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Abstract

In the vehicle routing problem with simultaneous pickup and delivery (VRPSPD), goods
have to be transported from different origins to different destinations, and each customer has
both a delivery and a pickup demand to be satisfied simultaneously. The VRPSPD has been
around for about 30 years, and significant progress has since been made on this problem and
its variants. This paper aims to comprehensively review the existing work on the VRPSPD. It
surveys mathematical formulations, algorithms, variants, case studies, and industrial applica-
tions. It also provides an overview of trends in the literature and identifies several interesting
promising future research perspectives.
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1 Introduction
The classical vehicle routing problem (VRP) introduced around sixty years ago by Dantzig and
Ramser (1959), as well as its variants, have been intensively studied. The VRP aims to determine a
routing plan to serve a set of customers for a fleet of identical vehicles, such that each customer is
visited once by one vehicle, each route starts and ends at the depot, and several side constraints are
satisfied. Many heuristic and exact algorithms have been developed for the VRP and its variants.
The interested reader is referred to the book by Toth and Vigo (2014), and to the reviews by Laporte
(2009), Koç et al. (2016), Koç and Laporte (2018), and Vidal et al. (2019).

One important variant of the VRP arises in pickup and delivery problems (PDPs). Several types of
PDPs have been studied. Battarra et al. (2014) presented an overview of studies for PDPs arising
in the transportation of goods, without providing detailed computational comparisons of solution
methods. Table 1 presents a classification of PDPs based on Berbeglia et al. (2007) and Battarra et
al. (2014). It consists of three main categories. The first category includes many-to-many problems
where each commodity may have more than one start node and more than one end node, and any
node may be the origin and destination node of a number of commodities. In the second category,
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one-to-many-to-one, some commodities are carried from a depot to many customers, while other
commodities are collected at customers and delivered to the depot. The third category contains
one-to-one problems in which each commodity has a single start node and a single end node.
The most studied and general variant of the second category or one-to-many-to-one, is the vehicle
routing problem with simultaneous pickup and delivery (VRPSPD). This problem is also known
as the multiple-vehicle Hamiltonian one-to-many-to-one PDP with combined demands. In the
VRPSPD some customers have a delivery demand, some have a pickup demand, and at least one
customer has both a pickup and a delivery demand. VRPSPDs are rooted in the seminal paper
of Min (1989) and have since evolved into a rich and active research field. Typical applications of
VRPSPDs arise in the distribution of beverages and the collection of empty cans and bottles.

Table 1: Classification of pickup and delivery problems.
1. Many-to-many problems

1.1. The swapping problem
1.2. The one-commodity pickup and delivery traveling salesman problem
1.3. The Q-delivery traveling salesman problem

2. One-to-many-to-one problems pickup and delivery problems (1-M-1-PDP)
2.1. The 1-M-1-PDP with combined demands

2.1.1. General and lasso solutions of the 1-M-1-PDP with combined demands
2.1.2. The multi-vehicle Hamiltonian 1-M-1-PDP with combined demands

2.2. The 1-M-1-PDP with single demands
2.2.1. The single vehicle 1-M-1-PDP with single demands and backhauls
2.2.2. The single vehicle 1-M-1-PDP with single demands and mixed solutions
2.2.3. The multi-vehicle 1-M-1-PDP with single demands and backhauls
2.2.4. The multi-vehicle 1-M-1-PDP with single demands and mixed solutions

3. One-to-one problems
3.1. The stacker crane problem
3.2. The vehicle routing problem with pickups and deliveries

3.2.1. The single vehicle routing problem with pickups and deliveries
3.2.2. The multi-vehicle routing problem with pickups and deliveries

3.3. The dial-a-ride problem
3.3.1. The single vehicle dial-a-ride problem
3.3.2. The multi-vehicle dial-a-ride problem

3.4. The vehicle routing problem with pickups, deliveries and transshipments

The problem has been extensively studied in recent years because of its practical importance for
distribution companies. Parragh et al. (2008a,b) surveyed the PDP literature until 2007. Berbeglia
et al. (2007) and Berbeglia et al. (2010) reviewed the static and dynamic PDP, respectively. Survey
papers of Caceres-Cruz et al. (2014), Braekers et al. (2016), and Gansterer et al. (2018) have briefly
reviewed VRPSPDs. The main focus of all of these surveys are not VRPSPDs. They briefly dis-
cussed VRPSPD, and did not provide detailed analyses on the main problem and its variants. We
therefore believe that there exists merit to specifically review VRPSPDs.
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Our review methodology can be summarised as follows. We mainly focus on articles and book
chapters about the VRPSPD. We carried out the literature search within well-known databases
such as ISI Web of Knowledge and SCOPUS with keywords “vehicle routing problem with si-
multaneous pickup and delivery”, and followed by reference and citation analyses to find related
contributions. We summarized the resultant studies by several descriptive statistics to provide an
overall view of the research area.

The contribution of this review paper is fourfold. First, we present a detailed review of the exist-
ing studies on the standard VRPSPD, including mathematical formulations. Second, we provide
a performance comparison of heuristics developed for the standard standard VRPSPD. Third,
we describe several VRPSPD variants, case studies and industrial applications, and we provide
synthetic tables. Fourth, we give an overview of the main trends observed in the literature and
identify several interesting promising future research perspectives.

The remainder of this paper is structured as follows. Mathematical models and exact algorithms
for the VRPSPD are presented in Section 2. We survey the heuristics developed for the standard
VRPSPD in Section 3, miscellaneous variants in Section 4, and case studies in Section 5. We pro-
vide a summary and comparison of recent metaheuristics in Section 6. We finally present our
conclusions and future research perspectives in Section 7.

2 Mathematical models and exact algorithms
The VRPSPD is defined on a complete directed graph G = (V,A) where V is the node set and A
is the arc set. Node 0 represents the depot, which is the starting node of the delivery commodities
and the end node of the pickup commodities. The other nodes of V are the customers. Let V ′ =
V\{0}. A homogeneous fleet of vehicles is available and each vehicle has a capacity Q. The cost
of traveling on arc (i, j) is denoted by cij . For delivery and pickup commodities, each customer
i has a non-negative demand di and pi, respectively. Let yij and zij be the amount of picked up
commodity and delivery commodity on arc (i, j) ∈ A, respectively. These are common notations
for each of the mathematical formulations. Specific notations of each formulation are defined
within the related subsections.

The VRPSPD is to construct a set of vehicle routes such that (i) each customer is visited by exactly
one vehicle; (ii) each vehicle performs at most one route; (iii) each vehicle route starts and ends at
the depot; (iv) the pickup and delivery requests of each customer in a single visit must be satisfied;
(v) the vehicle capacity is not exceeded by the total demand of a vehicle route; and (vi) the total
travel cost is minimized. The VRPSPD is NP-hard since it extends the VRP.

Several exact algorithms are available for the standard VRPSPD. We now survey four exact al-
gorithms that have been developed for the standard VRPSPD and present their standard mathe-
matical models. The models use two- or three-index variables. Vehicle-flow models only specify
vehicle routes, whereas commodity-flow models specify the amount of pickup and delivery com-
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modity on each arc. These four models are widely used by researchers to model the VRPSPD and
its rich variants.

2.1 Two-index commodity-flow model
We first present the two-index commodity-flow model of Dell’Amico et al. (2006). The authors
developed an exact branch-and-price algorithm for their two-index commodity-flow model. To
solve the pricing subproblem, dynamic programming and space relaxation procedures are used.
Several methods were combined such as bidirectional search, an upper bound on the number of
customers visited in a route, and branching strategies. The method yielded optimal solutions on
instances with up to 40 customers.

A homogeneous fixed fleet of K vehicles is available. Let xij be equal to 1 if and only if arc
(i, j) ∈ A is used. The model is then:

Minimize
∑

(i,j)∈A

cijxij (1)

subject to∑
j∈V

xij = 1 i ∈ V ′ (2)

∑
j∈V ′

x0j ≤ K (3)

∑
j∈V

xij =
∑
j∈V

xji i ∈ V (4)

∑
j∈V

yij −
∑
j∈V

yji = pi i ∈ V ′ (5)

∑
j∈V

zji −
∑
j∈V

zij = di i ∈ V ′ (6)

yij + zij ≤ Qxij (i, j) ∈ A (7)

yij , zij ≥ 0 (i, j) ∈ A (8)

xij ∈ {0, 1} (i, j) ∈ A. (9)

The objective function (1) minimizes the total routing cost. Constraints (2) guarantee that each
customer must be visited once. Constraints (3) ensure that maximum K vehicles can be used.
Constraints (4)–(6) are flow constraints. Constraints (7) imply that the capacity of the vehicle is
not exceeded. Finally, constraints (8) and (9) enforce the restrictions on the variables.

2.2 Three-index commodity-flow model
We now present the adapted version of the three-index commodity-flow model of Montané and
Galvao (2006), which is the extended version of that of Mosheiov (1998). Montané and Galvao
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(2006) do not seem to have solved their formulation fully. Its linear relaxation was solved in
order to compute a lower bound on the optimal solution value, which was then used to evaluate
the computational quality of a heuristic developed by the authors. This formulation considers
the classical constraints of the VRPSPD but no time window (Angelelli and Mansini, 2001) or
maximum route duration constraints (Ai and Kachitvichyanukul, 2009).

A homogeneous unlimited fleet of vehicles is available. Let the binary variable xijk be equal to 1
if and only if arc (i, j) is traversed by vehicle k. The model is then:

Minimize
∑
i∈V

∑
j∈V

∑
k∈K

cijxijk (10)

subject to∑
j∈V

∑
k∈K

xijk = 1 i ∈ V ′ (11)

∑
j∈V

xijk −
∑
j∈V

xjik = 0 i ∈ V, k ∈ K (12)

∑
i∈V

x0ik ≤ 1 k ∈ K (13)

yij + zij ≤ Q
∑
k∈K

xijk (i, j) ∈ A (14)∑
i∈V

yij −
∑
i∈V

yji = pi i ∈ V ′ (15)∑
i∈V

zji −
∑
i∈V

zij = di i ∈ V ′ (16)

xijk ∈ {0, 1} (i, j) ∈ V, k ∈ K (17)

yij , zij ≥ 0 (i, j) ∈ V. (18)

The objective function (10) minimizes the total routing cost. Constraints (11) and (12) guaran-
tee that each customer is visited exactly by one vehicle. Constraints (13) state that each vehicle
performs at most one route. Constraints (14) impose the capacity requirements for each vehi-
cle. Constraints (15) and (16) define the flow for the pickups and deliveries, respectively. Finally,
constraints (17) and (18) enforce the restrictions on the variables.

2.3 Two-index vehicle-flow model #1
We now present the two-index vehicle-flow model of Subramanian et al. (2011) and Subramanian
et al. (2013a). Subramanian et al. (2011) developed a branch-and-cut algorithm for the two-index
model that uses the lazy separation of the capacity inequalities. The method improved some
known lower bounds and obtained several new optimal results. It also yielded better solutions
than the previous exact algorithms based on directed or undirected two-commodity, and single-
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commodity formulations. Subramanian et al. (2013a) later proposed an exact algorithm based
on branch-cut-and-price for the same model that uses non-elementary paths. Both delivery and
pickup demands were taken into account to identify capacity violations. Dynamic programming
was used to solve the pricing problem, but at early stages of the method scaling and sparsifica-
tion were adopted to speed up the computations. The method yielded several best-known lower
bounds with up to 200 customers, and obtained several optimal solutions with up to 100 cus-
tomers.

A homogeneous unlimited fleet of vehicles is available. Let xij be an integer variable denoting
the number of times arc (i, j) ∈ A appears in a vehicle route. If a vehicle route contains only a
single customer, then xij is equal to 2. Let S ⊆ V ′. Let p(S) and d(S) be the sum of the pickup and
delivery demands, respectively. Let e(S) = dd(S)/Qe and q(S) = dp(S)/Qe. Let m be an integer
variable denoting the number of used vehicles. Let Ŝ = V ′\S. Let R be the set composed by the
arc-sets of infeasible routes which exclude the arcs adjacent to the depot. The model is then:

Minimize
∑
i∈V

∑
j∈V,j>i

cijxij (19)

subject to∑
i∈V,i<k

xik +
∑

j∈V,j>k

xkj = 2 k ∈ V ′ (20)

∑
j∈V ′

x0j = m (21)

∑
i∈S

∑
j∈Ŝ,i<j

xij +
∑
i∈Ŝ

∑
j∈S,i<j

xij ≥ 2e(S) S ⊆ V ′ (22)

∑
i∈S

∑
j∈Ŝ,i<j

xij +
∑
i∈Ŝ

∑
j∈S,i<j

xij ≥ 2q(S) S ⊆ V ′ (23)

∑
i,j∈R

xij ≤ |R| − 1 R ∈ R (24)

m ∈ Z+ (25)

xij ∈ {0, 1} (i, j) ∈ A, i > 0 (26)

xij ∈ {0, 1} (0, j) ∈ A. (27)

The objective function (19) minimizes the total routing cost. The basic classical VRP constraints
are ensured by (20) and (21). Constraints (22) and (23) compute the rounded capacity cuts by
considering the delivery and pickup demands, respectively. These two constraints ensure that the
capacity of the vehicle is not exceeded in the middle of a route. Constraints (24) guarantee that the
capacity of the vehicle is not exceeded anywhere on a route. Finally, constraints (25)–(27) enforce
the restrictions on the variables.
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2.4 Two-index vehicle-flow model #2
We finally present the two-index vehicle-flow model of Rieck and Zimmermann (2013). The au-
thors developed several preprocessing steps and derived valid inequalities for their vehicle-flow
model and the commodity-flow model of Dell’Amico et al. (2006). They solved these two mod-
els by branch-and-cut. On a series of tests conducted on instances with up to 60 customers, they
demonstrated the positive impact of the valid inequalities, and they confirmed the superiority of
the commodity-flow formulation.

A homogeneous fixed fleet of K vehicles is available. Let Di be the amount of delivery commodity
that has to be delivered to node i ∈ V and to consecutive nodes of the route. Let Li be the vehicle
load after visiting customer i ∈ V ′. The model is then:

Minimize
∑

(i,j)∈V

cijxij (28)

subject to∑
i∈V

xij = 1 j ∈ V ′ (29)∑
i∈V

xji = 1 j ∈ V ′ (30)∑
i∈V ′

x0i ≤ K (31)

Di ≥ Dj + di −M1(1− xij) i ∈ V, j ∈ V ′ (32)

Lj ≥ Dj − dj + pj j ∈ V ′ (33)

Lj ≥ Li − dj + pj −M2(1− xij) (i, j) ∈ V ′ (34)

di ≤ Di ≤ Q i ∈ V (35)

pi ≤ Li ≤ Q i ∈ V ′ (36)

xij ∈ {0, 1} (i, j) ∈ V (37)

Di, Li ≥ 0 i ∈ V. (38)

The objective function (28) minimizes the total routing cost. Constraints (29) and (30) guaran-
tee that each customer is visited exactly by one vehicle. Constraints (31) state that maximum K

routes can be constructed. Constraints (32) ensure the consistency of the delivery load along the
route. Constraints (33) and (34) compute the vehicle load after the visit of the first customer and
of the other customers on the route, respectively. M1 and M2 are large numbers which can be set
equal to Q. Constraints (35) and (36) guarantee that the vehicle capacity is not exceeded. Finally,
constraints (37) and (38) enforce the restrictions on the variables.

7



3 Heuristics for the standard VRPSPD
We now survey the available heuristics for the standard VRPSPD. Classical construction and im-
provement heuristics in Section 3.1, local search metaheuristics in Section 3.2, followed by popu-
lation search heuristics in Section 3.3, and ant colony heuristics in Section 3.4.

3.1 Classical construction and improvement heuristics
A number of classical construction and improvement heuristics were proposed to solve the stan-
dard VRPSPD. Montané and Galvao (2002) used a tour partitioning heuristic and a modified ver-
sion of the Gillett and Miller (1974) heuristic to solve the VRPSPD. They adapted the test bed of
Augerat (1995) to this problem and tested their method on 27 instances with 32 to 80 nodes.

Gajpal and Abad (2010) described a parallel savings heuristic which is an extension of that of
Altinkemer and Gavish (1991). It generates a new route by combining two routes. To check fea-
sibility when two routes are merged, it uses a cumulative net-pickup method. Experiments on
benchmark instances showed that the method yielded better solutions than the previous ones.

Jun and Kim (2012) defined an heuristic which includes a sweep-based route construction phase,
an improvement phase, and a solution perturbation procedure. Several improvement algorithms,
such as cross-exchange, Or-opt, and intra-route 2-opt are also applied. In the perturbation phase,
a solution is perturbed by removing and reinserting several vehicle routes. On experiments per-
formed on the Nagy (1996) instances, the method obtained 53 new best-known solutions.

3.2 Local search metaheuristics
Several studies describe tabu search heuristics for the standard VRPSPD. Chen and Wu (2006)
developed a record-to-record algorithm which combines a tabu list procedure and classical local
search mechanisms such as an insertion based procedure and route improvement procedures.
Experiments were conducted on the instances of Salhi and Nagy (1999) with up to 199 nodes, and
optimal solutions were obtained for small-size instances. Montané and Galvao (2006) proposed
a tabu search while considering maximum route duration constraints. The method applies three
types of moves (relocations, interchanges and crossovers), four types of neighborhoods, as well
as intensification and diversification procedures. The solutions yielded by this heuristic were
8.82%, 13.43%, and 27.76% better than those of Dethloff (2001), Salhi and Nagy (1999) (without
distance constraints), and Salhi and Nagy (1999), respectively. Wassan et al. (2008) later developed
a tabu search heuristic which checks feasibility of tabu moves quickly and reacts to repetitions to
guide the search. The heuristic generates an initial solution by using sweep method of Gillett and
Miller (1974), which is later improved by shift, swap and reverse procedures, where the latter is
specifically designed for the problem. Experiments conducted on Nagy (1996) instances ranging
between 50 and 199 customers yielded 10 new best-known solutions.

Bianchessi and Righini (2007) described several heuristics combining local search procedures based
on a variable neighborhood scheme. Neighborhoods based on arc-exchange and node-exchange
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were integrated and made use of several and interacting tabu lists. These heuristics were ap-
plied to the Dethloff (2001) instances with up to 50 customers and yielded competitive solutions.
Zachariadis et al. (2009) later developed a hybrid algorithm integrating guided local search and
tabu search. The method generates an initial solution by using a construction heuristic based on
the cost savings of Paessens (1988), which is later improved by inter-route and intra-route moves,
and guided local search. Experiments were conducted on various instances ranging from 50 to 400
nodes. The authors obtained quite good results: 21 new best-known solutions were found on the
instances of Dethloff (2001), and 18 new best-known solutions were found on those of Montané
and Galvao (2006).

Chen (2006) presented a parallel-insertion algorithm which hybridizes simulated annealing, tabu
list and route improvement methods. The author used 2-opt, Or-opt, shift and swap moves and
a 2-exchange procedure to improve the quality of the routes. Their method provided better so-
lutions than those of Salhi and Nagy (1999). Mu et al. (2016) later proposed a parallel heuristic
based on the traditional sequential simulated annealing algorithm, integrated within a master-
slave structure, and asynchronous and synchronous multiple Markov chains methods. The al-
gorithm includes several strategies such as move acceleration, parallel moves, and speculative
computation. Experiments were conducted on the Dethloff (2001) and Salhi and Nagy (1999)
medium-size instances, and on the Montané and Galvao (2006) large-size instances. The method
obtained better results than those previously reported within reasonable computation times.

Subramanian et al. (2010) introduced a parallel heuristic which was integrated within a multi-start
scheme. It uses the variable neighborhood descent procedure of Mladenović and Hansen (1997) as
a local search procedure which applied a random neighborhood ordering. The parallel algorithm
is combined with an iterated local search procedure. The heuristic was able to yield high-quality
solutions, including three new best-known solutions on the instances of Salhi and Nagy (1999), 12
new best-known solutions on the Montané and Galvao (2006) instances, and matched the best re-
sults found on the Dethloff (2001) instances. Subramanian et al. (2013b) later developed a unified
algorithm based on a new strategy that dynamically controls the dimension of the model, thus al-
lowing the solution of very large instances. It combines an exact method based on set partitioning,
iterated local search framework, and variable neighborhood search with random ordering. This
method yielded quite good results on the Salhi and Nagy (1999) instances, including five new
best-known solutions, and matched 21 others.

Zachariadis and Kiranoudis (2011) developed a local search algorithm including a strategy for
efficiently exploring solution neighborhoods and the use of a concept based on the aspiration
criterion of tabu search. They described a constant-time feasibility checking method for two lo-
cal search operators which are variable length bone exchange operators based on every tentative
move exchanging the positions of customer sequences, and the 2-opt operator. Their algorithm
improved upon ten best-known solutions on the Montané and Galvao (2006) instances.
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Cruz et al. (2012) developed a hybrid heuristic method which combines tabu search, variable
neighborhood search, and path relinking. The method generates an initial solution by using
heuristic cheapest insertions with multiple routes, and the GENIUS implementation of Souza et
al. (2011). Several moves and perturbations are used to improve the solutions. Good quality solu-
tions were obtained within reasonable computation times.

Fard and Akbari (2013) described a hybrid tabu search algorithm which uses greedy and near-
est neighborhood constructive heuristics to generate the initial solution and applied shift, inter-
change, mutation, swap, as well as local shift improvement procedures. The method was applied
to the Salhi and Nagy (1999) instances and yielded optimal solutions on the small-size instances.
Yousefikhoshbakht et al. (2014) later proposed a hybrid algorithm which makes use of tabu search
and ant colony systems. They obtained an initial solution by using a nearest neighborhood inser-
tion algorithm which is later then improved by 2-opt, relocation, and exchange moves and clas-
sical ant colony procedures. Experiments on Salhi and Nagy (1999) and Dethloff (2001) instances
yielded competitive results.

Souza et al. (2011) described an adaptation of the cheapest insertion hybrid algorithm method
which starts with three initial construction procedures, improves the solutions by variable neigh-
borhood descent and iterated local search, and diversifies solutions with perturbation procedures.
All best-known results were obtained on the Dethloff (2001) instances, four new best results were
obtained on the Salhi and Nagy (1999) instances without route duration constraints, and nine
new best-known results were obtained on the Montané and Galvao (2006) instances. Avci and
Topaloglu (2015) described an adaptive local search algorithm integrating a simulated annealing
and a variable neighborhood descent algorithm. While simulated annealing explores different re-
gions in the search space, variable neighborhood descent improves the obtained solutions with
extra refinement procedures and a perturbation mechanism. The method yielded competitive
solutions on the Dethloff (2001) and Salhi and Nagy (1999) data sets.

3.3 Population search heuristics
Several population search heuristics were implemented for the VRPSPD.

Ai and Kachitvichyanukul (2009) designed a particle swarm optimization which includes a decod-
ing procedure. The solution representation is based on random keys, and the decoding procedure
transforms the particle to a priority list of customers to be inserted in the routes, and a priority ma-
trix of vehicles to serve each customer. High-quality solutions were obtained on the Dell’Amico et
al. (2006), Dethloff (2001), and Nagy (1996) instances. Zachariadis et al. (2010) developed an evolu-
tionary method based on the adaptive memory scheme of (Rochat and Taillard, 2013). The method
stores and combines promising sequences of nodes to generate good quality solutions. It uses an
additional memory mechanism which records the extraction frequency for each node in the adap-
tive memory. Obtained solutions were improved by a tabu search mechanism. The authors tested
the algorithm on various benchmark instances where it performed quite well and obtained many
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new best-known solutions. Goksal et al. (2013) later described a hybrid heuristic algorithm which
makes use of particle swarm optimization, and applied a variable neighborhood descent heuristic
to improve the solutions. The swarm diversity is preserved by using an annealing-like strategy.
To represent a solution, a permutation encoding is defined which is a giant tour without trip de-
limiters. The heuristic performed quite well on the Salhi and Nagy (1999), Dethloff (2001), and
Wassan et al. (2008) instances by yielding an improvement around 2% on average, as well as 104
new best-known solutions.

Tasan and Gen (2012) used a classical genetic algorithm based on the idea of Gen et al. (2008). They
did not present any comparison on classical benchmark instances, but used 24 new medium-sized
instances generated based on those of Augerat (1995). The results of the genetic algorithm were
compared with the exact solution of a mathematical formulation obtained by a truncated applica-
tion of CPLEX, and the former obtained better solutions than the latter. Maquera et al. (2011) de-
veloped a scatter search algorithm, which is a variant of an evolutionary algorithm based on Martı́
et al. (2006). Their method includes a diversification generation method based on the multi-start
greedy randomized adaptive search procedure of Feo and Resende (1995). To improve the solu-
tions, three intra-route moves (2-opt, relocation, and 1-interchange), and three inter-route moves
(relocation, interchange, and crossover) were used. Good solutions were obtained on the classical
instances. Vidal et al. (2014) proposed a unified genetic algorithm to solve several VRP versions,
including the VRPSPD. Effective procedures were proposed to intensify and diversify solutions
which are problem-independent. A unified route evaluation methodology was developed where
the moves are considered as a concatenation of known subsequences. The method yielded several
new best-known solutions on the Salhi and Nagy (1999) and on the Montané and Galvao (2006)
instances.

3.4 Ant colony heuristics
Five ant colony optimization heuristics were proposed for the VRPSPD. Gajpal and Abad (2009)
developed an ant colony system integrating a construction rule, a 2-opt procedure, an inter-
change multi-route scheme, customer insertions, and a subpath exchange multi-route scheme.
The method achieved a good performance and outperformed the previous studies. In particular,
experiments on the Dethloff (2001) and Salhi and Nagy (1999) instances yielded nine and 22 new
best-known solutions, respectively. Çatay (2010) later proposed an ant colony system based on
savings and pheromone updating procedures. A nearest neighbor heuristic generated the initial
solution which was improved by local search. Intra-move, intra-swap, inter-move, and inter-swap
procedures are used. The algorithm obtained a successful performance by yielding nine new best-
known solutions on the Dethloff (2001) instances, and 11 new best-known solutions on those of
Salhi and Nagy (1999). Johnson et al. (2015) used a classical ant colony systems which applies a
state transition rule, the global updating rule, and a local updating rule to intensfiy and diver-
sify solutions. Experiments were conducted on the Dethloff (2001) instances on which it obtained
better solutions than Dethloff (2001). Kalayci and Kaya (2016) developed an ant colony systems
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enhanced with variable neighborhood search which releases pheromones on the edges. For diver-
sification purposes, the ants provide a perturbation mechanism using the pheromone information.
The method performed quite well, yielding the same best values as in Subramanian et al. (2011)
on the Dethloff (2001) instances, and five new best-known solutions on the instances of Salhi and
Nagy (1999). Sayyah et al. (2016) described an ant colony optimization heuristic using several new
mechanisms such as a transition rule and a pheromone updating rule. It uses insert, swap and 2-
opt moves as local search methods. Experiments were conducted on the benchmark instances of
Dethloff (2001) and of Salhi and Nagy (1999) with up to 199 customers. The method obtained the
best solutions on 30 out of 40 of the Dethloff (2001) instances, and on 18 of the 28 Salhi and Nagy
(1999) instances within reasonable computation times.

4 Variants and Extensions
Many variants of the VRPSPD have been studied . We now review them in this section. We first
review the VRPSPD with time windows in Section 4.1, the heterogeneous VRPSPD in Section 4.2,
the multi-depot VRPSPD in Section 4.3, the green VRPSPD in Section 4.4, the stochastic VRPSPD
in Section 4.5, and finally miscellaneous VRPSPDs in Section 4.6.

4.1 The VRPSPD with time windows
A predefined time interval is assigned to each customer for pickup and delivery in the VRPSPD
with time windows. The vehicle has to wait until the time window of a customer opens if it arrives
early. Angelelli and Mansini (2001) introduced this problem, and proposed a branch-and-cut-and-
price algorithm for it. The master problem is formulated as a set covering problem. A relaxation of
the elementary shortest path problem is applied for the pricing problem. Optimal solutions were
obtained on small-size instances with up to 20 customers.

Mingyong and Erbao (2010) developed an evolutionary algorithm for the VRPSPD with time win-
dows, using a decimal coding to construct an initial population. They also implemented sev-
eral new problem-specific operators, and used an integer order criterion. The authors defined
a self-adapting crossover probability and allowed infeasible solutions for diversification. They
conducted experiments on eight-customer instances and on 40-customer instances on which com-
petitive results were obtained. Fan (2011) used a classical tabu search and generated the initial
solution by means of cheapest insertions. The objective was to maximize customer satisfaction
and minimize the total cost, which is inversely proportional to the waiting time for the vehicle
from the lower bound of the time window. Wang and Chen (2012) developed a genetic algorithm
based on co-evolution to solve the VRPSPD with time windows, and integrated several simple
heuristics based on cheapest insertions. The method includes two populations for diversifica-
tion and intensification. They modified the Solomon (1987) benchmark instances and generated
10-, 25-, 50-, and 100-customer instances. The method was compared with CPLEX and yielded
better solutions within less computing time for medium- and large-size instances. Kassem and
Chen (2013) later developed a heuristic which uses the sequential route construction algorithm
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of Chen (2006) to generate an initial solution. Simulated annealing and neighborhood searches
were applied in the improvement phase. The authors modified the Solomon (1987) instances and
conducted experiments on 10-, 15-, and 50-customer instances. For 10- and 15-customer instances
optimal solutions were obtained, and better solutions were obtained for 50-customer instances
with a heuristic method.

Liu et al. (2012) studied the VRPSPD with time windows in the context of home health care lo-
gistics in France. The patients receive medicines at a hospital, and some materials are picked up
from the patient’s home to be returned to a laboratory or to a depot. Time windows are imposed
for the laboratory, the hospital and the patients. The authors first presented a formulation, and
described a hybrid genetic algorithm and a tabu search heuristic. A test bed was generated from
the Solomon (1987) instances and the two heuristics were compared. The same authors later stud-
ied a version of the VRPSPD with time windows where drugs are delivered hospital to patients,
and medical devices and unused drugs are picked up from patients (Liu et al., 2013). The problem
has four types of demands: deliveries from hospital to patients, deliveries from depot to patients,
pickups from a patient to the laboratory or from a patient to the depot. They described two formu-
lations, and proposed a genetic algorithm and a tabu search heuristic. Permutation chromosomes,
a split mechanism and local search were used in the genetic algorithm. Several mechanisms, such
as route assignment attributes of patients and attribute based aspiration levels, were also embed-
ded in the tabu search. Modified Gehring and Homberger (1999) and Solomon (1987) data were
used for the experiments. The algorithms were also tested on the VRPTW with mixed backhauls
on which several best-known results were obtained.

Wang et al. (2013) developed a simulated annealing heuristic for the VRPSPD with time windows.
The method applies a mutation probability, obtains a solution with a slow cooling schedule, and
randomizes the local search mechanism. On average, the algorithm obtained 0.22% better so-
lutions on the Wang and Chen (2012) instances with up to 100 customers when compared with
the genetic algorithm. Wang et al. (2015) later considered the hard time windows variant of the
VRPSPD and defined a parallel simulated annealing algorithm which generates an initial solution
by using an insertion method based on radial surcharge and residual capacity. Four local search
methods were used for the intensification phase. The aim is to minimize the total traveled dis-
tance and number of vehicles. Competitive results on the Wang and Chen (2012) instances were
obtained, with 28 new best-known solutions for different sizes in total.

Wang and Chen (2013) studied the flexible VRPSPD with time windows and considered mixed
pickups and deliveries. There is no strict rule about the sequence on a route for linehauls and
backhauls. The authors developed an evolutionary algorithm that applies a modified cheapest
insertion procedure. The algorithm simultaneously makes use of two separate populations, one
of which is used for diversification and the second one for intensification. The authors presented
a mathematical model and applied their method to generated instances based on those of Wang
and Chen (2012) with 10 to 100 nodes.
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Wang et al. (2013) considered split loads within the VRPSPD with time windows and described
a hybrid heuristic that generates travel and customer waiting times based on an initial solution,
as well as on the quantity of the demand. It then uses a local search method which includes six
operators: relocate, relocate split, 2-exchange, swap, 2-opt, and Or-opt. Experiments on modified
Solomon (1987) instances showed that the average number of vehicles decreases by 20%, the total
cost by 10%, but the loading rate per vehicle increases by 10% when compared with the non-split
case.

4.2 The heterogeneous VRPSPD
Qu and Bard (2013) studied the VRPSPD with heterogeneous fleet with a configurable vehicle ca-
pacity and modeled the problem as a mixed integer formulation, and developed an adaptive large
neighborhood search (ALNS). Several randomized procedures were first used to generate feasi-
ble solutions, and the solutions were later improved by problem-specific removal and insertion
operators. Experiments were conducted on the Parragh (2011) dial-a-ride problem instances, on
real instances provided by the program for the elderly organization in Wichita, Kansas, and on
randomly generated instances. The method obtained significant cost reductions of up to 40%.

Another variant of the heterogeneous VRPSPD with time windows was considered by Qu and
Bard (2014) who developed a mathematical formulation and a branch-and-cut-and-price algo-
rithm. An elementary shortest path problem-based labeling algorithm was used for the pricing
subproblem, and several dominance conditions were applied. Furthermore, to strengthen the
lower bound, the authors used subset-row inequalities. Their method yielded several optimal
results on instances with up to 50 customers.

Avci and Topaloglu (2016) integrated threshold adjusting mechanism within tabu search for the
heterogeneous VRPSPD. Threshold adjusting is a deterministic version of simulated annealing. It
also contains an adaptive self-tuning strategy. The authors combined an adaptive cooling mech-
anism within a short-term tabu list. Random instances were generated and optimal results were
obtained for some of the small-size instances by solving a mathematical model. Heuristic results
were presented on instances with up to 550-customers on which the method yielded better results
than the previous ones within a shorter computing time.

4.3 The multi-depot VRPSPD
Nagy and Salhi (2005) introduced the multi-depot VRPSPD and proposed a number of heuristics
for it. The authors allowed intermediate infeasible solutions and applied several improvement
techniques. The authors generated two types of instance sets, the first of which contains 14 in-
stances with up to 199 customers, and the second 11 instances with up to 249 customers. Compet-
itive results were obtained.

Li et al. (2015) proposed an iterated local search integrated within an adaptive neighborhood se-
lection scheme to solve the multi-depot VRPSPD. Multiple perturbation methods with adaptive
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selection mechanisms and allowing worse solutions were used. Experiments on the Salhi and
Nagy (1999) data sets yielded 0.26% and 0.31% average gaps with respect to best-known solution
values for the first set and second set, respectively.

Koulaeian et al. (2015) considered a version of the multi-depot VRPSPD with heterogeneous fleet.
The problem aims to minimize the total cost of routing, penalty cost of drivers who violate the
traveling distance limits, and the fixed costs of employing drivers. The authors proposed two
heuristics: a variant of evolutionary algorithm and a classical genetic algorithm. The former one
is motivated by the concept of imperialist competition in the real world. Experiments on instances
with up to 150 customers produced better solutions than a classical genetic algorithm.

4.4 The green VRPSPD
In the last decade, several researchers have modeled and solved green VRPs. Lin et al. (2014)
proposed a genetic algorithm to solve the VRPSPD in the context of plastic carboys in order to
minimize both economic and environmental criteria, i.e., cost and CO2 emissions. The problem
considers the delivery of the filled plastic carboys and the pickup of empty carboys, and also uses
two different pickup models: partial and full. The findings revealed that the full pickup strategy
yields a lower cost than the partial pickup strategy on instances with up to 100 customers.

Majidi et al. (2017a) introduced the simultaneous pickup and delivery version of the pollution-
routing problem of Bektaş and Laporte (2011). A nonlinear mathematical formulation was pre-
sented and an ALNS heuristic was proposed. To generate an initial solution, a parallel insertion-
based construction heuristic was applied. The authors also developed some problem-specific
removal and insertion operators. Competitive solutions were obtained on the 100-customer in-
stances of Demir et al. (2012), and on the VRPSPD instances of Wang and Chen (2012) with up to
100 customers.

A fuzzy green variant of the VRPSPD was considered by Majidi et al. (2017b) who formulated
it as a mixed integer nonlinear model and considered uncertainty in both pickup and delivery
demands. The authors used a fuzzy algorithm with a credibility measure to tackle uncertainty. A
classical version of the ALNS heuristic was used to solve the problem. Their algorithm computes
fuel consumption, and emissions through a comprehensive emission model. New results on 100-
customer instances and validation tests on instances of Demir et al. (2012) were presented.

4.5 The stochastic VRPSPD
Two stochastic variants of the VRPSPD have been studied. Wang and Qui (2011) considered a
stochastic version of the VRPSPD in which demand is uncertain. The authors developed an adap-
tive cross-entropy heuristic which uses complex stochastic networks of Chepuri and Homem-
de-Mello (2005) to estimate the probabilities of rare events. Several numerical analyses were
conducted to assess the quality of the proposed method. Zhang et al. (2012) later considered a
VRPSPD with stochastic travel time which follows a normal distribution on each arc. The aim
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was to minimize the costs of vehicles and the expected costs of routes. A scatter search and a
classical genetic algorithm were described. The former method uses an evolution-based global
search mechanism, and contains five main tools: improvement, solution combination, reference
setup date, diversification generation, and subset generation. Experiments on generated instances
based on those of Dethloff (2001), and involving between 200 and 400 customers showed that
scatter search yields better solutions than genetic search.

4.6 Miscellaneous VRPSPDs
This section gathers various VRPSPDs that do not fit well in the previous sections.

Time-dependent travel time have been considered by many authors in the context of the VRP. It
is assumed that travel times are not constant between each node pair and may change because
of traffic density, vehicle speed, and weather conditions. Only one paper considered this kind of
travel times in the VRPSPD. Zhang et al. (2014) studied the time-dependent version where a time
step function is used to calculate the travel time. The model minimizes the total cost of waiting,
travel and departure. The authors described a hybrid method integrating an ant colony system
and tabu search, and developed two pheromone update procedures: an ant colony heuristic factor
improvement strategy, and a selection rule for pseudo-random probability. Modified Solomon
(1987) 100-customer instances were used for the experiments.

Polat et al. (2015) defined a time-limit restriction variant of the VPRSPD in which a maximum
allowed duration is imposed on each vehicle route. The authors developed a perturbation based
neighborhood search algorithm for this problem. An initial solution is generated by the Clarke
and Wright (1964) savings heuristic, and is later improved by a variable neighborhood search
algorithm. The authors used swap, insertion, 2-opt and 3-opt intra-route neighborhood structures,
and used five perturbation structures for diversification. On the instances of Salhi and Nagy
(1999), the method obtained several best-known solutions.

Zachariadis et al. (2015) introduced a variant of the VRPSPD where the payload is considered.
The problem aims to minimize the carried gross weight and the travelled distance. A local search
algorithm was developed which runs in two phases. It first generates an initial solution through
a simple constructive heuristic, and then applies a local search procedure which calculates the
weighted-distance objective. The method uses three local search operators: customer relocation,
customer swaps, and 2-opt moves. The authors described a branch-and-cut method for the vali-
dation of the proposed heuristic. The algorithm yielded quite competitive solutions on new gen-
erated instances with 100 nodes.

Zachariadis et al. (2016) introduced the VRPSPD with two-dimensional loading constraints where
pick-up and delivery requests are rectangular items which are non-stackable. Overlapping and ex-
ceeding the loading surface of these items are not allowed, and the items must be packed orthog-
onally. The authors developed a two-stage heuristic. A fast constructive heuristic generated the
initial solution which is then educated by a local search method based on Zachariadis et al. (2013).
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Three local search operators, relocations, exchanges, and 2-opt are applied. The heuristic employs
three examination levels to obtain the loading feasibility status of a local search move. The so-
lution method yielded 12 best-known results on the two-dimensional loading VRP instances of
Gendreau et al. (2008), and five best-known results on the Montané and Galvao (2006) instances.

Chen et al. (2016) studied the VRPSPD with multiple products and multiple cross-docks and pro-
posed a particle swarm optimization. In this problem, distribution centers are cross-docks and
each has a set of allotted delivery and pickup vehicles. The aim is to minimize the material
handling, transportation, and operational costs of all vehicles. The solution method extends the
classical particle swarm optimization scheme by using a self-learning mechanism to obtain bet-
ter solutions quickly and to diversify the solutions. The learning procedure of new solutions is
obtained by modifying the diversity of swarms, and the best solution does not deteriorate after
updating the particle at each iteration. The method was compared with the classical genetic algo-
rithm coded by the authors for the same problem on the modified 50-customer instances of Lee et
al. (2009). Experiments revealed that particle swarm optimization yields better solutions than the
classical genetic algorithm.

Osaba et al. (2017) considered a newspaper distribution problem with a recycling policy in the
context of the asymmetric and clustered VRPSPD with variable costs and forbidden paths. Cus-
tomers are grouped in different clusters, each of which representing a city. Two time periods are
considered: peak hours and off-peak hours. The problem also contains certain arcs that the ve-
hicles cannot use, such as pedestrian streets. The authors developed a discrete firefly algorithm
inspired from the idealized behaviour of fireflies. Each firefly represents a feasible solution which
is initialized randomly. Fireflies move using evolution strategies to improve the solutions. Ex-
periments were conducted on 15 generated instances based on real geographical positions of a
the province of Bizkaia, Spain, with up to 100 customers. The method was compared with the
evolutionary and simulated annealing algorithms, and yielded superior solutions.

5 Case studies
Several authors have solved real-life VRPSPDs.

In the context of long-haul transportation, a heterogeneous fleet variant of the VRPSPD with time
windows was considered by Drexl et al. (2013). The problem allows truck and driver changes at
relay stations which are geographically dispersed, and considers driver shuttles between stations.
The EU legislation for driving and working times were enforced. The authors developed a two-
stage large neighborhood search heuristic. The problem was motivated by an advanced truckload
business model in Germany and other parts of Europe. The authors used the real data of a major
German freight forwarder which has 2,800 delivery and pickup demands between 1,975 locations.
The time horizon was six days and 1,645 vehicles located at 43 depots which were considered as
stations, and 157 additional stations were considered. The heuristic yielded competitive results,
and it is indicated that a fixed truck-driver assignment is the right plan.

17



Yin et al. (2013) studied the split-load VRPSPD and solved it by a tabu search. An initial solution is
generated by a nearest neighborhood insertion procedure. The heuristic uses four nearest neigh-
bor structures: relocation, exchange, 2-opt, and split point reposition operators. The method de-
termines a parameter of tabu length by a randomly selecting method, and applies a self-adjusting
penalty function. The authors conducted experiments on real-world data of a subsidiary com-
pany of China Railway Express. The data include 10 vehicles, a five-ton vehicle load capacity, a 60
km maximal vehicle travel distance, and 24 luggage and package distribution sites. The heuristic
obtained savings with up to 4%.

Wang et al. (2016) considered a multi-objective heterogeneous VRPSPD with time windows, where
the objectives minimize the total traveled distance, the number of vehicles, the makespan, the total
waiting time due to early arrivals, and the total delay time due to late arrivals. The authors de-
scribed two heuristics: a multiobjective local search and a multiobjective memetic algorithm. They
considered a distribution company based in Tenerife, Spain and generated 45 real-world instances
with 50, 150 and 250 customers, and generated the time windows in the same way as the delivery
company faces every day. The effectiveness of the proposed algorithms was confirmed through ex-
periments in which multiobjective local search outperformed a multiobjective memetic algorithm.
To solve the same problem, Li et al. (2018) later proposed a chemical reaction optimization algo-
rithm. A chemical molecule represents a decomposed subproblem, and each molecule includes
several neighboring molecules. For diversification purposes, the authors proposed mechanisms
such as inter-molecular ineffective collision and on-wall ineffective collision. Experiments on the
Wang et al. (2016) real-world instances showed that the algorithm yielded 23 new best-known
results. Zhang et al. (2019) described a multi-commodity many-to-many variant of the VRPSPD
arising at a fast fashion retailer in Singapore. The company operates a two-echelon inventory sys-
tem including a central warehouse and about 30 retail outlets, and focuses on women’s footwear
and accessories. The number of commodities can be up to 10,000, and picked up products from
several customers are encouraged to be reallocated to satisfy demands of other customers. The
authors presented a mathematical formulation and several strengthening mechanisms, and devel-
oped an adaptive memory programming integrating several procedures such as a regret insertion
method to generate initial solutions, the segment-based evaluation scheme, and an advanced pool
management strategy. The algorithm was applied to 66 real-world instances containing 30 out-
lets. The number of commodities ranged between 3,822 and 11,142. The algorithm was applied
to 96 generated instances based on those of Salhi and Nagy (1999) and of Montané and Galvao
(2006). For small-size instances, optimal solutions were achieved, and competitive solutions were
obtained on generated instances. The authors investigated several problem features and stated
that the relocation of commodities increases their utilization.

Finally, Belgin et al. (2018) studied a two-echelon VRPSPD in which the pickup and delivery ac-
tivities are performed from depot to satellites in the first echelon, and from satellites to customers
in the second echelon. A node-based mathematical formulation and valid inequalities were pre-
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sented. The authors developed a hybrid metaheuristic based on variable neighborhood descent
and local search. Experiments were conducted on 504 instances in which the number of satellites
ranged between two and five, and the number of customers ranged between 12 and 50. Valid
inequalities improved the lower bounds, and a hybrid metaheuristic performed quite well within
short computation times. The authors considered a distribution system of a Turkish chain that
operates 25 supermarkets and uses a single-echelon system. Due to the fact that customers are
located far from the main depot, the distribution system is transformed into a two-echelon sys-
tem. The hybrid metaheuristic yielded much better solutions than the current one, with a 57%
reduction in travelled distance.

6 Summary and metaheuristic computational comparison
This section first provides a summary of studies on VRPSPDs, and then presents a comparison of
recent metaheuristics developed to solve the standard VRPSPD.

6.1 Summary
We present a summary of publications on the standard VRPSPD in Table 2, and for VRPSPD vari-
ants and case studies in Table 3. These tables provide the solution method either exact or heuristic,
problem types, benchmark instances, and whether a case study and a mathematical model are in-
cluded. The abbreviations for problem types, solution methods, and benchmark instances are
presented in Tables 4, 5, and 6, respectively.

For the classical VRPSPD a large majority of the publications used heuristic solution methods
(87%), while only 13% used exact methods. Similarly, for the VRPSPD variants, a large majority
of the publications used heuristic solution methods (94%), while only 6% used exact methods.

This is valid for most of the VRP variants since the VRPSPD is an extension of the classical VRP
which is NP-hard. Despite the development of complex and sophisticated mathematical formula-
tions based algorithms in the last decades, only several benchmark instances up to 100 customers
can be solved optimally which requires high computing time. Most of the researchers developed
effective and flexible heuristic algorithms to obtain good quality solutions within a short amount
of time due to practical interest.

Figure 1 provides a summary of heuristic methods used to solve the classical VRPSPD. Most pub-
lications focus on tabu search (29%) and other types of local search (26%) methods. Furthermore,
variable neighborhood search (23%) and ant colony systems (19%) are also often applied. These
are followed by genetic algorithm, iterated local search, multi-start, particle swarm optimization
and scatter search.

Figure 2 provide a summary of heuristic methods developed for the variants of the VRPSPD. The
majority of publications applied generic local search (23%), genetic algorithm (17%), and tabu
search (17%). These are followed by constructive heuristics (11%), ALNS (9%), and simulated an-
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Table 2: Literature on the standard VRPSPD.
References Mathematical Solution Algorithm Benchmark

model type instance
1 Montané and Galvao (2002) • Heuristic TPH MG02
2 Chen and Wu (2006) Heuristic TS, LS, RRA SN99
3 Dell’Amico et al. (2006) • Exact DP DRS06
4 Montané and Galvao (2006) • Heuristic TS D01, SN99, MG06
5 Bianchessi and Righini (2007) Heuristic TS, LS, VNS D01
6 Wassan et al. (2008) Heuristic TS N96
7 Ai and Kachitvichyanukul (2009) • Heuristic PSO DRS06, D01, N96
8 Gajpal and Abad (2009) Heuristic ACS D01, SN99
9 Zachariadis et al. (2009) Heuristic TS, LS D01, MG06
10 Çatay (2010) Heuristic ACS, LS D01, SN99
11 Gajpal and Abad (2010) Heuristic SS D01, SN99
12 Subramanian et al. (2010) Heuristic VNS, LS, MS D01, SN99, MG06
13 Zachariadis et al. (2010) Heuristic AMP D01, SN99, MG06
14 Maquera et al. (2011) Heuristic SS, MS D01, SN99, MG06
15 Souza et al. (2011) Heuristic VNS, ILS D01, SN99, MG06
16 Subramanian et al. (2011) • Exact BC D01, SN99, MG06
17 Zachariadis and Kiranoudis (2011) Heuristic TS, LS MG06
18 Cruz et al. (2012) Heuristic VNS, TS D01, SN99, MG06
19 Jun and Kim (2012) Heuristic CH N96
20 Tasan and Gen (2012) • Heuristic GA TG12
21 Fard and Akbari (2013) • Heuristic TS SN99
22 Goksal et al. (2013) Heuristic PSO, VNS, LS D01, SN99, WWN08
23 Rieck and Zimmermann (2013) • Exact CP D01, SN99, CW06, RZ13, DRS06
24 Subramanian et al. (2013a) • Exact BCP D01, SN99, MG06
25 Subramanian et al. (2013b) • Heuristic SP, ILS, VNS SN99
26 Yousefikhoshbakht et al. (2014) Heuristic TS, ACS D01, SN99
27 Vidal et al. (2014) Heuristic GA SN99, MG06
28 Avci and Topaloglu (2015) Heuristic LS, VNS D01, SN99
29 Johnson et al. (2015) Heuristic ACS D01
30 Mu et al. (2016) • Heuristic PH, SA D01, SN99, MG06
31 Kalayci and Kaya (2016) Heuristic ACS D01, SN99
32 Sayyah et al. (2016) Heuristic ACS D01, SN99
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Table 3: Literature on VRPSPD variants and case studies.
References Problem Mathematical Solution Algorithm Case Benchmark

type model type study instance
1 Angelelli and Mansini (2001) TW • Exact BCP, SP GBI
2 Nagy and Salhi (2005) MD • Heuristic CH GBI
3 Mingyong and Erbao (2010) TW • Heuristic EA GBI
4 Fan (2011) TW • Heuristic TS GBI
5 Wang and Qui (2011) ST • Heuristic CE GBI
6 Liu et al. (2012) TW • Heuristic GA, TS GBI
7 Wang and Chen (2012) TW • Heuristic GA, CH GBI
8 Zhang et al. (2012) ST • Heuristic SS, GA GBI
9 Drexl et al. (2013) HF, TW Heuristic LNS • GBI
10 Kassem and Chen (2013) TW • Heuristic SA, CH, LS GBI
11 Liu et al. (2013) TW • Heuristic GA, TS GBI
12 Qu and Bard (2013) HF, CVC • Heuristic ALNS GBI, P11
13 Wang et al. (2013) TW, SL • Heuristic LS GBI
14 Wang et al. (2013) TW Heuristic SA WC12
15 Wang and Chen (2013) FL, MX, TW Heuristic CEA GBI
16 Yin et al. (2013) SL • Heuristic TS • GBI
17 Lin et al. (2014) GR • Heuristic GA GBI
18 Qu and Bard (2014) HF, TW • Exact BCP GBI
19 Zhang et al. (2014) TD • Heuristic ACS, TS GBI
20 Koulaeian et al. (2015) MD, HF • Heuristic GA GBI
21 Li et al. (2015) MD • Heuristic ILS, ANS GBI, SN99
22 Polat et al. (2015) TL • Heuristic VNS, NS GBI, SN99, NWSA15
23 Zachariadis et al. (2015) LD • Heuristic LS GBI, MG06, XZKX12
24 Wang et al. (2015) TW • Heuristic SA, LS GBI, WC12
25 Avci and Topaloglu (2016) HF • Heuristic LS, TA, TS GBI
26 Chen et al. (2016) MP, MCD • Heuristic PSO GBI, LCSC09
27 Zachariadis et al. (2016) TDL Heuristic CH, LS GBI, MG06
28 Wang et al. (2016) HF, TW, MO • Heuristic MA, LS • GBI, S87
29 Majidi et al. (2017a) GR • Heuristic ALNS DBL12, WC12
30 Majidi et al. (2017b) FZ, GR • Heuristic ALNS GBI, DBL12
31 Osaba et al. (2017) CL, FP • Heuristic DFA GBI
32 Belgin et al. (2018) TE • Heuristic VND, LS • GBI
33 Li et al. (2018) TW, MO • Heuristic CRO • GBI
34 Zhang et al. (2019) MC, MM • Heuristic AMP • GBI
GBI denotes the generated benchmark instance by the authors.
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Table 4: Abbreviations for problem types.
Problem type Abbreviation Problem type Abbreviation
Coevolutionary algorithm CEA Multi-depot MD
Configurable vehicle capacity CVC Multi-commodity MC
Clustered CL Multi-objective MO
Green GR Multiple product MP
Flexible FL Multiple cross-docks MCD
Forbidden paths FP Split load SL
Fuzzy FZ Stochastic ST
Hard time windows HTW Time-dependent TD
Heterogeneous fleet HF Time limit TL
Load-dependent LD Time windows TW
Many-to-many MM Two dimensional loading TDL
Mixed MX Two-echelon TE

Table 5: Abbreviations for solution methods.
Solution method Abbreviation Solution method Abbreviation
Adaptive large neighborhood search ALNS Large neighborhood search LNS
Adaptive memory programming AMP Memetic algorithm MA
Ant colony system ACS Multi-start MS
Adaptive neighborhood selection ANS Neighborhood search NS
Branch-and-cut BC Particle swarm optimization PSO
Branch-and-cut-price BCP Parallel heuristic PH
Chemical reaction optimization CRO Record-to-record algorithm RRA
Construction heuristic CH Scatter search SS
Cross entropy method CE Set partitioning SP
Cutting planes CP Simulated annealing SA
Discrete firefly algorithm DFA Threshold accepting TA
Dynamic programming DP Tabu search TS
Evolutionary algorithm EA Tour partitioning heuristic TPH
Genetic algorithm GA Variable neighborhood search VNS
Iterated local search ILS Variable neighborhood descent VND
Generic local search LS

Table 6: Abbreviations for benchmark instances.
Benchmark instance Abbreviation Benchmark instance Abbreviation
Solomon (1987) S87 Lee et al. (2009) LCSC09
Nagy (1996) N96 Parragh (2011) P11
Salhi and Nagy (1999) SN99 Demir et al. (2012) DBL12
Dethloff (2001) D01 Tasan and Gen (2012) TG12
Montané and Galvao (2002) MG02 Xiao et al. (2012) XZKX12
Chen and Wu (2006) CW06 Wang and Chen (2012) WC12
Dell’Amico et al. (2006) DRS06 Rieck and Zimmermann (2013) RZ13
Montané and Galvao (2006) MG06 Nagy et al. (2015) NWSA15
Wassan et al. (2008) WWN08
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nealing (9%). Local search based heuristics proved to be effective and quick to find good quality
solutions on VRP variants (Laporte et al., 2014). Figures 1 and 2 clearly indicate this situation. Be-
cause of their effectiveness, most of the authors used local search based heuristics for the classical
VRPSPD and its variants.

According to Table 3, the most widely studied variant is the one with time windows (46%). Most
of the companies work on flexible time schedules. Since the nature of the VRPSPD requires simul-
taneous collection and deliveries, many practical problem consider time windows. The second
widely studied variant of the VRPSPD is the heterogeneous fleets with 17%, followed by multi-
depot (11%). As indicated by Koç et al. (2016), heterogeneous fleets have a non-negligible impact
on cost reduction. This encouraged researchers to consider heterogeneous fleet in the VRPSPD.
The increased environmental consciousness in the last decade motivated OR researchers to con-
sider green issues within the VRP variants. Many papers have been published accordingly (see
Bektaş and Laporte, 2011). However, green variants of the VRPSPD have only been studied by
three papers comprising 9% of the publications listed in Table 3.
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Figure 1: Heuristics for the classical VRPSPD.

Table 7 presents the number of reviewed articles published in academic journals. It shows often-
used journals for presentation of research on VRPSPDs. We see that respected OR journals accom-
modate articles addressing the topic. The search results show that seven journals contain more
than half (34) of the 66 reviewed articles in total.
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Figure 2: Heuristics for the variants of the VRPSPD.

Table 7: The journals which most frequently accommodate articles addressing VRPSPDs.
Journal # of papers
Expert Systems with Applications 9
Computers & Operations Research 7
European Journal of Operational Research 6
Computers & Industrial Engineering 5
Journal of the Operational Research Society 3
Transportation Science 2
Soft Computing 2
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6.2 Metaheuristic computational comparison
Most of the metaheuristics were tested on benchmark instances of Salhi and Nagy (1999) and
Dethloff (2001). Salhi and Nagy (1999) generated a set of 14 instances ranging from 50 to 199
customers derived from Christofides et al. (1979). Dethloff (2001) randomly generated 40 instances
which includes two different geographical scenarios. Customers were uniformly distributed in the
first scenario. In the second scenario, half of the customers were located as in first one, and the
other half were clustered.

We present a detailed comparison of metaheuristics on Salhi and Nagy (1999) instances in Table
8, and on Dethloff (2001) instances in Table 9. The first column shows the best-known solution,
while the others show the results for each method. The abbreviations of metaheuristics used in the
comparison are as follows: MG06 for Montané and Galvao (2006), C06 for Chen (2006), RP06 for
Ropke and Pisinger (2006), WWN08 for Wassan et al. (2008), AK09 for Ai and Kachitvichyanukul
(2009), GA09 for Gajpal and Abad (2009), ZTK09 for Zachariadis et al. (2009), C10 for Çatay (2010),
SDBOF10 for Subramanian et al. (2010), ZTK10 for Zachariadis et al. (2010), MLGS11 for Maquera
et al. (2011), SMSOS11 for Souza et al. (2011), GKA13 for Goksal et al. (2013), SUO13 for Subra-
manian et al. (2013b), YDR14 for Yousefikhoshbakht et al. (2014), AT15 for Avci and Topaloglu
(2015), PKKG15 for Polat et al. (2015), KK16 for Kalayci and Kaya (2016), and MWZS16 for Mu
et al. (2016). For each instance, best-known solution values are boldfaced. The computers and
programming languages used are not comparable, hence scaled times for one reference computer
would not be valid.

Table 8 indicates that the best method is that of Wassan et al. (2008) with six best-known results on
the Salhi and Nagy (1999) instances. The method of Wassan et al. (2008) is an effective tabu search
heuristic and obtained quited good solutions on the VRPSPD. For the Dethloff (2001) intances,
Table 9 indicates that the top performers are Zachariadis et al. (2010), Souza et al. (2011), Goksal
et al. (2013), and Avci and Topaloglu (2015) who obtained 33 best-known results. Tables 8 and 9
clearly state that local search based heuristics yielded better solutions than the other ones.
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7 Conclusions and Research Perspectives
Over the last three decades, extensive research has been conducted on the vehicle routing problem
with simultaneous pickup and delivery (VRPSPD) which was introduced by Min (1989). We have
first surveyed and then provided a performance comparison of models and algorithms developed
for the standard problem. We have classified the available heuristics as classical construction and
improvement heuristics, local search metaheuristics, population search heuristics, and ant colony
heuristics. We have then described several problem variations, as well as a number of practical
applications and cases. We have classified several extensions under six main dimensions: the
VRPSPD with time windows, the heterogeneous VRPSPD, the multi-depot VRPSPD, the green
VRPSPD, the stochastic VRPSPD, and miscellaneous VRPSPDs. More than half of the available
studies on VRPSPDs, with 34 papers, have focused on VRPSPD extensions.

There still exists an extensive research potential on VRPSPDs since we are witnessing signifi-
cant innovations in the development of heuristic and exact algorithms, coupled with advances
in machine learning and computer technology. This survey helped us identify several interesting
promising research perspectives:

• The standard VRPSPD instances of Salhi and Nagy (1999) and Dethloff (2001) have been
effectively solved by heuristics, and also many optimal solutions were obtained by exact
algorithms. However, these solution methods were evaluated on instances with only a few
hundred delivery points. This size could be increased to hundreds or even thousands of
customers to reflect more realistic and emerging VRPSPD applications (see Arnold et al.,
2019).

• To effectively solve the VRPSPD and its variants, continuous approximation models should
be developed since no study has yet considered these models (see Langevin et al., 1996;
Franceschetti et al., 2017). These models can be used to obtain a first insight into the so-
lution costs at the tactical or strategic level. At the operational level, these models can be
complemented by mathematical formulations. To validate the quality of VRPSPD heuristics,
approximation models can be used. These models are also helpful in large-size VRPSPD
optimization when the exact solution costs computation is almost impossible.

• Researchers have given too little attention to the time-dependent extension of the VRPSPD
which was studied in only one paper. To meet the challenges faced in city logistics, time-
dependencies should be considered more widely (see Gendreau et al., 2015).

• The parameter values in most of VRPSPD papers are assumed to be known with certainty.
Yet in practical cases, most of the information is often uncertain. For instance, uncertain
information related to whether a customer requires service or not, as well as to parameters
such as service and travel times, and demands. Such realistic situations can also be ad-
dressed within a dynamic environment and they can be embedded within VRPSPDs (see
Bektaş et al., 2014; Gendreau et al., 2016).
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• Research in reducing pollution in goods transportation focuses on the design of effective
green distribution policies such as the use of electric vehicles. Several variants of the electric
VRP have been studied, but not in the context of the VRPSPD. There exists a rich research
potential in the study of electric VRPSPDs (see Pelletier et al., 2016; Koç et al., 2019).

• Some practical situations need to consider multiple planning periods and scenarios (see
Campbell and Wilson, 2014). To our knowledge, no study has yet been performed on multi-
period VRPSPDs.

• Increasing interest in using drones in commercial deliveries by distribution companies, in-
spired several researchers to focus on VRP with drones (see Poikonen et al., 2017; Otto et al.,
2018; Sacramento et al., 2019). We believe that the integration of the VRPSPD with drones
will help meet the challenges faced by city transportation networks and supply chains.

• Autonomous vehicles are being introduced as new, potentially disruptive yet beneficial tools
for distribution management systems. They hold a potential for travel time reduction, fuel
efficiency, safety, and congestion reduction (Fagnant and Kockelman, 2015). The adoption
of these up-to-date technological vehicles to satisfy customer demands in VRPSPDs has a
tremendous potential to improve routing operations. In VRPSPD operations, the which
poses considerable challenges of empty cans or bottles very slowly. This environment is
ideal for autonomous vehicles which works quite well at low speeds. It allows vehicles to
identify, monitor, and navigate accurately (DHL, 2020).
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