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Abstract

Problem definition: In this paper, we study a predisaster relief network design problem
with uncertain demands. The aim is to determine the prepositioning and reallocation of relief
supplies. Motivated by the call of the International Federation of Red Cross and Red Crescent
Societies (IFRC) to leave no one behind, we consider three important practical aspects of hu-
manitarian operations: shortages, equity, and uncertainty. Methodology/results: We first
employ a form of robust satisficing measure, which we call the Shortage Severity Measure, to
evaluate the severity of the shortage caused by uncertain demand in a context with limited dis-
tribution information. Because shortages often raise concerns about equity, we then formulate a
mixed-integer lexicographic optimization problem with non-convex objectives and design a new
branch-and-bound algorithm to identify the exact solution. We also propose two approaches
for identifying optimal postdisaster adaptable resource reallocation: an exact approach and a
conservative approximation that is more computationally efficient. Our case study considers
the 2010 Yushu earthquake, which occurred in northwestern China, and demonstrates the value
of our methodology in mitigating geographical inequities and reducing shortages. Managerial
implications: In our case study, we show that (i) incorporating equity in both predisaster
deployment and postdisaster reallocation can produce substantially more equitable shortage
prevention strategies while sacrificing only a reasonable amount of total shortage; (ii) increasing
donations/budgets may not necessarily alleviate the shortage suffered by the most vulnerable
individuals if equity is not fully considered; (iii) exploiting disaster magnitude information when
quantifying uncertainty can help alleviate geographical inequities caused by uncertain relief de-
mands.

1 Introduction

The number of disasters reported worldwide and their impact on the population has increased
in recent decades. Extreme events such as tornadoes, earthquakes, or hurricanes can strike a
community without warning and cause massive damage and many casualties. For example, the
Emergency Events Database has recorded 7,348 natural disasters over the last twenty years

∗This article was reviewed and accepted in Manufacturing and Service Operations Management
https://doi.org/10.1287/msom.2023.1230 .

†Email addresses: hongming li@tju.edu.cn, erick.delage@hec.ca zhuning@tju.edu.cn, mpinedo@stern.nyu.edu,
sfma@tju.edu.cn

1

https://doi.org/10.1287/msom.2023.1230


(2000-2019), affecting over 4 billion people (many on more than one occasion), and causing
economic losses of $2.97 trillion around the world (EM-DAT 2020). The massive-scale social
and economic damages caused by disasters have brought increasing attention to the need for
effective disaster relief management.

Prepositioning of emergency supplies can be an effective mechanism for improving response
to natural disasters. In the fall of 2019, hurricane Dorian was estimated to have caused up to
$3 billion in losses in the Caribbean (CNBC 2019), and highlighted the inadequacy of existing
prepositioning strategies. This paper focuses on the prepositioning strategy in disaster relief
systems and considers the Predisaster Relief Network Design Problem (PRNDP) to prepare for
sudden disasters. This problem determines the locations and capacities of the response facilities
and the inventory levels at each facility, as well as reallocations of relief supplies to distribution
locations in order to improve the effectiveness of the postdisaster relief operations.

A good location and emergency inventory prepositioning strategy is critical for disaster
relief operations, since lack of relief supplies may cause suffering and loss of life among victims.
However, disaster preparedness is subject to considerable uncertainty because it is not known
where events will occur (or if they will occur at all). As a result, disaster-stricken areas often
face shortages of emergency supplies. For example, the Fritz Institute reported that there was a
massive shortage of supplies and medical personnel during the 2004 tsunami in Southeast Asia
(Fritz Institute 2005). Food and water shortages also appeared in the Philippines after being
hit by typhoon Haiyan in 2013 (Uichanco 2022). Furthermore, in the winter of 2016/2017, an
extreme dzud (a kind of dreaded severe weather) exposed more than 255,000 herders in Mongolia
to water and food shortages and killed millions of animals (BBC 2016). To alleviate the suffering
caused by shortages, since 2011, appeals for funding by humanitarian organizations (HOs) have
steadily increased, but more than 55% of the requirements have still not been met (Besiou and
Van Wassenhove 2020).

Shortages of relief supplies often raise concerns about the equity of disaster relief systems.
Specifically, on 1 January 2016, the world officially began implementation of the 2030 Agenda
for Sustainable Development and pledged to leave no one behind. In addition, many large
international HOs, such as the IFRC, began to call on leaving no one behind in humanitar-
ian response (IFRC 2018). However, there is little research to-date on the equity regarding
predisaster deployment decisions. We attempt to bridge this gap in our research.

1.1 Research Questions

This study mainly attempts to answer the following research questions:

• How to measure the severity of possible shortages in the presence of demand uncertainty?
Predisaster deployment decisions are often constrained by demand uncertainty and limited
budgets, which may lead to shortages of supplies in certain affected areas after a disaster.
Moreover, shortages would differently affect people in affected areas. In New York City, for
example, three weeks after Hurricane Sandy, people in high-poverty census tracts remained
significantly more worried about food and medicine than those in wealthy neighborhoods
possessing the coping capacity for disaster recovery (Subaiya et al. 2014). Therefore,
humanitarian practitioners need to measure the severity of the shortage according to local
conditions under demand uncertainty to make effective predisaster deployment decisions.
To answer this question, we employ a form of robust satisficing measure to mitigate the
severity of shortages under uncertainty.

• How to allocate limited resources equitably among beneficiaries to reduce the impact of
shortages? Equity is an essential requirement in humanitarian operations and has re-
ceived widespread attention. Starr and Van Wassenhove, writing in the Special Issue for
the Board of the POMS College on Humanitarian Operations and Crisis Management
(Starr and Van Wassenhove 2014), state “Humanitarians need to bring relief items to all
beneficiaries in an equitable fashion, even if this is far from being efficient”. They con-
tinue “There is an obvious need to consider equity in addition to classical efficiency or
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cost minimization objectives.” Therefore, HOs need to give a more formal treatment of
equity in predisaster deployment and humanitarian response (Besiou and Van Wassenhove
2020). In this study, we characterize the concepts of an equitable solution and formulate
a lexicographic optimization problem to mitigate inequity caused by shortages.

• How to address the inherent difficulty of quantifying postdisaster demand to improve on
predisaster deployment and postdisaster response decisions? The initial prepositioning
deployment decisions are difficult to make in the presence of demand uncertainty. For
the HOs to deploy high inventory levels in each possible disaster area will be too costly
for their limited budgets and donations, especially if postdisaster demands are relatively
small (Stauffer and Kumar 2021). If prepositioning of supplies is not enough, then during
a major disaster, many regions may suffer from shortages and even secondary casualties.
Thus, HOs want to find a trade-off between small initial deployment levels that are within
limited resources and large initial deployment levels that avoid serious shortages. Fur-
thermore, a reasonable description of uncertain demands is a key issue in finding such a
balance (Uichanco 2022). In response to this question, we develop a distributionally robust
optimization model that adapts the ambiguity set to the magnitude of the disaster.

1.2 Our Contributions

1. Model : Our model considers three important practical aspects of humanitarian operations
(i.e., shortages, equity, and uncertainty). First, to the best of our understanding, this is
the first paper to use the Shortage Severity Measure (SSM) to control the uncertain relief
shortages. Specifically, as an example of satisficing measure (Brown and Sim 2009), the
SSM is an axiomatically motivated way of measuring the severity of random shortages
when compared to targeted maximum shortage thresholds. Second, we propose a model
that ensures that the allocations of the limited resources are equitably distributed among
disaster-prone regions. This is done by formulating a mixed-integer lexicographic opti-
mization problem with non-convex objectives. Third, to account for the inherent difficulty
of quantifying postdisaster demand distributions, we employ a two-stage robust stochastic
optimization model that relies on event-wise moment information. Overall, we consider
our model to take an important step toward bridging the gap between theory and practice
in humanitarian operations.

2. Solution approach: First, we discuss two approaches for identifying optimal adaptable
resource reallocation: an exact approach and a conservative approximation that is based
on affine decision rules and allows us to solve instances of realistic size. Empirically, the
latter also appears surprisingly accurate with a maximum measured optimality gap of 8%.
Second, we handle the lexicographic minimization aspect of the model using a new branch-
and-bound algorithm. This algorithm corrects for a deficiency found in the procedure
proposed by Qi (2017). In fact, our algorithm appears to be the first iterative scheme
with the guarantee of finding exact solutions to non-convex, mixed-integer, lexicographic
optimization problems.

3. Managerial insights: Our case study involving a real earthquake case, provides three inter-
esting insights. First, compared to approaches that minimize the total shortage without
consideration of equity, decisions that incorporate equity in pre- and post-disaster man-
agement can, in some cases, achieve higher levels of equity at the cost of only slightly
increasing the total shortage. Second, if equity is ignored, the shortages experienced by
some beneficiaries may not be alleviated with an increase in donations. Third, disaster
magnitude information, if properly segmented, can alleviate inequities caused by uncertain
relief demands.

The paper is organized as follows. In Section 2, we provide a brief literature review. In
Section 3, we discuss three important practical aspects of humanitarian operations and present
the model. In Section 4, we describe the solution procedure. In Section 5, we perform several
numerical studies. We finally conclude in Section 6. All proofs can be found in appendix.
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2 Literature Review

In this section, we present a review of the related literature, i.e., uncertainty, shortage, and
equity. After that, we discuss the distinction between our paper and the existing literature.

2.1 Predisaster Relief Network Design under Uncertainty

Predisaster relief network design involves decisions regarding facility locations, inventory prepo-
sitioning and resource reallocation under uncertainty. The PRNDP as a whole was first studied
by Balcik and Beamon (2008), where the authors propose a scenario-based model to maximize
the benefits provided to affected people. Rawls and Turnquist (2010) formally introduce the
PRNDP that simultaneously determines the decisions of facility location, inventory preposi-
tioning and resource distribution under demand uncertainty. They formulate a risk-neutral
two-stage stochastic programming model and propose a Lagrangian L-shaped method. Follow-
ing their path, stochastic programming is widely used to address uncertainty in PRNDP. In
addition, some literature begins to focus on the measurement of risk by applying concepts such
as the conditional value-at-risk (CVaR) (Noyan 2012) and probabilistic constraints (Rawls and
Turnquist 2011, Hong et al. 2015). Elçi and Noyan (2018) further develop a chance-constrained
two-stage stochastic programming model that combines quantitative risk (CVaR) and qualita-
tive risk (probabilistic constraints).

All of the above literature is scenario-based stochastic programming, which has to deal with
difficulties in selecting scenarios. This challenge motivates research on the robust optimization
method as an alternative. Ni et al. (2018) propose a min-max robust model that integrates
the three-part decision making of predisaster relief network design. To address uncertainties in
supply, demand and road link capacity, they construct budgeted uncertainty sets and develop
computationally tractable reformulations based on the budgeted uncertainty sets. Similarly,
Velasquez et al. (2019) apply the budgeted uncertainty set to model demand uncertainty and
propose a robust model for prepositioning relief items. Paul and Wang (2019) further develop a
two-stage robust optimization model and consider two types of robustness, one of which is the
budgeted uncertainty set.

To hedge uncertainty in humanitarian operations, stochastic relief network design often as-
sume uncertainty parameters following fully known distributions and use a finite number of
scenarios to model uncertainties. This mainly faces two challenges in practical implementation:
(i) computational difficulties for instances with abundant scenarios; (ii) sampling difficulties for
uncertainty parameters of high dimension. On the other hand, although robust optimization
with budgeted uncertainty sets does not require any knowledge of distributions except for their
support, it tends to produce overly conservative solutions due to hedging against the rare worst
case.

2.2 Shortage

To reduce shortages in disaster areas, the existing optimization models are mainly described
from two perspectives: the objective function and the conditions on the constraints. As for
the former, shortage is added to the objective function as a penalty cost. Most optimization
models for predisaster relief network design use cost minimization as their objective to reduce
shortages. Specifically, in the widely used two-stage stochastic and/or robust programming
models, shortage cost is usually considered in the second stage, whereas facility cost and ordering
cost are incurred in the first stage. For postdisaster resource reallocation, Altay (2013) considers
both the quantity and capability of multiple resources, minimizing the total capability shortages
in the objective function. From the perspective of constraint conditions, in order to control
shortages, probabilistic constraints are typically employed to ensure that all relief demands can
be satisfied with a prescribed high probability (see, for instance, Ozbay and Ozguven 2007, Hong
et al. 2015). In addition, Rawls and Turnquist (2011) introduce service quality constraints that
ensure that the probability of meeting all demand is not lower than a given target level.
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Because the penalty cost of shortage is difficult to determine in practice, some HOs will not
use cost to guide their decision. Gralla et al. (2014) study five attributes (e.g., quantity, type,
location, speed, and cost) based on the preferences of experts toward humanitarian logistics,
and the results show that quantity delivered is the most valued objective while cost is the least
important. In addition, although we can ensure that the satisfaction of demands is maintained
at a certain level by probabilistic constraints, we may ignore the unmet demands and the
seriousness of their impact.

2.3 Equity

In the fields of operations research and management science (OR/MS), there are many different
ways of incorporating equity into decision making. For a comprehensive overview of equity in
OR/MS problems, we refer readers to the recent reviews provided by Karsu and Morton (2015).
One of the most common ways of modeling equity is the lexicographic optimization approach,
which is applied in many fields, such as resource allocation (Luss 1999), network flows (Nace
and Orlin 2007) and appointment scheduling (Qi 2017). Moreover, the solution derived by the
lexicographic approach is sometimes considered to be the most equitable solution (Karsu and
Morton 2015).

In humanitarian operations, equity concerns play a role in the reallocation of relief items to
beneficiaries. To provide relief resources to demand locations in a fair manner, the existing liter-
ature mainly studies equity from the perspectives of response time and supply quantity. Huang
et al. (2012) employ a convex disutility function to study the arrival time equity in humanitar-
ian logistics problems. Holgúın-Veras et al. (2013) introduce a new concept called deprivation
cost, which depends on the deprivation time. They quantify equity concerns for postdisaster
humanitarian logistics by using social costs, which is the sum of logistic and deprivation costs.
Following their direction, some studies have employed deprivation costs in their model to en-
sure equitable relief delivery operations in some sense (Ni et al. 2018, Yu et al. 2018). Gutjahr
and Fischer (2018) show that minimizing the total deprivation cost given a budget may yield
inequitable solutions and they propose to extend the deprivation cost objective with the Gini
inequity index. In terms of equitable allocation quantities, Noyan et al. (2016) compute the
maximum proportion of unsatisfied demand among demand locations and apply a proportional
allocation policy to ensure equitable allocation of resources in the last mile. Velasquez et al.
(2019) introduce equity constraints to ensure that relief items are distributed proportionately to
the demand. Huang and Rafiei (2019) investigate equitable resource allocation by balancing the
delivery quantities and times to different locations. Arnette and Zobel (2019) apply a measure
of relative risk and develop a risk-based objective function to ensure equitable allocations of
assets in advance of a natural disaster. Recently, Uichanco (2022) propose a stochastic pro-
gramming model for typhoon preparedness with two objectives, one of which is a fair strategy
by minimizing the expected largest proportion of unmet demand.

2.4 Distinction of Our Work from Past Literature

Motivated by special features that HOs face in practice, our paper considers three important
aspects of humanitarian operations: shortages, equity, and uncertainty. Previous studies on
predisaster relief network design mainly use a cost criteria (e.g., setup cost, purchase cost,
transportation cost, shortage cost, etc.), while some HOs will not use cost to guide their decision
(Uichanco 2022). Besiou and Van Wassenhove (2020) also argue that it is not easy to evaluate
the performance of humanitarian operations through cost. Furthermore, as we mentioned before,
HOs usually put the cost in the least important position and the amount of supply delivered in
the first place (Gralla et al. 2014). Therefore, we use the amount of supply shortage to measure
the severity of shortages and formulate a mixed-integer lexicographic optimization problem with
non-convex objectives.

Although there has been significant progress in addressing lexicographic optimization models
(see, for instance, Marchi and Oviedo 1992, Nace and Orlin 2007), these approaches cannot be
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applied to non-convex models with discrete and continuous decisions, which have received less
attention in the literature. Nace and Orlin (2007) provide a polynomial approach for linear
lexicographic optimization problems and prove its optimality. Ogryczak et al. (2005) propose
a reformulation based on conditional means for lexicographic optimization problems with non-
convex feasible sets. Since our model has a non-convex objective function, this method will
lead to a mixed-integer non-convex programming reformulation, which we expect to quickly
become intractable for large-scale problems. Recently, Letsios et al. (2021) propose a branch-
and-bound algorithm for a scheduling problem to obtain exact lexicographic scheduling. Because
the scheduling problem belongs to a typical combinatorial optimization problem, they enumerate
all possible job-to-machine assignment, which cannot be applied to problems that include both
discrete and continuous decisions. In this stream of literature, the most relevant work to ours is
Qi (2017), who propose a lexicographic minimization procedure for mixed-integer lexicographic
optimization model with non-convex objectives. However, we find that such a procedure cannot
guarantee optimality for our problems. Therefore, our paper corrects for a deficiency found in
Qi (2017). Specifically, we propose a new branch-and-bound algorithm for solving non-convex,
mixed-integer, lexicographic optimization problems and prove its optimality.

3 Problem Formulation

In this section, we begin by introducing some notational conventions used in the remaining
sections. We then present a multi-objective two-stage stochastic optimization model for the
PRNDP. After that, we introduce a measure to evaluate shortages in the presence of demand
uncertainty. Finally, we formulate a lexicographic minimization problem to address equity
concerns.

3.1 Notation

We use boldfaced characters to represent vectors (e.g., x ∈ Rn). We use |L| to denote the
cardinality of a set L and (x)+ to denote max(x, 0). We use P0(Rn) to represent the set of
all probability distributions on Rn. A random variable, d̃, is denoted with a tilde sign, and we
use d̃ ∼ P, P ∈ P0(Rn) to define d̃ as a n-dimensional random variable with distribution P.
We assume that P lies in a distributional ambiguity set F ⊂ P0(Rn) and denote EP[·] as the
expectation over the probability distribution P.

3.2 A Two-stage Model

Given a set of potential demand locations L, we assume that a facility can be opened at any
such demand locations. Each location i ∈ L represents a geographical area (e.g., state, county,
district, etc.) with a random relief demand d̃i : Ω → R+ on a probability space (Ω,Σ, P̄). Let K
denote the discrete set of possible facility sizes, indexed by κ, and letMκ > 0 denote the capacity
of facility of category κ. Associated with each candidate location i and each size category κ is a
fixed location cost ciκ > 0. We consider a single type of inventory unit that consists of a bundle of
critical relief supplies, including prepackaged food, medical kits, blankets, and water. The total
amount of these emergency supplies, denoted by R > 0, is determined by predisaster donations.
Let B > 0 denote the total budget for opening the facilities. In the predisaster operations, HOs
need to decide where to set up the facilities for prepositioning emergency supplies and how much
inventory to preposition in each facility that has been opened. After a disaster, the reallocation
operation of emergency supplies should be able to adjust adaptively. To formulate the model, let
xiκ ∈ {0, 1} denote whether or not a facility of size category κ ∈ K is opened at location i ∈ L
and let ri ≥ 0 denote the number of supplies prepositioned at location i ∈ L. In addition, let
ỹij : Ω → R+ be an adaptive strategy indicating the amount of supplies reallocated to location
j ∈ L from location i ∈ L under each possible outcome ω ∈ Ω and similarly ũi : Ω → R+ be
a random variable denoting the planned amount of unsatisfied demand at location i ∈ L. The
parameters and decision variables for the model are summarized in Table 1.
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Table 1: Model Parameters and Decision Variables

Sets
L Set of demand locations
K Set of facility size categories
Parameters
ciκ Fixed cost of opening a facility of size category κ at location i
Mκ Capacity of a facility of size category κ
R A total amount of emergency supplies
B Budget limit for opening the facilities
τi The tolerance threshold of supply shortage for demand location i

d̃i Random relief demand at location i
Decision variables
xiκ 1, if a facility of size category κ is opened at location i; 0 otherwise
ri The amount of supplies prepositioned at facility location i
ỹij The amount of supplies allocated to location j from location i
ũi The amount of unmet demand (supply shortage) at location i

To determine predisaster deployment decisions, we formulate the following constraints:∑
κ∈K

xiκ ≤ 1, i ∈ L, (1a)

ri ≤
∑
κ∈K

Mκxiκ, i ∈ L, (1b)∑
i∈L

ri ≤ R, (1c)∑
i∈L

∑
κ∈K

ciκxiκ ≤ B. (1d)

According to constraint (1a), not more than one facility can be opened at any demand
location. Constraint (1b) states that the quantity of prepositioned relief items cannot exceed
facility capacity. Constraint (1c) specifies that the total amount of the emergency supplies is R.
Constraint (1d) ensures that the construction of response facilities are within the given budget.
Note that one also can decide whether to consider other costs in the budget constraint according
for different settings. Furthermore, the shortage can be represented by a convex piecewise linear
function as defined next.

Definition 1. (Supply Shortage) For any fixed decision (x, r,y) and realization d, the relief
supply shortage for location i ∈ L is defined by the function

f(x, r,y,d) :=

di +
∑

j∈L\i

yij − (ri +
∑

j∈L\i

yji)

+

.

This gives rise to the following multi-objective optimization problem under uncertainty:

(PMOU) minimize
x,r,ỹ,ũ

{ũi}i∈L (2a)

s.t. ũi =

d̃i +
∑

j∈L\i

ỹij − (ri +
∑

j∈L\i

ỹji)

+

, a.s., i ∈ L, (2b)

∑
j∈L\i

ỹij ≤ ri, a.s., i ∈ L, (2c)

ỹij ≥ 0, a.s., i, j ∈ L, (2d)

(1a)− (1d),
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where “a.s.” stands for almost surely. Constraint (2b) ensures the exact calculation of the
relief supply shortages. Constraint (2c) restricts that the amount of supply delivered from each
facility does not exceed the level of prepositioned supplies. Note that the objective of problem
PMOU is both multiple, as it attempts to minimize the shortage at each location i ∈ L, and
uncertain, as the shortages depend on random demand. Hence, in the next two sections, we
will discuss how we propose to control the risk of excessive shortage and trading off between
the different locations in an equitable way. In doing so, it will be useful to summarize problem
PMOU using:

minimize
ũ∈U

ũ ,

where U represents the set of random shortage vectors that can be produced in problem PMOU,
i.e.

U := {ũ | ∃x, r, ỹ, (1a)− (1d), (2b)− (2d)}.

3.3 Shortage Severity Measure

For any feasible decisions (x, r), we can first consider in isolation how to treat the uncertainty
about supply shortages ũi at each location i. This will be done by assuming throughout this
section that L = 1, so that u will be referred as the random shortage ũ. The classical stochastic
relief network design approaches assume a known probability setting and employ a risk measure
such as the expected supply shortage (see, for instance, Rawls and Turnquist 2010). On the
other hand, classical robust optimization tends to produce overly conservative solutions because
of ignoring any knowledge regarding the distribution except for its support. Therefore, we
apply an alternative modeling paradigm known as distributionally robust optimization (DRO)
and assume that P is only known to belong to a convex ambiguity set F that is characterized
by partial distribution information estimated from historical data (see Bertsimas et al. 2019
and references therein). As a result, we can seek the worst-case distribution to protect the risk
measure by hedging against all probability distributions in F . In our model, we will consider a
generic risk constraint in the form

sup
P∈F

ρ (ũ) ≤ τ,

where ρ(ũ) denotes a risk measure of supply shortages, τ represents a bounding threshold for
the risk of supply shortages.

Next, we discuss the specific form of risk measure. When the coherent risk measure CVaR is
specified as the risk measure, we can set ρ (ũ) := CVaR1−α (ũ). We refer interested readers to
Rockafellar and Uryasev (2000) and references therein for more details and examples of modeling
and optimization problems using CVaR. In this setting, the CVaR is the expected shortage given
that it falls beyond its 1− α quantile. Hence, intuitively, this setting ensures that the CVaR of
the supply shortage with 1−α confidence remains under τ for all distributions in the set F . In
addition, CVaR has been adopted as a preferred measure in disaster management. For example,
Elçi and Noyan (2018) suggest that CVaR is a reliable measure for the supply shortages. Alem
et al. (2016) compare different risk measures, showing that the CVaR concept leads to higher
demand satisfaction.

With the worst-case CVaR as a risk measure, one can impose

sup
P∈F

CVaR1−α (ũ) ≤ τ (3)

to keep the worst-case CVaR of the supply shortages below a threshold τ . Note that the
worst-case CVaR is still a coherent risk measure and exhibits some valuable properties (Zhu and
Fukushima 2009). We propose an equivalent representation of the worst-case CVaR of shortages
in Lemma 1.

Lemma 1. The bounded worst-case CVaR constraint (3) is equivalent to:

inf
η≥0

(
η +

1

α
sup
P∈F

EP

[
(ũ− η)

+
])

≤ τ. (4)
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With the worst-case CVaR of shortages in hand, we next introduce a measure to evaluate
the uncertain relief supply shortage in Definition 2.

Definition 2. (Shortage Severity Measure) Assume an uncertain supply shortage denoted
by the random variable ũ ∈ U and a tolerance threshold τ ≥ 0. If we only know that the true
distribution P lies in a distributional ambiguity set F , we define the SSM ρτ : U → [0, 1] as
follows:

ρτ (ũ) :=

 inf
α∈(0,1]:V1−α(ũ)≤τ

α if V0(ũ) ≤ τ ,

1 if V0(ũ) > τ,

where V1−α(ũ) is the worst-case CVaR1−α of the ũ defined as

V1−α(ũ) := inf
η≥0

{
η +

1

α
sup
P∈F

EP
[
(ũ− η)+

]}
, α ∈ (0, 1],

so that V0(ũ) := supP∈F EP[ũ].

Intuitively, for any given random shortage, SSM quantifies the risk of excessive shortage
using a number between 0 and 1. If there is no possibility of shortage beyond τ , then the value
of the SSM is 0. When the supply shortage is on average close or beyond τ , the SSM value will
be close to 1. It is desirable to have an uncertain supply shortage with the smallest SSM value,
because it implies that even for those unlikely massive demands, their worst-case CVaR can still
be no more than the tolerance threshold.

The further interpretation is that the SSM fixes the shortage threshold τ and then identifies
the smallest level of risk tolerance α such that the worst-case CVaR1−α of shortages evaluated
at that level is acceptable. Given that CVaR1−α(X) is known to always provide an upper
bound for VaR1−α(X), SSM can also be interpreted as a tractable method for minimizing the
probability of violating the shortage threshold (see Brown and Sim 2009 for more details).

We note that the SSM falls within the framework of satisficing measures proposed by Brown
and Sim (2009) and is analogous to the Delay Unpleasantness Measure in Qi (2017) and the
buffered probability of exceedance in Mafusalov and Uryasev (2018). To the best of our knowl-
edge, this is the first time that a satisficing measure has been used in disaster management.
Specifically, SSM can be regarded as ρτ (ũ) := 1 − S(τ − ũ), where S is a satisficing measure.
We further present several important properties in Proposition 2.

Proposition 2. Given ũ, ũ1, ũ2 ∈ U , the SSM satisfies the following properties:

i) Monotonicity: if P(ũ1 ≤ ũ2) = 1 for all P ∈ F , then ρτ (ũ1) ≤ ρτ (ũ2).

ii) Satisfaction: ρτ (ũ) = 0 if and only if P(ũ ≤ τ) = 1 for all P ∈ F .

iii) Dissatisfaction: if sup
P∈F

EP[ũ] > τ , then ρτ (ũ) = 1.

iv) Quasi-convexity: for any α̂ ∈ (0, 1], the set U (α̂) := {ũ|ρτ (ũ) ≤ α̂} is closed and convex.

The monotonicity property implies that the smaller the shortage, the lower the risk. This
is consistent with disaster management practices because the decision maker prefers smaller
shortages. The satisfaction property ensures that, if an uncertain shortage is fully tolerable
in the affected area, then the value of the measure is zero. This property also indicates that
shortages below the tolerable threshold are the most preferred. The dissatisfaction property
shows that, if an uncertain shortage exceeds the tolerable threshold of the affected area in
worst-case expectation, then the severity of the shortage reaches the limit, which should be
avoided in disaster management. The quasi-convexity is an appealing property in optimization
that, under certain conditions such as the convexity of U , allows us to efficiently obtain a global
SSM minimizer.
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3.4 Equity Modeling

Equity is an essential issue in humanitarian operations and providing relief supplies to every
affected individual in an equitable manner has become a social consensus. While there are many
concepts with regard to equity, typically they can be divided into horizontal equity and vertical
equity (Karsu and Morton 2015). In the context of disaster management, horizontal equity
refers to every individual or group being given the exact same resources to meet their needs
(an example of which can be seen in Figure 1(a)), while vertical equity allocates the resources
based on the different needs of the recipients (see Figure 1(b)). Since HOs need to consider
relief demands of all victims from a global perspective and provide treatment accordingly, we
mainly focus on vertical equity. Moreover, supply shortages often raise concerns about equity,
so we characterize the concept of an equitable solution (see, for instance, Luss 1999) from the
perspective of shortages in Definition 3.

(a) Horizontal equity (b) Vertical equity

Figure 1: Horizontal Equity and Vertical Equity (Adapted from © 2014, Saskatoon Health Region.)

Definition 3. (Equitable Solution) A solution is called equitable if no affected area can reduce
its SSM value without raising an already equal or higher SSM value of another area.

To obtain such an equitable solution, we can formulate a lexicographic minimization problem
according to the Rawlsian principle of justice (Rawls 1971), as follows:

(PLM) ũ∗ ∈ arg leximin
ũ∈U

ρτ (ũ), (5)

where ρτ (ũ) :=
[
ρτ1(ũ1), ρτ2(ũ2), ..., ρτ|L|(ũ|L|)

]⊤
, and where ũi and τi respectively denote un-

certain shortage and tolerable shortage thresholds for location i ∈ L. Let ũ∗ denote the optimal
lexicographic solution that provides the lexicographically minimal vector α∗ := ρτ (ũ

∗). To keep
this paper self-contained, we briefly provide the definition of lexicographic order in Definition 4.

Definition 4. (Lexicographic Order) Given δ ∈ R|L|, let δ⃗ ∈ R|L| denote the vector δ with
its indices reordered so that the components are in non-increasing order. The vector δ ∈ ∆
is lexicographically less than δ′ ∈ ∆, denoted by δ ⪯ δ′ if either δ⃗ = δ⃗′ or there exists a
k ∈ {1, . . . , |L|}, such that δ⃗i = δ⃗′i for all i < k and δ⃗k < δ⃗′k. Furthermore, a vector δ ∈ ∆ is
said to be lexicographically minimal in some ∆ ⊆ R|L| if for every vector δ′ ∈ ∆, δ ⪯ δ′.

Remark 1. In problem PLM, we note that our definition of lexicographic ordering does not
impose an a-priori ordering on which elements of ρτ (ũ) should be minimized first. It rather
should be understood as minimizing in order from 1 to |L| the terms of the sorted (in decreasing
order) ρ⃗τ (ũ).
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With this objective in hand, we can present our proposed predisaster relief network design
problem with equity (PRNDP-E):

(PRNDP-E) leximinimize
x,r,ỹ,ũ

ρτ (ũ) (6a)

s.t. (1a)− (1d), (2b)− (2d). (6b)

where “leximinimize” refers to our search for the minimal feasible solution in terms of lexi-
cographic ordering. Mathematically, x is discrete while r is continuous, both ỹ and ũ are
adaptable, and each ρτ (·) is quasi-convex, we say that our problem belongs to the class of dis-
tributionally robust mixed-integer non-convex two-stage lexicographic optimization problems.
Furthermore, as we show in Section 2.4 and Appendix A, we find that the lexicographic mini-
mization procedure proposed by Qi (2017) for such problems cannot guarantee optimality. This
motivates us to develop an efficient computational method with the guarantee of finding exact
solutions to non-convex, mixed-integer, lexicographic optimization problems.

Remark 2. PRNDP-E offers a way of handling shortage risk with equity in mind. Alternative
formulations can also be proposed that employ other risk metric than worst-case SSM, e.g. the
worst-case expectation or CVaR. We will explore these alternative formulations later in the
paper.

4 Solution Approach

In this section, we first propose a new branch-and-bound algorithm to address the lexicographic
minimization aspect of the PRNDP-E. We then handle demand–distribution ambiguity by the
robust stochastic optimization approach. Finally, we discuss two approaches for identifying
optimal adaptable resource reallocation.

4.1 The Branch-and-Bound Algorithm

We first focus on proposing a branch-and-bound algorithm (see Algorithm 1) for solving non-
convex mixed-integer lexicographic optimization models of the form presented in problem PLM.
For convenience, we refer to the lexicographic minimal vector as α∗ := ρτ (ũ

∗) ∈ R|L|, to
the lexicographic order as ⪯, and to ᾱ and α as respective upper and lower bounds for α∗ if
α ⪯ α∗ ⪯ ᾱ. The algorithm starts by minimizing a worst-case SSM over all locations i ∈ L.
Then the procedure branches according to locations imposing that the SSM for this location
does not exceed the minimax value that was identified at its parent node. Hence, each node n
in the enumeration tree N corresponds to a minimax problem (7) in which the SSM for some
locations in L̄n cannot exceed αn

i , while the worst SSM is minimized for the other locations (i.e.,
i ∈ L/L̄n). A lower bound αn for the children of each node is also maintained and compared to
the best solution ᾱ found so far in order to trim the node if no improvement can be achieved.

Remark 3. We note that Algorithm 1 might in the worst case expand a number of nodes that
is factorial with respect to the number of locations. In order to keep the list of expandable nodes
as small as possible, in our implementation we make two changes to Algorithm 1. First, in the
step of branching (i.e., Step 16), one can alternatively obtain a lower bound using the following
model for all i ∈ L/L̄n′

:

αn′

i := min
ũ∈U

ρτi(ũi)

s.t. ρτj (ũj) ≤ αn
j , j ∈ L̄n,

ρτj (ũj) ≤ v∗n, j ∈ L/L̄n.

Second, in Step 6, we select the node with lowest lower bound first. With these changes, we
observed empirically in our case study that there is never a need to expand a number of nodes
that is comparable to |L|!.
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Algorithm 1 Branch and Bound Algorithm for Lexicographic Optimization Problem PLM

1: Input: A set U and vectored risk measure ρ : U → R|L|

2: Output: The lexicographic minimal vector α∗ and a lexicographic minimal solution u∗.
3: Set ᾱi := ∞ for all i, and some arbitrary ū ∈ U .
4: Initialize enumeration tree N := {n0} with L̄n0 := ∅, αn0

i := −∞ for all i.
5: while N ̸= ∅ do
6: Select a node n in the enumeration tree N and remove n from N (Node selection)
7: if αn ≺ ᾱ then (Node expansion)
8: Solve the following minimax problem associated with node n,

min
ũ∈U

max
i∈L/L̄n

ρτi(ũi) (7a)

s.t. ρτi(ũi) ≤ αn
i , i ∈ L̄n, (7b)

9: Let v∗n and ũ∗
n be optimal value and the minimizer of problem (7)

10: Construct ᾱn as follows:

ᾱn
i :=

{
αn
i if i ∈ L̄n

v∗n otherwise

11: if ᾱn ⪯ ᾱ then (Update best solution)
12: Let ᾱ := ᾱn and ū := ũ∗

n.
13: end if
14: if |L/L̄n| > 1 then (Branching)
15: for j ∈ L/L̄n do
16: Create new node n′ with L̄n′

:= L̄n ∪ j and

αn′
i :=


αn
i if i ∈ L̄n

v∗n if i = j
−∞ otherwise

17: Append the new node n′ to N .
18: end for
19: end if
20: end if
21: end while
22: return α∗ := ᾱ and u∗ := ū.
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We now prove the optimality of the output vector α∗ in Theorem 1.

Theorem 3. The vector α∗ returned by Algorithm 1 is lexicographically minimal, i.e. α∗ ⪯
ρτ (ũ) for all ũ ∈ U .

Since we need to solve a series of similar minimax problems (7) repeatedly, we then mainly
focus on solving these problems. By Definitions 1 and 2, we can reorganize problem (7) as the
following distributionally robust optimization (DRO) problem:

(PDRO) v
∗
n := inf

x,r,η,α,ỹ,ũ
α (8a)

s.t. ηi +
1

α
sup
P∈F

EP

[
(ũi − ηi)

+
]
≤ τi, i ∈ L \ L̄n, (8b)

ηi +
1

αn
i

sup
P∈F

EP

[
(ũi − ηi)

+
]
≤ τi, i ∈ L̄n, (8c)

ũi =

di +
∑

j∈L\i

ỹij − (ri +
∑

j∈L\i

ỹji)

+

, a.s. under all P ∈ F , i ∈ L,

(8d)∑
j∈L\i

ỹij ≤ ri, a.s. under all P ∈ F , i ∈ L,

(8e)

ỹij ≥ 0, a.s. under all P ∈ F , i, j ∈ L,
(8f)

(1a)− (1d), α ∈ (0, 1],η ≥ 0. (8g)

We note that ηi +
1

α
sup
P∈F

EP[ũi − ηi]
+ is non-increasing in α which implies that the set of

feasible α’s has the form [α∗, 1]. Hence, one can solve problem PDRO by performing a bisection
search for α∗, which at each step tests for the feasibility PDRO when α is fixed to some value.
The latter reduces to verifying the feasibility of a convex optimization problem. However, we
still face two challenges in solving problem PDRO: (i) how to construct an ambiguity set F ; and
(ii) how to develop a tractable formulation so that a feasible solution can be quickly found.

4.2 The Robust Stochastic Optimization Approach

To handle problem PDRO, we deploy the framework of robust stochastic optimization (RSO),
where the uncertainty associated with problems is described by an event-wise ambiguity set.

4.2.1 Event-wise Ambiguity Set.

The uncertain demands are strongly correlated with covariates (e.g., the Seismic magnitude
scales), so we can raise the level of forecasting for uncertain demands by using such data. It
follows that we need to consider uncertain covariates and uncertain demands to construct an
event-wise ambiguity set (see Chen et al. 2020). For example, in the context of earthquake
preparedness, the Richter scale (ML) can be used as a covariate to construct an event-wise
ambiguity set: when an earthquake reaches magnitude ML7.0, it will cause more damage than
an earthquake of magnitude ML5.0 and the demand for relief supplies will also be higher. For
simplicity, we further divide the space of covariates into |S| non-overlapping regions to form |S|
scenarios. This gives rise to the outcome space Ω := {(d̃, s̃) ∈ R|L| × |S|}. Let s represent a
scenario taking values in S and ps denote the probability of scenario s happening. Furthermore,
we have P(s̃ = s) = ps and

∑
s∈S ps = 1, where s̃ represents a set of random scenarios whose

realization probabilities may be uncertain. The joint distribution of (d̃, s̃) is denoted by P ∈ F .
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Now, we specify the event-wise ambiguity set F as

F :=

P ∈ P0(R|L| × |S|) :

(d̃, s̃) ∼ P
P(d̃ ∈ Ds|s̃ = s) = 1, s ∈ S
EP[d̃|s̃ = s] = µs, s ∈ S
EP[|d̃− µs|

∣∣s̃ = s] ≤ νs, s ∈ S
P(s̃ = s) = ps, s ∈ S

 ,

where Ds is the support set defined as

Ds :=
{
d̃ ∈ R|L| : ds ≤ d̃ ≤ d

s
}
.

In F , it is natural to incorporate the mean, the mean absolute deviation and the support set
of the random variable d̃. Specifically, for different scenarios, the bounded support set defined
in the first set of equality constraints may differ. Conditioning on the scenario realization, the
mean of d̃ is specified in the second set of equality constraints, while the third set of inequality
constraints provides upper bounds on the mean absolute deviation of d̃. The last set of equality
constraints specifies the probability of each scenario. F requires simple descriptive statistics
from data and allows us to model a rich variety of structural information about the uncertain
demand.

4.2.2 Model Reformulation.

Note that the event-wise ambiguity set F involves nonlinear moment constraints, so we introduce
an auxiliary probability space Ω′ := {(d̃, z̃, s̃) ∈ R|L| ×R|L| × |S|} to reformulate the ambiguity
set F as the projection of a lifted ambiguity set G:

G :=

Q ∈ P0(R|L| × R|L| × |S|) :

(d̃, z̃, s̃) ∼ Q
Q((d̃, z̃) ∈ D̄s|s̃ = s) = 1, s ∈ S
EQ[d̃|s̃ = s] = µs, s ∈ S
EQ[z̃|s̃ = s] ≤ νs, s ∈ S
Q(s̃ = s) = ps, s ∈ S

 ,

where D̄s is the lifted support set defined as

D̄s :=

{
(d̃, z̃) ∈ (R|L| × R|L|) :

ds ≤ d̃ ≤ d
s

|d̃− µs| ≤ z̃

}
.

Compared with the original ambiguity set F , the lifted ambiguity set G is a set of distributions
of random triplet (d̃,z̃, s̃). Furthermore, following recent results in DRO (see Bertsimas et al.
2019), we can define the ambiguity set F as the set of marginal distributions over (d̃, s̃) for all
Q ∈ G. That is, F =

∏
d̃,s̃ G. With the lifted ambiguity set G in hand, we transform problem

PDRO in Lemma 4.

Lemma 4. The distributionally robust optimization problem PDRO with F , i.e., F =
∏

d̃,s̃ G,
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is equivalent to the following adjustable robust optimization (ARO) problem:

(PARO) v∗n :=

inf
x,r,η,α,{ys(·)}s∈S

π1,π2,π3≥0

α (9a)

s.t. ηi +
1

α

∑
s∈S

(π1
si +

(
π2
si)

′µs + (π3
si)

′νs
)
≤ τi, i ∈ L \ L̄n, (9b)

ηi +
1

αn
i

∑
s∈S

(
π1
si + (π2

si)
′µs + (π3

si)
′νs

)
≤ τi, i ∈ L̄n, (9c)

π1
si + (π2

si)
′d+ (π3

si)
′z ≥ 0, (d, z) ∈ D̄s, s ∈ S, i ∈ L,

(9d)

π1
si + (π2

si)
′d+ (π3

si)
′z ≥ −psηi, (d, z) ∈ D̄s, s ∈ S, i ∈ L, (9e)

π1
si + (π2

si)
′d+ (π3

si)
′z ≥ ps(di +

∑
j∈L\i

ysij(d, z)

− (ri +
∑

j∈L\i

ysji(d, z))− ηi), (d, z) ∈ D̄s, s ∈ S, i ∈ L, (9f)

∑
j∈L\i

ysij(d, z) ≤ ri, (d, z) ∈ D̄s, s ∈ S, i ∈ L,

(9g)

ysij(d, z) ≥ 0, (d, z) ∈ D̄s, s ∈ S, i, j ∈ L
(9h)

(1a)− (1d), α ∈ (0, 1],η ≥ 0. (9i)

where each ysij : R|L| × R|L| → R, and where π1
si, π

2
si and π3

si are the dual variables associated
with first, second, and third constraints that define G.

Note that problem PARO is a semi-infinite programming problem with an infinite number
of constraints and adaptive decision variables. Specifically, the adaptive decisions ysij can be

seen as general functions of random vectors (d̃, z̃). Therefore, problem PARO is not yet directly
solvable.

4.3 Identifying Optimal Adaptable Resource Reallocation

4.3.1 Exact Solution.

Based on a vertex enumeration (VE) method, we first present an exact linear programming
reformulation for problem PARO in Proposition 5.

Proposition 5. The adjustable robust optimization problem PARO is equivalent to the following
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mixed-integer linear program:

(PVE) v
∗
n :=

inf
x,r,η,α,{ys(·)}s∈S

π1,π2,π3≥0

α (10a)

s.t. ηi +
1

α

∑
s∈S

(
π1
si + (π2

si)
′µs + (π3

si)
′νs

)
≤ τi, i ∈ L \ L̄n, (10b)

ηi +
1

αn
i

∑
s∈S

(
π1
si + (π2

si)
′µs + (π3

si)
′νs

)
≤ τi, i ∈ L̄n, (10c)

π1
si + (π2

si)
′d(ω) + (π3

si)
′z(ω) ≥ 0, ω ∈ Ωs, s ∈ S, i ∈ L,

(10d)

π1
si + (π2

si)
′d(ω) + (π3

si)
′z(ω) ≥ −psηi, ω ∈ Ωs, s ∈ S, i ∈ L,

(10e)

π1
si + (π2

si)
′d(ω) + (π3

si)
′z(ω) ≥ ps(di(ω) +

∑
j∈L\i

ysij(ω)

− (ri +
∑

j∈L\i

ysji(ω))− ηi), ω ∈ Ωs, s ∈ S, i ∈ L,

(10f)∑
j∈L\i

ysij(ω) ≤ ri, ω ∈ Ωs, s ∈ S, i ∈ L,

(10g)

ysij(ω) ≥ 0, ω ∈ Ωs, s ∈ S, i, j ∈ L,
(10h)

(1a)− (1d), α ∈ (0, 1],η ≥ 0. (10i)

where each ysij : Ωs → R, and where, for all s ∈ S, the set {d(ω)}}ω∈Ωs contains all vertices of

the bounded polyhedron D̄s
b defined as:

D̄s
b :=

{
(d̃, z̃) ∈ R|L| × R|L| : ds ≤ d̃ ≤ d

s
, |d̃i − µs

i | ≤ z̃i ≤ max{dsi − µs
i , µ

s
i − dsi} ∀i ∈ L

}
.

Note that the number of vertices indexed by Ωs for all s ∈ S grows exponentially with the
number of locations. In practice, we can employ a column-and-constraint generation (C&CG)
method to speed up the resolution. We however consider further investigation of acceleration
schemes to fall beyond the scope of this paper, and instead derive in the next subsection a
conservative approximation that takes the form of a more reasonably sized mixed-integer linear
programs (MILP).

4.3.2 Affinely Adjustable Robust Counterpart.

We apply the idea of an affine decision rule to address adaptive decisions and solve an approxi-
mate problem. More specifically, for each scenario s ∈ S, we approximate the adaptive decision
by an affine function ys(·) ∈ A , where

A :=

{
y : R|L| × R|L| → R|L|×|L| :

∃y0,y1
l ,y

2
l ∈ R|L|×|L|,∀l ∈ L

y(d, z) = y0 +
∑
l∈L

y1
l dl +

∑
l∈L

y2
l zl

}
.
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We then have the following affinely adjustable robust counterpart (AARC) of problem PARO:

(PAARC) v
AARC
n :=

inf
x,r,η,α,{ys(·)}s∈S

π1,π2,π3≥0

α (11a)

s.t. ηi +
1

α

∑
s∈S

(
π1
si + (π2

si)
′µs + (π3

si)
′νs

)
≤ τi, i ∈ L \ L̄n, (11b)

ηi +
1

αn
i

∑
s∈S

(
π1
si + (π2

si)
′µs + (π3

si)
′νs

)
≤ τi, i ∈ L̄n, (11c)

π1
si + (π2

si)
′d+ (π3

si)
′z ≥ 0, (d, z) ∈ D̄s, s ∈ S, i ∈ L,

(11d)

π1
si + (π2

si)
′d+ (π3

si)
′z ≥ −psηi, (d, z) ∈ D̄s, s ∈ S, i ∈ L,

(11e)

π1
si + (π2

si)
′d+ (π3

si)
′z ≥ ps

(
di +

∑
j∈L\i

ysij(d, z)

− (ri +
∑

j∈L\i

ysji(d, z))− ηi
)
, (d, z) ∈ D̄s, s ∈ S, i ∈ L,

(11f)∑
j∈L\i

ysij(d, z) ≤ ri, (d, z) ∈ D̄s, s ∈ S, i ∈ L,

(11g)

ysij(d, z) ≥ 0, (d, z) ∈ D̄s, s ∈ S, i, j ∈ L,
(11h)

ys(·) ∈ A , s ∈ S (11i)

(1a)− (1d), α ∈ (0, 1],η ≥ 0. (11j)

Since problem PAARC has an infinite number of constraints, it cannot be solved directly. One
can alternatively view some constraints in problem PAARC as robust counterparts of the linear
optimization problem under the lifted support set D̄s for all s ∈ S. Hence, we can transform
it into a linear optimization problem via standard techniques from the robust literature. For
presentation brevity, the derivation of the resulting MILP is relegated to Appendix B.6.

Moreover, AARC can also lead to improvements in computational performance. Empirically,
according to a preliminary study in Appendix D.3, AARC appears surprisingly accurate with
a maximum measured optimality gap of 8%. Regarding computation time, AARC returns a
solution in 3 seconds on average for experimental instances consisting of 13 locations, while VE
takes more than 2 hours for |L| ≥ 9. Therefore, in the following real-world case study, we apply
AARC to solve problem PARO to achieve the right trade off between quality of solution and
speed of execution.

5 Computational Results

In this section, we conduct a series of numerical studies based on a real earthquake case that
occurred in Yushu County, Qinghai Province, China in 2010. This case consists of 13 locations
and 15 links. The deterministic parameters (e.g., cost, capacity) and demand-related parameters
are from Ni et al. (2018). Moreover, as discussed in Section 4.2.1, we utilize the Richter scale to
construct the event-wise ambiguity set. For presentation brevity, most details of the numerical
studies are pushed to Appendix D.1. In what follows, we compare the performance of different
predisaster relief network design approaches in terms of equity, total shortage, and deployment
plan. We also investigate the impact of the size of total donation (and budget) and of the
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choice of uncertainty model on performance. As we have mentioned in Remark 2, the effects
of three choices of risk measures are compared in Appendix D.4. Appendix D.5 finally offers
an additional sensitivity analysis regarding the threshold vector τ . All experiments are carried
out on a PC with a 3.6-GHz processor and 16 GB RAM. The models are coded in JAVA and
solved using IBM ILOG CPLEX Optimization Studio 12.7.1. Finally, all adjustable robust
optimization problems are solved using their respective affinely adjustable robust counterpart.

5.1 Comparison of Equity Performance

We denote the model that considers equity in both predisaster deployment and postdisaster
reallocation by PRNDP-E and use PRNDP-NE to refer to the benchmark model without equity
in both stages (shown in Appendix C). We also investigate the setting where the decision maker
considers equity only when reallocating supplies after the disaster (with predisaster deployment
fixed to solutoin of PRNDP-NE), denoted by PRNDP-NE-E. We test three models—PRNDP-
E, PRNDP-NE-E, and PRNDP-NE—and compare their out-of-sample performances under the
five commonly used equity indices (shown in Appendix D.2). Specifically, we first solve the
models to optimality and obtain the optimal decisions (x∗, r∗). After that, given each of the
solutions (x∗, r∗) and an observed sample (s,d) pair, for PRNDP-E and PRNDP-NE-E we solve
a deterministic lexicographic optimization problem to minimize the shortage of each location,
while for PRNDP-NE we minimize the total shortage. We then examine (i) the Maximum
Shortage Gap (MSG); (ii) the Relative Mean Deviation (RMD); (iii) the Variance (VAR); (iv)
the Sum of Pairwise Absolute Differences (SPAD); and (v) the Gini coefficient (Gini) of 1,000
test samples.
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Figure 2: Distribution of Equity-Related Indices of Shortage Observed Out-of-Sample

Figure 2 presents the distributions of equity indices for 1,000 test samples under the PRNDP-
E, the PRNDP-NE-E, and the PRNDP-NE solutions. It also presents the distribution of worst
shortage and sum of shortages. First, note that, for all tested equity indices, the PRNDP-E
and the PRNDP-NE-E perform better than the PRNDP-NE because a smaller index value is
more desirable. It indicates the importance of incorporating equity in the allocation of relief
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resources. Second, we can observe that the performance of PRNDP-E is better than PRNDP-
NE-E. The result shows that incorporating equity already in the stage of predisaster deployment
can further improve the equity of resource allocation. This confirms that HOs can draw real value
from jointly considering deployment and reallocation strategies when searching for the most
equitable allocation of relief supplies. More precisely, when it comes to the mean, the 95%VaR,
the 99%VaR, and the standard deviations (STD), the PRNDP-E approach also outperformed
the other two approaches (see Table 2 for detailed statistics). Moreover, all considered models
can be solved within reasonable amount of time. The average computational times to solve the
PRNDP-E, the PRNDP-NE, and PRNDP-NE-E were respectively 586, 3, and 3 seconds.

We further conduct experiments on the Gini coefficient. Since the Gini coefficient is often
represented graphically through the Lorenz curve, Figure 3 shows the Lorenz curve of shortage
distributions by plotting the location percentile by shortages on the x-axis and cumulative
shortages on the y-axis. We can observe that the curve of PRNDP-E is closer to the line of
perfect equality with a Gini coefficient equal to 0.08, which is smaller than the results of the
other two approaches.
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Figure 3: Gini Coefficient (Measured Out-of-Sample) under PRNDP-E, PRNDP-NE-E, and
PRNDP-NE

To capture more of the impact of equity, we conduct more numerical experiments. Specifi-
cally, we first add a perturbation ∆ to the mean of the out-of-sample demand distribution, that
is µs

out := (1 +∆)µs for all s ∈ S. Then we generate 1,000 test samples from the out-of-sample
distribution according to the value of ∆ (see Appendix D.1 for details). In Table 2, we summa-
rize the out-of-sample performance of equity indices under the PRNDP-E, the PRNDP-NE-E,
and the PRNDP-NE. We observe that on the average and in the extremes (VaR@95% and
VaR@99%) the PRNDP-E continues to outperform the other two approaches with regard to all
equity indices. This observation suggests that PRNDP-E does help address equity concerns in
humanitarian operations.
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Table 2: Out-of-Sample Statistics of Equity Index under PRNDP-E, PRNDP-NE-E and PRNDP-
NE

PRNDP-E PRNDP-NE-E PRNDP-NE

∆ Statistic MSG RMD VAR SPAD MSG RMD VAR SPAD MSG RMD VAR SPAD
-0.10 Mean 0.44 1.42 0.44 18.51 2.64 6.23 5.22 96.74 3.57 7.97 6.98 107.58

Var@95% 3.02 9.15 1.15 118.92 18.04 49.43 43.44 633.80 25.26 54.24 49.04 740.64
Var@99% 10.66 36.08 14.79 469.03 28.74 53.43 107.43 1,034.60 37.69 63.08 118.37 1,251.48
STD 1.80 6.18 32.81 80.38 6.50 18.85 280.38 178.14 8.76 19.96 306.21 271.43

-0.05 Mean 1.69 4.89 2.73 63.71 4.84 19.07 19.16 250.35 8.50 23.22 35.43 322.19
Var@95% 11.99 36.85 16.37 479.00 28.61 121.38 133.17 1,596.64 49.46 137.75 208.64 1,941.40
Var@99% 19.56 73.78 53.46 959.19 41.29 181.62 277.25 2,371.20 74.52 214.92 537.53 3,042.16
STD 4.49 14.48 144.08 188.36 10.05 41.90 727.23 551.33 17.83 50.66 1,261.12 709.21

0.00 Mean 3.23 8.53 6.51 111.60 7.25 25.94 31.01 341.42 17.59 51.02 130.17 727.48
Var@95% 20.00 58.38 39.26 758.99 37.05 138.79 196.94 1,804.22 90.37 277.77 732.13 3,976.16
Var@99% 28.03 94.89 102.31 1,233.51 47.49 207.78 359.79 2,701.20 142.62 339.63 1,508.01 5,086.36
STD 7.17 21.09 270.41 276.09 13.13 50.49 1,049.24 667.98 33.93 97.39 3,992.42 1,400.84

0.05 Mean 4.45 11.27 11.02 148.03 9.44 31.59 43.20 415.80 25.64 76.53 267.16 1,104.63
Var@95% 28.61 75.43 76.52 985.44 45.27 154.51 266.72 2,047.20 136.54 392.51 1,607.64 5,718.00
Var@99% 36.73 115.09 151.12 1,500.59 58.47 231.00 534.87 3,090.96 163.06 468.51 2,148.72 6,811.64
STD 9.71 26.51 419.41 347.61 15.94 55.96 1,338.42 737.92 46.92 141.67 7,390.43 2,058.87

0.10 Mean 5.70 14.14 15.50 185.58 11.57 35.18 50.97 464.15 33.54 104.70 446.90 1,526.94
Var@95% 34.65 79.45 98.29 1,081.31 49.02 157.20 268.66 2,055.68 163.81 520.96 2,616.08 7,610.88
Var@99% 43.10 135.41 206.89 1,760.28 62.97 213.50 517.99 2,799.72 182.17 587.16 3,096.05 8,519.88
STD 11.65 30.45 575.97 399.74 18.13 56.36 1,443.08 743.67 58.29 187.71 11,796.93 2,761.86

5.2 Comparison of Total Shortage Performance

To compare the performance in terms of total shortages under the PRNDP-E, the PRNDP-
NE-E, and the PRNDP-NE, we return to Figure 2, where the last two columns of subfigures
present the distributions of worst shortage among all the locations and the distributions of total
shortage, both measured out-of-sample. Specifically, we find that, whereas the distribution of
total shortage for PRNDP-E is similar to PRNDP-NE (only 22% more total shortage on average
based on Table 3, see when ∆ = 0), its distribution of worst shortages is significantly improved
(nearly 5 times less for the average). This observation confirms that PRNDP-E supports the
most vulnerable groups without necessarily incurring a large loss in terms of total shortage. In
contrast, while the PRNDP-NE-E does reduce the worst shortage (nearly 3 times less for the
average), this comes at a heavy price in terms of total shortage (doubling it on average).

Additionally, Table 3 provides a summary of out-of-sample shortage performance data with
different perturbation ∆ of the mean of the out-of-sample distribution. We note that the previous
observation remain stable: PRNDP-E significantly reduces the worst shortage while only slightly
increasing the total shortage, unlike PRNDP-NE-E. The reason for this seems to be that the
preparation of PRNDP-NE-E only considers total shortages, thus changing the objective to
equity after the disaster occurs leads to excessive unforeseen costs.
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Table 3: Out-of-Sample Statistics of Shortage under PRNDP-E, PRNDP-NE-E, and PRNDP-NE

PRNDP-E PRNDP-NE-E PRNDP-NE

∆ Statistic Worst Sum Worst Sum Worst Sum
-0.10 Mean 0.46 5.20 2.64 27.10 3.57 4.70

Var@95% 3.41 38.06 18.04 190.60 25.26 31.25
Var@99% 10.66 117.26 28.74 290.07 37.69 57.12
STD 1.81 20.00 6.50 65.88 8.76 12.00

-0.05 Mean 1.84 21.03 4.85 50.97 8.50 14.94
Var@95% 12.36 143.24 28.61 296.95 49.46 92.25
Var@99% 19.56 221.19 41.29 421.58 74.52 148.82
STD 4.58 51.60 10.04 104.30 17.83 33.55

0.00 Mean 3.68 42.83 7.31 72.78 17.59 35.03
Var@95% 20.04 234.48 37.05 392.10 90.37 192.89
Var@99% 28.03 311.33 47.49 500.50 142.62 238.45
STD 7.45 85.74 13.14 140.31 33.93 68.08

0.05 Mean 5.28 62.17 9.50 104.03 25.64 53.89
Var@95% 28.65 327.09 45.27 493.90 136.54 279.80
Var@99% 36.73 411.40 58.47 604.14 163.06 327.09
STD 10.29 120.37 15.95 174.63 46.92 101.43

0.10 Mean 7.22 85.67 11.64 129.96 33.54 76.03
Var@95% 35.26 426.86 49.02 549.36 163.81 385.02
Var@99% 43.10 487.46 62.97 697.44 182.17 438.39
STD 12.95 153.73 18.15 204.44 58.29 139.53

5.3 Differences in Deployment Plans

We further investigate deployment patterns of PRNDP-E and PRNDP-NE (the same for PRNDP-
NE-E). As shown in Figure 4 (see Appendix D.7 for additional details), we depict the inventory
and expected shortages at each location, where the height of the rectangle next to each open
facility captures its proportion of total emergency supplies, and the radius of the circle under
each location captures its proportion of total shortage. It suggests that, the PRNDP-E prefers
a more decentralized deployment of emergency supplies by establishing more facilities in rural
areas (e.g., location 11), while the PRNDP-NE centralizes everything to minimize the total
shortage. Moreover, for the PRNDP-E, the amount of resources prepositioned in open facilities
is between 155 to 498, while the PRNDP-NE varies from 127 to 685. As a result, each region
can have access to a portion of the supplies under the PRNDP-E so that there will not be severe
shortages in each region. For PRNDP-NE, however, it sacrifices some high shortages in some
rural regions (e.g., location 8-11) to be able to match the shortage in a large number of places.

5.4 Impact of Donations and Budget Constraints

Donations and budgets are major concerns of the HOs in predisaster deployment; they also
directly affect the shortage situation after the disaster occurs. If the HOs do not receive adequate
donations and funds for the prepositioning of emergency supplies, the vulnerable population
will inevitably face a relief shortage after a disaster. Our numerical study shows that donations
and budgets have similar effects, so we focus in this section on the impact of varying the
amount of total donations on shortages, whereas we refer interested readers to Appendix D.6
for a study on the impact of budget. Specifically, we set the total amount of supplies to R =
{1700, 1750, 1800, 1850, 1900} and evaluate the impact of different donations.
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Figure 4: Deployment Plan and Expected Shortage (Measured Out-of-Sample) at Each Location
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Figure 5: Expected Shortage (Measured Out-of-Sample) at Each Location under Different Donation
Levels Figure 5 reports the out-of-sample expected shortage under different donation levels. First,

in Figure 5(a), the expected shortage at each location shows a decreasing trend as donations
increase. However, if equity is not fully considered, then we find that increasing donation does
not necessarily reduce shortages and even increase shortages in some locations. It indicates
that HOs cannot simply increase the amounts of supplies to reduce the shortages at each loca-
tion, but must instead do so through equitable and reasonable resource allocation. As stated
by Besiou and Van Wassenhove (2020):“Reduced funding calls for careful prioritization and
cost-effectiveness, but it should be noted that this may conflict with equity and other ethical
considerations.” Our work can give an equitable solution when the donation is reduced. Second,
we can find that the expected shortage reduction is not symmetric across all locations and not
necessarily proportional to the percentage increase in donations, which is consistent with Ob-
servation 6 in Stauffer and Kumar (2021). Third, the shortage gaps between demand locations
under PRNDP-E is smaller than under PRNDP-NE-E and PRNDP-NE, which demonstrates
the equity efficiency of PRNDP-E from another perspective.

5.5 Impact of Uncertainty Model

The RSO framework unifies both scenario-tree-based stochastic optimization (SAA) and dis-
tributionally robust optimization (DRO). To further illustrate the performance of RSO model,
we compare the out-of-sample performance of the three models in dealing with equity concerns.
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Figure 6: Out-of-Sample Performance of RSO, DRO, and SAA Models

Specifically, Figure 6(a) presents the average of out-of-sample MSG under RSO, DRO and SAA
models for 1,000 test samples. We observe that the RSO model delivers a significantly better
performance than the DRO and SAA models. In particular, when the out-of-sample demands
have higher mean (i.e., ∆ increases from -0.1 to 0.1), the gap between the RSO and the other
two models becomes greater. Moreover, to compare the stability of the methods, we report
the box plot of out-of-sample MSG under RSO, DRO and SAA models in Figure 6(b). We
find that the values under the RSO have the smallest variation between both (25%− 50%) and
(5%−95%), while DRO and SAA incur a relatively large variation. Furthermore, we notice that
even for outliers exceeding 95%, the performance of RSO is still better than that of DRO and
SAA. The above results confirm that the event-wise ambiguity set helps to more clearly describe
the uncertainty of relief demand and alleviate the inequities caused by uncertain shortages.

6 Managerial Insights and Conclusions

Our work considers three important practical aspects of humanitarian operations: shortages,
equity, and uncertainty. Mathematically, we propose a new branch-and-bound algorithm for
the mixed-integer lexicographic optimization problem with non-convex objectives and prove its
optimality. To identify optimal adaptable resource reallocation, we propose two approaches: an
exact approach and a conservative approximation that allows us to solve instances of realistic
size.

Our research also proposes several managerial recommendations for the HOs:

• Decision-making that incorporates equity in predisaster deployment and postdisaster re-
allocation is, in some cases (see sections 5.1 and 5.2), able to significantly reduce the
shortage of the most vulnerable participants while only incurring a reasonable increase in
total shortage. Indeed, while the goal of HOs is usually to minimize the total shortage, the
media will often focus on the most seriously affected participants implying that the HOs is
inequitable in their allocation of resources. Models such as PRNDP-E can definitely help
the HOs better anticipate and mitigate such issues.

• While donation and budget constraints limit the amount of relief resources available to
each beneficiary, the individual shortage may not be alleviated with increased budgets and
donations if equity is not fully incorporated. To respond to the needs of the most vulnerable
people, HOs often request increased relief assistance. This does help reduce total shortages,
but that is not necessarily the case for individuals. The results in Section 5.4 show that
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the shortages experienced by some participants do not decrease proportionally (or even
increase at all) with an increase in donations.

• Disaster event-wise information, if properly segmented, can help alleviate inequities caused
by uncertain relief demands. While disasters are extremely unpredictable and relief de-
mands are difficult to accurately estimate, the use of historical data and/or prior knowledge
can improve decision-making effects. Numerical studies in Section 5.5 demonstrate that
the event-wise ambiguity sets outperform the classical moment ambiguity sets and SAA
in alleviating inequities, which may be regarded as a useful exploration of data-driven
methods in disaster relief management.

In terms of future work, we identify three promising directions. First, whereas this study
focuses on how to best allocate predisaster donations, it could be interesting to also model the
postdisaster donations and investigate how such donation might influence optimal predisaster
network design strategies. We also find relevant to further investigate whether more sophis-
ticated acceleration schemes could be identified to accelerate the proposed branch-and-bound
algorithm for lexicographic optimization. This might facilitate the deployment of lexicographic
based solutions in application domains where the computational needs of our current method
become prohibitive.

Finally, our current work somehow neglects (as with most of the literature on SSMs) the
question of how to properly set the threshold levels for the SSM in each of the regions. In
practice, each τi should depend on the socio-economical and infrastructural characteristics of
the region that it describes. In the case of earthquake preparedness, de Goyet et al. (2006)
points out that water shortage risk (see p. 1153) can be much more severe than other ones. In
this case, the threshold level should be adjusted to account for the physiological limits before
severe dehydration occurs, e.g. the population losing more than 10% of their body water, which
is known to lead to physical and mental deterioration and even death (see Ashcroft 2002). In
terms of infrastructural shortages, it is also well known that socio-economically disadvantaged
regions take more time to rebuild and reinstate their services thus motivating the use of higher
shortage thresholds for such regions.
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A Motivation for designing the branch-and-bound algo-
rithm

We show the motivation to develop the branch-and-bound algorithm. Since problem PLM can
be regarded as a lexicographic minimization problem, a natural idea is whether the state-of-
the-art algorithm proposed by Qi (2017) can be directly applied to problem PLM. Furthermore,
we show the lexicographic minimization procedure (LMP) for problem PLM in Algorithm S.1,
which is an iterative algorithm by solving a sequence of minmax problems. In the following, we
give two examples to illustrate that although the LMP can perform well on linear programming
problems, it cannot guarantee optimality for mixed-integer programming problems and non-
convex problems.
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Algorithm S.1 Lexicographic Minimization Procedure for Problem PLM (Qi 2017)

1: Input: A set U and vectored risk measure ρ : U → R|L|

2: Output: A lexicographic minimal solution u∗

3: Set h := 0, L̃0 := L, L̄0 := ∅, v∗0 := ∞, and some arbitrary ũ∗
0 ∈ U

4: while L̃h ̸= ∅ do
5: Solve the following problem:

min
ũ∈U

max
i∈L̃h

ρτi(ũi) (12a)

s.t. ρτi(ũi) ≤ v∗h′ , i ∈ L̄h′ , h′ ∈ [0;h] (12b)

6: Let v∗h+1 and ũ∗
h+1 be optimal value and minimizer of problem (12)

7: Construct L̄h+1 := min
{
j ∈ L̃h|ρτj (ũ∗h+1,j) = v∗h+1

}
8: Set L̃h+1 := L̃h/L̄h+1, h := h+ 1
9: end while

10: return u∗ := ũ∗
h

Example 1 Consider the following feasibility problem :

2x ≤ α1,

2− x ≤ α2,

x ∈ {0, 1},

where α = [α1, α2] is a vector. In this example, we want to find a vector α that is lexico-
graphically minimal. By the LMP, one can get α = [2, 1] with x = 1. However, we may have
α′ = [0, 2] with x = 0. Obviously, α′ is lexicographically less than α. Based on the analysis
of these two solutions, we observe that, there are two sets of possible binding constraints that
correspond to different solutions for the minimum scalar value α∗ = 2. Yet, the LMP is unable
to decide which binding constraint to fix and instead could arbitrarily fix the first one detected.
It follows that the LMP sometimes fails to find the lexicographically minimum vector.

Example 2 Consider an example of problem PLM with |L| = 5 and |K| = 1. Specifically,
we will let the parameters M = 200, R = 300, B = 400, c = {200, 200, 150, 150, 300}, τ =
{3, 33, 25, 34, 21}. Furthermore, as shown in Table 4, we assume that there are |Ω| = 5 possible
outcomes of random demands with the same probability.

Table 4: Random Demand for Each Location in
Example 2

Location

Outcome Prob.(%) 1 2 3 4 5
ω = 1 20 40 45 42 48 32
ω = 2 20 9 14 45 28 47
ω = 3 20 45 30 36 92 97
ω = 4 20 85 70 53 13 84
ω = 5 20 54 69 12 74 11

Table 5: Detailed Optimal Solution under the
LMP and the B&B

LMP B&B

Location x∗ r∗ ρ(u∗) x∗ r∗ ρ(u∗)
1 1 150 0.00 0 0 0.00
2 1 50 0.28 0 0 0.28
3 0 0 0.00 1 150 0.00
4 0 0 0.28 1 50 0.28
5 0 0 0.28 0 0 0.00

In this example, based on the LMP, one can identify that an optimal solution takes the
configuration presented in Table 5. On the other hand, we also show the details of an optimal
solution obtained by our branch-and-bound (B&B) procedure in Table 5. Note that the SSM
vector derived by the B&B procedure is lexicographically less than that derived by the LMP.
The possible reason is that, in Step 5 of Algorithm S.1, there may be multiple optimal solutions
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u∗
h at iteration h such that maxi∈L̃h

ρτi(u
∗
hi) = v∗h where v∗h is the minimum scalar value, and the

LMP randomly chooses one of the optimal solutions to detect an index j such that ρτj (u
∗
hj) = v∗h

in Step 7. Therefore, the LMP sometimes fails to find the lexicographically minimum vector,
which motivated us to develop a new algorithm. For the B&B procedure, we refer the reader to
Appendix B.3 for the proof of its optimality.

B Proofs

B.1 Proof of Lemma 1.

We can first show that for any P ∈ F :

inf
η

(
η +

1

α
EP

[
(ũ− η)

+
])

≤ τ ⇔ inf
0≤η≤τ

(
η +

1

α
EP

[
(ũ− η)

+
])

≤ τ .

This follows from the fact that any η > τ necessarily leads to η + (1/α)EP

[
(ũ− η)

+
]
≥ η > τ .

On the other hand, for any η < 0, we can confirm that η̄ := 0 is such that:

η +
1

α
EP

[
(ũ− η)

+
]
=

(α− 1)η

α
+

1

α
EP [ũ] ≥

(α− 1)η̄

α
+

1

α
EP [ũ] = η̄ +

1

α
EP

[
(ũ− η̄)

+
]
,

where we used in order the fact that ũ ≥ 0, that (α − 1)/α is negative and η̄ > η, and again
ũ ≥ 0.

We can then exploit the representation of CVaR (Rockafellar and Uryasev 2000) and follow
the steps:

(3) ⇔ ∀P ∈ F , CVaRP
1−α(ũ) ≤ τ ⇔ ∀P ∈ F , inf

η

(
η +

1

α
EP

[
(ũ− η)

+
])

≤ τ

⇔ sup
P∈F

inf
0≤η≤τ

(
η +

1

α
EP

[
(ũ− η)

+
])

≤ τ ⇔ inf
0≤η≤τ

sup
P∈F

(
η +

1

α
EP

[
(ũ− η)

+
])

≤ τ ⇔ (4),

where the fourth ⇔ follows from applying Sion’s minimax theorem given that η is contained in a

compact set, F is convex and η+(1/α)EP

[
(ũ− η)

+
]
is convex in η and affine in P (?). Finally,

the last⇔ follows again from the fact that any η > τ necessarily makes η+(1/α)EP

[
(ũ− η)

+
]
>

τ for any P ∈ F .

B.2 Proof of Proposition 2.

The proofs of Monotonicity, Satisfaction, and Dissatisfaction are similar to that of Proposition 1
in Qi (2017). For the proof of Quasi-convexity, we refer readers to Proposition 3.4 in Mafusalov
and Uryasev (2018).

B.3 Proof of Theorem 3.

We first introduce the notation n := (i1, i2, . . . , ik), with each ij ∈ L for some k ∈ {1, . . . , |L|}
to describe the sequence of branching that was traversed to generate node n, which implies
that L̄n := {i1, . . . , ik} and that the descendants of n = (i1, i2, . . . , ik) are the nodes n′ :=
(i1, i2, . . . , ik, j) with j ∈ L/{i1, . . . , ik}. Moreover, we will exploit the fact that problem (7) is
equivalent to

min
β∈B

max
i∈L/L̄n

βi

s.t. βi ≤ αn
i , i ∈ L̄n,

where B :=
{
β ∈ R|L| : ∃u ∈ U ,β = ρ(u)

}
.
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Lemma 6. Given any node n = (i1, i2, . . . , ik) expanded during the resolution of Algorithm 1,
we have that α⃗n

j = αn
ij

for all j = 1, . . . , k and α⃗n
j = −∞ for j > k.

Note that Lemma 6 and the design of Algorithm 1 allows us to use α⃗n
j = αn

ij
= ⃗̄αn

j = ᾱn
ij

interchangeably when n = (i1, i2, . . . , ik) is expanded and j ≤ k. This follows from the fact that
for j = 1, . . . , k − 1, the optimal value v∗n′ of problem (7) associated to n′ = (i1, . . . , ij−1) is
necessarily greater or equal to the optimal value v∗n′′ associated to its child node n′′ = (i1, . . . , ij):

αn
ij = min

β∈B
max

i∈L/{i1,...,ij−1}
βi = min

β∈B
max

i∈L/{i1,...,ij−1}
βi

s.t. βi ≤ αn
i , i ∈ {i1, . . . , ij−1} s.t. βi ≤ αn

i , i ∈ {i1, . . . , ij}
≥ min

β∈B
max

i∈L/{i1,...,ij}
βi = αn

ij+1

s.t. βi ≤ αn
i , i ∈ {i1, . . . , ij}

where the second equality follows from the fact that we added the constraint βij ≤ αn
ij

which
is a relaxation of maxi∈L/{i1,...,ij−1} βi ≤ αn

ij
, namely that the objective value is smaller or

equal to its optimal value. On the other hand, by construction we have that αn
i = −∞ for all

i ̸∈ {i1, . . . , ik}.
We now prove Theorem 3 by contradiction. Suppose that there exists a vector β̄ ∈ B such

that β̄ ≺ α∗; that is, we have β̄ ⪯ α∗ but α∗ ̸⪯ β̄. Without loss of generality, we can assume

that ⃗̄β = β̄, thus β̄ ≺ α∗ implies that there exists a k ∈ [1, |L|] such that β̄i = α⃗∗
i for all i < k

and β̄k < α⃗∗
k.

If k = 1, then β̄1 < α⃗∗
1 should be true. By Algorithm 1, we have that α∗ ⪯ ᾱn0 , so that

α⃗∗
1 ≤ maxi ᾱ

n0
i = minβ∈B maxi βi ≤ maxi β̄i = β̄1. This is a contradiction.

If k > 1, then β̄i = α⃗∗
i for all i < k and β̄k < α⃗∗

k should hold. To discuss this case, we will
need to make use of the following lemmas.

Lemma 7. Given any node n expanded by Algorithm 1, it must be that α∗ ⪯ ᾱn.

This conclusion can be drawn directly from the definition of Algorithm 1. Specifically,
throughout the procedure the vector ᾱ can only decrease according to the lexicographic ordering.
Furthermore, when a node n is expanded, either ᾱn ≻ ᾱ or the latter is replaced with ᾱn.

Lemma 8. If it is expanded, the node n∗ = (1, . . . , k − 1) is such that ᾱn∗

i = β̄i for all i ≤ k.

We show that ᾱn∗

i = β̄i for all i ≤ k by recursion using k′ ∈ {0, . . . , k}. Starting with
k′ = 0, we have that ᾱn∗

1 = v∗n0
= minβ∈B maxi βi = β̄1, where the first two equalities follows

by construction, while the last one follows from minβ∈B maxi βi ≤ β̄1 since β̄ ∈ B, and β̄1 ≤
minβ∈B maxi βi since otherwise there exists a β̄′ ≺ β̄.

We then need to show that if the lemma is true for some k′ < k, then it is also true for
k′ + 1. In particular, letting n = (1, . . . , k′) and n′ = (1, . . . , k′ + 1), we have by construction
that ᾱn′

i = αn′

i = ᾱn
i for all i ≤ k′ + 1 since L̄n′

= {1, . . . , k′ + 1}. Yet, we have that ᾱn
i = β̄i

for all i ≤ k′. We are left with demonstrating that ᾱn
k′+1 = β̄k′+1, which follows from:

ᾱn
k′+1 = min

β∈B
max

i∈L/{1,...,k′}
βi = min

β∈B
max

i∈L/{1,...,k′}
βi = β̄k′+1

s.t. βi ≤ αn
i , i ∈ {1, . . . , k′} s.t. βi ≤ β̄i, i ∈ {1, . . . , k′}

where we exploited the fact that αn
i = ᾱn

i = β̄i for i ≤ k′, and where the last equality follows
from the fact that β̄ is lexicographic minimal in B.

Now in the case that node n∗ = (1, . . . , k) is expanded by Algorithm 1, it is clear by Lemma
7 that α∗ ⪯ ᾱn∗

, which either implies, according to Lemma 8, that α⃗∗
i = ᾱn∗

i = β̄i for all i ≤ k
or that there exists a k′ ≤ k such that α⃗∗

i = ᾱn∗

i = β̄i for all i < k′ while α⃗∗
k′ < ᾱn∗

k′ = β̄k′ . Both
situations either lead to a contradiction with respect to the fact that β̄k < α⃗∗

k or the fact that
α⃗∗
i = β̄i for i < k, respectively.
We are finally left with the possibility that n∗ was not expanded by Algorithm 1. This can

only occur if there is a node n̄ = (1, . . . , k̄) for some k̄ ≤ k, i.e. among the ancestors, that was
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not expanded at Step 7. Hence, αn̄ ⪰ α∗ and since n̄ is an ancestor of n∗, we also have that
ᾱn∗ ⪰ αn̄. Thus α∗ ⪯ ᾱn∗

, which once again leads to a contradiction.

B.4 Proof of Lemma 4.

By Definition 1, we first rewrite problem PDRO with F (i.e., F =
∏

d̃,s̃ G) as follows:

inf
x,r,η,α,{ys(·)}s∈S

α (13a)

s.t. ηi +
1

α
sup
Q∈G

EQ

[
f(x, r,ys̃(d̃), d̃)− ηi

]+
≤ τi, i ∈ L \ L̄n, (13b)

ηi +
1

αn
i

sup
Q∈G

EQ

[
f(x, r,ys̃(d̃), d̃)− ηi

]+
≤ τi, i ∈ L̄n, (13c)∑

j∈L\i

ysij(d) ≤ ri, (d, z) ∈ D̄s, s ∈ S, i ∈ L,

(13d)

ysij(d) ≥ 0, (d, z) ∈ D̄s, s ∈ S, i, j ∈ L,
(13e)

(1a)− (1d), α ∈ (0, 1],η ≥ 0. (13f)

where ysij : R|L| → R+ and ỹij := ys̃ij(d̃). Next, we can show that given any fixed (x, r,η, α),
there exists a feasible solution for ysij(d) in problem (13) if and only if there is also a feasible
mapping of the form ȳsij(d, z). The “if” direction is straighforward given that one can simply
define ȳsij(d, z) := ysij(d). Regarding the “only if” part, one can use the feasible ȳsij(·) to define
ysij(d) := ȳsij(d, |d− µs|) and show that this is a feasible assignment in problem (13) based on:

ηi +
1

α
sup
Q∈G

EQ

[
f(x, r,ys̃(d̃), d̃)− ηi

]+
= ηi +

1

α
sup
Q∈G

EQ

[
f(x, r, ȳs̃(d̃, |d̃− µs|), d̃)− ηi

]+
,

≤ ηi +
1

α
sup
Q∈G

EQ

[
f(x, r, ȳs̃(d̃, z̃), d̃)− ηi

]+
≤ τi,

sup
(d,z)∈D̄s

∑
j∈L\i

ysij(d) = sup
(d,z)∈D̄s

∑
j∈L\i

ȳsij(d, |d− µs|) ≤ sup
(d,z)∈D̄s

∑
j∈L\i

ȳsij(d, z) ≤ ri

inf
(d,z)∈D̄s

ysij(d) = inf
(d,z)∈D̄s

ȳsij(d, |d− µs|) ≥ inf
(d,z)∈D̄s

ȳsij(d, z) ≥ 0 .

We are left with employing classical moment problems duality techniques to reformulate

sup
Q∈G

EQ

[(
f(x, r,ys̃(d̃), d̃)− ηi

)+
]
as an infimum. Namely, one starts with the equivalent semi-

infinite linear optimization problem:

max
∑
s∈S

ps

∫
(d,z)∈D̄s

max

0,−ηi, di +
∑

j∈L\i

ysij(d, z)− (ri +
∑

j∈L\i

ysji(d, z))− ηi


 dQs(d, z)

s.t.

∫
(d,z)∈D̄s

dQs(d, z) = 1, s ∈ S, (dual multiplier π1
si ∈ R)∫

(d,z)∈D̄s

ddQs(d, z) = µs, s ∈ S, (dual multiplier π2
si ∈ R|L|)∫

(d,z)∈D̄s

zdQs(d, z) ≤ νs, s ∈ S. (dual multiplier π3
si ∈ R|L|

+ ),

where Qs denote the conditional probability distribution of (d, z) given that s̃ = s.
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Letting π1
si ∈ R, π2

si ∈ R|L|, and π3
si ∈ R|L| be dual variables associated with constraints of

the above problem, we obtain the dual formulation as

min
π1
si,π

2
si,π

3
si≥0

∑
s∈S

(
π1
si + (π2

si)
′µs + (π3

si)
′νs

)
s.t. π1

si + (π2
si)

′d+ (π3
si)

′z ≥ 0, (d, z) ∈ D̄s, s ∈ S,
π1
si + (π2

si)
′d+ (π3

si)
′z ≥ −psηi, (d, z) ∈ D̄s, s ∈ S,

π1
si + (π2

si)
′d+ (π3

si)
′z ≥ ps

di +
∑

j∈L\i

ysij(d, z)− (ri +
∑

j∈L\i

ysji(d, z))− ηi

 , (d, z) ∈ D̄s, s ∈ S.

We thus obtain the formulation in the Lemma 4.

B.5 Proof of Proposition 5.

By replacing D̄s with the bounded set D̄s
b in problem PARO, we obtain the following model:

vbn :=

inf
x,r,η,α,{ys(·)}s∈S

π1,π2,π3≥0

α (14a)

s.t. ηi +
1

α

∑
s∈S

(
π1
si + (π2

si)
′µs + (π3

si)
′νs

)
≤ τi, i ∈ L \ L̄n, (14b)

ηi +
1

αn
i

∑
s∈S

(
π1
si + (π2

si)
′µs + (π3

si)
′νs

)
≤ τi, i ∈ L̄n, (14c)

π1
si + (π2

si)
′d+ (π3

si)
′z ≥ 0, (d, z) ∈ D̄s

b , s ∈ S, i ∈ L,
(14d)

π1
si + (π2

si)
′d+ (π3

si)
′z ≥ −psηi, (d, z) ∈ D̄s

b , s ∈ S, i ∈ L,
(14e)

π1
si + (π2

si)
′d+ (π3

si)
′z ≥ ps

(
di +

∑
j∈L\i

ysij(d, z)

− (ri +
∑

j∈L\i

ysji(d, z))− ηi
)

(d, z) ∈ D̄s
b , s ∈ S, i ∈ L,

(14f)∑
j∈L\i

ysij(d, z) ≤ ri, (d, z) ∈ D̄s
b , s ∈ S, i ∈ L,

(14g)

ysij(d, z) ≥ 0, (d, z) ∈ D̄s
b , s ∈ S, i, j ∈ L.

(14h)

(1a)− (1d), α ∈ (0, 1],η ≥ 0. (14i)

The next lemma confirms that replacing D̄s with D̄s
b does not affect the optimal solution of

problem PARO.

Lemma 9. Problem PARO is equivalent to problem (14), i.e., v∗n = vbn and the set of optimal
solutions for x and r remains unchanged.

First we note that vbn ≤ v∗n because problem PARO has the same objective function but more
constraints than problem (14).

Second, we prove vbn ≥ v∗n. Let x̂, r̂, η̂, α̂, π̂1, π̂2, π̂3, and ŷs(d, z), for all s ∈ S, be a
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feasible solution to problem (14). It follows that the for all s ∈ S, i ∈ L, (d, z) ∈ D̄s
b , we have

π̂1
si + (π̂2

si)
′d+ (π̂3

si)
′z ≥ max

0,−psη̂i, ps

di +
∑

j∈L\i

ŷsij(d, z)−

r̂i +
∑

j∈L\i

ŷsji(d, z)

− η̂i

 .

To simplify the notation, we rewrite the above formula as fsi(π̂,d, z) ≥ gsi(r̂, η̂, ŷ,d, z). Next,
we can construct a feasible solution to problem PARO by letting x̌ := x̂, ř := r̂, η̌ := η̂, α̌ := α̂,
π̌1 := π̂1, π̌2 := π̂2, π̌3 := π̂3 and for all s ∈ S,

y̌s(d, z) :=

{
ŷs(d, z) if (d, z) ∈ D̄s

b ,

ŷs(d,min{z, z̄s}) if (d, z) /∈ D̄s
b ,

where z̄si := max{dsi − µs
i , µ

s
i − dsi} for all i ∈ L, and where min{z, z̄} is applied termwise. We

can verify that the constructed solution (x̌, ř, η̌, π̌, y̌) is feasible for problem PARO by first easily
confirming that it is feasible with respect to all constraints besides (9d)-(9f). Regarding, (9d)-
(9f), i.e. fsi(π̌,d, z) ≥ gsi(ř, η̌, y̌,d, z) for all i, s and (d, z) ∈ D̄s, we discussing the following
two cases:

i) If (d, z) ∈ D̄s
b , then fsi(π̌,d, z) = fsi(π̂,d, z) ≥ gsi(r̂, η̂, ŷ,d, z) = gsi(ř, η̌, y̌,d, z), which

follows from the definition of the constructed solution.

ii) If (d, z) /∈ D̄s
b , then we have that f(π̌,d, z) = f(π̂,d, z) ≥ f(π̂,d,min{z, z̄}) ≥ g(r̂, η̂, ŷ,d,

min{z, z̄}) = g(ř, η̌, y̌,d, z), where we used in order that π̌ = π̂, then that π̂3 ≥ 0, the
fact that (π̂, r̂, η̂, ŷ) is feasible in (14) and that (d,min{z, z̄}) ∈ D̄s

b .

Because problem PARO and problem (14) have the same objective function, we conclude that
vbn ≥ v∗n. Together with vbn ≤ v∗n, the proof is complete.

In our proof of Proposition 5, for all s ∈ S, we also exploit some convexity property of the
following operator:

Gs(r, α,η,π,d, z) :=

{
0 if Ys(α,η,π,d, z) ̸= ∅
∞ otherwise

,

where set Ys(r, α,η,π,d, z) is defined as:

Ys(r, α,η,π,d, z) :=


y ∈ R|L|×|L| :

(14b)− (14c)
π1
si + (π2

si)
′d+ (π3

si)
′z ≥ 0, i ∈ L,

π1
si + (π2

si)
′d+ (π3

si)
′z ≥ −psηi, i ∈ L,

π1
si + (π2

si)
′d+ (π3

si)
′z ≥

ps(di +
∑

j∈L\i
yij − (ri +

∑
j∈L\i

yji)− ηi) i ∈ L,∑
j∈L\i

yij ≤ ri, i ∈ L,

yij ≥ 0, i, j ∈ L,


,

and which is considered empty if any constraint in Ys(r, α,η,π,d, z) is violated.
Then, we can reorganize the constraints in problem (14) and equivalently rewrite it in the

following general form:

inf

{
α ∈ (0, 1]

∣∣∣∣∣ ∃x, r, (1a)− (1d)
inf

η≥0,π
max

s
sup

(d,z)∈D̄s
b

Gs(r, α,η,π,d, z) ≤ 0

}
(15)

Lemma 10. Gs(r, α,η,π,d, z) is convex jointly in d, z.

Let (d1, z1) and (d2, z2) be arbitrary elements in R|L| × R|L|. For some fixed r, α, η, π
and any λ ∈ (0, 1), we analyze the following two cases to evaluate Gs(r, α,η,π,dλ, zλ), where
(dλ, zλ) = λ(d1, z1) + (1− λ)(d2, z2).
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First, when Gs(r, α,η,π,d1, z1) = ∞ and/or Gs(r, α,η,π,d2, z2) = ∞, we have

λGs(r, α,η,π,d1, z1) + (1− λ)Gs(r, α,η,π,d2, z2) ≥ ∞ ≥ Gs(r, α,η,π,dλ, zλ),

since the value of Gs(r, α,η,π,dλ, zλ) is either 0 or infinity.
Second, when Gs(r, α,η,π,d1, z1) = 0 and Gs(r, α,η,π,d2, z2) = 0, there exist y1 and y2

that satisfy all constraints defined in Ys(r, α,η,π,d1, z2) and Ys(r, α,η,π,d2, z2) respectively.
Next, we can construct yλ for Gs(r, α,η,π,dλ, zλ) by yλ = λy1+(1−λ)y2. We can easily verify
that yλ satisfies constraints in Ys(r, α,η,π,d, z). Thus, we have yλ ∈ Ys(r, α,η,π,dλ, zλ) such
that Gs(r, α,η,π,dλ, zλ) = 0, which implies that

λGs(r, α,η,d1, z1) + (1− λ)Gs(r, α,η,d2, z2) = 0 ≥ 0 = Gs(r, α,η,dλ, zλ).

Therefore, Gs(r, α,η,d, z) is convex jointly in d and z.
We proceed with the proof of Proposition 5.
Recall that D̄s

b is a convex hull of {d(ω)}ω∈Ωs . By Lemma 10, we know that Gs(r, α,η,d, z)
is a jointly convex function in d and z. Hence, according to the theory of concave minimization
(see, for instance, ?), problem (15) can be replaced with

inf

{
α ∈ (0, 1]

∣∣∣∣∣ ∃x, r, (1a)− (1d)
inf

η≥0,π
max

s
max
ω∈Ωs

Gs(r, α,η,π,d(ω), z(ω)) ≤ 0

}
(16)

As a result, given a sample ω, the adaptive variables y(d, z) reduce to y(ω). This naturally
gives rise to PVE as an equivalent problem to PARO.

B.6 MILP Reformulation of problem PAARC.

We present the reformulation of problem PAARC by the following proposition.

31



Proposition 11. Problem PAARC can be solved by the following mixed-integer linear program:

(PMILP) vAARC
n :=

inf
x,r,η,α

π1,π2,π3≥0,y0,y1,y2

(w1,w2,w3,w4,w5)≥0

α

s.t. ηi +
1

α

∑
s∈S

(
π1
si + (π2

si)
′µs + (π3

si)
′νs

)
≤ τi, i ∈ L \ L̄n,

ηi +
1

αn
i

∑
s∈S

(
π1
si + (π2

si)
′µs + (π3

si)
′νs

)
≤ τi, i ∈ L̄n,

π1
si + (w11

si )
′ds − (w12

si )
′d

s − (w13
si −w14

si )
′µs ≥ 0, s ∈ S, i ∈ L,

π1
si + (w21

si )
′ds − (w22

si )
′d

s − (w23
si −w24

si )
′µs ≥ −psηi, s ∈ S, i ∈ L,

π1
si + (w31

si )
′ds − (w32

si )
′d

s − (w33
si −w34

si )
′µs ≥ ps(

∑
j∈L\i

y0sij

− (ri +
∑

j∈L\i

y0sji )− ηi) s ∈ S, i ∈ L,

∑
j∈L\i

y0sij −
(
(w41

si )
′ds − (w42

si )
′d

s − (w43
si −w44

si )
′µs

)
≤ ri, s ∈ S, i ∈ L,

y0sij + (w51
sij)

′ds − (w52
sij)

′d
s − (w53

sij −w54
sij)

′µs ≥ 0, s ∈ S, i, j ∈ L,
w11

si −w12
si − (w13

si −w14
si ) ≤ π2

si, s ∈ S, i ∈ L,
w21

si −w22
si − (w23

si −w24
si ) ≤ π2

si, s ∈ S, i ∈ L,

w31
sil − w32

sil − (w33
sil − w34

sil) ≤ v2sil −
∑

j∈L\i

ps(y
1s
ijl − y1sjil), s ∈ S, l, i ∈ L, l ̸= i,

w31
sil − w32

sil − (w33
sil − w34

sil) ≤ v2sil −
∑

j∈L\i

ps(y
1s
ijl − y1sjil)− ps, s ∈ S, l, i ∈ L, l = i,

w41
si −w42

si − (w43
si −w44

si ) ≤ −
∑

j∈L\i

y1s
ij , s ∈ S, i ∈ L,

w51
sij −w52

sij − (w53
sij −w54

sij) ≤ y1s
ij , s ∈ S, i, j ∈ L,

w13
si +w14

si ≤ π3
si, s ∈ S, i ∈ L,

w23
si +w24

si ≤ π3
si, s ∈ S, i ∈ L,

w33
si +w34

si ≤ π3
si −

∑
j∈L\i

ps(y
2s
ij − y2s

ji ), s ∈ S, i ∈ L,

w43
si +w44

si ≤ −
∑

j∈L\i

y2s
ij , s ∈ S, i ∈ L,

w53
sij +w54

sij ≤ y2s
ij , s ∈ S, i, j ∈ L,

(1a)− (1d), α ∈ (0, 1],η ≥ 0.

For all s ∈ S, we represent the adaptive decisions by an affine functions ys(·) ∈ A . For
example, we can rewrite constraint (11f) as

π1
si + min

(d,z)∈D̄s


π2

si −
∑

j∈L\i

ps(y
1s
ij − y1s

ji )

′

d+

π3
si −

∑
j∈L\i

ps(y
2s
ij − y2s

ji )

′

z− psdi

 ≥

ps

 ∑
j∈L\i

y0sij − (ri +
∑

j∈L\i

y0sji )− ηi

 , s ∈ S, i ∈ L.
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We now focus on the above minimization subproblem. For all s ∈ S, i ∈ L, the subproblem can
be rewritten as follows:

min
d,z

π2
si −

∑
j∈L\i

ps(y
1s
ij − y1s

ji )

′

d+

π3
si −

∑
j∈L\i

ps(y
2s
ij − y2s

ji )

′

z− psdi

s.t. ds ≤ d ≤ d
s
, (dual multipliers w31

si ,w
32
si ∈ R|L|

+ )

− z ≤ d− µs ≤ z, (dual multipliers w33
si ,w

34
si ∈ R|L|

+ )

By the strong duality, we present the dual formulation of the above subproblem as:

max
(w31

si ,w
32
si ,w

33
si ,w

34
si )≥0

(w31
si )

′ds − (w32
si )

′d
s −

(
w33

si −w34
si

)′
µs

s.t. w31
sil − w32

sil − (w34
sil − w33

sil) ≤ v2sil −
∑

j∈L\i

ps(y
1s
ijl − y1sjil), l ∈ L/i,

w31
sii − w32

sii − (w34
sii − w33

sii) ≤ v2sii −
∑

j∈L\i

ps(y
1s
iji − y1sjii)− ps,

w33
si +w34

si ≤ π3
si −

∑
j∈L\i

ps(y
2s
ij − y2s

ji ).

For other constraint sets in problem PAARC, we can perform the similar conversion.

C PRNDP-NE Formulation

We formulate the predisaster relief network design problem without equity (PRNDP-NE) as
follows:

(PRNDP-NE) min
x,r,ũ,ỹ

sup
P∈F

EP

[∑
i∈L

ũi

]
(17)

s.t. (1a)− (1d), (2b)− (2d).

Similar to Lemma 4, the PRNDP-NE with F , i.e., F =
∏

d̃,s̃ G, is equivalent to the following
optimization problem:

min
x,r,{ys(·)}s∈S
π1,π2,π3≥0

∑
s∈S

(
v1s + (π2

s)
′µs + (π3

s)
′νs

)
(18a)

s.t. π1
s + (π2

s)
′d+ (π3

s)
′z ≥ ps

∑
i∈L

f(x, r,ys(d, z),d) (d, z) ∈ D̄s, s ∈ S, (18b)∑
j∈L\i

ysij(d, z) ≤ ri, (d, z) ∈ D̄s, s ∈ S, i ∈ L, (18c)

ysij(d, z) ≥ 0, (d, z) ∈ D̄s, s ∈ S, i, j ∈ L,
(18d)

(1a)− (1d),

where each ysij : R|L| × R|L| → R, and where π1
s , π

2
s and π3

s are the dual variables associated
with first, second, and third constraints that define G.

Since constraint (18b) is a sum of max function, by Definition 1, it can be written as

π1
s+(π2

s)
′d+(π3

s)
′z ≥ ps

∑
i∈A

di +
∑

j∈L\i

ysij(d, z)− (ri +
∑

j∈L\i

ysji(d, z))

 , A ∈ P (L), (d, z) ∈ D̄s, s ∈ S,

where P (L) is the power set of L. Note that we can apply the affine decision rule and obtain
an affinely adjustable robust counterpart of problem (18). Finally, problem (18) can also be
transformed into a MILP via standard techniques in robust optimization.
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D Data, Concepts and Results of the Numerical Study

D.1 Input Parameters for the Numerical Study.

We conduct a case study using the earthquake that happened at Yushu County in Qinghai
Province, PR China in 2010. This case represents an affected area by a network consisting of 13
locations and 15 links. For deterministic parameters (e.g., cost, capacity, donations, etc.), we
refer to Ni et al. (2018) and show them in Table 6. As stated by ?: “Since the physical process
underlying an earthquake is very complex, we cannot express every detail of an earthquake
by a single parameter. However, it would be convenient if we could find a single number
that represents the overall physical size of an earthquake.” Thus, we construct the event-wise
ambiguity set based on the Richter scale (ML) that is a commonly used measure of the strength
of earthquakes (?). Specifically, the Richter scale is divided into nine scales: felt slightly by
some people less than ML2.5, often felt by people above ML2.5, can cause damage if above
ML5.0. Therefore, we generate 5 scenarios with equal probabilities (i.e., S = {1, 2, 3, 4, 5}), in
which each scenario corresponds to a scale above ML5.0. Intuitively, the greater the scale of the
earthquake, the more demand for relief supplies there will be, and more areas will be affected,
so we take this into account when generating demands-related parameters. Specifically, the
underlying model is a joint distribution over (s̃, d̃) with s̃ ∼ {1, . . . , 5} uniformly, and each
d̃i ∼ N(µ̄s̃

i , σ̄
s̃
i , 0,+∞) for all i ∈ L, where N is a truncated normal distribution, and where

µ̄s
i = 25+ 25s and σ̄s

i = 0.1µ̄s
i . We let τi = ξi ×

∑
s∈S µ̄s

i

|S| for all i ∈ L, where ξi is the proportion

of the mean demand of location i. Unless specified otherwise, we set ξi = 10% for all i ∈ L.
Similar to Ni et al. (2018), we first generate 50 samples from the joint distribution. We then

let p̂s, µ̂
s, ν̂s, σ̂s,d̂

s

, d̂
s
be, for each s, the empirical frequency of the event in the observed

samples, the empirical conditional mean, conditional mean absolute deviation, conditional stan-
dard deviation, conditional minimum, and conditional maximum in the 50 observations. We

also let µ̂, ν̂, d̂, d̂ be the empirical (unconditional) mean, mean absolute deviation, minimum,
and maximum in the 50 observations. With these statistics in hand, we can construct the RSO
model, the DRO model, and the SAA model as follows.

• For the RSO model, the ambiguity set F is defined using (µ̂s, ν̂s, d̂
s

, d̂
s
).

• For the DRO model, the ambiguity set F can be regarded as a special case containing only

one event, which is defined using (µ̂, ν̂, d̂, d̂).

• For the SAA model, we consider 100 samples drawn from s̃ ∼ Mutlinoulli(p̂1, . . . , p̂5) and
each di ∼ N(µ̂s̃

i , σ̂
s̃
i , 0,+∞) for all i ∈ L, where Mutlinoulli is a multinoulli distribution.

After solving all the above models, we can obtain predisaster deployment decisions (x∗, r∗)
for each of these models. To evaluate the performance of such solutions, we generate 1,000 out-
of-sample demands drawn from s̃ ∼ Mutlinoulli(1, . . . , 5) and each di ∼ N(µ̄s̃

i , σ̄
s̃
i , 0,+∞) for

all i ∈ L. Moreover, to capture the possibility that the out-of-sample distribution may deviate
from the underlying distribution, for each s ∈ S, we add a perturbation ∆ to the mean of the
demand, i.e., µ̄s

out = (1+∆)µ̄s and δ̄sout = 0.1µ̄s
out, where ∆ is enumerated from -0.1 to 0.1 with

a step size of 0.05. To evaluate the impact of different donation levels, we consider R could be
any value in the set {1700, 1750, . . . , 1900} and B = {850, 1000, . . . , 1450}. For the bisection
search, as it is known to terminate in log2(1/ϵ) iterations, we set the accuracy to ϵ = 10−6 in
our experiments.

Table 6: Input Parameters

Number of locations |L| = 13
Location index i 1 2 3 4 5 6 7 8 9 10 11 12 13
Fixed cost ci 203 193 130 117 292 174 130 157 134 161 234 220 170
Facility capacity M = 800
Total supplies R = 1, 800
Total Budget B = 1, 000
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D.2 Concepts of equity indices.

Here we list the definitions and computational methods of MSG, RMD, VAR, SPAD and Gini
in detail, as follows:

• Maximum Shortage Gap(MSG): This is the difference between the most and least deprived
parties in terms of shortage (maxi∈L ui −mini∈L ui), which focuses on two extreme cases.

• Relative Mean Deviation(RMD): This is the absolute deviation from the average shortage

(
∑

i∈L |ui − ū|, where ū =
∑

i∈L ui

|L| ). Compared with MSG which only considers two

extremes, RMD considers other levels of shortages as well.

• Variance(VAR): This is the average squared deviation from the average shortage (
∑

i∈L(ui−ū)2

|L| ).

• Sum of Pairwise Absolute Differences(SPAD): This is the sum of absolute differences be-
tween the shortages of all pairs of demand locations (

∑
i,j∈L |ui − uj |).

• Gini coefficient(Gini): This index measures the inequity among values of a frequency

distribution (
∑

i,j∈L|ui−uj |
2|L|

∑
i∈L ui

). The coefficient ranges from 0 to 1, with 0 representing perfect

equity and 1 representing perfect inequity.

D.3 Performance of AARC

We demonstrate the performance of AARC on small instances of the Earthquake case study. For
simplicity, we only consider one event in the event-wise ambiguity set. To generate parameters
related to demand, we randomly sample according to the sampling range in Table 7. For other
parameters, we consider the same setup as the Earthquake case study.

Table 8 reports statistics on the suboptimality gaps observed in 100 random instances with
sizes |L| = {5, 6, 7}. One remarks that the suboptimality gaps are quite small, namely with a
95%-VaR of less than 1% and a maximum gap of 8%. Furthermore, suboptimality gap does not
seem to increase with the size of the instance.

In addition, we also compare in Table 9 the solution time of AARC, VE, and SAA (with
1,000 samples). We choose the termination criteria to be whether the optimality gap is less
than 0.01%, or the CPU time exceeds 7,200 seconds. Obviously, the performance of the AARC
is significantly faster to solve than VE and SAA. In particular, VE starts taking more than 2
hours to solve for |L| ≥ 9, while AARC still returns a solution in 3 seconds. One also notices
that the solution time of SAA increases more rapidly than AARC when the number of locations
increases.

Table 7: Parameter Setup Related to Demand at Each Location i ∈ L

Parameter Sampling range
Lower bound of demand di (0,50)

Upper bound of demand di di+(0,100)

Mean of demand µi (di,di)
Mean absolute deviation of demand νi (0,µi)
Threshold on demand τi 10%× µi

D.4 Comparative study of the effects of risk measures

We compare the effects of three choices of risk measures for ρ in model (5): SSM, CVaR Shortage
Measure (CSM), and Expected Shortage Measure (ESM). First, we provide the definition of the
two alternative measures.

Definition 5. Given α ∈ (0, 1] and an uncertain supply shortage ũ ∈ U , we define the CVaR
shortage measure as the worst-case CVaR of ũ:

ρCSM(ũ) := V1−α(ũ) = inf
η≥0

{
η +

1

α
sup
P∈F

EP
[
(ũ− η)+

]}
, α ∈ (0, 1],
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Table 8: Statistics of AARC Suboptimality

|L| Minimum Median VaR@95% VaR@99% Maximum
5 0.00% 0.00% 0.88% 4.14% 6.34%
6 0.00% 0.00% 0.51% 2.78% 7.98%
7 0.00% 0.00% 0.64% 3.75% 7.25%

Table 9: Average CPU Time (in sec)

|L| AARC VE SAA
5 < 1 8 91
6 < 1 46 182
7 < 1 514 297
8 1 5, 349 497
9 1 > 7, 200 629
10 2 > 7, 200 801
11 2 > 7, 200 998
12 3 > 7, 200 1801
13 3 > 7, 200 3154

In case that α = 1, we retrieve the (worst-case) expected shortage measure:

ρESM(ũ) := V0(ũ) = sup
P∈F

EP [ũ] .

Next, we randomly generate 10 instances and investigate their average performances. Specif-
ically, for each instance, we sample from the underlying distribution, calibrate the ambiguity
set, solve the lexicographic problems with different shortage measures, and evaluate the shortage
performance of the worst-off participants and all participants under several considered measures.
In Table 10, we summarize the frequency of shortage below the threshold, the CVaR@90% of
shortage, and the expected shortage under SSM, CSM, and ESM, where we set α = 0.1 for the
CSM.

Table 10: Out-of-Sample Shortage Performance under SSM, CSM, and ESM

Shortage performance of the worst-off participants Average shortage performance of all participants

∆
Shortage
measure

Frequency of shortage
below the threshold (%)

CVaR@90%
Average
shortage

Frequency of shortage
below the threshold (%)

CVaR@90%
Average
shortage

-0.10 SSM 99.79 3.12 0.42 99.85 2.75 0.33
CSM 92.55 1.92 1.14 93.44 1.56 0.82
ESM 93.64 9.66 0.19 94.47 7.64 0.16

-0.05 SSM 94.86 11.62 1.53 95.51 10.47 1.33
CSM 88.50 9.50 2.60 89.76 8.91 2.03
ESM 89.96 18.33 1.19 90.97 15.11 1.09

0.00 SSM 86.24 21.01 3.27 87.07 19.43 2.82
CSM 80.56 17.37 4.51 81.28 16.68 3.64
ESM 81.32 28.27 2.69 82.29 24.28 2.51

0.05 SSM 79.21 28.58 5.05 80.72 27.00 4.57
CSM 72.17 25.60 6.68 73.26 24.91 5.53
ESM 73.07 36.43 4.54 74.44 32.60 4.26

0.10 SSM 75.73 37.23 6.90 76.90 34.85 6.13
CSM 68.01 33.16 9.17 69.11 32.22 7.41
ESM 69.16 45.75 6.17 70.08 41.07 5.77

We notice several effects of different shortage measures. (1) The SSM solutions bring higher
probability of being below the threshold than the two other alternatives. The reason is the SSM
is related to the satisficing measure, which implicitly maximizes the success probability. (2) As
the CSM focuses on reducing the CVaR of shortages, it sacrifices the performance in terms of
average shortage and of probability of getting shortages below the thresholds. (3) The ESM
outperforms the other two measures in terms of the average shortage. We finally note that SSM
ranks second with respect to CVaR and average shortages in all experiments. Therefore, while
HOs can decide of which measure to use based upon their subjective preferences, SSM does
seem to come out as a legitimate choice.

D.5 Impact of Tolerance Threshold

We investigate the impact of different tolerance thresholds (τ) on the performance of PRNDP-E.
We consider two settings. In the first setting, we uniformly vary the threshold values across
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all locations using τi := ξi(
∑

s∈S µ̄s
i/|S|) where ξi is constant among regions and in the range

{5%, 10%, 15%, 20%, 25%}. The second setting considers, ξi to vary arbitrarily from location to
location. Namely, inspired by the idea that structural failures are usually assumed to follow a
lognormal distribution in seismic fragility analysis (see ?), we set the each ξi to be randomly
drawn from a lognormal distribution LogN(10%, σ2) with a mean of 10% and a variance σ2 that
varies from 1% to 5%.

To capture the effects of different thresholds on equity, we slightly adjust the indices in
Appendix D.2 by evaluating the excess shortages (i.e., u∗

i = [ui − τi]
+
). As a result, we have a

new version for these metrics. For instance, MSG∗ refers to the difference between the maximal
and minimal shortages above the threshold (i.e., MSG∗ = maxi∈L u∗

i −mini∈L u∗
i ).

Table 11, we summarize the out-of-sample performance of equity and shortage measures
under the first setting. We note an improvement in the performance of equity and shortage
metrics as ξi increases (and thereby τi). As discussed in Section 3.3, the SSM-based model
really cares about excess shortages beyond the threshold. When the threshold increases, at
some point, all locations become satisfied because they are all below the threshold, so the
values of indicators that measure inequity and shortage are decreasing. It also indicates that
the threshold is effectively controlling the range of shortages that the equity indices should be
sensitive to.

Table 11: Out-of-Sample Performance of PRNDP-E with Identical Threshold Levels

Equity Metrics Shortage Metrics

ξi(%) Statistic MSG∗ RMD∗ VAR∗ SPAD∗ Worst∗ Sum∗

5 Mean 1.36 6.75 4.01 88.50 2.18 19.77
Var@95% 11.09 57.72 21.58 750.31 13.96 129.04
Var@99% 21.39 118.85 96.27 1545.04 22.44 173.45
STD 4.32 23.01 239.63 301.10 5.10 44.38

10 Mean 1.26 6.03 2.90 80.76 1.50 9.39
Var@95% 9.77 47.68 16.77 622.63 10.04 68.42
Var@99% 18.01 86.30 53.20 1145.23 18.03 108.45
STD 3.75 18.77 158.37 254.52 3.92 24.84

15 Mean 1.04 4.32 1.83 58.11 1.05 3.65
Var@95% 8.08 34.60 9.71 462.53 8.08 28.85
Var@99% 17.36 71.25 41.60 926.29 17.36 59.09
STD 3.35 13.70 109.00 183.79 3.36 12.17

20 Mean 0.86 2.24 1.10 29.44 0.86 1.38
Var@95% 7.18 17.49 4.89 227.33 7.18 9.70
Var@99% 17.07 42.08 26.32 551.80 17.07 27.94
STD 3.25 9.01 83.47 119.40 3.25 5.83

25 Mean 0.71 1.74 0.79 23.02 0.71 1.05
Var@95% 4.62 15.39 2.90 200.13 4.62 9.02
Var@99% 16.41 37.95 22.24 493.40 16.41 21.32
STD 2.94 7.10 52.00 94.31 2.94 4.39

In Table 12, we show the results in the second setting as σ is varied. We observe that
the performance of equity and shortage metrics is very close when inter-regional diversity is
considered. As we have discussed in Section 3.4, the PRNDP-E approach allocates the resources
based on the requirements of different participants. This means that, for different threshold
levels, the PRNDP-E can provide treatment accordingly to ensure (vertical) equity between the
different locations.

D.6 Impact of Budget

We evaluate the impact of different budget levels (B) on shortages. In this part of the computa-
tional study, we analyze the results on a base test case with ∆ = 0 under the following values of
the varying total budget: B ∈ {850, 1000, 1150, 1300, 1450}. Figure 7 illustrates the impacts of
budget on the out-of-sample expected shortage at each location. Similar to the results regard-
ing the impact of donation level in Section 5.4, we notice similar advantages of the PRNDP-E

37



Table 12: Out-of-Sample Performance of PRNDP-E with Different Threshold Levels

Equity Metrics Shortage Metrics

ξi(%) Statistic MSG∗ RMD∗ VAR∗ SPAD∗ Worst∗ Sum∗

logN(10, 1) Mean 1.30 6.14 2.81 82.82 1.50 9.13
Var@95% 10.94 58.19 23.94 799.36 11.88 72.97
Var@99% 19.37 98.85 67.37 1339.96 19.43 114.11
STD 4.38 21.61 188.50 295.75 4.52 26.71

logN(10, 2) Mean 1.24 5.73 2.59 77.07 1.44 8.57
Var@95% 10.07 47.96 17.12 671.35 10.33 67.90
Var@99% 18.48 90.07 65.10 1222.15 18.53 111.52
STD 3.95 19.25 162.85 258.97 4.12 25.39

logN(10, 3) Mean 1.27 5.26 2.54 70.29 1.45 8.13
Var@95% 11.59 54.95 21.98 733.48 12.67 53.25
Var@99% 20.01 90.77 62.79 1195.92 21.74 95.57
STD 4.58 18.54 169.37 253.25 4.62 20.90

logN(10, 4) Mean 1.34 5.81 2.85 77.77 1.54 8.32
Var@95% 10.93 50.63 18.26 686.29 10.94 61.33
Var@99% 18.83 87.51 60.09 1167.31 18.29 105.51
STD 4.18 18.21 147.23 249.22 4.22 23.49

logN(10, 5) Mean 1.27 5.43 2.64 73.04 1.39 7.79
Var@95% 10.33 43.51 15.68 581.85 9.62 57.40
Var@99% 19.49 81.36 46.19 1101.92 19.44 114.86
STD 3.92 152.91 129.79 226.76 3.82 22.77

compared with the other benchmarks in terms of equity and shortage.
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Figure 7: Expected Shortage (Measured Out-of-Sample) at Each Location for Different Budgets

D.7 Additional Details about Deployment Plans and Shortages

Table 13 lists the predisaster deployment plans under PRNDP-E, PRNDP-NE-E and PRNDP-
NE. Table 14 displays the proportion of postdisaster expected shortage at each location.
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