0 0
QRM 1 0 0 0
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Table 14: Number of failures for the optimization routine for maximum likelihood-based estimation of
the generalized extreme value model (out of 1000 simulations).

(a) bounded tail (ξ=−0.5)

100 1000 20 50

climextRemes 151 200 172 127
EnvStats 156 215 100 131
evir 0 0 27 0
fExtremes 23 0 92 28
ismev 0 0 4 0
mev 0 0 11 0
texmex 0 0 3 0

(b) light tail (ξ= 0)

100 1000 20 50

climextRemes 0 0 4 0
EnvStats 0 0 4 0
fExtremes 0 0 1 0

(c) heavy tail (ξ= 0.5)

100 1000 20 50

climextRemes 2 0 1 1
EnvStats 9 1 10 10
evir 0 0 4 0
fExtremes 2 0 5 3
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B. Bayesian univariate inference for extremes

Creating a benchmark for Bayesian univariate analysis of extremes is complicated because approxi-
mate posterior samples returned by Markov chain Monte Carlo are autocorrelated so we cannot rely
only on speed of execution or correctness. The effective sample size, which measures the equiva-
lent number of independent draws from the posterior, is a better unit than the number of draws
returned. We also factor in the amount of time it takes for the algorithm to proceed, but note that
higher initialization costs may make such comparisons unfair if the cost of setup is larger than that
of sampling. The different packages use different sampling algorithms: those that are implemented
in low-level programming languages like C are inherently faster. Most packages that uses random
walk Metropolis–Hastings steps discard initial draws during the so-called burn-in period (sometimes
to tune proposal standard deviations, mostly to let the chain reach the posterior distribution and re-
duce impact of starting values). Other considerations include flexibility of methods, the choice of
likelihood or the possibility to include covariates.

• In the texmex package, users can run multiple chains with burn-in and thinning, but iterations
are preserved (which results in a heavier memory footprint). The choice of prior is restricted rel-
ative to most other packages. Rather than random walk Metropolis steps, proposals are drawn
independently from a distribution which is centered at the maximum a posteriori, with a scale
matrix matching the Hessian at the mode. This allows for good mixing, at the expense of a pre-
liminary optimization (and tentatively terrible results should the latter fail to converge to the
maximum a posteriori distribution).

• The evdbayes package has a comprehensive documentation, but some of its features are un-
conventional: the generalized Pareto model includes a location parameter that is modeled
along as the threshold, but this is typically fixed. This leads to many proposals for the ran-
dom walk Metropolis–Hastings ratio that lead to negative infinity, so we discard this altogether
from the comparison. It can lead to adaption of the proposal.

• While very flexible, extRemes is noticeably slower than other packages and particularly ineffi-
cient with the default options (not setting proposalParams leads to effective sample sizes that
are insufficient for any analysis to be reliable in our examples). It can be somewhat customized
(and includes more flexible prior specification), but there is limited documentation on how to
complete this in the package itself (but see the accompanying Journal of Statistical Software pa-
per). The current options for evaluating the marginal likelihood in BayesFactor are unreliable
and shouldn’t be used (e.g., Neal, 2018).

• The ExtremalDep package also allows for estimation of the generalized extreme value distri-
bution with potential covariates for the location parameter and censoring below a marginal
threshold, using a random walk Metropolis-Hastings algorithm. However, the user needs to
provide starting values and default values for the variances of the multivariate normal propos-
als, sig0, and the code returns an error if there is no censoring and covariates are provided.
The output is less user-friendly than other packages, as there are no methods associated with
the returned list.

• revdbayes provides independent draws from the posterior at a fraction of the costs of the other
packages. Unless one has to include covariates in the parameters, it is the recommended ap-
proach.

B.1. Evaluation of effectiveness

We look at computation time (Figure 8) and effectiveness (Table 15) of algorithms as measured by
the effective sample size, computed using the coda method (based on autocorrelation of the chains).
Alternative better methods exist based on running multiple chains, but we forgo these.

The revdbayes implementation is exact and fastest, thus should be privileged in any problem
not involving covariates. Stan simulates posterior samples using a Hamiltonian Monte Carlo algo-
rithm. The latter is much more efficient than Metropolis-Hastings random walk proposals since it
uses information about the geometry of the posterior distribution: the programming language re-
quires bespoke definitions of the extreme value models and some care is necessary for shapes close
to zero for the GEV distribution.
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Table 15: Effective sample size divided by the number of iterations (percentage).

(a) nonstationary generalized extreme value model

package loc loc (trend) scale shape

evdbayes 10.1 4.6 9.5 13.2
extRemes 6.1 6.9 6.9 4.9
STAN 90.0 86.3 100.0 69.7
texmex 6.6 7.0 7.0 7.2

(b) generalized Pareto model

package scale shape

extRemes 4.5 4.3
MCMC4extremes 6.6 7.1
STAN 48.3 43.8
texmex 12.4 10.3

Of all the remaining packages, texmex gives the best performance because it uses proposals in-
formed by the maximum a posteriori estimate. This wouldn’t necessarily work with a multimodal
objective function, but seems to do a good job in the simple scenarios we considered (and which
are supported by the package). While we cannot know if we have converged to the target posterior
distribution, the chains appear stationary.

The algorithm for MCMC4Extremes is fast, considering the number of observations it samples, but
the implementation is crude and inefficient, including a burn-in period of 50K simulations, contrary
to what the documentation states. The function is also not customizable.

The performance of extRemes is more dependent on tuning parameters than other implementa-
tions. Initial trials with the default parameter revealed problems: while the model starts at the MLE
(so close to the stationary distribution), the default standard deviation of the normal random walk
proposals are particularly ill-suited to the Venice sea level example. Trace plots (not shown) revealed
lack of stationarity with default tuning parameters. With adapted proposals (and vague priors), the
output seems satisfactory, but the effective sample size is subpar compared to other methods.

The evdbayes package includes a generalized Pareto model, but the latter also has a location
parameter so is not directly comparable with other outputs.
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Figure 8: Swarm plot of execution time (including preliminary optimization if necessary) of different nu-
merical routines for a generalized extreme value model with linear trend in location fitted to the Venice
sea level data (left) and the generalized Pareto distribution fitted to the Eskdalemuir rainfall data (right).
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Data availability

The datasets analysed in Section 2 are available from the mev package.
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C. Software version

Package Version License Package Version License

BMAmevt 1.0.5 GPL (≥ 2) jointPm 2.3.2 GPL (≥ 2)
climextRemes 0.3.0 BSD-3-clause, † laeken 0.5.2 GPL (≥ 2)
coda 0.19-4 GPL (≥ 2) lax 1.2.0 GPL (≥ 2)
CompRandFld ⋆ 1.0.3-6 GPL (≥ 2) lite 1.1.0 GPL (≥ 2)
copula 1.1-2 GPL (≥ 3), † lmom 2.9 CPL-1.0
CTRE ⋆ 0.1.0 GPL-3 lmomco 2.4.7 GPL
ercv 1.0.1 GPL (≥ 2) Lmoments 1.3-1 GPL-2
erf ♯ 0.0.1 GPL-3 lmomRFA 3.5 CPL-1.0
eva 0.2.6 GPL (≥ 2) loo 2.6.0 GPL (≥ 3)
evd 2.3-6.1 GPL-3 longevity ♯ 2023.03.22 GPL-3
evdbayes 1.1-3 GPL (≥ 2) MCMC4Extremes 1.1 GPL-2
evgam 1.0.0 GPL-3 mev 1.15 GPL-3
evir 1.7-4 GPL (≥ 2) mgcv 1.8-42 GPL (≥ 2)
evmix 2.12 GPL-3 mvPot 0.1.5 GPL-2
evtclass 1.0 GPL-3 POT 1.1-10 GPL (≥ 2)
exdex 1.2.1 GPL (≥ 2) ptsuite 1.0.0 GPL-3
ExtremalDep 0.0.4-0 GPL (≥ 2) QRM 0.4-31 GPL (≥ 2)
extremefit 1.0.2 GPL-2 qrmtools 0.0-16 GPL (≥ 3), †
ExtremeRisks 0.0.4 GPL (≥ 2) RandomFields ⋆ 3.3.14 GPL (≥ 3)
extRemes 2.1-3 GPL (≥ 2) rbm ♯ 1.0.0 MIT
extremeStat 1.5.5 GPL (≥ 2) ReIns 1.0.12 GPL (≥ 2)
extremis 1.2.1 GPL (≥ 3) Renext 3.1-3 GPL (≥ 2)
extremogram 1.0.2 GPL-3 revdbayes 1.5.1 GPL (≥ 2)
EVcopula ♯ 0.1 GPL-3 RobExtremes 1.2.0 LGPL-3
evt0 1.1-4 GPL (≥ 2) RTDE 0.2-1 GPL (≥ 2)
ev.trawl ⋆ 0.1.0 MIT † SimCop 0.7.0 GPL (≥ 2)
fCopulae 4022.85 GPL (≥ 2) spatialADAI ♯ 0.1.0 none
fExtremes 4021.83 GPL (≥ 2) SpatialExtremes 2.1-0 GPL (≥ 2)
futureheatwaves 1.0.3 GPL-2 SpatialGEV 1.0.0 GPL-3
GEVcdn 1.1.6-2 GPL-3 tailDepFun 1.0.1 GPL-3
graphicalExtremes 0.2.0 GPL-3 tea 1.1 GPL-3
gremes ⋆ 0.1.1 GPL-2 texmex 2.4.8 GPL (≥ 2)
hkevp 1.1.5 GPL threshr 1.0.3 GPL (≥ 2)
IDF 2.1.2 GPL (≥ 2) TLMoments 0.7.5.3 GPL (≥ 2)
INLA ♯ 22.12.16 GPL-2 tsxtreme 0.3.3 GPL (≥ 2)
ismev 1.42 GPL (≥ 2) VaRES 1.0.2 GPL (≥ 2)

Table 16: List of R packages, software licenses and version numbers at the time of the review. Additional
file licenses are denoted with a † and packages archived from CRAN at the time of writing are denoted
with a star ⋆. Packages available only from Github repository or personal websites are denoted with a ♯
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