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Canada.

Abstract

Conditional Value at Risk (CVaR) is widely used to account for the preferences of a risk-
averse agent in the extreme loss scenarios. To study the effectiveness of randomization in
interdiction problems with an interdictor that is both risk and ambiguity averse, we introduce
a distributionally robust maximum flow network interdiction problem where the interdictor
randomizes over the feasible interdiction plans in order to minimize the worst-case CVaR of the
maximum flow with respect to both the unknown distribution of the capacity of the arcs and
his own randomized strategy. Using the size of the uncertainty set, we control the degree of
conservatism in the model and reformulate the interdictor’s distributionally robust optimization
problem as a bilinear optimization problem. For solving this problem to any given optimality
level, we devise a spatial branch and bound algorithm that uses the McCormick inequalities
and reduced reformulation linearization technique to obtain a convex relaxation of the problem.
We also develop a column generation algorithm to identify the optimal support of the convex
relaxation which is then used in the coordinate descent algorithm to determine the upper bounds.
The efficiency and convergence of the spatial branch and bound algorithm is established in the
numerical experiments. Further, our numerical experiments show that randomized strategies
can have significantly better performance than optimal deterministic ones.

1 Introduction

In a deterministic maximum flow network interdiction problem (MFNIP), the interdictor, with a
fixed budget of interdiction, removes arcs from a capacitated network with the aim to minimize
the maximum flow that can be routed by the adversary (flow player) in the network. In Wood
(1993), the author showed that MFNIP is NP-hard. In many real-world applications, the
parameters of an agent’s decision model, e.g., the capacity of the arcs in a network interdiction
problem, can be uncertain. It was shown in Ben-Tal and Nemirovski (2000) that perturba-
tions in the parameters of a linear programming problem can render the solution to become
infeasible or significantly suboptimal. A popular technique to tackle this issue is Stochastic
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Programming (SP) which assumes that the distribution of the parameters is known. However,
in many instances, the distribution of the random parameters is not exactly known. This can
lead to post-decision disappointment referred to as the optimizer’s curse (see, Smith and Win-
kler (2006)). Alternatively, classical robust optimization models do not use any distributional
information on the uncertain parameters. However, imposing that only the worst-case outcome
is to be taken into account can often lead to over-conservative solutions.

Distributionally Robust Optimization (DRO) acts as a compromise between SP and RO
by requiring the probability distribution to lie in a distributional ambiguity set and seeking a
solution that performs best according to the worst-case distribution. Hence, when the ambiguous
distribution set is properly tuned, it can prevent both the post-decision disappointment of SP
models and the over-conservatism of RO models. Furthermore, the set can be calibrated in ways
that will provide statistical guarantees on the out-of-sample performance of the DRO solution.
Recently, it was shown in Delage et al. (2019) that it can be beneficial to employ randomization
in non-convex DRO problems. For an ambiguity-averse risk-neutral decision maker, i.e. one
that minimizes worst-case expected value, Delage and Saif (2021) proposed an algorithm to
identify such strategies in mixed-integer two-stage DRO problems. Bertsimas et al. (2016) also
studied the value of randomization specifically in the context of a network interdiction game
with known parameters and risk-neutral agents. Nevertheless, none of these works provide either
theoretical or computational means of identifying optimal randomized solutions for agents that
employ more general risk measures than expected value, such as the Conditional Value at Risk
(CVaR) measure introduced in Rockafellar and Uryasev (2000). Such risk measures are especially
relevant in security policy models such as network interdiction problems where a decision maker,
e.g., a law-enforcement agency, might be concerned by the possibility of incurring huge losses
under certain scenarios, e.g. caused by a large flow of illegal drugs, weapons or money.

In this paper, we study a distributionally robust maximum flow network interdiction problem
where the interdictor employs a CVaR risk measure to model his risk aversion. Our contributions
can be summarized as follows:

• On the methodological side, we introduce for the first time ambiguity and risk aversion in
network interdiction games where the interdictor minimizes the worst-case CVaR over both
the unknown distribution of the capacities of the arcs and the distribution of interdicted
arcs. This is in sharp contrast with the work of Loizou (2015) who considers an interdictor
that employs CVaR to handle parameter uncertainty but an expected value to handle
the uncertainty caused by his own randomized strategy. We show that the approach in
Loizou (2015) can in fact produce a solution that is stochastically strictly dominated by
the solution of our proposed model.

• On the algorithmic side, we complement the work of Delage and Saif (2021) by designing
the first algorithm that can identify optimal randomized strategies for an ambiguity and
risk averse agent, i.e. an agent that minimizes a worst-case convex risk measure other
than the expected value. Our algorithm is based on a spatial branch and bound scheme
(see, Al-Khayyal and Falk (1983)) embedded with a novel implementation of the column
generation (CG) method designed to exploit the structure of a linearized large scale bilinear
optimization problem. It will successfully identify high quality randomized solution for
networks containing hundreds of nodes in a few minutes.

• On the empirical side, we provide evidence which indicates that a network interdictor can
significantly benefit from randomization. We find that, while it is true that deterministic
plans are often worst-case CVaR optimal, in instances where randomization strictly im-
proves this objective, the improvement is significant, i.e. up to 12% average in-sample
improvement depending on conditions. Furthermore, we also find evidence that for in-
stances where a randomized strategy significantly improves the in-sample performance,
there is benefit in employing randomization on the out-of-sample scenarios.
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The rest of the paper is organized as follows. Section 2 gives an overview of the literature
covering network interdiction and DRO problems which are closely related to this work. We
also briefly discuss the algorithms which have been proposed previously to solve non-convex
optimization problems with bilinear constraints. Section 3 defines our distributionally robust
maximum flow network interdiction problem. The robust counterpart of the DRO model is given
in Section 4 where we also describe the spatial branch and bound algorithm embedded with the
CG algorithm that is used to solve the interdictor’s problem to global optimality. Numerical
experiments are provided in Section 5 to demonstrate the convergence and efficiency of our
algorithm, and provide evidence that randomization can significantly improve the performance
achieved by deterministic interdiction plans. Concluding remarks are given in Section 6. Finally,
all proofs can be found in the appendix.

Remark 1. We take a pause to summarize Remark 1 from Delage and Saif (2021), which clar-
ifies the role of “risk aversion” and “ambiguity aversion” in decision making under uncertainty
with randomized strategies. Namely, as formalized in Ellsberg (1961) and Epstein (1999), risk
aversion refers to how a decision maker reacts “to situations where the perceived likelihood of
events of interests can be represented by probabilities”, whereas ambiguity aversion refers to her
way of handling “situations where the information available is too imprecise to be summarized
by a probability measure”. Both types of aversion need to be accounted for in decision problems
with distributional ambiguity when a randomized strategy is used given that the latter can gen-
erate random variables that either have known or unknown distributions. In this work, we will
employ a CVaR measure to characterize risk aversion of the random maximum flows with known
distributions, while we employ the axiomatic motivation from Delage et al. (2019) to justify the
use of worst-case CVaR when the distribution of the random maximum flow is ambiguous.

Notations

Vectors are expressed in bold and matrices are represented by capital letters. 1 and 0 denote
column vectors of 1’s and 0’s respectively. The identity matrix is denoted by I, and ei captures
its i-th column. The set of all probability measures on a finite discrete measurable space (X , FX )

is denoted by ∆X ⊆ R|X |+ , where FX denotes all subsets of X .

2 Related Literature

It is well-known that the illegal flow of drugs, weapons or other hazardous substances poses a
threat to the security of a nation, see, Magliocca et al. (2019) and the references therein. The law-
enforcement agencies aim to reduce their flow while the adversaries, which may be smugglers or
terrorist organizations, try to increase it. Network interdiction problems find useful applications
in transportation (Israeli and Wood (2002)), medicine (Assimakopoulos (1987)), and disruption
of supply chains of illicit drugs (McLay et al. (2011)). The interdiction problems with a defender
who interdicts a set of arcs on the network to minimize the flow while the adversary maximizes
it are known as maximum flow network interdiction problems (see Wood (1993), Cormican et al.
(1998), Smith et al. (2013), Smith and Song (2020)). The maximum flow network interdiction
problems are one of the most widely studied network flow problems. For an elaborate description
of the theory, algorithms and applications of network flow problems, refer to Ahuja et al. (1993).

Recently, a series of papers have considered risk aversion in network interdiction problems.
Lei et al. (2018) studied a maximum flow network interdiction problem where interdictor and
follower use deterministic strategies and the effect of interdiction on the capacity of each arc is
random. Also, the interdictor and the follower use the CVaR risk measure. In Atamtürk et al.
(2020), the capacities are assumed to be stochastic, and the interdictor minimizes the maximum
flow-at-risk over a discrete set of actions. We note that there is another stream of literature on
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shortest-path interdiction problems where the leader removes arcs to increase the length of the
shortest path in the network (Israeli and Wood 2002). In Song and Shen (2016), the authors
study a risk averse shortest path network interdiction problem with chance constraint where
the risk averse interdictor aims to ensure with high probability that the length of shortest path
is above a threshold. Chicoisne et al. (2018) provide decomposition-based methods to solve
shortest path problems with CVaR and entropic risk measure. In Pay et al. (2019), the defender
is ambiguous about her own utility function and determines her decision by optimizing over
the worst utility function from a set of utility functions constructed from the historical data.
In Borrero et al. (2019) and Yang et al. (2021), sequential shortest-path network interdiction
problems are studied where the interdictor learns the cost of the edges by observing the actions
of the follower over time. On the other hand, we consider a one-shot maximum flow network
interdiction problem in this paper.

Another topic that has received attention in the network interdiction literature is on deter-
mining the value of randomization. In Jain et al. (2010), it is shown that randomization can
be useful in security applications like patrolling of airports. Bertsimas et al. (2016) introduced
a randomized network interdiction game where only the interdictor can randomize and where
the follower observes the distribution of interdicted arcs. The authors assumed that the inter-
dictor as well as the flow player are risk-neutral, and the model parameters are known with
certainty. Our setting can be considered as a variation of their work where the value of random-
ization stems from the leader’s ambiguity aversion rather than from the assumption that the
follower is partially informed about the interdictor’s action. We also note that Holzmann and
Smith (2021) studied the value of randomization in a shortest-path interdiction problem for a
risk-neutral leader. The authors neither consider ambiguity nor risk aversion.

Table 1: Maximum flow interdiction models.

Reference Risk measure for interdictor Interdiction Strategies Capacities

Cormican et al. (1998) Expectation Deterministic Stochastic
Janjarassuk and Linderoth (2008) Expectation Deterministic Stochastic

Bertsimas et al. (2016) Expectation Randomized Known
Lei et al. (2018) CVaR Deterministic Known

Atamtürk et al. (2020) Value at Risk (VaR) Deterministic
Stochastic

(Normal distribution)

Our model CVaR Randomized
Unknown

(Ambiguous distribution)

Clearly, in the one-shot interdiction problems, the probability distribution over the uncertain
quantities is either assumed to be known or a worst-case approach is used to determine optimal
strategies (see Smith and Song (2020) for a detailed exposition of the interdiction models).
Also, the benefit of using randomized strategies for a risk-averse agent in DRO problems has
not been explored as can be seen in Table 1 . In order to account for ambiguity aversion in
non-cooperative games, Loizou (2015) has proposed a distributionally robust game theory model
where players use a worst-case CVaR of expected payoff to evaluate the performance of their
mixed strategies. We show, using an example, that a single player counterpart of his model
results in an optimal policy that is strictly stochastically dominated by the strategy produced
by our model.

Alternatively, we propose the distributionally robust maximum flow network interdiction
model where the interdictor minimizes the worst-case CVaR of the maximum flow with respect
to both the unknown distribution of the capacity of the arcs and his randomized strategy over
the feasible interdiction plans. Similar to Janjarassuk and Linderoth (2008), we assume that
the flow player maximizes the flow under any interdiction plan after observing the capacity of
each arc. However, the success of interdiction is a Bernoulli random variable in Janjarassuk and
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Linderoth (2008) while it is deterministic in our model.
Hajinezhad and Shi (2018) and Hajinezhad and Hong (2019) solved non-convex non-smooth

optimization problems with bilinear equality constraints for machine learning and signal process-
ing applications using the alternating direction method of multipliers. Their algorithm exploits
the separability of the objective function in the decision variables to obtain local optimal so-
lutions efficiently. On the other hand, the decision variables in our problem are coupled, and
therefore, we devise the spatial branch and bound algorithm (see Al-Khayyal and Falk (1983))
that iteratively searches the feasible space of the problem to obtain global optimal solutions
within a given tolerance. The rate of convergence of the algorithm relies on generating tighter
lower and upper bounds. In the literature, McCormick inequalities (see, McCormick (1976))
are commonly used to obtain convex relaxations of the non-convex programming problems with
bilinear constraints. In order to obtain a tighter bound, Reformulation Linearization Technique
(RLT) was proposed in Sherali and Alameddine (1992) wherein valid inequalities obtained by
multiplying the pairs of feasible constraints are added to the relaxed problem. This increases
the size of the LP relaxation. Liberti and Pantelides (2006) proposed the reduced RLT, which in
contrast to RLT, can give an exact reformulation of original bilinear problem with an additional
number of linear equality constraints. The authors also show that the reduced RLT combined
with McCormick inequalities can result in tighter relaxations than applying McCormick directly
to the bilinear terms.

3 Distributionally robust maximum flow network inter-
diction problem

Consider a directed graph G = (V,E), where V and E denote the nodes and arcs, respectively.
Let e = (i, j) represent an arc on G, δ−(i) = {(i, j)|j ∈ V } and δ+(i) = {(j, i)|j ∈ V } denote,
respectively, the set of arcs leaving and entering node i ∈ V . A flow in the graph G is denoted

by a non-negative vector x ∈ R|E|+ so that for each e ∈ E, we have xe ≤ ce, where the capacity

of all arcs is denoted by c ∈ R|E|+ . The conservation of flow at each node is ensured by∑
e∈δ−(i)

xe −
∑

e∈δ+(i)

xe = 0 ∀i 6∈ {s, t}, (1)

where s and t denote the source and sink node, respectively. The flow player aims at maximizing
the flow in the network. The interdictor, on the other hand, aims at minimizing the worst-case
CVaR of the flow with respect to both the unknown distribution of the capacity of the arcs and
his mixed strategy over the interdicted arcs. We assume that the interdictor has a budget to
remove B arcs in the network. Let L denote the finite set of feasible plans for the interdictor
where L = {` ∈ {0, 1}|E||

∑
e `e ≤ B}. Here, `e = 1 if the interdictor removes arc e and `e = 0

if arc e is not interdicted. The distribution of the capacities of all the arcs is only known to lie
in the set Q. We assume that the distribution is discrete with a set of scenarios K supported
on {ck}k∈K.

Similar to the model in Bertsimas et al. (2016), we assume that the randomized strategy of
the interdictor is a probability distribution u over the set L where u ∈ ∆L. For any interdiction
plan ` and scenario k, the flow player solves the following problem

f`,k := maximize
x∈R|E|

d>x (2a)

subject to Nx = 0 (2b)

0 ≤ x ≤ Ck(1− `), (2c)

where d>x =
∑
e∈δ+(t) xe, C

k = diag(ck) and N is the node-arc incidence matrix of the network
without the rows associated to nodes s and t.
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The interdictor solves the following distributionally robust maximum flow network interdic-
tion (DRMFNI) problem:

(DRMFNI) minimize
u∈∆L

max
q∈Q

CVaRα
`∼u,k∼q[f`,k], (3)

where CVaR is defined over the joint distribution of capacities and interdicted arcs. Namely,
with risk aversion parameter α = [0, 1), CVaR is defined as

CVaRα
`∼u,k∼q[f`,k] := inf

ζ
ζ +

1

1− α
∑
`

∑
k

qku`[f`,k − ζ]+,

where [f`,k − ζ]+ := max(f`,k − ζ, 0) (see Rockafellar and Uryasev (2000)).

Remark 2. Since the set X := {x∈ R|E| |Nx = 0, 0 ≤ x ≤ Ck(1 − `)} of all possible s − t
flows is convex, randomization is not beneficial for the flow player if he considers minimizing a
convex risk measure of d>x, such as, minux∈∆X CVaRα

x∼ux
[−d>x] (see, Delage et al. (2019)).

Under this setting, one can show that the interdictor’s DRMFNI problem can be cast as a
bilinear DRO problem.

Proposition 1. When Q is a convex set, the interdictor’s DRMFNI problem (3) is equivalent
to the following bilinear DRO problem

minimize
u,ζ,∆,t,η

t (4a)

subject to ζ +
1

1− α
∑
`

∑
k

qk∆`,k ≤ t ∀q ∈ Q (4b)

∆`,k ≥ u`f`,k − η` ∀` ∈ L, k ∈ K (4c)

η` = u`ζ ∀` ∈ L (4d)

∆`,k ≥ 0 ∀` ∈ L, k ∈ K (4e)

u ≥ 0 (4f)

1>u = 1 (4g)

0 ≤ ζ ≤ ζ̄, (4h)

where ζ̄ := maxk∈K f0,k.

The above problem is non-convex due to the bilinear terms u`ζ. A second difficulty resides
in having to compute f`,k for each scenario k ∈ K and interdiction plan ` ∈ L in order to solve
(4). This will be addressed algorithmically in Section 4.

In the following example, we show that the distributionally robust model proposed in Loizou
(2015) identifies interdiction strategies which are strictly stochastically dominated by other
feasible strategies. This indicates that Loizou’s approach is not well motivated for this class of
problems. Recall that Loizou (2015) considers an interdictor that employs CVaR to handle
parameter uncertainty but an expected value to handle the uncertainty caused by his own
randomized strategy.

Example 1. Consider an agent trying to reduce the maximum flow from point s to point
t which are located on two respective sides of a river. The agent has a budget to interdict
two routes. There are three routes available, e ∈ {T1, T2, B}, where routes T1 and T2 use
two different tunnels to pass the river, while route B uses a bridge to do so. In normal traffic
conditions, the capacities are, τ , τ , and ε, with 2τ

3 < ε < τ , for routes T1, T2, and B respectively.
Unfortunately, all three routes are susceptible to congestion on the day of interest. In the case
of T1 and T2, it is known that the city is planning to do some repairs, which would decrease the
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flow by δ, using one repair team but no information is available regarding which tunnel it will
be; the identity of the selected tunnel is denoted by r ∈ {1, 2}. On the other hand, there is also
a weather forecast that predicts 50% chance of snowfall which would create the same decrease
in flow, δ, on the bridge used by route B. We let δ satisfy 2(τ − ε) < δ ≤ ε. The flow player
wants to maximize the flow from point s to point t.

Let the set of feasible interdiction plans be defined as follows:

L = {{T1, B}, {T2, B}, {T1, T2}, {T1}, {T2}, {B}, {∅}}.

The possible scenarios k = {1, 2, 3, 4} for the capacity of the three routes T1, T2 and B are
given by:

c1 =

τ − δτ
ε− δ

 , c2 =

 τ
τ − δ
ε− δ

 , c3 =

τ − δτ
ε

 , c4 =

 τ
τ − δ
ε

 ,
with respective probabilities q1, q2, q3, q4, such that q1 + q2 = 0.5 and q3 + q4 = 0.5.

Here are the numerical details regarding f(`, k) which denotes the total flow when interdiction
plan ` is chosen, and scenario k is realized:

f(`, k) :=



τ if ` = {T1, B} and k ∈ {1, 3},
τ − δ if ` = {T1, B} and k ∈ {2, 4},
τ − δ if ` = {T2, B} and k ∈ {1, 3},
τ if ` = {T2, B} and k ∈ {2, 4},

ε− δ if ` = {T1, T2} and k ∈ {1, 2},
ε if ` = {T1, T2} and k ∈ {3, 4},

τ + ε− δ if ` = {T1} and k ∈ {1, 4},
τ + ε− 2δ if ` = {T1} and k = 2,
τ + ε if ` = {T1} and k = 3,

τ + ε− 2δ if ` = {T2} and k = 1,
τ + ε− δ if ` = {T2} and k ∈ {2, 3},
τ + ε if ` = {T2} and k = 4,

2τ − δ if ` = {B} and k ∈ {1, 2, 3, 4},
2(τ − δ) + ε if ` = {∅} and k ∈ {1, 2},
2τ − δ + ε if ` = {∅} and k ∈ {3, 4}.

.

Consider two potential strategies:

uL = (0.5, 0.5, 0, 0, 0, 0, 0), uSD = (0, 0, 1, 0, 0, 0, 0),

where uL denotes the strategy to interdict routes (T1, B) with 50% probability and routes (T2, B)
with 50% probability; uSD denotes the strategy to interdict routes (T1, T2) with probability 1.

Our robust risk-averse approach gSD(u) := supq∈Q CVaRα
`∼u,k∼q[f(`, k)], with α ≥ 50%

leads to the following evaluation:

gSD(uL) = τ v.s. gSD(uSD) = ε.

Since ε < τ , we get that uSD, interdicting both routes T1 and T2, outperforms uL.
Alternatively, the approach in Loizou (2015) can be summarized as minimizing gL(u) :=

supq∈Q CVaRα
k∼q[E`∼u[f(`, k)]] and leads to the following evaluation

gL(uL) = τ − δ/2 v.s. gL(uSD) = ε.

Since δ > 2(τ − ε), it is strictly better to implement uL, i.e. interdicting {T1, B} with 50%
probability and {T2, B} with 50% probability, outperforms uSD. Yet, it is clear from a purely
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statistical point of view that uSD strictly stochastically dominates uL for all q ∈ Q. Specifically,
we have that

∀t ∈ R, P`∼uL,k∼q(f(`, k) ≥ t) = 0.51t≤τ + 0.51t≤τ−δ

≥ 0.51t≤ε + 0.51t≤ε−δ = P`∼uSD,k∼q(f(`, k) ≥ t) ,

where 1x denotes the indicator function of set x, and where inequality is strict when ε < t ≤ τ
or ε− δ < t ≤ τ − δ.

4 Solving the DRMFNI problem

In this section, we propose a numerical scheme for solving the DRMFNI problem. It is well-
known that the tractability of a robust optimization problem depends on the structure of the
uncertainty set (see Ben-Tal and Nemirovski (2008) and Ben-Tal et al. (2015)). In particular,
for simplicity of exposition, we will focus without loss of generality on the case where the
distribution ambiguity set contains perturbed versions of a reference distribution q̂ ∈ ∆K.

Assumption 1. Let Q be defined as follows:

Q :=

q ∈ R|K| |∃z ∈ Z, q ≥ 0,

|K|∑
k=1

qk = 1, q = q̂ + z

 ,

where q̂ ∈ ∆K is a reference distribution, z denotes the perturbation in the reference distribu-
tion, and Z is a convex and compact set with 0 in the relative interior of Z.

The choice of set Q takes into account the ambiguity of the interdictor regarding the distri-
bution over the capacity of arcs as it consists of probability distributions that are perturbations
of the reference distribution.

To convert the DRMFNI problem given in (4) to a finite dimensional optimization problem,
we first derive the Fenchel robust counterpart (Ben-Tal et al. (2015)) of the linear constraint
(4b) as presented in the following proposition.

Proposition 2. Let Assumption 1 hold. The robust counterpart of the interdictor’s DRMFNI
problem presented in (4) is given by

minimize
u, t,γ,∆, ζ,η

t (5a)

subject to q̂>γ + δ∗(γ|Z)− γk + ζ +
1

1− α
∑
`∈L

∆`,k ≤ t ∀k ∈ K , (5b)

(4c)− (4h),

where δ∗(γ|Z) := supz∈Z γ
>z denotes the support function of the set Z.

The support function of Z can be obtained for important choices of uncertainty sets Z, e.g.,
polyhedral, ellipsoidal and second order cone representable sets, see Ben-Tal et al. (2015).

In the rest of the paper, we assume that the set of perturbations Z refers to the following
set:

Z(Γ) =

{
z ∈ R|K|

∣∣∣∣ ‖z‖∞ ≤ Γ, ‖z‖1 ≤ Γ
√
|K|
}
, (6)

where Z(Γ) is chosen for simplicity of presentation as a polyhedral set conveniently used to
approximate a L2-norm ball of radius Γ. By changing the parameter Γ, the degree of conser-
vatism in the model can be controlled which enables the interdictor to evaluate the trade-off
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between robustness and performance. A valuable property of using this uncertainty set is that
the robust counterpart of a linear constraint is representable in a linear program. This implies
that the bilinear DRO problem (4) can be reformulated as a finite-dimensional bilinear opti-
mization problem. A similar reformulation also necessarily exists for other polyhedral sets such
as some of the forms that are based on hypothesis testing (see e.g. Kolmogorov-Smirnov and
Wasserstein ambiguity sets in Postek et al. (2016)).1

Proposition 3. When the set of perturbations Z is given by (6), the robust counterpart of the
interdictor’s DRMFNI problem given in (4) is a bilinear optimization problem

minimize
u, t,w+,w−, β
η,θ+,θ−,∆, ζ

t (7a)

subject to ζ + Γ
√
|K|β + Γ

∑
k′∈K

(w+
k′ + w−k′) +

1

1− α
∑
`∈L

∆`,k

+(q̂ − ek)>(w+ −w− + θ+ − θ−) ≤ t ∀k ∈ K (7b)

θ+
k + θ−k = β ∀k ∈ K (7c)

w+ ≥ 0, w− ≥ 0, θ+ ≥ 0, θ− ≥ 0 (7d)

(4c)− (4h).

The procedure that we propose for solving problem (7) is motivated by the observation that
ζ and u are complicating variables. Indeed, when either ζ or u is fixed, the problem reduces to
a linear program. Since ζ is also constrained to lie in a bounded interval Ī := [0, ζ̄], a spatial
branch and bound scheme on ζ seems appropriate (see, Chandraker and Kriegman (2008)).

Our implementation of the spatial branch and bound algorithm will rely on the existence of
two operators. Namely, after defining the problem that we are interested in solving as

g(Ī) := min
u, t,w+,w−, β,
η,θ+,θ−,∆, ζ

t

subject to (4c)− (4g), (7b)− (7d),

ζ ∈ Ī ,

the algorithm will assume the existence of the following two bounding operators glb(I) and
gub(I) which satisfy:

glb(I) ≤ g(I) ≤ gub(I) , ∀I ⊆ Ī ,
and such that for all sequence of intervals I1, I2, . . . converging to some ζ, the associated se-
quence of bounds (glb(Ij), gub(Ij)) converge to g(ζ). Finally, the operator gub(I) will be such
that one can always efficiently produce a ζ∗ub(I) ∈ I such that g({ζ∗ub(I)}) = gub(I).

With this in hand, we can describe the algorithm. First in words, the spatial branch and
bound algorithm starts at a root node capturing Ī and branches on this node by subdividing it
into a number of sub-intervals, considered sub-nodes of the branch and bound tree2. Nodes are

1 In fact, (6) can be seen as a polyhedral approximation of an ambiguity set based on Pearson’s χ2 test when q̂
is uniform.

2Implementation details: for any interval Ĩ := [ζlb, ζub], we create 3 sub-intervals [ζlb, ζlb + p1(ζ∗ub(Ĩ)) − ζlb)],

[ζlb +p1(ζ∗ub(Ĩ))−ζlb), ζ∗ub(Ĩ))+p2(ζub−ζ
∗
ub(Ĩ)))] and [ζ∗ub(Ĩ))+p2(ζub−ζ

∗
ub(Ĩ))), ζub], where p1 = 8

9
and p2 = 1

9

if ζlb < ζ∗ub(Ĩ)) < ζub; we create subintervals [ζlb, ζlb + p1(ζub − ζlb)], [ζlb + p1(ζub − ζlb), ζlb + p2(ζub − ζlb)] and

[ζlb + p2(ζub − ζlb), ζub] where p1 = 1
9

and p2 = 5
9

if ζlb = ζ∗ub(Ĩ)), otherwise p1 = 4
9

and p2 = 8
9
. This scheme

creates partitions such that after branching, the smallest partition contains optimal ζ∗ub(Ĩ) for the upper bounding

problem in the interval Ĩ. The resulting tighter relaxation can prevent further branching of the interval containing
ζ∗ub(Ĩ) and leads to better upper bounds since the optimal support from the lower bounding problem is later used to
determine the upper bound in the coordinate descent algorithm.
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progressively selected and branched upon until either at node j, we have that glb(Ij) is close

enough to gub(Ij), or glb(Ij) is larger than g({ζ̂∗}) where ζ̂∗ is the best solution found so far.
When no more nodes need to be branched upon, the algorithm can terminate and conclude that
{ζ̂∗} is close enough to being globally optimal. Based on ζ̂∗ it is then possible to get a nearly

optimal solution û∗ from problem (7) where ζ is fixed to ζ̂∗. Finally, the exact worst-case CVaR
of û∗ can be obtained by solving problem (7) where u is fixed to û∗. For clarity, Algorithm 1
presents the pseudocode for the procedure that was described.

Algorithm 1 Spatial branch and bound algorithm for solving problem (7)

1: procedure SpatialBranch&Bound(ε,n)
2: UB∗ ←∞, N ← {Ī} . N denotes the set of nodes
3: while N 6= ∅ do
4: Sort N in non-decreasing order according to glb(·)
5: Take first I nodes (intervals) out of N
6: if gub(I) < UB∗ then
7: UB∗ ← gub(I)
8: ζ̂∗ ← ζ∗ub(I)
9: end if

10: Remove from N , all Î such that glb(Î) ≥ UB∗
11: if gub(I) > (1 + ε)glb(I)) then
12: Divide I into n sub-intervals {I1, . . . , In}
13: N ← N ∪ {I1, . . . , In}
14: end if
15: end while
16: Solve problem (7) with constraint ζ = ζ̂∗ to get û∗

17: Solve problem (7) with constraint u = û∗ to get t̂∗

18: return û∗, t̂∗

19: end procedure

We are left with describing how the two operators can be efficiently implemented.

4.1 Using RLT with C&CG for glb(I)

In this section, we describe an efficient procedure that can be used to establish a lower bound
for the optimal value of problem (7). This procedure will need to overcome the two underlying
difficulties of problem (7), namely that constraint (4d) is bilinear in u and ζ, and that the size of
this problem is exponential with respect to |E| due to the set L. To tackle the first obstacle, we
will employ a popular reduced reformulation linearization technique (see Liberti and Pantelides
(2006)) that will relax the problem to a linear program. The second obstacle will be dealt with
by employing a column generation scheme (Desrosiers and Lübbecke (2005)) that only considers
a subset L̂ ⊂ L and progressively adds relevant support points to it until optimality conditions
are satisfied.

Starting with the idea of relaxing the problem to a linear program, we follow similar steps
as used in Liberti and Pantelides (2006). Namely, we start by introducing a set of redundant
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constraints in problem (7). This gives rise to the following equivalent optimization model

min
u, t,w+,w−, β,
η,θ+,θ−,∆, ζ

t (8a)

subject to (4c)− (4g), (7b)− (7d),∑
`∈L

η` = ζ (8b)

η` ≥ u`ζlb ∀` ∈ L (8c)

η` ≤ u`ζub ∀` ∈ L (8d)

η` ≥ ζ + ζub(u` − 1) ∀` ∈ L (8e)

η` ≤ ζ + ζlb(u` − 1) ∀` ∈ L, (8f)

ζlb ≤ ζ ≤ ζub, (8g)

where ζlb and ζub are the respective boundaries of I. In problem (8), constraint (8b) is redundant
since

∑
`∈L u` = 1 implies that

∑
`∈L u`ζ = ζ, and we have that u`ζ = η`. On the other hand,

constraints (8c)-(8f) are so-called McCormick inequalities (see McCormick (1976)) which are
known to be redundant given that ζ ∈ I and 0 ≤ u ≤ 1.

We obtain the linear relaxation of the above problem by removing constraint (4d) from
problem (8). For completeness, we present this linear programming relaxation in full details
below:

minimize
u,w+,w−, t, β,
η,θ+,θ−,∆, ζ

t (9a)

subject to ζ + Γ
√
|K|β + Γ

∑
k′∈K

(w+
k′ + w−k′) +

1

1− α
∑
`∈L

∆`,k

+(q̂ − ek)>(w+ −w− + θ+ − θ−) ≤ t ∀k ∈ K (9b)

θ+
k + θ−k − β = 0 ∀k ∈ K (9c)

1>u = 1 (9d)∑
`∈L

η` = ζ (9e)

η` ≥ ζ + ζub(u` − 1) ∀` ∈ L (9f)

η` ≤ ζ + ζlb(u` − 1) ∀` ∈ L, (9g)

ζlb ≤ ζ ≤ ζub (9h)

w+ ≥ 0,w− ≥ 0,θ+ ≥ 0, θ− ≥ 0 (9i)

∆`,k ≥ u`f`,k − η` ∀` ∈ L, k ∈ K (9j)

∆`,k ≥ 0 ∀` ∈ L, k ∈ K (9k)

u ≥ 0 (9l)

η` ≥ u`ζlb ∀` ∈ L (9m)

η` ≤ u`ζub ∀` ∈ L. (9n)

In what follows, it will be useful to compactly represent (9) as follows:

minimize
x,{y`}`∈L

h>x (10a)

subject to Ax+
∑
`∈L

B`y` ≤ s (10b)

W`y` ≤ 0 ∀` ∈ L, (10c)
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where (10b) summarizes constraints (9b)-(9i) while (10c) summarizes constraints (9j)-(9n). The
decision variables are given by

x = [(w+)
>

(w−)
>

(θ+)
>

(θ−)
>
ζ β t]>,

y` = [∆>` u` η`]
>, ∀` ∈ L

where x ∈ R4|K|+3,y` ∈ R|K|+2 and ∆` ∈ R|K| for each ` ∈ L, A ∈ R(7|K|+2|L|+6)×(4|K|+3),
B` ∈ R(7|K|+2|L|+6)×(|K|+2), W` ∈ R(2|K|+3)×(|K|+2), s ∈ R7|K|+2|L|+6, h ∈ R4|K|+3. For the full
description of A, B, W , s, h, refer to Appendix B.

The idea behind column generation methods is to consider that at optimality y` 6= 0 only
for a small set of index ` ∈ L. This is a legitimate assumption for our DRMFNI problem where
we expect that there should be an optimal strategy that only randomizes among a relatively
small (non-exponential) number of interdiction plans. This was observed for instance in the
distributionally robust risk neutral facility location problem studied in Delage and Saif (2021).

Given a set L̂ ⊆ L, by linear programming duality, we have that the solution of

minimize
x,{y`}`∈L

h>x (11a)

subject to Ax+
∑
`∈L

B`y` ≤ s (11b)

W`y` ≤ 0 ∀` ∈ L̂ (11c)

y` = 0 ∀` ∈ L/L̂, (11d)

is optimal with respect to problem (10) if and only if a solution of its dual problem

maximize
ψ, {σ`}`∈L̂

−ψ>s (12a)

subject to h+A>ψ = 0 (12b)

B>` ψ +W>` σ` = 0 ∀` ∈ L̂ (12c)

ψ ≥ 0, σ` ≥ 0 ∀` ∈ L̂, (12d)

where ψ ∈ R7|K|+2|L|+6 and σ` ∈ R2|K|+3 are the dual variables associated to constraints (11b)
and (11c) respectively, can be completed with some σ` ∈ R2|K|+3 for all ` ∈ L/L̂ in a way that
makes it feasible in the dual of problem (10), i.e. problem (12) where L̂ is replaced with L.

In particular, this can be verified after solving problem (11) for some L̂ ⊆ L by obtaining a

set (ψ̂, {σ̂`}`∈L̂) of optimal dual variables for constraints (11b) and (11c) and verifying if they
satisfy the following condition:

inf
`∈L

sup
σ`≥0

inf
y`

ψ̂>B`y` + σ>` W`y` ≥ 0. (13)

Lemma 4. Let (x̂, {ŷ`}`∈L, ψ̂, {σ̂`}`∈L̂) be a primal-dual solution pair for problems (11) and
(12) that satisfies condition (13). Then, (x̂, {ŷ`}`∈L) is also optimal for problem (10).

Furthermore, when condition (13) is not satisfied, a violating ` ∈ L, which is necessarily not
in L̂, can be identified and added to L̂ in order to improve the solution obtained by problem
(11).

Two important observations need to be made at this point. First, fortunately enough problem
(11) can be shown to reduce to a linear program which size is linear in |L̂| given that only the
decision variables (x, {y`}`∈L̂) need to be optimized, while the only constraints indexed by some

` ∈ L/L̂ are constraints (11d) and a subset of constraint (11b) which capture constraints (9f)
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and (9g). The latter two become redundant for any ` /∈ L̂ since in those cases the constraints
reduce to:

ζlb ≤ ζ ≤ ζub ∀` ∈ L/L̂.

Secondly, one can also show that condition (13) can be verified efficiently by solving a mixed-
integer linear program of reasonable size as described in the following proposition.

Proposition 5. Given some I ⊆ Ī, verifying condition (13) is equivalent to verifying whether
the optimal value of the following mixed-integer linear program is non-negative:

minimize
`∈L,∆,η

{λk,υk,Υk}k∈K

ϕ̂>

1− α
∆ + p̂+ π̂η (14a)

subject to ∆k ≥ c>k (λk −Υk)− η ∀k ∈ K (14b)

Υk ≤ ` k ∈ K (14c)

Υk ≤ λk ∀k ∈ K (14d)

Υk ≥ λk + `− 1 ∀k ∈ K (14e)

Υk ≥ 0 ∀k ∈ K (14f)

λk +N>υk − d ≥ 0 ∀k ∈ K (14g)

0 ≤ λk ≤ 1 ∀k ∈ K (14h)

∆k ≥ 0 ∀k ∈ K (14i)

η ≥ ζlb (14j)

η ≤ ζub (14k)

1>` ≤ B (14l)

` ∈ {0, 1}|E|, (14m)∑
i:¯̀i=0

(1− `i) +
∑
i:¯̀i=1

`i ≤ |E| − 1 ∀¯̀∈ {` ∈ L̂ | ŷ` 6= 0} (14n)

where λk ∈ R|E|, ∆ ∈ R|K|, η ∈ R, υk ∈ R|V | and Υ ∈ R|E|×|K|, ŷ solves (11) for L̂ ⊆ L, while

ϕ̂, p̂, π̂ are the elements of ψ̂ associated with (9b), (9d), (9e) respectively.

We note that to obtain the reformulation in (14), we exploit the fact that the dual vector
(denoted by λ) associated with constraint (2c) is bounded above by 1. The need for (14n) is
also a peculiarity that is due to the fact that constraints (9f) and (9g), indexed by `, are left
in the restricted master problem (11). Furthermore, the size of MILP (14) in Proposition
5 grows linearly with |L̂| where L̂ is a smaller set compared to L for our DRMFNI problem if
the optimal randomized strategy can be supported on a small number of interdiction plans. For
completeness, we present the pseudocode of the column generation algorithm described above in
Algorithm 2. Note that the algorithm is guaranteed to converge in a finite number of iterations
given that at each iteration, either the algorithm terminates or a new element ` ∈ L is added
to L̂, yet |L| is finite.

4.2 Using coordinate descent for gub(I)

Given an interval I ⊆ Ī we are looking for an upper bound on g(I) and a value of ζ ∈ I such
that g(I) matches this upper bound. In order to accomplish this task, we will first look back at
the solution of problem (9) to identify the optimal support L∗lb and distribution u∗lb of the lower
bounding problem. We then perform coordinate descent on problem (7) where L is replaced
with L∗lb iterating between a step where u stays fixed at the best solution found so far, initially
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Algorithm 2 Column Generation Algorithm to solve problem (9)

1: procedure ColumnGeneration
2: L̂ ← {0}
3: while L̂ 6= L do
4: Solve problem (9) with η` = 0,u` = 0, ∆` = 0 for all ` ∈ L/L̂
5: Identify a set of optimal dual variables ϕ̂, p̂, and π̂ as defined in Proposition 5.
6: Solve problem (14) to obtain optimal value v∗ and optimal `∗

7: if v∗ ≥ 0 then
8: return Optimal solution obtained in step 4
9: else

10: L̂ ← L̂ ∪ {`∗}
11: end if
12: end while
13: return Solve (9) and return optimal solution
14: end procedure

at u∗lb, and a step where it is rather ζ that stays fixed. In both cases, the problem reduces to
a linear program whose size is linear in the size of L∗lb. This procedure is considered to have
converged when the relative improvement on optimal value is considered small enough. For
completeness, we provide the pseudocode for the coordinate descent algorithm in Algorithm 3.

Algorithm 3 Coordinate Descent Algorithm to obtain upper bound on problem (7)

1: procedure CoordinateDescent(ε, L∗lb, u∗lb)
2: ū∗ ← u∗lb, L ← L∗lb
3: do
4: Solve problem (7) with u = ū∗ to get optimal value t∗1 and optimal ζ∗ub(I)
5: Solve problem (7) with ζ = ζ∗ub(I) to get optimal value t∗2 and optimal ū∗

6: while t∗2 < (1− ε)t∗1
7: gub(I)← t∗1
8: return gub(I), ζ∗ub(I)
9: end procedure

5 Numerical experiments

We performed a series of numerical experiments to show the convergence and numerical efficiency
of the spatial branch and bound algorithm (in Section 5.1), to quantify the value of risk aversion
modeling in Section 5.2, and to compare the performance of our optimal randomized strategies,
Loizou’s randomized strategies (Loizou (2015)), and deterministic interdiction plans in Section
5.3. All algorithms were implemented in Matlab 2020a using the YALMIP toolbox and CPLEX
12.9.0 was used to solve all continuous and mixed-integer linear programs, except in Section
5.1.3 where we compare our algorithm with Gurobi’s bilinear solver and therefore, we solve
all continuous, mixed integer linear programs, and bilinear programs using Gurobi 9.1.2. The
Matlab codes used to generate the results can be found on GitHub3.

3GitHub repository: https://github.com/Utsav19/Value-of-Randomization
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With the exception of Section 5.1.3, all DRMFNI problem instances were generated using the
grid network structure given in Figure 1. Within the same column, the arcs can point upward
or downward with equal probability whereas between different columns, the arcs always point
in the direction of the sink. The number of rows is denoted by m and the number of columns
is denoted by n. This class of network instances is the same as the one used in Cormican et al.
(1998), Royset and Wood (2007), Janjarassuk and Linderoth (2008) and Atamtürk et al. (2020)
where the arcs in the first and last column and those leaving the source node s or entering the
sink t are not interdictable and have infinite capacity. For each DRMFNI problem instance,
capacity vector scenarios are drawn from a factor model, c := Fξ, with each ξi independently

distributed according to an exponential distribution with mean µi, for some fixed F ∈ R|E|×2
+

and µ ∈ R2
+ that were randomly generated for the given instance. The empirical distribution

over the |K| i.i.d. observations is used as a reference distribution for our ambiguity set Q, i.e.
q̂ = (1/|K|)1, as is commonly done in DRO (see Ben-Tal et al. (2013), Bayraksan and Love
(2015), Mohajerin Esfahani and Kuhn (2018), Lam (2019), Ji and Lejeune (2021), Duchi et al.
(2021)).

We note that in these experiments, we will pay special attention to the Value of the Ran-
domized Strategy (VRS), which can be defined as the relative gap between the worst-case CVaR
obtained by the deterministic and randomized strategies:

VRS =
maxq∈Q̂|K| CVaRα

k∼q[f ˆ̀∗
|K|,k

]−maxq∈Q̂|K| CVaRα
`∼û∗|K|,k∼q

[f`,k]

maxq∈Q̂|K| CVaRα
`∼û∗|K|,k∼q

[f`,k]
× 100%.

where ˆ̀∗
|K| and û∗|K| are respectively the optimal deterministic and randomized solutions of the

DRMFNI problem, and where Q̂|K| is centered at the empirical distribution over the sample set.

s t

Figure 1: Grid network for numerical experiments

5.1 Computational efficiency

Next, we report the computation times of our spatial branch and bound algorithm in Section
5.1.1, and compare it with a heuristic approach based on solving DRMFNI problem for different
fixed values of ζ (in Section 5.1.2). A comparison of the performance of our spatial branch and
bound algorithm and Gurobi’s bilinear solver is finally given in Section 5.1.3.

5.1.1 Convergence of spatial branch and bound algorithm.

In this subsection, we show that the spatial branch and bound algorithm described in Section
4 converges quickly to approximately optimal solutions. The size of the instances is given
by m × n × |K| where m and n denote the number of rows and columns, respectively, in the
network and |K| denotes the number of scenarios. We randomly generate 10 instances of sizes
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10 × 10 × 10, 15 × 15 × 15, and 20 × 20 × 20 of the DRMFNI problem as described in the
introduction of this section. The scenarios are randomly generated from the constructed factor
model. For Γ = 0, our problem reduces to a CVaR minimization with probability equal to the
reference probability (e.g. , uniform) in which case deterministic plans are optimal since CVaR
is a mixture quasiconcave risk measure (a.k.a. randomization proof), see Delage et al. (2019).

We then solve the instances for a convergence tolerance, ε, either equal to 0.01% or 0.0001%,
terminating the algorithm if the higher precision is not achieved after 2 hours. The results of
the numerical experiments for B = b0.3mc, α = 0.05 are given in Table 2 where bic denotes the
largest integer less than or equal to i. We find that for networks of all sizes, the spatial branch
and bound algorithm converges within 2 hours to an accuracy of ε = 0.0001% for all 10 problem
instances.

Table 2: Computation times of spatial branch and bound algorithm for different levels of uncer-
tainty (Γ) for 10 randomly generated instances.

Size
(m× n× |K|)

Type of
performance

Level of Uncertainty (Γ)
(in % of |K|)

5% 10% 15%

10× 10× 10
avg. cpu time (s) (ε = 0.01%) 1.34 14.83 10.69

avg. cpu time (s) (ε = 0.0001%) 1.40 17.29 15.19

15× 15× 15
avg. cpu time (s) (ε = 0.01%) 16.53 24.59 21.20

avg. cpu time (s) (ε = 0.0001)% 25.81 45.30 42.31

20× 20× 20
avg. cpu time (s) (ε = 0.01%) 10.75 12.25 11.37

avg. cpu time (s) (ε = 0.0001%) 22.76 24.60 22.30

In producing Table 2, we observed that for most of the instances used to produce Table
2, the VRS is found to be equal to 0. Therefore, we identify a subclass of instances with
VRS 6= 0 to show that our algorithm also converges for those instances. For each network of size
10×10×10, 15×15×15, and 20×20×20, we sampled scenarios from the factor model until we
have obtained 10 instances with VRS > 0.1% for each value of Γ in {0.05|K|, 0.1|K|, 0.15|K|}.
The results are given in Table 3 for B = b0.3mc and α = 0.05. We find that the spatial branch
and bound algorithm converges within 2 hours with a tolerance of 0.0001% for all instances of
sizes 10× 10× 10, 15× 15× 15 and 20× 20× 20. Finally, we refer interested reader to Section
F in the Appendix, which provides empirical evidence that the choice of reference distribution
does not affect computation time significantly.

Table 3: Computation times of spatial branch and bound algorithm for different levels of uncer-
tainty (Γ) for 10 randomly generated instances for which V RS > 0.1%.

Size
(m× n× |K|)

Type of
performance

Level of Uncertainty (Γ)
(in % of |K|)

5% 10% 15%

10× 10× 10
avg. cpu time (s) (ε = 0.01%) 66.21 44.28 56.35

avg. cpu time (s) (ε = 0.0001%) 212.21 245.14 193.39

15× 15× 15
avg. cpu time (s) (ε = 0.01%) 34.05 55.19 36.84

avg. cpu time (s) (ε = 0.0001)% 151.97 114.88 220.46

20× 20× 20
avg. cpu time (s) (ε = 0.01%) 141.64 96.81 152.71

avg. cpu time (s) (ε = 0.0001)% 591.81 195.11 393.83
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5.1.2 Comparison of spatial branch and bound algorithm with heuristic
approach.

In this section, we compare the efficiency of our spatial branch and bound algorithm with a
heuristic approach that is based on the observation that for a fixed ζ, (7) reduces to a linear
program.

Table 4: Computation times of spatial branch and bound algorithm for different levels of un-
certainty (Γ) for 10 randomly generated instances of problem size (10 × 10 × 10) with precision
ε = 0.01% with the heuristic

Partitions
N

Type of
performance

Instances in Table 2
Level of Uncertainty (Γ)

(in % of |K|)

Instances in Table 3
Level of Uncertainty (Γ)

(in % of |K|)

5% 10% 15% 5% 10% 15%

4
avg. cpu time (s) 3.03 2.4 2.11 7.77 9.61 5.6

optimality gap 1.24% 1.64% 1.64% 1.01% 1.12% 1.21%

16
avg. cpu time (s) 11.97 9.41 7.91 29.29 30.03 19.49

optimality gap 0.27% 0.34% 0.34% 0.21% 0.32% 0.21%

32
avg. cpu time (s) 21.83 20.76 19.13 41.16 63.77 35.12

optimality gap 0.16% 0.15% 0.15% 0.1% 0.13% 0.14%

64
avg. cpu time (s) 48.20 38.1 29.66 129.17 118.69 78.64

optimality gap 0.06% 0.09% 0.09% 0.06% 0.06% 0.05%

128
avg. cpu time (s) 98.80 66.72 61.63 257.43 213.96 155

optimality gap 0.03% 0.04% 0.04% 0.04% 0.02% 0.03%
spatial
B&B

avg. cpu time (s) 1.34 14.83 10.69 66.21 44.28 56.35
optimality gap 0% < 10−5% < 10−5% < 10−3% < 10−4% < 10−3%

The heuristic can be summarized as follows. First, we choose a uniform grid on the interval
[ζlb, ζub] to create N partitions. Next, for each ζ value on the grid, we solve problem (7) to
obtain an upper bound on the interdictor’s DRMFNI problem. The best upper bound (feasible
solution) is the one with the minimum value among the N + 1 solutions corresponding to each ζ
on the grid. We use a column generation procedure to solve problem (7) for a fixed ζ. In Table
4, we report the optimality gap for the best feasible solutions identified by using this heuristic
approach and the spatial branch and bound algorithm with precision ε = 0.01% relative to the
lower bound identified using the spatial branch and bound algorithm with ε = 0.0001%. The
results are given for instances considered in Tables 2 and 3 with a network of size 10× 10× 10,
B = 3, q̂ = (1/10)1, α = 0.05 and N ∈ {4, 16, 32, 64, 128}. The spatial branch and bound
algorithm achieves less than 10−3% optimality gap on average for all values of Γ while the
heuristic approach takes significantly higher time than our algorithm to reach an optimality
gap of around 0.05%. This implies that our column generation scheme identifies near optimal
support for the original DRMFNI of the interdictor even when the convex relaxation is not tight.
As a result, the subsequent iterations of the spatial branch and bound algorithm after optimality
gap of ε = 0.01% has been achieved improve the lower bound to close the gap between the lower
and upper bounds.

5.1.3 Comparison of Algorithm 1 with Gurobi.

Next, we compare the performance of Algorithm 1 with Gurobi’s bilinear solver on smaller
instances. To solve problem (7), we consider two variants of Algorithm 1, one in which we use
column generation procedure described in Algorithm 2 to solve the lower bounding problem (9),
and another in which we directly feed problem (9) to an LP solver. In addition to a 5× 5× |K|
grid network, the computational experiments are conducted on two real-world networks, namely,
Sioux-Falls (LeBlanc et al. 1975) and NOBEL-US (Orlowski et al. 2010), that have been used
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in the literature (c.f. Lei et al. (2018), Song and Shen (2016)). The source and sink nodes are
taken as 1 and 24, respectively for the Sioux-Falls network (see Figure 4 in Section E of the
appendix), and for the NOBEL-US network (see Figure 5 in Section E of the appendix), Seattle
and Princeton are taken as the source and sink nodes, respectively .

Table 5 reports the average computation times to solve 10 instances of problem (7) for each
of the three network instances with α = 0.05, Γ = 0.05|K|, |K| ∈ {100, 150, 200}, using Gurobi’s
bilinear solver and the two variants of Algorithm 1 which are described above.

We can see that, unlike for Algorithm 1, Gurobi’s bilinear solver’s solution time does not scale
well with the total number of possible interdiction plans. This is even the case when comparing
to the version of spatial B&B that does not employ column generation. For instance, Gurobi’s
bilinear solver does not find a feasible solution for the NOBEL-US network (861 possible plans)
with 200 scenarios within 10 minutes while Algorithm 1 converges with an optimality gap of
0.01% even without using the column generation procedure. For Sioux-Falls network with a
small number of interdiction plans, we find that it is better to use Algorithm 1 without the CG
procedure because the small size of the problem does not justify the computation time to solve
the MILP within the CG procedure.

Table 5: Comparison of average computation times for the Gurobi’s bilinear solver and our spatial
branch and bound algorithm described in Algorithm 1 with- and without column generation for 10
instances and a convergence tolerance of 0.01%.

|L| |K| Gurobi spatial B&B spatial B&B
+ CG

(s) (s) (s)

Sioux-Falls
|E| = 76, |V | = 24, B = 1

76 100 0.71 0.95 2.42
76 150 1.25 1.38 3.66
76 200 2.23 1.72 6.66

Grid Network
|E| = 50, |V | = 27, B = 2

496 100 31.54 35.87 7.16
496 150 67.64* 31.16 10.47
496 200 73.70 43.32 13.25

Nobel-US
|E| = 42, |V | = 14, B = 2

861 100 49.56 24.85 7.94
861 150 200.10 20.12 5.52
861 200 N.A.** 30.30 8.34

* average computed on nine instances as one failed to converge in 10 min
**all 10 instances failed to converge in 10 min

5.2 Value of modeling risk-aversion in DRMFNI model

In this section, we quantify the importance of accounting for risk aversion in the DRFMNI prob-
lem. In particular, we evaluate the worst-case CVaR achieved by an optimal interdiction strategy
from the risk-neutral DRFMNI model (i.e. when α = 0%) and compare it to the minimal worst-
case CVaR that can be reached. We consider the 10 random instances of size 10×10×10 studied
in Table 3 for Γ = 1 and B = 3. First, we solve the risk-neutral model, and compute the optimal
randomized strategy (û0) for the interdictor. For the randomized strategy (û0), we determine
the worst-case CVaR for the risk-averse DRMFNIP for α ∈ {0.5, 0.1, 0.2, 0.3, 0.4}. The relative
gap between the worst-case CVaR for û0 and optimal worst-case CVaR for risk-averse DRMFNI
problem is defined as the value of risk-averse model (VRAM) and is given by

VRAM =
maxq∈Q̂|K| CVaRα

`∼û0
|K|,k∼q

[f`,k]−maxq∈Q̂|K| CVaRα
`∼û∗|K|,k∼q

[f`,k]

maxq∈Q̂|K| CVaRα
`∼û∗|K|,k∼q

[f`,k]
× 100%,
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where û∗|K| is an optimal solution to the DRFMNI with risk aversion α. It can be seen in
Figure 2 that the value of risk-averse model increases with risk-aversion parameter α. For e.g.
we observed at an α = 40% level, that the sub-optimality of the solution of the risk neutral
DRMFNI could reach up to nearly 11% when compared to the minimum worst-case conditional
value-at-risk. This evidence therefore supports the claim that risk aversion is an important
element to model even in an environment with distribution ambiguity.

0.05 0.1 0.2 0.3 0.4
-2

0

2

4

6

8

10

12

Figure 2: Box plots summarizing the statistics (quartiles and outliers) of the value of risk-averse
model (VRAM) as a function of the risk aversion level.

5.3 Value of Randomization

Next, in Section 5.3.1, we compare the in-sample value of randomized strategies for our model
and Loizou’s model with respect to the optimal deterministic strategies for the instances gener-
ated for the grid network in Figure 1. In Section 5.3.2, we provide evidence that our randomized
strategies can outperform deterministic strategies in out-of-sample experiments.

5.3.1 Performance of our randomized, Loizou’s randomized, and deter-
ministic strategies

To illustrate the benefit of randomization, we generate instances of the network given in Figure
1 for 10 rows and 10 columns. We are interested in comparing the performance of strategies
that are obtained using only |K| = 10 scenarios from the underlying distribution. To do so, we
generated 100 set of samples for the capacities of the arcs for each level of Γ ∈ {0.5, 1, 1.5}. For
each set of samples, we compare the performance of the randomized interdiction strategy û∗10

and the deterministic strategy ˆ̀∗
10 that optimizes the DRMFNI problem constructed from this

“observed” sample set, with B ∈ {3, 6, 9}, α = {0.05, 0.1, 0.2, 0.4}, and q̂ = (1/10)1. The
optimal randomized strategy û∗10 is obtained by using the spatial branch and bound algorithm

outlined in Section 4 with ε = 0.01%, while the optimal deterministic strategy ˆ̀∗
10 is computed

by solving the MILP given in Section C in the appendix.
To compute the value of randomized strategies from Loizou (2015), we solve the following

distributionally robust network interdiction problem where the interdictor minimizes the worst-
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case CVaR of the expected maximum flow over her own randomized strategy:

(L-DRMFNI) minimize
u∈∆L

max
q∈Q

inf
ζ
ζ +

1

1− α
∑
k

qk

[(∑
`

u`f`,k

)
− ζ

]+

, (15)

The robust counterpart of the L-DRMFNI problem is a linear program which is solved by
using our column generation algorithm.

Table 6 reports the number of instances, for each level of Γ, for which VRS was between zero
and 0.1%, between 0.1% and 1%, and above 1% for L-DRMFNI and DRMFNI models. Also,
it can be shown that L-DRMFNI always underestimates the risk associated with the DRMFNI
model (Delage et al. 2019, Proposition 3). Therefore, the VRS for L-DRMFNI problem is
always greater than or equal to the VRS for the DRMFNI problem which is confirmed by our
numerical experiments. In particular, L-DRMFNI mislabeled 11.22% (i.e. 404 of the 3600
instances) of our randomly generated instances as being instances with a strictly positive VRS.

We observe that for higher budget of interdiction, the randomized strategies perform sig-
nificantly better than deterministic ones with respect to DRMFNI problem instances, reaching
for B = 9 an average VRS of 11.66% when α = 0.05. We argue that this evidence confirms
that there is a real observable benefit for the network interdictor for employing randomized
interdiction plans in a risk averse network interdiction problem, both in a distributionally ro-
bust setting (c.f. the performance comparison) and in a setting where the network capacity
distribution information comes from a limited number of observed realizations. Also, as the
distributional ambiguity increases from Γ = 1 to Γ = 1.5, there is no further improvement in
performance for a variation in either the budget of interdiction B or the risk aversion parameter
α.

In Table 6, we can see that there is no variation in VRS with α for Γ = 1 and Γ = 1.5
for L-DRMFNI problem because we have considered 10 scenarios and the model reduces to
minimizing the worst-case expected payoff similar to the model in Bertsimas et al. (2016).

5.3.2 Out-of-sample performance of randomized and deterministic strate-
gies

In this subsection, we compare the out-of-sample performance of optimal randomized and de-
terministic strategies of the interdictor with respect to the DRMFNI problem.

For a budget of interdiction, B = 9, and risk aversion parameter, α = 0.1, we found in
the previous section that there are 15 network instances for which VRS ≥ 1% for all values of
Γ ∈ {0.5, 1, 1.5}. For these 17 network instances, we conduct the training and test experiments
by randomly sampling probability distributions over the capacities of the arcs from a Dirichlet
distribution, with parameters βj = β for all j = 1, . . . , N where β ∈ {0.1, 0.3, 0.5, 0.8}. For
each instance, we generate 100 distributions for the in-sample study, and 10000 distributions
for the out-of-sample experiments. We chose the Γ values in such a way that the Euclidean ball
of radius Γ centred at the uniform distribution contains 95% of the probability distributions
in the training sample. We solve the DRMFNI problem to obtain optimal deterministic and
randomized strategies and then, use them to compute the corresponding out-of-sample CVaR.

Table 7 reports the in-sample average value of randomized strategies for DRMFNI model for
α = 0.1. We can see that as the concentration parameter increases, the VRS decreases because
larger values of β result in less uncertainty about the distribution.

In Figure 3, the box plots for the 95th percentile of the out-of-sample CVaR corresponding
to the optimal deterministic and randomized strategies are given for different values of the
concentration parameter. We can see from the box plots that randomized strategies outperform
the deterministic plans for all values of the concentration parameter (β), and for lower values
of β, the difference in performance is significant.
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Table 6: Value of randomized solution performances from our DRMFNI and L-DRMFNI (Loizou
(2015)) models for problem of size 10× 10× 10.

Level of
Uncertainty (Γ)

B α VRS based on DRMFNI VRS based on L-DRMFNI
[0% 0.1%) [0.1%, 1%) ≥ 1% [0% 0.1%] [0.1%, 1%) ≥ 1%

# inst. # inst. # inst. avg. VRS # inst. # inst. # inst. avg. VRS

5%

3

0.05 94 3 3 2.39% 90 5 5 2.40%
0.1 95 3 2 2.09% 89 7 4 2.80%
0.2 96 4 0 0% 87 5 8 2.17%
0.4 98 2 0 0% 85 4 11 3.37%

6

0.05 85 6 9 3.56% 78 9 13 3.78%
0.1 88 5 7 3.25% 76 11 13 3.94%
0.2 93 4 3 3.43% 76 5 19 3.43%
0.4 90 8 2 1.59% 69 3 28 4.44%

9

0.05 71 9 20 6.58% 67 4 29 6.98%
0.1 80 5 15 6.22% 66 5 29 7.59%
0.2 87 2 11 4.66% 65 2 33 8.13%
0.4 93 1 6 4.58% 62 4 34 13.01%

10%

3

0.05 87 5 8 3.30% 85 4 11 3.37%
0.1 88 5 7 2.81% 85 4 11 3.37%
0.2 91 5 4 1.85% 85 4 11 3.37%
0.4 98 2 0 0% 85 4 11 3.37%

6

0.05 69 8 23 3.95% 69 3 28 4.44%
0.1 71 9 20 3.42% 69 3 28 4.44%
0.2 80 7 13 2.86% 69 3 28 4.44%
0.4 91 7 2 1.57% 69 3 28 4.44%

9

0.05 67 3 30 11.66% 62 4 34 13.01%
0.1 71 2 27 9.92% 62 4 34 13.01%
0.2 79 4 17 9.22% 62 4 34 13.01%
0.4 94 0 6 4.38% 62 4 34 13.01%

15%

3

0.05 87 5 8 3.30% 85 4 11 3.37%
0.1 88 5 7 2.81% 85 4 11 3.37%
0.2 91 5 4 1.86% 85 4 11 3.37%
0.4 98 2 0 0% 85 4 11 3.37%

6

0.05 69 8 23 3.95% 69 3 28 4.44%
0.1 71 9 20 3.42% 69 3 28 4.44%
0.2 80 7 13 2.86% 69 3 28 4.44%
0.4 91 7 2 1.57% 69 3 28 4.44%

9

0.05 67 3 30 11.66% 62 4 34 13.01%
0.1 71 2 27 9.92% 62 4 34 13.01%
0.2 79 4 17 9.22% 62 4 34 13.01%
0.4 94 0 6 4.38% 62 4 34 13.01%

Table 7: In-sample average value of randomized strategy from DRMFNI model for problem of size
10× 10× 10 for different values of the concentration parameter β of the Dirichlet distribution

β avg. VRS

0.1 15.40%
0.3 10.71%
0.5 7.22%
0.8 5.57%
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Figure 3: Statistics (over 15 problem instances) of the 95th percentile of the out-of-sample CVaR
for optimal deterministic plans and randomized strategies for different values of the concentration
parameter of the Dirichlet distribution

6 Conclusions

In this paper, we introduced a distributionally robust risk averse maximum flow network inter-
diction problem to model the strategic interactions between a risk-averse interdictor and the flow
player. We solved the interdictor’s bilinear DRO problem by first reformulating it as a bilinear
optimization problem using LP duality and then devising a spatial branch and bound algorithm.
After observing that the optimal randomized strategy can be supported on a small number of
interdiction plans in DRO problems, we developed a column generation algorithm that can be
used to efficiently determine the convex relaxation of the interdictor’s problem. Our numerical
experiments showed that 1) our proposed spatial branch and bound algorithm can efficiently
solve distributionally robust interdiction problems of reasonable sizes; 2) randomization can be
quite effective in reducing the risk exposure obtained from the optimal deterministic interdic-
tion strategy when comparing the worst-case CVaR performances. We note that our spatial
branch and bound algorithm does not exploit the specific structure of the max-flow problem
and thus should be adaptable to other Stackelberg games where the followers’ problem takes the
form of a linear program. There is also a possibility that future research might identify special
acceleration schemes for this max-flow problems.

Given that Stackelberg games with single leader and multiple followers have been extensively
applied in the literature, it would be interesting as future work to extend our algorithm in a way
that can address Stackelberg games with a leader that is both risk and ambiguity averse while
followers implement a Nash equilibrium that accounts for their respective risk aversion. Another
direction for future research could be to determine the value of randomization in distributionally
robust shortest path network interdiction problems with a risk averse interdictor. Another
problem that can be of interest is to combine our column generation algorithm that scales
with the number of interdiction plans with a constraint generation procedure (see Section D in
the appendix) in order to potentially handle a much larger number of scenarios for the arcs’
capacities.
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A Proofs

A.1 Proof of Proposition 1

We substitute the expression of CVaR in (3) to obtain

minimize
u∈∆L

max
q∈Q

inf
ζ

ζ +
1

1− α
∑
`

∑
k

qku`[f`,k − ζ]+. (16)

We prove by contradiction that an optimal ζ, denoted by ζ∗, lies between 0 and ζ̄. First, we
assume that ζ∗ = ζL < 0 is the largest optimal value for ζ. The maximum flow f`,k for any `
and k is bounded below by 0, hence for any q ∈ Q the CVaR equals

ζL +
1

1− α
∑
`

∑
k

qku`(f`,k − ζL) =
(1− α)ζL − ζL

1− α
+

1

1− α
∑
`

∑
k

qku`f`,k.

However, we arrive at a contradiction since ζ = 0 is at least as good as ζL:

−αζL
1− α

+
1

1− α
∑
`

∑
k

qku`f`,k ≥
1

1− α
∑
`

∑
k

qku`f`,k = 0 +
1

1− α
∑
`

∑
k

qku`[f`,k − 0]+,

for any α ∈ [0, 1). So, we can conclude that ζ∗ := 0 is also optimal.
Alternatively, we can assume that ζ∗ = ζH > ζ̄ is the smallest optimal solution for ζ. In this

case, for any q ∈ Q we have that CVaR equals:

ζH +
1

1− α
∑
`

∑
k

qku`[f`,k − ζH ]+ = ζH ,

since f`,k ≤ f0,k ≤ ζ̄ < ζH . Yet, for ζ = ζ̄, the worst-case CVaR, given by ζ̄, is strictly less than
ζH which contradicts our assumption that ζH is the smallest optimal solution for ζ.

We now turn ourselves to establishing the reformulation presented as problem (4). Let
v(ζ, q,u) = ζ + 1

1−α
∑̀∑

k

qku`[f`,k − ζ]+. Since v(ζ, q,u) is convex in ζ for all q ∈ Q while

being linear in q for all ζ ∈ [0, ζ̄], and since [0, ζ̄] is bounded and Q is convex, it follows from
Sion’s minimax theorem (see Sion (1958)) that (16) is equivalent to

minimize
u∈∆L

min
0≤ζ≤ζ̄

max
q∈Q

ζ +
1

1− α
∑
`

∑
k

qku`[f`,k − ζ]+. (17)

Since we are minimizing over u and ζ, we have an equivalent reformulation of (17) given by

minimize
u∈∆L,∆≥0,

0≤ζ≤ζ̄

max
q∈Q

ζ +
1

1− α
∑
`

∑
k

qk∆`,k

subject to ∆`,k ≥ u`f`,k − u`ζ ∀` ∈ L, k ∈ K.

Employing an epigraph representation of the above objective function and introducing the de-
cision variable η` = u`ζ, we obtain problem (4). �
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A.2 Proof of Proposition 2

We start with the following lemma which applied the theory proposed in Ben-Tal et al. (2015)
to derive reformulations of non-linear robust constraints.

Lemma 6. Suppose Assumption 1 holds. Then (ζ,∆, t) satisfy the robust constraint (4b) if
and only if there exists a vector γ ∈ R|K| that satisfies the following constraint

q̂>γ + δ∗(γ|Z)− g∗(ζ,∆, t,γ) ≤ 0 (18)

where δ∗(γ|Z) denotes the support function of the set of perturbations Z and g∗(ζ,∆, t,γ) is
the partial concave conjugate of g(ζ,∆, t, q) where

g(ζ,∆, t, q) = ζ +
1

1− α
∑
`∈L

∑
k∈K

qk∆`,k − t

with domain {q|q ≥ 0,
∑
k qk = 1}.

Proof. Proof of Lemma 6 We first rewrite constraint (4b) as:

h(ζ,∆, t,z) ≤ 0 ∀z ∈ Z

where h(ζ,∆, t,z) := g(ζ,∆, t, q̂+z). Clearly, h(ζ,∆, t,z) is affine in z for all (ζ,∆, t), and the
intersection of Z and the domain of h(ζ,∆, t,z), namely Q, has a non-empty relative interior
as long as Γ > 0 (e.g. with ẑ = 0 when q̂ = 1/|K|. Thus, Fenchel duality theorem can be used
to show that constraint (4b) is equivalent to (see Ben-Tal et al. (2015)):

δ∗(γ|Z)− h∗(ζ,∆, t,γ) ≤ 0 .

Furthermore, one can show that:

h∗(ζ,∆, t,γ) = inf
z
γ>z−g(ζ,∆, t, q̂+z) = inf

q
γ>(q−q̂)−g(ζ,∆, t, q) = −γ>q̂+g∗(ζ,∆, t,γ) .�

Lemma 7. The partial concave conjugate function of g(ζ,∆, t, q) is given by

g∗(ζ,∆, t,γ) = min
k=1,2,...,|K|

γk − ζ −
1

1− α
∑
`∈L

∆`,k + t (19)

Proof. Proof of Lemma 7
The conjugate function of g(ζ,∆, t, q) is given by

g∗(ζ,∆, t,γ) = inf
q
γ>q − g(ζ,∆, t,γ)

= min
q:q≥0,

∑
k qk =1

∑
k∈K

γkqk − ζ + t− 1

1− α
∑
`∈L

∑
k∈K

qk∆`,k

= min
k=1,2,...,K

γk − ζ + t− 1

1− α
∑
`∈L

∆`,k

where the last equality follows from the fact that the minimization is of an affine function over
a bounded polyhedron, thus the minimum achieved at an extreme point.�

With the two lemmas in hand, it is straightforward to obtain constraint (5b) as an equivalent
reformulation of (4b). �
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A.3 Proof of Proposition 3

The support function of Z is given by

δ∗(γ|Z) = sup
z∈Z

γ>z (20)

An equivalent representation of set Z(Γ) is given by

Z(Γ) =

z ∈ R|K|
∣∣∣∣∣∣∃δ ∈ R|K|,

−Γ ≤ zk ≤ Γ ∀k ∈ K
−δk ≤ zk ≤ δk ∀k ∈ K∑
k∈K δk = Γ

√
|K|

 .

Therefore, we can rewrite the maximization problem in (20) as follows:

maximize
δ,z

∑
k∈K

γkzk (21a)

subject to zk ≤ Γ ∀k ∈ K (21b)

zk ≥ −Γ ∀k ∈ K (21c)

zk ≤ δk ∀k ∈ K (21d)

zk ≥ −δk ∀k ∈ K (21e)∑
k∈K

δk = Γ
√
|K| (21f)

Since z = 0 is feasible, we can use strong LP duality to obtain the support function of Z:

δ∗(γ|Z) = minimize
w+,w−,θ+,
θ−, β,

Γ
√
|K|β + Γ

∑
k∈K

(w+
k + w−k )

subject to γk − w+
k + w−k − θ

+
k + θ−k = 0 ∀k ∈ K

θ+
k + θ−k − β = 0 ∀k ∈ K
w+ ≥ 0, w− ≥ 0, θ+ ≥ 0, θ− ≥ 0,

where w+ ∈ R|K|, w− ∈ R|K|, θ+ ∈ R|K|, θ− ∈ R|K|, and β ∈ R are the dual variables associated
to constraints (21b) to (21f), respectively.

Combining the above problem with (5), we obtain

minimize
u, t,γ,w+,w−, β
η,θ+,θ−,∆, ζ

t (22a)

subject to ζ + Γ
√
|K|β + Γ

∑
k′∈K

(w+
k′ + w−k′) +

1

1− α
∑
`∈L

∆`,k

+ q̂>γ − γk ≤ t ∀k ∈ K (22b)

γk − w+
k + w−k − θ

+
k + θ−k = 0 ∀k ∈ K (22c)

θ+
k + θ−k − β = 0 ∀k ∈ K (22d)

w+ ≥ 0, w− ≥ 0, θ+ ≥ 0, θ− ≥ 0 (22e)

(4c)− (4h). (22f)

Since γk = w+
k −w

−
k + θ+

k − θ
−
k for all k ∈ K, an equivalent representation of the above problem
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is given by

minimize
u, t,w+,w−, β
η,θ+,θ−,∆, ζ

t

subject to (4c)− (4h), (22d)− (22e)

ζ + Γ
√
|K|β + Γ

∑
k′∈K

(w+
k′ + w−k′) +

1

1− α
∑
`∈L

∆`,k

+
∑
k′∈K

(q̂ − ek)>(w+ −w− + θ+ − θ−) ≤ t ∀k ∈ K.�

A.4 Proof of Lemma 4

This proof relies on confirming that when condition (13) is satisfied, we can construct an as-

signment {σ̄`}`∈L such that (x̂, {ŷ`}`∈L, ψ̂, {σ̄`}`∈L) is a valid primal-dual solution pair for
problem (10). Specifically, if condition (13) is satisfied, then for all ` ∈ L, there must exist a

σ̄` ≥ 0 such that infy`
ψ̂>B`y` + σ̄>` W`y` ≥ 0, which implies that B>` ψ̂ +W>` σ̄` = 0. Hence,

this provides a recipe for assembling some (ψ̂, {σ̄`}`∈L) that satisfies all constraints of the dual

of problem (10). Since (x̂, {ŷ`}`∈L, ψ̂, {σ̂`}`∈L̂) is a primal-dual solution of problem (11), we

must have that h>x̂ = −ψ̂>s. Hence, (x̂, {ŷ`}`∈L, ψ̂, {σ̄`}`∈L) is a valid primal-dual solution
pair for problem (10). �

A.5 Proof of Proposition 5

We start by repeating the definition of condition (13):

inf
`∈L

sup
σ`≥0

inf
y`

ψ̂>B`y` + σ>` W`y` ≥ 0.

We will first argue that the order of supσ`≥0 and infy`
can be changed without affecting the

value that is obtained. In particular,

sup
σ`≥0

inf
y`

ψ̂>B`y` + σ>` W`y` = sup
σ`≥0:B>` ψ̂+W>` σ`=0

0,

while

inf
y`

sup
σ`≥0

ψ̂>B`y` + σ>` W`y` = inf
y`:W`y`≤0

ψ̂>B`y`.

Since the two problems are dual of each other and infy`:W`y`≤0 ψ̂
>B`y` is feasible with y` = 0,

we can conclude by strong LP duality that the two values are the same.
We thus obtain that the left-hand side of condition (13) can be obtained by solving:

minimize
`∈L,y`

supσ`≥0ψ̂
>B`y` + σ>` W`y`.

On taking the dual of the inner maximization problem, we have

minimize
`∈L,y`

ψ̂>B`y`

subject to W`y` ≤ 0,
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which can be written more carefully as

minimize
`,∆̄,ū,η̄

ϕ̂>

1− α
∆̄ + p̂ū+ π̂η̄ + ψ̂1,`(ζubū− η̄) + ψ̂2,`(η̄ − ζlbū) (23a)

subject to ∆̄k ≥ ūf`,k − η̄ ∀k ∈ K (23b)

∆̄k ≥ 0 ∀k ∈ K (23c)

ū ≥ 0 (23d)

η̄ ≥ ūζlb (23e)

η̄ ≤ ūζub (23f)

` ∈ {0, 1}|E| (23g)

1>` ≤ B, (23h)

where ∆̄ ∈ R|K|, ū ∈ R, η̄ ∈ R, and ϕ̂, p̂, π̂, ψ̂1,`, and ψ̂2,` are the terms of the dual vector

ψ̂ associated with constraints (9b), (9d), (9e), (9f), and (9g) respectively. Note that we can

without loss of generality assume that ψ̂1,` = ψ̂2,` = 0 for all ` 6∈ L̂ since constraints (9f) and
(9g) are considered redundant in the master problem. Moreover, this can also be assumed the
case for all ` ∈ L̂ such that ŷ` = 0 in the master problem. Finally, for ` ∈ {` ∈ L̂ | ŷ` 6= 0},
condition (13) is necessarily satisfied since such ` ∈ L̂. We are therefore left with condition (13)
reducing to the non-negativity of the minimum of the following optimization problem:

minimize
`,∆̄,ū,η̄

ϕ̂>

1− α
∆̄ + p̂ū+ π̂η̄ (24a)

subject to ∆̄k ≥ ūf`,k − η̄ ∀k ∈ K (24b)

∆̄k ≥ 0 ∀k ∈ K (24c)

ū ≥ 0 (24d)

η̄ ≥ ūζlb (24e)

η̄ ≤ ūζub (24f)

` ∈ {0, 1}|E| (24g)

1>` ≤ B, (24h)

` 6∈ {` ∈ L̂ | ŷ` 6= 0} (24i)

The last constraint (24i) can be represented using a list of linear inequalities:∑
i:¯̀i=0

(1− `i) +
∑
i:¯̀i=1

`i ≤ |E| − 1 , ∀¯̀∈ {` ∈ L̂ | ŷ` 6= 0}.

Next, we can observe that when ū = 0, problem (24) necessarily evaluates to zero. From this we
conclude that ū > 0 can be added to problem (24) without affecting the conclusion when used
to check condition (13). Moreover, ū can be pulled out of (24) after replacing ∆ := (1/ū)∆̄
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and η := η̄/ū to obtain:

minimize
`,∆,η

ϕ̂>

1− α
∆ + p̂+ π̂η (25a)

subject to ∆k ≥ f`,k − η ∀k ∈ K (25b)

∆k ≥ 0 ∀k ∈ K (25c)

η ≥ ζlb (25d)

η ≤ ζub (25e)

` ∈ {0, 1}|E| (25f)

1>` ≤ B (25g)∑
i:¯̀i=0

(1− `i) +
∑
i:¯̀i=1

`i ≤ |E| − 1 ∀¯̀∈ {` ∈ L̂ | y∗` 6= 0} (25h)

Next, in order to solve the problem (25), we need to make explicit the relation between `
and f`,k for each scenario k. One way is to exploit the dual problem associated with problem
(2) which is given by

f`,k = min
υ,λ

(1− `)>Ckλ

subject to λ+N>υ − d ≥ 0

0 ≤ λ ≤ 1,

where υ ∈ R|V | and λ ∈ R|E| are duals associated with the constraints (2b) and (2c) respectively.
The dual vector λ is bounded above by 1 since a unit increase in capacity of an arc can increase
the flow by at most one unit, see, (Cormican et al. 1998, Lemma 1).

We therefore have reduced the evaluation of the left-hand side of condition (13) to solving
the following non-linear mixed integer programming (NL-MIP) problem

minimize
`,∆,η

{λk,υk}k∈K

ϕ̂>

1− α
∆ + p̂+ π̂η (27a)

subject to ∆k ≥ 1>Ckλk − `>Ckλk − η ∀k ∈ K (27b)

λk +N>υk − d ≥ 0 ∀k ∈ K (27c)

0 ≤ λk ≤ 1 ∀k ∈ K (27d)

∆k ≥ 0 ∀k ∈ K (27e)

η ≥ ζlb (27f)

η ≤ ζub (27g)

` ∈ {0, 1}|E| (27h)

1>` ≤ B. (27i)∑
i:¯̀i=0

(1− `i) +
∑
i:¯̀i=1

`i ≤ |E| − 1 ∀¯̀∈ {` ∈ L̂ | ŷ` 6= 0} (27j)

The non-linearity in the above problem is due to the bilinear terms `>Ckλk = c>k diag(`)λk.
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We can linearize them to obtain an equivalent MILP since ` is binary:

minimize
`,∆,η

{λk,υk,Υk}k∈K

ϕ̂>

1− α
∆ + p̂+ π̂η

subject to ∆k ≥ c>k λk − c>k Υk − η ∀k ∈ K
Υk ≤ ` k ∈ K
Υk ≤ λk ∀k ∈ K
Υk ≥ λk + `− 1 ∀k ∈ K
Υk ≥ 0 ∀k ∈ K
(27c)− (27j),

where each Υk ∈ R|E| is a linearization of diag(`)λk. �

B Matrices

The coefficient matrices in (10) are given by:

h =




0
0
0
0
0
1

, W` =




−I f` −1 (9j)
−I 0 0 (9k)
0 −1 0 (9l)
0 ζlb −1 (9m)
0 −ζub 1 (9n)

,

A =





Γ11> − I + 1q̂> Γ11> − 1q̂> + I 1q̂> − I I− 1q̂> 1 Γ
√
|K|1 −1 (9b)

0 0 I I 0 −1 0 (9c)
0 0 −I −I 0 1 0 (9c)
0 0 0 0 0 0 0 (9d)
0 0 0 0 0 0 0 (9d)
0 0 0 0 −1 0 0 (9e)
0 0 0 0 1 0 0 (9e)
0 0 0 0 1 0 0 (9f)
0 0 0 0 −1 0 0 (9g)
0 0 0 0 1 0 0 (9h)
0 0 0 0 −1 0 0 (9h)
−I 0 0 0 0 0 0 (9i)
0 −I 0 0 0 0 0 (9i)
0 0 −I 0 0 0 0 (9i)
0 0 0 −I 0 0 0 (9i)

,
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B` =





I
1−α 0 0

0 0 0
0 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1
0 ζube` −e`

0 −ζlbe` e`

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

, s =





0
0
0
1
−1
0
0

ζub1
−ζlb1
ζub
−ζlb

0
0
0
0

.

where for each ` ∈ L, f` ∈ R|K| is the vector of maximum flows for each scenario in |K|.

C Solving for deterministic strategy

For a deterministic interdiction plan, problem (7) reduces to the following MILP:

minimize
`, t, ζ,w+,w−,θ+,θ−,
β,∆, {λk,νk}k∈K,Υk

t

subject to ζ + Γ
√
|K|β + Γ

∑
k′∈K

(w+
k′ + w−k′) +

1

1− α
∑
`∈L

∆`,k

+(q̂ − ek)>(w+ −w− + θ+ − θ−) ≤ t ∀k ∈ K
θ+
k + θ−k − β = 0 ∀k ∈ K
w+ ≥ 0, w− ≥ 0, θ+ ≥ 0, θ− ≥ 0

∆k ≥ c>k λk − c>k Υk − ζ ∀k ∈ K
λk +N>υk − d ≥ 0 ∀k ∈ K
0 ≤ λk ≤ 1 ∀k ∈ K
Υk ≤ ` k ∈ K
Υk ≤ λk ∀k ∈ K
Υk ≥ λk + `− 1 ∀k ∈ K
Υk ≥ 0 ∀k ∈ K
∆k ≥ 0 ∀k ∈ K
` ∈ {0, 1}|E|

1>` ≤ B,
0 ≤ ζ ≤ ζ̄,

where ζ̄ := maxk∈K f0,k.
The spatial branch and bound algorithm can be applied to any polyhedral distributional

ambiguity set because Fenchel robust counterpart of the constraint in (4b) is linear programming
representable for polyhedral sets. As a result, McCormick inequalities combined with RLT lead
to a linear relaxation of the interdictor’s DRMFNI problem which can be solved using our
column generation algorithm.
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D Constraint generation algorithm

The DRMFNI problem in (4) can be solved by an alternative method based on a constraint
generation procedure that exploits the subset-based representation of CVaR given in Künzi-Bay
and Mayer (2006) and Fábián (2008). An equivalent subset-based representation of problem (4)
is given as follows:

minimize
u,ζ,t1,η

ζ +
1

1− α
t1 (28a)

subject to
∑

(`,k)∈J

qku`f`,k − qkη` ≤ t1 ∀J ∈ Θ(L ×K), ∀q ∈ Q (28b)

t1 ≥ 0 (28c)

η` = u`ζ ∀` ∈ L (28d)

u ≥ 0 (28e)

1>u = 1 (28f)

ζ̄lb ≤ ζ ≤ ζ̄ub, (28g)

where Θ(L ×K) is the power set of {(`, k)| ` ∈ L, k ∈ K}.
Since the size of Θ(L × K) is exponential with respect to |`| · |K| and given that we expect

at optimum that constraint (28b) will be active only for a few J ’s and q’s, we can use the
constraint generation procedure described in Algorithm 4 to solve problem (28). In words, the
algorithm can be described as follows: at any iteration i, we solve the relaxed master problem
(29) to obtain the optimal u∗, ζ∗, t∗1 and progressively add constraints that lead to tighter
relaxations of problem (28).

(MP subset) : minimize
u,ζ,t1,η

ζ +
1

1− α
t1 (29a)

subject to
∑

(`,k)∈Jj

qjku`f`,k − q
j
kη` ≤ t1 ∀j ∈ {1, 2, . . . , i− 1} (29b)

(28c)− (28g) (29c)

Algorithm 4 Constraint generation algorithm for solving problem (4)

1: procedure ConstraintGeneration(ε)
2: i← 1, t∗1 = −∞ and t∗2 =∞
3: while t∗2 − t∗1 ≥ (1− α)ε do
4: Solve problem (29) to get optimal value opt∗ and optimal û∗, t∗1, and ζ∗

5: Ji ← {(`, k)|f`,k − ζ∗ > 0, û∗` > 0}
6: qi ← argmaxq∈Q

∑
(`,k)∈Ji qk(û

∗
`f`,k − ζ∗)

7: t∗2 ←
∑

(`,k)∈Ji q
i
k(û
∗
`f`,k − ζ∗)

8: i← i+ 1
9: end while

10: return û∗, ζ∗ +
t∗2

1−α
11: end procedure
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Table 8: Comparison of computation times for the Gurobi’s bilinear solver, constraint generation
combined with Gurobi’s bilinear solver, and our spatial branch and bound algorithm with- and
without column generation.

|L| |K| Gurobi
ConGen+ Gurobi spatial

B&B
spatial B&B

+CG

Last iter.
(s) (s) (s) avg. # iter. (s) (s)

Nobel-US
|E| = 42, |V | = 14, B = 1

42 100 0.54 4.72 0.21 17.4 1.17 2.57
42 150 0.85 6.03 0.22 19.6 2.62 6.63
42 200 1.61 7.18 0.22 19.1 3.40 9.06

Sioux-Falls
|E| = 76, |V | = 24, B = 1

76 100 0.71 2.77 0.19 9.2 0.95 2.42
76 150 1.25 3.26 0.19 8.3 1.38 3.66
76 200 2.23 2.96 0.19 9.8 1.72 6.66

Grid Network (5× 5)
|E| = 50, |V | = 27, B = 2

496 100 31.54 59.20** 3.48 37.6 35.87 7.16
496 150 67.64* 96.90** 3.28 59.0 31.16 10.47
496 200 73.70 67.85** 3.37 49.6 43.32 13.25

* average computed on nine instances as one failed to converge in 10 min
** average computed on eighth instances as two failed to converge in 10 min

E Realistic network instances from the literature

The topologies of the network instances studied in LeBlanc et al. (1975) and Orlowski et al.
(2010) are presented respectively in figures 4 and 5.

F Sensitivity of computation time to the choice of a ref-
erence distribution

We randomly generated 10 instances of size 15× 15× 15 for the grid network given in Figure 1
for each level of Γ ∈ {0.5|K|, 0.1|K|, 0.15|K|} and the scenarios for the capacities of the arcs are
generated from the factor model described in Section 5. Instead of assuming that the reference
distribution in our DRMNFNI problem is the empirical distribution of the sample of scenarios,
we randomly generate the reference distribution of each problem instance using a Dirichlet
distribution with parameters βi := β ∈ {0.1, 0.5, 1,∞}, where β controls the concentration
Dirchlet density around q̂ = (1/|K|)1. For a budget of interdiction B = 4 and risk-aversion
parameter α = 0.05, the average and standard deviation of computation time for different levels
of Γ and β are reported in Table 9. We can see that the statistics of computation time are not
sensitive to the variability (controlled by β) of the reference distribution.
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