
A Dynamic Multi-Period General Routing

Problem Arising in Postal Service and Parcel

Delivery Systems

Demetrio Laganà*, Gilbert Laporte�, Francesca Vocaturo§

Abstract

Postal and courier companies are under the pressure of minimizing operational costs

while meeting requests for increasingly high service levels. We model their delivery

problem as a dynamic multi-period general routing problem (DMPGRP) with the aim

of minimizing the total cost over a given planning horizon. In most modern deliv-

ery systems, fluctuating demand volumes dynamically reveal themselves over time; in

addition, service differentiation is highly important. Both these characteristics are

considered in our DMPGRP. An effective solution strategy for this problem selects de-

mands that must be fulfilled day by day, after distinguishing them according to priority

classes. It then constructs the vehicle routes by using a heuristic algorithm based on

the adaptive large neighbourhood search. The results of an extensive computational

study are reported.

Keywords. Delivery service; mixed capacitated general routing problem; adaptive large

neighbourhood search

1 Introduction

The delivery of parcels, packages, and letters has become an essential part of the transporta-

tion industry, as emphasized by Kovacs et al. [20]. The same authors point out that the

*Department of Mechanical, Energy and Management Engineering, University of Calabria, 87036 Ar-
cavacata di Rende (CS), Italy. E-mail address: demetrio.lagana@unical.it

�CIRRELT and Canada Research Chair in Distribution Management - HEC Montréal, Montréal H3T
2A7, Canada. E-mail address: gilbert.laporte@cirrelt.ca.
School of Management, University of Bath, Bath BA2 7AY, United Kingdom.

§Department of Economics, Statistics and Finance “Giovanni Anania”, University of Calabria, 87036
Arcavacata di Rende (CS), Italy. E-mail address: vocaturo@unical.it

1

competition in small package shipping via carriers and couriers is intense. Consequently,

private (e.g., DHL, FedEx,UPS) and public companies (e.g., national postal services) have

to operate at maximum efficiency to remain in this market. The market that benefits from

the boom in e-commerce is ever growing [14].

In this context, several delivery systems have reinterpreted their original mission in

a modern light. An interesting example arises in postal service organizations that have

gone through substantial changes in order to address the decrease of handwritten letters,

bills, invoices, publicity material, etc. Yet they continue to deliver these items, whose

volume has decreased but not disappeared, in addition to managing the traditional flow of

postal parcels for their own customers. Quite significantly, in most countries postal service

organizations have started to focus on a new business by acting as third party logistics

providers for on-line market places. In effect, they already possess infrastructures, means

of transportation and human resources to face challenges and exploit new opportunities in

the fast-delivery market. For instance, Poste Italiane focuses on parcel delivery services

(Express Courier, Logistics, and Parcels business), which have been expanding constantly

in terms of volumes and revenues. Notably, in June 2018, Poste Italiane forged a new three-

year partnership with Amazon (renewable for an additional two years) for the delivery of

e-commerce packages [25].

Note that, as in any other competitive and mature market, opportunities for service

differentiation also exist in the parcel delivery market generated by e-commerce. Premium

service offerings attempt to cater for the needs of customers requiring shorter shipping

times and are already proposed by many on-line marketplaces [17]. An example is given

by Amazon Prime service.

Now more than ever, to improve the efficiency of postal service and parcel delivery

systems, the main research stream is to apply operations research approaches with the aim

of optimizing transport operations, e.g., distribution network design, transport planning,

and routing. In this context, we focus on routing and we model the delivery problem as

a dynamic decision problem over a discrete planning horizon consisting of several days. A

decision problem is said to be static when all the input data of the problem are known

before decisions are made. In contrast, in a dynamic environment, some of the input data

are revealed or updated during the period of time in which the operations linked to the

decisions take place. The planning horizon of a dynamic problem may be unbounded, in

which case the solution to the problem cannot be a standard output, but rather a strategy

2

which, using the revealed information, specifies the actions that must be carried out as

time goes by [10].

More specifically, in our reference context, there are items that must be delivered to

specified locations (recipients). We assume that the set of possible recipients is given.

This assumption is realistic, but it is unrealistic to suppose that daily demand volumes

and service request deadlines are known several days earlier. In effect, in many real-world

applications, the demands are fluctuating and unpredictable in the short term for both

traffic volumes and points where daily recipients are located, despite the presence of highly

equipped analytics departments. This may occur especially in e-commerce contexts (e.g.,

unpredictable peaks can be induced by special promotions).

1.1 Related Literature

Resorting to robust optimization models [8] does not seem to constitute a feasible option

in the case tackled in this article in which no information about the future demand is

available, not even bound values. Hence, an appropriate solution framework seems to be a

dynamic multi-period model.

An interesting study about a dynamic multi-period vehicle routing problem is the one

proposed by Wen et al. [31] who solved the case of Lantmännen, a large Swedish distrib-

utor in the food, energy and agricultural industries. In their study, the authors consider

customers that place orders over a planning horizon. The orders are revealed incrementally

over time, i.e., without knowledge of future demand quantities from the distributor. Each

request also specifies a delivery location and a set of consecutive periods (or days) during

which delivery can take place. A fleet of homogeneous vehicles is used in the distribution

activity. The objectives are to minimize the total routing cost and customer waiting, and

to balance the daily work load over the planning horizon. A similar problem was tackled

by Angelelli et al. [3] who considered companies that receive orders each day and have the

flexibility to fulfill them within the two days after the orders are received. A single vehicle

is used in the daily distribution activity. Decisions have to be made on the basis of partial

information with the aim of minimizing the total travel cost over time. In effect, customer

demands are not known in advance but, also in this case, become available incrementally

over the planning horizon. The study just described was extended by Angelelli et al. [2] in

a context of systems dealing with on-line pickup requests. We also mention an extension

3

of the dynamic multi-period vehicle routing problem known as the dynamic multi-period

vehicle routing problem with probabilistic information. In this type of problem, at each

time period of a given planning horizon, the set of customers requiring a service in later

time periods is unknown, but its probability distribution is available [1]. A similar problem

was analysed by Ulmer et al. [28] who formulated a dynamic multi-period vehicle routing

problem with stochastic service requests as a route-based decision Markov process and

presented an anticipatory policy based on approximate dynamic programming.

Other interesting scientific contributions related to our study are here briefly described.

Azi et al. [6] studied a delivery problem in which the service requests are not known in

advance and the vehicles execute multiple routes during their workday. In this dynamic

problem, answers to new requests (received according to independent time-space Poisson

processes) must to be provided in real-time. Obviously, the decisions are based on the

planned routes to be executed later (thus, excluding the current route). Pérez Rivera and

Mes [24] investigated the decision problem of selecting freights for transportation in long-

haul round-trips. In this problem, freight demands become known gradually over time

and have to be delivered and picked up at different locations. Although the number of

demands and their characteristics vary from day to day, there is information about their

probability distribution. The problem was modelled as a Markov decision process and

solved through an approximate dynamic programming algorithm. Approximate dynamic

programming approaches were also proposed by van Heeswijk et al. [29] and Zhang et

al. [32] to tackle a dynamic dispatching problem and a dynamic orienteering problem,

respectively. In particular, van Heeswijk et al. [29] dealt with large instances of the decision

problem faced by an urban consolidation centre which dynamically receives customer orders

and dispatches them in batches for the last-mile distribution (the orders have a known

associated probability function). Zhang et al. dealt with a decision problem where a

traveller must arrive and provide service at locations within the respective time windows

to collect rewards. At each location, the traveller must wait in a queue which consists of the

competitors; the queue length is unknown to the traveller before arrival and the wait time

is stochastic. More recently, Dayarian and Savelsbergh [16] have studied a same-day home

delivery problem with crowdshipping (a new form of sharing or collaborative economy) by

also considering a dynamic variant where no information or distributional information is

available.

Finally, we mention the periodic routing problem where decisions have to be made over

4

a given planning horizon in a static environment. There exists a vast body of literature

addressing both interesting applications and tailored solution methods for this problem and

its extensions [13]. The article of Benavent et al. [9] constitutes a very recent reference

on the topic. Specifically, the authors presented a branch-and-cut algorithm to optimally

solve a periodic routing problem with irregular service requests. Such a problem arises in

applications related to road maintenance and road network surveillance in an arc routing

context. The literature proposes other classes of static routing problems dealing with multi-

period plans. For instance, Archetti et al. [5] studied the multi-period vehicle routing

problem with due dates, where customer orders have to be fulfilled between a release date

and a due date (if the due date of an order exceeds the planning horizon, its service

may be postponed by charging a penalty). The authors investigated and computationally

compared three alternative formulations of the problem.

1.2 Contributions and Article Structure

This article emphasizes the need to investigate aspects of service differentiation when de-

veloping decision support instruments. In particular, our main scientific contribution is to

show how even simple solution schemes considering service differentiation actually outper-

form the approaches traditionally proposed in the scientific literature for planning vehi-

cle routes in delivery systems like e-commerce third-party logistics operators and modern

postal service organizations. In addition, we are concerned about dealing with unpre-

dictable demands in the short term. The value of anticipating future events is pointed out

in many scientific articles (see, e.g., [16]) and is relevant to us. However, it is also common

to operate under incomplete knowledge.

To this end, we consider a multi-period routing problem in a highly dynamic setting.

We propose two solution strategies, called greedy and spread. Through an extensive com-

putational study we show that the spread strategy, which considers service differentiation,

outperforms the greedy strategy, which ignores it. As a consequence, our experiments

confirm the value of flexibility in planning deliveries.

The remainder of the article is organized as follows. A more detailed description of

our routing problem is given in the next section. The section also introduces our notation.

Section 3 describes the two solution strategies mentioned above. Section 4 proposes a

heuristic algorithm to tackle the delivery problem through the spread strategy. Section 5

5

illustrates the outputs of an extensive computational phase. Conclusions follow in Section

6.

2 Problem Description

Our contribution is of general applicability and can be adapted to many postal and distri-

bution organizations that face a similar problem. To model the distribution framework, we

use a mixed general routing structure. This structure, which uses a mixed graph to repre-

sent the street networks, allows us to represent isolated users (or entities receiving many

items like large companies) as vertices of the graph, and group of common recipients (e.g.,

private households on a same street) as links, i.e. (directed) arcs or (undirected) edges.

General routing problems arise in classic arc routing contexts. More effectively than other

routing problems, they can model real-world applications in urban waste collection, post

and parcel distribution, school bus routing, etc. [15]. For a recent literature review on

general routing problems the reader is refereed to the annotated bibliography of Mourão

and Pinto [23]. We assume that if a group of recipients is modelled as a link, then it is

always handled as a unit, even when only one of the recipients must be serviced. Therefore,

the graph underlying the problem does not change over the time.

In most real systems, the items are delivered with a speed related to their nature or,

more frequently, to the desired speed of delivery. It is therefore necessary for the delivery

operator to introduce priority classes and suppose that some deliveries can be postponed.

2.1 Representation of Differentiated Services in a Dynamic Setting

For the purpose of modeling, we consider a discrete planning horizon H which can be

bounded or unbounded. On each day h ∈ H, new items arrive at a specific vertex of the

graph called the depot. This vertex represents a central hub at which a fleet of homogeneous

vehicles used in delivery operations is based. The total volume or weight associated with

all items addressed to the same recipient (vertex) or to the same group of recipients (link)

define its service demand for day h. In order to simplify the discussion, we consider only

three priority classes for the demands, i.e., urgent, prominent, and unimportant : (i) an

urgent demand includes at least one item that must be delivered quickly, like a parcel

associated with a 24-hour express service; (ii) a prominent demand includes at least one

6

item that must be delivered within two days; (iii) an unimportant demand only includes

items of different nature with respect the urgent and prominent ones. On day h, an urgent

demand has to be totally fulfilled (i.e., all items defining it have to be delivered) through the

delivery routes planned for that day. Deliveries associated with prominent and unimportant

demands can be postponed. We do not consider partial fulfilments. Therefore, prominent

and unimportant demands can be totally fulfilled or totally unfulfilled on day h. Unfulfilled

demands constitute the so-called outstanding work and are reconsidered on day h+ 1. In

particular, they are added to the new demands that arise at the depot on day h+1 (Figure

1). The priorities of the unfulfilled demands accordingly change over time. We assume

day h+ 1day h

planned routes

outstanding work
day h− 1

outstanding work

new arrivals

Figure 1: Simplified operation scheme

that the demands classified as unimportant become prominent after two days if they have

been unfulfilled, while the demands classified as prominent become urgent after one day.

Obviously, whenever old and new demands are mixed, the class with the higher priority

prevails. For instance, if an unfulfilled prominent demand on day h is added to a new

unimportant demand on day h + 1, then the resulting aggregate demand for day h + 1

is defined by their sum and is classified as urgent. Note that it is easy to modify the

problem and the methods presented in this article if a different number of priority classes

and different rules to change priorities over time are considered.

The key element of our problem is that decisions must be made each day without any

knowledge of future demands. There are neither probability distributions nor bounds and

not even approximate values. The problem just described is defined as the Dynamic Multi-

Period General Routing Problem (DMPGRP). The problem consists of designing daily

vehicle routes satisfying the service requirements and respecting the delivery priorities.

7

Each day, the set of planned routes has to be consistent with the number of available

vehicles and their capacity. The aim is to minimize the average routing cost per demand

unit.

We assume that new arrivals arise before planning routes for the current day (in prac-

tical situations, the planning horizon is almost unbounded and arrivals after a given hour

are treated for the first time on the next day). This feature distinguishes the DMPGRP

from other problems in which decision makers can immediately deal with the available

demands when vehicles are already moving in the area of interest. In addition, we im-

pose that all demands be fulfilled within the planning horizon. Thus, if the horizon is

bounded, all demands defined on the last day have to be fulfilled independently of their

priority level. In other words, in any feasible solution the total demand arising within a

bounded planning horizon must be fulfilled within that horizon. This means that different

solution approaches to the DMPGRP can be fairly compared with each other. Note that,

if the planning horizon is bounded, minimizing the average routing cost per demand unit

corresponds to minimizing the total routing cost over that horizon.

2.2 Notation

We introduce the input data for the DMPGRP. The notation reported in this section will

be also used in the mathematical formulation presented later. We have already defined H

as a discrete planning horizon. Let G = (V,A,E) be a mixed graph defined by a set of

vertices V , a set of arcs A, and a set of edges E. Vertex 1 ∈ V represents the depot at

which a set K of identical vehicles of capacity Q are based. The set of vertices different

from the depot is denoted by C = V \{1}. Any link of A ∪ E can be deadheaded (i.e.,

traversed without service) any number of times. The traversal of link (i, j) ∈ A ∪E yields

a non-negative traversal cost cij . Let Â and Ê be the sets of arcs and edges that must be

serviced at least once over the planning horizon. Let uhij ≥ 0 be the value of an urgent

demand received on day h ∈ H and addressed to link (i, j) ∈ Â ∪ Ê, phij ≥ 0 the value

of a prominent demand received on day h ∈ H and addressed to link (i, j) ∈ Â ∪ Ê, and

thij ≥ 0 the value of an unimportant demand received on day h ∈ H and addressed to link

(i, j) ∈ Â ∪ Ê. Note that for any link (i, j) ∈ Â ∪ Ê, at most one of uhij , p
h
ij , and thij can

be positive. In effect, a non-zero demand received on day h ∈ H and addressed to a link

(i, j) ∈ Â ∪ Ê has only one status: urgent, prominent or unimportant. In addition, in our

8

dynamic setting, the values associated with uhij , p
h
ij , and thij become known starting from

day h ∈ H.

Let V̂ ⊆ C be the set of vertices that must be serviced at least once over the planning

horizon. Let uhi ≥ 0 be the value of an urgent demand received on day h ∈ H and

addressed to vertex i ∈ V̂ , phi ≥ 0 the value of a prominent demand received on day h ∈ H
and addressed to vertex i ∈ V̂ , and thi ≥ 0 the value of an unimportant demand received

on day h ∈ H and addressed to vertex i ∈ V̂ . Similarly, for any vertex i ∈ V̂ , at most one

of uhi , phi , and thi can be positive. The values associated with uhi , phi , and thi become known

starting from day h ∈ H.

An element in V̂ ∪ Â ∪ Ê will be generically defined as a customer whenever there is

no need for further specification.

3 Solution Methodology

From a methodological prospective, solving the DMPGRP means dealing with a double

decision process. The first decision is to select, for each day h, the customers to be serviced

on that day, and the second decision is to define the delivery routes for each day of the

planning horizon. Note that, even if the overall problem is dynamic, the decision process

at the beginning of day h can be viewed as static since in complete absence of information

on future arrivals, the routes for that day are planned simply on the basis of the demand

received (and fulfilled) so far and the routes are fixed before their execution.

3.1 Greedy Strategy

The simplest way to solve the DMPGRP is to fulfil every demand immediately, regardless

of its priority. In other words, any link (i, j) ∈ Â ∪ Ê with uhij + phij + thij > 0 will

be serviced by a delivery route planned for day h. Similarly, any vertex i ∈ V̂ with

uhi + phi + thi > 0 will be serviced by a delivery route planned for day h. We refer to

this strategy as a greedy strategy. It ignores the outstanding work and, de facto, does not

deal with service differentiation. The greedy strategy is consistent with most optimization

approaches proposed in the scientific literature. In effect, within the greedy strategy, the

problem of selecting the customers to be serviced day by day does not exist since it is solved

at the source. Then, for each day h of the planning horizon, the routing problem can be

9

solved by applying, without any modification, an exact or an approximate algorithm for

the mixed capacitated general routing problem (see, e.g., [7, 11, 12, 19]).

3.2 Spread Strategy

In the following we will present a strategy which tackles the DMPGRP by actually consid-

ering the demand priorities. This strategy, called spread strategy, solves a delivery problem

for every day of the planning horizon. In particular, it designs no route on day h if there is

no customer associated with an urgent demand for that day. In contrast, it plans for day

h the routes visiting all customers associated with an urgent demand and tries to include

in them those customers associated with a prominent or an unimportant demand if it is

convenient to do. The convenience is linked with the extra cost for their service. We will

later present a mathematical model associated with day h. In addition to the notation

defined in Section 2.2, further notation is introduced as follows.

Some subsets of Â and Ê, denoted respectively by Ah and Eh, include respectively the

arcs and edges associated with a positive demand on day h ∈ H. This demand can include

outstanding work from previous days or new arrivals on day h and is defined as aggregate.

In particular, let dhij be the aggregate demand associated with link (i, j) ∈ Ah ∪Eh. Since

dhij can include outstanding work, it does not in general coincide with uhij+phij+thij . We can

distinguish between the elements in Ah and Eh on the basis of the nature of the aggregate

demand. In particular, we denote by ARh and ERh the subsets of arcs and edges with an

urgent aggregate demand on day h, respectively. We refer to the elements in ARh ∪ ERh as

required customers (more specifically, required links) for day h. Analogously, we denote

by APh and EPh the subsets of arcs and edges with a prominent aggregate demand on day

h, respectively. We refer to the elements in APh ∪ EPh as potential customers of level I

(more specifically, potential links of level I) for day h. Finally, we denote by ATh and ETh ,

respectively, the subsets of arcs and edges with an unimportant aggregate demand on day

h. We refer to the elements of ATh ∪ETh as potential customers of level II (more specifically,

potential links of level II) for day h. We have Ah = ARh ∪APh ∪ATh and Eh = ERh ∪EPh ∪ETh .

Similarly, the subset Vh ⊆ V̂ includes vertices associated with a positive aggregate

demand on day h ∈ H. In particular, let dhi be the aggregate demand associated with vertex

i ∈ Vh. Subset V R
h includes other required customers (more specifically, required vertices)

for day h. These are the vertices associated with an urgent aggregate demand. The subsets

10

V P
h and V T

h include other potential customers of level I and II (more specifically, potential

vertices of level I and II) for day h, respectively. These are the vertices associated with a

prominent and unimportant aggregate demand, respectively. We have Vh = V R
h ∪V P

h ∪V T
h .

Note that the elements of ARh ∪ ERh ∪ V R
h must be serviced on day h, whereas, the

elements of APh ∪ EPh ∪ V P
h and ATh ∪ ETh ∪ V T

h can be serviced on day h. In any case, an

element cannot be split when it is serviced.

Given a subset S ⊂ V of vertices, let δ+(S) be the set of arcs leaving S, δ−(S) the

set of arcs entering S, δ+h (S) the set of required and potential arcs for day h leaving S,

δ−h (S) the set of required and potential arcs for day h entering S, δ(S) the set of edges

incident to S, and δh(S) the set of required and potential edges for day h incident to S.

Whenever S = {v} we replace S with v in the previous notation. Moreover, let Vh(S) be

the set of required and potential vertices for day h belonging to S, Ah(S) the set of required

and potential arcs for day h with both endpoints in S, and Eh(S) the set of required and

potential edges for day h with both endpoints in S.

For a link (i, j) ∈ Ah ∪ Eh and a vehicle k, let xkij be a binary variable equal to 1 if

and only if (i, j) is serviced by vehicle k which travels from vertex i to vertex j. For a link

(i, j) ∈ A∪E and a vehicle k, let ykij be a non-negative variable representing the number of

deadheading from vertex i to vertex j by k. Finally, for a vertex i ∈ Vh and a vehicle k, let

zki be a binary variable equal to 1 if and only if i is serviced by k. For simplification issue,

we do not use an index h in the decision variables (it is obvious that their value refers to

the day for which the model is solved, i.e., day h).

In addition, we define

λ1 =
∑
k∈K

∑
(i,j)∈Eh

cij(x
k
ij+x

k
ji)+

∑
k∈K

∑
(i,j)∈Ah

cijx
k
ij+

∑
k∈K

∑
(i,j)∈E

cij(y
k
ij+y

k
ji)+

∑
k∈K

∑
(i,j)∈A

cijy
k
ij ,

λ2 = α

(∑
k∈K

∑
(i,j)∈EP

h

(
xkij + xkji

)
+
∑
k∈K

∑
(i,j)∈AP

h

xkij +
∑
k∈K

∑
i∈V P

h

zki

)
,

λ3 = β

(∑
k∈K

∑
(i,j)∈ET

h

(
xkij + xkji

)
+
∑
k∈K

∑
(i,j)∈AT

h

xkij +
∑
k∈K

∑
i∈V T

h

zki

)
,

where α and β are parameters concerning the inclusion of potential customers in some

route, respectively for levels I and II (α > β). They are used to define a profit. For

insights, the reader is referred to the scientific literature on routing problems with profits

(see, e.g., [4]). Introducing a profit leads to evaluate the degree of urgency and convenience

of servicing a potential customer on day h. Specifically, on the one hand, every serviced

11

potential customer contributes to increments the total routing cost (λ1), on the other hand,

it generates a saving equal to α for level I, to β for level II. The total saving is represented

by the sum λ2 + λ3. The values of α and β play a central role in the mathematical

model. If α = β = 0 and an optimum exists, then there is an optimal solution where

no potential customer for the current day is serviced (other optimal solutions can include

the service of potential customers with extra routing cost equal to zero). Conversely, if

α = β = M (where M is a large constant with respect to the traversal costs), then all

potential customers for the current day will be serviced in an optimal solution compatible

with vehicle capacity. Intermediate and opportunely defined values of α and β allow

servicing only convenient potential customers.

The problem of selecting customers and determining vehicle routes in delivery systems

on day h can be formulated as follows:

Minimize λ = λ1 − λ2 − λ3 (1)

subject to∑
k∈K

(xkij + xkji) = 1 (i, j) ∈ ERh (2)

∑
k∈K

xkij = 1 (i, j) ∈ ARh (3)

∑
k∈K

zki = 1 i ∈ V R
h (4)

∑
k∈K

(xkij + xkji) ≤ 1 (i, j) ∈ EPh ∪ ETh (5)

∑
k∈K

xkij ≤ 1 (i, j) ∈ APh ∪ATh (6)

∑
k∈K

zki ≤ 1 i ∈ V P
h ∪ V T

h (7)

∑
(i,j)∈Eh

dhij(x
k
ij + xkji) +

∑
(i,j)∈Ah

dhijx
k
ij +

∑
i∈Vh

dhi z
k
i ≤ Q k ∈ K (8)

12

∑
j:(i,j)∈δ+h (i)

xkij +
∑

j:(i,j)∈δ+(i)

ykij −
∑

j:(j,i)∈δ−h (i)

xkji −
∑

j:(j,i)∈δ−(i)

ykji =

=
∑

j:(i,j)∈δh(i)

xkji +
∑

j:(i,j)∈δ(i)

ykji −
∑

j:(i,j)∈δh(i)

xkij −
∑

j:(i,j)∈δ(i)

ykij k ∈ K, i ∈ V (9)

∑
(i,j)∈δ+h (S)

xkij +
∑

(j,i)∈δ−h (S)

xkji +
∑

(i,j)∈δh(S)

(xkij + xkji) +
∑

(i,j)∈δ+(S)

ykij+

+
∑

(j,i)∈δ−(S)

ykji +
∑

(i,j)∈δ(S)

(ykij + ykji) ≥


2(xkuv + xkvu) (u, v) ∈ Eh(S),

2xkuv (u, v) ∈ Ah(S),

2zku u ∈ Vh(S),

k ∈ K, S ⊆ C (10)

xkij ∈ {0, 1} k ∈ K, (i, j) ∈ Ah ∪ Eh (11)

xkji ∈ {0, 1} k ∈ K, (i, j) ∈ Eh (12)

ykij ∈ Z+ k ∈ K, (i, j) ∈ A ∪ E (13)

ykji ∈ Z+ k ∈ K, (i, j) ∈ E (14)

zki ∈ {0, 1} k ∈ K, i ∈ Vh. (15)

The objective function (1) takes into consideration the difference between the total routing

cost and the total saving in inserting potential customers of level I and II for the current

day.

Constraints (2)–(4) mean that each required customer for the current day is serviced

exactly once (assignment constraints for required customers). Constraints (5)–(7) ensure

that each potential customer for the current day is serviced at most once (assignment con-

straints for potential customers). Constraints (8) model the demand limitations imposed

by the vehicle capacity (knapsack constraints). Constraints (9) model the symmetry condi-

tions at each vertex (flow constraints). Note that, together with the integrality conditions,

they also imply parity conditions at each vertex. Constraints (10) are connectivity con-

13

straints. They impose that for each subset of vertices excluding the depot and containing a

required or potential customer serviced by a vehicle, at least two links incident to the sub-

set must be used to visit it (deadheaded or serviced); they also eliminate subtours disjoint

from the depot. Finally, constraints (11)–(15) define the variable domains. We derived the

formulation just described from the integer linear programming model proposed in [11] for

the mixed capacitated general routing problem.

Note that all customers can be considered required on the last day of a bounded plan-

ning horizon since all demands must be fulfilled within the same horizon.

3.3 A First Comparison

Here we present an experiment on a simple instance with the aim of better explaining the

two strategies and carrying out a first comparison between them.

Consider the mixed graph depicted in Figure 2. Vertex 1 represents the depot at

which three identical vehicles of capacity 15 are based. The sets of elements that must

be serviced at least once over a seven-day planning horizon are: V̂ = {5, 7, 8}, Â =

{(2, 3), (8, 6), (10, 12), (11, 12)}, and Ê = {(3, 4), (3, 5), (9, 10)}. The service requests were

randomly generated by considering the initial outstanding work to be zero. For each

vertex in V̂ and for each day of the planning horizon, we generated a demand equal to

zero with a 10% probability, equal to four with a 20% probability, equal to seven with a

30% probability, and equal to 10 with a 40% probability. A non-zero demand of a vertex

requiring a service was labelled as urgent. For each link in Â ∪ Ê and for each day of the

planning horizon, we generated a demand in the set {0,1,2,3} with a probability of 25%

associated with each value. In order to fix the priorities, we defined three groups. The

links (3,4) and (11,12) were assigned to group 1, the links (2,3) and (9,10) were assigned

to group 2, the links (3,5), (8,6), and (10,12) were assigned to group 3. In particular,

for group 1 a non-zero demand was labelled as unimportant with a 60% probability, as

prominent with a 30% probability, and as urgent with a 10% probability; for group 2 a

non-zero demand was labelled as unimportant with a 40% probability, as prominent with a

40% probability, and as urgent with a 20% probability; for group 3 a non-zero demand was

labelled as unimportant with a 30% probability, as prominent with a 40% probability, and

as urgent with a 30% probability. Table 1 reports pairs (demand - priority) generated as

mentioned above. Specifically, if the demand value is positive, then the priority is denoted

14

as “u” if the demand is urgent, as “p” if the demand is prominent, and as “t” if the demand

is unimportant. If the demand value is equal to 0, pair (demand - priority) is replaced by

0.

4

3

4

2
13

1

15

8

9

7

5
12

11

3

16

1010

10

12

8

19

5
113

6

20

4

14

14

5

i j
cij

Figure 2: G = (V,E,A).

In order to tackle the DMPGRP by the greedy strategy, we used the branch-and-cut

algorithm developed by Bosco et al. [11]. Specifically, seven mixed capacitated general

routing problems were solved to optimality. The results are summarized in Table 2. In

addition, we modified the above mentioned algorithm to solve the daily problem defined

by (1)–(15) within the spread strategy. We set α and β equal to the smallest integer

greater than or equal to the average and to the smallest traversal cost, respectively. The

results are summarized in Table 3. In this case, pairs (aggregate demand - priority) arise.

For day 1, the solution does not include arcs (2,3) and (11,12). The first link represents a

potential customer of level I for day 1. Its unserviced demand (p123 = 1) becomes additional

to the demand of the next day (t223 = 1) by generating an aggregate demand d223 equal

to 2; moreover, (2,3) becomes a required customer for day 2 since a prominent demand

becomes urgent after one day. Therefore, (2 - u) arises for day 2 in correspondence with

arc (2,3) in Table 3. Arc (11,12) represents a potential customer of level II for day 1. Its

unserviced demand (p11112 = 1) becomes additional to the demand of the next day (equal

to 0) by generating an aggregate demand d21112 equal to 1; moreover, (11,12) remains

15

Table 1: Arrivals over the planning horizon

Customers Days
1 2 3 4 5 6 7

5 10 - u 0 4 - u 4 - u 7 - u 4 - u 10 - u
7 10 - u 10 - u 10 - u 4 - u 10 - u 0 10 - u
8 7 - u 10 - u 0 10 - u 7 - u 10 - u 7 - u

(2,3) 1 - p 1 - t 2 - p 2 - t 3 - u 0 0
(3,4) 0 2 - t 3 - t 1 - t 2 - p 1 - p 0
(3,5) 1 - u 3 - t 3 - u 1 - t 2 - t 0 1 - p
(8,6) 2 - u 3 - t 2 - p 3 - p 1 - p 3 - p 3 - t
(9,10) 3 - p 3 - t 2 - p 0 0 1 - t 1 - u
(10,12) 1 - u 2 - p 0 2 - t 2 - u 3 - u 0
(11,12) 1 - t 0 2 - t 0 3 - t 1 - p 0

a potential customer of level II for day 2 since unimportant demand does not become

prominent after one day. Therefore, (1 - t) arises for day 2 in correspondence of (11,12) in

Table 3. We point out that arc (11,12) is also unserviced in day 2. Its demand becomes

additional to the demand of the next day (d31112 = 1 + 2 = 3); moreover, (11,12) becomes a

potential customer of level I for day 3 since unimportant demand concerning day 1 becomes

prominent after two days. Therefore, (3 - p) arises for day 3 in correspondence of (11,12) in

Table 3. Analogous considerations can be made for the other days of the planning horizon

and for the other non-serviced links. On the last day, all priorities associated with non-zero

demands are labelled as urgent.

The results in Tables 2 and 3 emphasize that both strategies construct routes which, in

seven days, fulfill the total demand equivalent to 217. Anyway, the spread strategy leads to

a significant cost saving since the total cost moves from 1,036 to 847 (reduction of 18.24%).

The total computational time is about 1.5 seconds for the greedy strategy and 2.5 seconds

for the spread strategy.

Table 2: Solution of the greedy strategy

Days
1 2 3 4 5 6 7 Sum

Total demand 36 34 28 27 37 23 32 217
Total cost 173 147 153 132 160 148 123 1036

16

Table 3: Solution of the spread strategy

Days
1 2 3 4 5 6 7 Sum

5 10 - u 0 4 - u 4 - u 7 - u 4 - u 10 - u
7 10 - u 10 - u 10 - u 4 - u 10 - u 0 10 - u
8 7 - u 10 - u 0 10 - u 7 - u 10 - u 7 - u

(2,3) 1 - p 2 - u 2 - p 4 - u 3 - u 0 0
(3,4) 0 2 - t 3 - t 1 - t 2 - p 1 - p 0
(3,5) 1 - u 3 - t 6 - u 1 - t 2 - t 0 1 - u
(8,6) 2 - u 3 - t 2 - p 5 - u 1 - p 3 - p 6 - u
(9,10) 3 - p 3 - t 5 - p 5 - u 0 1 - t 2 - u
(10,12) 1 - u 2 - p 2 - u 2 - t 4 - u 3 - u 0
(11,12) 1 - t 1 - t 3 - p 3 - u 3 - t 4 - p 4 - u

Total demand 34 27 25 37 36 18 40 217
Non-serviced links (2,3) (3,5) (2,3) (10,12) (11,12) (8,6)

(11,12) (9,10) (8,6) (9,10)
(10,12) (9,10) (11,12)
(11,12) (11,12)

Objective function value (λ) 112 92 72 157 107 86 159
Real total cost (λ1) 123 98 75 163 132 97 159 847

4 A Heuristic Algorithm for the Spread Strategy

Computing an optimal solution for model (1)–(15) is very time consuming for instances of

realistic sizes. In addition, we observe that an optimal solution for the DMPGRP does not

consist in juxtaposing optimal daily solutions of model (1)–(15). In effect, new information

could reveal failures in past decisions, which cannot be revoked in the future.

For the daily problem of selecting customers and defining vehicle routes within the

spread strategy we propose a heuristic algorithm that also uses adaptive large neighbour-

hood search (ALNS). This solution paradigm was introduced by Ropke and Pisinger [26]

and has since been successfully applied to many routing problems in deterministic and

stochastic settings [21, 22]. Here we briefly describe the steps carried out to heuristically

solve the delivery problem concerning on day h. First, we generate routes servicing only

the required customers for day h (initial partial solution). Second, we use ALNS to im-

prove the initial partial solution. Third, we try to include in the improved partial solution

potential customers of level I and II for day h. This way, we generate a complete solution

in the sense that we consider all potential and required customers involved in the daily

process. We then reapply ALNS to try improving the complete solution. More details on

17

the single steps are given in the following subsections.

In our solution framework, the kth route planned for the current day is represented

by an ordered list of elements corresponding to required and potential vertices and links:

τk = [ek1, e
k
2, ...] (to simplify the notation we do not use the index h). These elements arise

in the order in which they are serviced in the route. In addition, the direction in which the

edges are traversed during the service is given. For instance, if edge (i, j) ∈ Eh is serviced

by traversing from j to i, it will be present in the list as (j, i). We always assume that

a shortest path is followed between the depot and the first serviced element; between two

consecutive serviced elements; between the final serviced element and the depot. Moreover,

we always construct feasible routes with respect to the capacity constraints. However, the

number of routes planned for the current day could exceed |K| during the search. If an

infeasible solution of this type arises, then we use a penalty term in computing the cost

of the solution. In particular, this term is given by ρ × max{0,m − |K|}, where ρ is a

self-adjusting coefficient and m represents the number of routes in the current solution.

Then, for the current day, a solution τ is represented by τ = (τ1, ..., τm).

4.1 Generation of an Initial Partial Solution

We propose a greedy sequential procedure that generates an initial partial solution by

constructing one route at a time. In the following, we provide a formal description of

our method. Recall that only the required customers for the current day are considered

in this phase. For each candidate element to be included in the current route, we define

the distance as the cost of the shortest path used to connect it to the last element in the

current route (to the depot if this route is empty). The procedure is as follows:

Step 0. Set k = 1 and R = V R
h ∪ARh ∪ ERh .

Step 1. Initialize route τk (it is an ordered and initially empty list).

Step 2. Define Z ⊆ R as the set of required elements that can be added to the end of τk

without violation of the capacity constraints. If Z = ∅, then set k = k + 1 and go to

Step 1.

Step 3. Select the element from Z associated with the smallest distance value (the first

element found during the search is selected if more elements are associated with the

18

smallest value). Extend the current route by the selected element and eliminate it

from R.

Step 4. If R = ∅ stop, otherwise go to Step 2.

4.2 Improvement of the Initial Partial Solution

We use an iterative search scheme, named ALNS, with the aim of improving the initial par-

tial solution. In the following, we summarize the main components of an ALNS algorithm

by pointing out parameters values, criteria and routines used in our scheme.

First, every ALNS algorithm needs acceptance and stopping criteria, like all iterative

methods. In our scheme, we accept feasible or infeasible solutions that are better, equal or

slightly worse than the current solution. In other words, a feasible or infeasible solution is

accepted if its objective value is less than the objective value of current solution multiplied

by a user-defined factor δ ≥ 1. Note that we just refer to term λ1 in (1). In order to

accept fewer and fewer worsening solutions during the search, the parameter δ gradually

decreases until it becomes equal to 1. Its initial value is δ = 1.03. Every 10 iterations

δ is updated in the following way: δ = max{1, δ × 0.999}. Similarly, in order to reduce

the generation of infeasible solutions during the search, the self-adjusting coefficient ρ can

only increase. Its initial value is ρ = 1. Every 10 iterations, the coefficient is multiplied

by 2(b/10), where b denotes the number of infeasible solutions encountered in the last 10

solutions. The algorithm terminates whenever the best feasible solution has not changed

for γ = 50 consecutive iterations.

In addition, every ALNS algorithm needs a set of destroy and repair operators. At

each iteration of the ALNS, one destroy operator and one repair operator are applied to

the current solution. The destroy operator removes q elements in R from the current

solution and the repair operator reinserts them. We recall that R = V R
h ∪ ARh ∪ ERh . In

our implementation, we set q = d0.20|R|e. The selection of destroy and repair operators

is based on a roulette-wheel selection mechanism. In other words, the destroy and repair

operators are associated with specific weights. Given t operators with weights wi, the jth

one is selected with probability wj/
∑t

i=1wi. Note that the destroy operator is selected

independently of the repair operator (and vice versa). The weights of the operators change

during the search according to their effectiveness. Specifically, the ALNS is divided into a

number of segments of % iterations. We used % = 30 in our implementation. The weights

19

are updated every % iterations by using the scores obtained during the last segment. In

the first segment the weight of every operator is equal to 1, and at the start of a segment

the score of every operator is equal to 0. The score of the selected pair of destroy and

repair operators is increased by 30, 10, and 5 if their application results, respectively, in

a new best feasible solution, in a (possibly infeasible) solution improving the current one,

in an accepted (possibly infeasible) solution not improving the current one. At the end

of every segment, new weights are calculated in the following way. Let wi,j , πi,j , and

θi,j be the weight of the ith operator in the jth segment, the score of the ith operator

obtained during the jth segment, and the number of times the ith operator has been used

during the jth segment, respectively. If θi,j = 0, then set wi,j+1 = wi,j ; otherwise, set

wi,j+1 = 0.9wi,j + 0.1(πi,j/θi,j). We now present the destroy and the repair operators

included in our heuristic scheme.

4.2.1 Destroy Operators

Three operators are used to destroy the current solution, i.e., remove q customers from the

routes where they are serviced.

The first operator is called Worst Removal (WR). It selects customers that appear to

be placed in a wrong position in the current solution. Specifically, WR computes the saving

obtained by removing every customer from the route in which it is serviced. The operator

repeatedly chooses the customer associated with the largest saving until q customers have

been removed.

The second operator is called Random Removal (RR). This operator selects (almost all)

customers at random with the aim of diversifying the search. If the removal of a customer

leads to a null saving, then the customer serviced immediately after in the same route

is also removed (or the customer serviced immediately before if no customer is serviced

after). Note that the removal of a customer belonging to a shortest path between the

customer serviced immediately before (or the depot if no customer is serviced before) and

the customer serviced immediately after (or the depot if no customer is serviced after) is

associated with a null saving. Of course, in the case of a null saving, RR only removes

those customers serviced immediately after (or before) if the limit of q removals has not

yet been exceeded.

The third operator is called Route Deletion (RD). It tries to empty routes. In particular,

20

RD tries to regain feasibility whenever the number of routes in the current solution is larger

than the number of available vehicles. Operatively, the routes are sorted in non-decreasing

order of the number of customers serviced by them. Then, the operator considers the

first route and iteratively removes its customers starting from the last one. Moreover, it

considers the next route if the previous one has been emptied.

4.2.2 Repair Operators

Three operators are used to repair the current solution, i.e., reinserting the q customers

removed in the previous step (and stored in a list χ). We recall that only infeasibility with

respect to the number of routes is allowed during the search. Therefore, the operators

never consider insertions that violate the capacity constraints. In addition, they evaluate

the insertion of an edge in both directions.

The first repair operator is called Greedy Construction (GC). At each iteration, the

operator extracts from χ the customer associated with the minimum insertion cost. It then

inserts this customer at its cheapest position. The process continues until all customers

have been inserted. Note that GC considers the insertion in all existing routes (i.e., all

routes including one customer at least) and, in addition, in a new empty route.

The second operator is called Best Postponement (BP). For every customer in χ, it

computes the insertion cost in the cheapest position. Then, BP extracts and inserts in this

position the customer whose insertion cost is maximum. The underlying idea is to avoid

even higher costs in next iterations.

The third operator uses look-ahead information when selecting the customer to insert.

It is called Regret Maximization (RM). For each customer in χ, the operator computes a

regret value as the difference in cost between inserting the customer in the cheapest position

in its second-best route and in its best route. An insertion in a new route is possible. If the

best route is a new route, then the second-best route can be a new route only in absence

of existing routes consistent with the capacity constraints (in this case the regret value is

equal to 0). RM selects from χ the customer for which the regret value is maximum and

inserts it in its best position.

21

4.3 Insertions for Defining a Complete Solution

In order to generate a complete solution, we insert potential customers for the current day

in the improved partial solution by means of a two-phase procedure. In the first phase,

we consider zero-cost insertions. In other words, potential customers of level I and II for

the current day already present in some existing route (since belonging to a shortest path)

pass from the state “unserviced” to state “serviced” if the operation is consistent with the

capacity constraints. In the second phase, an attempt for other insertions is made. In

particular, potential customers of level I for the current day will be included in existing

routes if the insertion cost does not exceed α, whereas potential customers of level II for

the current day will be included in existing routes if the insertion cost does not exceed β.

Note that these operations are fast, since the potential customers are inserted in the first

position for which the condition is satisfied. In both phases, potential customers of level I

have precedence over potential customers of level II since their “deadline” is closer. The

ALNS algorithm described in the previous subsection is then reapplied with the aim of

improving the overall solution. In this phase, the set R defined in Section 4.1 is replaced

with the set of all required and potential customers serviced in the complete solution. The

final part of the algorithm (definition and improving of a complete solution) is not applied

on the last day of a bounded planning horizon since all customers are required on that day.

5 Computational Experiments

Computational experiments were carried out on a PC equipped with an Intel Core i7 CPU

running at 2.40 GHz, with 16 GB of memory. The heuristic algorithm used within the

spread strategy and described in Section 4 was coded in C++. The computational results

associated with the greedy strategy were obtained by running the exact algorithm coded

in Java by Bosco et al. [11]. In particular, for each day of the planning horizon, the

branch-and-cut algorithm of Bosco et al. was used to solve a mixed capacitated general

routing problem to optimality, as shown in Section 3.3. Finally, a modified version of

this branch-and-cut algorithm was used to optimally solve model (1)–(15) with the aim of

obtaining values of comparison for the heuristic algorithm described in Section 4. More

specifically, in a preliminary experimental phase (tuning phase) we solved to optimality

model (1)–(15) with different values of α and β on a set of instances of very small size

22

like the one described in Section 3.3. The numerical results led us to set values for α and

β equal to the smallest integer greater than or equal to the average and to the smallest

traversal cost, respectively. Recall that the parameters α and β also play an important role

in the heuristic algorithm. Indeed, these are not used in evaluating the objective value of

the solutions generated during the search, but are used in defining the complete solution

and, consequently, in selecting potential customers on a daily basis (see Section 4.3). We

also used the results of the tuning phase to make decisions about operators and parameters

in the ALNS heuristic.

5.1 Instances

We then carried out an intensive experimental phase based on instances derived from

dataset mggdb-0.25 having |K| ≤ 7 vehicles. This dataset was proposed by Bosco et

al. [11] and is available on the Transportation Optimization Portal of SINTEF Applied

Mathematics [27]. Bosco et al. derived mggdb-0.25 instances from gdb instances introduced

for the undirected capacitated arc routing problem [18]. Specifically, the authors modified

the original gdb instances in the following way. First, in order to switch from undirected

to mixed graphs, they replaced a certain number of edges with pairs of opposite arcs and

moved the demand of each required edge to one (randomly chosen) of the two arcs. Second,

for dataset mggdb-0.25, they shifted the demands of d0.25`e randomly selected required

links to d0.25`e randomly selected adjacent vertices, where ` is the number of links requiring

service in their mixed graphs. In dataset mggdb-0.25, the number of vertices, arcs, and

edges varies from seven to 22, from 18 to 68, and from two to 11, respectively.

From this dataset we saved (i) the overall structure of the mixed graphs; (ii) the

traversal costs for every link; (iii) the number of the homogeneous vehicles.

The demands were randomly generated over a seven-day planning horizon by consider-

ing specific rules. We used the set of vertices and links requiring service in the mggdb-0.25

dataset to define the elements of V̂ ∪ Â ∪ Ê and their demands as follows. For each ver-

tex requiring a service in the original instance and for each day of the planning horizon,

we generated a demand equal to zero with a 10% probability, equal to four with a 20%

probability, equal to seven with a 30% probability, and equal to 10 with a 40% probability.

A non-zero demand of a vertex requiring a service was always labelled as urgent, as done

for the instance described in Section 3.3. For each link requiring a service in the original

23

instance and for each day of the planning horizon, we generated a demand in set {0,1,2,3}
with a probability of 25% associated with each value. In order to fix the priorities, we

defined three groups. Each link requiring a service was randomly assigned to a group

with the same probability of assignment for each group. The probabilities of generating

urgent, prominent or unimportant demands associated with each group are equal to those

described in Section 3.3.

The capacity of the vehicles was modified with respect to the original one, coherently

with the new demand values. The new dataset, including 19 instances, is denoted as

dmpgrp-0.25. In particular, dmpgrp-0.25-1 represents the instance derived from mggdb-

0.25-1, dmpgrp-0.25-2 represents the instance derived from mggdb-0.25-2, and so on.

5.2 Main Numerical Results

In our final experimental phase, we ran our heuristic algorithm five times for each instance

by using five different random seeds. Since the planning horizon is bounded, the objective

value to be minimized corresponds to the total routing cost over the planning horizon.

In Table 4, the columns “Greedy-Exact” report the results obtained by applying the

greedy strategy. “Exact” refers to the fact that we used an exact algorithm to compute

the solutions. The columns “Spread-Heuristic” report the results obtained by the spread

strategy through the heuristic described in Section 4. The other column headings in Table

4 are defined as follows:

Name instance name

|K| number of vehicles

Q vehicle capacity

η number of elements (vertices and links) requiring service

Dem total demand serviced over the planning horizon

Cost∗ optimal total routing cost of the solution for “Greedy-Exact”

CostA average total routing cost of the solution for “Spread-Heuristic”

CostB best total routing cost of the solution for “Spread-Heuristic”

Sec computation time in seconds

Imp percentage improvement computed as 100(Cost∗ − CostB)/Cost∗.

Since in any feasible solution for the DMPGRP all demands are fulfilled within the planning

horizon, the total demand Dem is the same for “Greedy-Exact” and “Spread-Heuristic”.

24

Note that Cost∗, CostA, and CostB correspond to the total routing cost, i.e. to the

real cost of the solutions. Recall that for each day of the planning horizon, the routing

cost under the spread strategy is defined by λ1 in (1). Consequently, a fair comparison

between “Greedy-Exact” and “Spread-Heuristic” is ensured in terms of solution quality.

The computation time is the sum of the times to optimally solve the mixed capacitated

general routing problem for each day of the planning horizon in columns “Greedy-Exact”,

but it is the total time for the five runs in columns “Spread-Heuristic”. Table 4 shows that

the spread strategy leads to significant improvements with respect to “Greedy-Exact”. In

particular, Imp varies between 14.62% and 35.28%, with an average value equal to 27.19%.

Such a significant improvement is impressive for several reasons:

� For the DMPGRP solved through the greedy strategy, we always reached an optimal

solution value. For the DMPGRP solved through the spread strategy we only report

the value of the best feasible solution obtained through a heuristic algorithm.

� The spread strategy does not eliminate the issue of “forced” deliveries that char-

acterize the greedy strategy; indeed, mandatory deliveries of initially prominent or

unimportant items are made on the days in which they become urgent.

� The “forced” deliveries that we impose on the last day of the planning horizon in

order to ensure the condition “all demands must be fulfilled within the planning

horizon” are very heavy for the spread strategy, especially because the size of the

planning horizon is small in our computational experiments (seven days).

In real contexts, where the planning horizon is almost unbounded and the “forced” deliv-

eries are generally rarer than those imposed within the spread strategy, the improvements

obtained by this solution framework may be even more significant.

We stress that the heuristic algorithm described in Section 4 is very fast. Indeed, the

computational times are less than one second for all the instances except one for which a

little more than three seconds is required. In contrast, the search of the optimal solution

within the greedy strategy requires much larger times (more than 69 hours for instance

dmpgrp-0.25-12), which may be unacceptable in real-world applications. Obviously, the

branch-and-cut algorithm used in the greedy strategy may be replaced with an efficient

(meta)heuristic by accelerating its speed significantly without sacrificing solution quality

very much (e.g., the solution method proposed by Vidal [30]). However, here we compare

25

Table 4: Computational results for dataset dmpgrp-0.25

Greedy-Exact Spread-Heuristic
Name |K| Q η Dem Cost∗ Sec CostA CostB Sec Imp

dmpgrp-0.25-1 5 20 21 447 1457 558.4 1203.2 1191 0.6 18.26

dmpgrp-0.25-2 6 18 25 518 1920 48227.4 1465.4 1429 0.7 25.57

dmpgrp-0.25-3 5 20 22 502 1595 1696.2 1277.2 1251 0.5 21.57

dmpgrp-0.25-4 4 19 18 383 1790 53.0 1374.6 1351 0.4 24.53

dmpgrp-0.25-5 6 17 24 445 2118 10491.4 1589.6 1566 0.5 26.06

dmpgrp-0.25-6 5 19 21 437 1711 2409.6 1242.6 1222 0.5 28.58

dmpgrp-0.25-7 5 17 20 405 1760 803.5 1438.2 1410 0.4 19.89

dmpgrp-0.25-10 4 21 22 411 1669 33.7 1109.8 1083 0.7 35.11

dmpgrp-0.25-11 5 28 41 702 1894 111491.7 1461.4 1404 3.4 25.87

dmpgrp-0.25-12 7 12 22 399 2879 248911.8 2483.0 2458 0.4 14.62

dmpgrp-0.25-13 6 15 26 448 2105 11432.7 1494.8 1467 0.6 30.31

dmpgrp-0.25-14 5 16 20 424 609 9.4 399.6 396 0.4 34.98

dmpgrp-0.25-15 4 21 20 444 343 6.2 226.0 222 0.4 35.28

dmpgrp-0.25-16 5 16 25 442 511 2475.8 392.6 388 0.6 24.07

dmpgrp-0.25-17 5 16 25 475 373 2.1 289.0 281 0.8 24.66

dmpgrp-0.25-18 5 17 32 456 700 172618.5 542.0 529 0.9 24.43

dmpgrp-0.25-19 3 16 10 233 321 0.9 208.0 208 0.1 35.20

dmpgrp-0.25-20 4 18 20 382 698 2.1 463.2 455 0.5 34.81

dmpgrp-0.25-21 6 19 31 536 741 13153.8 507.8 498 0.9 32.79

Average 27.19

the results of the spread strategy with the optimal ones provided by the competitor in

order to emphasize the potential gap in terms of solution quality when delivery flexibility

is introduced in planning.

5.3 Heuristic: Effect of the Single Operators

The structure of the heuristic is light in order to obtain short solution times for real-world

cases. Through the numerical results reported in Tables 5 and 6, we analyse how the

operators described in Sections 4.2.1 and 4.2.2 contribute to the improvement in terms of

solution quality. Specifically, Tables 5 and 6 show the effect of eliminating one or more

operators used to repair or to destroy the current solution, respectively.

We have carried out a comparison of the percentage improvements, computed as in

26

Table 4, by referring to the cost of the best solution over five runs and to Cost∗, i.e., to the

total cost of the solution found by solving to optimality a mixed capacitated general routing

problem for each day of the planning horizon. In particular, the columns “All” refer to the

version of the algorithm in which all operators are used (therefore, its values coincide with

the values reported in the final column of Table 4). The other columns refer to the version

of the algorithm obtained by using a restricted number of operators. In particular, in Table

5, the column headings show the operators kept to repair the current solution. Analogously,

in Table 6, the column headings show the operators kept to destroy the current solution.

For instance, column “GC” refers to the version of the algorithm obtained by using only

GC to repair the current solution, i.e., eliminating the repair operators BP and RM (Table

5), whereas column “RR+RD” refers to the version of the algorithm obtained by using only

the destroy operators RR and RD, i.e., eliminating the destroy operator WR (Table 6).

Note that we never eliminated the destroy operator RR, since randomness is fundamental

in our algorithm in order to ensure a search diversification.

The numerical results reported in Table 5 show that the repair operators GC, BP, and

RM contribute to increasing the quality of the solution. In particular, RM seems to provide

a better contribution than those of the other two operators. This observation is supported

by the average percentage improvement obtained both when it is eliminated (24.98% is the

smallest average value in columns “BP+RM”, “GC+RM”,“GC+BP”) and when it is used

to repair the current solution alone (24.43% is the largest average value in columns “GC”,

“BP”,“RM”). Between GC and BP, GC seems to be superior for the same reasons.

The numerical results reported in Table 6 show that the decrease of the average percent-

age improvement associated with the elimination of WR is lightly larger than the decrease

of the average percentage improvement associated with the elimination of RD. The effect

of their elimination is not dissimilar from the effect of the elimination of the operators used

to repair the current solution.

In conclusion, as shown in Tables 5 and 6, all the operators used to destroy and repair

the solutions during the search contribute to the solution quality. More specifically, we

never registered a higher value of Imp through the elimination of any operator.

27

Table 5: Percentage improvements to evaluate the repairing effect

Name All BP+RM GC+RM GC+BP GC BP RM

dmpgrp-0.25-1 18.26 17.23 16.61 16.27 15.17 16.06 16.20

dmpgrp-0.25-2 25.57 22.97 23.23 22.71 22.34 22.60 22.66

dmpgrp-0.25-3 21.57 18.24 17.18 17.49 16.18 16.93 15.86

dmpgrp-0.25-4 24.53 21.01 22.40 21.28 21.01 20.00 21.01

dmpgrp-0.25-5 26.06 24.60 24.55 24.41 22.43 23.89 24.13

dmpgrp-0.25-6 28.58 26.77 26.77 27.24 26.07 26.71 25.66

dmpgrp-0.25-7 19.89 17.27 17.56 17.78 17.27 16.88 16.76

dmpgrp-0.25-10 35.11 32.95 32.95 32.95 32.12 29.90 32.95

dmpgrp-0.25-11 25.87 20.80 20.33 22.18 19.38 19.64 20.12

dmpgrp-0.25-12 14.62 10.91 11.22 11.98 10.91 9.59 10.84

dmpgrp-0.25-13 30.31 28.98 28.98 28.41 27.74 28.36 28.27

dmpgrp-0.25-14 34.98 34.81 34.81 34.65 33.33 33.17 34.65

dmpgrp-0.25-15 35.28 33.53 33.53 32.94 32.36 31.78 32.36

dmpgrp-0.25-16 24.07 22.90 22.50 21.53 20.35 19.57 21.33

dmpgrp-0.25-17 24.66 21.18 23.06 21.18 20.91 18.77 20.64

dmpgrp-0.25-18 24.43 22.71 22.43 22.14 21.43 21.29 22.14

dmpgrp-0.25-19 35.20 35.20 35.20 35.20 35.20 35.20 35.20

dmpgrp-0.25-20 34.81 33.52 33.38 33.24 32.95 32.23 33.09

dmpgrp-0.25-21 32.79 30.77 31.17 31.04 30.23 28.34 30.36

Average 27.19 25.07 25.15 24.98 24.07 23.73 24.43

28

Table 6: Percentage improvements to evaluate the destroying effect

Name All RR+RD RR+WR RR

dmpgrp-0.25-1 18.26 15.31 15.51 14.07

dmpgrp-0.25-2 25.57 23.65 22.71 22.71

dmpgrp-0.25-3 21.57 17.81 19.06 16.87

dmpgrp-0.25-4 24.53 20.34 19.83 19.44

dmpgrp-0.25-5 26.06 23.04 24.83 22.80

dmpgrp-0.25-6 28.58 28.23 28.00 28.00

dmpgrp-0.25-7 19.89 17.90 17.39 17.39

dmpgrp-0.25-10 35.11 33.49 33.49 33.19

dmpgrp-0.25-11 25.87 21.07 22.70 19.85

dmpgrp-0.25-12 14.62 11.60 11.77 11.57

dmpgrp-0.25-13 30.31 29.03 28.88 28.03

dmpgrp-0.25-14 34.98 34.48 34.32 34.15

dmpgrp-0.25-15 35.28 33.53 33.53 33.53

dmpgrp-0.25-16 24.07 20.55 22.70 20.35

dmpgrp-0.25-17 24.66 23.06 21.98 21.72

dmpgrp-0.25-18 24.43 22.00 21.71 21.29

dmpgrp-0.25-19 35.20 35.20 35.20 35.20

dmpgrp-0.25-20 34.81 33.95 33.95 33.81

dmpgrp-0.25-21 32.79 30.36 30.63 30.36

Average 27.19 24.98 25.17 24.44

29

Table 7: Computational results for two variants of dmpgrp-0.25-1

Greedy-Exact Spread-Heuristic
Name Cost∗ Sec CostB Sec Imp

dmpgrp-0.25-1-var1 1520 347.6 1096 0.6 27.89

dmpgrp-0.25-1-var2 1563 416.5 1259 0.6 19.45

5.4 Further Experiments

Further experiments were carried out in order to get more information from both the

problem and the heuristic behaviour.

First, we regenerated the demands over the seven-day planning horizon for the elements

requiring a service in the dmpgrp-0.25-1 instance (we kept the graph structure, the elements

requiring a service, and the values of the other parameters). Specifically, we generated two

variants for this instance naming them dmpgrp-0.25-1-var1 and dmpgrp-0.25-1-var2, re-

spectively. Variant dmpgrp-0.25-1-var1 is associated with a total demand equal to 436,

whereas variant dmpgrp-0.25-1-var2 is associated with a total demand equal to 435. In

summary, the dmpgrp-0.25-1 instance and its variants have a very similar structure and

computational complexity. Their total demand is also similar. We ran the ALNS algorithm

five times with five random seeds to find a solution (the best one) for the spread strat-

egy. In addition, we ran the branch-and-cut algorithm of Bosco et al. to find a solution

for the greedy strategy. The results for dmpgrp-0.25-1-var1 and dmpgrp-0.25-1-var2 are

summarized in Table 7, where the columns “Greedy-Exact” refer to the results obtained

by the greedy strategy and the columns “Spread-Heuristic” refer to the results obtained

by the spread strategy through the ALNS algorithm. The other column headings in Ta-

ble 7 (i.e., Name, Cost∗, CostB, Sec and Imp) are defined as in Table 4. We note that

different demand distributions over the planning horizon led to quite different percentage

improvements, especially for the first variant.

For the dmpgrp-0.25-1 instance we also increased the number of urgent requests. Specif-

ically, we transformed this instance by changing the labels of some prominent and unim-

portant requests from non-urgent to urgent, and keeping the value of all the demands.

We still ran the ALNS algorithm five times with five random seeds and selected the best

total routing cost. Note that this transformation did not change the solution for the

30

greedy strategy. When the 25% of prominent and unimportant requests became urgent

(through a random choice), we obtained a percentage improvement equal to 14.69%, when

the 50% of prominent and unimportant requests became urgent, we obtained a percent-

age improvement equal to 8.79%, when the 75% of prominent and unimportant requests

became urgent, we obtained a percentage improvement equal to 3.02%. In the latter case,

the urgent requests corresponded to more than 86% of the total requests. We repeated

the same experiment with the dmpgrp-0.25-21 instance for which we obtained an Imp

value very different from the one associated with the dmpgrp-0.25-1 instance. For the

instance dmpgrp-0.25-21, when the 25% of prominent and unimportant requests became

urgent, we obtained a 28.07% improvement; when the 50% of prominent and unimportant

requests became urgent, we obtained a 19.30% improvement; when the 75% of prominent

and unimportant requests became urgent, we obtained a 12.55% improvement. In this last

case, the urgent requests corresponded to more than 84% of the total requests and such a

large percentage improvement was impressive.

However, the results concerning the last typology of experiments confirmed an expected

result. When the percentage of urgent requests increases the percentage improvement

decreases. In the extreme case, when all the non-zero demands are labelled as urgent, the

DMPGRP “degenerates” into a set of seven mixed capacitated general routing problems.

We used this extreme case to evaluate the performance of the ALNS algorithm. Specifically,

we ran again the ALNS algorithm after appropriately changing the labels of the non-zero

demands: all requests became urgent. The costs of the solutions provided by the ALNS

algorithm were compared to those associated with the option “Greedy-Exact” in Table

4. In effect, in the extreme case, the greedy strategy becomes an exact solver for the

DMPGRP. Table 8 summarizes the results of the comparison for all the instances. In

this table, the column headings “Name”, “Dem”, “Cost∗”, and “CostB” have the same

meaning as in Table 4. These columns also report the same values of Table 4, except for

CostB (it still is the best total routing cost over five different runs, but cannot be better

than Cost∗ in the extreme case). The new column heading “Gap” is defined as follows:

100(CostB − Cost∗)/Cost∗.
The results reported in Table 8 confirm that our ALNS algorithm works well, although

the solution framework is light and its operators are simple. In effect, the average Gap is

equal to 1.82%. In addition, the maximum value of Gap is less than an acceptable threshold

of 5%. No optimal solution was obtained by the heuristic algorithm, but it is worth noting

31

Table 8: Computational results for the case “only urgent demands”

Greedy-Exact Spread-Heuristic
Name Dem Cost∗ CostB Gap

dmpgrp-0.25-1 447 1457 1525 4.67

dmpgrp-0.25-2 518 1920 1956 1.88

dmpgrp-0.25-3 502 1595 1652 3.57

dmpgrp-0.25-4 383 1790 1833 2.40

dmpgrp-0.25-5 445 2118 2189 3.35

dmpgrp-0.25-6 437 1711 1714 0.18

dmpgrp-0.25-7 405 1760 1763 0.17

dmpgrp-0.25-10 411 1669 1689 1.20

dmpgrp-0.25-11 702 1894 1986 4.86

dmpgrp-0.25-12 399 2879 2914 1.22

dmpgrp-0.25-13 448 2105 2125 0.95

dmpgrp-0.25-14 424 609 610 0.16

dmpgrp-0.25-15 444 343 347 1.17

dmpgrp-0.25-16 442 511 521 1.96

dmpgrp-0.25-17 475 373 377 1.07

dmpgrp-0.25-18 456 700 707 1.00

dmpgrp-0.25-19 233 321 333 3.74

dmpgrp-0.25-20 382 698 699 0.14

dmpgrp-0.25-21 536 741 747 0.81

Average 1.82

that to find an optimal solution for a single instance, seven mixed capacitated general

routing problems must be solved to optimality (corresponding to the several days of the

planning horizon). Consider, for example, instances dmpgrp-0.25-14 and dmpgrp-0.25-20

for which our ALNS algorithm obtained a solution cost that differs from the optimal one

by just one unit. In both cases, the ALNS algorithm optimally solved the sub-instances

corresponding to six days. Specifically, for the dmpgrp-0.25-14 instance it did not find

the optimal value associated with the fifth sub-instance (day 5); for the dmpgrp-0.25-20

instance it did not find the optimal value associated with the first sub-instance (day 1).

32

6 Conclusions

We have proposed a dynamic multi-period general routing problem (DMPGRP) arising in

postal services and parcel delivery organizations. In our setting, the items to be delivered

are gradually revealed over a planning horizon consisting of several days. The decision

maker must plan the vehicle routes on a daily basis with the aim of minimizing the opera-

tional costs. Two solution strategies were presented. The first one, called greedy strategy,

is based on a conventional solution framework proposed in the scientific literature. The

second one, called spread strategy, deals with service priorities. It is based on the use of

an adaptive large neighbourhood search (ALNS) metaheuristic. Although the DMPGRP

is a multi-period problem, this algorithm cannot consider the routes of different periods

at the same time, since the data concerning the service demands are revealed over time.

For instance, the heuristic algorithm cannot move elements that have to be serviced from

a route to another route if they relate to different periods of the planning horizon. The

algorithm defines the vehicle routes day by day and cannot modify them when new infor-

mation becomes available. Computational results have shown that the spread strategy can

lead to significant savings with respect to the greedy strategy.

From a practical prospective, our results emphasize the need to investigate aspects of

service differentiation and develop decision support instruments that deal with them, like

our spread strategy. In addition, we have presented a solution methodology dealing with

unpredictable demands that can arise, e.g., in contexts where e-commerce is involved.

We have designed our model and our solution strategies with specific delivery systems

in mind, like modern national postal service organizations and private freight carriers.

However, they can be adapted to other real environments and situations. In all cases,

we considered items to be delivered in contexts of city logistics (small packages shipping)

where a relatively small total vehicle capacity is sufficient. In a highly dynamic setting,

infeasibility due to an insufficient capacity may arise occasionally. According to Dayarian

and Savelsbergh [16], in several delivery systems, due to the uncertainty associated with the

arrivals and the limited size of the fleet of company vehicles, it is impossible to guarantee

that service is met for all the requests within the desired times. In the case of frequent

“failures” (and, consequently, of generalized lateness), the delivery organization may have

to increase the size of its vehicle fleet.

33

Acknowledgements

The work by Gilbert Laporte was partly supported by the Canadian Natural Sciences

and Engineering Research Council under grant 2015–06189. This support is gratefully

acknowledged. Thanks are due to the Associate Editor and to the reviewers for their

valuable comments.

References

[1] Albareda-Sambola M., Fernández E., and Laporte G. (2014). The dynamic multiperiod

vehicle routing problem with probabilistic information, Computers & Operations Re-

search, 48: 31–39.

[2] Angelelli E., Bianchessi N., Mansini R., and Speranza M.G. (2009). Short term strate-

gies for a dynamic multi-period routing problem, Transportation Research Part C:

Emerging Technologies, 17(2): 106–119.

[3] Angelelli E., Speranza M.G., and Savelsbergh M.W.P. (2007). Competitive analysis for

dynamic multiperiod uncapacitated routing problems, Networks, 49(4): 308–317.

[4] Archetti C., Bertazzi L., Laganà D., and Vocaturo F. (2017). The undirected capaci-

tated general routing problem with profits, European Journal of Operational Research,

257(3): 822–833.

[5] Archetti C., Jabali O., and Speranza M.G. (2015). Multi-period vehicle routing problem

with due dates, Computers & Operations Research, 61: 122–134.

[6] Azi N., Gendreau M., and Potvin J.-Y. (2012). A dynamic vehicle routing problem with

multiple delivery routes, Annals of Operations Research, 199(1): 103–112.

[7] Bach L., Lysgaard J., and Wøhlk S. (2016). A branch-and-cut-and-price algorithm for

the mixed capacitated general routing problem, Networks, 68(3): 161–184.

[8] Ben-Tal A. and Nemirovski A. (2002). Robust optimization – methodology and appli-

cations, Mathematical Programming, 92(3): 453–480.

34

[9] Benavent E., Corberán Á., Laganà D., and Vocaturo F. (2019). The periodic rural post-

man problem with irregular services on mixed graphs, European Journal of Operational

Research, 276(3): 826–839.

[10] Berbeglia G., Cordeau J.-F., and Laporte G. (2010). Dynamic pickup and delivery

problems, European Journal of Operational Research, 202(1): 8–15.

[11] Bosco A., Laganà D., Musmanno R., and Vocaturo F. (2013). Modeling and solving

the mixed capacitated general routing problem, Optimization Letters, 7(7): 1451–1469.

[12] Bosco A., Laganà D., Musmanno R., and Vocaturo F. (2014). A matheuristic algorithm

for the mixed capacitated general routing problem, Networks, 64(4): 262–281.

[13] Campbell A.M. and Wilson J.H. (2014). Forty years of periodic vehicle routing, Net-

works, 63(1): 2–15.

[14] Chen A.I. (2017). Large-scale optimization in online-retail inventory management.

Ph.D. Thesis, Massachusetts Institute of Technology, Massachusetts.

[15] Ciancio C., Laganà D., and Vocaturo F. (2018). Branch-price-and-cut for the mixed

capacitated general routing problem with time windows, European Journal of Opera-

tional Research, 267(1): 187–199.

[16] Dayarian I. and Savelsbergh M.W.P. (2020). Crowdshipping and same-day delivery:

Employing in-store customers to deliver online orders, Production and Operations Man-

agement, 29(9): 2153–2174.

[17] Florio A.M., Feillet D., and Hartl R.F. (2018). The delivery problem: Optimizing hit

rates in e-commerce deliveries, Transportation Research Part B: Methodological, 117(A):

455–472.

[18] Golden B.L., Dearmon J.S., and Baker E.K. (1983), Computational experiments with

algorithms for a class of routing problems, Computers & Operations Research, 10(1):

47–59.

[19] Irnich S., Laganà D., Schlebusch C., and Vocaturo F. (2015). Two-phase branch-and-

cut for the mixed capacitated general routing problem, European Journal of Operational

Research, 243(1): 17–29.

35

[20] Kovacs A.A., Golden B.L., Hartl R.F., and Parragh S.N. (2014). Vehicle routing prob-

lems in which consistency considerations are important: A survey, Networks, 64(3):

192–213.

[21] Laporte G., Musmanno R., and Vocaturo F. (2010). An adaptive large neighbour-

hood search heuristic for the capacitated arc-routing problem with stochastic demands,

Transportation Science, 44(1): 125–135.

[22] Liu R., Tao Y., and Xie X. (2019). An adaptive large neighborhood search heuristic

for the vehicle routing problem with time windows and synchronized visits, Computers

& Operations Research, 101: 250–262.

[23] Mourão M.C. and Pinto L.S. (2017). An updated annotated bibliography on arc rout-

ing problems, Networks, 70(3), 144–194.

[24] Pérez Rivera A.E. and Mes M.R.K. (2017). Anticipatory freight selection in intermodal

long-haul round-trips, Transportation Research Part E: Logistics and Transportation

Review, 105: 176–194.

[25] Poste Italiane. Mail, parcel and distribution – Delivery services are an integral

part of the history of Poste Italiane, https://www.posteitaliane.it/en/mail-parcel-and-

distribution.html. Accessed: 3 April, 2019.

[26] Ropke S. and Pisinger D. (2006). An adaptive large neighborhood search heuristic

for the pickup and delivery problem with time windows, Transportation Science, 40(4):

455–472.

[27] SINTEF Applied Mathematics. Transportation Optimization Portal (TOP) -

NEARP/MCGRP, https://www.sintef.no/projectweb/top/nearp. Accessed: 16 April,

2019.

[28] Ulmer M.W., Soeffker N., and Mattfeld D.C. (2018). Value function approximation

for dynamic multi-period vehicle routing, European Journal of Operational Research,

269(3): 883–899.

[29] van Heeswijk W.J.A., Mes M.R.K., and Schutten J.M.J. (2019). The delivery dispatch-

ing problem with time windows for urban consolidation centers, Transportation Science,

53(1): 203–221.

36

[30] Vidal T. (2017). Node, edge, arc routing and turn penalties: Multiple problems–one

neighborhood extension, Operations Research, 65(4): 992–1010.

[31] Wen M., Cordeau J.-F., Laporte G., and Larsen J. (2010). The dynamic multi-period

vehicle routing problem, Computers & Operations Research, 37(9): 1615–1623.

[32] Zhang S., Ohlmann J.W., and Thomas B.W. (2018). Dynamic orienteering on a net-

work of queues, Transportation Science, 52(3): 691–706.

37

	Introduction
	Related Literature
	Contributions and Article Structure

	Problem Description
	Representation of Differentiated Services in a Dynamic Setting
	Notation

	Solution Methodology
	Greedy Strategy
	Spread Strategy
	A First Comparison

	A Heuristic Algorithm for the Spread Strategy
	Generation of an Initial Partial Solution
	Improvement of the Initial Partial Solution
	Destroy Operators
	Repair Operators

	Insertions for Defining a Complete Solution

	Computational Experiments
	Instances
	Main Numerical Results
	Heuristic: Effect of the Single Operators
	Further Experiments

	Conclusions

