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Abstract

We study a distributionally robust version of the classical capacitated facility loca-
tion problem with a distributional ambiguity set defined as a Wasserstein ball around an
empirical distribution constructed based on a small data sample. Both single- and two-
stage problems are addressed, with customer demands being the uncertain parameter.
For the single-stage problem, we provide a direct reformulation into a mixed-integer
program. For the two-stage problem, we develop two iterative algorithms, based on
column generation, for solving the problem exactly. We also present conservative ap-
proximations based on support set relaxation for the single- and two-stage problems,
an affine decision rule approximation of the two-stage problem, and a relaxation of
the two-stage problem based on support set restriction. Numerical experiments on
benchmark instances show that the exact solution algorithms are capable of solving
large scale problems efficiently. The different approximation schemes are numerically
compared and the performance guarantee of the two-stage problem’s solution on out-
of-sample data is analyzed.

1 Introduction

Uncertainty about the future poses a challenge for decision makers, especially when tak-
ing strategic decisions that have long-lasting implications. One of the important strategic
decisions that has to be made by firms is the location of their manufacturing, service and lo-
gistical facilities. Although facility location is among the earliest and best studied problems
in the literature (see, for example, the review of Hale and Moberg [12]), most early facil-
ity location models are deterministic. However, interest in uncertain location problems has
grown considerably in the last decade, driven by recent advances in stochastic optimization
techniques and the need for new approaches to deal rigorously with uncertain parameters
such as demand and cost.
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Traditionally, there have been two main approaches to handle uncertainty in optimization
problems. In Stochastic Programming (SP), the uncertain parameters are represented as
random variables having a known probability distribution, whereas the cost function to
be minimized is an expectation over this distribution. Despite the intuitive appeal and
nice convergence properties of this approach, it often results in intractable formulations.
Furthermore, the assumption of full knowledge about the underlying probability distribution,
which is usually estimated from limited sample data, might lead to disappointments when
the optimal solution obtained is implemented with a different sample drawn from the same
population, a phenomenon known as the optimizer’s curse [29]. On the other extreme, the
Robust Optimization (RO) approach assumes a complete ignorance about the probability
distribution of uncertain parameters. Instead, these parameters are only assumed to belong
to an uncertainty set with some structure (e.g., ellipsoid or polyhedron). Optimization is
performed with respect to the worst-case scenario in the uncertainty set, which inevitably
leads to over-conservatism and suboptimal decisions for other more-likely scenarios. Another
drawback of RO is that it does not fully utilize the richness of data available to the decision
maker (except, probably, for calibrating the uncertainty set).

An alternative paradigm known as distributionally robust optimization (DRO), that pro-
vides a unifying framework for SP and RO while aiming to overcome their deficiencies, has
gained a lot of attention recently. Instead of the white-or-black view of the SP and RO
approaches when it comes to the issue of knowing the probability distribution of uncertain
parameters, DRO adopts a middle-ground approach; The probability distribution is assumed
to belong to a family of distributions, referred to as the ambiguity set, that share certain para-
metric characteristics or are “close-enough” to a reference distribution. The concept itself
is not new and was used in the work of Scarf [26] to tackle an ambiguity-averse newsven-
dor problem. However, tractable reformulations for important classes of DRO have been
developed only recently based on modern results from robust optimization and statistics.

Early work on DRO has focused on ambiguity sets that satisfy certain parametric condi-
tions, e.g., limits on the distribution moments [7]. These moment-based approaches usually
result in tractable semidefinite or conic formulations but have weak convergence properties.
Emphasis of DRO research has shifted recently towards statistical distance-based approaches
that construct ambiguity sets in the vicinity of a reference distribution. A key advantage
of these approaches is that they enable observed/sampled data to be incorporated directly
and effectively in the optimization problem. Since they make extensive and direct use of real
data, they are usually referred to as data-driven DRO approaches [22]. The next section
provides a review of some recent work in the area of DRO.

In this paper, we address a stochastic version of the well-known Capacitated Facility
Location Problem (CFLP) when the probability distribution of demand (the uncertain pa-
rameter) is not known with certainty, but rather can be only estimated based on a finite
random sample of observations. We construct a distributional ambiguity set around the em-
pirical distribution formed based on the historical data such that it includes all distributions
within a certain distance from the reference distribution, where distance is measured using a
Wasserstein metric. A DRO approach is implemented to hedge against distributional ambi-
guity and find solutions that can provide probabilistic out-of-sample performance guarantees.
Both single- and two-stage problems are considered, in which the former assumes that all
decisions are made at the outset without the possibility of recourse, whereas in the latter
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only the location decisions must be made under distributional ambiguity but the assignment
of demands to open facilities is decided after the demand becomes known. In both cases,
we stipulate that the solution obtained must remain feasible for all possible realizations in
the bounded support set of the demand distribution. In other words, the total capacity
of open facilities must be sufficient to satisfy the highest demand within the support set.
With proper selections of the support set and the norm used in the Wasserstein metric, both
cases can be tractably reformulated as mixed-integer linear programs. We devise two exact
solution approaches for the two-stage problem. The first approach begins by dualizing the
recourse problem then uses a column-and-constraint generation algorithm to implicitly enu-
merate the vertices of the polyhedral feasible set of the dual recourse problem. The second
approach, in contrast, uses a lifting of the support set then implements a column generation
algorithm to enumerate the vertices of the lifted support set. Moreover, we propose conser-
vative approximations of the single- and two-stage problems based on support set relaxation,
another approximation that uses affine decision rules, and a relaxation based on support set
restriction. Extensive numerical testing on benchmark was conducted to evaluate the com-
putational efficiency of the iterative algorithms, the quality of the proposed approximations
and the out-of-sample performance guarantee of the optimal solutions obtained.

The remainder of this paper is organized as follows: the next section provides brief re-
views of facility location problems under uncertainty and recent advances in DRO. Section
3 presents descriptions and mathematical formulations of the single- and two-stage distribu-
tionally robust CFLP. A reformulation of the single-stage problem and solution algorithms
for the two-stage problem are provided in section 4. Section 5 presents useful conservative
approximations and a relaxation. Numerical experiment results are presented in section 6.
Finally, Conclusions are drawn in section 7.

Notation. We use upright lower and upper case letters, respectively, for vectors and ma-
trices. Individual elements of these vectors and matrices are denoted using italic versions
of the same letters. For example, elements of the J-dimension vector x are denoted as xj.
Depending on the context, upper and lower case letters, respectively, might be used also to
denote probability distributions (e.g., Fξ) and functions (e.g., g(·)). Upper case calligraphic
letters are used for sets (e.g., X ). We use the symbol e to denote an all-ones vector of
appropriate size and ei as the i-th column of the identity matrix. When LP duality is used,
the dual/primal variables are included, between parentheses, right after their corresponding
primal/dual constraints in the mathematical formulation.

2 Literature Review

2.1 Facility Location Problems under Uncertainty

Given the substantial body of literature related to this topic, the aim of this section is not
to provide a comprehensive survey, but rather to shed light on the main trends in facility
location problems under uncertainty and point to some representative examples. The reader
is referred to the reviews of Louveaux [20], Owen and Daskin [25], Snyder [30] and the text
by Correia and da Gama [5] for a detailed account of the literature.

Traditionally, uncertainty in facility location problems is represented through a finite set
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of scenarios, each with a known probability of occurrence, an approach that dates back to the
work of Sheppard [28]. Most references have considered one of two attitudes: risk-neutral
(the expected value approach) or risk-averse (the min-max approach). A representative
example of the former is the stochastic programming formulation of the two-stage CFLP
with stochastic demand by Laporte et al. [19]. On the other hand, when the probabilities
of different scenarios are not available or cannot be trusted, or when the decision-maker
needs to hedge against extreme scenarios, the min-max approach provides an attractive
alternative. Minimizing the maximum regret, defined as the difference between the cost of a
solution in a given scenario and the optimal cost of that scenario, is often considered a more
suitable objective than minimizing the maximum cost over all scenarios, which is deemed
too pessimistic. Serra and Marianov [27] considered robust p-median problems with both
min-max cost and min-max regret objectives. In an attempt to control the conservatism
of the min-max approach, Daskin et al. [6] used a min-max regret objective that considers
only a subset of scenarios whose collective probability of occurrence equals at least some
user-specified value α.

The last decade has witnessed significant advances in RO methods, which found their
applications in facility location problems. Baron et al. [3] proposed tractable RO re-
formulations for a multi-period, revenue-maximization capacitated location-transportation-
production problem. They considered both box and ellipsoidal uncertainty sets for the
uncertain demand. In their single-stage model, all tactical (allocation) and operational (pro-
duction) decisions are taken at time zero along with the strategic location and capacity
decisions, without the possibility of recourse, which leads to overly conservative solutions.
Atamtürk and Zhang [2] avoided this issue in the two-stage RO reformulation they devised
for a location-transportation problem (as an example of network flow problems) with a bud-
get uncertainty set. While the two-stage approach alleviated the over-conservatism issue
of the single-stage approach, it usually leads to intractable robust counterparts. As shown
in Atamtürk and Zhang [2], the problem is NP-hard even for a network flow problem on a
bipartite graph. To overcome this difficulty in the case of a robust multi-period location-
transportation problem, Ardestani-Jaafari and Delage [1] proposed a set of conservative
approximations that reduce the flexibility of the delayed decisions and identified interesting
cases for which full flexibility is unnecessary to reach optimal robust solutions.

Recognizing the merits and limitations of the expectation/SP and the min-max/RO ap-
proaches, there have been some attempts to combine them in a single framework. Using a
finite set of scenarios, Snyder and Daskin [31] proposed an approach that tries to balance the
long-run performance advantage of SP with the risk-aversion nature of RO in two classical
facility location problems. The model minimizes the expected cost while enforcing a cap
on the maximum regret over all scenarios. On the negative side, the approach inherits the
intractability of both the deterministic integer problems and the SP method, added to them
the complexity of the ρ-robustness constraints. As noted by the authors, for many instances
finding a feasible solution, and even determining whether the instance is feasible, is difficult.
More recently, Keyvanshokooh et al. [18] studied a closed-loop supply chain network prob-
lem where the transportation cost is represented through a finite set of scenarios, whereas
demand and return quantities were assumed to belong to budgeted uncertainty sets. The
two uncertainty types were combined in a two-stage robust-stochastic program.

DRO offers an attractive alternative for dealing with uncertainty that combines the ad-
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vantages of RO and SP while evading their drawbacks. So far, very few references have used
DRO in facility location problems. For instance, Gülpınar et al. [11] studied a stochastic
location-inventory problem with a basestock inventory policy and a stock-out probabilistic
requirement stated as a chance constraint. In one of two cases they considered, they assumed
that the mean demand in each node is known while the demand distribution is ambiguous
and the demand belongs to an uncertainty set. Robust counterparts were derived for sym-
metric (ellipsoidal), asymmetric and scenario-based uncertainty sets to reflect different risk
measures. Although this work can be classified as a moment-based DRO problem, it was
labeled and solved as a classical RO problem without resorting to DRO reformulation ap-
proaches. Wu et al. [35] studied a two-stage uncapacitated facility location problem (UFLP)
under a moment-based distributional ambiguity, where the first one or two moments of the
demand distribution functions are known. They showed that the linear relaxation of this
problem is equivalent to that of the standard UFLP. Carlsson et al. [4] considered a distri-
butionally robust version of the Euclidean travelling salesman problem (TSP) in which the
distributional ambiguity set is defined, similar to our work, based on a Wasserstein metric.
Their objective was to divide a territory into service districts for a fleet of vehicles when
limited data is available. Our paper has a different focus on facility locations and allocation
of demands to open facilities.

2.2 Data-driven Distributionally Robust Optimization

In a DRO problem, we aim to find a solution that optimizes the expected value of an
objective function with respect to the worst-case probability distribution among a specific
set of distributions. Mathematically, a minimization DRO problem can be stated as:

min
x∈X

sup
Fξ∈D

EFξ
[h(x, ξ)]

where X ⊆ Rn is the feasible set of decision variables, ξ ∈ Ξ ⊆ Rm is a random vector that
represents the uncertain parameters, and h : Rn ×Rm 7→ R ∪ {−∞,∞} is a real function.

A key ingredient of any DRO model is the ambiguity set D. Broadly speaking, ambiguity
sets can be classified into two types: moment-based and statistical distance-based. In the
former, the ambiguity set encompasses all the probability distributions that satisfy certain
moment constraints, typically the first and second moments. Delage and Ye [7] considered a
supported moment-based DRO model where the first moment of ξ is confined in an ellipsoid
set whereas the second-moment matrix lies in a positive semidefinite cone. Other moment-
based models have been proposed by Wiesemann et al. [32] and Goh and Sim [10]. On the
other hand, statistical distance-based ambiguity sets encompass probability distributions
that are within a certain distance from a nominal distribution. Several distance metrics
have been proposed in the literature for constructing ambiguity sets. A statistical distance-
based ambiguity set that has drawn much attention recently and that will be utilized in
the paper is that based on the Wasserstein metric, also referred to as the Kantorovich-
Rubinstein metric [17]. The Wasserstein distance between two probability distributions
F1 and F2 can be described as the cost of an optimal transportation plan for moving the
probability mass in one so it becomes identical the other. Formally, the Wasserstein metric
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dW :M(Ξ)×M(Ξ) 7→ R is defined as

dW(F1, F2) := inf

{∫
Ξ2

‖ξ1 − ξ2‖Π(dξ1, dξ2)

∣∣∣∣ Π is a joint distribution of ξ1 and ξ2

with marginals F1 and F2 respectively

}
,

where ‖ · ‖ represents an arbitrary norm on Rm and the probability space M(Ξ) contains

all probability distributions supported on Ξ. Given a finite set Ξ̂ :=
{
ξ̂1, . . . , ξ̂N

}
of sample

points, each representing a historical or predicted realization of the uncertain parameters,
an empirical distribution F̂N

ξ can be constructed such that each discrete point in the sample

set has an equal probability of 1
N

, i.e., F̂N
ξ := 1

N

N∑
n=1

δξ̂n , where δξ : Σ 7→ {0, 1}, δξ̂n(A) ={
1 if ξ̂n ∈ A
0 otherwise

is a Dirac measure concentrating unit mass at ξ̂n and Σ is a Borel σ-algebra

on Ξ. The Wasserstein ambiguity set Dε(F̂N
ξ ,Ξ) :=

{
Fξ ∈M(Ξ) | dW(Fξ, F̂

N
ξ ) ≤ ε

}
in-

cludes all probability distributions supported on Ξ ⊂ Rm that are within a distance ε ≥ 0 of
the reference/emperical distribution F̂N

ξ . Intuitively, when ε = 0, the ambiguity set contains
only the empirical distribution and the DRO problem reduces to an SP, whereas with a very
large ε, the adversary can place the entire probability mass on a vertex that maximizes the
cost and the problem becomes an RO.

Despite the conceptual difficulty of DRO problems with Wasserstein ambiguity sets,
tractable reformulation were developed for important special cases. Wozabal [33] exploited
the property that the extreme points are discrete distributions with a fixed number of atoms
to devise a finite-dimensional non-convex reformulation. Subsequently, Wozabal [34] pro-
vided a more concise closed-form expression for robustifying convex, law-invariant risk mea-
sures over a Wasserstein ambiguity set without support constraints when the objective func-
tion is linear in the uncertain parameters. Zhao and Guan [37] reformulated a two-stage,
data driven DRO problem as a two-stage SP with a finite support and devised a Benders
approach to solve it efficiently. Gao and Kleywegt [9] showed that the data-driven DRO can
be approximated by a robust program to any accuracy, and that the robust program ap-
proximation becomes exact when the objective function is concave in ξ. Mohajerin-Esfahani
and Kuhn [23] showed that when the uncertainty set is convex and closed and the objective
function is a point-wise minimum of concave functions, the problem can be reformulated as
a finite convex program. Hanasusanto and Kuhn [13] showed that a two-stage Wasserstein-
based DRO problem can be reformulated as a copositive program if the problem has complete
recourse and l2-norm is used in the Wasserstein metric definition. They also provide a lin-
ear programming reformulation when the distribution’s support is unconstrained and an
l1-norm is used to define the Wasserstein ball. Recently, Luo and Mehrotra [21] proposed a
cutting-surface method to solve the reformulated problem for the general nonlinear model.

3 Single- and two-stage distributionally robust capac-

itated facility location problems

The capacitated facility location problem (CFLP) is a classical problem that has been ex-
tensively studied in the literature. Nonetheless, for completeness, we provide the following
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description of the problem: We are given a set of demand points indexed by i = 1, . . . , I,
and a set of potential facility locations indexed by j = 1, . . . , J . ξi denotes the demand orig-
inating from point i. The entire demand has to be served by facilities opened in a subset of
potential locations. Each facility has a set-up cost fj and a capacity vj that determines the
maximum demand quantity it can serve. There is a unit shipping cost cij between demand
point i and facility location j. We aim to determine the number and locations of facilities to
open and how to allocate demand to them in order to minimize the total cost, which includes
set-up and shipping costs. Due to the capacitated nature of the problem, single assignment
of demand points to facilities might not be optimal (or even feasible). To formulate the
problem, we use two types of variables: Binary location variables x ∈ {0, 1}J , where xj takes
value one if a facility is opened in potential location j and zero otherwise, and non-negative
continuous allocation variables y ∈ RI×J

+ , where yij represents the percentage of point i’s
demand served by the facility opened in location j. With that, the CFLP can be stated as

min
x∈{0,1}J , y∈RI×J

+

J∑
j=1

fjxj +
I∑
i=1

J∑
j=1

ξicijyij (1a)

s.t.
J∑
j=1

yij = 1 i = 1, . . . , I (1b)

I∑
i=1

ξiyij ≤ vjxj j = 1, . . . , J. (1c)

Assumption 1. In the Wasserstein distributional ambiguity set Dε(F̂N
ξ ,Ξ), (i) the support

set is a bounded polyhedron defined as Ξ :=
{
ξ ∈ RI | Cξ ≤ d

}
, for some C ∈ RL×I and

d ∈ RL; and (ii) the norm used in the Wasserstein metric definition is an l1-norm.

Hence, with a risk-averse decision-maker who aims to avoid future disappointments and
desires a probabilistic guarantee on the out-of-sample performance, we can formulate the
DRO problem as

min
x∈{0,1}J , y∈RI×J

+

J∑
j=1

fjxj + sup
Fξ∈Dε(F̂N

ξ ,Ξ)

EFξ

[
I∑
i=1

J∑
j=1

ξicijyij

]
(2a)

s.t.
J∑
j=1

yij = 1 i = 1, . . . , I (2b)

sup
ξ∈Ξ

I∑
i=1

ξiyij ≤ vjxj j = 1, . . . , J. (2c)

The robust constraint (2c) replaces the deterministic constraint (1c) to ensure that the so-
lution remains feasible for all possible demand realizations. In this formulation, we assume
that all decisions are taken before uncertainty is revealed. Therefore, we refer to this problem
as the single-stage distributionally robust capacitated facility location problem (1-DR-CFLP).
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This formulation is suitable when the allocation of demands to open facilities must be decided
at the outset without a possibility of recourse, due to, for example, contractual commitments
with shipping companies or customers. Furthermore, the single stage model gives rise to a
simple rule that can be implemented in a decentralized manner as each facility only needs to
know the demand at the retailers that it serves. However, when only the strategic location
decision needs to be made under uncertainty whereas the assignment of demands to open
facilities can be made after the demands become known, the decision maker can achieve
a less-conservative solution by solving the two-stage distributionally robust capacitated fa-
cility location problem (2-DR-CFLP). The first-stage problem, which has the here-and-now
location decision variables, can be stated as

min
x∈{0,1}J

J∑
j=1

fjxj + sup
Fξ∈Dε(F̂N

ξ ,Ξ)

EFξ
[g(x, ξ)] , (3)

where g(x, ξ) is the recourse function, evaluated after uncertainty is revealed by solving the
second-stage problem

g(x, ξ) := min
z∈RI×J

+

I∑
i=1

J∑
j=1

cijzij (4a)

s.t.
J∑
j=1

zij ≥ ξi i = 1, . . . , I (4b)

I∑
i=1

zij ≤ vjxj j = 1, . . . , J. (4c)

Note that for the two-stage problem, we utilized a well-known alternative formulation of
the CFLP that uses the allocation variable zij = ξiyij, which denotes the demand of point i
served by the facility opened in location j, instead of yij (See, for example, [24]). With this
formulation, the second-stage problem has a fixed recourse and the uncertain parameters
affect the right-hand side only. It also highlights the convexity of g(x, ξ) with respect to ξ.

We also need to ensure that the recourse problem remains feasible for all feasible first-
stage decisions, i.e., has a relatively complete recourse. We enforce this property by adding
the following valid inequality to the first-stage problem:

sup
ξ∈Ξ

eᵀξ ≤ vᵀx,

which, under Assumption 1(i), can be tractably reformulated through LP duality with mul-
tipliers w as

inf
w∈RL

+

dᵀw ≤ vᵀx

Cᵀw = e. (ξ)
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4 Reformulations and Exact Solution Approaches

In this section, we show how to tractably reformulate the single- and two-stage distributionally-
robust CFLP, and provide two exact solution approaches for the latter.

4.1 Reformulation of the 1-DR-CFLP

For a given feasible solution (x̄, ȳ), the inner maximization in the 1-DR-CFLP’s objective
function (2a) can be tractably reformulated directly, using the result from Mohajerin Esfa-
hani and Kuhn [23, Corollary 5.1], as

min
λ,γ∈RN×L

+

ελ+
1

N

N∑
n=1

(
I∑
i=1

J∑
j=1

ξ̂incij ȳij +
L∑
l=1

(
dl −

I∑
i=1

Cliξ̂in

)
γln

)
(5a)

s.t.

∥∥∥∥∥
I∑
i=1

(
L∑
l=1

Cliγln −
J∑
j=1

cij ȳij

)
ei

∥∥∥∥∥
∗

≤ λ n = 1, . . . , N. (5b)

Under Assumption 1(ii), the dual norm ‖.‖∗ is an l∞-norm and constraint (5b) reduces
to ∣∣∣∣∣

L∑
l=1

Cliγln −
J∑
j=1

cij ȳij

∣∣∣∣∣ ≤ λ i = 1, . . . , I, n = 1, . . . , N.

Moreover, the robust constraint (2c) can be tractably reformulated through LP duality
as

min
u∈RJ×L

+

L∑
l=1

dlujl ≤ vjx̄j j = 1, . . . , J

s.t.
L∑
l=1

Cliujl = ȳij i = 1, . . . , I, j = 1, . . . , J.
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Hence, the 1-DR-CFLP is equivalent to

min
x,y,λ,γ,u

J∑
j=1

fjxj + ελ+
1

N

N∑
n=1

(
I∑
i=1

J∑
j=1

ξ̂incijyij +
L∑
l=1

(
dl −

I∑
i=1

Cliξ̂in

)
γln

)

s.t.
L∑
l=1

Cliγln −
J∑
j=1

cijyij ≤ λ i = 1, . . . , I, n = 1, . . . , N

J∑
j=1

cijyij −
L∑
l=1

Cliγln ≤ λ i = 1, . . . , I, n = 1, . . . , N

J∑
j=1

yij = 1 i = 1, . . . , I

L∑
l=1

dlujl ≤ vjxj j = 1, . . . , J

L∑
l=1

Cliujl = yij i = 1, . . . , I, j = 1, . . . , J

x ∈ {0, 1}J , y ∈ RI×J
+ ,γ ∈ RN×L

+ , u ∈ RJ
+ × L.

This is a mixed-integer linear program (MILP) with only J binary variables that can be
easily solved using commercial solvers.

4.2 Exact reformulations and solution approaches for the 2-DR-
CFLP

This section presents two exact solution approaches for the two-stage distributionally-robust
CFLP. In the first approach, the problem is reformulated after dualizing the recourse problem
into a large-scale mixed-integer linear program, before a column-and-constraint generation
algorithm is used to solve it. In the second approach, a lifting of the support set is utilized to
reformulate the problem and a column generation algorithm is developed for the reformulated
problem. In both approaches, we use results from [23] to deal with the DRO problem.

4.2.1 A column-and-constraint generation algorithm with a dualized recourse
problem

We begin the reformulation of the 2-DR-CFLP by dualizing constraints (4b) and (4c) with
multipliers ν ∈ RI

+ and µ ∈ RJ
+, respectively. However, to have a bounded dual recourse
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problem, we first need to ensure feasibility of the primal recourse problem by writing it as

g(x, ξ) := min
z∈RI

+×J,θ≥0

I∑
i=1

J∑
j=1

cijzij + c̄θ (6a)

s.t.
J∑
j=1

zij ≥ ξi i = 1, . . . , I (νi) (6b)

I∑
i=1

zij ≤ vjxj + θ j = 1, . . . , J, (µj) (6c)

where c̄ ≥ max
i,j

(cij) is a scalar large enough to ensure that θ∗ = 0 unless the selection of the

first-stage decision x makes the recourse problem infeasible. Next, through LP duality we
get

g(x, ξ) = max
ν∈RI

+,µ∈RJ
+

I∑
i=1

ξiνi −
J∑
j=1

vjxjµj (7a)

s.t. νi ≤ µj + cij i = 1, . . . , I, j = 1, . . . , J (zij) (7b)

J∑
j=1

µj ≤ c̄ . (θ) (7c)

Note that the polyhedral feasible set of the dual problem (7) is bounded, as it can be con-

tained in the hypercube

{
(ν,µ) : νi ∈ [0,max

j
cij + c̄], i = 1, . . . , I, µj ∈ [0, c̄], j = 1, . . . , J

}
,

and that it depends on neither x nor ξ. Hence, we can solve the dual problem by enumeration
over its vertices. Let K := {k}Kk=1 be the index set of vertices of the dual feasible set

V := {(ν,µ) : 0 ≤ νi ≤ µj + cij, 0 ≤ µj ≤ c̄, i = 1, . . . , I, j = 1, . . . , J} .

Therefore, the dual problem can be written as g(x, ξ) = max
k∈K

(
I∑
i=1

ξiν
k
i −

J∑
j=1

vjxjµ
k
j

)
. Using

the result from Mohajerin Esfahani and Kuhn [23, Corollary 5.1], the 2-DR-CFLP can be
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tractably reformulated as

min
x,w,λ,s,γ

J∑
j=1

fjxj + λε+
1

N

N∑
n=1

sn (8a)

s.t. −
J∑
j=1

vjxjµ
k
j +

I∑
i=1

ξ̂inν
k
i +

L∑
l=1

(
dl −

I∑
i=1

Cliξ̂in

)
γlnk ≤ sn n = 1, . . . , N, k ∈ K

(8b)

‖Cᵀγnk − νk‖∗ ≤ λ n = 1, . . . , N, k ∈ K
(8c)

dᵀw ≤ vᵀx (8d)

Cᵀw=e (8e)

x ∈ {0, 1}J ,w ∈ RL
+, s ∈ RN ,γ ∈ RN×L×K

+ . (8f)

Given the exponential size of K, we begin with small subsets K′n ⊂ K for constrains in-
dexed by n = 1, . . . , N and employ a column-and-constraint generation algorithm to generate
and add new vertices to K′n iteratively. We first write problem (8) as

min
x,w,λ,s

∑
j∈J

fjxj + λε+
1

N

N∑
n=1

sn

s.t. hn(x, λ,µk,νk) ≤ sn n = 1, ..., N, k ∈ K
dᵀw ≤ vᵀx

Cᵀw=e

x ∈ {0, 1}J ,w ∈ RL
+, s ∈ RN ,

where, for a given k ∈ K,

hn(x, λ,µ,ν) := min
γn∈RL

+

−
J∑
j=1

vjxjµj +
I∑
i=1

ξ̂inνi +
(

d− Cξ̂n

)ᵀ
γn (9a)

s.t. ‖Cᵀγn − ν‖∗ ≤ λ. (9b)

Under Assumption 1(ii), (9b) reduces to

−Cᵀγn + ν ≤ λ (ψ+ ∈ RI)

Cᵀγn − ν ≤ λ. (ψ− ∈ RI)

For a given n, we are looking for the index of a new vertex (µk
′
,νk

′
) to be added to K′n

such that hn(x, λ,µk
′
,νk

′
) > sn. If no such vertex exists for any n = 1, . . . , N , we conclude

that x is optimal with respect to problem (8). Therefore, for given λ̄ and x̄, we need to solve
max
k∈K

hn(x̄, λ̄,µk,νk). Yet, since hn(x, λ,µ,ν) is jointly convex with respect to (µ,ν), this is

12



equivalent to solving

max
ν∈RI ,µ∈RJ

hn(x̄, λ̄,µ,ν) (10a)

s.t. 0 ≤ νi ≤ µj + cij i = 1, . . . , I, ∀j = 1, . . . , J (10b)

0 ≤
J∑
j=1

µj ≤ c̄. (10c)

Similar to what has been done in [36], by applying the KKT optimality conditions to the
inner minimization (9), the separation subproblem (10) can be reformulated as the mixed-
integer linear program

s̄n(x̄, λ̄) = max
µ,ν,γ,ψ+,ψ−,B0,B+,B−

−
J∑
j=1

vjxjµj +
I∑
i=1

ξ̂inνi + (d− Cξ̂n)ᵀγ (11a)

s.t. 0 ≤ d− C(ξ̂n −ψ+ +ψ−) ≤MB0 (11b)

0 ≤ γ ≤M(e− B0) (11c)

0 ≤ λ̄+ Cᵀγ− ν ≤MB+ (11d)

0 ≤ ψ+ ≤M(e− B+) (11e)

0 ≤ λ̄− Cᵀγ + ν ≤MB− (11f)

0 ≤ ψ− ≤M(e− B−) (11g)

0 ≤ νi ≤ µj + cij i = 1, . . . , I, j = 1, . . . , J (11h)

0 ≤
∑
j∈J

µj ≤ c̄ (11i)

µ ∈ RJ , ν ∈ RI , γ ∈ RL, ψ+,ψ− ∈ RI (11j)

B0 ∈ {0, 1}L, B+,B− ∈ {0, 1}I . (11k)

Note that the binary variables B0, B+ and B− are used to linearize the complementarity
constraints (

dl −
I∑
i=1

Cli(ξ̂in − ψ+
i + ψ−i )

)
γl = 0 l = 1, . . . , L(

λ̄+
L∑
l=1

Cliγl − νi

)
ψ+
i = 0 i = 1, . . . , I(

λ̄−
L∑
l=1

Cliγl + νi

)
ψ−i = 0 i = 1, . . . , I,

respectively, resulting from applying the KKT optimality conditions.
The optimal value of the relaxed master problem (problem (8) with the subsets K′n ⊂

K, n = 1, . . . , N) provides a lower bound LB for the optimal value of (8). Furthermore,
by solving (11) for any feasible x̄ and λ̄, we obtain an upper bound. The algorithm is
initiated with any feasible x̄ and λ̄. In every iteration, separation subproblems (11) are
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solved for every n = 1, . . . , N to find new vertices and to update the upper bound as

UB ← min

(
UB,

∑
j∈J

fjx̄j + ελ̄+ 1
N

N∑
n=1

s̄n

)
. The relaxed master problem is then solved

with all the vertices added so far to update the values of x̄ and λ̄, which are used in the next
iteration, and to obtain a lower bound. If the gap between the best upper bound obtained
so far and the current lower bound becomes small enough, the algorithm terminates and the
incumbent x is declared optimum. A pseudocode of the column-and-constraint generation
algorithm is shown in Algorithm 1.

Input:
{
ξ̂n, n = 1, . . . , N

}
⊂ Ξ, x̄ feasible to 1-DR-CFLP, ε ≥ 0, ε ≥ 0

Output: ε-optimal solution to 2-DR-CFLP
Initialize λ ≥ 0, K′n ←− ∅ ,∀n = 1, . . . , N , LB ←− −∞, UB ←−∞
while UB − LB > ε do
∀n ∈ N , solve the subproblem (11) to get a new vertex (µk

′
,νk

′
) and s̄n(x̄, λ̄)

K′n ←− K′n ∪ {k′} for all n = 1, . . . , N

UB ←− min

(
UB,

J∑
j=1

fjx̄j + λ̄ε+ 1
N

N∑
n=1

s̄n

)
Solve the relaxed master problem (8) with the index subsets K′n, n = 1, . . . , N to
obtain a new x̄ and λ̄ and update LB

end
Algorithm 1: A column-and-constraint generation algorithm with a dualized recourse
problem

4.2.2 A column generation algorithm with a support set lifting

An alternative reformulation of the 2-DR-CFLP can be obtained starting from a step in the
proof of Theorem 4.2 in [23] which shows that for a given x̄, the term sup

Fξ∈Dε(F̂N
ξ ,Ξ)

EFξ
[g(x̄, ξ)]

is equivalent to

min
λ∈R+,s∈RN

λε+
1

N

N∑
n=1

sn (12a)

s.t. max
ξ∈Ξ

(
g(x̄, ξ)− λ‖ξ− ξ̂n‖

)
≤ sn n = 1, . . . , N. (12b)

In our case, since the recourse function g(x, ξ) and the norm ‖ξ − ξ̂n‖ are both convex
functions in ξ, the objective in (12b) is a Difference of Convex (DC) function [16]. Hence,
the inner maximization is a non-convex optimization problem and LP strong duality can
not be utilized. Instead, we introduce the lifted space Ξ′ := Ξ′1 × · · · × Ξ′N to represent
uncertainty, in which

Ξ′n :=

{
(ξ, ζ) ∈ RI+1

∣∣∣∣ ξ ∈ Ξ

‖ξ− ξ̂n‖ ≤ ζ ≤ ζ̄n

}
,

where ζ̄n = sup
ξ∈Ξ
‖ξ− ξ̂n‖ is chosen such that ζ ≤ ζ̄n makes Ξ′n bounded while preserving the
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exactness of the reformulation. Therefore, the robust constraint (12b) can be stated as

max
(ξ,ζ)∈Ξ′n

(g(x̄, ξ)− λζ) ≤ sn n = 1, . . . , N.

It is easy to show that when Assumption 1 holds, the lifted support set Ξ′ is a polyhedron.
Since the inner problem in (12b) is a convex maximization over a bounded polyhedral set,
its maximum is attained at one of the vertices of Ξ′n. Hence, we replace the maximization
over Ξ′n with an equivalent maximization over the set

{
(ξkn , ζkn)

}
kn∈Kn

of vertices for each
n = 1. . . . , N , where Kn is the index set for the vertices of Ξ′n. Thus, the 2-DR-CFLP is
equivalent to

min
x∈{0,1}J ,w∈RL

+,λ∈R+,s∈RN

J∑
j=1

fjxj + λε+
1

N

N∑
n=1

sn (13a)

s.t. g(x, ξkn)− λζkn ≤ sn ∀kn ∈ Kn, n = 1, . . . , N (13b)

dᵀw ≤ vᵀx (13c)

Cᵀw=e. (13d)

Obviously, it is not practical to consider the entire index sets Kn, n = 1, . . . , N at the
outset. Instead, we employ a column generation algorithm to successively generate and
incorporate new elements of K as needed [8]. The algorithm is initialized with feasible x̄
and λ̄ ≥ 0, and with empty index sets K′n = ∅, n = 1, . . . , N . In every iteration, and for
n = 1, . . . , N , we solve the separation subproblem

s̄n = sup
(ξ,ζ)∈Ξ′n

g(x, ξ)− λζ (14)

to generate a new vertex (ξk
′
n , ζk

′
n). Index of the newly generated vertex is added to K′n, i.e.,

K′n ← K′n∪{k′}, and the upper bound is updated as UB ← min

(
UB,

∑
j∈J

fjx̄j + ελ̄+ 1
N

N∑
n=1

s̄n

)
.

We then solve the relaxed master problem (problem (13) with the subsets K′n ⊂ Kn, n =
1, . . . N) to update the values of x̄ and λ̄ and to set its optimal value as an updated lower
bound LB. The algorithm iterates between solving the separation subproblem and solving
the relaxed master problem until the gap between the upper and lower bounds becomes
sufficiently small. We note that the column generation algorithm described in this section is
quite similar to the column-and-constraint generation algorithm presented in Section 4.2.1.
Thus, a pseudocode similar to the one depicted in Algorithm 1 can be written for the column
generation algorithm by replacing the step in which subproblem (11) is solved to get a new
vertex (µk

′
,νk

′
) by one in which subproblem (14) is solved to get a new vertex (ξk

′
n , ζk

′
n),

and by solving the relaxed master problem (13) instead of (8).
Finite convergence of the algorithm is guaranteed given that the polyhedral support set

Ξ′n has a finite number of vertices. What remains now is to show how to solve the subproblem
(14) with a given (x̄, λ̄) and for a specific n. By substituting the definition of the recourse
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function from (4), the subproblem expands to

sup
ξ,ζ,δ

min
z∈RI×J

+

I∑
i=1

J∑
j=1

cijzij − λ̄ζ

s.t.
J∑
j=1

zij = ξi i = 1, . . . , I (νi)

I∑
i=1

zij ≤ vjx̄j j = 1, . . . , J (µj)

I∑
i=1

Cliξi ≤ dl l = 1, . . . , L

ξi − ξ̂in ≤ δi i = 1, . . . , I

ξ̂in − ξi ≤ δi i = 1, . . . , I

I∑
i=1

δi ≤ ζ

0 ≤ ζ ≤ ζ̄n.

By dualizing the inner minimization problem we get the bilinear program

sup
ξ,ζ,δ

max
ν∈RI

+,µ∈RI

I∑
i=1

νiξi −
J∑
j=1

µjvjx̄j − λ̄ζ

s.t. νi − µj ≤ cij i = 1, . . . , I, j = 1, . . . , J

I∑
i=1

Cliξi ≤ dl l = 1, . . . , L (αl)

ξi − ξ̂in ≤ δi i = 1, . . . , I (ψ+
i )

ξ̂in − ξi ≤ δi i = 1, . . . , I (ψ−i )

I∑
i=1

δi ≤ ζ (β)

0 ≤ ζ ≤ ζ̄n. (γ)

We then swap the two maximizations and replace the inner optimization with its equiv-
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alent KKT conditions while using the dual objective to get the MILP

sup
ξ, ζ, δ,ν,µ,α, β, γ,ψ+,ψ−

B1,B2,B3, B4, B5,B6,B7, B8

dᵀα+ ξ̂ᵀn(ψ+ −ψ−) + ζ̄nγ −
J∑
j=1

µjvjx̄j

s.t. νi − µj ≤ cij i = 1, . . . , I, j = 1, . . . , J

0 ≤ d− Cξ ≤MB1

0 ≤ α ≤M(e− B1)

0 ≤ δ− ξ+ ξ̂n ≤MB2

0 ≤ ψ+ ≤M(e− B2)

0 ≤ δ+ ξ− ξ̂n ≤MB3

0 ≤ ψ− ≤M(e− B3)

0 ≤ ζ − eᵀδ ≤MB4

0 ≤ β ≤M(1−B4)

0 ≤ ζ̄n − ζ ≤MB5

0 ≤ γ ≤M(1−B5)

0 ≤ Cᵀα+ψ+ −ψ− − ν ≤MB6

0 ≤ ξ ≤M(e− B6)

0 ≤ β −ψ+ −ψ− ≤MB7

0 ≤ δ ≤M(e− B7)

0 ≤ γ − β + λ̄ ≤MB8

0 ≤ ζ ≤M(1−B8)

ξ, δ,ν,ψ+,ψ− ∈ RI , µ ∈ RJ , α ∈ RL, β, γ, ζ ∈ R

B1 ∈ {0, 1}L,B2,B3,B6,B7 ∈ {0, 1}I , B4, B5, B8 ∈ {0, 1}.

5 Conservative Approximations and Relaxations

In this section, we show how upper and lower bounds on the optimal values of the single-
and two-stage DR-CFLP could be obtained by solving conservative approximations and
relaxations, respectively.

5.1 Conservative approximations of 1-DR-CFLP and 2-DR-CFLP
using support relaxation

The exact algorithms described in section 4.2 require that N subproblems, each having a
large number of binary variables, be solved in every iteration. Although decomposability
into multiple subproblems makes the algorithm amenable to parallelization, the problem
might become computationally challenging as the sample size increases. Likewise, one might
find that the reformulation proposed in section 4.1 for 1-DR-CFLP becomes computationally
demanding as N is increased. For this reason, it can become interesting to conservatively
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approximate these two models. In this section, we propose conservative approximations for
both models, inspired by the work of Mohajerin Esfahani and Kuhn [23], that rely on relaxing

the support constraint in Dε(F̂N
ξ ,Ξ). These relaxations will use the following result.

Lemma 1. (Theorem 6.3 in [23]) Let `x(ξ) be a proper, convex, and lower semicontinuous
function. Then, for any ε ≥ 0, we have that

sup
Fξ∈Dε(F̂N

ξ ,RI)

EFξ
[`x(ξ)] = EF̂N

ξ
[`x(ξ)] + εLip(x)

where Lip(x) := supρ:`∗x(ρ)<∞ ‖ρ‖∗ is referred as the Lipschitz modulus of `x(·), and `∗x(ρ) is
the convex conjugate of `x(ξ).

Starting with 1-DR-CFLP, we replace Dε(F̂N
ξ ,Ξ) with Dε(F̂N

ξ ,R
I) in problem (2). When

applying Lemma 1, we consider the function `y(ξ) :=
∑I

i=1

∑J
j=1 ξicijyij with convex con-

jugate `∗y(ρ) := 1{ρi =
∑J

j=1 cijyij}, i.e., the indicator function that returns zero if ρi =∑J
j=1 cijyij and infinity otherwise. This implies that Lip(y) = ‖

∑I
i=1

∑J
j=1 eicijyij‖∗. Hence,

the conservative approximation for 1-DR-CFLP that is based on relaxation of the support
information reduces to:

min
x,y,u

J∑
j=1

fjxj +
I∑
i=1

J∑
j=1

ξ̄icijyij + ε‖
I∑
i=1

J∑
j=1

eicijyij‖∗ (15a)

s.t.
J∑
j=1

yij = 1 i = 1, . . . , I (15b)

L∑
l=1

dlujl ≤ vjxj j = 1, . . . , J (15c)

L∑
l=1

Cliujl = yij i = 1, . . . , I, j = 1, . . . , J (15d)

x ∈ {0, 1}J , y ∈ RI×J
+ , u ∈ RJ×L, (15e)

where ξ̄ := (1/N)
∑N

n=1 ξ̂
n is the empirical mean of ξ. This problem can be reformu-

lated as a linear program when l1-norm (following Assumption 1(ii)) is used, in which case
‖
∑I

i=1

∑J
j=1 eicijyij‖∗ = maxi

∑
j cijyij.

Following with the 2-DR-CFLP, the bound that we get by replacing Dε(F̂N
ξ ,Ξ) with

Dε(F̂N
ξ ,R

I) in problem (3) will actually depend on the definition that is employed for g(x, ξ).
It is clear for instance, that the conservative approximation becomes useless when using the
definition in (4) since then for any x ∈ RJ

+ and positive ε, there exists an F ∈ Dε(F̂N
ξ ,R

I)
with positive mass on some ξ for which the problem in g(x, ξ) becomes infeasible. We
therefore need to employ an equivalent definition of g(x, ξ) that is feasible for any ξ ∈ RI

and makes `x(ξ) := g(x, ξ) a proper, convex, and lower semicontinuous function. With this
in mind, we choose to employ the definition in (6).
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Based on Lemma 1, one can establish that

sup
Fξ∈Dε(F̂N

ξ ,RI)

EFξ
[g(x, ξ)] = EF̂N

ξ
[g(x, ξ)] + εLip(x),

where Lip(x) := supρ:`∗x(ρ)<∞ ‖ρ‖∗. Using the supremum representation of g(x, ξ) we get that
the condition `∗x(ρ) <∞ can be reformulated as:

∞ > `∗x(ρ) = sup
ξ

ρᵀξ− `x(ξ)

= sup
ξ

inf
ν,µ:νi≤µj+cij ,

∑
j µj≤c̄,ν≥0,µ≥0

ρᵀξ−
I∑
i=1

ξiνi +
J∑
j=1

vjxjµj

= inf
ν,µ:νi≤µj+cij ,

∑
j µj≤c̄,ν≥0,µ≥0

sup
ξ

ρᵀξ−
I∑
i=1

ξiνi +
J∑
j=1

vjxjµj

= inf
µ:ρi≤µj+cij ,

∑
j µj≤c̄,ρ≥0,µ≥0

J∑
j=1

vjxjµj,

where the order of the supξ and infν,µ operations can be reversed according to Sion’s minimax
theorem since the function is bilinear in ξ and (ν,µ) and since the feasible space for (ν,µ)
is convex and bounded.

We therefore conclude that the condition is therefore satisfied if and only if there exists
a feasible µ. Hence, we get that

Lip(x) = L̄ := sup
ρ,µ

‖ρ‖∗

s.t. ρi ≤ µj + cij i = 1, . . . , I, j = 1, . . . , J
J∑
j=1

µj ≤ c̄

µ ≥ 0, ρ ≥ 0.

Note that Lip(x) is actually independent of x and can easily be evaluated when Assumption
1(ii) holds, in which case ‖ρ‖∗ = ‖ρ‖∞ = maxi ρi. Overall, the conservative approximation
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for 2-DR-CFLP that is based on relaxation of the support information reduces to

min
x,w,z

J∑
j=1

fjxj +
1

N

N∑
n=1

I∑
i=1

J∑
j=1

cijz
n
ij + εL̄ (16a)

s.t.
J∑
j=1

znij ≥ ξ̂ni i = 1, . . . , I, n = 1, . . . , N (16b)

I∑
i=1

znij ≤ vjxj j = 1, . . . , J,∀n = 1, . . . , N (16c)

znij ≥ 0 i = 1, . . . , I, j = 1, . . . , J, n = 1, . . . , N (16d)

dᵀw ≤ vᵀx (16e)

Cᵀw = e (16f)

x ∈ {0, 1}J ,w ∈ RL
+, z ∈ RI×J×N . (16g)

5.2 Conservative approximations of 2-DR-CFLP using affine de-
cision rules

Another alternative for obtaining a conservative approximation in the case of 2-DR-CFLP
is to use affine decision rules (ADR). With ADR, an assumption is made that the recourse
variables depend affinely on the realized value of the uncertain parameter. To use this approx-
imation, we start from the reformulated problem (12) and apply ADR on each constraint

(12b) individually. In particular, we have that maxξ∈Ξ

(
g(x, ξ)− λ‖ξ− ξ̂n‖

)
is bounded

from above by

min
pnij∈R, qn

ij
ᵀ∈RI

max
ξ∈Ξ

(
I∑
i=1

J∑
j=1

cij(p
n
ij + qnijξ)− λ‖ξ− ξ̂n‖

)
,

subject to the feasibility constraints on p and q outlined below. With that, the Affinely-
adjustable 2-DR-CFLP with a Wasserstein ambiguity set can be reformulated as
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min
x,p,q,λ,s

J∑
j=1

fjxj + ελ+
1

N

N∑
n=1

sn (17a)

s.t.
I∑
i=1

J∑
j=1

cij(p
n
ij + qnijξ)− λ‖ξ− ξ̂n‖ ≤ sn n = 1, . . . , N, ∀ξ ∈ Ξ (17b)

J∑
j=1

(
pnij + qnijξ

)
≥ ξi i = 1, . . . , I, n = 1, . . . , N, ∀ξ ∈ Ξ

(17c)

I∑
i=1

(
pnij + qnijξ

)
≤ vjxj j = 1, . . . , J, n = 1, . . . , N, ∀ξ ∈ Ξ

(17d)

pnij + qnijξ ≥ 0 i = 1, . . . , I, j = 1, . . . , J, n = 1, . . . , N, ∀ξ ∈ Ξ

(17e)

x ∈ {0, 1}, p ∈ RI×J×N ,Q ∈ RI×J×N×I , s ∈ RN .

Under assumption 1, constraints (17b) can be reformulated using LP-duality as

I∑
i=1

J∑
j=1

cijp
n
ij +

∑
i∈I

ξ̂in
(
ψ+
in − ψ−in

)
+
∑
l∈L

dlγln ≤ sn n = 1, . . . , N

ψ+
ωn − ψ−ωn +

∑
l∈L

Clωγln =
I∑
i=1

J∑
j=1

cijq
n
ωij ω = 1, . . . , I, n = 1, . . . , N

ψ+
in + ψ−in ≤ λ i = 1, . . . , I, n = 1, . . . , N

ψ+,ψ− ∈ RI×N
+ , γ ∈ RL×N

+ ,

with the dual variables ψ+,ψ− and γ added to the minimization. Note that the index
ω is used for the elements of qij, to differentiate it from the subscript i. To finalize the
reformulation, we reformulate the robust constraints (17c)-(17e) using LP duality. Under
Assumption 1, the robust constraint (17c) indexed by (i, n) is dualized using multiplier
vin ∈ RL

+ as

J∑
j=1

pnij −
L∑
l=1

dlviln ≥ 0 (18a)

L∑
l=1

Clωviln +
J∑
j=1

qnωij ≥ 0 ω = 1, . . . , I, ω 6= i (18b)

L∑
l=1

Clωvωln +
J∑
j=1

qnωij ≥ 1 ω = i. (18c)
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Likewise, the robust constraint (17d) indexed by (j, n) is dualized using multipliers ujn ∈ RL
+

as

I∑
i=1

pnij +
L∑
l=1

dlujln ≤ vjxj (19a)

L∑
l=1

Clωujln ≥
I∑
i=1

qnωij ω = 1, . . . , I. (19b)

And finally, the robust constraint (17e) indexed by (i, j, n) is dualized using multiplier oijn ∈
RL

+ as

pnij −
L∑
l=1

dloijln ≥ 0 (20a)

L∑
l=1

Clωoijln + qnωij ≥ 0 ω = 1, . . . , I. (20b)

Constraints (17c), (17d) and (17e) are replaced with constraint sets (18), (19) and (20),
respectively, and the new auxiliary variables vin, ujn and oijn are included in the optimization.

5.3 Lower bound for 2-DR-CFLP

Given that solving 2-DR-CFLP can potentially be numerically challenging, one might be
interested in confirming the quality of the conservative approximations proposed in this
section by comparing their optimal value to a lower bound. In particular, a lower bound
for 2-DR-CFLP can be obtained by restricting the worst-case distribution to be supported
on the same support as the empirical distribution, i.e., Ξ̂. This gives rise to the following
robust linear program:

min
x∈{0,1}J ,w∈RL

+,z∈R
I×J×N
+

J∑
j=1

fjxj + sup
r∈R

N∑
n=1

rn

(
I∑
i=1

J∑
j=1

cijz
n
ij

)
(21a)

s.t.
J∑
j=1

znij ≥ ξ̂in i = 1, . . . , I, n = 1, . . . , N (21b)

I∑
i=1

znij ≤ vixi j = 1, . . . , J, n = 1, . . . , N (21c)

dᵀw ≤ vᵀx (21d)

Cᵀw = e, (21e)
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where

R :=


r ∈ RN

∣∣∣∣∣∣∣∣∣∣∣∣
∃π ∈ RN×N

+ ,

rm = 1
N

N∑
n=1

πnm m = 1, . . . , N

N∑
m=1

πnm = 1 n = 1, . . . , N

1
N

N∑
n=1

N∑
m=1

‖ξ̂n − ξ̂m‖πnm ≤ ε


.

The inner maximization problem in (21a) can be written as

sup
π∈RN×N

+

1

N

N∑
n=1

N∑
m=1

πnm

(
I∑
i=1

J∑
j=1

cijz
n
ij

)
(22a)

s.t.
N∑
m=1

πnm = 1 n = 1, . . . , N (γn) (22b)

N∑
n=1

N∑
m=1

πnm‖ξ̂n − ξ̂m‖ ≤ Nε. (η) (22c)

By dualizing (22) with multipliers γ and η and reintegrating in (21), we obtain the linear
program

min
x,w,z,γ,η

J∑
j=1

fjxj +
N∑
n=1

γn +Nεη (23a)

s.t. (21b)− (21e)

1

N

(
I∑
i=1

J∑
j=1

cijz
n
ij

)
≤ γm + ‖ξ̂n − ξ̂m‖η n = 1, . . . , N,m = 1, . . . , N

(23b)

x ∈ {0, 1}J ,w ∈ RL
+, z ∈ RI×J×N

+ ,γ ∈ RN , η ≥ 0. (23c)

The optimal value of (23) provides a lower bound for 2-DR-CFLP.

6 Numerical Experiments

We conducted a series of numerical tests to validate and compare the different DRO math-
ematical formulations proposed and to evaluate the performance of the exact solution ap-
proaches developed for the 2-DR-CFLP problem. All solution approaches were coded in
Matlab R2017a and solved using Gurobi 9.0.1 on a PC with an Intel Core i7-7700 @ 3.6 GHz
processor and 16 GB of RAM.

We tested on benchmark instances from [15], commonly known as the Holmberg test
instances. Eight instances are used, and their sizes (J × I) are as follows: p02 and p04:
10 × 50, p14 and p16: 20 × 50, p30 and p32: 30 × 150, p56 and p58: 30 × 200. Each pair
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of equal sized instances differ only in the setup cost of facilities, where these costs are 300
and 700, respectively, for the instances in the first three pairs, whereas the last pair has
setup costs of 500 and 1500, respectively. Herein, we refer to these benchmark instances as
deterministic instances. Three sample sizes of N = 12, 24, and 48, representing one, two
and four years of monthly demands, respectively, were used in the experiments. For each
combination of deterministic instance and sample size, we generated 10 stochastic instances,
each with its own support set size and demand distribution. The support set Ξ in every
stochastic instance is constructed as follows:

Ξ :=
{
ξ ∈ RI : ξnomi (1−MaxDevi) ≤ ξi ≤ ξnomi (1 +MaxDevi), ∀i ∈ I

}
,

where ξnom is the nominal/expected demand extracted from the deterministic instance and
MaxDevi, i = 1, . . . , I is the maximum deviation, drawn uniformly from the interval
[0.5, 1]. Furthermore, the demand at each node is assumed to be independent and follows a
Beta(ai, bi) probability distribution supported on the interval [ξnomi (1−MaxDevi), ξ

nom
i (1+

MaxDevi)] with the distribution parameters ai and bi drawn uniformly from [0, 2]. Using
a Beta distribution with random parameters generates a wide range of distributional pat-
terns, all supported on Ξ. For instance, when a = b = 1, the Beta distribution reduces
to the uniform distribution. Once the demand distributions for stochastic instances are de-
termined, we create three DRO instances (one for each sample size) from each stochastic

instance by randomly drawing N demand realizations ξ̂n (or simply realizations), also re-

ferred to as in-sample data, to construct the empirical distribution F̂N
ξ . We also randomly

draw nOS = 100N realizations according to the same Beta distributions and refer to them as
out-of-sample data, to be used in section 6.3. Finally, for each DRO instance, we tested for
different values of ε, the Wasserstein ball radius, ranging between 0 and 400, with increments
of 40. Hence, a total of 2640 tests were conducted.

6.1 Computational efficiency of exact methods

We first tested the computational performance of the two iterative algorithms proposed to
solve the 2-DR-CFLP. Figures 1 and 2, respectively, show the average computational times
of the column-and-constraint-generation algorithm (section 4.2.1) and the column generation
with a support lifting algorithm (section 4.2.2) when applied to solve the DRO instances to
optimality. It can be seen that both algorithms were able to solve DRO instances generated
based on all deterministic instances, except p32, in less than one hour per instance on
average. The most difficult DRO instance was solved in slightly less than 6000 seconds
by both algorithms. In fact, both algorithms exhibited quite similar computational times
and took similar number of iterations to solve each instance, which implies that they are
equivalent in some sense. However, investigating, and possibly proving, this equivalence is
beyond the scope of this paper. It has been found that CPU times increased by a factor of
2.07 on average when the sample size N is doubled (from 12 to 24 or from 24 to 48), which
suggests that the computational time might be approximately linear in sample size. Overall,
the results obtained in this round of experiments confirm that the proposed algorithms can
solve problems of realistic sizes.
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Figure 1: Average Computational Time of the column-and-constraint-generation algorithm.

6.2 Quality of DRO bounds

Next, we investigated the quality of conservative approximations and relaxations proposed
in section 5, along with the approximation of the 2-DR-CFLP with its corresponding 1-
DR-CFLP, SP and RO formulations. The aim here is to compare these approximations
numerically and identify an ordering of lower and upper bounds on the optimal value of

2-DR-CFLP. For each approximation, we report the relative deviation
(
Vapprox−V2S

V2S

)
from

the 2-DR-CFLP optimal value at different values of ε, where Vapprox is the average optimal
value for this approximation and V2S is the average optimal value of the corresponding 2-
DR-CFLP, and where averages are taken over the 10 DRO instances tested. Figure 3 shows
the results corresponding to four deterministic instances (p02, p14, p30 and p56) of different
sizes and with N = 12. The effect of sample size on the approximation quality was found to
be negligible in all cases, and the effect of facility setup costs was marginal. Thus, results
for these deterministic instances were considered representative of the entire test set.

In Figure 3, the curves labeled SP and RO represent, respectively, the relative deviations
of the stochastic programming and robust optimization optimal values from that of 2-DR-
CFLP. Although the absolute optimal values in SP and RO do not depend on ε, the relative
deviations do since V2S is ε-dependent. When ε = 0, 2-DR-CFLP reduces to a SP problem
that considers only the empirical distribution F̂N

ξ and thus the deviation between SP and
2-DR-CFLP equals zero. However, as ε is increased, the two values depart from each other
and SP serves only as a lower bounding scheme for DRO. The opposite can be said about RO,

25



0

500

1000

1500

2000

2500

3000

3500

4000

p02 p04 p14 p16 p30 p32 p56 p58

C
P

U
 (

S
ec

)

Instance

Computational Time (Algorithm 2)

N=12 N=24 N=48

Figure 2: Average Computational Time of the column generation with a support lifting
algorithm.
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Figure 3: Relative deviations between the average optimal values of different approximation
schemes and the average optimum value of 2-DR-CFLP in DRO instances generated from
(a) p02, (b) p14, (c) p30 and (d) p56.
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which has its largest deviation from 2-DR-CFLP when ε = 0, while this deviation decreases
as ε is increased. Although not shown in the figure, when ε becomes large enough, the
ambiguity set Dε(F̂N

ξ ,Ξ) will include probability distributions that place all the probability
mass on any one of the scenarios within Ξ, thus the DRO problems reduces to a RO problem
and the optimal values of RO and 2-DR-CFLP coincide.

Another lower bound, represented by the curve labeled LB, can be obtained through the
relaxation scheme described in section 5.3, which restricts the support set of the worst-case
distribution to be the support of empirical distribution. Since this is a relaxation, the relative
deviation is, similar to that of SP, non-positive. By looking at Figure 3, one can see that this
lower bound is only slightly better than that obtained from SP. For example, with ε = 400
in p02, the relative deviation for LB is -24.4% compared to -31.2% for SP. The differences
between the two schemes are even smaller in other cases. This result clearly shows that most
of the difference between the objective values of DRO and SP is due to the adversary placing
probability masses on other realizations than those composing the empirical distribution.

When it comes to upper bounds, it is clear that, except for very small values of ε, the affine
decision rule approximation, represented by the curve labeled ADR, provides the tightest
bound. However, VSS, the optimal value of 1-DR-CFLP, provides a marginally worse (higher)
upper bound than VADR. Hence, it is questionable whether there is much value in solving the
ADR approximation instead of the 1-DR-CFLP to obtain an upper bounds and near-optimal
solution of the 2-DR-CFLP, given that the former is much more computationally expensive
than the latter. For instance, Matlab could not handle the extremely large constraint matrix
of the ADR formulation for test instances based on p56. The other two conservative approxi-
mations, represented by the curves labeled CA1 and CA2, of 1-DR-CFLP and 2-DR-CFLP,
respectively are based on support set relaxation (from Ξ to RI) as explained in section 5.1.
One can see that these approximations provide arbitrarily high bounds that can go higher
than the RO optimal value when ε becomes large. It is interesting to see that the upper
bound obtained from the conservative approximation of 2-DR-CFLP can become worse than
what is obtained from the conservative approximation of 1-DR-CFLP despite the fact that
1-DR-CFLP is itself a conservative approximation of 2-DR-CFLP. One explanation is that
the quality of the CA2 bound depends on how the relatively complete recourse problem is
converted to a complete recourse one, i.e., going from (4) to (6). Namely, there might be
ways of improving it by identifying a set of linear inequalities that describe the convex hull
of the vertices of the dual feasible set of problem (6) as discussed in Remark 1 in [1].

Among the different approximation schemes of the 2-DR-CFLP, it seems that solving
the corresponding single-stage problem strikes the best balance between computational ef-
ficiency and tightness of the bound. The relative deviations of VSS in all DRO instances
did not exceed 12%, and were much smaller than that in most cases. In comparison, VCA2

provided good bounds only when ε was very small. Nevertheless, an added advantage of this
approximation is that it enables the lower bound VSP to be computed at the same time.

An interesting observation to report before closing this part is that, in most cases, ap-
plying all of the exact and approximation schemes described earlier (i.e., SP, 2-DR-CFLP,
1-DR-CFLP, RO, . . . ) on the same DRO instance led to the same optimum first-stage so-
lution x∗. Facility location problems are known, in general, to be relatively insensitive to
estimation errors in parameters, especially demand errors (see, for example, [14]), and our
results suggest that they are also not very sensitive to the selected risk aversion scheme.
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Figure 4: 90th percentile of the ratio between average out-of-sample cost and the DRO
bound.

Therefore, our focus in this numerical section was on developing and comparing useful per-
formance bounds instead of merely finding the optimal solutions. Nevertheless, we think
that more empirical/theoretical exploration might be needed to confirm or contradict our
preliminary finding about scheme insensitivity.

6.3 Out-of-sample Performance Guarantees

Finally, we calculated the out-of-sample average costs corresponding to the optimal solutions
of the 2-DR-CFLP and compared them to the DRO bounds calculated using the in-sample
data. The purpose of this comparison was to highlight the effect of ε on the performance
guarantees of the solutions obtained upon implementing them with new realizations (i.e.,
out-of-sample data), generated as described earlier. To evaluate the out-of-sample costs, we
fix the first-stage variables to the optimal values obtained by solving the 2-DR-CFLP, then
re-optimize the second-stage assignments optimally with respect to each of the out-of-sample
demand realizations.

Figure 4 shows the 90th-percentiles of the ratios between average out-of-sample costs and
their corresponding DRO bounds (i.e., optimal values of the 2-DR-CFLP) in four instance
types (p02, p16, p30 and p32). One can see that when ε = 0, the 90-percentile of the ratios
is greater than one for all instances, meaning that the decision maker will experience post-
decision disappointment (i.e., the out-of-sample average cost ends up being higher than
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the in-sample cost) in more than 10% of the cases. For the in-sample cost to serve as a
performance guarantee of the out-of-sample cost in 90% of the cases, ε must be increased
such that this ratio equals one at most. As an example, for deterministic instance p30,
using ε = 40 brings the ratio below one, thus ensures that, in average, out-of-sample costs
are less than the V2S with ε = 40 in at least 90% of the cases. The value of ε required
to guarantee the performance of a certain percentile is different for each instance, but all
the curves are monotonically decreasing. This reflects the fact that one always achieves a
stronger probabilistic guarantee by increasing ε in the 2-DR-CFLP.

7 Conclusions

Distributionally Robust Optimization is an attractive alternative to deal with the inherent
uncertainty in facility location problems, especially for hedging against distributional am-
biguity when decisions have to be based on limited sample data. In this paper, we showed
how a data-driven DRO framework with a Wasserstein ambiguity set can be implemented
to robustify the classical CFLP. Both single- and two-stage variants of the problem were
addressed. For the single-stage case, we provided a reformulation into a mixed integer linear
program with a proper selection of the support set and the Wasserstein metric norm. For
the two-stage case, we developed two iterative algorithms based on column generation to
solve the problem exactly. We also proposed conservative approximations for the single-
and two-stage problem based on support set relaxation, a conservative approximation of the
two-stage problem using affine decision rules, and a relaxation of the two-stage problem based
on support set restriction. All these approximations were reformulated into mixed-integer
programs that can be directly handled using commercial solvers.

Our numerical experiments showed that the two exact algorithms proposed for the two-
stage problem were able to solve most test instances to optimality in less than one hour per
instance. We also found that while affine decision rules provided the tightest conservative
approximation for the two-stage problem, the upper bound provided by the single-stage op-
timal value was almost as good but much easier to obtain. The conservative approximations
and relaxations based on support set relaxation and restriction, respectively, were good only
for small Wasserstein ball radii. Finally, we empirically investigated the effect of changing
the size of the ambiguity set on the out-of-sample performance guarantees for the optimal
solutions of the 2-DR-CFLP. Overall, our experiments revealed two interesting empirical
observations that could motivate further research. First, the two exact algorithms proposed
to solve the two-stage problem have similar computational performances and seem to be
equivalent in some sense; and second, the solution of the two-stage stochastic CFLP seems
to be relatively insensitive to the risk averse scheme that is implemented.
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