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We propose a general logic-based Benders decomposition (LBBD) for production planning problems with

process configuration decisions. This family of problems appears in contexts where the machines are set

up according to specific patterns, templates, or, in general, process configurations that allow to simultane-

ously produce products of different types. The problem requires determining feasible configurations for the

machines and their corresponding production levels to fulfill the demand at the minimum total cost. The

structure of this problem contains nonlinear constraints which link the number of units produced of each 

product with the used configurations and their production levels. We decompose the original problem into a

master problem, where the configurations are determined, and a subproblem, where the production amounts

are determined. This allows us to apply the LBBD technique to solve the problem using a standard LBBD 

implementation and a branch-and-check algorithm. LBBD enhancements through logic-based inequalities

generated for subsets of products with common characteristics are proposed. Such inequalities represent a

form of the subproblem relaxation added to the master problem during its resolution. In our computational 

experiments, we apply the proposed LBBD approaches to two different applications from the literature:

cutting stock problems in the steel industry and a printing problem. Results show that the LBBD meth-

ods find optimal solutions much faster than the solution approaches in the literature, and have a superior 

performance with respect to the number of instances solved to optimality and the solution quality.

Key words : Logic-based Benders decomposition; branch-and-check; integrated production planning;

cutting stock.
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1. Introduction

Many manufacturing environments are designed to flexibly produce different types of prod-

ucts simultaneously to achieve an efficient use of the production equipment. In these con-

texts, machines are set up according to process configurations that determine the specific

combination of different products to produce at the same time. The produced amounts

depend on the production level for each used configuration. The setup operations, which

change the configurations on the machines, can be costly and time-consuming. Manu-

facturing environments with these features appear, for instance, in the printing industry

(Tuyttens and Vandaele 2014, Baumann et al. 2015), where machines are set up using

printing plates with different designs to be printed simultaneously; the apparel industry

(Degraeve and Vandebroek 1998, Degraeve et al. 2002), where templates with different

stencils are used to cut different pieces of clothes at the same time; and the molded pack-

aging industry (Mart́ınez et al. 2019), where a set of different molds is attached to the

machines to simultaneously produce packages of different shapes.

We address the integrated production planning problem that occurs in the described

manufacturing contexts. It includes process configuration decisions, i.e., determining fea-

sible configurations for the machines, and production planning decisions, i.e., deciding the

production level of each configuration, in order to fulfill the demand at the minimum total

cost. This class of problems is complex to solve due to its structure, which leads to nonlin-

ear formulations as the produced amounts are determined by the product of the variables

related to the configuration decisions and the variables related to their production levels.

Furthermore, determining the optimal configurations to be used in a certain production
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plan can be particularly difficult due to the large number of possibilities and the various

technical constraints that ensure the feasibility of the configurations in practice.

In this paper, we present a general mathematical representation for production planning

problems with configuration decisions, and develop a logic-based Benders decomposition

(LBBD) method to tackle various applications of this class of problems. We decompose

the original problem into a master problem, where the configuration decisions are made,

and a subproblem, where the production quantities are determined given a set of fixed

configurations. The master problem includes a subproblem relaxation which, as commonly

implemented in the LBBD literature, consists of inequalities that provide valid bounds on

the optimal value of the subproblem to reduce the feasible space of the master problem.

In our case, the subproblem relaxation in the master problem is a set of inequalities which

impose a valid lower bound on the produced amount of each product. Moreover, we develop

enhancements to the LBBD through the implementation of logic-based inequalities, which

are used as a further relaxation of the subproblem. These inequalities are derived based on

the possibility of grouping products according to similarities in their parameters, and are

dynamically added to the master problem during its resolution. Finally, we present exten-

sive computational tests to assess the performance of the LBBD in different applications.

We present how the LBBD is applied to solve integrated planning problems in the steel

industry and the printing industry, and show that it outperforms existing approaches in

the literature for such problems.

The remainder of this paper is structured as follows. The next section reviews the lit-

erature regarding LBBD and lists the contributions of our paper. Section 3 presents a
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general description of the problem, the proposed decomposition and enhancements. Sec-

tion 4 presents the application of the LBBD to the problems in the steel industry and the

printing industry, and the corresponding computational results. Finally, Section 5 presents

concluding remarks.

2. Literature Review

LBBD is an extension of the Benders decomposition (BD) method (Benders 1962) which

decomposes a mixed integer optimization problem into a master problem (MP) and one or

more subproblems (SP). Unlike in the classical BD, the SP in LBBD is not restricted to be

a linear program. Similar to BD, LBBD assigns values to the complicating variables in the

MP and finds the best solution given these fixed values in the SP. Instead of solving the

dual of the SP to generate the cuts, LBBD solves an inference dual, which uses a logical

formalism to deduce a bound on the optimal value of the SP from the fixed values of the

complicating variables in the MP and the problem constraints. LBBD provides no standard

scheme to generate LBBD cuts (BCs) and as such they must be devised specifically for

each problem class (Hooker and Ottosson 2003). There are two common implementations

for LBBD. The first one is the standard LBBD implementation, which solves the SP to

generate BCs, which are added to the MP, and then resolves the MP to optimality at

each iteration (Hooker 2007). The second one is the branch-and-check algorithm (B&Ch),

which solves the SP for every integer solution found during the branch-and-bound process

of the MP to generate the BCs, which are added to the branch-and-bound tree of the MP

(Thorsteinsson 2001).

The flexibility of LBBD has been exploited to tackle a wide range of applications such

as production planning problems (Harjunkoski and Grossmann 2001, Hooker 2007, Tran
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et al. 2016), crane scheduling (Emde et al. 2020, Sun et al. 2019), location problems (Fazel-

Zarandi and Beck 2012, Fazel-Zarandi et al. 2013), transportation (Riedler and Raidl

2018), and health care operations planning (Riise et al. 2016, Roshanaei et al. 2017a,b,

2020a,b). Many LBBD implementations were successfully applied for problems which can

naturally be decomposed into an assignment problem and a set of scheduling problems.

Such implementations typically exploit constraint programming (CP) techniques to solve

the SPs (Coban and Hooker 2013, Heching et al. 2019). LBBD presents significant advan-

tages over other solution approaches in this context due to the suitability and efficiency of

CP in solving the scheduling problems.

Various computational enhancements are also used to improve the efficiency of LBBD.

We next discuss some of these enhancements which were used in the literature.

Using specialized algorithms which exploit the structure of the MP and the SP. Notable

examples include: using specialized solvers such as CP optimizers and Concorde according

to the structure of the SP (Fazel-Zarandi and Beck 2012, Tran et al. 2016); using highly

efficient heuristics when the SP is a classical well-solved problem such as the Bin Packing

problem (Fazel-Zarandi and Beck 2012, Roshanaei et al. 2017a); and implementing a multi-

level LBBD, where a decomposition technique is applied to the MP or the SP of the LBBD

(Wheatley et al. 2015, Riise et al. 2016, Roshanaei et al. 2020a,b).

Devising strong BCs. This type of enhancement focuses mainly on avoiding weak LBBD

cuts. An example of this strategy is the derivation of feasibility BCs that remove a larger

number of infeasible solutions. For the case where the MP is an assignment problem and

the SPs are feasibility problems, this can be achieved by finding the smallest set of assigned

tasks for which each SP remains infeasible. This set of tasks is found by using a greedy
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heuristic that requires solving the SPs repeatedly (Coban and Hooker 2013, Hooker 2007).

Another example is the derivation of BCs that provide a nontrivial lower bound on the

optimal value of the SP given different fixed values for the complicating variables in the

master. This can be achieved by carefully tightening the big-M coefficients used in the BCs

(Wheatley et al. 2015).

Devising a tight MP. Part of the SP can be included in the MP through valid inequal-

ities to reduce the feasible space of the MP which allows to obtain solutions that are

likely to be feasible with respect to the original problem. Ciré et al. (2016) found that

this type of enhancement is the most effective one for improving the LBBD of problems

with an assignment-scheduling structure. Other examples can be found in Heching et al.

(2019) which explore three sets of valid inequalities (i.e., time windows, assignment, and

multicommodity flow) as SP relaxations in the MP which resulted in an improved LBBD.

Developing an effective cut generation strategy. Beck (2010) presents a B&Ch variant

(OPT15) where the SP is solved to generate the BCs only when the optimality gap of the

MP solution is ≤ 15%. Other examples of this type of enhancement are the cut propagation

strategies in Roshanaei et al. (2017a) which derive multiple BCs by solving of a single SP.

Different from other applications of LBBD, this paper studies production planning prob-

lems with a distinct structure, which includes nonlinear constraints and does not decom-

pose into an assignment problem and scheduling problems. We also develop both standard

LBBD and B&Ch algorithms for different problems in manufacturing for which LBBD has

not been applied before. Moreover, our study contributes to the state-of-the-art of LBBD

for nonlinear problems where, as far as we know, were explored only in the contexts of

inventory management (Wheatley et al. 2015) and operating room scheduling (Roshanaei
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et al. 2020b). Finally, with respect to the common enhancements in LBBD, we introduce

a general form of the BCs for the targeted problem class, which is highly challenging to

solve due to its combinatorial and nonlinear structure, along with details on how these

BCs can be strengthened for each application. We also present an additional SP relaxation

through logic-based inequalities which are added to the MP during the solution process.

3. General Description and Notation

Section 3.1 provides the general notation for integrated process configuration and produc-

tion planning problems. Sections 3.2 and 3.3 present the proposed LBBD, and Section 3.4

briefly describes the solution algorithms.

3.1. The Process Configuration and Production Planning Problem

We consider integrated production planning problems with configuration decisions that

can be described using a general model (1)–(6). Variable vector x represents the config-

uration decisions which determine the configurations to be used, i.e., the combination of

different products produced at the same time, and the setup state for each configuration in

the machine. These variables are binary and A denotes their index set. Variable vector y

represents the production planning decisions that define the production level of each used

configuration and other planning decisions, such as inventory levels and overproduction,

among others. y can consist of continuous variables, whose index set is denoted by B, and

of integer variables, whose index set is denoted by C. Variable vector q represents the pro-

duction quantities of each product obtained by each configuration, which are determined

in function of the variables for the used configurations and their production levels. These

are nonnegative variables and D denotes their index set. Bold capital letters represent the

coefficient matrices of the constraints and bold lowercase letters represent cost vectors,
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right hand side vectors, and decision variables. We refer to problems in the form (1)–(6)

as the original problem (OP) henceforth.

OP: mincTx + dTy (1)

Ax≥ a (Process configuration constraints) (2)

Bx + Cy≥ b (Linking constraints) (3)

q = f(x,y) (Production quantities constraints) (4)

Dy + Eq≥ e (Production planning constraints) (5)

x∈B|A|; y ∈R|B|+ ×Z|C|+ ; q∈R|D|+ (Domain of the variables) (6)

The objective function (1) minimizes the total costs associated with the configuration

and production planning decisions. The configuration costs include setup costs, whereas

the total production planning costs can include costs associated with the production level

for each configuration, overproduction, among others. Constraints (2) are related to the

configuration decisions and ensure that the configurations used satisfy the technical condi-

tions of the manufacturing environment. Constraints (3) link the production level of each

configuration with the setup variables in such a way that a given configuration can only

be used if the machine is set up for it. Constraints (4) compute the production quantities.

The function f(x,y) is typically nonlinear, considering that the produced amounts equal

the product of the variables for the configuration decisions and their production levels.

For instance, in the context of cutting stock problems, the total amount of item A pro-

duced by a given cutting pattern equals the number of pieces of type A in such pattern,

multiplied by the number of times that the pattern is used. Constraints (5) are related

to the production planning decisions, which include demand fulfillment constraints. Note

that (4) and (5) could be merged into a single set of nonlinear constraints, yet we present

them separately so that their structure is aligned with the structure of the LBBD and the

BCs. Constraints (6) define the domain of the variables.
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3.2. Standard LBBD Reformulation

We decompose the OP into an MP and an SP and apply the LBBD algorithm to solve

it. The MP is a relaxation of the OP where the complicating nonlinear constraints (4)

are replaced by linear constraints. In this standard LBBD, the master problem (MP-S) is

modeled as follows.

MP-S: mincTx + dTy

s.t. (2), (3), (5) and (6)

Fq≥Gx + Hy (Production quantities approximation) (7)

LBBD cuts (BCs) (8)

Constraints (7), which replace the expression (4) of the OP, impose valid bounds on the

production quantities. These represent the SP relaxation, as they aim to approximate q

to values close to f(x,y) in order to reduce the feasible space of the MP-S and to provide

solutions which are likely to be feasible with respect to the OP. Constraints (8) are the

BCs, which we discuss in detail later.

The SP is a feasibility problem which ensures that the production amounts are feasible

with respect to the OP. More precisely, given an MP-S solution at iteration h, (x̄h, ȳh, q̄h),

the SP computes f(x̄h, ȳh) and checks if q̄h = f(x̄h, ȳh).

The BCs are the constraints added to the MP-S for every violation detected in the SP.

These cuts ensure that variables q take feasible values with respect to the OP if the MP-

S assigns the same values to the configuration variables as in the current solution (i.e.,

if x = x̄h). Let Āh ⊆ A denote the set of indices of variables x which are equal to 1 in

the current solution of the MP-S, M denote a vector of coefficients which provides upper
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bounds on the optimal production quantities, and θx̄h(x,y) denote a linear function which

gives feasible values to the production quantities when x = x̄h. We introduce inequalities

(9) and (10) as the general form of the BCs for the studied family of problems.

BCs: q≤ θx̄h(x,y) + M
∑
j∈Āh

(1−xj) + M
∑

j∈A\Āh

xj (9)

q≥ θx̄h(x,y)−M
∑
j∈Āh

(1−xj)−M
∑

j∈A\Āh

xj (10)

The logic of the BCs is such that (9) and (10) give an upper and lower bound on the

production quantities, respectively, and both BCs together give q = f(x̄h, ȳh) when the

configuration variables x are fixed to the values x̄h and the production planning variables

y are fixed to the values ȳh. Recall that x are binary variables, hence the second and third

term on the right hand side of constraints (9) and (10) become equal to zero if x = x̄h. To

ensure that the BCs enforces q to take feasible values, function θx̄h is required to provide

the same value as f(x,y) when x = x̄h and y = ȳh. Observe that the general form of the

BCs (9) and (10) can be considered as “standard no-good cuts” in the sense that they only

exclude the current MP solution which is not feasible for the original problem. However,

using the function θx̄h instead of the scalar value f(x̄h, ȳh) as the first term in the right

hand side of the BCs might allow to exclude other infeasible solutions of the MP which

are different from the current one (e.g., MP solutions where x = x̄h and y ∈ R|B|+ ×Z|C|+ ).

Finally, the BCs (9) and (10) applied to a specific problem must be valid, i.e., they remove

the current infeasible solution of the MP-S and do not remove any feasible solution of the

OP (Chu and Xia 2004).

The general form of the BCs can be strengthened by two means: first, by tightening

the M coefficients according to the MP solution at each iteration h ; and second, by
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identifying the smallest cardinality subsets of Āh and A\Āh (e.g., Āh∗ ⊂ Āh and Āh∗∗ ⊂

A\Āh, respectively) at each iteration h, for which the BCs can remain active without

removing feasible solutions. This allows the BCs to provide nontrivial bounds on q for

some cases where x 6= x̄h. This will be explained for the specific problems in Section 4.

3.3. Enhanced LBBD Reformulation

We introduce the logic-based subset inequalities (SIs) as an enhancement device for the

LBBD. These inequalities benefit from the possibility of grouping products according to

their common characteristics derived from the input data (e.g., products of similar size or

demand). The SIs allow us to obtain a tighter bound on the total quantities produced by

each used configuration based on the MP solution obtained at each iteration. In order to

include the SIs, a preprocessing step is required to classify products into a set of groups

denoted by G. Moreover, a new set of binary variables, denoted by z ∈ B|G|, and linking

constraints need to be added to the MP. Note that the size of z is known in advance

because G is defined beforehand. The MP in this enhanced LBBD (MP-E) is as follows.

MP-E: mincTx + dTy

s.t. (2)–(3), (5)–(7)

BCs in the form of (9) and/or (10)

Ix + Jz≥ g (Linking constraints for the new variables) (11)

Logic-based subset inequalities (SIs) (12)

z∈B|G| (Domain of the new variables) (13)

Constraints (11) link the new variables z to the existing configuration variables x in

such a way that a variable in z equals 1 if a given group of products appears in a certain

configuration, 0 otherwise. More specifically, a given variable zg : g ∈ G equals 1 if at least
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one product belonging to group g appears in a given configuration. Constraints (12) are

the SIs and constraints (13) define the domain of the new variables accordingly.

The SP and the BCs remain the same as in the standard LBBD. The SIs are separated

and added to the problem given an MP-E solution at iteration h, (x̄h, ȳh, q̄h, z̄h). We

present inequalities (14) as the general form of the SIs. Let Ḡh∗ ⊂ G denote a subset of

the indices of variables z which take value 1 in the current MP-E solution, Mz̄h denote

a coefficient vector computed based on the values z̄h, and αz̄h denote a linear function of

the original variables (x,y) which gives valid bounds on the total quantities produced by

each configuration when z = z̄h. The SIs can be written as follows.

SIs: Kq≥ αz̄h(x,y)−Mz̄h

∑
g∈Ḡh∗

(1− zg) (14)

The logic of the SIs is such that, if a specific group of products appears in a certain config-

uration (i.e., zg = 1, ∀g ∈ Ḡh∗), then a tighter bound in the form Kq≥ αz̄h(x,y) is imposed

on the total quantities produced by such configuration. The SIs (14) are only added to the

MP-E if they are not satisfied in the current solution, i.e., if Kq̄h <αz̄h(x̄h, ȳh).

The SIs are a further SP relaxation that should give tighter bounds than the ones given

by constraints (7), and must not remove feasible solutions in order to guarantee optimality.

3.4. LBBD Implementations

We solve the proposed LBBD reformulations using the standard LBBD and the B&Ch

implementations. The standard LBBD implementation solves the corresponding MP (i.e.,

MP-S or MP-E) to optimality, next solves the SP to generate the BCs which are added to

the master, and then resolves the MP at each iteration to optimality. When solving the

enhanced reformulation, the SIs are also derived and added to the MP after each resolu-

tion. At each iteration h, a lower bound and an upper bound on the optimal solution are
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obtained. The lower bound corresponds to the optimal value of the MP, while an upper

bound is obtained by determining feasible values for variables q which are consistent with

the fixed values of the integer variables in the current MP solution. As for the B&Ch

implementation, we use the branch-and-bound Lazy Constraints callback of the optimiza-

tion solver CPLEX (CPLEX Optimization Studio 2019). The SP is solved to generate the

BCs when an integer solution is found in the branch-and-bound tree of the MP, as well as

the SIs if the enhanced reformulation is being solved. The algorithm terminates when the

lower bound equals the upper bound in the search tree of the MP. Similar to the standard

implementation, it is possible to obtain an upper bound at the integral nodes of the B&Ch

by determining feasible values for variables q which are consistent with the fixed values of

the current MP solution. With the LBBD cuts (9) and (10), CPLEX can directly obtain

such upper bound once the cuts are added. In addition to this, one can also set the upper

bound using the Heuristic callback (CPLEX Optimization Studio 2019). Nevertheless, this

strategy is proven to be redundant in our experiments as CPLEX could identify the upper

bound which is aligned with the incumbent solution determined during our solution pro-

cess. In addition, the preliminary results on a subset of instances show that the solution

time when using the Heuristic callback on top of the Lazy Constraints callbacks is slightly

higher overall due to additional computing time to verify and pass along the solution to

CPLEX in our case.

4. Applications of the LBBD Method

We applied the proposed LBBD to different problems in the literature where process

configuration and production planning decisions are jointly made. Sections 4.1 and 4.2

describe the problems and the computational results for applications in the steel tube

industry and the printing industry, respectively.
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4.1. Applications in the Steel Tube Industry

We consider three variants of the continuous stock cutting problem (CSCP) with setups

studied in Hajizadeh and Lee (2007): the open-ended CSCP, the closed-ended CSCP, and

the CSCP with knife-dependent setups. These problems consider a continuous steel tube

that has to be cut into smaller pieces using a cutting machine with a limited length. The

machine is set up according to a cutting pattern, which defines a specific arrangement of

the knives in the machine to cut a combination of pieces at the same time. The combination

of pieces to be cut at the same time can be of the same type or different types, i.e., it is

possible to obtain more than one piece of a certain type from a single pattern use. The

main decisions consist of determining: (1) the number of distinct cutting patterns to be

used; (2) the configuration of each pattern (i.e., the number of pieces of each type to be cut

by each pattern); and (3) the number of times that each pattern is used (i.e., the number of

pattern repetitions). The objective is to minimize the total cutting time and setup time. In

the open-ended CSCP, the cutting machine has no ending barrier blocking the continuous

tube, so that one extra piece of any length can be produced per repetition of any pattern.

In the closed-ended CSCP, no extra piece is produced. Figure 1 illustrates the design of the

machines for these two variants. In the CSCP with knife-dependent setups, setting up a

pattern entails an extra variable time which is proportional to the number of used knives.

For further details see Hajizadeh and Lee (2007) and Section 1 of the online supplement.

We focus this section on the open-ended CSCP, and mention how the LBBD is applied

to the other variants. The OP as defined by Hajizadeh and Lee (2007) is presented below.

Table 1 presents the parameters and variables in this formulation.
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Figure 1 Closed-ended and open-ended configurations for cutting machines

Sets Parameters Decision variables

T products Cr time for a single pattern use; x: sj equals 1 if pattern j is used; 0, otherwise;

(indexed by i); Cs setup time for a used pattern; aij number of pieces of product i in pattern j;

P patterns di demand of product i; y: zj number of repetitions of pattern j;

(indexed by j). li length of product i; xi units of product i produced as extra pieces;

L length of the cutting machine; q: qij units of product i produced by pattern j.

M large number defined as maxi∈T {di}.
Table 1 Parameters and variables for the open-ended CSCP

OP (Open-ended CSCP) : min Cs

∑
j∈P

sj +Cr

∑
j∈P

zj (15)

Ax≥ a :
∑
i∈T

liaij ≤Lsj ∀j ∈ P (16)

Bx + Cy≥ b : zj ≤Msj ∀j ∈ P (17)

q = f(x,y) : qij = aijzj ∀i∈ T ; j ∈ P (18)

Dy + Eq≥ e :
∑
j∈P

qij +xi ≥ di ∀i∈ T (19)∑
j∈P

zj ≥
∑
i∈T

xi (20)

zj−1 ≤ zj ∀j ∈ P : j > 1 (21)

x∈B|A| : sj ∈ {0,1}, aij ∈Z+ ∀i∈ T ; j ∈ P (22)

y ∈R|B|+ ×Z|C|+ ; q∈R|D|+ : zj ∈Z+, xi ≥ 0; qij ≥ 0 ∀i∈ T ; j ∈ P (23)

The objective function (15) minimizes the total setup and cutting time. Constraints

(16) are the configuration constraints, which ensure that the sum of the length of the

pieces in a used pattern does not exceed the machine length. Constraints (17) are the

linking constraints to ensure that repetitions of a pattern occur only if such pattern is used,
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which corresponds to the pattern setup decision. Constraints (18) compute the amount

of each product produced by each pattern. Note that these constraints are nonlinear.

Constraints (19)–(21) are production planning constraints. Constraints (19) ensure that

the demand is fulfilled by the total amounts produced by the patterns, and by the extra

pieces. Constraints (20) ensure that the total number of extra pieces is less than or equal

to the total number of pattern repetitions, as at most one extra piece can be produced

per repetition of any pattern. Inequalities (21) are symmetry-breaking constraints to order

the used patterns according to the number of repetitions. Finally, constraints (22) and

(23) define the domain of the variables. Note that, some of the configuration variables

are integer. This is not aligned with the general form of the OP, hence we use a binary

substitution to represent these integer variables in order to apply the LBBD.

The OP for the closed-ended CSCP is defined as a special case of the OP for the open-

ended CSCP presented above where no extra pieces are produced (i.e., xi = 0, ∀i∈ T ). The

CSCP with knife-dependent setups is an extension of the OP (15)–(23) which includes

additional setup variables to represent the extra setup time linked to the number of used

knives. See Hajizadeh and Lee (2007) and Section 1.1.2 of the online supplement for details.

4.1.1. Standard LBBD. We proceed to define the MP-S, SP, and the BCs for the

open-ended CSCP according to the general LBBD in Section 3.2. First, we ensure that

the OP is aligned with its general form, so that all the configuration variables are binary.

We substitute the integer variables aij by a sum of powers of two as presented in (24).

Let Ki (indexed by k) be the set of bins required to represent integer variables aij, i.e.,

Ki = {1, ..., ni} where ni is the minimum value such that
∑ni

k=1 2k−1 ≥
⌊

L
li

⌋
, and parameter

bk = 2k−1. Variable wijk equals 1 if k is used in writing aij, 0 otherwise.
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aij =
∑
k∈Ki

bkwijk ∀i∈ T ; j ∈ P (24)

The MP-S is modeled as the OP, where the nonlinear constraints (18) are replaced by an

approximation for the production quantities, the variables aij are substituted as described

above, and the BCs are added. Therefore, the MP-S consist of: the objective function,

linking constraints and production planning constraints as in the OP; the configuration

constraints (25) that replace the original constraints (16); constraints (26) and (27) as an

approximation for the production quantities, where Ni =
⌊

L
li

⌋
is the maximum number of

pieces i that can be allocated to any pattern; the BCs; and the domain constraints (28). See

Section 1.1 of the online supplement for a full presentation of the MPs in this application.

MP-S (Open-ended CSCP): min Cs

∑
j∈P

sj +Cr

∑
j∈P

zj

Ax≥ a :
∑
i∈T

li
∑
k∈Ki

bkwijk ≤Lsj ∀j ∈ P (25)

Bx + Cy≥ b : (17)

Dy + Eq≥ e : (19), (20) and (21)

Fq≥Gx + Hy : qij ≤Mi

∑
k∈Ki

wijk ∀i∈ T ; j ∈ P (26)∑
l∈T :l≥i

qlj ≤Nizj ∀i∈ T ; j ∈ P (27)

BCs: The BCs for the open-ended CSCP

x∈B|A| : sj ∈ {0,1};wijk ∈ {0,1} ∀i∈ T ; j ∈ P ;k ∈Ki (28)

y ∈R|B|+ ×Z|C|+ ; q∈R|D|+ : (23)

Constraints (26) and (27) are the SP relaxations which impose valid bounds on the

amount of product i produced by pattern j. Constraints (26) ensure that qij = 0 if no

piece of type i is allocated to pattern j. In case that product i is allocated to pattern

j, qij is limited by Mi, which is the maximum value between the demand of product i
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and the demand of any other product possibly allocated to the same pattern, i.e., Mi =

max
{
di; maxi′∈T :li′≤L−li{di′}

}
. Constraints (27) link the total amount produced by a pat-

tern for a subset of products with the number of repetitions of such pattern, where products

are assumed to be ordered from the smallest to the largest size (i.e., Ni ≤Ni−1, ∀i ∈ T :

i > 1). These constraints impose that the total amount of products {i, . . . , |T |} produced

by pattern j is at most the number of repetitions of such pattern zj, multiplied by Ni,

which is the maximum total number of pieces that can fit into any pattern considering the

corresponding subset of products. Note that this is a strengthened version of the following

constraints: qij ≤Nizj, ∀i∈ T, j ∈ P , which bound qij to the maximum number of pieces i

that can fit into pattern j multiplied by the number of repetitions of that pattern.

Given an MP-S solution at iteration h, (s̄hj , w̄
h
ijk, z̄

h
j , x̄

h
i , q̄

h
ij), the SP checks if the pro-

duction amounts are feasible. This SP decomposes by product and by pattern, so that

each SP computes āhij =
∑
k∈Ki

bkw̄
h
ijk, i.e., the number of pieces i in pattern j, and checks if

q̄hij = z̄hj ā
h
ij.

Inequalities (29) are the BCs for the open-ended CSCP. Let K̄h
ij = {k ∈Ki : w̄h

ijk = 1}

denote the set of indices of variables wijk which take the value 1 in the current solution of

the MP-S, which implies Ki \ K̄h
ij = {k ∈Ki : w̄h

ijk = 0}. The BCs are added for each viola-

tion detected by the SPs, i.e., for each element in set Qh = {(i, j) : i∈ T, j ∈ P, q̄hij 6= z̄hj ā
h
ij},

and ∀h ∈H′, where H′ corresponds to the index set of the MP-S solutions considered so

far.

BCs (Open-ended CSCP): qij ≤ zj āhij +Mi

∑
k∈Ki\K̄h

ij

wijk ∀h∈H′; (i, j)∈Qh (29)

The BCs (29) are a strengthened version of the following BCs: qij ≤ zj ā
h
ij +

Mi

∑
k∈K̄h

ij
(1−wijk) +Mi

∑
k∈Ki\K̄h

ij
wijk, ∀h ∈H′; (i, j) ∈Qh, which are aligned with the



Mart́ınez, Adulyasak, and Jans: LBBD for Integrated Production Planning Problems

19

general form presented in inequalities (9). The proposed BCs (29) impose that the amount

of product i produced by pattern j never exceeds zj ā
h
ij if the number of pieces i in pattern j

equals āhij (i.e.,
∑

k∈Ki\K̄h
ij
wijk = 0 and

∑
k∈K̄h

ij
(1−wijk) = 0). The BCs (29) together with

constraints (19), which ensure that the demand of product i is fulfilled, enforce that the

production amounts are feasible with respect to the OP. Note that, by omitting the term

Mi

∑
k∈K̄h

ij
(1−wijk) which appears in the general form of the BCs, the strengthened BCs

(29) give a valid upper bound on qij when the number of pieces i in pattern j is different

from āhij. In particular, for solutions where the number of pieces i in pattern j is less than

āhij (i.e.,
∑

k∈Ki\K̄h
i
wijk = 0 and

∑
k∈K̄h

i
(1−wijk)≥ 1), the BCs (29) ensure qij ≤ zj āhij. We

prove the validity of the BCs (29) in Section 1.2 of the online supplement.

4.1.2. Enhanced LBBD. We present the MP-E and the SIs for the open-ended

CSCP. As described in Section 3.3, the enhanced LBBD requires classifying products into

groups according to similar characteristic in their input data. For this problem, we classify

the products into a set of groups denoted by G (indexed by g), according to the maximum

number of pieces that can fit into a pattern, i.e., products with the same value of Ni =
⌊

L
li

⌋
are allocated to the same group. Let Tg denote the set of products allocated to group g

and Ng denote the maximum number of pieces of any product in group g that can fit into

any pattern, hence Tg =
{
i : i∈ T,

⌊
L
li

⌋
=Ng

}
.

The MP-E is defined by adding to the MP-S a new set of binary variables ygj that indi-

cates the presence of group g in pattern j, a set of constraints that link these new variables

to the existing configuration variables, and the SIs. The MP-E is therefore formulated as

presented below. Constraints (30) and (31) link the new variables with the configuration

variables wijk, such that ygj = 1 if at least one piece of type i ∈ Tg is assigned to pattern
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j and ygj = 0 otherwise. Parameter Bg =
∑

i∈Tg
|Ki|. Constraints (32) represent the SIs,

which we describe next, and constraints (33) define the domain of the new variables.

MP-E (Open-ended CSCP): min Cs

∑
j∈P

sj +Cr

∑
j∈P

zj

Ax≥ a : (25)

Bx + Cy≥ b : (17)

Dy + Eq≥ e : (19), (20) and (21)

Fq≥Gx + Hy : (26) and (27)

BCs: BCs for the open-ended CSCP (29)

x∈B|A|;y ∈R|B|+ ×Z|C|+ ; q∈R|D|+ : (28) and (23)

Ix + Jz≥ g :
∑
i∈Tg

∑
k∈Ki

wijk ≤Bgygj g ∈ G; j ∈ P (30)

ygj ≤
∑
i∈Tg

∑
k∈Ki

wijk ∀g ∈ G; j ∈ P (31)

Logic-based SIs : SIs for the open-ended CSCP (32)

z∈B|G| : ygj ∈ {0,1} ∀g ∈ G; j ∈ P (33)

Given an MP-E solution at iteration h, (s̄hj , w̄
h
ijk, z̄

h
j , x̄

h
i , q̄

h
ij, ȳ

h
gj), the SPs and the BCs

remain the same as in the standard LBBD, while the SIs are derived as follows. Let P̄ h =

{j : j ∈ P, s̄hj = 1} denote the set of used patterns in the current solution, and Ḡh
j = {g : g ∈

G, ȳhgj = 1}, ∀j ∈ P̄ h denote the set of groups allocated to pattern j. From set Ḡh
j , we sepa-

rate the group with the smallest Ng to define the subset Ḡh∗
j =

{
g : g ∈ arg min

g′∈Ḡhj

{Ng′}
}
, ∀j ∈

P̄ h. This means that, set Ḡh∗
j contains the group to which the product with the largest

size among the products allocated to pattern j belongs. Note that Ḡh∗
j ⊆ Ḡh

j and |Ḡh∗
j |= 1.

We use this information to derive an upper bound on the total amount of products that

do not belong to that group g ∈ Ḡh∗
j produced by pattern j.

The SIs are formulated as inequalities (34). These impose that, if in an MP-E solution at

least one of the products in group g : g ∈ Ḡh∗
j is assigned to pattern j, then the total amount
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of products that do not belong to this group produced by pattern j (i.e.,
∑

i∈T\Tg
qij) is

limited by the pattern repetition multiplied by the maximum number of pieces of any type

that can coexist with any product in g ∈ Ḡh∗
j . Parameters Cg and Dg are computed as

follows: Cg =
⌊

L−mini∈Tg {li}
l1

⌋
is the maximum number of pieces of any type that can coexist

with one piece of any product in group g; and Dg is computed as Dg = M
(⌊

L
l1

⌋
−Cg

)
.

Recall that products are ranked by their size from the smallest to the largest, hence l1 is

the size of the smallest product, and M = maxi∈T{di} is an upper bound on variables zj.

As for the BCs, the SIs are derived ∀h∈H′, whereH′ is the index set of the MP-E solutions

considered so far, and added only if violated in the current solution, i.e., if
∑

i∈T\Tg

q̄hij >Cgz̄
h
j .

We prove the validity of the SIs (34) in Section 1.3 of the online supplement.

SIs (Open-ended CSCP):
∑

i∈T\Tg

qij ≤Cgzj +Dg(1− ygj) ∀h∈H′; j ∈ P̄ h; g ∈ Ḡh∗
j (34)

We conclude this section by mentioning that the LBBD for the open-ended can be

applied to the closed-ended CSCP by making xi = 0, ∀i ∈ T . For the CSCP with knife-

dependent setup, the MPs need to be modified according to the conditions of this variant

as in Hajizadeh and Lee (2007). The BCs and the SIs can be implemented without change.

4.1.3. Computational Results. This section presents the computational results

for the application in the steel tube industry. We used Python 3.7 and solver CPLEX

12.9 with the default setting and one thread, on a workstation Intel E5-2683/2.1GHz

with 16GB of RAM. The data sets consist of the 47 benchmark instances proposed by

Hajizadeh and Lee (2007) and 50 new instances generated based on the guidelines in that

original paper. The problem data are available at https://github.com/Karim-Perez/

process-configuration-problems. We classify these instances into four sets according

https://github.com/Karim-Perez/process-configuration-problems
https://github.com/Karim-Perez/process-configuration-problems
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to their size as presented in Table 2. The computing time limit is 1800 seconds, as for the

solution method in the original study.

Set A Set B Set C Set D

Number of products (|T |) {6,7} {10,14} {18,20} {25,30}
Number of patterns (|P |) {4,7} 10 {18,20} {25,30}
Number of groups (|G|) [2,5] [4,6] [4,7] [4,7]

Number of instances 40 17 20 20

Table 2 Data sets for the cutting problems in the steel tube industry

Tables 3 and 4 present the average results of the solution approach presented in

Hajizadeh and Lee (2007) (H&L (2007)), who solve a linearized version of the OP solved

using CPLEX, the standard LBBD (LBBD) and the B&Ch (B&Ch) implementations

of the standard LBBD method (Stand. (BCs)) and the enhanced LBBD method (Enh.

(BCs+SIs)). To properly carry out comparisons, we reproduced the findings in H&L (2007)

using Python 3.7 and CPLEX 12.9 as for the LBBD. Let lb be the lower bound and ub be

the upper bound on the optimal solution obtained by a solution method for an instance.

The following statistics are reported for each method and data set: the average normalized

lower bound (nLB), which is computed as lb
ub∗ for each instance, where ub∗ is the best

ub of the instance among all the methods considered; the average optimality gap (Gap),

which is computed as (ub−lb)
ub
× 100% for each instance; the average computing time in

seconds (Time) over all instances for which an optimal or feasible solution is provided;

the average total number of BCs (BCs); the average total number of SIs (SIs); the total

number of instances solved to optimality (OS ); and, only for the large data sets where

some methods are unable to provide any solution, we report the total number of instances

for which a feasible solution was found (FS ). Bold numbers indicate the best Time when
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all the instances in the set were solved to optimality, and the best nLB and best Gap for

the sets where not all the instances were solved to optimality.

Open-ended CSCP

Set A Set B

Solution Method nLB Gap Time BCs SIs OS nLB Gap Time BCs SIs OS

H&L (2007) 1.000 0.0% 9.96 - - 40/40 0.784 21.7% 1534.04 - - 3/17

LBBD Stand. (BCs) 1.000 0.0% 2.26 17.1 - 40/40 1.000 0.1% 332.22 22.5 - 16/17

Enh. (BCs+SIs) 1.000 0.0% 2.44 17.3 1.9 40/40 1.000 0.0% 92.00 22.1 1.9 17/17

B&Ch Stand. (BCs) 1.000 0.0% 1.13 24.3 - 40/40 0.984 1.7% 660.23 41.5 - 13/17

Enh. (BCs+SIs) 1.000 0.0% 1.35 23.8 2.3 40/40 1.000 0.2% 388.56 40.0 3.4 16/17

Closed-ended CSCP

H&L (2007) 1.000 0.0% 3.23 - - 40/40 0.953 4.7% 684.79 - - 14/17

LBBD Stand. (BCs) 1.000 0.0% 4.97 25.7 - 40/40 0.993 1.3% 476.43 22.8 - 14/17

Enh. (BCs+SIs) 1.000 0.0% 5.42 25.4 2.3 40/40 0.993 1.1% 386.50 23.4 1.3 14/17

B&Ch Stand. (BCs) 1.000 0.0% 2.06 33.5 - 40/40 0.988 1.4% 450.37 47.1 - 14/17

Enh. (BCs+SIs) 1.000 0.0% 2.13 31.4 2.3 40/40 0.986 1.5% 419.09 44.2 2.8 14/17

CSCP with knife-dependent setups

H&L (2007) 1.000 0.0% 26.36 - - 40/40 0.724 27.7% 1710.97 - - 2/17

LBBD Stand. (BCs) 1.000 0.0% 21.84 19.6 - 40/40 0.991 1.9% 828.53 23.7 - 12/17

Enh. (BCs+SIs) 1.000 0.0% 13.33 19.3 2.1 40/40 0.998 0.8% 568.30 26.4 2.1 14/17

B&Ch Stand. (BCs) 1.000 0.0% 16.21 27.7 - 40/40 0.965 4.1% 1117.59 50.2 - 8/17

Enh. (BCs+SIs) 1.000 0.0% 18.07 26.1 2.4 40/40 0.975 2.9% 824.10 47.9 3.6 10/17

Table 3 Average results for the cutting stock problems in the steel tube industry (Sets A and B)

Results in Table 3 show that the instances in Set A can be solved to optimality in less

than 27 seconds on average for the three problems. However, except for the standard LBBD

implementation in the closed-ended CSCP, the LBBD methods find optimal solutions in

shorter computing times. On average, the best performing LBBD solves these instances 8.8

times, 1.6 times, and 2 times faster than the approach in H&L (2007) for the open-ended

CSCP, the closed-ended CSCP, and the CSCP with knife-dependent setups, respectively.

The results for the data sets B, C, and D show that, for all the three problem variants,

the LBBD provides significant improvements with respect to the lower bounds obtained

at the end of the execution. This can be seen by the differences in the nLB between the
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Open-ended CSCP

Set C Set D

Solution Method nLB Gap Time BCs SIs OS nLB Gap Time BCs SIs OS FS

H&L (2007) 0.460 54.2% 1800.00 - - 0/20 0.366 63.7% 1800.00 - - 0/20 20/20

LBBD Stand. (BCs) 0.928 10.2% 1717.42 23.1 - 1/20 0.853 16.6% 1624.17 10.6 - 2/20 20/20

Enh. (BCs+SIs) 0.949 7.2% 1523.99 34.8 4.3 5/20 0.887 13.5% 1623.67 12.4 1.4 2/20 20/20

B&Ch Stand. (BCs) 0.868 14.8% 1800.00 81.6 - 0/20 0.824 21.5% 1628.17 159.7 - 2/20 20/20

Enh. (BCs+SIs) 0.887 13.0% 1715.07 86.4 6.5 1/20 0.828 21.5% 1632.20 142.5 5.9 2/20 20/20

Closed-ended CSCP

H&L (2007) 0.331 67.1% 1800.00 - - 0/20 0.250 75.2% 1800.00 - - 0/20 19/20

LBBD Stand. (BCs) 0.905 13.0% 1560.75 11.7 - 3/20 0.868 20.6% 1581.94 8.9 - 3/20 20/20

Enh. (BCs+SIs) 0.936 10.4% 1475.33 16.8 2.1 4/20 0.876 21.5% 1617.66 9.2 0.6 2/20 20/20

B&Ch Stand. (BCs) 0.846 18.2% 1726.87 170.8 - 1/20 0.850 23.5% 1796.13 343.7 - 1/20 20/20

Enh. (BCs+SIs) 0.853 19.3% 1733.80 136.5 12.2 2/20 0.849 26.6% 1792.15 320.4 9.1 1/20 18/20

CSCP with knife-dependent setups

H&L (2007) 0.427 57.4% 1800.0 - - 0/20 0.334 66.7% 1800.00 - - 0/20 20/20

LBBD Stand. (BCs) 0.906 14.1% 1800.23 16.0 - 0/20 0.849 18.2% 1626.58 9.8 - 2/20 20/20

Enh. (BCs+SIs) 0.935 9.4% 1719.45 29.1 3.6 1/20 0.878 15.8% 1639.92 10.5 1.1 2/20 20/20

B&Ch Stand. (BCs) 0.856 17.1% 1800.00 111.2 - 0/20 0.824 22.1% 1800.00 227.4 - 0/20 20/20

Enh. (BCs+SIs) 0.875 14.9% 1732.33 106.1 9.7 1/20 0.829 22.8% 1727.21 227.4 8.2 1/20 20/20

Table 4 Average results for the cutting stock problems in the steel tube industry (Sets C and D)

LBBD and the approach in H&L (2007), where the closer the nLB is to 1, the better

the lower bounds are with respect to the best found solutions. Unlike in the results for

the small instances, the enhanced LBBD presents a clear advantage over the standard

LBBD for most cases in Sets B, C and D. In particular, the LBBD Enh. (BCs+SIs) is

able to optimally solve a larger number of instances and to substantially outperform the

approach in H&L (2007). For the open-ended CSCP, it solves the instances in Set B within

92 seconds on average, whereas H&L (2007) finds solutions with an average gap of 21.7%

and its corresponding CPU time is 1534 seconds on average. The LBBD could reduce the

average gaps by approximately 47.0% and 50.2% for Sets C and D, respectively. For the

closed-ended CSCP, its improvements with respect to the lower bounds could reduce the

average gap by 3.6%, 56.7%, and 54.6% for the sets B, C and D, respectively. Finally, for

the CSCP with knife-dependent setups, the enhanced LBBD could reduce the average gap

by 26.9%, 48%, and 50.9% for Sets B, C, and D, respectively.
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We consider that the standard LBBD implementation is superior to the B&Ch imple-

mentation in this application due to the fact that the structure of the MP does not have

many technical constraints, which makes it easier to solve. Unlike in the OP for Sets A

and B, the closed-ended CSCP is harder to solve than the open-ended CSCP by using

the LBBD. This may be explained by the MP in the LBBD for the closed-ended problem

which does not allow extra pieces to compose the total production quantities, hence it has

less flexibility to provide solutions which are feasible with respect to the OP.

4.2. Application in the Printing Industry

This application considers the production planning problem studied in Baumann and

Trautmann (2014) and Baumann et al. (2015). The problem is inspired by a real-world off-

set printing process that produces napkin pouches. Pouches with customer-specific designs

(CSDs) are make-to-order products, while pouches with standard designs (SDs) are make-

to-stock. Both design types are imprinted by offsetting the inked images from rotating

printing plates to the surface of the paper. The printing plates used consist of seven slots,

where an individual design must be allocated to each slot, as depicted in Figure 2. There is

a specific demand for the CSDs, which must be satisfied, but it is possible to produce more

than the required demand. For the SDs, no specific demand is assumed in this particular

problem, but at most one slot not occupied by CSDs in each plate can be filled with an

SD. Various technical constraints related to incompatibilities between the printing equip-

ment and the design features (e.g., type of design, color code, and white border layout) are

considered to ensure that the configurations of the printing plates are feasible in practice.

The main decisions aim to determine: (1) the number of distinct printing plates to

be used; (2) the allocation of designs to the slots of these plates; and (3) the number
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Figure 2 Examples of feasible configurations for a printing plate

of rotations of each printing plate, i.e., the number of times that the plate is used. The

objective is to minimize the total overproduction costs and setup costs. We present the

OP below as the nonlinear version of the formulation in Baumann and Trautmann (2014).

Table 5 presents the parameters and variables of the OP.

Sets Parameters Decision variables

I designs (indexed by i); di demand for design i; x : Wp equals 1 if plate p is used; 0, otherwise;

P plates (indexed by p); cP setup cost per used plate; Kinp equals 1 if design i is allocated to n slots

J slots = {1, . . . , |J |} (indexed by n); cOi overproduction cost per unit on plate p; 0 otherwise;

C color codes (indexed by c); of customer-specific design i; Zcp equals 1 if a design with color code c is

IO customer-specific designs (CSDs); cSi overproduction cost per unit on plate p; 0 otherwise;

IS standard designs (SDs); of standard design i; y : rp rotations of plate p;

Ic designs with color code c; c̄ maximum number of different vi number of overproduced units of design i;

Iw designs with white border layout; color codes per plate; q : qip number of units of design i produced by plate p.

Table 5 Parameters and variables for the printing problem

OP (Printing) : min
∑
p∈P

cPWp +
∑
i∈IO

cOi vi +
∑
i∈IS

cSi vi (35)

Ax≥ a :
∑
i∈I

∑
n∈J

nKinp = |J |Wp ∀p∈ P (36)∑
i∈IS

∑
n∈J

nKinp ≤ 1 ∀p∈ P (37)

∑
i∈Iw

∑
n∈J

1

2
nKinp +

∑
i∈IS

∑
n∈J

Kinp ≥Wp ∀p∈ P (38)∑
c∈C

Zcp ≤ c̄ ∀p∈ P (39)∑
i∈Ic

∑
n∈J

Kinp ≤ |J |Zcp ∀c∈C; p∈ P (40)∑
p∈P

∑
n∈J

Kinp = 1 ∀i∈ IO (41)
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Wp−1 ≥Wp ∀p∈ P : p > 1 (42)

q = f(x,y) : qip = rp
∑
n∈J

nKinp ∀i∈ I;p∈ P (43)

Dy + Eq≥ e :
∑
p∈P

qip = di + vi ∀i∈ I (44)

x∈B|A| : Wp, Kinp, Zcp ∈ {0,1} ∀i∈ I; p∈ P ; n∈ J ; c∈C (45)

y ∈R|B|+ ×Z|C|+ : rp, vi ≥ 0 ∀i∈ I; p∈ P (46)

q∈R|D|+ : qip ≥ 0 ∀i∈ I; p∈ P (47)

The objective function (35) minimizes the total setup costs and overproduction costs.

Constraints (36)–(42) are the configuration constraints. Constraints (36) ensure that every

slot of a used plate is occupied by one design, i.e, no empty slots are allowed for a used

plate. Constraints (37) guarantee that at most one slot per plate is occupied by an SD.

Inequalities (38) enforce the white border layout technical constraints, which impose that

each used plate must allocate at least two slots to the designs with white border layout

and/or allocate an SD to one slot. Constraints (39) and (40) prevent that more than

c̄ different color codes are allocated to the same plate. Constraints (41) prohibit that a

CSD is allocated to different plates, so that the total demand for each design of this

type is always fulfilled by a single plate. Constraints (36)–(41) are all the technical and

organizational constraints imposed on the configuration of the plates. For the details and

justification of these constraints, we refer the reader to Section 2 of the online supplement

and to Baumann et al. (2015). Inequalities (42) are symmetry-breaking constraints that

ensure that the plates with the smallest indices are used first. Constraints (43) compute the

amount of each design produced by each plate. Note that these constraints are nonlinear.

Constraints (44) are the production planning constraints that determine the number of

overproduced units for each design while making sure that the demand is satisfied. Finally,

constraints (45)–(47) define the domain of the variables.
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4.2.1. Standard LBBD. We discuss how the MP-S and the BCs are formulated for

this application. To obtain the MP-S, the nonlinear constraints (43) in the OP are replaced

by constraints (48) and (49), and the BCs are added. Parameter M is an upper bound

on the number of rotations of a printing plate, computed as M = maxi∈I {di}. Note that

variables rp are not used in the MP-S, leaving the number of rotations of each plate to

be computed in the SP. The MP-S is presented below. A full version of the MP for this

application is presented in Section 2.1 of the online supplement.

MP-S (Printing problem): min
∑
p∈P

cPWp +
∑
i∈IO

cOi vi +
∑
i∈IS

cSi vi

Ax≥ a : (36)− (42)

Dy + Eq≥ e : (44)

Fq≥Gx + Hy : qip ≤M
∑
n∈J

nKinp ∀i∈ I; p∈ P (48)

qip ≥
∑
n∈J

diKinp ∀i∈ IO; p∈ P (49)

BCs: BCs for the printing problem

x∈B|A|; y ∈R|B|+ ×Z|C|+ ; q∈R|D|+ : (45);vi ≥ 0; (47) ∀i∈ I; p∈ P

Constraints (48) and (49) provide bounds on the amount of each design produced by

each plate. Constraints (48) ensure that qip = 0 if no design of type i is allocated to plate

p. Otherwise, qip is limited by the number of slots for design i in plate p, i.e.,
∑

n∈J nKinp,

multiplied by an upper bound on the number of rotations of any plate. Constraints (49)

enforce the amount of each CSD produced by plate p to be greater than or equal to its

demand, if the plate contains that specific CSD. This is valid because constraints (41)

impose that the demand of CSDs must be fulfilled using a single plate. Note that constraints

(49) are not imposed for SDs since their demand is assumed to be zero.
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Given an MP-S solution at iteration h, (W̄ h
p , K̄

h
inp, Z̄

h
cp, v̄

h
i , q̄

h
ip), the SP determines the

number of rotations of each used plate, denoted by r̄hp , and checks if the production quanti-

ties are feasible with respect to the OP, i.e., if q̄hip = r̄hp
∑
n∈J

nK̄h
inp. As the demand for SDs is

null and each CSD can be assigned to only one plate, the optimal number of rotations for

each used plate r̄hp can be computed as the number of rotations required to fulfill the total

demand of the CSDs in plate p. Let P̄ h = {p : p∈ P, W̄ h
p = 1} denote the set of used plates,

ĪOhp = {i : i∈ IO,
∑

n∈J nK̄
h
inp ≥ 1},∀p∈ P̄ h denote the set of CSDs assigned to plate p, and

āhip =
∑

n∈J nK̄
h
inp denote the number of slots in plate p allocated to design i in the current

solution. The rotations for each used plate is computed as r̄hp = max
i∈ĪO

hp

{
di
āhip

}
, ∀p∈ P̄ h.

Inequalities (50) are the BCs for the printing problem. The BCs are added for each

violation detected in the SP, i.e., for each element in set Qh = {(i, p) : i ∈ I, p ∈ P̄ h, q̄hip 6=

r̄hp ā
h
ij}, and ∀h ∈ H′, where H′ is the index set of the MP-S solutions considered so far.

Let ĪO∗hp be the set that contains the design in plate p that requires the largest number of

rotations to fulfill its total demand, i.e., ĪO∗hp =

{
i′ : i′ ∈ arg max

i∈ĪO
hp

{
di
āhip

}}
. Note that ĪO∗hp ⊆ ĪOhp

and we limit |ĪO∗hp |= 1. The logic of the BCs is such that, if the design i′ : i′ ∈ ĪO∗hp occupies

the same number of slots as in the current solution (i.e., Ki′np = 1 : n = āhi′p), the total

amount of each design i produced by this plate is equal to the number of rotations r̄hp

multiplied by the number of slots for the corresponding design
∑

n∈J nKinp. Parameter Bh
i

is calculated as Bh
i = r̄hp |J |, ∀i∈ IO and Bh

i = r̄hp , ∀i∈ IS.

BCs (Printing): qip ≥ r̄hp
∑
n∈J

nKinp−Bh
i

∑
i′∈ĪO∗

hp

∑
n∈J:

n=āh
i′p

(1−Ki′np) ∀h∈H′; (i, p)∈Qh (50)

The BCs (50) are a strengthened version of the following BCs: qip ≥ r̄hp
∑

n∈J nKinp −

Bh
i

∑
i′∈ĪO

hp

∑
n∈J:

n=āh
i′p

(1−Ki′np) − Bh
i

∑
i′∈I\ĪO

hp

∑
n∈J Ki′np, ∀h ∈ H′; (i, p) ∈ Qh, which are



30
Mart́ınez, Adulyasak, and Jans: LBBD for Integrated Production Planning Problems

aligned with the general form (10). Note that the BCs (50) are derived in terms of the

configuration variables for the design i′ : i′ ∈ ĪO∗hp and independent of the variables for other

designs in the same plate, i.e., any design i : i ∈ ĪOhp \ ĪO∗hp . This is valid because, as long

as design i′ occupies the same number of slots in plate p as in the current solution, the

number of rotations of such plate is always greater than or equal to r̄hp , as the complete

demand of design i′ must be fulfilled using only this plate. We prove the validity of the

BCs (50) in Section 2.2 of the online supplement.

4.2.2. Enhanced LBBD. We present the MP-E and the SIs for the printing problem.

For this application, we classify the designs into a set of groups denoted by G (indexed by

g) according to the demand parameters, such that designs in the same group have the same

demand level. Let dGg denote the demand of any design in group g and Ig = {i : i∈ I, di = dGg }

denote the set of designs in group g. The MP-E is defined as presented below, by adding

to the MP-S a new set of binary variables Ugnp, a set of constraints that link these new

variables with the original configuration variables Kinp, and the SIs. Constraints (51) and

(52) ensure that Ugnp = 1 when at least one design in group g is allocated to n slots in plate

p, and force that Ugnp = 0 otherwise. Parameter Bg is computed as Bg = min{|J |, |Ig|}.

Constraints (53) are the SIs, which we discuss in detail next, and constraints (54) define

the domain of the new variables.

MP-E (Printing problem): min
∑
p∈P

cPWp +
∑
i∈IO

cOi vi +
∑
i∈IS

cSi vi

Ax≥ a : (36)− (42)

Dy + Eq≥ e : (44)

Fq≥Gx + Hy : (48) and (49)

BCs: BCs for the printing problem (50)
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x∈B|A|; y ∈R|B|+ ×Z|C|+ ; q∈R|D|+ : (45);vi ≥ 0; (47) ∀i∈ I; p∈ P

Ix + Jz≥ g :
∑
i∈Ig

Kinp ≤BgUgnp ∀g ∈ G;n∈ J ;p∈ P (51)∑
i∈Ig

Kinp ≥Ugnp ∀g ∈ G;n∈ J ;p∈ P (52)

Logic-based SIs: SIs for the printing problem (53)

z∈B|G| : Ugnp ∈ {0,1} ∀g ∈ G;n∈ J ;p∈ P (54)

Given an MP-E solution at iteration h, (W̄ h
p , K̄

h
inp, Z̄

h
cp, v̄

h
i , q̄

h
ip, Ū

h
gnp), the SP and the

BCs remain the same as in the standard LBBD, while the SIs are derived as follows. Let

Ḡh
p = {g : g ∈ G,

∑
n∈J nŪ

h
gnp ≥ 1}, ∀p∈ P̄ h be the set of groups allocated to each used plate

p, and b̄hgp = minn∈J {nŪh
gnp}, ∀p∈ P̄ h, g ∈ Ḡh

p be the minimum number of slots allocated to

each group g assigned to plate p in the current solution. From set Ḡh
p , we separate the group

that requires the largest number of rotations to fulfill the total demand of the designs that

belong to it, and define the subset Ḡh∗
p =

{
g′ : g′ ∈ arg max

g∈Ḡhp

{
dGg
b̄hgp

}}
, ∀p ∈ P̄ h. Note that

Ḡh∗
p ⊆ Ḡh

p and we limit |Ḡh∗
p |= 1. We use this information to derive a lower bound on the

total amounts of CSDs and SDs produced by each plate, which are imposed through the

SIs (55) and (56), respectively.

SIs (Printing problem):

∑
i∈IO

qip ≥ r̄hp

|J | −∑
i∈IS

∑
n∈J

Kinp

− r̄hp |J | ∑
g∈Ḡh∗p

∑
n∈J:

n=b̄hgp

(1−Ugnp) ∀h∈H′;p∈ P̄ h (55)

∑
i∈IS

qip ≥ r̄hp
∑
i∈IS

∑
n∈J

Kinp− r̄hp
∑

g∈Ḡh∗p

∑
n∈J:

n=b̄hgp

(1−Ugnp) ∀h∈H′;p∈ P̄ h (56)

The SIs (55) ensure that, as long as at least one design in group g ∈ Ḡh∗
p is assigned to a

number of slots equal to b̄hgp, which implies Ugnp = 1 : g ∈ Ḡh∗
p , n= b̄hgp, the total amount of

CSDs produced by plate p is always greater than or equal to |J |r̄hp if no SD is assigned
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to this plate, or greater than or equal to (|J | − 1)r̄hp if an SD is assigned to plate p. The

lower bounds on the total amounts of CSDs imposed by the SIs (55) are valid because: (i)

Ugnp = 1 : g ∈ Ḡh∗
p , n= b̄hgp ensures that the total number of rotations of plate p is at least

r̄hp ; and (ii) constraints (36) and (37) ensure that the total number of slots occupied by

CSDs in any plate equals either |J | − 1 or |J |. The SIs (56) enforce the total amount of

SDs produced by plate p to be greater than or equal to the number of rotations r̄hp , if any

SD is allocated to this plate and Ugnp = 1 : g ∈ Ḡh∗
p , n= b̄hgp. Finally, the SIs (55) and (56)

are added to the MP-E only if they are violated in the current solution, i.e., if
∑

i∈IO q̄
h
ip <

r̄hp

(
|J |−

∑
i∈IS

∑
n∈J nK̄

h
inp

)
and

∑
i∈IS q̄

h
ip < r̄

h
p

∑
i∈IS

∑
n∈J nK̄

h
inp, respectively. We prove

the validity of SIs (55)–(56) in Section 2.3 of the online supplement.

4.2.3. Computational Results. Table 6 presents the data sets for this problem,

which consists of the 72 benchmark instances in Baumann et al. (2015). As for the

first application, the problem data are available at https://github.com/Karim-Perez/

process-configuration-problems. We classify these instances into four sets according

to the number of designs as presented below. The computing time limit is 1800 seconds

for all these experiments.

Set A Set B Set C Set D

Number of designs (|I|) [6,20] [23,29] [32,39] [58,117]

Number of plates (|P |) [5,15] [20,25] [25,30] [50,90]

Number of groups (|G|) [1,6] [4,10] [5,12] [10,35]

Number of instances 24 12 12 24

Table 6 Data sets for the printing problem

Tables 7 and 8 present the average results for the data sets. We reproduced the findings

in Baumann and Trautmann (2014) (B&T (2014)), who solve a linearized version of the

OP using CPLEX, on our workstation and present the same statistics as for the application

https://github.com/Karim-Perez/process-configuration-problems
https://github.com/Karim-Perez/process-configuration-problems
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in the steel industry. For Sets C and D, the average computing time and the number of

optimal solution are not presented, as all the solution methods reached the time limit

without finding an optimal solution for these instances.

Set A Set B

Solution Method nLB Gap Time BCs SIs OS nLB Gap Time BCs SIs OS

B&T (2014) 1.000 0.0% 90.15 - - 24/24 0.839 16.4% 1522.67 - - 2/12

LBBD Stand. (BCs) 1.000 0.1% 358.70 214.5 - 23/24 0.856 24.7% 1670.04 468.6 - 1/12

Enh. (BCs+SIs) 1.000 0.0% 37.05 42.6 16.1 24/24 0.966 3.8% 1293.03 149.9 41.4 5/12

B&Ch Stand. (BCs) 1.000 0.0% 19.60 182.5 - 24/24 0.879 12.6% 1651.23 713.1 - 1/12

Enh. (BCs+SIs) 1.000 0.0% 5.91 111.7 30.8 24/24 0.972 2.8% 968.29 403.3 78.2 7/12

Table 7 Average results for the printing problem (Set A and Set B)

Set C Set D

Solution Method nLB Gap BCs SIs nLB Gap BCs SIs FS

B&T (2014) 0.617 39.8% - - 0.512 57.9% - - 7/24

LBBD Stand. (BCs) 0.725 45.0% 408.7 - 0.562 54.1% 612.7 - 16/24

Enh. (BCs+SIs) 0.804 26.8% 138.9 38.2 0.562 50.5% 172.7 40.2 19/24

B&Ch Stand. (BCs) 0.681 35.4% 1467.7 - 0.543 47.1% 2408.8 - 23/24

Enh. (BCs+SIs) 0.743 26.7% 724.6 162.2 0.559 45.8% 1344.0 302.7 21/24

Table 8 Average results for the printing problem (Set C and Set D)

Overall, the enhanced LBBD solves most instances with up to 29 designs (Sets A and B)

and provides improved results for larger instances. The standard LBBD solved using the

standard implementation (LBBD Stand. (BCs)) performs poorly and has no advantage

over the approach in B&T (2014). This can be explained by the structure of the MP, which

includes many technical constraints and where finding optimal solutions at each iteration

consumes a significant amount of time.

The enhanced LBBD presents a superior performance for the instances in Sets A and

B. In particular, the B&Ch Enh. (BCs+SIs) solves the instances in Set A 15.3 times faster

than the OP in B&T (2014). Regarding Set B, the B&Ch Enh. (BCs+SIs) could solve 5
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more instances, and improve the average gap and computing time by approximately 13.6%

and 36.4%, respectively, in comparison with the approach B&T (2014).

Finding good quality solutions for large instances is challenging according to the results

for Sets C and D in Table 8. None of these instances could be solved within 30 minutes

by any of the tested methods. However, the B&Ch implementation, and particularly the

enhanced reformulation, allows to reduce the average gap by 13.1% in Set C and to provide

feasible solutions for 16 more instances in Set D, in comparison to the approach in B&T

(2014). The detailed results for the tested problems and further remarks on the LBBD can

be found in Section 3 of the online supplement.

5. Concluding Remarks

We developed a general LBBD to solve production planning problems with configuration

decisions. We introduced a standard LBBD and an enhanced LBBD, where the latter one

implements logic-based inequalities as a further SP relaxation added to the MP during the

solution process. We applied the LBBD on three variants of cutting stock problems in the

steel industry and an application in the printing industry from the literature, and assessed

the performance of the standard LBBD and the B&Ch implementations.

We conclude that generating and adding the SIs dynamically to the MP is an effec-

tive device to improve the LBBD, with the potential to be successfully applied to other

problems. Including the SIs seems to speed up the convergence of the LBBD, which signif-

icantly outperforms the approaches in the literature, regardless the implementation used

(i.e., the standard LBBD and the B&Ch). The results also show that the performance

differences between the standard LBBD and the B&Ch implementations may be related to

the structure of the MP, which varies among the applications in the domain of the studied
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problem due to the tailored technical constraints. Based on experiments not reported in

this paper, we observed that adding the SIs at the same time as the BCs in the LBBD

method is more efficient than an alternative implementation where the SIs are added first

and the BCs are added as last resource. With respect to the linearized version of the OP,

we also observed that neither applying the classical Benders decomposition via the auto-

matic CPLEX Benders nor adding the SIs as lazy constraints improve the computational

results of this approach. Finally, we consider that the proposed LBBD can be potentially

enhanced through the development of efficient heuristics that determine improved solu-

tions for the OP from an MP solution at each iteration, and through the development of

efficient BC and SI generation strategies.
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