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Abstract

We study a class of deterministic two-player nonzero-sum differential games where one player uses
piecewise-continuous controls to affect the continuously evolving state while the other player uses im-
pulse controls at certain discrete instants of time to shift the state from one level to another. The state
measurements are made at some given instants of time, and players determine their strategies using the
last measured state value. We provide necessary and sufficient conditions for the existence of sampled-
data Nash equilibrium for a general class of differential games with impulse controls. We specialize our
results to a scalar linear-quadratic differential game, and show that the equilibrium impulse timing can
be obtained by determining a fixed point of a Riccati like system of differential equations with jumps
coupled with a system of non-linear equality constraints. By reformulating the problem as a constrained
non-linear optimization problem, we compute the equilibrium timing, and level of impulses. We find
that the equilibrium piecewise continuous control and impulse control are linear functions of the last
measured state value. Using a numerical example, we illustrate our results.

1 Introduction

Recently, there has been renewed interest in the study of differential games with impulse controls, where the
state is controlled by two players, with at least one being able to affect the continuously evolving state variable
at certain discrete instants of time only [1, 20]. In such games, the number and timing of interventions besides
their level are also decision variables. Settings where such dynamic interactions arise include option pricing
[18], pollution regulation [20], exchange rate interventions [1], cybersecurity [25], and related problems [2].
Two recent papers that have studied impulse control games are [9] and [14]. In [9], the authors provide
an extension of the two-player stochastic impulse game to an N -player game (N > 2) and also study its
corresponding mean-field game while in [14], a controller-stopper game is studied where one player uses
impulse controls while the other player can stop the game at any time. A solution concept for these games
is the Nash equilibrium, where the strategies of the players use the information that is available to them at
the time when they make their decisions [7]. Nash equilibrium in differential games with impulse controls
have been obtained before under two different information structures, namely, open-loop and perfect-state
feedback information structures. In the open-loop information structure, the equilibrium controls of the
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players are obtained assuming that players have access to only the initial state, whereas with the perfect-
state feedback information structure, players make their decisions using the state measurements at each
instant of time in the game. One limitation of using open-loop strategies is that they are not strongly time-
consistent [7, 8], whereas the feedback equilibrium strategies require state measurements to be made at
each instant of time in the game. In many real-world problems, such as, economic data collected from
the surveys, position of players in pursuit-evasion games, and measuring the quality of goods, acquiring
continuous state measurements is costly. As a result, state information is available to the players at some
(discrete) sampling instants only, and the players determine their sampled-data controls [26, 5], using the
past (time-sampled) state measurements. It appears that Nash equilibrium in differential games with impulse
controls and sampling has not been studied before in the literature.

In [26], the authors have introduced a deterministic two-player nonzero-sum differential gamewhere state
measurement is made at discrete instants of time, and both players use piecewise-continuous strategies. The
sampled-data controls of the players are assumed to be functions of the last measured state value, and players
implement open-loop controls between the sampling instants. The authors showed that the equilibrium of
linear-quadratic differential games can be obtained by solving a system of Riccati equations coupled with a
system of differential equations that determine the terminal conditions on the Riccati equations. Reference
[3] studies a stochastic linear-quadratic differential game where players have access to the sampled-data
state information as well as the sampling times. A time-variant zero-sum linear-quadratic differential game
was studied in [5] where it was shown that the minimax sampled-data controller can be obtained by solving
a generalized Riccati-differential equation. Reference [6] has provided a characterization of the minimax
controller of a switching system with sampled state information. In contrast to the aforementioned research
that deals with piecewise continuous controls, [16] has derived the Nash equilibrium of a class of stochastic
linear-quadratic differential games assuming that the admissible strategies are constant between the state
measurements.

In this paper, we consider a general class of deterministic two-player nonzero-sum differential games
where the two players are endowed with different kinds of controls (discrete and piecewise-continuous). In
particular, Player 1 uses piecewise continuous controls to affect the continuous evolution of the state whereas
Player 2 uses impulse controls to shift the state value instantaneously from one level to another at the impulse
instants that are endogenously determined by Player 2 in addition to the number of impulse instants. The
more general case with both players using continuous and impulse controls can be easily studied using our
model. However, for the application of our work to problems involving regulation and cybersecurity, we
restrict our focus here to the canonical game model with one player using piecewise-continuous controls and
the other player using impulse controls.

The objectives of this research are two-fold: Our first goal is to provide necessary and sufficient con-
ditions for the existence of Nash equilibrium. Our second objective is to specialize our results to scalar
linear-quadratic differential games (LQDGs) which are widely used in economics, engineering and man-
agement science domains (see [7, 22, 8]) as they allow for the possibility of modeling real-world problems
involving non-linear returns to scale.

Our contributions can be summarized as follows:

(i) The paper provides, for the first time, necessary and sufficient conditions for the existence of Nash
equilibrium in a differential game with impulse controls, where the players’ strategies are functions of
the state values measured at certain discrete time instants; see Theorem 1.

(ii) For the case of LQDGs with exogenously given impulse instants, Theorem 2 provides a system of
Riccati like equations with jumps, which characterizes the sampled-data Nash equilibrium.

(iii) For LQDGs with a given number of impulses in each sampling interval, Theorem 3 shows that the
equilibrium timing of impulses can be obtained as a solution of a system of Riccati equations (with
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jumps) provided that the impulse instants satisfy a system of non-linear equality constraints.

The rest of the paper is organized as follows: In Section 2, we introduce the canonical two-player differ-
ential game model. Section 3 provides necessary and sufficient conditions for the existence of sampled-data
Nash equilibrium for the canonical model. In Section 4, we specialize the results to a scalar linear-quadratic
differential game. We illustrate the theoretical results using a numerical example in Section 5. Finally,
Section 6 provides concluding remarks.

2 Model

In this paper, we consider a deterministic two-player differential game of finite duration T < ∞ where both
players can affect a continuously evolving state variable x(t) ∈ Rp to maximize their individual payoffs.
However, the two players are equipped with different types of controls. Player 1 can continuously influence
the dynamics of the state variable using her piecewise continuous controls u(t) ∈ Ωu, while Player 2 is able
to intervene and cause jumps in the state variable at certain discrete instants of time τi (i = 1, 2, · · · , k).
We assume that Ωu is a bounded and convex subset of Rm1 . When Player 2 does not intervene in the game,
the state variable is continuous and its dynamics are controlled entirely by Player 1 so that the state variable
evolves as follows:

ẋ(t) = f(x(t), u(t)), x(0−) = x0, for t ̸= {τ1, τ2, ..., τk}, (1)

where f : Rp × Ωu → Rp, the initial value of the state variable is given by x0 ∈ Rp (a known parameter),
x(τ−i ) = limt↑τi x(t), x(τ

+
i ) = limt↓τi x(t), and 0− denotes the time instant just before 0. The state variable

is assumed to be left-continuous at points of discontinuity. At an impulse instant τi, Player 2 intervenes in
the game to shift the state from x(τ−i ) to x(τ+i ) by using an impulse of size vi ∈ Ωv, that is,

x(τ+i )− x(τ−i ) = g(x(τ−i ), vi), i ∈ {1, 2, · · · , k}, (2)

where g : Rp × Ωv → Rp. We assume that Ωv is a bounded and convex subset of Rp. The number of
impulses k ∈ N (the set of natural numbers), and timing of impulses τi are decision variables of Player 2 in
addition to the levels of impulses. The impulse controls are denoted by ṽ = {(τi, vi), i = 1, 2, · · · , k}.
In this differential game, Player 1 attempts to maximize the following objective:

J1(x0, u(·), ṽ) = S1(x(T
+)) +

∫ T

0
F1(x(t), u(t))dt−

k∑
i=1

G1(x(τ
−
i ), vi), (3)

and Player 2 uses the impulse controls (τi, vi) to maximize the objective

J2(x0, u(·), ṽ) = S2(x(T
+)) +

∫ T

0
F2(x(t), u(t))dt−

k∑
i=1

G2(x(τ
−
i ), vi), (4)

where F1, F2 : Rp×Ωu → R,G1, G2 : Rp×Ωv → R, and S1, S2 : Rp → R. For Player 1, F1 denotes the
running payoff, G1 denotes the intervention cost at the impulse instants, and S1 is the terminal payoff. For
Player 2, the running payoff is given by F2, whileG2 represents the intervention cost at the impulse instants,
and S2 denotes the terminal payoff.

In a differential game, the Nash equilibrium depends on the state information that the players use to
determine their strategies (see [7], [22]). We assume that the state measurement is made at certain discrete
instants of time tn, n ∈ {1, 2, · · · , N}, with the corresponding state values denoted by x1, x2, · · · , xN such
that 0 = t1 < t2 < · · · < tN−1 < tN = T . The sampled-data controls of Player 1 are given by

u(t) = γ(t;x(tn)) ∈ Ωu, for tn ≤ t < tn+1, n ∈ N ′ = {1, 2, · · · , N − 1}, γ ∈ Γ,
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where γ : [tn, tn+1]× Rp → Ωu is a sampled-data state feedback controller of Player 1 and the strategy set
of Player 1 is denoted by Γ. Similarly, the impulse levels of Player 2 are given by

vi,n = δ(τi,n;x(tn)) ∈ Ωv, for tn ≤ τi,n < tn+1, n ∈ N ′, δ ∈ ∆,

where τi,n denotes the timing of impulse in the sampling interval (tn, tn+1), δ : [tn, tn+1] × Rp → Ωu is a
sampled-data state feedback controller for Player 2 and∆ denotes the strategy set of Player 2.

The objective functions of the players over the sub-interval [tn, T ], initialized at the sampling instant tn
with the corresponding state x(tn) = xn are given by

J1(xn, γ[tn,T ], δ[tn,T ]) = S1(x(T
+)) +

N−1∑
j=n

∫ tj+1

tj

F1(x(t), γ(t;x(tj)))dt

−
N−1∑
j=n

kj∑
i=1

1τi,j≥tnG1(x(τ
−
i,j), δ(τi,j ;x(tj))), (5a)

J2(xn, γ[tn,T ], δ[tn,T ]) = S2(x(T
+)) +

N−1∑
j=n

∫ tj+1

tj

F2(x(t), γ(t;x(tj)))dt

−
N−1∑
j=n

kj∑
i=1

1τi,j≥tnG2(x(τ
−
i,j), δ(τi,j ;x(tj))), (5b)

where the strategies γ[tn,T ] and δ[tn,T ] are restrictions of γ and δ to the interval [tn, T ], and Γ[tn,T ] and∆[tn,T ]

denote the corresponding admissible strategy sets of Player 1 and Player 2, respectively. The state dynamics
are given by

ẋ(t) = f(x(t), γ(t;xn)), x(t
−
n ) = xn, for tn ≤ t < tn+1, t ̸= τi,n, n ∈ N ′, (5c)

x(τ+i,n)− x(τ−i,n) = g(x(τ−i,n), δ(τi,n;xn)), for i ∈ In = {1, 2, · · · , kn}, (5d)

where kn denotes the equilibrium number of impulses in the sampling interval [tn, tn+1].
1 From (5a)-(5b),

it is clear that each player can influence the payoff of their opponent directly through their controls, and
indirectly by changing the state variable.

Remark 1. The above canonical differential game model (5a-5d) can be used to study problems in cyber-
security and pollution regulation where the state can be the security level of a system for a software firm
or the level of pollution, with the running payoff of one player, say Player 1, decreasing with state and that
of the other player, increasing with state. Player 1 continuously invests in reducing the state except at the
impulse instants wherein Player 2 intervenes in the game to instantaneously shift the state to a higher value.
Consequently, Player 1 incurs a state-dependent cost at the impulse instant.

Clearly, the admissible controls in the aforementioned real-world applications satisfy the following defini-
tion:

Definition 1. (τi,n, vi,n), i ∈ In, n ∈ N ′, is an admissible impulse control of Player 2 if the impulse
instants satisfy the following increasing monotone sequence property:

tn < τ1,n < τ2,n < · · · < τkn,n < tn+1, (6)

where kn < ∞, vi,n ̸= 0.
1In the paper, the necessary and sufficient conditions are obtained for any finite equilibrium number of impulses. However, in

the case of linear-quadratic games, we fix the number of impulses in each sampling interval (see Section 4).
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In the above definition, we have assumed that the impulses cannot occur at the sampling instants as
Player 2 can either measure the state or use her controls, but cannot do both at the same time (see [23] and
the references therein).

In this paper, we seek to determine the sampled-data Nash equilibrium of the differential game (5a-5d),
which is defined as follows:

Definition 2. The strategy profile (γ∗, δ∗) is a sampled-data Nash equilibrium of the differential game (5a-
5d), if the restrictions of γ∗ and δ∗, denoted by γ∗[tn,T ] and δ

∗
[tn,T ], to any subgame that starts at the sampling

time tn with state measurement xn satisfy the following inequalities:

J1(xn, γ
∗
[tn,T ], δ

∗
[tn,T ]) ≥ J1(xn, γ[tn,T ], δ

∗
[tn,T ]), ∀γ[tn,T ] ∈ Γ[tn,T ], (7a)

J2(xn, γ
∗
[tn,T ], δ

∗
[tn,T ]) ≥ J2(xn, γ

∗
[tn,T ], δ[tn,T ]), ∀δ[tn,T ] ∈ ∆[tn,T ]. (7b)

Remark 2. The sampled-data Nash equilibrium strategies of the differential game (5a-5d) for t ∈ [0, T ]
when restricted to [tn, T ] are also the Nash equilibrium strategies of the subgame that starts at tn. As a
result, the sampled-data Nash equilibrium strategies are strongly time-consistent [4] if the perturbation of
state can occur only at the sampling instants tn, n = {1, 2, · · · , N}. At all other time instants, that is,
t ̸= tn, the sampled-data Nash equilibrium strategies are weakly time-consistent [4].

Remark 3. When sampling is done at the initial and final time only, then the sampled-data Nash equilibrium
coincides with the open-loop Nash equilibrium of a differential game. It is shown in [26] that the sampled-
data equilibrium controls approach the closed-loop controls as the number of sampling intervals increases.

3 Necessary and Sufficient Conditions

In this section, we derive a set of necessary and sufficient conditions for the existence of sampled-data Nash
equilibrium in differential games with impulse controls.

The approach to determine the sampled-data Nash equilibrium can be summarized as follows. Sup-
pose the sampling instants are given by t1, t2, · · · , tN . For t ∈ [tn, tn+1), players use open-loop strategies
γ∗(t;xn) and δ∗(t;xn), which are functions of the last measured state value xn, that is, for any given ini-
tial state xn, Player 1 determines the open-loop controls in the sampling interval and Player 2 determines
the equilibrium number, timing, and levels of impulses. The payoff of each player at (tn, x(tn)) is a sal-
vage value for the open-loop game between tn−1 and tn. Therefore, starting from the last sampling interval
[tN−1, T ) with salvage values S1 and S2, we can recursively obtain the equilibrium strategies for all the
sampling intervals [tn, tn+1), n ∈ N ′.

First, we define the Hamiltonians of the two players that will be used in the necessary conditions for
the existence of sampled-data Nash equilibrium. The continuous Hamiltonians of Player 1 and Player 2 are
given, respectively, by

H1(x(t), u(t), λ1(t)) = F1(x(t), u(t)) + λ1(t)
T f(x(t), u(t)), (8a)

H2(x(t), u(t), λ2(t)) = F2(x(t), u(t)) + λ2(t)
T f(x(t), u(t)), (8b)

where λ1(.) and λ2(.) denote the co-states of Player 1 and Player 2, respectively. The impulse Hamiltonian
of Player 2 is given by

HI
2 (x(t), v, λ2(t)) = −G2(x(t), v) + λ2(t)

T g(x(t), v). (9)

5



Given the strategies, γ and δ, the value-to-go functions of Player 1 and Player 2 at the sampling instants
tn+1, n ∈ N ′ are given, respectively, by

V1(tn+1, xn+1) = S1(x(T )) +
N−1∑

j=n+1

∫ tj+1

tj

F1(x(t), γ(t;xj))dt

−
N−1∑

j=n+1

kj∑
i=1

1τi,j≥tn+1G1(x(τ
−
i,j), δ(τi,j ;xj)), (10a)

V2(tn+1, xn+1) = S2(x(T )) +

N−1∑
j=n+1

∫ tj+1

tj

F2(x(t), γ(t;xj))dt

−
N−1∑

j=n+1

kj∑
i=1

1τi,j≥tn+1G2(x(τ
−
i,j), δ(τi,j ;xj)), (10b)

with V1(T, x(T )) = S1(x(T )), and V2(T, x(T )) = S2(x(T )).Wedenote the equilibrium payoffs of Player 1
and Player 2 at tn+1 by V ∗

1 (tn+1, xn+1) and V ∗
2 (tn+1, xn+1), respectively which are obtained by substituting

the equilibrium strategies γ∗ and δ∗ in (10a) and (10b).
To derive a set of necessary conditions for the existence of a Nash equilibrium, we make the following

assumptions:

Assumption 1. (a) The function f : Rp × Ωu → Rp is Lipschitz continuous in x uniformly in u.

(b) Between the sampling instants, the functions F1, F2, G1, G2 are continuous, and have continuous
partial derivatives with respect to their arguments.

(c) For all strategies γ and δ of Player 1 and Player 2, respectively, the value-to-go functions V1 and
V2 are continuous, and have continuous partial derivatives with respect to the state at the sampling
instants.2

The following theorem provides a set of necessary conditions for the existence of sampled-data Nash
equilibrium of the differential game (5a-5d).

Theorem 1. Suppose the sampling instants are given by t1, t2, · · · , tN with 0 = t1 < t2 < · · · < tN =
T , and Assumption 1 holds. Let (γ∗, δ∗) be the sampled-data Nash equilibrium of the differential game
described by (5a-5d). Then, there exist piecewise continuous and piecewise differentiable functionsλ1(.) and
λ2(.) with λ1(t) ∈ Rn and λ2(t) ∈ Rn such that the following conditions hold for t ∈ [tn, tn+1), n ∈ N ′ :
The equilibrium control of Player 1 satisfies

u∗(t) = arg max
u∈Ωu

H1(x
∗(t), u, λ1(t)),∀t ̸∈ T n = {τ∗1,n, τ∗1,n, · · · , τ∗k∗n,n}. (11a)

At the impulse instant τ∗i,n, i ∈ In, the equilibrium control of Player 2 satisfies

v∗i,n = arg max
v∈Ωv

HI
2 (x

∗(τ∗−i,n ), v, λ2(τ
∗+
i,n )). (11b)

The equilibrium strategies of Player 1 and Player 2 are given, respectively, by γ∗(t;xn) = u∗(t), ∀t ∈
[tn, tn+1), t ̸∈ T n and δ∗(τ∗i,n;xn) = v∗i,n, ∀i ∈ In.

2In Section 4, we show directly that the conditions of Assumption 1 are satisfied for the linear-quadratic differential game studied
there.
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The maximized Hamiltonian and impulse Hamiltonian functions are given, respectively, by

H∗
1 (x

∗(t), λ1(t)) = H1(x
∗(t), u∗(t), λ1(t)), ∀t ̸∈ T n, (11c)

HI
2
∗
(x∗(τ∗−i,n ), λ2(τ

∗+
i,n )) = HI

2 (x
∗(τ∗−i,n ), v

∗
i,n, λ2(τ

∗+
i,n )), i ∈ In, (11d)

the equilibrium state and co-states satisfy for t ̸∈ T n,

ẋ∗(t) = f(x∗(t), u∗(t)), x∗(tn) = xn, (11e)

λ̇1(t) = −H∗
1x(x

∗(t), λ1(t)), λ1(tn+1) =
∂V ∗

1 (tn+1, x
∗(tn+1))

∂x
,

V ∗
1 (T, x

∗(T )) = S1(x
∗(T )), (11f)

λ̇2(t) = −H∗
2x(x

∗(t), u∗(t), λ2(t)), λ2(tn+1) =
∂V ∗

2 (tn+1, x
∗(tn+1))

∂x
,

V ∗
2 (T, x

∗(T )) = S2(x
∗(T )), (11g)

the jumps in the state and co-state variables satisfy for i ∈ In

x∗(τ∗+i,n ) =x∗(τ∗−i,n ) + g(x∗(τ∗−i,n ), v
∗
i,n), (11h)

λ1(τ
∗−
i,n ) =(I + (gx(x

∗(τ∗−i,n ), v
∗
i,n))

T )λ1(τ
∗+
i,n )−G1x(x

∗(τ∗−i,n ), v
∗
i,n), (11i)

λ2(τ
∗−
i,n ) =λ2(τ

∗+
i,n ) +HI∗

2x(x
∗(τ∗−i,n ), λ2(τ

∗+
i,n )), (11j)

and the following Hamiltonian continuity condition holds:

H2(x
∗(τ∗+i,n ), u

∗(τ∗+i,,n), λ2(τ
∗+
i,n )) = H2(x

∗(τ∗−i,n ), u
∗(τ∗−i,n ), λ2(τ

∗−
i,n )). (11k)

Proof For t ∈ [tn, tn+1), Player 1 and Player 2 play their open-loop Nash equilibrium strategies,
γ∗(t;xn) and δ∗(τi,n;xn), that depend on the last measured state value xn. The salvage values of the two
players at tn+1 are given by (10a) and (10b).

Given the equilibrium strategy δ∗(τ∗i,n, xn) of Player 2 in the sampling interval [tn, tn+1), Player 1 solves
a non-standard optimal control problem given in (7a) due to jumps in the state and the additional cost at the
impulse instant. Suppose Assumption 1 holds. Then, the optimality conditions for Player 1 are given in
(11a), (11e), (11f), (11h), (11i) (see [21], [25]), with co-state at tn+1 given by the gradient of the equilibrium
payoff of Player 1 at tn+1. Next, for Player 1’s open-loop equilibrium strategy, γ∗(t;xn) in [tn, tn+1),
Player 2 solves the impulse optimal control problem (7b). The necessary conditions for the existence of the
impulse controls follow from [10], [11], [15], and are given by (11b), (11e), (11h), (11g), (11j), (11k), where
the co-state at tn+1 is given by the gradient of the equilibrium payoff of Player 2 at tn+1. ■

The necessary conditions yield candidates for the sampled-data Nash equilibrium. In each sampling
interval, the players use open-loop Nash equilibrium strategies, and the game is solved using backward
translation starting from the last sampling interval. Consequently, if the sufficient conditions (to be given
next) for the open-loop Nash equilibrium are satisfied in each sampling interval, then the candidate solutions
identified by using the necessary conditions are indeed the sampled-data Nash equilibrium strategies.

A set of sufficient conditions for the existence of sampled-data Nash equilibrium for the differential game
described by (5a-5d) is given as follows:

Proposition 1 (Theorem 3, [25]). Let Assumption 1 hold. Suppose that in each sampling interval [tn, tn+1), n ∈
N ′, the initial state is xn, and there exist feasible solutions (γ∗(t;xn), δ∗(τ∗i,n;xn)) with corresponding state
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trajectoryx∗(.), and co-state trajectoriesλ1(.) andλ2(.), such that the conditions given in Theorem 1 are sat-
isfied. Also, if in each sampling interval, the maximized HamiltonianH∗

1 (x(t), λ1(t)) of Player 1 is concave
in x(t) for all λ1(t), the Hamiltonian H2(x(t), u

∗(t), λ2(t)) of Player 2 is concave in x(t), the value-to-
go functions for Player 1 and Player 2 given by (10a) and (10b) are concave in x(tn+1), λT

1 g(x(t), v) −
G1(x(t), v) is concave in x(t), and the impulse HamiltonianHI

2 (x(t), v, λ2(t)) of Player 2 is jointly concave
in (x(t), v), then (γ∗, δ∗), obtained by concatenating the (open-loop) strategies (γ∗(t;xn), δ∗(τ∗i,n;xn)) for
t ∈ [tn, tn+1), are indeed the sampled-data Nash equilibrium strategies of the differential game described
by (5a-5d).

4 A Scalar Linear-quadratic Differential Game

In this section, we specialize the results in Theorem 1 to a one-dimensional linear-quadratic differential
game with impulse controls, where state measurements are made at the sampling instants tn, n ∈ N =
{1, 2, · · · , N} such that 0 = t1 < t2 < · · · < tN = T .

We study the following scalar linear-quadratic differential game with impulse controls (referred to as
iLQDG from here on):

J1(x0, u(·), ṽ) =
1

2
f1x(T )

2 + s1x(T )

+
1

2

N−1∑
n=1

∫ tn+1

tn

(
h1x(t)

2 + 2w1x(t) + cuu(t)
2
)
dt

+
N−1∑
n=1

kn∑
i=1

z1
2
x(τ−i,n)

2 + d1x(τ
−
i,n), (12a)

J2(x0, u(·), ṽ) =
1

2
f2x(T )

2 + s2x(T )

+

N−1∑
n=1

∫ tn+1

tn

(
1

2
h2x(t)

2 + w2x(t)

)
dt+

N−1∑
n=1

kn∑
i=1

1

2
cvv

2
i,n, (12b)

ẋ(t) = ax(t) + bu(t), ∀t ̸∈ T n, n ∈ N ′, x(0) = x0, (12c)
x(τ+i,n) = x(τ−i,n) + gvi,n, ∀i ∈ In = {1, 2, · · · , kn}, n ∈ N ′,

where b ̸= 0, g ̸= 0, cu, cv < 0, z1, d1 < 0, fj , hj < 0, wj , sj > 0, j ∈ {1, 2}, and the state at the
sampling instants t1, t2, · · · , tN is denoted by x1, x2, · · · , xN .

As indicated earlier, our objective here is to apply the general results obtained in Section 3 to a specialized
scalar linear-quadratic differential game. Therefore, in the iLQDG (12), we have taken a specific form of the
objective function of Player 2 to be able to obtain semi-analytic solutions for time and state pairs at which
an equilibrium impulse occurs.3 This is analogous to the stopping set condition that is obtained with the
feedback information structure in stochastic impulse games with threshold type impulse controls [1]. We
make the following assumptions on the equilibrium controls of the players:

Assumption 2. In each sampling interval, Player 1’s strategy space Γ[tn,tn+1) is the set of locally square-
integrable functions, that is,

Γ[tn,tn+1) :=

{
u(t) ∈ R, t ∈ [tn, tn+1)

∣∣∣ ∫ tn+1

tn

u(t)2dt < ∞
}
, (13)

3[25] obtained the Hamiltonian continuity condition for a general class of linear-quadratic differential games under the open-loop
information structure.
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and Player 2’s controls satisfy Definition 1.

Assumption 3. The controls u(t) of Player 1 and equilibrium impulse levels vi of Player 2 lie in the interior
of the control sets Ωu and Ωv.

4.1 Necessary Conditions

Before considering the case where the number, timing, and levels of impulses are determined by Player 2,
we consider the differential game (12) with exogenously given impulse instants.

Theorem 2. Let t1, t2, · · · , tN denote the sampling instants, and suppose that Assumptions 2 and 3 hold. Let
the equilibrium impulse instants be given by τ∗i,n,∀i ∈ In = {1, 2, · · · , kn}, n ∈ N ′ = {1, 2, · · · , N − 1}.
Then γ∗ and δ∗ given in (15a)-(15b) are the equilibrium strategies of Player 1 and Player 2, respectively,
assuming that the following Riccati equation (14a) has a solution with no finite escape time 4 in the entire
sampling interval [tn, tn + 1], n ∈ N ′, and αj , βj , pj , qj , rj for j ∈ {1, 2} satisfy the system of equations
(14b)-(14t) below.

for t ̸∈ T n :

α̇1,n(t) = −2α1,n(t)a+
b2

cu
α1,n(t)

2 − h1, α1,N (T ) = f1, (14a)

β̇1,n(t) = β1,n(t)

(
b2

cu
α1,n(t)− a

)
− w1, ∀t ̸∈ T n, β1,N (T ) = s1, (14b)

α̇2,n(t) = −2α2,n(t)a+
b2

cu
α2,n(t)α1,n(t)− h2, α2,N (T ) = f2, (14c)

β̇2,n(t) = −β2,n(t)a+
b2

cu
β1,n(t)α2,n(t)− w2, β2,N (T ) = s2, (14d)

αj,n(tn+1) = pj,n+1(tn+1), βj,n(tn+1) = qj,n+1(tn+1), j = {1, 2}, (14e)

ṗ1,n(t) = −h1 − 2(a− b2

cu
α1,n(t))p1,n(t)−

b2

cu
α1,n(t)

2, (14f)

q̇1,n(t) =
b2β1,n(t)

cu
(p1,n(t)− α1,n(t))− q1,n(t)(a− b2

cu
α1,n(t))

− w1, (14g)
pj,n(tn+1) = pj,n+1(tn+1), qj,n(tn+1) = qj,n+1(tn+1), j ∈ {1, 2}, (14h)

ṗ2,n(t) = −h2 − 2(a− b2

cu
α1,n(t))p2,n(t), (14i)

q̇2,n(t) = p2,n(t)
b2

cu
β1,n(t)− (a− b2

cu
α1,n(t))q2,n(t)− w2, (14j)

pj,N (T ) = fj , qj,N (T ) = sj , j = {1, 2} (14k)

for i ∈ In:

µ(τ∗+i,n ) =
cv

cv + g2α2,n(τ
∗+
i,n )

, (14l)

p1,n(τ
∗−
i,n ) = p1,n(τ

∗+
i,n )µ(τ

∗+
i,n )

2 + z1, (14m)

4If the solution y(t) of a non-linear ordinary differential equation ẏ = f(y, t), y(0) = y0 becomes unbounded as t → te
where te < ∞, then te is called the finite escape time [24, 19]. In [19], it is shown that the Riccati differential equation ẏ(t) =

sy(t)2 + 2ay(t) + h, y(T ) = qT has a solution for every T > 0 if d = a2 − hs ≥ 0 and qT > a+
√

d
s

.
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q1,n(τ
∗−
i,n ) = µ(τ∗+i,n )

(
−µ(τ∗+i,n )p1,n(τ

∗+
i,n )β2,n(τ

∗+
i,n ) + q1,n(τ

∗+
i,n )
)
+ d1, (14n)

α1,n(τ
∗−
i,n ) = α1,n(τ

∗+
i,n )µ(τ

∗+
i,n ) + z1, (14o)

β1,n(τ
∗−
i,n ) = β1,n(τ

∗+
i,n )−

g2α1,n(τ
∗+
i,n )β2,n(τ

∗+
i,n )

cv + g2α2,n(τ
∗+
i,n )

+ d1, (14p)

α2,n(τ
∗−
i,n ) = µ(τ∗+i,n )α2,n(τ

∗+
i,n ), (14q)

β2,n(τ
∗−
i,n ) = µ(τ∗+i,n )β2,n(τ

∗+
i,n ), (14r)

p2,n(τ
∗−
i,n ) =

µ(τ∗+i,n )
2

cv

(
cvp2,n(τ

∗+
i,n ) + g2α2,n(τ

∗+
i,n )
)
, (14s)

q2,n(τ
∗−
i,n ) = µ(τ∗+i,n )q2,n(τ

∗+
i,n )

+
β2,n(τ

∗+
i,n )cv(−p2(τ

∗+
i,n ) + g2α2,n(τ

∗+
i,n ))

(cv + g2α2,n(τ
∗+
i,n ))

2
. (14t)

The equilibrium strategies of Player 1 and Player 2, as dictated by the necessary conditions, are given by

γ∗(t;xn) = − b

cu

(
α1,n(t)

(
ϕ(t, τ∗+i,n )(ϕ(τ

∗−
i,n , tn)

(
1− g2

cv
α2,n(τ

∗−
i,n )1t>τ∗i,n

)
xn

−1t>τ∗i,n
ϕ(τ∗−i,n , tn)

g2

cv
β2,n(τ

∗−
i,n ) + φ(τ∗−i,n , tn)) + φ(t, τ∗+i,n )

)
+ β1,n(t)

)
, (15a)

δ∗(τ∗−i,n ;xn) = − g

cv

(
α2,n(τ

∗−
i,n )

(
ϕ(τ∗−i,n , tn)xn + φ(τ∗−i,n , tn)

)
+ β2,n(τ

∗−
i,n )
)
, (15b)

where t ∈ [tn, tn+1), τ∗0,n := tn, τ
∗
k∗n+1,n := tn+1, and ∀i ∈ {0} ∪ In,

ϕ̇(t, τ∗i,n) =

(
a− b2

cu
α1,n(t)

)
ϕ(t, τ∗i,n), ∀t ∈ (τ∗i,n, τ

∗
i+1,n), ϕ(τ

∗
i,n, τ

∗
i,n) = 1, (16a)

φ(t, τ∗−i,n ) = −
∫ t

τ∗−i,n

ϕ(h, τ∗−i,n )
b2

cu
β1,n(h) dh,∀t ∈ (τ∗i,n, τ

∗
i+1,n), (16b)

ϕ(τ∗−i+1,n, tn) = ϕ(τ∗−i+1,n, τ
∗+
i,n )ϕ(τ

∗−
i,n , tn)µ(τ

∗−
i,n ), (16c)

φ(τ∗−i+1,n, tn) = ϕ(τ∗−i+1,n, τ
∗+
i,n )φ(τ

∗−
i,n , tn)µ(τ

∗−
i,n ) (16d)

−g2

cv
β2,n(τ

∗−
i,n )ϕ(τ

∗−
i+1,n, τ

∗+
i,n ) + φ(τ∗−i+1,n, τ

∗+
i,n ). (16e)

Proof Given the equilibrium control of Player 2, we obtain necessary conditions for iLQDG using
(11a), (11e), (11f), (11i). The Hamiltonian of Player 1 is given by

H1(x(t), u(t), λ1(t)) :=
1

2
h1x(t)

2 + w1x(t) +
1

2
cuu(t)

2 + λ1(t)(ax(t) + bu(t)),

where λ1(t) is the co-state of Player 1. Using (11a) and Assumption 3 on interior solutions, the first-order
condition yields

H1u(x
∗(t), u∗(t), λ1(t)) = 0 ⇒ u∗(t) = − b

cu
λ1(t). (17)

From (11e) and (11f), the equilibrium state and co-state trajectory at the non-impulse instants evolve as
follows:

ẋ∗(t) = ax∗(t)− b2

cu
λ1(t), x

∗(tn+1) = xn+1, (18)

10



λ̇1(t) = −aλ1(t)− h1x
∗(t)− w1, λ1(tn+1) =

∂V ∗
1 (tn+1, x

∗(tn+1))

∂x
. (19)

From (11i), the jump in the co-state at the impulse instants is given by

λ1(τ
∗−
i,n ) = λ1(τ

∗+
i,n ) + z1x

∗(τ∗−i,n ) + d1. (20)

The Hamiltonian, and the impulse Hamiltonian of Player 2 are given by

H2(x(t), u(t), λ2(t)) :=
1

2
h2x(t)

2 + w2x(t) + λ2(t)(ax(t) + bu(t)),

HI
2 (vi, λ2(τ

+
i )) :=

1

2
cvv

2
i + λ2(τ

+
i,n)gvi,

where λ2(t) is the co-state of Player 2. From (11g), we obtain the dynamics of the co-state of Player 2 at the
non-impulse instants as follows:

λ̇2(t) = −aλ2(t)− h2x(t)− w2, ∀t ∈ (tn, tn+1), n ∈ N ′,

λ2(tn+1) =
∂V ∗

2 (tn+1, x
∗
n+1)

∂x
. (21)

The co-state is equal to the gradient of the value function of Player 2 at the sampling instants because of our
assumption that there are no impulses at the sampling instants.
Player 2’s objective is quadratic in state, and thus we can guess the form of corresponding co-state to be
linear in state, that is,

λ2(t) = α2,n(t)x
∗(t) + β2,n(t), ∀t ∈ [tn, tn+1), n ∈ N ′. (22)

Taking the derivative of (22) with respect to time and using the derivatives of state and co-state from (18)
and (21), we arrive at

− a(α2,n(t)x
∗(t) + β2,n(t))− h2x

∗(t)− w2 = α̇2,n(t)x
∗(t)

+ α2,n(t)

(
ax∗(t)− b2

cu
(α1,n(t)x

∗(t) + β1,n(t))

)
+ β̇2,n(t).

Upon comparing the coefficients, we obtain (14c) and (14d). From (21), we obtain,

α2,n(tn+1)x
∗(tn+1) + β2,n(tn+1) =

∂V ∗
2 (tn+1, x

∗
n+1)

∂x
.

Using the necessary condition (11b) and Assumption 3 on interior impulse levels, the first-order condition
yields

H1vi(v
∗
i,n, λ2(τ

∗
i,n)) = 0 ⇒ v∗i,n = − g

cv
λ2(τ

∗+
i,n ), ∀i ∈ In, n ∈ N ′. (23)

Since v∗i,n are the equilibrium impulse levels, it follows from (11h) that the jump in the state is given by

x∗(τ∗+i,n ) = x∗(τ∗−i,n )−
g2

cv
λ2(τ

∗+
i,n ), ∀i ∈ In, n ∈ N ′, (24)

and from (11j), we have that the co-state of Player 2 is continuous, that is

λ2(τ
∗−
i,n ) = λ2(τ

∗+
i,n ), ∀i ∈ In, n ∈ N . (25)
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We substitute (22) in (25) to obtain

α2,n(τ
∗−
i,n )x

∗(τ∗−i,n ) + β2,n(τ
∗−
i,n ) = α2,n(τ

∗+
i,n )x

∗(τ∗+i,n ) + β2,n(τ
∗+
i,n ). (26)

Next, we substitute (24) in the above equation to obtain

α2,n(τ
∗−
i,n )x

∗(τ∗−i,n ) + β2,n(τ
∗−
i,n ) = β2,n(τ

∗+
i,n )

+ α2,n(τ
∗+
i,n )

(
x(τ∗−i,n )−

g2

cv
(α2,n(τ

∗−
i,n )x(τ

∗−
i ) + β2,n(τ

∗−
i,n ))

)
.

The above equation holds for all x, thus leading to (14q) and (14r).
Given that the objective of Player 1 is quadratic in state, we can guess the form of corresponding co-state
also to be linear in the state, so that

λ1(t) = α1,n(t)x
∗(t) + β1,n(t), ∀t ∈ [tn, tn+1), n ∈ N ′. (27)

We substitute (27) in (20) to obtain the following relation at the impulse instants:

α1,n(τ
∗−
i,n )x

∗(τ∗−i,n ) + β1,n(τ
∗−
i,n )

= α1,n(τ
∗+
i,n )x

∗(τ∗+i,n ) + β1,n(τ
∗+
i,n ) + z1x

∗(τ∗−i,n ) + d1

= α1,n(τ
∗+
i,n )(x

∗(τ∗−i,n )−
g2

cv
(α2,n(τ

∗−
i,n )x(τ

∗−
i,n ) + β2,n(τ

∗−
i,n ))

+ z1x
∗(τ∗−i,n ) + d1 + β1,n(τ

∗+
i,n ).

Upon comparing the coefficients, we obtain (14o) and (14p).
Taking the derivative of (27) with respect to time and using the derivatives of state and co-state from (18)
and (19), we obtain

− a(α1,n(t)x
∗(t) + β1,n(t))− h1x

∗(t)− w1

= α̇1,n(t)x
∗(t) + α1,n(t)

(
ax∗(t)− b2

cu
(α1,n(t)x

∗(t) + β1,n(t))

)
+ β̇1,n(t).

Upon comparing the coefficients, we obtain (14a) and (14b), where α1,n(tn+1)x(tn+1) + β1,n(tn+1) =
∂V ∗

1 (tn+1,x∗
n+1)

∂x . The value-to-go for Player 1 is given by

V1(tn, xn) =

k∗n∑
i=0

(1
2

(∫ τ∗−i+1,n

τ∗+i,n

(
h1x(t)

2 + 2w1x(t) + cuu(t)
2
)
dt

)

+
1

2
z1x(τ

∗−
i,n )

2 + d1x(τ
∗−
i,n )
)
+ V1(tn+1, xn+1), (28)

where τ∗k∗n+1 := tn+1. Next, we know that for all x,

∫ τ∗−i+1,n

τ∗+i,n

(
1

2
ṗ1,n(t)x(t)

2 + p1,n(t)x(t)ẋ(t) + q̇1,n(t)x(t) + q1,n(t)ẋ(t) + ṙ1,n(t)

)
dt

− 1

2
p1,n(t)x(t)

2
∣∣τ∗−i+1,n

τ∗+i,n

− q1,n(t)x(t)
∣∣τ∗−i+1,n

τ∗+i,n

− r1,n(t)
∣∣τ∗−i+1,n

τ∗+i,n

= 0, i ∈ In, n ∈ N ′.
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Substituting ẋ(t) = ax(t)+bu(t) in the above equation, adding it to (28), and usingu∗(t) = − b
cu
(α1,n(t)x

∗(t)+
β1,n(t)), we obtain the equilibrium value-to-go for Player 1. Since the equilibrium control maximizes the
value-to-go for Player 1, (14f)-(14g), (14m)-(14n) and the following conditions hold for all n ∈ N ′:

ṙ1,n(t) =
b2

cu

(
q1,n(t)β1,n(t)− β1,n(t)

2
)
, ∀t ̸∈ T n, r1,n(tn+1) = r1,n+1(tn+1),

r1,n(τ
∗−
i+1,n) = r1,n(τ

∗+
i+1,n)−

(
g2β2(τ

∗+
i+1,n)

cv + g2α2,n(τ
∗+
i+1,n)

)(
q1,n(τ

∗+
i+1,n)

−
g2cvβ2(τ

∗+
i+1,n)p1,n(τ

∗+
i+1,n)

2(cv + g2α2,n(τ
∗+
i+1,n))

)
,

where p1, q1 and r1 are continuous at the sampling instants because there are no impulses at the sampling
instants (see Definition 1). Therefore, the equilibrium value-to-go is given by

V ∗
1 (tn, xn) =

1

2
p1,n(tn)x

2
n + q1,n(tn)xn + r1,n(tn), ∀n ∈ N ′. (29)

The value-to-go for Player 2 is given by

V2(tn, xn) =

kn∑
i=0

(∫ τ−i+1,n

τ+i,n

(
w2x(t) +

1

2
h2x(t)

2

)
dt+

1

2
cvv

2
i+1,n

)
+ V2(tn+1, xn+1). (30)

For all x, we have∫ τ−i+1,n

τ+i,n

(
1

2
ṗ2,n(t)x(t)

2 + p2,nx(t)ẋ(t)+q̇2,n(t)x(t) + q2,n(t)ẋ(t) + ṙ2,n(t)

)
dt

−1

2
p2,n(t)x(t)

2
∣∣τ−i+1,n

τ+i,n
− q2,n(t)x(t)

∣∣τ−i+1,n

τ+i,n
− r2,n(t)

∣∣τ−i+1,n

τ+i,n
= 0, ∀i ∈ In, n ∈ N ′.

Substituting ẋ(t) = ax(t)+bu∗(t) in the above equation, adding it to (30) and using the equilibrium controls
(τ∗i,n, v∗i,n), i ∈ In, n ∈ N ′ yields the equilibrium value-to-go. Taking u∗(t) as given, the equilibrium
control of Player 2 maximizes the value-to-go for Player 2 for all x, so that (14i)-(14j), (14s)-(14t), and the
following relations hold:

ṙ2,n(t) = q2,n(t)
b2

cu
β1,n(t), ∀t ̸∈ T n, r2,n(tn+1) = r2,n+1(tn+1), r2,N (T ) = 0,

r2,n(τ
∗−
i+1,n) = r2,n(τ

∗+
i+1,n) +

g2β2,n(τ
∗+
i+1,n)

2

2(cv + g2α2,n(τ
∗+
i+1,n))

2

(
p2,n(τ

∗+
i+1,n)g

2 + cv

)
−
g2q2,n(τ

∗+
i+1,n)β2,n(τ

∗+
i+1,n)

cv + g2α2,n(τ
∗+
i+1,n)

, ∀i ∈ In,

and the value-to-go is given by

V ∗
2 (tn, xn) =

1

2
p2,n(tn)x

2
n + q2,n(tn)xn + r2,n(tn), ∀n ∈ N ′. (31)

Since the co-state is equal to the gradient of value function at the sampling instants (see (21)), we have

α2,n(tn+1)xn+1 + β2,n(tn+1) = p2,n+1(tn+1)xn+1 + q2,n+1(tn+1), ∀n ∈ N ′.
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Since the above relation holds for allxn, we obtainα2,n(tn+1) = p2,n+1(tn+1) andβ2,n(tn+1) = q2,n+1(tn+1).
Using (27) in (18), we obtain

ẋ∗(t) =

(
a− b2

cu
α1,n(t)

)
x∗(t)− b2

cu
β1,n(t) (32)

⇒ x∗(τ∗−1 ) = ϕ(τ∗−1.n, tn)xn + φ(τ∗−1,n, tn), (33)

where (16a)–(16e) hold and τk∗n+1,n := tn+1. Define

x∗(τ∗−i,n ) = ϕ(τ∗−i,n , tn)xn + φ(τ∗−i,n , tn), ∀i = In, (34a)

x∗(τ∗−i+1,n) = ϕ(τ∗−i+1,n, tn)xn + φ(τ∗−i+1,n, tn), ∀i = In\{kn}. (34b)

From (32), we obtain

x∗(τ∗−i+1,n) = ϕ(τ∗−i+1,n, τ
∗+
i,n )x

∗(τ∗+i,n ) + φ(τ∗−i+1,n, τ
∗+
i,n )

= ϕ(τ∗−i+1,n, τ
∗+
i,n )
(
x∗(τ∗−i,n )−

g2

cv

(
α2,n(τ

∗−
i,n )x

∗(τ∗−i,n ) + β2,n(τ
∗−
i,n )
))

+ φ(τ∗−i+1,n, τ
∗+
i,n )

= ϕ(τ∗−i+1,n, τ
∗+
i,n )ϕ(τ

∗−
i,n , tn)

(
1− g2

cv
α2,n(τ

∗−
i,n )

)
xn + φ(τ∗−i+1,n, τ

∗+
i,n )

−g2

cv
β2,n(τ

∗−
i,n )ϕ(τ

∗−
i+1,n, τ

∗+
i,n ) + ϕ(τ∗−i+1,n, τ

∗+
i,n )φ(τ

∗−
i,n , tn)

(
1− g2

cv
α2,n(τ

∗−
i,n )

)
.

Upon comparing with (34b), we obtain

ϕ(τ∗−i+1,n, tn) = ϕ(τ∗−i+1,n, τ
∗+
i,n )ϕ(τ

∗−
i,n , tn)

(
1− g2

cv
α2,n(τ

∗−
i,n )

)
,

φ(τ∗−i+1,n, tn) = ϕ(τ∗−i+1,n, τ
∗+
i,n )φ(τ

∗−
i,n , tn)

(
1− g2

cv
α2,n(τ

∗−
i,n )

)
−g2

cv
β2,n(τ

∗−
i,n )ϕ(τ

∗−
i+1,n, τ

∗+
i,n ) + φ(τ∗−i+1,n, τ

∗+
i,n ).

The equilibrium state evolves according to the following equation:

x(t) = ϕ(t, τ∗i,n)(ϕ(τ
∗−
i,n , tn)

(
1− g2

cv
α2,n(τ

∗−
i,n )1t>τ∗i,n

)
xn

−1t>τ∗i,n
ϕ(τ∗−i,n , tn)

g2

cv
β2,n(τ

∗−
i,n ) + φ(τ∗−i,n , tn)) + φ(t, τ∗+i,n )

)
∀t ∈ (τ∗i,n, τ

∗
i+1,n), i ∈ In ∪ {0}, n ∈ N ′, (35)

where τ∗0,n := 0. Then, from (17) and (23), the equilibrium strategies of Player 1 and Player 2 are given by
(15a) and (15b), respectively. ■

Remark 4. Even when the timing of impulses is given, the system of Riccati equations (14a) for Player
1 defined in each sampling interval [tn, tn+1] differs from the corresponding system obtained in classical
differential games [26] because α1(·) also jumps due to the interventions by Player 2 in addition to the
update in α1(·) at the sampling instants.

The above theorem characterizes the equilibrium with exogenously given impulse instants. If the num-
ber and timing of impulses are determined by Player 2, the impulse instants must satisfy the Hamiltonian
continuity condition (11k) in addition to (14a)–(14t).
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Theorem 3. Suppose that t1, t2, · · · , tN are the sampling instants, and Assumptions 2 and 3 hold. Then
τ∗i,n, i ∈ In, n ∈ N ′ are the equilibrium impulse instants if

x(τ∗i,n) = ϕ(τ∗−i,n , tn)xn + φ(τ∗−i,n , tn)

=
cug

2(g2h2 − 2cva)β2(τ
∗−
i,n ) + 2cv(cvb

2d1 − w2g
2cu)

2(cvcuh2g2 − b2c2vz1)− cug2(g2h2 − 2cva)α2(τ
∗−
i,n )

, (36a)

where ϕ and φ satisfy (16a)-(16e), and the Riccati equation (14a) has no finite escape time in the entire
sampling interval [tn, tn+1], n ∈ N ′.

Proof From the continuity condition (11k) on the Hamiltonian and using (17), (20), (27), (24), and (25),
we obtain

cug
2(g2h2 − 2cva)λ2(τ

∗−
i,n )

2 + 2cv(cvb
2d1 − w2g

2cu)λ2(τ
∗−
i,n )

+ 2λ2(τ
∗−
i,n )(b

2c2vz1 − cvcuh2g
2)x(τ∗−i,n ) = 0.

λ2(τ
∗−
i,n ) = 0 implies that the equilibrium impulse level is zero. From Definition 1, v∗i,n cannot be equal to

zero if τ∗i,n is an admissible impulse instant. Thus, an impulse occurs if

x(τ∗−i,n ) =
cug

2(g2h2 − 2cva)β2(τ
∗−
i,n ) + 2cv(cvb

2d1 − w2g
2cu)

2(cvcuh2g2 − b2c2vz1)− cug2(g2h2 − 2cva)α2(τ
∗−
i,n )

.

On substituting (34a) in the above equation, we arrive at (36a). ■

Remark 5. An impulse occurs at equilibrium whenever the state trajectory intersects the time varying func-
tion ξ(t), given by

ξ(t−) =
cug

2(g2h2 − 2cva)β2(t
−) + 2cv(cvb

2d1 − w2g
2cu)

2(cvcuh2g2 − b2c2vz1)− cug2(g2h2 − 2cva)α2(t−)
.

4.2 Non-linear Optimization

Let τ1,n, τ2,n, · · · , τkn,n denote the admissible impulse instants for a given number of impulses, kn, in each
sampling interval [tn, tn+1), n ∈ N ′. From Definition 1, we have

τ1,n < τ2,n < · · · < τkn,n.

The above strict ordering can be represented as

Dnτn < 0, (37)

where

Dn :=


1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 1 −1


(kn−1)×kn

, τn :=

 τ1,n
...

τkn,n

 ,∀n ∈ N ′.

At the equilibrium impulse instants, the Hamiltonian continuity condition (36a) holds for the iLQDG
formulated by (12). The equilibrium impulse instants are obtained by finding the fixed-point solution of

15



the Riccati like system of equations (14a)–(14t) and the system of non-linear equality constraints (36a).
Alternatively, this problem can be viewed as the following constrained non-linear optimization problem:

argmin
{τn}n∈N′

N−1∑
n=1

kn∑
i=1

(
x(τ−i,n)− ξ(τ−i,n)

)2
(38a)

subject to 1.(tn + s) ≤ τn ≤ 1.(tn+1 − s) ∀n ∈ N ′ (38b)
Dnτn ≤ −1.s ∀n ∈ N ′, (38c)

where s > 0 is a slack variable, and

ξ(τ−i,n) =
cug

2(g2h2 − 2cva)β2(τ
−
i,n) + 2cv(cvb

2d1 − w2g
2cu)

2(cvcuh2g2 − b2c2vz1)− cug2(g2h2 − 2cva)α2(τ
−
i,n)

. (38d)

The above problem can be solved using interior point algorithms [13] or sequential quadratic program-
ming methods [12].

Remark 6. If there are no cross terms between the state and control variables and the players’ objectives
and state dynamics are linear in the state, then the resulting class of linear-in-the-state differential games
with impulse controls can be shown to be degenerate, that is, Player 2’s impulse optimal control problem
is decoupled from Player 1’s optimization problem. For non-degenerate linear-in-the-state games, the non-
linear optimization procedure in Section 4.2 can be used to numerically compute the equilibrium.

5 A Numerical Example

In this section, we illustrate the theory developed in the previous two sections using a numerical example.
Consider a dynamic game with scalar linear dynamics, and with time horizon T = 20. Player 1 uses

piecewise continuous sampled-data state feedback controls while Player 2 uses impulse controls. The state
measurements are made at three instants of time, that is, t1 = 0, t2 = 10, t3 = 20. Player 1 and Player 2
maximize their respective objective functions

J1(x0, u(·), ṽ) = x(20)(10− x(20))−
2∑

n=1

∫ tn+1

tn

(
x(t)2−10x(t) + 2.5u(t)2

)
dt

−
2∑

n=1

0.25x(τ−n )2

J2(x0, u(·), ṽ) = −2x(20)2 −
2∑

n=1

∫ tn+1

tn

x(t)2dt−
2∑

n=1

v2n,

and the state dynamics are given by

ẋ(t) = −0.1x(t) + 0.4u(t), t ̸∈ {τ1, τ2}, x(0) = 5,

x(τ+i ) = x(τ−i )−0.2vi, i ∈ {1, 2}.

First, we analyze the case where the impulses are periodic, that is, τ1 = 5 and τ2 = 15. The equilibrium
control of Player 1, given in Figure 1(a), jumps at the impulse instants because of the jump in her co-state
caused by the impulse control of Player 2. The state trajectory, and the equilibrium impulse levels of Player
2 are shown in Figure 1(b). At equilibrium, Player 1 incurs a loss of 518.51, while Player 2 incurs a loss of
96.54.
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Figure 1: Equilibrium controls, and state trajectory with periodic impulses.
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Figure 2: Equilibrium candidate controls, and state and co-state trajectories.
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Table 1: Equilibrium payoff of Player 1 and Player 2 for varying numbers of impulses in each sampling interval.

Different cases # Impulses Impulse instants
Payoffs

(k1, k2) τ∗ J1 J2

Periodic impulses
(1, 1) {5, 15} -518.51 -96.54
(1, 0) 5 -525.67 -158.06
(0, 1) 15 -52.47 -224.67

Endogenous impulses
(1, 1) {4.20, 14.60} -553.20 -73.38
(1, 0) 7.09 -338.74 -226.59
(0, 1) 14.56 -114.33 -212.30

No impulses (0, 0) − 126.94 --396.18
k1 and k2 denote the number of impulses in the sampling intervals (0, 10) and (10, 20),

respectively.

Next, we determine the equilibrium when the impulse instants in each sampling interval are determined
by Player 2, and there is only one impulse in each sampling interval. The impulse timing is characterized by
the Hamiltonian continuity condition (11k).

The (candidate) equilibrium impulses occur at τ∗1 = 4.20 and τ∗2 = 14.60, and at equilibrium, the losses
of Player 1 and Player 2 are given by 553.20 and 73.38, respectively when Player 2 applies one impulse
in each sampling interval. The piecewise continuous equilibrium control of Player 1 is shown in Figure
2(a) and equilibrium impulse levels of Player 2 are shown in Figure 2(b). Since the sufficient conditions in
Proposition 1 hold for Player 2, the candidates indeed constitute Nash equilibrium. In Table 1, we consider
periodic impulses, endogenous impulse timings, as well as no impulses in the game. It can also be seen in
Table 1 that the equilibrium payoff of Player 2 is the highest if she decides on the number and timing of the
impulses, applying them at τ∗1 = 4.20 and τ∗2 = 14.60.

6 Conclusions

In this paper, we have derived necessary and sufficient conditions for the existence of sampled-data Nash
equilibrium in a general class of two-player nonzero-sum differential games with impulse controls, where
only one of the players controls the impulses (their number, timing, and magnitudes). For a special case of
differential games with scalar linear state dynamics and general quadratic objective functions for the players,
we have shown that the sampled-data Nash equilibrium can be obtained by determining the fixed point of a
system of Riccati like equations with jumps coupled with non-linear equality constraints. We have further
shown for the same class of differential games that the piecewise continuous equilibrium control of Player 1
and equilibrium impulse control of Player 2 are linear in the most recently measured state value, and provide
a numerical procedure to determine the equilibrium strategies.

For the future, it would be interesting to apply our results to case studies in pollution regulation, exchange
rate interventions, and cybersecurity. One extension of our work would be to differential games where both
players use continuous as well as impulse controls. Another extension would be to differential games with
more than two players, and particularly in the high population regime.
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