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Résumé

Dans cette thèse, nous explorons deux problèmes fondamentaux en ingénierie financière, à

savoir la tarification d’options et la gestion de portefeuille. Dans le premier article de la

thèse, nous adaptons les fondements théoriques d’un nouveau cadre de tarification d’options

nommé “Equal Risk Pricing” (ERP) pour tenir compte des mesures de risque dynamiques

convexes. Le cadre ERP suggère de tarifer un contrat d’option sur la base de l’idée que

si le vendeur et l’acheteur de l’option couvrent tous deux leurs positions en investissant

activement dans les actifs sous-jacents de l’option, le risque global auquel ils sont exposés

devrait être égal. Cela contraste avec les méthodes conventionnelles d’évaluation des options

où le prix suggéré ne prend en compte que du risque auquel le vendeur est confronté. Nous

exploitons les propriétés des mesures de risque dynamiques convexes pour formuler les

équations d’un programme dynamique averse au risque (DP) qui identifie les politiques

de couverture optimales. En nous concentrant sur les mesures de risque du pire cas, nous

montrons les avantages de l’ERP par rapport aux modèles conventionnels en termes de

tarification et de couverture pour les options vanille.

Sur la base des reformulations théoriques obtenues dans le premier article, le deuxième

article étend le cadre ERP à un cadre plus pratique en tirant parti du “Deep Reinforcement

Learning” (DRL). En particulier, nous sommes en mesure de surmonter les difficultés de

calcul des modèles DP conventionnels causées par la haute dimensionnalité de l’espace d’état,

en nous appuyant sur la puissance d’approximation des réseaux neuronneaux profonds. Bien

que nous ne soyons pas les premiers à explorer l’application du DRL à l’ERP, notre travail

se différencie des études précédentes en étant le premier à employer une mesure de risque

cohérente dans le temps. Nous expliquons d’abord dans un cadre simple les inconvénients

de considérer une mesure de risque statique (c’est-à-dire incohérente dans le temps), qui



néglige l’aversion au risque de l’investisseur à des moments futurs. À l’aide d’un processus

de mouvement brownien géométrique, nous comparons ensuite l’ERP sous des modèles de

tarification cohérents et non-cohérents dans le temps pour les cas d’une option vanille et

d’une option panier et discutons des avantages d’y employer une politique cohérentes dans

le temps.

Bien que les deux premiers articles démontrent empiriquement des avantages de l’ERP,

leurs résultats numériques sont entièrement basés sur des données synthétiques. Or,

dans les marchés réels l’évolution des valeurs des titres se comporte différemment des

environnements de simulation. Par conséquent, dans le dernier article de cette thèse,

nous explorons l’application du DRL à l’analyse de séries chronologiques de données de

marché réels. Pour ce faire, nous avons choisi le problème de la gestion de portefeuille

car il est suffisamment général pour couvrir le problème de couverture qui est au coeur

du calcul de l’ERP. Pour résoudre ce problème, nous proposons un modèle innovateur de

réseau de neurones profonds basé sur des réseaux de neurones convolutifs (CNN) dilatés qui,

lorsqu’ils sont utilisés dans un cadre DRL, surpassent l’état de l’art en termes de rendements

ajustés au risque. En particulier, nous démontrons que notre modèle tire meilleur parti

des informations de corrélation entre actifs et qu’il possède une propriété spéciale appelée

invariance au permutation. Notre approche est la première à satisfaire cette propriété tout

en prenant des corrélations entre actifs. Notre cadre DRL est finalement mis à l’épreuve

sur des ensembles de données des marchés boursiers canadiens et américains pour confirmer

la précision et la fiabilité de notre approche.

Mots-clés

Tarification des options, couverture du risque, mesures de risque convexes, marché incom-

plet, programmation dynamique, optimisation numérique, apprentissage par renforcement,

expectiles, gradient de politique, options panier
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Abstract

In this thesis, we consider two fundamental problems in finance, namely option pricing and

portfolio management. In particular, we investigate a new mechanism for option pricing

and develop new machine learning methodologies for solving this problem and a general

portfolio management problem in large scale. This thesis consists of three articles. The

first one presents the theory of equal risk pricing, a new derivative pricing framework,

that builds upon the notion of monotone risk measures. The second one develops a novel

reinforcement-learning methodology that allows the equal risk pricing problems to be solved

when the number of underlying assets is large or when there is no model that can describe

the underlying stochastic dynamics. Lastly, the third one proposes a new design of neural

networks in deep reinforcement-learning for solving a general class of dynamic portfolio

management problems.

The Equal Risk Pricing (ERP) framework addressed in the first article is different

from the conventional methods of option pricing in that ERP seeks a price that takes into

account both the perspective of the buyer and the writer, and ensures the risk exposure

of both parties are the same, whereas the conventional methods only take into account a

single trader’s perspective (i.e. the writer). Motivated by the modern theory of convex risk

measures, we study equal risk pricing problems where both parties’ risk preferences are

captured by some monotone risk measures. As the main results, we characterize the equal

risk price by exploiting the properties of convex risk measures and we show how the hedging

problems of both parties can be solved by risk-averse dynamic programming equations.

We demonstrate the effectiveness of our framework by implementing it for European and

American options and by considering worst-case risk measures motivated by the literature

on robust optimization.
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The second article addresses the practical issues arising from consideration of options

with a large number of assets, and the cases where a stochastic model is hard to identify for

the underlying markets, in which case Dynamic Programming (DP) is no longer applicable.

We consider ERP problems formulated based on dynamic expectile risk measures and present

a novel Deep Reinforcement-Learning (DRL) approach that can solve ERP problems by

exploiting the properties of expectile risk measures. While we are not the first to explore

ERP using DRL, our work differentiates itself from previous studies in the literature by being

the first to employ a risk measure that is time consistent. We provide an illustrative example

of how hedging policies that violate the time consistency conditions can be problematic for

practical implementation. We then develop the first off-policy actor-critic Reinforcement-

Learning (RL) algorithm that can generate time-consistent hedging policies for both the

writer and the buyer. Through extensive experiments, we show for problems of pricing first

a European option and then a basket option how the algorithm allows for solving ERP

problems with a large number of underlying assets and how the time consistent policies

generated from the algorithm can be practically more useful than the policies generated

based on static risk measures.

In the third article, we pay particular attention to the development of a DRL method

for solving portfolio management problems that entail the use of long time series data.

Motivated by the nature of time series data, we propose a new design of the neural

network for a portfolio policy that can exploit cross-asset dependency information from

the time series data. In particular, we identify and define for the first time an essential

property, namely the property of asset-permutation invariance, that a portfolio policy

network should satisfy so as to have a stable performance (i.e. keeping everything else

unchanged, modifying the indexing of the assets in the input matrix of the policy network

before training does not significantly affect the resulting performance). While several other

state-of-the-art neural network architectures fail to satisfy this property, we propose an

innovative dilated Convolutional Neural Network (CNN), called WaveCorr, that not only

enjoys the strength of CNN in that it is parsimoniously parameterized but also satisfies the

asset-permutation invariance property. In addition to respecting this property, our proposed

architecture also succeeds to take the cross-asset correlation information into account. We

demonstrate through testing on data sets from both Canadian and American stock markets
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the effectiveness of our design to utilize the correlation information and achieve superior

(and more stable) risk-adjusted performances. The superiority of our network in solving

portfolio management problems implies also the possibility of applying it to improve the

DRL approach developed in the second article for solving the hedging problems embedded

in the ERP problems.

Keywords

Option pricing, risk hedging, convex risk measures, incomplete market, dynamic program-

ming, numerical optimization, risk-averse reinforcement-learning, expectile risk measure,

policy gradient, basket options

Research methods

Numerical analysis, artificial intelligence and heuristics, mathematical programming, quan-

titative research, simulation.
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General Introduction

Derivative pricing and portfolio management are two fundamental problems in finance.

The former is closely related to the latter in that the price of a derivative can often be

interpreted as the initial capital required for building a self-financing portfolio that replicates

the payoff of the derivative. From this perspective, these two problems share the similarity

of dynamically managing a portfolio over time. It is known that derivative pricing is

particularly challenging when the markets are incomplete, in which case there does not

exist a self-financing portfolio that can perfectly replicate the payoff of the derivative. The

first chapter presented in this thesis presents an article that seeks to address the challenge

of derivative pricing in incomplete markets by providing a new pricing framework, known as

Equal Risk Pricing (ERP), that takes into account both the writer and the buyer’s hedging

decisions and risk exposures. Central to the development of ERP are the modelling of risk

preferences of both the writer and the buyer in a dynamic setting and the formulation

of corresponding risk-averse hedging problems. Motivated by the recent advances of risk

theory, we propose in the first chapter to study ERP problems by exploring the use of

convex risk measures to model the risk preferences, and provide detailed derivations for

solving ERP problems using Dynamic Programming (DP). The use of DP, however, has its

practical limitations; namely it can only be applied when the number of state variables is

small and the dynamics of the underlying stochastic systems can be perfectly modelled. As

another main goal of this thesis, we seek to take advantage of the new advances in Machine

Learning (ML) and develop new numerical solutions that can solve dynamic problems in

large scale, i.e. with a large number of state variables, and in a data-driven fashion, i.e.

relying only on sample data. In particular, in the second chapter of this thesis, we present

an article that considers ERP problems when the number of underlying assets is large and



only sample data may be available for describing the underlying stochastic systems. We

present a novel deep reinforcement learning approach for solving the hedging problems

in ERP. Throughout our development, we discover there is a deep connection between

the structure of a risk measure, namely the property of elicitability, and the design of a

reinforcement learning approach that can be used to solve the corresponding risk-averse

dynamic programs. Leveraging our new deep reinforcement learning approach, we are able

to further demonstrate at large scale how the hedging policies generated based on dynamic

risk measures can benefit from the property of time-consistency compared to the policies

generated based on static time inconsistent risk measures. In the last chapter of this thesis,

a third article seeks to develop a deep reinforcement learning approach for solving a general

portfolio management problem. In particular, the focus is on designing a policy neural

network that can better exploit the cross-asset correlation information embedded in time

series data. We identify the property of permutation invariance that can be used to guide

the design of a policy network and present the first convolutional neutral network (CNN)

infrastructure that satisfies this property.

Overall, the thesis provides solid theoretical grounds and solution methods that are

implementable by practitioners for solving the equal risk pricing problem and general

portfolio management problem. In what follows, we briefly introduce the work that is done

in each of the three chapters along with previous studies in the literature:

Chapter 1: Equal Risk Pricing and Hedging of Financial Derivatives with

Convex Risk Measures

Contrary to complete markets, financial derivatives in an incomplete market cannot

be priced solely according to non-arbitrage theory as traditionally exploited in Black and

Scholes (1973); Merton (1973); Cox et al. (1979); King (2002). The risk premium for the

unhedgable risk needs to be calculated in pricing financial derivatives. Following this, most

researchers tackled this problem by using two different approaches. The first one is to

exploit a fixed risk-neutral martingale measure, including for example Hull and White

(1987); Heston (1993); Amin (1993); Delbaen and Schachermayer (1995), and Brennan

(1979), whereas the second set of approaches rely on identifying the indifference price of a

risk-averse hedging problem, including for example Jaschke and Küchler (2001); Carr et al.

(2001); Föllmer et al. (1985); Schweizer (1996); Gourieroux et al. (1998), and Bertsimas
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et al. (2001).

In this first article, we investigate a recently developed option pricing framework named

Equal Risk Pricing (ERP) (Guo and Zhu, 2017) that is more closely related to the second

aforementioned category in that it also involves the formulation of risk-averse hedging

problems. However, unlike most pricing schemes in this category that only consider a

single trader, namely the writer, in the formulation of risk-averse hedging problem, the

ERP framework is formulated based on two separate risk-averse hedging problems, one for

the writer and another for the buyer. The minimum price that a writer is willing to take

according to a writer’s hedging problem is generally higher than the highest price that a

buyer is willing to pay according to a buyer’s hedging problem. The novelty of ERP lies in

providing a mechanism to determine a "fair" price that can be acceptable to both parties,

namely a price that leaves both the writer and buyer with equivalent risk exposure.

While the initial ERP framework proposed in Guo and Zhu (2017) focuses on incomplete

markets where the risk is measured according to expected utility, in this first article we

extend the definition of ERP to the set of all monotone risk measures that can be interpreted

as certainty equivalent measures. This class of risk measures include (dynamic) convex risk

measures developed in the modern risk theory. We establish for the first time that based

on this class of risk measures, ERP is arbitrage-free under weak conditions and actually

reduces to computing the center of a so-called Fair Price Interval (FPI). In comparison

to the work of Guo and Zhu (2017) which focused on an expected disutility framework

that employs a fixed martingale measure, our generalized framework allows an arbitrary,

and possibly different, probability measure to be used by each party, and corrects for the

fact that the expected disutilities experienced by the two different parties are intrinsically

incomparable. In the case of discrete-time hedging, we show how the boundaries of such

a fair price interval can be obtained using dynamic programming for both European and

American options as long as the convex risk measures employed by the two parties are

one-step decomposable and satisfy a Markovian property. These dynamic programs are

amenable to numerical computation given that they employ a finite-dimensional state space.

In the case of American options, they will also provide a different price depending on

whether the buyer is willing to commit up front to an exercise strategy.

In our implementation of ERP, we consider a form of worst-case risk measures motivated
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by the literature of robust optimization that considers only a subset of the outcome space,

also known as the uncertainty set, in calculating the largest possible risk. Such risk measures

are highly interpretable and, as shown in our work, can be well incorporated into ERP

based on the analysis we established. Our numerical experiments indicate that the fair

price interval might converge, as the number of rebalancing periods increases, to the Black-

Scholes price when an uncertainty set inspired by the work of Bernhard (2003) is properly

calibrated in a market driven by a geometric Brownian motion. This makes the connection

between the common risk-neutral pricing scheme and the equal risk price generated based

on worst-case risk measures. Finally, we present the first numerical study that provides

evidence that equal risk prices allow both the writer and the buyer to be exposed to risks

that are more similar and on average smaller than what they might experience with a risk

neutral probability measure or quadratic hedging prices. In particular, when a worst-case

risk measure is used, the risk inequity for the higher quantiles of each party’s final loss will

be reduced by a factor between 2 and 10 (depending on the type of option) compared to

ε-arbitrage and Black-Scholes prices. This is done while keeping the average risk among

the two parties to a similar or better level.

Chapter 2: Deep Reinforcement Learning for Equal Risk Pricing and Hedg-

ing under Dynamic Expectile Risk Measures

The ERP method developed in our first article provides a theoretical basis for pricing

options, but it relies on the use of DP to solve the problems. It is known that DP

becomes computationally intractable when applied to options that are written on assets

with complicated price processes or on multiple underlying assets. In this second article,

we extend the scalability of the ERP model by developing a Deep Reinforcement Learning

(DRL) approach for solving hedging problems in high dimension, i.e. with a large number

of state variables, so that the ERP model can be used in practice to price high dimensional

option contracts.

The recent works of Carbonneau and Godin (2020) and Carbonneau and Godin (2021)

are the first that apply DRL to solve ERP problems. While the DRL approaches developed

in Carbonneau and Godin (2020) and Carbonneau and Godin (2021) are applicable only to

ERP problems formulated based on static risk measures, we develop in this second article a

DRL approach that can solve ERP problems formulated based on a class of dynamic risk
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measures. The consideration of dynamic risk measures is critical in ensuring the resulting

hedging policies are operationally meaningful. Namely, it is known that hedging policies

generated based on static risk measures could violate the property of time-consistency,

meaning that the hedging policies may not be considered optimal once a downstream state is

visited, whereas hedging policies generated based on dynamic risk measures would naturally

be time-consistent. The consideration of dynamic risk measures also has an implication

on the type of DRL approach that needs to be developed. In particular, while the DRL

approach developed in Carbonneau and Godin (2020) and Carbonneau and Godin (2021) is

limited to a policy optimization scheme, a.k.a. Actor-Only Reinforcement Learning (AORL)

algorithm (see Williams (1992)) due to the lack of dynamic optimality principle in the use

of static risk measures, we are able to explore the design of an alternative type of DRL

approach, namely Actor-Critic Reinforcement Learning (ACRL) algorithms (see Lillicrap

et al. (2015)) by leveraging the DP equations that are available in the use of dynamic risk

measures.

In particular, we propose the use of dynamic expectile risk measures to formulate

time-consistent ERP problems. This is motivated by the theory of coherent risk measures,

which identifies the advantages of expectile risk measures over two other popular risk

measures, namely Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR), particularly

that expectile risk measures are the only elicitable (coherent) risk measures. Moreover,

we discover how the property of elicitability can actually facilitate the design of a model-

free actor-critic algorithm, i.e. allowing a policy to be updated per sample data. Our

deep reinforcement learning architecture is built upon the formulation of Q-value dynamic

equations for the expectile-based hedging problems, and it consists of two networks, a policy

network (actor) and a Q network (critic). The novelty lies in the design of an algorithm

used to update the two networks based on stochastic gradients. Our algorithm may be

considered as an extension of the off-policy deterministic actor-critic method. Following

similar arguments made in Degris et al (2014), the algorithm updates the policy network

based on an approximate stochastic gradient descent algorithm. Updating the Q network

also requires care, as the hedging problem is evaluated in terms of risk rather than expected

value commonly applied in a RL problem. By leveraging on the elicitability property of

expectile risk measures, which implies that the risk measure can always be calculated as the
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optimal solution with respect to a certain score function, we show that the algorithm can

update the Q network using stochastic gradients calculated based on the score function.

We observe that this ACRL has a particularly good convergence behaviour when there

is an immediate reward following each action. While the hedging problem in ERP is only

concerned about the cumulative wealth and the payoff of a derivative that occurs at the very

end, the translation invariance property of expectile risk measures allows the cumulative

wealth to be re-expressed as a sequence of immediate rewards that need to be optimized

over time. Indeed, throughout our experiments, noticeably stronger convergence behaviour

is found for the hedging problem formulated in terms of immediate rewards than the one

formulated based on cumulative wealth. The effectiveness of our ACRL for finding a good

policy is further demonstrated in the numerical section.

In the numerical section we first investigate a vanilla option where our purpose is

twofold. First, we want to show the Q-function is precise enough to be used for the sake

of pricing based on the ERP framework. This is performed by comparing the results of

this model with a grid-based DP model that can be trusted to provide a baseline for the

value function. The results show that the Q-function can approximate well the true value

function when the policies are coming from the ACRL model. Second, we demonstrate

the benefits of having a model that provides a time-consistent solution in practice. The

numerical results support our claim that a time-consistent model can be used for training a

model over options with long maturities and then using the trained model to hedge and

price options with shorter maturities. We also show the benefits of formulating the option

pricing problem such that the immediate rewards are included in the RL setting. More

precisely, we show this transformation greatly improves the convergence properties of the

model. Finally, we focus on basket options where we demonstrate the main purpose of

extending the ERP model to using RL for pricing and hedging, which is improving the

scalability. The results in this section follow our previous results in the case of vanilla

option where the time-consistent solution is able of outperforming the time inconsistent

solution as the risk is measured at later points of time.

Chapter 3: WaveCorr: Correlation-savvy Deep Reinforcement Learning for

Portfolio Management

In this last article, we turn our attention to a more general dynamic portfolio management
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problem and study the potential of DRL for generating portfolio policies that can effectively

exploit the information embedded in the time series of historical asset prices. Although

implemented for a portfolio optimization problem, the work presented in this papaer is

closely related to the work presented in the second paper in that both seek to develop

DRL approaches for solving dynamic problems in large scale and in a data-driven fashion.

While the second paper focuses on developing a general DRL approach for addressing

hedging problems defined based on dynamic risk measures, the last paper pays particular

attention to the design of the architecture of investment policy neural network (embedded

in DRL) motivated by the structure of time series data used in portfolio management

problems. In particular, we introduce an innovative type of neural network architecture that

can replace the simple, yet heavily parametrized, fully connected architecture commonly

applied in DRL (e.g. in the actor network of our ACRL framework developed in the second

paper). This new architecture is parsimonously paramterized but still has the ability to

capture sophisticated forms of dependency from historical time series data, namely both

the cross-asset and cross-time dependencies of the assets, and use them to improve portfolio

decisions.

Most of the papers in the literature that study portfolio management problem using

DRL, such as Moody et al. (1998); He et al. (2016); Liang et al. (2018) among others, focus

on the task of prediction, rather than the problem of making allocation decisions. Training

a DRL model for the purpose of portfolio allocation has requirements that time series

prediction models may not necessarily satisfy. For example, it is known that extracting

and exploiting cross-asset dependencies over time is crucial to the performance of portfolio

management. However, the neural network architectures adopted in most existing works,

such as Long-Short-Term-Memory (LSTM) or Convolutional Neutral Network (CNN), only

process input data on an asset-by-asset basis and thus lack a mechanism to capture cross-

asset dependency information. Also, several works that tried to modify these models in order

to consider cross-asset correlation end up having trouble in satisfying a crucial property

that we introduced in this paper as “asset-permutation invariance". Asset-permutation

invariance is critical in that it ensures that the model performance is insensitive to the

permutation of the assets in the input tensor.

The architecture presented in this paper, named as WaveCorr, is built upon the WaveNet
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(Oord et al., 2016), which uses dilated causal convolutions at its core, and a new design

of correlation block that can process and extract cross-asset information. We show that

WaveCorr, despite being parsimoniously parameterized, can satisfy the property of asset-

permutation invariance, whereas a naive extension of CNN can fail to satisfy this property.

Closer to our work is the recent works of Zhang et al. (2020) and Xu et al. (2020), both

seek to extract cross-asset dependency information. As Zhang et al.’s work shares a similar

architecture as ours, we demonstrate in details why their architecture fails to satisfy the

property of asset-permutation invariance and how this can lead to unstable performances. In

the numerical section, we test the performance of WaveCorr using data from both Canadian

and American stock markets. The experiments demonstrate that WaveCorr consistently

outperforms our benchmarks under a number of variations of the model: including the

number of available assets, transaction costs, etc., which makes it a reliable model to be

incorporated into the ERP framework.
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Chapter 1

Equal Risk Pricing and Hedging of

Financial Derivatives with Convex

Risk Measures

Chapter information

This article is a joint work with my supervisors, Erick Delage, and Jonathan Yu-Meng

Li. It is accepted in the journal of Quantitative Finance. The preprint is available at

https://arxiv.org/abs/2002.02876

Abstract

In this article, we consider the problem of equal risk pricing and hedging in which the fair

price of an option is the price that exposes both sides of the contract to the same level of

risk. Focusing for the first time on the context where risk is measured according to convex

risk measures, we establish that the problem reduces to solving independently the writer

and the buyer’s hedging problem with zero initial capital. By further imposing that the

risk measures decompose in a way that satisfies a Markovian property, we provide dynamic

programming equations that can be used to solve the hedging problems for both the case

of European and American options. All of our results are general enough to accommodate

situations where the risk is measured according to a worst-case risk measure as is typically

https://arxiv.org/abs/2002.02876


done in robust optimization. Our numerical study illustrates the advantages of equal risk

pricing over schemes that only account for a single party, pricing based on quadratic hedging

(i.e. ε-arbitrage pricing), or pricing based on a fixed equivalent martingale measure (i.e.

Black–Scholes pricing). In particular, the numerical results confirm that when employing an

equal risk price both the writer and the buyer end up being exposed to risks that are more

similar and on average smaller than those they would experience with the other approaches.

1.1 Introduction

One of the main challenges in pricing and hedging financial derivatives is that the market

is often incomplete and thus there exists unhedgeable risk that must be further considered

in pricing. In such a market, the price of a financial derivative cannot be set according

to non-arbitrage theory as traditionally exploited in Black and Scholes (1973); Merton

(1973); Cox et al. (1979); King (2002). Modern approaches to incomplete market pricing

can be broadly divided into two main categories. The first one involves pricing a derivative

based on a fixed “risk-neutral” martingale measure, either obtained from calibrating against

market data (Hull and White, 1987; Heston, 1993; Amin, 1993), by minimizing the distance

to a physical measure (Delbaen and Schachermayer, 1995), or by marginal indifference

pricing (Brennan, 1979). The second category involves methods that rely on identifying

the indifference price of a risk-averse hedging problem, including for example good deal

bounds (Jaschke and Küchler, 2001), expected utility indifference pricing (Carr et al., 2001),

or the quadratic hedging models (Föllmer et al., 1985; Schweizer, 1996; Gourieroux et al.,

1998; Bertsimas et al., 2001). We refer readers to Schweizer (1999) and Staum (2007) for

comprehensive surveys of these methods.

In this article, our focus is on studying a pricing method known as equal risk pricing

(ERP), which was first introduced in the recent work of Guo and Zhu (2017). The method

can be considered to fall into the second category mentioned above in that it involves

the formulation of risk-averse hedging problems. In particular, it takes into account the

risk preferences of both sides of a contract and seeks a fair unique transaction price that

would ensure the minimal risk exposures (according to the formulated risk-averse hedging

problems) of both sides of a contract are equal. In Guo and Zhu (2017), special attention
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was paid to the case where risk is measured based on an expected disutility framework

and where the market is incomplete due to no-short-selling constraints on the hedging

positions. They proved the existence and the uniqueness of the equal risk price and provided

pricing formulas for European and American options with payoffs that are monotonic in

the underlying asset price. In the case where the constraints are lifted, they showed that

the equal risk price coincides with the price resulting from a complete market model.

To put into perspective the strength of ERP, we should emphasize that most pricing

methods focus only on a single side of the contract when formulating risk-averse hedging

problems. The minimum price that a writer is willing to take according to a writer’s hedging

problem is, however generally higher than the highest price that a buyer is willing to pay

according to a buyer’s hedging problem. Hence, there is a lack of mechanism to suggest a

“transaction” price, i.e. acceptable to both the writer and the buyer. ERP provides such

a mechanism by suggesting that a transaction should occur at a price which leaves both

the writer and buyer with equivalent risk exposure. To better illustrate this point, one can

consider the example of pricing an European call option in the context where hedging can

only occur at time zero. We further assume that the risk-free rate is zero, and that the

underlying stock price starts at a value of 100$ while its value at exercise time is known to

be uniformly distributed over [90, 130]. In this context, a risk-averse writer might require

that the price of an at-the-money option be set as high as 7.5$ to fully cover her risk

while the buyer can use the same argument to require a price of 0$. When a worst-case

risk measure is used for both parties, one can show that the ERP allows the two parties

to settle for the price of 3.75$ which exposes both of them to the same risk, i.e. 3.75$.

Alternatively, one could suggest a transaction price based on a quadratic hedging scheme

such as ε-arbitrage pricing (see its application with worst-case risk measure in Bandi and

Bertsimas (2014)), yet as shown in Figure 1.1, such paradigms can propose prices that

leaves both parties with surprisingly uneven risk, giving in some case even rise to arbitrage

opportunities (c.f. the negative price for strike prices between 110 and 130). We refer the

reader to Appendix 1.6.1 for details of the analysis presented in this figure.

The contribution of the article can be summarized as follows:

• We extend the definition of ERP to the set of all monotone risk measures that can be
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(a) The option prices (b) The hedging loss results

Figure 1.1 – Comparison of prices and hedging loss in the simple one-period European call
option pricing example. (a) shows the upper and lower bound of the no-arbitrage interval,
together with the equal risk and ε-arbitrage prices. (b) shows the worst-case loss incurred
by each party of the contract under their respective optimal hedging strategies.

interpreted as certainty equivalent measures (i.e. ρ(t) = t for all t ∈ R). This class of

risk measure includes the set of convex risk measures for which we establish for the

first time that ERP is arbitrage-free under weak conditions and actually reduces to

computing the center of a so-called fair price interval (FPI). In comparison to the

work of Guo and Zhu (2017) which focused on an expected disutility framework that

employs a fixed equivalent martingale measure, our generalized framework allows an

arbitrary, and possibly different, probability measure to be used by each party, and

corrects for the fact that the expected disutilities experienced by the two different

parties are intrinsically non comparable.

• In the case of discrete-time hedging, we show how the boundaries of such a fair price

interval can be obtained by using dynamic programming for both European and

American options as long as the convex risk measures employed by the two parties

are one-step decomposable and satisfy a Markovian property (see Section 1.2.1 for

proper definitions). These dynamic programs are amenable to numerical computation

given that they employ a finite-dimensional state space. In the case of American

options, they will also provide a different price depending on whether the buyer is

willing to commit up front to an exercise strategy.
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• In the context where the underlying asset follows a geometric Brownian motion, we

show for the first time how robust optimization can motivate the use of worst-case

risk measures that only consider a subset of the outcome space. Similar to risk neutral

risk measures (i.e. that measure risk using expected value), these worst-case risk

measures are easily interpretable and will satisfy the properties needed for dynamic

programming to be used. On the other hand, unlike risk neutral measures, they also

provide risk-aware hedging policies. Our numerical experiments also indicate that the

fair price interval might converge, as the number of rebalancing periods increases, to

the Black–Scholes price when an uncertainty set inspired by the work of Bernhard

(2003) is properly calibrated in a market driven by a geometric Brownian motion. If

supported theoretically, such a property would close the gap between risk neutral

pricing and risk-averse discrete-time hedging using worst-case risk measures.

• We present the first numerical study that provides evidence that equal risk prices

allow both the writer and the buyer to be exposed to risks that are more similar and

on average smaller than what they might experience with risk neutral or quadratic

hedging prices. In particular, when a worst-case risk measure is used, the risk inequity

for the higher quantiles of each party’s final loss will be reduced by a factor between 2

and 10 (depending on the type of option) compared to ε-arbitrage and Black–Scholes

prices. This is done while keeping the average risk among the two parties to a similar

or better level.

The article is organized as follows. In Section 1.2 we formally define the equal risk

pricing framework and demonstrate that this price coincides with the mid point of the fair

price interval when risk is captured using convex risk measures. In Section 1.3, we focus on

the context of discrete-time option pricing and derive the dynamic programming equations

that can be used to compute the equal risk price for European and American contingent

claims. Next, in Section 1.4, an application of equal risk pricing is presented where the

risk attitude of both writer and buyer is captured by so-called worst-case risk measures. A

numerical study is also presented to validate the quality of prices obtained using the equal

risk pricing paradigm both from the point of view of risk exposition for the parties and

fairness. Finally, we conclude the article in Section 1.5. We further refer the reader to an
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extensive set of Appendices describing detailed arguments supporting all propositions and

lemmas presented in this article.

1.2 The Equal Risk Pricing Framework

This section presents equal risk pricing framework and provides an interpretation of the

price resulting from this model. In particular, we introduce the use of risk measures in

pricing and hedging options based on this framework.

1.2.1 The Equal Risk Pricing Model

To present the equal risk framework, we consider a model of the market proposed by Xu

(2006). Namely, we assume that the market is frictionless, i.e. there is no transaction cost,

tax, etc. The filtered probability space is defined as (Ω,F ,F = (Ft)0≤t≤T ,P) and there is

a money market account with zero interest rate, for simplicity and a risky asset St, with

0 ≤ t ≤ T , which is Ft-measurable. As in Xu (2006), we assume that the risky asset St is a

locally bounded real-valued semi-martingale process. Furthermore, the set of equivalent

local martingale measures for St is assumed non-empty to exclude arbitrage opportunity.

The set of all admissible self-financing hedging strategies with the initial capital p0 is

shown by X (p0):

X (p0) =

{
Xt

∣∣∣∣∃ξs,∃c ∈ R, Xt = p0 +

∫ t

0
ξsdSs ≥ c, ∀t ∈ [0, T ]

}
,

in which, for each t, the decision ξt is Ft-measurable and represents the number of shares

of the risky asset in the portfolio, Xt is the accumulated wealth, and for simplicity, we

assume without loss of generality that the risk-free rate is zero. Although we impose very

few restrictions on the hedging strategies in the set X (p0), as mentioned in Xu (2006), the

assumption of locally bounded real-valued semi-martingale St allows many jump-diffusion

and pure-jump models to be considered for the price process thus already giving rise to

the possibility of an incomplete market. Alternatively, other definitions of X (p0) could be

used here to model different characteristics of the market, e.g. discrete trading times (see

Section 1.3), or transaction costs, etc., without affecting the nature of our discussion.
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We consider in this article a class of payoff functions F ({St}0≤t≤T ) that admit the

formulation of F (ST , YT ) where Yt is an auxiliary fixed-dimensional stochastic process that

is Ft-measurable. This class of payoff functions is common in the literature, for example in

Bertsimas et al. (2001) and is more easily amenable to numerical methods (see Section 3

for more detailed discussions in a Markovian setting). Here are two examples, where we

denote by {tk}Nk=1 a set of discrete-time points.

1. Options on the maximum value reached by a stock. The option pays off the

maximum stock price reached during {tk}Nk=1 and is defined by:

F

(
max

k=1,...,N
Stk

)
,

which is a function of the whole history of the stock price. In order to define the

payoff as a function of some variables at the current time, Yt can be defined as:

Yt = max
k:tk≤t

Stk .

Using this definition, the payoff of the option at the maturity can be written as a

function of YT .

2. Asian options. The payoff of an Asian option is a function of the average stock

price during {tk}Nk=1:

F

(
1

N

N∑
k=1

Stk

)
.

Letting Yt have the following form:

Yt =
1

N

∑
k:tk≤t

Stk .

Again the payoff of the option at the maturity can be written as a function of YT .

We refer the reader to Bertsimas et al. (2001) for a broader range of options that can

be recast into such a general form of payoff function.

Knowing the option payoff at maturity and assuming that the risk aversion of both

participants are respectively characterized by two risk measures ρw and ρb, i.e. that map

any random liability in Lp(Ω,FT ,P), which one wishes to minimize, to the set of real

numbers (or infinity) and capture the amount of risk that is perceived by the participants,
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it is possible to define the minimal risk achievable by the option writer and the buyer as

follows:

%w(p0) = inf
X∈X (p0)

ρw(F (ST , YT )−XT ) (1.1a)

%b(p0) = inf
X∈X (−p0)

ρb(−F (ST , YT )−XT ) , (1.1b)

where p0 ∈ R represents the price that is charged by the writer to the buyer for committing

to pay an amount F (ST , YT ) to the buyer at time T . The quantities %w(p0), %b(p0) are the

minimal risks associated to the optimal hedging of the writer and the buyer, respectively. In

equation (1.1a), the writer is receiving p0 as the initial payment and implements an optimal

hedging strategy for the liability captured by F (ST , YT ). On the other hand, in (1.1b), the

buyer is assumed to borrow p0 in order to pay for the option and then to manage a portfolio

that will minimize the risks associated to his final wealth F (ST , YT ) +XT . Note that while

in practice the buyer usually might not buy an option by short-selling the risk-free asset

and might not optimize a portfolio with the intent of hedging the option, equation (1.1b)

identifies the minimal risk that he could achieve by doing so, which can certainly serve as

an argument in negotiating the price of the option given that this is always a possibility for

him.

Following the work of Guo and Zhu (2017), the notion of minimal risk achievable for

both participants can in turn be used to define an equal risk price as follows.

Definition 1. (Equal risk price) Given that both the writer’s risk measure, ρw, and buyer’s

risk measure ρb are interpretable as certainty equivalents, i.e.:

∀c ∈ R, ρ(c) = c , (1.2)

and are monotone1, i.e. having X,Y representing costs,

∀X, Y, X ≥ Y a.s.⇒ ρ(X) ≥ ρ(Y ) , (1.3)

then the equal risk price is defined as the unique p∗0 that satisfies

%w(p∗0) = %b(p∗0) ∈ R , (1.4)
1Technically speaking, we also require both risk measures to satisfy Fatou’s property and to satisfy

ρ(X) = limm→∞ ρ(min(X,m)) when X is uniformly bounded from below while it should satisfy ρ(X) =
limm→∞ ρ(max(X,−m)) when X is uniformly bounded above if the limit is finite otherwise be considered
undefined (see Xu (2006) for details).
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when such a unique price exists.

The reason for imposing equation (1.2) is to make sure that the units of %w and %b are

comparable, i.e. that risk is expressed in the units of equivalent certain payoffs. Note that

this assumption is not imposed in Guo and Zhu (2017) where the notion of equal risk price

can become arbitrary, e.g. when ρ measures expected utility since utility functions are

defined only up to positive affine transformations. Note also that this definition of equal

risk price holds for general European options yet we will later present a similar definition

for American options as well.

Besides the equal risk price, in an incomplete market with two risk-averse market

participants, another relevant and closely related concept takes the form of the following

“fair price interval” (c.f. Bernhard et al. (2013)).

Definition 2. (Fair price interval) Given a writer’s risk measure ρw and buyer’s risk

measure ρb, the fair price interval is defined as the interval of prices for which both the

writer and the buyer are unable to exploit the market to completely hedge the risk of the

contract they have agreed upon. Mathematically, the fair price interval takes the form

[pb0, p
w
0 ], where pb0 = sup{p0|%b(p0) ≤ 0} and pw0 = inf{p0|%w(p0) ≤ 0}.

It is worth differentiating the FPI from the no-arbitrage interval. In particular, the

latter is defined as the interval [p̄b0, p̄
w
0 ], such that:

p̄b0 := sup{p0|∃X ∈ X (−p0), F (ST , YT ) +XT ≥ 0 a.s.}

and

p̄w0 := inf{p0|∃X ∈ X (p0), F (ST , YT )−XT ≤ 0 a.s.}.

One can easily exploit the fact that the risk measures are interpretable as certainty

equivalents and monotone to show that the FPI, which accounts for the fact that the two

parties are not arbitrarily risk-averse, is necessarily a subset of the no-arbitrage interval.

While the no-arbitrage price interval is always guaranteed to be non-empty, this is not

necessarily the case for the FPI. An empty FPI captures the existence of a price for which

both the writer and buyer end up being exposed to a negative risk thus making the ERP

paradigm less relevant.
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Note also that both the equal risk price and fair price interval can only be measured

if the risk measures ρw and ρb are known. In practice, this might require both parties

involved to provide supporting evidence for their respective choice of risk measure in the

form of historical decisions that were taken using such measures. In the rest of the article,

we make the assumption that the true risk measures are known by each party.

1.2.2 Equal Risk Pricing with Convex Risk Measures

Since the work of Artzner et al. (1999), it is now common to define coherent risk measures

as risk measures that satisfy the following properties, where X and Z represent two random

liabilities:

• Monotonicity: if X ≤ Z a.s. then ρ(X) ≤ ρ(Z)

• Subadditivity: ρ(X + Z) ≤ ρ(X) + ρ(Z)

• Positive homogeneity: If λ ≥ 0, then ρ(λX) = λρ(X)

• Translation invariance: If m ∈ R, then ρ(X +m) = ρ(X) +m

• Normalized risk: ρ(0) = 0.

The first property naturally applies because if at any possible state that may happen the

amount of liability X is less than the liability Z, then the risk of X is less than the risk of

Z. The second property specifies that diversification does not increase the risk, and may

decrease it. The third property implies that the risk of a position is linearly proportional to

its size. Finally, the fourth property implies that the addition of a sure amount to a random

liability will decrease the risk by the same amount. By relaxing positive homogeneity and

subadditivity with the following convexity property, the family of risk measures becomes

known as the larger family of “convex risk measures" (Föllmer and Schied (2011)):

• Convexity: ρ(λX + (1− λ)Z) ≤ λρ(X) + (1− λ)ρ(Z), for 0 ≤ λ ≤ 1.

Without loss of generality, in order to ensure that an equal risk price exists, we impose

that participants are unable to design self-financing hedging strategies that reach arbitrarily

low risks.
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Assumption 1.2.1. We assume that the risk measures, ρw and ρb satisfy a “bounded

market risk” assumption, i.e.

0 ≥ inf
X∈X (0)

ρw(−XT ) > −∞, 0 ≥ inf
X∈X (0)

ρb(−XT ) > −∞ .

In particular, if the risk measures are coherent, then this assumption implies that2

inf
X∈X (0)

ρw(−XT ) = 0, inf
X∈X (0)

ρb(−XT ) = 0 .

Note that this assumption was also made in Xu (2006) (see Assumption 2.3) and reflects

the fact that a participant believes that he cannot make an arbitrarily large risk-adjusted

profit from trading in this market. We argue that in the context of equal risk price, it is

made without loss of generality since if either risk measure violates the condition, then one

should simply conclude that there exists no equal risk price as defined in Definition 1. This

is due to the fact that for all p0, we would have for example that

%w(p0) = inf
X∈X (p0)

ρw(F (ST , YT )−XT ) ≤ inf
X∈X (p0)

(1/2)ρw(2F (ST , YT )) + (1/2)ρw(−2XT )

= (1/2)ρw(2F (ST , YT ))− p0 + inf
X∈X (0)

(1/2)ρw(−2XT ) = −∞ /∈ R .

An interesting conclusion can be drawn regarding the relation between the equal risk

price and the fair price interval when both risk measures are convex risk measures.

Proposition 1.2.1. Given that both ρw and ρb are convex risk measures, an equal risk

price exists if and only if the fair price interval is bounded. Moreover, when it exists it is

equal to:

p∗0 = (%w(0)− %b(0))/2 ,

which is the center of the fair price interval if the latter is non-empty.

Based on the Proposition 1.2.1, when using convex risk measures, the equal risk price

can simply be found by evaluating the two boundaries of the fair price interval.

Following up on an important concern raised about the ε-arbitrage pricing approach,

based on a result from Xu (2006), we can actually confirm the fact that for convex risk

measures that satisfy the bounded market risk property, the equal risk price is arbitrage-free

under weak conditions.
2Indeed, for a coherent risk measure, we have that infX∈X (0) ρ

w(−XT ) < 0 implies that
infX∈X (0) ρ

w(−XT ) = −∞ because of positive homogeneity.
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Lemma 1.2.2. If the fair price interval exists and is non-empty and both ρw and ρb are

convex risk measures, then the equal risk price lies in the no-arbitrage price interval.

In what follows, we will show how the result of Proposition 1.2.1 can be further exploited

to identify the equal risk price of both European and American-style options using dynamic

programming in a context where hedging is implemented at discrete-time points.

Remark 1. We should note here that in the case where the risk measures do not satisfy the

translation invariance property, one can still exploit the above observation that the equal

risk price falls within the fair price interval and is therefore arbitrage-free assuming non-

emptiness of this interval. Namely, if such a price exists, one can identify it by employing a

bisection algorithm that can establish ∆(p0) := %w(p0)− %b(p0) = 0. The convergence of a

bisection method can rely on the fact that ∆(p0) is non-increasing and that it is greater or

equal to zero at pb0 and lower or equal to zero at pw0 . Finally, some guidance regarding the

derivation of dynamic programming equations for this more general context can be found

in Appendix 1.6.5.

1.3 Discrete Dynamic Formulations for Equal Risk Pricing

Framework

In contexts where trading can only occur at specific periods of time {tk}K−1
k=0 ⊂ [0, T [, one

typically redefines the set of all admissible self-financing hedging strategies in terms of the

wealth accumulated at each period:

X̄ (p0) =

{
X : Ω→ RK

∣∣∣∣∣∃{ξk}K−1
k=0 , Xk = p0 +

k−1∑
k′=0

ξk′∆Sk′+1, ∀k = 1, . . . ,K

}
,

where ∆Sk+1 = Stk+1
− Stk and where, for each k = 0, . . . ,K − 1, the hedging strategy

ξk is a Ftk -measureable random variable and captures the number of shares of the risky

assets held in the portfolio during the period [tk, tk+1]. Finally, we assume that all random

variables of interest in the discrete hedging problem are well behaved, and for simplicity

will refer to Ftk as Fk.
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Assumption 1.3.1. There exists some p ∈ [1, ∞] such that all X ∈ X̄ (p0) is such

that for all k = 1, . . . ,K we have that Xk ∈ Lp(Ω,Fk,P) and that the payoff function

F (ST , YT ) ∈ Lp(Ω,FT ,P).

In particular, this assumption allows us to make use of a decomposability property of risk

measures, which as shown in Ruszczynski and Shapiro (2006); Ruszczyński (2010); Pichler

and Shapiro (2018) is a key concept for producing a dynamic formulation for problems

(1.1a) and (1.1b).

Definition 3. (One-step decomposable risk measures) The measure ρ : Lp(Ω,FT ,P)→ R

is “one-step decomposable" if there exists a set of risk measures {ρk}K−1
k=0 such that ρ(X) =

ρ0(ρ1(· · · ρK−2(ρK−1(X)) · · · ) and where each measure ρk : Lp(Ω,Fk+1,P)→ Lp(Ω,Fk,P)

is a conditional risk mapping (as defined in Ruszczynski and Shapiro (2006)), i.e. it satisfies

the following properties:

• Conditional convexity : ∀ θ ∈ [0, 1], ∀X,Y ∈ Lp(Ω,Fk+1,P), ρk(θY + (1− θ)X) ≤

θρk(Y ) + (1− θ)ρk(X) a. s.

• Conditional monotonicity : ∀X,Y ∈ Lp(Ω,Fk+1,P), Y ≥ X a. s. ⇒ ρk(Y ) ≥

ρk(X) a. s.

• Conditional translation invariance : ∀X ∈ Lp(Ω,Fk,P), Y ∈ Lp(Ω,Fk+1,P), ρk(X +

Y ) = X + ρk(Y ) a. s.

Additionally, a coherent risk measure is said to be “one-step coherently decomposable” if

each measure ρk also satisfies

• Conditional scale invariance : ∀α ≥ 0, ∀X ∈ Lp(Ω,Fk+1,P), ρk(αX) = αρk(X) a. s.

Among all risk measures that are one-step decomposable, a special class of risk measures

can be shown to be especially attractive from a computational point of view. We will

refer to these measures as Markovian risk measures which can be used when the filtered

measurable space (Ω,F) is a progressively revealed product space.

Definition 4. The filtered probability space (Ω,F ,F,P) is said to be supported on a

progressively revealed product space if there exists a sequence {(Ωk,Σk)}Kk=1 such that
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(Ω,F) is the product space, i.e. Ω := ×Kk=1Ωk and F := ⊗Kk=1Σk, and F is the natural

filtration in this space, i.e. Fk := σ(πk′ : k′ ≤ k), where πk(ω) := ωk.

With this definition in hand, we are now ready to define the class of Markovian risk

measures. We note that a similar class of risk measure was proposed in Ruszczyński (2010)

in the context of a Markov decision processes. We, however, simplify the definition by

exploiting the fact that conditional risk mappings are unaffected by decisions.

Definition 5. (Markovian risk measure) Given that (Ω,F ,F,P) is supported on a progres-

sively revealed product space defined through some {(Ωk,Σk)}Kk=1, a one-step decomposable

risk measure is said to be Markovian if there exists an F measurable stochastic process

θk : Ω→ Rm, with k = 0, . . . ,K, that follows some dynamics θk+1(ω) = f(θk(ω), ωk) for

some f : Rm × Ωk → Rm, and some ρ̄k : Lp(Ωk+1,Σk+1,Pk+1)× Rm → R, with Pk+1 the

marginalization of P on Ωk+1 such that:

ρk(X,ω) = ρ̄k(Π̄k(X,ω), θk(ω)) ,

where Π̄k(X,ω) is a random variable in Lp(Ωk+1,Σk+1,Pk+1) defined as Π̄k(X,ω, ω̄k+1) =

X(ω1:k, ω̄k+1, ωk+1:K).

Finally, given that the decomposable risk measure in this paper will be used in an

arbitrage-free financial market, one can formulate an assumption that imposes the bounded

market assumption 1.2.1 on each conditional risk mapping.

Assumption 1.3.2. (Bounded conditional market risk) A one-step decomposable risk

measure ρ is said to express “bounded conditional market risk” if each conditional risk

mapping ρk satisfies the following properties:

0 ≥ inf
ξk,...,ξK−1

ρk,K(−
K∑
`=k

ξ`∆S`+1) > −∞ a. s. ,

where ρk,K(X) := ρk(ρk+1(· · · ρK−1(X) · · · ). Furthermore, if it is conditionally scale

invariant then infξk,...,ξK−1
ρk,K(−

∑K
`=k ξ`∆S`+1) = 0.

In what follows, we derive dynamic equations that can be used to compute the equal

risk price of European and American-style options in discrete-time trading. We further
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exploit the translation invariance and Markovian properties to reduce the dimension of the

state space required to formulate the Bellman equations. We also conclude this section

with an example of such equations when employing a recursive conditional value-at-risk

measure.

1.3.1 European Style Options

In order to evaluate the equal risk price of options of the form of F (ST , YT ) in discrete-time

with convex risk measures, as described in Proposition 1.2.1 one should solve problems

(1.1a) and (1.1b) under the feasible set of strategies X̄ (0). Interestingly, the work of Pichler

and Shapiro (2018) provide simple arguments for deriving useful dynamic equations in

contexts where the risk measures are one-step decomposable risk measures.

Proposition 1.3.1. Given that ρw and ρb are one-step decomposable risk measures as

defined in Definition 3, then %w(0) = V w
0 and %b(0) = V b

0 , where each V w
k and V b

k for

k = 0, . . . ,K are defined as follow:

Writer’s model:

V w
k (ω) := inf

ξk
ρwk (−ξk∆Sk+1 + V w

k+1, ω) , k = 0, . . . ,K − 1 (1.5a)

V w
K (ω) := F (SK(ω), YK(ω)) . (1.5b)

Buyer’s model:

V b
k (ω) := inf

ξk
ρbk(−ξk∆Sk+1 + V b

k+1, ω) , k = 0, . . . ,K − 1 (1.6a)

V b
K(ω) := −F (SK(ω), YK(ω)) , (1.6b)

and assuming that each V w
k ∈ Lp(Ω,Fk,P) and V b

k ∈ Lp(Ω,Fk,P). Furthermore, the

minimal risk hedging policy for both the writer and the buyer can be described respectively

as:

ξw∗k (ω) ∈ arg min
ξk

ρwk (−ξk∆Sk+1 + V w
k+1, ω), ∀ k = 1, . . . ,K − 1

ξb∗k (ω) ∈ arg min
ξk

ρbk(−ξk∆Sk+1 + V b
k+1, ω), ∀ k = 1, . . . ,K − 1 .
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We then get that if the filtered probability space is supported on a progressively revealed

product space, if both ∆Sk and ∆Yk := Yk − Yk−1 are measurable on Σk, such that they

co-exist in both Lp(Ω,F ,P) and Lp(Ωk,Σk,Pk), and if both ρw and ρb satisfy the Markovian

assumption with respect to θw and θb respectively, then we can derive finite-dimensional

Bellman equations that allow us to compute the equal risk price. These can be defined as

follows:

Ṽ w
K (SK , YK , θ

w
K) := F (SK , YK) ,

and recursively

Ṽ w
k (Sk, Yk, θ

w
k ) := inf

ξk
ρ̄k(−ξk∆Sk+1 + Ṽ w

k+1(Sk + ∆Sk+1, Yk + ∆Yk+1, fk(θ
w
k )), θwk ) ,

where each f̃k(θwk ) can be considered a random variable in Lp(Ωk+1,Σk+1,Pk+1). These

equations have the property that:

V w
K (ω) = Ṽ w

K (SK(ω), YK(ω), θwK(ω)) ,

and recursively that if V w
k+1(ω) = Ṽ w

k+1(Sk+1(ω), Yk+1(ω), θwk+1(ω)), then we have that:

V w
k (ω) = inf

ξk
ρwk (−ξk∆Sk+1 + V w

k+1, ω)

= inf
ξk
ρwk (−ξk∆Sk+1 + Ṽ w

k+1(Sk+1, Yk+1, θ
w
k+1), ω)

= inf
ξk
ρ̄wk (Π̄k(−ξk∆Sk+1 + Ṽ w

k+1(Sk+1, Yk+1, θ
w
k+1)), θwk (ω)),

= inf
ξk
ρ̄wk (−ξk∆Sk+1 + Ṽ w

k+1(Sk(ω) + ∆Sk+1, Yk(ω) + ∆Yk+1, f(θwk )), θwk (ω))

= Ṽk(Sk(ω), Yk(ω), θk(ω)) .

From these derivations we see that %w(0) = V w
0 = Ṽ w

0 (S0, Y0, θ
w
0 ). In the case of the buyer,

similar derivations lead to the Bellman equations:

Ṽ b
K(SK , YK , θ

b
K) := −F (SK , YK)

and

Ṽ b
k (Sk, Yk, θ

b
k) := inf

ξk
ρ̄bk(−ξk∆Sk+1 + Ṽ b

k+1(Sk + ∆Sk+1, Yk + ∆Yk+1, fk(θ
b
k)), θ

b
k) ,

which can be used to compute %b(0) = V b
0 = Ṽ b

0 (S0, Y0, θ
b
0). We can, therefore, conclude

that p∗0 = (Ṽ w
0 (S0, Y0, θ

w
0 )− Ṽ b

0 (S0, Y0, θ
b
0))/2.
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1.3.2 American-style Option

Contrary to European options, the exercise time of American options is flexible and up to

the buyer’s decision. Therefore, in the equal risk model we need to consider the interaction

between an optimal exercise time and one-step decomposable risk measures. Similarly as

in Pichler and Shapiro (2018), we will define the exercise time as a “stopping time” with

respect to the filtration F, i.e. that it is a random variable τ : Ω→ {0, . . . ,K}, such that

{ω : τ(ω) = t} ∈ Ft, for all ∀t = {0, ..., T}. Considering that the option payoff is now

Ft(St, Yt) ∈ Lp(Ω,Ft,P) at time t if and only if τ = t, we let Fτ (Sτ , Yτ ) capture the new

payoff function which is defined as follows:

Fτ (Sτ , Yτ ) :=
T∑
t=0

I{τ=t}Ft(St, Yt) ,

where I{τ=t} is the indicator function, which is one for τ = t, and zero otherwise. We also

redefine the set of self-financing hedging strategy to make its relation to τ explicit:

X̄τ (p0) :=

Xτ : T × Ω→ RK
∣∣∣∣∣∣ ∃X

τ
0 = p0,∀k = 1, . . . ,K − 1,∃ξk, {ξ̂ik}ki=0

Xτ
k+1(τ) = Xτ

k (τ) + (ξk1{τ > k}+
∑k
i=0 ξ̂

i
k1{τ = i})∆Sk+1, ∀τ ∈ T

 ,

where T is the set of all exercise time process, and where each ξk and ξ̂ik are Fk-measurable.

Specifically, ξk models the hedging strategy that is implemented at time k when exercise

has not occurred yet while ξ̂ik models the hedging strategy that is implemented at time k

when exercise occurred in period k′ = i.

Remark 2. We need to emphasize the fact that in most of the recent literature, hedging

is considered to stop once the option is exercised. We intentionally omit making this

assumption up front and choose to model the possibility of hedging for both the writer and

the buyer throughout the horizon. We will later show that when ρw and ρb are one-step

coherently decomposable, the two approaches become equivalent, i.e. one can consider that

ξ̂ik = 0 for all k = 0, . . . , T − 1 and all i = 0, . . . , k (see Section 1.3.2 for further discussion).

In cases where the assumption does not hold, we consider important to model hedging

beyond exercise time in the buyer problem in order to avoid having incentives to delay

exercise time simply to be able to benefit from later market opportunities. Similarly, in the

writer’s problem, if hedging stops at exercise time, the worst-case exercise time policy could

be biased towards zero in order to prevent the writer from benefiting from later market
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conditions.We also note that in any case, the analysis that follows can straightforwardly be

adapted to a definition of the set of self-financing hedging strategies that explicitly enforces

no hedging beyond exercise time.

In this context, the definition of the equal risk framework needs to be adapted to account

for the presence of τ . In what follows, we will consider two formulations.

Definition 6. ERP with Commitment. Given that both the writer’s risk measure,

ρw, and buyer’s risk measure ρb are interpretable as certainty equivalents and are strictly

monotone with respect to certain amounts, then the equal risk price with commitment,

when it exists, is defined as the unique p∗0 for which there exists a stopping time policy τ∗

that satisfies:

%w(p∗0, τ
∗) = %b(p∗0, τ

∗) ∈ R & τ∗ ∈ arg min
τ
%b(p∗0, τ) ,

where

%w(p0, τ) = inf
Xτ∈X̄τ (p0)

ρw(F (Sτ , Yτ )−Xτ
K(τ)) (1.7)

%b(p0, τ) = inf
Xτ∈X̄τ (−p0)

ρb(−F (Sτ , Yτ )−Xτ
K(τ)) . (1.8)

In simple terms, Definition 6 reflects the assumption that the buyer of the option

commits to following a risk-minimizing exercise strategy at the moment of purchasing the

option. With this information, the writer can be more effective in hedging the option

which, as will be shown, has the effect of giving rise to a lower equal risk price then when

no commitment is made by the buyer. While we note that in practice, it might not be

interesting for a buyer to commit up front to an exercise strategy, the notion of ERP with

commitment can serve the purpose of assessing the “cost of non-commitment”, which is

a concept that is unique to the pricing of American options in an incomplete markets

(because of the multiplicity of arbitrage-free prices) and which can help interpreting the

ERP without commitment.

Definition 7. ERP without Commitment. Given that both the writer’s risk measure,

ρw, and buyer’s risk measure ρb are interpretable as certainty equivalents and are strictly

monotone with respect to certain amounts, then the equal risk price without commitment,
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when it exists, is defined as the unique p∗0 that satisfies:

%wτ (p∗0) = %bτ (p∗0) ∈ R ,

where

%wτ (p0) = inf
Xτ∈X̄τ (p0)

sup
τ
ρw(F (Sτ , Yτ )−Xτ

K(τ)) (1.9)

%bτ (p0) = inf
Xτ∈X̄τ (−p0)

inf
τ
ρb(−F (Sτ , Yτ )−Xτ

K(τ)) . (1.10)

Note that in this definition, the writer is unaware of the exercise strategy that will

be employed by the buyer. He, therefore, considers the minimal risk of entering into this

contract agreement as being the risk achieved by following an optimal hedging strategy that

is adapted to both the filtration and the information about τ that is progressively revealed.

We now demonstrate how the equal risk price necessarily increases when passing from

the “with commitment” to “without commitment” framework.

Lemma 1.3.2. Given any American type option, the ERP with commitment p∗c is always

smaller or equal to the ERP without commitment p∗nc.

In what follows, we derive dynamic programming equations that can be used to compute

the ERP in both type of settings. Section 1.3.2 then exploits these equations to establish

that when the risk measures are coherently decomposable, risk cannot be reduced by

hedging beyond the exercise time.

Bellman Equations for Equal Risk Price with Commitment

We start with a simple lemma that extends the result of Proposition 1.2.1 to the context of

an American option with commitment.

Lemma 1.3.3. Given that both ρw and ρb are convex risk measures, an equal risk price

exists if and only if the fair price interval defined as:

[−%b(0, τ0), %w(0, τ0)] ,

where τ0 ∈ arg minτ %
b(0, τ), is bounded. Moreover, when it exists it is equal to the center

of this interval, which can be calculated as:

p∗0 := (%w(0, τ0)− %b(0, τ0))/2 .
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Lemma 1.3.3 indicates that, to evaluate the ERP, one needs to be able to compute

%w(0, τ) and %b(0, τ) for any fixed exercise policy τ , and to identify a procedure that can

solve the optimal exercise time problem: minτ %
b(0, τ). As for the case of European options,

all these elements can be characterized using dynamic programming equations.

Proposition 1.3.4. Given that ρw and ρb are one-step decomposable risk measures as

defined in Definition 3, then %w(0, τ0) = V w
0 (τ0) and %b(0, τ0) = V b

0 (0), where for any

exercise strategy τ , each V w
k (τ), V b

k (0), and V b
k (1) for k = 0, . . . ,K are defined as follow:

Writer’s model:

V w
k (τ, ω) := inf

ξk
ρwk (V w

k+1(τ)− ξk∆Sk+1, ω) + 1{τ(ω) = k}F (Sk(ω), Yk(ω))

V w
K (τ, ω) := 1{τ(ω) = K}F (SK(ω), YK(ω)) .

(1.11)

Buyer’s model:

V b
k (1, ω) := inf

ξk
ρbk(−ξk∆Sk+1 + V b

k+1(1), ω) (1.12)

V b
k (0, ω) := min(V b

k (1, ω)− F (Sk(ω), Yk(ω)), inf
ξk
ρbk(−ξk∆Sk+1 + V b

k+1(0), ω)) (1.13)

V b
K(Z̄K , ω) := −(1− Z̄K(ω))F (SK(ω), YK(ω)) . (1.14)

and assuming that each V w
k (τ), V b

k (0), and V b
k (1) are in Lp(Ω,Fk,P). Furthermore, a

feasible candidate for τ0 can be found using

τ0(ω) = min{k = 0, . . . ,K|V b
k (0, ω) = V b

k (1, ω)− F (Sk(ω), Yk(ω))} . (1.15)

Finally, given that the option is sold at the equal risk price p∗0 = (V w
0 (τ0)− V b

0 (0))/2 based

on an exercise strategy τ0, the minimal risk hedging policy for both the writer and the buyer

can be described respectively as:

ξ̂i∗k (τ, ω) ≡ ξ∗k(τ, ω) ∈ arg min
ξk

ρwk (V w
k+1(τ)− ξk∆Sk+1, ω),

∀ k = 1, . . . ,K − 1

∀ i = 0, . . . , k,

for the writer, and

ξ̂i∗k (ω) ≡

ξ∗k(ω) ∈ arg min
ξk

ρbk(−ξk∆Sk+1 + V b
k+1(1{τ0(ω) ≤ k}), ω),

∀ k = 1, . . . ,K − 1

∀ i = 0, . . . , k,
(1.16)
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for the buyer.

In order for the evaluation of %w(0, τ0) and %w(0, τ0) to be computable numerically,

it becomes essential to identifying Bellman equations on a finite-dimensional state space.

When the Markovian assumption holds for both ρw and ρb with respect to some process θk,

these can be derived as follows. For the buyer’s problem, we have that:

Ṽ b
k (1, Sk, Yk, θk) := inf

ξk
ρ̄bk(−ξk∆Sk+1 + Ṽ b

k+1(1, Sk + ∆Sk+1, Yk + ∆Yk+1, f(θk)), θk)

Ṽ b
k (0, Sk, Yk, θk) := min(Ṽ b

k (1, Sk, Yk, θk)− F (SK , YK),

inf
ξk
ρ̄bk(−ξk∆Sk+1 + Ṽ b

k+1(0, Sk + ∆Sk+1, Yk + ∆Yk+1, f(θk)), θk))

Ṽ b
K(Z̄K , Sk, Yk, θk) := −(1− Z̄K)F (SK , YK) .

(1.17)

In order to obtain an optimal exercise policy, one can first observe that with

τ0(ω) = min
{
k = 0, . . . ,K|Ṽ b

k (0, Sk(ω), Yk(ω), θk(ω))

= Ṽ b
k (1, Sk(ω), Yk(ω), θk(ω))− F (Sk(ω), Yk(ω))

}
.

Yet, when letting Zk := 1{τ0 = k} and Z̄k := 1{τ0 < k}, we can define:

gk(Z̄k, Sk, Yk, θk) := 1{(Z̄k = 0) & (Ṽ b
k (0, Sk, Yk, θk) = Ṽ b

k (1, Sk, Yk, θk)− F (SK , YK))}

so that

Zk(ω) = gk(Z̄k(ω), Sk(ω), Yk(ω), θk(ω)) ,

and

Z̄k+1(ω) = Z̄k(ω) + gk(Z̄k(ω), Sk(ω), Yk(ω), θk(ω)) .

This implies that τ0(ω) =
∑K

k=0 gk(Z̄k(ω), Sk(ω), Yk(ω), θk(ω)) which can be implemented

by exploiting the Bellman equations. We can then proceed with describing the reduced

equations for the writer’s problem:

Ṽ w
k (Z̄k, Sk, Yk, θk) :=

inf
ξk
ρ̄wk (−ξk∆Sk+1 + Ṽ w

k+1(Z̄k + gk(Z̄k, Sk, Yk, θk), Sk + ∆Sk+1, Yk + ∆Yk+1, fk(θk)), θk)

+ gk(Z̄k, Sk, Yk, θk)F (Sk, Yk)

Ṽ w
K (Z̄K , SK , YK , θK) := gK(Z̄K , SK , YK , θK)F (SK , YK) ,
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so that

V w
k (τ0, ω) = Ṽ w

k (Z̄(ω), Sk(ω), Yk(ω), θk(ω)) .

Bellman Equations for Equal Risk Price without Commitment

In the context of a contract where the buyer does not commit to a specific exercise policy,

Proposition 1.2.1 extends in a straightforward manner. Nonetheless, for completeness, we

provide the details in the following lemma.

Lemma 1.3.5. Given that both ρw and ρb are convex risk measures, an equal risk price

exists if and only if the fair price interval defined as [−%bτ (0), %wτ (0)], is bounded. Moreover,

when it exists it is equal to the center of this interval which can be calculated as p∗0 :=

(%wτ (0)− %bτ (0))/2.

The main difference between this case and the case with commitment is that in order

to compute %wτ (0), now there is a need to further determine the worst-possible exercise

policy that the writer would hedge against. Since the whole hedging problem for the writer

now takes the form of a minimax optimization problem, additional care has to be taken

to ensure the decisions of hedging and exercising (the options) are executed in the right

order when formulating the Bellman equations. In particular, we proceed by fixing first

the hedging decisions and identifying recursive equations that solve the worst-case exercise

time problem (Pichler and Shapiro (2018)). We then use the arguments based on the

interchangeability principle in dynamic programming (see Pichler and Shapiro (2018)) to

establish that the hedging decisions that minimize the recursive equations globally can be

obtained from decisions that minimize the recursive equations stage-wise. The details can

be found in the appendix and this leads to the following dynamic programming equations.

On the other hand, it is not hard to confirm that the computation of %bτ (0) for the buyer

coincides with the computation required in the case of commitment.

Proposition 1.3.6. Given that ρw and ρb are one-step decomposable risk measures as

defined in Definition 3, then %wτ (0) = V w
0 (0) and %b(0) = V b

0 (0), each V w
k (0) and V w

k (1) for

k = 0, . . . ,K are defined as follow:
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Writer’s model:

V w
k (1, ω) := inf

ξk
ρwk (−ξk∆Sk+1 + V w

k+1(1), ω) (1.18)

V w
k (0, ω) := max(V w

k (1, ω) + F (Sk(ω), Yk(ω)), inf
ξk
ρwk (−ξk∆Sk+1 + V w

k+1(0), ω)) (1.19)

V w
K (Z̄K , ω) := (1− Z̄K(ω))F (SK(ω), YK(ω)) , (1.20)

while V b
k (0) and V b

k (1) are defined as in equations (1.12)-(1.14) and assuming that each

V w
k (0), V w

k (1), V b
k (0), and V b

k (1) are in Lp(Ω,Fk,P). Furthermore, given that the option is

sold at the equal risk price p∗0 = (V w
0 (0)− V b

0 (0))/2, a minimal risk hedging policy for the

writer can be described as:

ξ̂i∗k (ω̄) ≡ ξ∗k(ω) ∈ arg min
ξk

ρwk (−ξk∆Sk+1 + V w
k+1(1{τ ≤ k}), ω),

∀ k = 1, . . . ,K − 1

∀ i = 0, . . . , k ,

where τ is the observed exercise strategy. In the case of the buyer, a risk minimizing hedging

strategy is as in equation (1.15), while a risk minimizing exercise strategy can be found

using equation (1.16).

When the Markovian assumption holds with respect to some process θk, we can again

derive finite-dimensional equations. In particular, for the buyer’s problem, these are exactly

as presented in equations (1.17). On the other hand, for the writer’s problem, we have that:

Ṽ w
k (1, Sk, Yk, θk) := inf

ξk
ρ̄wk (−ξk∆Sk+1 + Ṽ w

k+1(1, Sk + ∆Sk+1, Yk + ∆Yk+1, f(θk), θk)

Ṽ w
k (0, Sk, Yk, θk) := max(Ṽ w

k (1, Sk, Yk, θk) + F (SK , YK),

inf
ξk
ρ̄wk (−ξk∆Sk+1 + Ṽ w

k+1(0, Sk + ∆Sk+1, Yk + ∆Yk+1, f(θk), θk))

Ṽ w
K (Z̄K , Sk, Yk, θk) := (1− Z̄K)F (SK , YK) .

(1.21)

On the Value of Hedging Beyond the Exercise Time

As pointed out in the beginning of Section 3, our dynamic programming (DP) formulations

of the hedging problem are more general in that they allow for the possibility of hedging

after the exercise of the options. This in principle provides the opportunities for both the

writer and buyer to seek further risk reduction. But at the same time it adds additional
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complexity to the DP formulation, which becomes computationally more costly to solve

than the DP that assumes no hedging after exercise of the options. In this section, we

identify the condition under which hedging beyond the exercise time actually does not

reduce risk. In particular, based on our general DP formulation, we find that it is actually

optimal to stop hedging after the exercise time if the employed risk measure is coherent.

Corollary 1.3.7. If ρw is one-step coherently decomposable, then it becomes optimal for

the writer to terminate the hedging strategy at the exact moment that the American option

is exercised. The same applies to the buyer.

As detailed in Appendix 1.6.11, this observation is closely related to the assumption

of bounded market risk, in which case there exists no risk reduction opportunity when

measured according to a coherent risk measure. Since in this case hedging beyond exercise

time adds no value, one can simply employ a DP formulation that assumes that hedging

stops at the exercise time.

In the next section, we elaborate on a specific class of coherently decomposable risk

measure, referred to as “worst-case risk measures”. We further provide numerical evidence

on the quality of prices obtained using such risk measure both from the point of view of

risk exposure and fairness.

1.3.3 Recursive Conditional Value-at-Risk Example

In this section, we provide a specific example of the Markovian counterpart of a popular

one-step decomposable risk measure. We demonstrate how our results can be applied to

this risk measure so as to write the corresponding Bellman equations.

We start by assuming the stochastic processes Sk and Yk admit the following recursive

representation, which is common in many applications:

Sk+1 = f(Sk, εk+1), Yk+1 = g(Yk, εk+1),

for some f : R× Rnε → R and g : Rny × Rnε → Rny , and (ε1, ..., εK) is a realization of the

progressively revealed product space with Ω := ×Kk=1Rnε and F := ⊗Kk=1B(Rnε), where

B(Rnε) refers to the Borel σ-algebra, equipped with probability measure P and natural

filtration F.
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Definition 8. (Recursive conditional value-at-risk) Given a random variable X and a

process {βk}K−1
k=0 which is Fk measurable, i.e. βk := Rnkε → R, the recursive conditional

value-at-risk measure ρ is a one-step decomposable risk measure obtained using a conditional

value-at-risk measure, defined as

ρk(X, ε1, . . . , εK) = inf
t
t+

1

1− βk(ε1, . . . , εk)
E
[
(X − t)+

∣∣ε1, . . . , εk] ,
as the conditional risk mapping.

Note that the recursive conditional value-at-risk measure defined above only qualifies,

in its general form, as a Markovian risk measure if one considers θk := [εT1 . . . εTk ]T .

This can quickly give rise to the curse of dimensionality when constructing and solving the

associated DP formulation. To circumvent this issue, a common practice is to assume that

the εk process satisfies the Markov property, i.e. P(εk+s ∈ A|ε1, . . . , εk) = P(εk+s ∈ A|εk)

for all s ≥ 0 and all A ∈ B(Rnε). One however also needs an additional assumption about

the βk process such that βk = h(βk−1, εk) for some h : R×Rnε → R, in order to satisfy the

Markovian risk measure assumption under a process θk := [βk−1 εTk−1]T .

We can now summarize the Bellman equations that can be derived for the case of a

recursive conditional value-at-risk that is Markovian with respect to θk by following the

result and discussions in Section 1.3.1. Namely, the writer problem’s Bellman equations for

the case of European options can be written as follows:

Ṽ w
0 (S0, Y0) = inf

ξ,t
t+

1

1− β0
E[(−ξ(f(S0, ε1)− S0) + Ṽ w

1 (f(S0, ε1), g(Y0, ε1), h(β0, ε1), ε1)− t)+],

Ṽ w
k (Sk, Yk, βk, εk) =

inf
ξ,t

t+
1

1− βk
E[−ξ(f(Sk, εk+1)− Sk) + Ṽ w

k+1(f(Sk, εk+1), g(Yk, εk+1), h(βk, εk+1), εk+1)− t)+|εk]

and Ṽ w
K (SK , YK , βK , εK) = F (SK , YK). Similar Bellman equations can be derived for the

buyer and we omit them for brevity.

In the case of American option, we can follow the result and discussions in Section 1.3.2.

to write down the following Bellman equations for the buyer:

Ṽ b
k (0, Sk, Yk, βk, εk) = min

(
− F (Sk, Yk), inf

ξ,t
t+

1

1− βk
E[(−ξk(f(Sk, εk+1)− Sk)

+ Ṽ b
k+1(0, f(Sk, εk+1), g(Yk, εk+1), h(βk, εk+1), εk+1)− t)+|εk]

)
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and

Ṽ b
K(Z̄K , SK , YK , βK , εK) = −(1− Z̄K)F (SK , YK),

where we exploited the fact that Ṽ b
k (1, Sk, Yk, βkεk) = 0 since the conditional value-at-risk

(CVaR) is coherent and Corollary 1.3.7 applies. We omit the writer’s equations for brevity.

The arguments used above can be employed for many other recursive risk measures as

long as ρk is the conditional analog of a law-invariant coherent risk measure.

Example 1. One obtains a recursive mean semi-deviation measure when using a conditional

risk mapping ρk defined as ρk(X) = E[X|Fk] + κkE[((X − E[X|Fk])+)r|Fk]
1
r , where κk is

Fk-measurable.

Example 2. One obtains a recursive mean CVaR measure when using a conditional risk

mapping ρk defined as ρk(X) = E[X|Fk] +κk

(
inft t+ 1

1−βkE[(X − t)+|Fk]
)
, where κk > 0

and βk ∈ [0, 1) are Fk-measurable.

On the other hand, it is worth emphasizing that a one-step decomposable risk measure

that is constructed based on the composition of law-invariant coherent risk measures as

suggested above is not law-invariant unless the conditional mappings are expectation or

worst-case risk measures (Shapiro, 2012). This motivates us, in the following section, to

focus our numerical study on the latter class of risk measures.

1.4 Numerical Study with Worst-case Risk Measures

In this section, we provide necessary details of implementing the equal risk pricing model in

the case where the risk measure takes the form of a worst-case risk measure. In particular,

such a form of risk measures has been considered in the literature of robust optimization,

which requires the specification of an uncertainty set U over which the worst-case loss

is calculated. The ε-arbitrage pricing model mentioned earlier in the introduction is one

example that employs an uncertainty set motivated by central limit theorem. While the

ε-arbitrage pricing model does not distinguish between the writer’s and the buyer’s loss,

the equal risk pricing model proposed in this paper does, and one of our goals in this

section is to demonstrate numerically the strength of the equal risk pricing model over the
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ε-arbitrage pricing model. We will also benchmark the equal risk pricing model against

the Black–Scholes pricing model in the case of European option, and against the binomial

pricing model in the case of American option.

To facilitate the comparisons between the aforementioned models, we start by considering

a market of assets that are driven by a Geometric Brownian Motion (GBM). We assume

that the asset returns can only be observed at a set of uniformly distributed time points

on the interval [0, T ] such that each time point tk := kT/K, k = 1, ...,K. Without loss of

generality, we can write Stk = S0Πk
l=1(1 + rk) to denote the dynamic of asset price given a

random vector of observed returns taking values in RK and an initial asset price S0. In

order to formalize worst-case risk measures over such a market, we consider an outcome

space Ω := RK and an associated filtered probability space (RK ,B(RK), F̄, P̄), where B(RK)

is the Borel σ-algebra on RK , and F̄ := {σ(rk′ : k′ ≤ k)} is the natural filtration. We let P̄

be the probability measure that captures

(1 + rk) ∼ i.i.d. Lognormal(µT/K, σ2T/K), k = 1, ...,K ,

where µ and σ are the statistics of the GBM per unit of time T . Note that this filtered

probability space is supported on a progressively revealed product space as defined in

Definition 4. For the sake of convenience, we reformulate the hedging decision problem in

terms of how much money is invested in the risky asset at each time point, denoted by

ζ0, . . . , ζK−1, instead of the number of shares of the risky assets, i.e. ζk = ξkStk . This leads

to the following equation representing the evolution of wealth:

Xk = p0 +

k−1∑
k′=0

ζk′rk′+1, ∀k = 1, ...,K.

In this numerical study, we will assume that the writer and buyer are employing a risk

measure that is motivated by robust optimization. In particular, we will assume that they

are concerned about the worst-case performance for realizations that arise in a predefined

uncertainty set U . We, therefore, define a worst-case risk measure on a random liability

X : RK → R as:

ρ(X) = ess sup
U(U)

X ,

where U ⊂]− 1, ∞[K is compact and regular closed, and where U(U) refers to the uniform

distribution over U . We simplify the following presentation by employing standard notation
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from robust optimization with U as the so-called uncertainty set:

ρ(X) = sup
r∈U

X(r) .

Clearly, this risk measure is necessarily monotone, translation invariant, and coherent.

Moreover, it is also one-step decomposable using:

ρk(X, r) :=

 supr′∈U :r′1:k=r1:k
X(r′) if ∃ r′ ∈ U , r′1:k = r1:k

X([rT1:k 0Tk+1:K ]T ) otherwise
,

where r1:k ∈ Rk refers to the first k-th first terms of r, and where X([rT1:k 0Tk+1:K ]T ) is

short for

inf
ε>0

ess sup
r′∈]−1,∞[K :r′1:k=r1:k,‖r′k+1:K‖∞≤ε

X .

Note that the conditional measure that is used for the case where @ r′ ∈ U , r′1:k = r1:k can

be arbitrary if one is only interested in calculating %(0) given that the latter is unaffected

by the level of loss when r /∈ U . In practice however, one might get a “better” hedging

policy by employing a more risk-aware measure than X([rT1:k 0Tk+1:K ]T ). Indeed, one can

confirm that ρ can equivalently be described as:

ρ(X) = sup
r1∈U

sup
r2∈U :r11=r21

sup
rK∈U :rK−1

1:K−1=rK1:K−1

X(rK)

= ρ0(ρ1(· · · ρK−1(X) · · · ) .

In many cases, the one-step decomposable risk measure ρk can be further shown to satisfy

the Markov property, e.g. with the uncertainty sets presented in the following sections. One

can then follow the discussion in the Section 1.3 to write down the dynamic programming

equations for both cases of European and American options.

In all of our experiments, we consider an option with maturity T = 1 (year) that is

written over an asset with µ = 0.0718 (annualized mean), σ = 0.1283 (annualized volatility),

and with an initial price S0 = 1000. Our choices of values for µ and σ come from François

et al. (2014) and were calibrated on historical data of the S&P 500 index between Jan-2016

and Jan-2017.
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1.4.1 Comparison with ε-arbitrage Pricing

We present in this section the results of comparing the equal risk pricing model with

the ε-arbitrage pricing model proposed in Bandi and Bertsimas (2014). Recall that the

uncertainty set U employed in Bandi and Bertsimas (2014) admits the following form

motivated by the central limit theorem:

U1 =

{
r ∈ RK

∣∣∣∣∣
∣∣∣∣∣
∑k

`=1 log(1 + r`)− µkT/K
σ
√
kT/K

∣∣∣∣∣ ≤ Γ, ∀k ∈ {1, ...,K}

}
, (1.22)

where K is the number of periods up to the maturity of the option, and Γ denotes the

"budget" of uncertainty at each time point tk. Unfortunately, the above uncertainty set

cannot be directly applied in the equal risk pricing model, since its associated worst-case risk

measure does not necessarily satisfy the bounded conditional market risk, i.e. Assumption

1.3.2. We show in the following how the set can be slightly modified so that it satisfies

Assumption 1.3.2.

Lemma 1.4.1. Given that µ
√
kT/K/σ ≤ Γ for all k ∈ {1, . . . ,K}, then the worst-case

risk measure ρ that exploits U ′1 = U1 ∩W with

W =

{
r ∈ RK

∣∣∣∣∣ max
k′∈{k+1,...,K}

∣∣∣∣∣
∑k

`=1 log(1 + r`)− µk′T/K
σ
√
k′T/K

∣∣∣∣∣− Γ ≤ 0,∀k ∈ {1, ...,K}

}

satisfies both assumptions 1.2.1 and 1.3.2.

It is worth noting that the above set is smaller than the original set U1, as it excludes

the sample paths that can lead to infinitely small risk. But as shown in the appendix, the

above-modified set is in some sense the “largest" subset of U1 that, makes the worst-case

risk measure satisfy assumptions 1.2.1 and 1.3.2. It is not hard to confirm that when using

U ′1, the worst-case risk measure is Markovian with respect to θk :=
∑k

`=1 log(1 + r`) (see

appendices 1.6.13 and 1.6.14 respectively for a proof and details about the implementation

of the dynamic program).

The parameter that needs to be further determined in our experiments is the budget

parameter Γ. To do so, we start by first sampling 100,000 price paths from the GBM and

then calibrating Γ so that the uncertainty set would cover at least 95% of the paths. In
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Table 1.1, we present the option prices generated from the equal risk and the ε-arbitrage

pricing models for various values of K and different types of options: In-The-Money (ITM),

At-The-Mone (ATM), and Out-of-The-Money (OTM). The table also presents the fair price

intervals.

From Table 1.1, we can make a few observations about the prices generated from the

two models. Firstly, in the case of OTM, the prices generated from the ε-arbitrage pricing

model are consistently lower than the prices generated from the equal risk pricing model.

This is consistent with what was observed for the single period example in the introduction.

Recall that in the case of single period (see Figure 1.1), the ε-arbitrage prices were always

smaller or equal to ERP and differed most significantly from ERP when the options were

out-of-the-money. Indeed, we see from Table 1.1 that in the case of ITM and ATM, the

prices of the two models are more similar (without any clear dominance), but in the case

of OTM options, the ERP is always significantly bigger than the ε-arbitrage price. This

confirms that the ε-arbitrage pricing model can generate unrealistically low prices even in a

multi-period hedging problem. Secondly, one can notice in Table 1.1 that the FPI-lower

bounds always take the value of zero, i.e. the buyer’s perception of minimal hedging risk is

invariant to the number of rebalancing periods. While this may seem counter-intuitive, we

can actually find an explanation by taking a closer look at the structure of the uncertainty

set U ′1. Namely, the set only imposes upper bounds on the variations of the underlying asset

process. It turns out, however, that for the buyer’s optimal hedging strategy, the worst

paths are paths where the prices stay constant. These paths remain feasible regardless of

the value of Γ. This explains why the lower bounds always reach the lowest possible value,

i.e. zero, regardless of the number of hedging periods. Lastly, in Table 1.1, we also provide

the prices generated from the Black–Scholes formula, and one can notice that the prices

from equal risk pricing are not likely to converge to the Black–Scholes prices. This can also

be explained by the conservativeness of the FPI-lower bounds, which drives up the ERP.

We will discuss in the next section how such an issue might be resolved with a different

choice of uncertainty set.

We compare also the risk exposure and level of fairness achieved by the transaction prices

and hedging strategies produced from the two models. In particular, in our experiments we

first simulate a set of 100,000 different sample paths for the risky asset and then for each
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Table 1.1 – The prices resulting from ERP with U ′1, ε-arbitrage pricing and the Black–Scholes
models for options written on an asset with the initial price of 1000, expected annual return
of 0.0718, annual standard deviation of 0.1283, strike prices of 950 (ITM), 1000 (ATM), and
1050 (OTM), and one year until maturity. For ERP, the fair price interval is also presented
as FPI-Upper and FPI-Lower.

ITM ATM OTM
Periods 16 25 49 100 16 25 49 100 16 25 49 100
Γ 2.63 2.70 2.79 2.87 2.63 2.70 2.79 2.87 2.63 2.70 2.79 2.87
FPI-Upper 159.20 152.95 155.88 173.90 105.72 99.36 100.81 110.90 91.73 85.21 86.69 95.45
ERP 79.60 76.47 77.94 86.95 52.86 49.68 50.41 55.45 45.86 42.61 43.34 47.73
FPI-Lower 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ε-arbitrage price 78.40 73.60 75.20 91.20 57.60 52.80 56.00 62.40 32.00 25.60 27.20 38.40
BS 78.80 78.80 78.80 78.80 51.15 51.15 51.15 51.15 31.17 31.17 31.17 31.17

path we implement the optimal hedging strategy of each model starting with an initial

capital that accounts for the transaction price. We record the hedging loss (for both the

writer and the buyer) resulting from each sample path and compare different quantiles of

the realized losses for both the writer and the buyer. For each quantile level of interest,

we compare two different metrics: the average of the quantile value among the writer and

buyer’s loss, and the absolute difference between each party’s quantile value. Figure 1.2

presents these metrics for options with different moneyness levels. As seen in Figure 1.2

(d-f), the hedging strategy and transaction price suggested by the ERP model lead to lower

differences between the two parties’ losses when considering quantiles above 90%. This is

clear evidence that ERP is better at sharing the risks among the two parties. It is worth

noting that for lower quantiles, ε-arbitrage becomes more attractive in this regard which

can be explained by the fact that our worst-case risk measures that are used by ERP are

insensitive to the performance achieved at lower quantiles. From Figure 1.2 (a-c), we see

another strength of the ERP model, namely that it does have the ambition of producing

optimal risk-averse hedging strategies for the two parties together with the ERP. Indeed,

this is not the case of the ε-arbitrage pricing model, which searches for a single hedging

strategy that minimizes the worst-case absolute “deviation" of the cumulated wealth from

the payout.

1.4.2 Comparison with Black–Scholes

In the previous section, we highlighted how the FPI-lower bound becomes overly conservative

when employing U1. We believe this explains why the ERP did not show signs it was
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(a) Average (ITM) (b) Average (ATM) (c) Average (OTM)

(d) Difference (ITM) (e) Difference (ATM) (f) Difference (OTM)

Figure 1.2 – Comparison of hedging performance achieved under ε-arbitrage and equal risk
pricing of an European call option with K = 16 rebalancing periods under a worst-case risk
measure that accounts for U1. (a),(b), and (c) present for different percentile ranks q, the
average among the q-percentile of the loss incurred for the writer and buyer of the ITM,
ATM, and OTM options respectively. (d), (e), and (f) present the difference between the
same q-percentile losses for different percentile rank. Note that the “Max" rank refers to
the worst-case sample path.

converging to the Black–Scholes price even when the number of rebalancing periods became

large. Given that such a convergence property is appealing when the market is actually

based on a GBM process, in this section, we address this issue by employing a different

uncertainty set that is now motivated by the work of Bernhard (2003), namely:

U2 =

{
r ∈ RK

∣∣∣∣∣
sN∑
`=1

r2
` ∈ [σ2sT/S − Γ

√
sN, σ2sT/S + Γ

√
sN ], ∀s ∈ {1, ..., S}

}
,

with Γ small enough so that U2 ⊂ [−1,∞[K . Here we consider the time horizon to be

partitioned into S intervals of duration T/S, and each interval consists of a set of N := K/S

periods at which the portfolio can be rebalanced. Note that unlike for the set U1, the set

U2 constrains both the maximum and minimum long-term observed deviations. The main

motivation behind the above set is that in the case Γ = 0, we can expect based on Bernhard

(2003) that the FPI will converge to Black–Scholes price as both K and N increase to

infinity. On the other hand, for finite values of K and N , the “so-called” budget Γ of the

set U2 allows to characterize a meaningful confidence region for the trajectory of the risky
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Table 1.2 – The option prices resulting from the equal risk (ERP) and the Black–Scholes
(BS) models by using U2. The table also shows the calibrated Γ and the upper and lower
bounds of the fair price interval.

ITM ATM OTM
Periods 16 49 100 225 16 49 100 225 16 49 100 225
Γ 0.083 0.022 0.006 0.004 0.083 0.022 0.006 0.004 0.083 0.022 0.006 0.004
FPI-Upper 125.19 113.66 107.04 102.18 99.31 88.61 81.66 75.96 83.00 69.01 61.57 55.77
ERP 87.60 84.10 83.36 83.24 49.65 54.96 55.38 54.99 41.50 36.21 35.25 34.88
FPI-Lower 50.00 54.55 59.67 64.30 0.00 21.30 29.11 34.03 0.00 3.41 8.93 13.98
BS price 78.80 78.80 78.80 78.80 51.15 51.15 51.15 51.15 31.17 31.17 31.17 31.17

asset process. Lastly, as shown in Appendix 1.6.12, one can verify that the worst-case

risk measure with U2 satisfies the bounded conditional market risk property and that is

Markovian with respect to θk :=
∑k

`=1 r
2
` (see Appendix 1.6.13 for details).

In our experiments, we set the number of partitions to the square root of the total

number of rebalancing periods, i.e. S =
√
K. We also calibrate Γ so that the set U2

contains 95% of simulated price paths. Table 1.2 presents the equal risk and the fair price

intervals against the Black–Scholes prices. From the table, we now see some evidence that

the price generated from equal risk pricing is likely to converge to the Black–Scholes price.

In particular, one can notice for each type of option that as the total number of rebalancing

periods increases, both the upper and lower bounds evolve monotonically towards the

Black–Scholes price, thus driving the equal risk prices closer and closer to it. Unlike with

U1, we see that the FPI-lower bounds are now sensitive to the total number of rebalancing

periods. Indeed, the lower bound on the total deviation in U2 allows the buyer of call

options to have a less conservative perception of hedging risk. Finally, it is worth noting

that the resulting equal risk prices tend to be slightly higher than the Black–Scholes prices.

Indeed, from a practical point of view, this margin can be interpreted as a “risk premium”

on the Black–Scholes price that compensates for the uncertainty that is unaccounted for by

the Black–Scholes formula.

Also depicted in Figure 1.3 is a comparison of hedging performances between the equal

risk pricing model and the Black–Scholes model, in the case K = 16. As in the case

of comparing with ε-arbitrage pricing, we report the performances in terms of both the

average and the absolute difference of the writer and buyer’s quantiles of their realized loss

distribution under their respective hedging strategy. In particular, here we provide these

41



metrics for quantiles starting from 99% in order to emphasize what happens at the tail of

the loss distributions. For these figures, the last group of bars is labeled with “Max” to

show the worst-case value of the metrics in all samples. This is in line with the type of risk

measure that is used in this section. The results for smaller quantile levels are also provided

for average losses (see Figure 1.3 (a,d,g)) to present a complete picture. We see that hedging

according to the Black–Scholes model actually performs fairly well across a wide range of

lower level quantiles, which is not surprising given the market is assumed to follow the

GBM assumed by Black–Scholes. Unlike the Black–Scholes model, the ERP model employs

a worst-case risk measure that controls the risk in the tail of the loss distributions. As

shown in the figures with higher quantile levels, hedging and pricing according to ERP

model does indeed become the best scheme when focusing on those regions in terms of both

the averages and the differences of risks for the two parties.

We continue with Figure 1.4, which presents the hedging strategies at time k = 0

proposed by the equal risk pricing and the Black–Scholes pricing for an ATM call option

under 16 and 225 rebalancing periods for different asset prices. The first observation is

that as K increases, the hedging strategy seems to more closely resemble the Black Scholes

strategy for both the writer and the buyer. This complements the observation that the

ERP appeared to converge to the Black–Scholes price. For lower values of K, the hedging

strategy for the buyer differs significantly from Black–Scholes hedging because of the larger

uncertainty about the risky asset’s price process. Specifically, it swings from fully shorting

the risky asset to keeping only the risk-free asset. The latter strategy becomes optimal

because Γ is large enough to allow the risky asset to evolve exactly as the risk-free one,

which also drags the lower bound of FPI to zero as discussed in Section 1.4.1. The second

observation is that the hedging strategies of the equal risk model are less sensitive for the

writer and more sensitive for the buyer to the variations in the underlying stock price at

time k = 0. In particular, Figure 1.4(a) shows that the ERP model provides a hedging

strategy with a lower slope for the writer of the option compared to the Black–Scholes.

On the other side, the opposite is happening for the option buyer. The equal risk hedging

strategy is more sensitive to the asset price compared to Black–Scholes strategy.

Finally, we present additional information about the different strategies in Table 1.3.

In particular, the table presents the mean of the average portfolio turnover, computed
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as
∑K−1
k=1 |ξk+1−ξk|

K−1 , over 100,000 sample paths for each strategy. This statistic provides

evidence that the writer incurs less rebalancing while the opposite is true for the buyer. For

completeness, we also present in the table the mean of the average number of shares of the

risky asset that are held by each strategy, together with the mean and standard deviation

of the respective portfolio values at the maturity of the option.

(a) Average (ITM) (b) Average (ITM) (c) Difference (ITM

(d) Average (ATM) (e) Average (ATM) (f) Difference (ATM

(g) Average (OTM) (h) Average (OTM) (i) Difference (OTM

Figure 1.3 – Comparison of hedging performance achieved under the Black–Scholes and
the equal risk pricing of a European call option with K = 16 rebalancing periods under a
worst-case risk measure that accounts for U2. (a),(d), and (g) present for different percentile
ranks q, the average among the q-percentile of the loss incurred for the writer and buyer of
the ITM, ATM, and OTM options respectively. (b),(e), and (h) presents similar information
but focusing on higher percentiles. (c), (f), and (i) present the difference between the same
q-percentile losses. Note that the “Max" rank refers to the worst-case

sample path.
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(a) Writer (b) Buyer

Figure 1.4 – Comparison of hedging strategies for a European ATM Call option under
different number of rebalancing periods. (a) presents the optimal strategies for the writer
under the Black–Scholes and the equal risk pricing models for time k = 0. (b) presents the
same for the buyer.

Table 1.3 – Comparison of the hedging strategies resulting from the equal risk model and
the Black–Scholes for K = 225

Measure ITM ATM OTM
ERPw ERPb BS pricing ERPw ERPb BS pricing ERPw ERPb BS pricing

Average position
in risky asset - Mean 0.7060 0.7997 0.7501 0.5950 0.6172 0.60954 0.4815 0.4360 0.4606

Average portfolio
turnover - Mean 0.0136 0.0200 0.0168 0.0154 0.026 0.0203 0.0160 0.0272 0.0210

Terminal portfolio
value - Mean 135.15 142.43 136.68 100.05 102.45 98.88 72.39 70.00 67.91

Terminal portfolio
value - STD 113.37 131.87 122.48 101.93 118.98 110.33 89.17 102.29 95.14

1.4.3 The Case of American Options

In this section, we take a further step to benchmark equal risk pricing model against a

binomial tree model in the case of American option. For the same reason discussed in

the previous section, we assume the worst-case risk measures are defined according to the

uncertainty set U2. Here, we consider put options rather than call options, as the former

has attracted more attention in the literature treating American options.

The calibration of the uncertainty set U2, i.e. Γ is done in the same fashion as in the

previous section. We implement the equal risk model for both the case of with commitment

(see Definition 6) and without commitment (see Definition 7). We summarize in Table 1.4

all the prices and FPI bounds generated from the model against the option prices generated
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Table 1.4 – The option prices resulting from the equal risk pricing model (ERP) under U2

compared to the binomial tree model (BTM) for American put options. The models with
and without commitment are identified respectively as WC and NC.

ITM ATM OTM
Periods 16 49 100 225 16 49 100 225 16 49 100 225
Γ 0.083 0.022 0.006 0.004 0.083 0.022 0.006 0.004 0.083 0.022 0.006 0.004
FPI-Upper-NC 134.18 117.54 114.16 106.79 103.52 87.56 84.06 77.20 75.65 62.72 59.25 53.22
ERP-NC 92.09 84.73 86.85 84.10 51.76 52.95 56.49 54.25 37.83 32.95 34.11 32.16
FPI-Lower-NC 50.00 51.93 59.53 61.42 0.00 18.34 28.92 31.31 0.00 3.18 8.97 11.11
FPI-Upper-WC 134.18 116.14 108.54 100.43 103.52 85.12 81.36 72.95 75.65 60.84 55.76 47.14
ERP-WC 92.09 84.03 84.04 80.92 51.76 51.73 55.14 52.13 37.83 32.01 32.37 29.12
FPI-Lower-WC 50.00 51.93 59.53 61.42 0.00 18.34 28.92 31.31 0.00 3.18 8.97 11.11
BTM price 81.52 81.19 81.13 81.21 50.36 51.41 51.02 51.21 29.00 28.73 28.68 28.85

from the binomial tree model.

As we expected (see Lemma 1.3.2 ), the equal risk prices with commitment are always

smaller or equal to the prices without commitment. We can also confirm that the differences

in the prices between the two cases result from the differences in their respective upper

bound prices, since their lower bounds are similar. The results also show that as the number

of rebalancing periods K increases the equal risk price is getting closer to the binomial

tree price. This is happening for all types of options. We see that the equal risk price

without commitment is larger than the price with commitment by a factor as large as 4% for

ATM and ITM options, and 10% for OTM options. This non-negligible difference between

the prices of the two cases highlights the importance of commitment as a factor to be

considered in the negotiation between the two parties regarding the transaction price. This

also indicates that the value of the buyer’s commitment to an exercise policy is particularly

high for an OTM option.

In terms of hedging, the equal risk model shows similar results to the case of European

options. Figure 1.5 shows that for high quantiles of loss, the equal risk model outperforms

the binomial tree model. This is understood from comparing the graphs that focus on the

quantiles at the tails of the loss distributions. The higher performance of the equal risk

model is specifically more outstanding in terms of the equality of hedging loss for the two

sides. However, having a GBM price process prepares the ground for the binomial tree

model to perform well in terms of lower quantiles as shown in figure 1.5 (a,d,g).
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(a) Average (ITM) (b) Average (ITM) (c) Difference (ITM)

(d) Average (ATM) (e) Average (ATM) (f) Difference (ATM)

(g) Average (OTM) (h) Average (OTM) (i) Difference (OTM)

Figure 1.5 – Comparison of hedging performance achieved under equal risk pricing, with U2,
and a binomial tree model, of an American put option with K = 16 rebalancing periods.
(a),(d), and (g) present for different percentile ranks q, the average among the q-percentile of
the loss incurred for the writer and buyer of the ITM, ATM, and OTM options respectively.
(b),(e), and (h) presents similar information but focusing on higher percentiles. (c), (f),
and (i) present the difference between the same q-percentile losses.

1.5 Conclusion

In this article, we explore the famous problem of pricing and hedging options in an incomplete

market under a recently proposed framework called equal risk pricing. Under this framework,

the pricing of an option requires that the risk of both sides of the contract be considered in

order to make them equal. We consider for the first time the special case of equal risk pricing

under convex risk measures for which we show that ERP conveniently reduces to the center

of the fair price interval. This price can thus be obtained by solving two dynamic derivative

hedging problems, i.e. for the writer and the buyer. By further imposing that the risk
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measures be one-step decomposable, Markovian, and satisfy a bounded conditional market

risk condition, we derive finite-dimensional risk-averse dynamic programming equations that

can be used to solve the discrete-time hedging problems for both European and American

options. With the latter type of option, the resulting Bellman equations further depend on

whether the buyer is willing to commit or not to an exercise strategy up front. All of our

results are general enough to accommodate situations where the risk is measured using a

worst-case risk measure that considers only a subset of realizations from the outcome space,

as typically done in robust optimization.

In our numerical study, we compare the performance of using equal risk pricing with

a worst-case risk measure to the performance of ε-arbitrage pricing and pricing using the

Black–Scholes model in a market that is based on a discretized geometric Brownian motion.

In particular, the numerical results confirm that, when using the equal risk price, both the

writer and the buyer end up having risks that are more similar and on average smaller

than the risks that they would experience by the two other approaches. In addition, by

proposing a new uncertainty set inspired from the work of Bernhard (2003), we show that

the prices generated from equal risk pricing have the potential to converge to Black–Scholes

prices as the hedging frequency increases. In the case of pricing American put options, we

show how to calculate the value of commitment to an exercise policy, which ranges between

0% and 10% for the instances we considered. The evidence seems to indicate that this

relative value decreases as the ERP without commitment increases.

Finally, it is worth mentioning that the results presented in this article have natural

extensions to more general settings than the one that is considered, i.e. with a single

underlying asset, zero risk-free rate, frictionless market. In some cases, the Bellman

equations might need to be extended to account for a larger state space, which is likely to

increase the computational efforts needed to identify the equal risk price and the hedging

strategies. To circumvent this issue, one might resort to approximate dynamic programming

methods. One interesting recent attempt in this direction can be found in Carbonneau

and Godin (2020) that proposes a deep reinforcement-learning approach to approximate

the equal risk price in a variety of market dynamics (including GARCH and Merton

jump-diffusion processes) and exotic options with multiple underlying assets.
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1.6 Appendix

1.6.1 Analytical Solutions of One-period Example

We recall from Bandi and Bertsimas (2014) that the ε-arbitrage model under a worst-case

risk measure can be defined as follows for an European option:

min
ξ,p0

max
S1∈U

∣∣(S1 −K)+ − p0 − ξ(S1 − S0)
∣∣ , (1.23)

where S0 is the initial stock price, K is the strike price of the option, S1 is the price at the

next time period, and U ⊆ R = [l, u]. Without loss of generality, we set l ≤ K ≤ u and

consider the risk-free rate to be zero.

In the framework of equal risk pricing (ERP), we consider modeling separately the

hedging problem of the writer and the buyer. When considering a one-period problem, the

equal risk model is as follows:

%w(p0) := min
ξw

max
S1∈U

(S1 −K)+ − p0 − ξw(S1 − S0)

%b(p0) := min
ξb

max
S1∈U

−(S1 −K)+ + p0 − ξb(S1 − S0).

The equal risk price is set to be the initial wealth p0 that leads to %w(p0) = %b(p0).

Analytical Solution for the one-period Equal Risk Model

The analytical solution of the one-period equal risk model is as follows:

ξ∗w =
u−K
u− l

, ξ∗b =


0, if S0 < K

−1, if S0 ≥ K

p∗0 = (1/2)(S0 − l)
u−K
u− l

+ (1/2)(S0 −K)+ .

Considering the writer’s side of the equal risk model, since (S1 −K)+ − ξw(S1 − S0) is

a convex function of S1, the maximum in the interval of U = [l, u] is at the boundaries,

resulting in

%w(p0) = min
ξw

max
S1∈U

(S1 −K)+ − p0 − ξw(S1 − S0)

= −p0 + min
ξw

max{u−K − ξw(u− S0),−ξw(l − S0)} .
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Since the first argument is decreasing in ξw and the second one is increasing, the minimum

is at the intersection of the two functions, which results in

ξ∗w =
u−K
u− l

, %w(p0) = −p0 + (S0 − l)
u−K
u− l

.

On the other hand, for the buyer of the option we can show that %b(p0) = −(S0−K)+ + p0

and is achieved using the described hedging strategy ξ∗b . In particular, we can first establish

that, for all hedging strategies ξb ∈ R

max
S1∈U

−(S1 −K)+ + p0 − ξb(S1 − S0) ≥ −(S0 −K)+ + p0 ,

where we simply use the fact that S0 ∈ U .

Now, since g(y) = −(y −K)+ is a concave function of y, if ∇g(S0) is a supergradient

of g(y) at S0 then we have that:

g(S1) ≤ g(S0) +∇g(S0)T (S1− S0) ,

which means that since it can be verified that ξ∗b is a valid candidate for ∇g(S0), we have

that:

max
S1∈U

−(S1 −K)+ + p0 − ξ∗b (S1 − S0) ≤ −(S0 −K)+ + p0 .

This proves that ξ∗b achieves the minimum value of −(S0 −K)+ + p0.

We conclude this discussion by verifying that for p∗0 indeed leads to the same risk for

both the writer and the buyer:

%w(p∗0) = −p∗0 + (S0 − l)
u−K
u− l

= −
(

(1/2)(S0 − l)
u−K
u− l

+ (1/2)(S0 −K)+

)
+
u−K
u− l

(S0 − l)

=
1

2
(S0 − l)

u−K
u− l

− (1/2)(S0 −K)+ = p∗0 − (S0 −K)+ = %b(p∗0) .

Analytical Solution for the one-period ε-arbitrage Model

In this section, we will demonstrate that an optimal solution for the ε-arbitrage model takes

the following form:

ξ∗ =
u−K
u− l

, p∗0 =
u−K
u− l

(
S0 −

1

2
(K + l)

)
.

To do so, we will exploit the following lemma, which appears as proposition 3.1.4 in

Bertsekas (2015)
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Lemma 1.6.1. A vector x∗ minimizes a convex function f : Rn → R over a convex set

X ⊂ Rn if and only if there exists a subgradient ∇f(x∗) of f at x∗ such that ∇f(x∗)T (x−

x∗) ≥ 0, ∀x ∈ X .

In other words, we will be able to conclude that the (ξ∗, p∗0) pair is a minimizer of

problem (1.23), if we can show that 0 is a subgradient of the objective function at (ξ∗, p∗0).

Based on Section 3.1.1 of Bertsekas (2015), one can show that the set of all subgradients at

(ξ∗, p∗0) include

{
∇g ∈ R2

∣∣∣∣∣∃λ ∈ R4, λ ≥ 0,
4∑
i=1

λi = 1, ∇g =

[
−u+ S0 −l + S0 K − S0 K − S0

−1 −1 1 1

]
λ

}
.(1.24)

One can then readily verify that 0 is a member of this set using λ1 := (1/2)(K − l)/(u− l),

λ2 := (1/2)(u−K)/(u− l), λ3 := 0, and λ4 := 1/2 as a certificate.

To provide more details on obtaining the set in (1.24), we start by recalling that when

f is the maximum of m subdifferentiable convex functions φ1, ..., φm:

f(x) = max{φ1(x), ..., φm(x)}, x ∈ Rn , (1.25)

then a subset of the subdifferential of f can be described as:

∂f(x) = conv{∇φj(x)|j ∈ J (x)} , (1.26)

where J (x) := {j ∈ {1, . . . ,m} |φj(x) = f(x)}, and each ∇φj(x) is a subgradient of φj(·)

at x. To obtain the set in (1.24), we first formulate the objective function in the form of

equation (1.25), we then identify a subgradient ∇φj(x∗) of each j ∈ J (x∗) at our proposed

solution x∗ to compose the set described in (1.26).

Step 1. We can rewrite the objective function of problem (1.23) by exploiting a partition

of U as follows:

max
S1∈U

|(S1 −K)+ − p0 − ξ(S1 − S0)| = max {φ1(ξ, p0), φ2(ξ, p0), φ3(ξ, p0), φ4(ξ, p0)} ,
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where

φ1(ξ, p0) := max
S1∈[K,u]

|(S1 −K)+ − p0 − ξ(S1 − S0)| = max
S1∈[K,u]

(S1 −K)− ξ(S1 − S0)− p0

φ2(ξ, p0) := max
S1∈[l,K]

|(S1 −K)+ − p0 − ξ(S1 − S0)| = max
S1∈[l,K]

−ξ(S1 − S0)− p0

φ3(ξ, p0) := max
S1∈[K,u]

|(S1 −K)+ − p0 − ξ(S1 − S0)| = max
S1∈[K,u]

−(S1 −K) + ξ(S1 − S0) + p0

φ4(ξ, p0) := max
S1∈[l,K]

|(S1 −K)+ − p0 − ξ(S1 − S0)| = max
S1∈[l,K]

ξ(S1 − S0) + p0 .

Step 2. In order to find J (x∗), we study the maximum of all four functions when ξ = ξ∗

and p0 = p∗0. Specifically, we have:

φ1(ξ∗, p∗0) = max
S1∈[K,u]

S1 −K −
u−K
u− l

(S1 − S0)− u−K
u− l

(S0 −
1

2
(K + l)) =

u−K
u− l

K − l
2

φ2(ξ∗, p∗0) = max
S1∈[l,K]

−u−K
u− l

(S1 − S0)− u−K
u− l

(S0 −
1

2
(K + l)) =

u−K
u− l

K − l
2

φ3(ξ∗, p∗0) = max
S1∈[K,u]

−S1 +K +
u−K
u− l

(S1 − S0) +
u−K
u− l

(S0 −
1

2
(K + l)) =

u−K
u− l

K − l
2

φ4(ξ∗, p∗0) = max
S1∈[l,K]

u−K
u− l

(S1 − S0) +
u−K
u− l

(S0 −
1

2
(K + l)) =

u−K
u− l

K − l
2

,

where we exploited the fact that the functions that are maximized are either non-decreasing

for the case of φ1 and φ4 or non-increasing for φ2 and φ3. In each case, the maximum

is achieved at S∗1 = u for φ1, S∗1 = l for φ2, and S∗1 = K for φ3 and φ4. Based on this

conclusion, we get the following four subgradients:

∇φ1(ξ∗, p∗0) :=

S0 − u

−1

 ∇φ2(ξ∗, p∗0) :=

S0 − l

−1


∇φ3(ξ∗, p∗0) :=

K − S0

1

 ∇φ4(ξ∗, p∗0) :=

K − S0

1

 .

This completes our proof.
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1.6.2 Proof of Proposition 1.2.1

This proof mainly relies on the translation invariance property together with the following

property of X (p0):

X (p0) =

{
X

∣∣∣∣ ∃ξs, ∃c ∈ R, Xt = p0 +

∫ t

0
ξsdSs ≥ c ;∀ t ∈ [0, T ]

}
= p0 +

{
X ′
∣∣∣∣∃ξs, ∃c ∈ R, X ′t =

∫ t

0
ξsdSs ≥ c ;∀ t ∈ [0, T ]

}
= p0 + X (0) ,

where p0 + X (0) refers to a set addition. These two properties can be used to show that

both

%w(p0) = inf
X∈X (0)+p0

ρw(F (ST , YT )−XT )

= inf
X∈X (0)

ρw(F (ST , YT )−XT − p0)

= inf
X∈X (0)

ρw(F (ST , YT )−XT )− p0

= inf{s| inf
X∈X (0)

ρw(F (ST , YT )−XT ) ≤ s} − p0

= inf{s|%w(s) ≤ 0} − p0 = pw0 − p0 , (1.27)

and similarly,

%b(p0) = inf
X∈X (0)−p0

ρb(−XT − F (ST , YT ))

= inf
X∈X (0)

ρb(−XT − F (ST , YT )) + p0

= inf{s|%b(0) ≤ s}+ p0

= inf{s|%b(−s) ≤ 0}+ p0

= − sup{−s|%b(−s) ≤ 0}+ p0

= −pb0 + p0 . (1.28)

Hence, we can obtain our result by verifying both directions of the biconditional logical

connective. First, given that an equal risk price exists, say p∗0 ∈ R, it must be that both

%b(p∗0) and %b(p∗0) are members of R. This necessarily implies that pw0 ∈ R and pb0 ∈ R and

so the fair price interval is bounded, although possibly empty. Conversely, if the fair price
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interval is bounded, then one can verify that p∗0 := (pw0 + pb0)/2 does satisfy the equal risk

price condition:

%w(p∗0) = pw0 − p∗0 = pw0 /2− pb0/2 = −pb0 + p∗0 = %b(p∗0) .

Furthermore, this p∗0 can be calculated as:

p∗0 = (1/2)(inf{p0|%w(p0) ≤ 0} − sup{−s|%b(−s) ≤ 0})

= (1/2)(pw0 + pb0) = (1/2)(%w(0)− %b(0))) ,

following exactly the same arguments as in (1.27) and (1.28). This completes our proof.

1.6.3 Proof of Lemma 1.2.2

The proof follows directly from Property 2 in Xu (2006). In particular, we have that pw0 is

bounded above by the super-hedging price and pb0 is bounded below by the sub-hedging

price. Hence, since pb0 ≤ pw0 , we must have that the fair price interval is a subset of the

no-arbitrage interval. This lets us conclude that the equal risk price is also a member of

the no-arbitrage interval.

1.6.4 Proof of Proposition 1.3.1

We focus on providing the arguments supporting the claims for the writer model as these

are analogous for the buyer model. In doing so, we will closely follow the theory presented

in Pichler and Shapiro (2018). We start by constructing the so-called additive preference

system {Rk,l}(k,l)∈{0,...,K}2:k<l (a.k.a. a dynamic risk measure) based on ρw, where each

Rk,l : Lp(Ω,Fk,P)× Lp(Ω,Fk+1,P)× · · · × Lp(Ω,Fl,P) takes the form:

Rk,`(Zk, Zk+1, . . . , Z`) := ρwk (ρwk+1(· · · ρwK(
∑̀
k′=k

Zk′) · · · ) , ∀ 0 ≤ k < ` ≤ K .

Based on this definition of Rk,` it is easy to see that:

%w(0) = inf
X∈X (0)

R0,K(0, 0, . . . , 0, F (ST , YT )−XK) .

Given that ρw is one-step decomposable, it is easy to show that R is both “Monotone” and

“Recursive” (see definitions 2.3 and 4.1 in Pichler and Shapiro (2018)). In particular, for
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monotonicity we have that:

∀(Zk, . . . , Z`), (Z ′k, . . . , Z ′`), Zk′ ≥ Z ′k′ a.s. ∀ k′ = k, . . . , `⇒

Rk,`(Zk, . . . , Z`) = ρwk (ρwk+1(· · · ρwK(
∑̀
k′=k

Zk′) · · · )

≥ ρwk (ρwk+1(· · · ρwK(
∑̀
k′=k

Z ′k′) · · · )

= Rk,`(Z ′k, . . . , Z ′`) ,

given that each ρwk is monotone. On the other hand, for recursivity, we have

∀Zk, . . . , Z`,

Rk,`(Zk, . . . , Z`) = ρwk (ρwk+1(· · · ρwv−1(ρwv (· · · ρwK(
∑̀
k′=k

Zk′) · · · )

= ρwk (ρwk+1(· · · ρwv−1(
v−1∑
k′=k

Zk′ + ρwv (· · · ρwK(
∑̀
k′=v

Zk′) · · · )

= ρwk (ρwk+1(· · · ρwv−1(
v−1∑
k′=k

Zk′ +Rv,`(Zv, . . . , Z`)) · · · )

= ρwk (ρwk+1(· · · ρwv−1(ρwv (· · · ρwK(
v−1∑
k′=k

Zk′ +Rv,`(Zv, . . . , Z`)) · · · )

= Rk,v(Zk, . . . , Zv−1,Rv,`(Zv, . . . , Z`))) ,

where we exploited monotonicity, the definition of Rv,`, and the conditional transition

invariance of ρwk for all k = v, . . . ,K.

Having verified these conditions, Proposition 1.3.1 and the discussion that follows in

Section 4 of Pichler and Shapiro (2018) allows us to conclude that:

%w(0) = inf
X∈X (0)

R0,K(0, 0, . . . , 0, F (ST , YT )−XK)

= inf
ξ0
R0,1(0, inf

ξ1
R1,2(0, · · · inf

ξK−1

RK−1,K(0, F (ST , YT )−XK) · · · ) .

Hence, %w(0) = V̄ w
0 (0, ω) where

V̄ w
k (Xk, ω) := inf

ξk
ρwk (V̄ w

k+1(Xk + ξk∆Sk+1), ω)

V̄ w
K (XK , ω) := F (ST (ω), YT (ω))−XK(ω) .
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Furthermore, the set of optimal policies for problem (1.1a) must contain the following

hedging policies:

ξ̄w∗k (Xk, ω) ∈ arg min
ξk

ρwk (V̄ w
k+1(Xk + ξk∆Sk+1), ω), ∀ k = 0, . . . ,K − 1 .

Yet, by conditional translation invariance, we know that:

V̄ w
K (XK , ω) = V w

K (ω)−XK(ω) ,

and recursively that:

V̄ w
k (Xk, ω) = inf

ξk
ρwk (V̄ w

k+1(Xk + ξk∆Sk+1), ω)

= inf
ξk
ρwk (V w

k+1 −Xk − ξk∆Sk+1, ω)

= inf
ξk
ρwk (V w

k+1 − ξk∆Sk+1, ω)−Xk(ω) = V w
k (ω)−Xk(ω) .

Hence, %w(0) = V̄ w
0 (0, ω) = V w

0 (ω). A similar argument confirms that the set of optimal

policies for problem (1.1a) contains for all k = 0, . . . ,K − 1:

ξ̄w∗k (Xk, ω) ∈ arg min
ξk

ρwk (V̄ w
k+1(Xk + ξk∆Sk+1), ω)

= arg min
ξk

ρwk (V w
k+1 − ξk∆Sk+1, ω)−Xk(ω)

= arg min
ξk

ρwk (V w
k+1 − ξk∆Sk+1, ω) ,

thus equivalent to ξw∗k (ω).

1.6.5 Dynamic Programming Equations for the Case of

Non-translation Invariant Risk Measures

In the case where ρw and ρb do not satisfy the translation invariance property, the bisection

method described in Remark 1 relies on computing the value of %w(p0) and %b(p0) for any

value of p0. Similar arguments as used in sections 1.3.1 and 1.3.2 to identify dynamic

programming equations, which now depend on accumulated wealth, when the risk measures

are one-step decomposable and Markovian.

In particular, focusing on the case of the writer’s problem associated to a European

option, by following the steps in Section 1.6.4, one can simply work with the following
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unreduced value functions:

V̄ w
k (Xk, ω) := inf

ξk
ρwk (V̄ w

k+1(Xk + ξk∆Sk+1), ω) , k = 0, . . . ,K − 1 (1.29a)

V w
K (XK , ω) := F (ST (ω), YT (ω))−XK(ω) , (1.29b)

serving the purpose of computing %w(p0) = V̄ w
0 (p0).

Furthermore, by exploiting the Markovian risk measure assumption, one can easily

reduce the representation to the following Bellman equations:

Ṽ w
K (XK , SK , YK , θ

w
K) := F (SK , YK)−XK ,

and recursively

Ṽ w
k (Xk, Sk, Yk, θ

w
k ) := inf

ξk
ρ̄k(Ṽ (Xk + ξk∆Sk+1, Sk + ∆Sk+1, Yk + ∆Yk+1, fk(θ

w
k )), θk) .

Then, considering that

V̄ w
K (XK , ω) = Ṽ w

K (XK(ω), SK(ω), YK(ω), θwK(ω)) ,

and recursively that if V̄ w
k+1(Xk+1, ω) = Ṽ w

k+1(Xk+1(ω), Sk+1(ω), Yk+1(ω), θwk+1(ω)), then

we have that:

V̄ w
k (Xk, ω) = inf

ξk
ρwk (V̄ w

k+1(Xk + ξk∆Sk+1), ω)

= inf
ξk
ρwk (Ṽ w

k+1(Xk + ξk∆Sk+1, Sk+1, Yk+1, θ
w
k+1), ω)

= inf
ξk
ρ̄wk (Π̄k(Ṽ

w
k+1(Xk + ξk∆Sk+1, Sk+1, Yk+1, θ

w
k+1)), θwk (ω))

= inf
ξk
ρ̄wk (Ṽ w

k+1(Xk(ω) + ξk∆Sk+1, Sk(ω) + ∆Sk+1, Yk(ω) + ∆Yk+1, f(θwk )), θwk (ω))

= Ṽk(Xk(ω), Sk(ω), Yk(ω), θk(ω)) .

Now, we see that %w(p0) = V̄ w
0 (p0) = Ṽ w

0 (p0, S0, Y0, θ
w
0 ). In the case of the buyer,

similar derivations lead to the Bellman equations:

Ṽ b
K(XK , SK , YK , θ

b
K) := −F (SK , YK)−XK

and

Ṽ b
k (Xk, Sk, Yk, θ

b
k) := inf

ξk
ρ̄bk(Ṽ

b
k+1(Xk − ξk∆Sk+1, Sk + ∆Sk+1, Yk + ∆Yk+1, fk(θ

b
k)), θ

b
k) ,

which can be used to compute %b(p0) = Ṽ b
0 (p0, S0, Y0, θ

b
0).

56



1.6.6 Proof of Lemma 1.3.2

This can be shown by contradiction. Let us assume that p∗c > p∗nc and denote with τ∗c a

risk minimizing stopping time strategy for the buyer when the price of the option is set to

p∗c . One can straightforwardly establish that either:

%w(p∗c , τ
∗
c ) ≤ sup

τ
%w(p∗c , τ) ≤ %wτ (p∗c) ≤ %wτ (p∗nc) = %bτ (p∗nc) < %bτ (p∗c) = %b(p∗c , τ

∗
c ) ,

or

%w(p∗c , τ
∗
c ) ≤ sup

τ
%w(p∗c , τ) ≤ %wτ (p∗c) < %wτ (p∗nc) = %bτ (p∗nc) ≤ %bτ (p∗c) = %b(p∗c , τ

∗
c ) ,

where in the second inequality, we used the fact that the risk can only increase when the

supremum over τ is evaluated after the hedging policy has been fixed. We also used in the

following two strict inequalities the fact that both ρw and ρb are monotone and that p∗nc is

the unique equal risk price without commitment, which implies that:

%wτ (p∗c) = %wτ (p∗nc) = %bτ (p∗nc) = %bτ (p∗c)

is not possible. Our analysis leads to a contradiction since it implies that %w(p∗c , τ
∗
c ) <

%b(p∗c , τ
∗
c ) while by definition %w(p∗c , τ

∗
c ) = %b(p∗c , τ

∗
c ).

1.6.7 Proof of Lemma 1.3.3

This proof follows similar arguments as the proof of Proposition 1.2.1. In particular, one

can again demonstrate that for any p0 ∈ R and any τ , the minimal risk achievable are

%w(p0, τ) = %w(0, τ) + p0 and %b(p0, τ) = %w(0, τ)− p0 because of the translation invariance

property of ρw and ρb. We can then prove the two conditional statements.

First, in the case that an equal risk price p∗0 exists, based on the definition of p∗0, there

must also exist a τ∗ ∈ arg minτ %
b(p∗0, τ). This further implies that τ∗ ∈ arg minτ %

b(0, τ)−p∗0
hence that τ∗ ∈ arg minτ %

b(0, τ) and can, therefore, play the role of τ0. Next, the definition

of p∗0 also ensures that %b(p∗0, τ∗) = %w(p∗0, τ
∗) ∈ R which implies that both %w(0, τ∗) and

%b(0, τ∗) are finite.

Reversely, in the case that the fair price interval is bounded and τ0 ∈ arg minτ %
b(0, τ)

exists, then we can construct p∗0 := (%w(0, τ0) − %b(0, τ0))/2 ∈ R. Necessarily, τ0 ∈
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arg minτ %
b(0, τ)− p∗0 = arg minτ %

b(p∗0, τ). Finally, we have that:

%w(p∗0, τ0) = %w(0, τ0)− p∗0 =
%w(0, τ0)− %b(0, τ0)

2
= %b(0, τ0) + p∗0 = %b(p∗0, τ0) .

1.6.8 Proof of Proposition 1.3.4

In the case of the writer, the argument are exactly analogous as for the proof of Proposition

1.3.1. In particular, one can use Proposition 1.3.1 and the discussion in Section 4 of Pichler

and Shapiro (2018) to conclude that:

%w(0, τ) = V̄ w
0 (0, τ) ,

with

V̄ w
k (Xk, τ, ω) := inf

ξk,{ξ̂i}ki=0

ρwk (V̄ w
k+1(Xk + (1{τ > k}ξk +

k∑
`=0

1{τ = `}ξ̂`k)∆Sk+1, τ), ω)

= inf
ξ̄k
ρwk (V̄ w

k+1(Xk + ξ̄k∆Sk+1, τ), ω)

V̄ w
K (XK , τ, ω) := F (Sτ(ω)(ω), Yτ(ω)(ω))−XK(ω) ,

where the first argument of each V̄ w
k is a random variable in Lp(Ω,Fk,P). By exploiting

conditional translation invariance, one then easily obtains:

V̄ w
K (XK , τ, ω) = V w

K (τ, ω) +
K−1∑
k=0

1{τ(ω) = k}F (Sk(ω), Yk(ω))−XK(ω) ,

and recursively that:

V̄ w
k (Xk, τ, ω) = inf

ξ̄k
ρwk (V̄ w

k+1(Xk + ξ̄k∆Sk+1, τ), ω)

= inf
ξ̄k
ρwk (V w

k+1(τ) +
k∑
`=0

1{τ = `}F (S`, Y`)−Xk − ξ̄k∆Sk+1, ω)

= inf
ξ̄k
ρwk (V w

k+1(τ)− ξ̄k∆Sk+1, ω) +

k∑
`=0

1{τ(ω) = `}F (S`(ω), Y`(ω))−Xk(ω)

= V w
k (τ, ω) +

k−1∑
`=0

1{τ(ω) = `}F (S`(ω), Y`(ω))−Xk(ω) .

Hence, we have that:

%w(0, τ) = V̄ w
0 (0, τ) = V w

0 (τ) .
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In the case of the buyer’s equations, the proof is more challenging yet follows similar

arguments3. In particular, we first define an operator that computes the minimal risk under

an initial price of p0, and presents an equivalent reformulation:

%b(p0) := min
τ

inf
X∈X̄τ (p0)

ρb(F (Sτ , Yτ )−XK)

= inf
Z∈Z, X∈X̄ (p0,Z)

ρb(

K−1∑
k=0

ZkF (SK , YK)−XK) ,

where Z := {Z : Ω → {0, 1}K |
∑K−1

k=0 Zk ≤ 1} and each Zk is Fk-adapted and captures

Zk := 1{τ = k}, and where

X̄ (p0, Z) :=

X : Ω→ RK
∣∣∣∣∣∣ ∃X0 = p0, ∀k = 1, . . . ,K − 1,∃ξk, {ξ̂ik}ki=0

Xk+1 = Xk + (ξk +
∑k

i=0(ξ̂ik − ξk)Zi)∆Sk+1

 .

Once again, we use the arguments in Pichler and Shapiro (2018) to conclude that:

%b(0) = V̄ b
0 (0) ,

with

V̄ b
K(XK , Z0:K−1, ω)

:= −
K−1∑
k=0

Zk(ω)F (Sk(ω), Yk(ω))− (1−
K−1∑
k=0

Zk(ω))F (SK(ω), YK(ω))−XK(ω)

V̄ b
k (Xk, Z0:k−1, ω)

:= inf
Zk,ξk,{ξ̂i}ki=0:Zk≤1−

∑k−1
`=0 Z`

ρbk(V̄
b
k+1(Xk + ((1−

k∑
`=0

Z`)ξk +

k∑
`=0

Zkξ̂
`
k)∆Sk+1, Z0:k), ω)

= inf
Zk,ξ̄k:Zk≤1−

∑k−1
`=0 Z`

ρbk(V̄
b
k+1(Xk + ξ̄k∆Sk+1, Z0:k), ω) .

By exploiting conditional translation invariance, one then easily obtains:

V̄ b
K(XK , Z0:K−1, ω) = V b

K(

K−1∑
k=0

Zk, ω)−
K−1∑
k=0

Zk(ω)F (Sk(ω), Yk(ω))−XK(ω) ,

3Note that here we diverge from the arguments used in Section 6.1.2 of Pichler and Shapiro (2018) to
simplify exposition
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and recursively that:

V̄ bk (Xk, Z0:k−1, ω) = inf
Zk,ξ̄k:Zk≤1−

∑k−1
`=0 Z`

ρbk(V̄ wk+1(Xk + ξ̄k∆Sk+1, Z0:k), ω)

= inf
Zk,ξ̄k:Zk≤1−

∑k−1
`=0 Z`

ρbk(V bk+1(

k∑
`=0

Zk)−
k∑
`=0

Z`F (S`, Y`)−Xk − ξ̄k∆Sk+1, ω)

= inf
Zk,ξ̄k:Zk≤1−

∑k−1
`=0 Z`

ρbk(V bk+1(

k∑
`=0

Zk)− ξ̄k∆Sk+1, ω)−
k∑
`=0

Z`(ω)F (S`(ω), Y`(ω))−Xk(ω)

= V bk (

k−1∑
`=0

Zk, ω)−
k−1∑
`=0

Z`(ω)F (S`(ω), Y`(ω))−Xk(ω) .

Hence, we have that %b(0) = V̄ b
0 (0). Optimal policies for each problem can be identified

similarly as was done in the proof of Proposition 1.3.1.

1.6.9 Proof of Lemma 1.3.5

This proof mainly relies on the translation invariance property together with the property

that once again X̄τ (p0) = p0 + X̄τ (0). These two properties can be used to show that:

%wτ (p0) = inf
X∈X̄τ (0)+p0

sup
τ
ρw(F (Sτ , Yτ )−XK(τ))

= inf
X∈X̄τ (0)

sup
τ
ρw(F (Sτ , Yτ )−XK(τ)− p0)

= inf
X∈X̄τ (0)

sup
τ
ρw(F (Sτ , Yτ )−XK(τ))− p0

= inf{s| inf
X∈X̄τ (0)

sup
τ
ρw(F (Sτ , Yτ )−XK(τ)) ≤ s} − p0

= inf{s|%wτ (s) ≤ 0} − p0 = pw0 − p0 . (1.30)

Similarly for the buyer, we have that %bτ (p0) = −pb0 + p0. The rest follows as in the proof of

Proposition 1.2.1.

1.6.10 Proof of Proposition 1.3.6

This proof focuses on the case of the writer given that the buyer’s problem was already

studied in the proof of Proposition 1.3.4. In particular, the proof follows similar lines as

in Section 6.1.1 of Pichler and Shapiro (2018) and in fact extends that result to a case

where hedging is allowed to pursue past the exercise time up to the end of the horizon. We

start by considering that the self-financing hedging policy described by ξ and ξ̂ is fixed
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and reformulate the worst-case exercise time problem. We then look into reformulating the

optimization of the hedging policy.

Step 1 (Worst-case exercise time problem): For any fixed hedging strategy, one can

define the writer’s worst-case exercise time problem as:

ν0 := sup
τ
ρw

(
F (Sτ , Yτ )−

τ−1∑
`=0

ξ`∆S`+1 −
K−1∑
`=τ

ξ̂τ` ∆S`+1

)
.

In order to find a dynamic programming formulation for this problem, we start by reformu-

lating it in the form of an “optimal stopping problem” as defined in Pichler and Shapiro

(2018). In particular, we can consider that:

ν0 = sup
τ
ρw(E1

τ ) ,

where E1
k(ω) := ρwk,K(Fk(Sk, Yk)−

∑k−1
`=0 ξ`∆S`+1 −

∑K−1
`=k ξ̂k` ∆S`+1, ω) with

ρwk,K(X) := ρwk (ρwk+1(· · · ρK−1(X) · · · ). Hence, based on Theorem 6.4 in Pichler and Shapiro

(2018), we can conclude that if we define:

E2
K(ω) := E1

K(ω)

E2
k(ω) := max(E1

k(ω), ρk(E
2
k+1, ω)) ,

and

τ∗m(ω) := min{k |E2
k(ω) = E1

k(ω), m ≤ t ≤ T} ,

then τ∗m is an optimal solution to:

sup
τ :τ≥m

ρw(F (Sτ , Yτ )−
τ−1∑
`=0

ξ`∆S`+1 −
K−1∑
`=τ

ξ̂τ` ∆S`+1) ,

and ν0 = E2
0 .

Step 2 (Optimal hedging optimization problem): Based on our analysis of the worst-

case exercise time problem, we have found that the optimal hedging problem has the

following form:

%wτ (0) = inf
ξ,ξ̂
E2

0(ξ, ξ̂)

= inf
ξ,ξ̂
R0,1(E1

0(ξ̂0),R1,2(E1
1(ξ0, ξ̂

1), · · · ,RK−1,K(E1
K−1(ξ0:K−1, ξ̂

K−1), E1
K(ξ)) ,
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where Rk,k+1(X,Y, ω) := max(X(ω), ρwk (Y, ω)) and where we made explicit the influence

of ξ and ξ̂ on each E1
k . As argued in Pichler and Shapiro (2018), given that each Rt,t+1(·, ·)

is monotone, one can apply the interchangeability principle to generate the following

reformulation:

%wτ (0) = R0,1(inf
ξ̂0
E1

0(ξ̂0), inf
ξ0
R1,2(inf

ξ̂1
E1

1(ξ0, ξ̂
1), · · ·

inf
ξK−1

RK−1,K( inf
ξ̂K−1

E1
K−1(ξ0:K−1, ξ̂

K−1), E1
K(ξ)) · · · ) .

Based on this argument, we create the following operators:

V̄ w
k (1, Xk, ω) := inf

ξ̂kk:K−1

ρwk,K(Fk(Sk, Yk)−Xk −
K−1∑
`=k

ξ̂k` ∆S`+1, ω)

V̄ w
k (0, Xk, ω) := max(V̄ w

k (1, Xk, ω), inf
ξk
ρwk (V̄ w

k+1(0, Xk + ξk∆Sk+1), ω))

V̄ w
K (0, XK , ω) := FK(SK(ω), YK(ω))−XK(ω) ,

in order to have that %wτ (0) = V̄ w
0 (0, 0), and where we again let the second argument of V̄ w

k

be a random variable in Lp(Ω,Fk,P).

In the case of V̄ w
k (1, Xk, ω), we can further apply the interchangeability principle to get

that for all k = 0, . . . ,K − 1,

V̄ w
k (1, Xk, ω) = inf

ξ̂kk

ρwk ( inf
ξ̂kk+1

ρwk+1(· · · inf
ξ̂kK−1

ρwK−1(Fk(Sk, Yk)−Xk −
K−1∑
`=k

ξ̂k` ∆S`+1) · · · ), ω)

= Fk(Sk(ω), Yk(ω))−Xk(ω)+

inf
ξ̂kk

ρwk (−ξ̂kk∆Sk+1 + inf
ξ̂kk+1

ρwk+1(−ξ̂kk+1∆Sk+2 + · · · inf
ξ̂kK−1

ρwK−1(−ξ̂kK−1∆SK)), ω)

= Fk(Sk(ω), Yk(ω))−Xk(ω) + V w
k (1, ω) ,

where we applied conditional translation invariance. While one can verify that we also have:

V̄ w
K (0, XK , ω) = V w

K (0, ω)−XK(ω)

V̄ w
k (0, Xk, ω) = max(V w

k (1, ω) + Fk(Sk(ω), Yk(ω))−Xk(ω), inf
ξk
ρwk (V w

k+1(0)−Xk − ξk∆Sk+1, ω))

= max(V w
k (1, ω) + Fk(Sk(ω), Yk(ω)), inf

ξk
ρwk (V w

k+1(0)− ξk∆Sk+1, ω))−Xk(ω)

= V w
k (0, ω)−Xk(ω) .
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Hence, %wτ (0) = V̄ w
0 (0, 0) = V w

0 (0). An optimal hedging policy can be identified with

an optimal solution to the infimum operations in equation (1.18) or (1.19) depending on

whether the option was exercised at a period smaller or equal to k.

1.6.11 Proof of Corollary 1.3.7

We start by looking at the case of an American option with commitment. Based on

Proposition 1.3.4, we can first prove that, given any exercise policy τ , the writer should

stop hedging after exercise by studying, for each k, whether ξi∗k (ω) = 0 is optimal when

τ(ω) ≤ k. Specifically, if τ(ω) ≤ k, then we have that:

arg min
ξk

ρwk (V w
k+1(τ)−ξk∆Sk+1, ω)

= arg min
ξk

inf
ξk+1:K−1

ρwk,K(
K∑

`=k+1

1{τ = `}F (S`, Y`)−
K−1∑
`=k

ξ`∆S`+1, ω)

= arg min
ξk

inf
ξk+1:K−1

ρwk,K(−
K−1∑
`=k

ξ`∆S`+1, ω) ⊇ {0} ,

since the ρwk satisfies the bounded conditional market risk assumption and is conditionally

coherent, thus infξk:K−1
ρwk,K(−

∑K−1
`=k ξ`∆S`+1, ω) = 0. This confirms that if τ(ω) ≤ k,

then ξ̂i∗k (τ, ω) := 0 is optimal for all i ≤ k so that the number of shares of the risky asset

becomes:

ξk1{τ > k}+
k∑
i=0

ξ̂ik1{τ = i} = ξk · 0 +
k∑
i=0

0 · 1{τ = i} = 0 .

In other words, it is optimal to stop hedging at τ(ω).

A similar argument can be used for the buyer. Namely, we can study, for each k, the

structure of ξi∗k (ω) when τ0(ω) ≤ k. This is done as follows:

arg min
ξk

ρbk(−ξk∆Sk+1 + V b
k+1(1{τ0 ≤ k}), ω)

= arg min
ξk

inf
ξk+1:K−1

ρbk:K(−
K−1∑
`=k

ξ`∆S`+1, ω) ⊇ {0} ,

which again implies that it is optimal to stop hedging at τ0.

For the case of an American option without commitment, the same argument as for

the with commitment case applies for the buyer. On the other hand, for the writer we can
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retrieve the optimal hedging policy from Proposition 1.3.6. Looking carefully, for each k, at

the structure of ξi∗k (ω) when τ(ω) ≤ k, we realize that the same arguments apply

arg min
ξk

ρwk (−ξk∆Sk+1 + V w
k+1(1{τ ≤ k}), ω) = arg min

ξk
inf

ξk+1:K−1

ρwk,K

(
−
K−1∑
`=k

ξ`∆S`+1, ω

)
⊇ {0} .

Hence, once again it is optimal to stop hedging starting at τ .

1.6.12 Verifying the Bounded (Conditional) Market Risk Property for

Worst-case Risk Measures

In this section we identify sufficient conditions under which the one-step decomposition of

a worst-case risk measure satisfies the bounded conditional market risk property. However,

before studying such conditions we need to first define a useful projection operator.

Definition 9. Given an uncertainty set U ⊆ RK , and a history of observations r̂1:k−1 ∈

Rk−1, we define the operation of projecting U over the time interval {k, . . . , k′} with

1 ≤ k ≤ k′ ≤ K as follows:

Uk:k′(r̂1:k−1) :=

r ∈ Rk
′−k+1

∣∣∣∣∣∣∣
If k′ < K, ∃r̄ ∈ RK−k

′
, [r̂T1:k−1 rT r̄T ]T ∈ U

If k′ = K, [r̂T1:k−1 rT ]T ∈ U

 .

This definition is helpful in describing, for a given worst-case risk measure that exploits

some uncertainty set U , the set of all realizations of the return vector for which the bounded

conditional market risk property is satisfied.

Definition 10. Given a worst-case risk measure using an uncertainty set U ⊆ RK , we

define the set of returns with bounded conditional market risk as follows:

A(U) :=

{
r ∈ RK

∣∣∣∣∣∀k ∈ {0, ...,K − 1}, inf
ζk,...,ζK−1

ρk,K(−
K∑
`=k

ζ`r`+1, r) ∈ ]−∞, 0]

}
.

(1.31)

In particular, one can also reformulate the definition of A(U) as follows:

A(U) :=r ∈ RK
∣∣∣∣∣∣ ∀k ∈ {0, ...,K − 1},

Uk+1:K(r1:k) = ∅ ∨ infζk,...,ζK−1
supr̄k+1:K∈Uk+1:K(r1:k)−

∑K−1
`=k ζ`r̄`+1 ∈ ]−∞, 0]

 ,
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where r̄k+1:K refers to a vector in RK−k−1 with indexes in the range {k + 1, . . . ,K}, and

where we use ζ` as shorthand notation for ζ`(r̄k:`). We will repeat this abuse of notation

throughout the section to simplify the presentation of equations.

Based on Definition 10, it is clear that a worst-case risk measure will satisfy the bounded

conditional market risk condition if U ⊆ A(U). This is formally stated by the following

lemma.

Lemma 1.6.2. Let ρ be a worst-case risk measure that uses an uncertainty set U ⊆ RK such

that U ⊆ A(U), then ρ necessarily satisfies the bounded conditional market risk property.

Proof. This result simply follows from the fact that for any r ∈ RK and any k ∈ {1, . . . ,K},

two situation can occur. First, the set Uk+1:K(r1:k) might be empty, which leads to

infζk,...,ζK−1
ρk,K(−

∑K
`=k ζ`r`+1, r) = 0 by the definition of ρk(X, r) thus the market risk is

bounded for this realization. Secondly, one should investigate the case where Uk+1:K(r) is

non-empty. In this case, there exists a r̂ ∈ U ⊆ A(U) such that r1:k = r̂1:k. Hence, one can

verify that:

inf
ζk,...,ζK−1

ρk,K(−
K∑
`=k

ζ`r`+1, r) = inf
ζk,...,ζK−1

sup
r̄k+1:K∈Uk+1:K(r1:k)

−
K−1∑
`=k

ζ`r̄`+1

= inf
ζk,...,ζK−1

sup
r̄k+1:K∈Uk+1:K(r̂1:k)

−
K−1∑
`=k

ζkr̄k+1 ∈ ]−∞, 0] ,

based on the fact that r̂ ∈ A(U). This implies that the conditional market risk is bounded

on all of RK which is a stronger condition than in Assumption 1.3.2 where the condition is

only imposed with probability one.

Based on the above discussion, given an arbitrary uncertainty set which might not

satisfy the condition U ⊆ A(U), it, therefore, appears that we are in need of a procedure

that would select a subset U ′ of U for which this property is satisfied. One attractive

candidate takes the form of the following set which we will call the no-arbitrage subset of

U , when it exists.

Definition 11. Given an uncertainty set U , we define the no-arbitrage subset Una of U as

the largest set U ′ ⊆ U that satisfies U ′ ⊆ A(U ′). Mathematically, Una satisfies the following

two properties:
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1. Una ⊆ A(Una)

2. ∀U ′ ⊆ U ,U ′ ⊆ A(U ′) we have that U ′ ⊆ Una.

Considering the previous definitions, one might wonder if such a no-arbitrage subset

always exists. The following theorem confirms that it does always exist when U is both

closed and convex.

Theorem 1.6.3. Given that U is convex and closed, the no-arbitrage subset of U is equal

to V(U) ∩ U where

V(U) =

r ∈ RK
∣∣∣∣∣∣0 ∈ U ,

 k∑
j=1

ejrj ∈ U

 ∨ (r1:k /∈ U1:k) ,∀k = 1, ...,K − 1

 ,

with ej ∈ RK as the j-th column of identity matrix, and where V(U) = ∅ if 0 /∈ U .

Proof. The proof of this theorem is divided in four parts. First, we show that V(U) = A(U).

This step is itself divided in two parts, namely first that V(U) ⊆ A(U) and then that

V(U) ⊇ A(U). The second step consists in proving that V(U) ∩ U satisfies the two

conditions of the no-arbitrage subset Una.

Step 1.a (V(U) ⊆ A(U)). Given any member r of V(U), we know that for all k = 1, . . . ,K,

either r1:k /∈ U1:k which leads to:

inf
ζk,...,ζK−1

ρk,K(−
K∑
`=k

ζ`r`+1, r) = 0 ,

by definition. Otherwise, the vector [rT1:k−1 0T1:K−k+1]T ∈ U thus we can conclude that:

inf
ζk,...,ζK−1

sup
r̄k+1:K∈Uk+1:K(r1:k)

−
K−1∑
`=k

ζ`r`+1 ≥ inf
ζk,...,ζK−1

−
K−1∑
`=k

ζ` · 0 = 0 > −∞ .

From this, we conclude that V(U) ⊆ A(U).

Step 1.b (A(U) ⊆ V(U)). Given any member r of A(U), for any k = 1, . . . ,K − 1, we

have that:

inf
ζk,...,ζK−1

ρk,K(−
K∑
`=k

ζ`r`+1, r) > −∞ .
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This means that either r1:k /∈ U1:k or

inf
ζk,...,ζK−1

sup
r̄k+1:K∈Uk+1:K(r1:k)

−
K−1∑
`=k

ζ`r̄`+1 > −∞ .

We can further process this second condition by rewriting it as:

inf
ζk

sup
r̄k+1∈Uk+1(r1:k)

ζkr̄k+1 + πk+1([rT1:k r̄k+1]T ) > −∞ ,

where Uk+1(r1:k) is short for Uk+1:k+1(r1:k), and with

πk(r1:k) := inf
ζk

sup
r̄k+1∈Uk+1(r1:k)

ζkr̄k+1 + πk+1([rT1:kr̄k+1]T ) ,

for all k = 0, . . . ,K − 1 while πK(r) := 0. Yet, one quickly realizes that:

πK−1(r1:K−1) = inf
ζK−1

sup
r̄K∈UK(r1:K−1)

ζK−1r̄K

= inf
ζK−1

max

(
ζK−1 inf

r̄K∈UK(r1:K−1)
r̄K , ζK−1 sup

r̄K∈UK(r1:K−1)
r̄K

)

=

 0 if 0 ∈ UK(r1:K−1)

−∞ otherwise
,

where the second equality follows from the fact that UK(r1:K−1) is a closed interval given

that U is convex and closed. The third equality comes from the fact if 0 ∈ UK(r1:K−1) then

the infimum over ζk is reached by ζk = 0, while when it UK(r1:K−1) does not include zero,

then the infimum can reached an arbitrarily low value since the sign of r̄K is determined.

Consequently, by induction, for any k = 0, . . . ,K − 1, it must actually be that:

πk(r1:k) = inf
ζk

sup
r̄k+1∈Uk+1(r1:k)

ζkr̄k+1 + πk+1([rT1:k r̄k+1]T )

= inf
ζk

max

ζk inf
r̄k+1:[r̄k+1 0Tk+2:K ]T∈Uk+1:K(r1:k)

r̄k+1, ζk sup
r̄k+1:[r̄k+1 0Tk+2:K ]T∈Uk+1:K(r1:k)

r̄k+1


=

 0 if 0 ∈ Uk+1:K(r1:k)

−∞ otherwise
.

Based of this argument, we must, therefore, conclude that if r ∈ A(U), then for all k,

either r1:k /∈ U1:k or πk(r1:k) > −∞ hence that 0 ∈ Uk+1:K(r1:k). Overall, this confirms

that r ∈ V(U).
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Step 2.a (Una ⊆ A(Una)). To prove this property, we need to show that:

U ∩ A(U) ⊆ A(U ∩ A(U)) ,

which is equivalent to showing that:

U ∩ V(U) ⊆ V(U ∩ V(U)) ,

since U is convex and closed so that A(U) = V(U) and, therefore, U ∩ A(U) = U ∩ V(U) is

also convex and closed so that A(U ∩A(U)) = V(U ∩A(U)) = V(U ∩V(U)). We will tackle

the second equivalent condition, where we will make use the following representation:

V(V(U)∩U) =

r ∈ RK
∣∣∣∣∣∣
k∑
j=1

ejrj ∈ V(U) ∩ U ∨ (r1:k /∈ (V(U) ∩ U)1:k) ,∀k = 1, ...,K − 1

 .

Specifically, given any r ∈ U ∩ V(U) ⊆ RK , and for all k = 1, . . . ,K, we will confirm that∑k
j=1 ejrj ∈ V(U) ∩ U . We can first check that:

k∑
j=1

ejrj ∈ U ,

since r ∈ V(U). Furthermore, letting w :=
∑k

j=1 ejrj , we can further check that for all

` = 1, . . . ,K,

∑̀
i=1

eiwi =
∑̀
i=1

eie
T
i

 k∑
j=1

ejrj

 =
k∑
j=1

∑̀
i=1

eie
T
i ejrj =

min(k,`)∑
j=1

ejrj ∈ U ,

since again r ∈ V(U), which implies that w ∈ U ∩ V(U). Based on these arguments, we can

conclude that r ∈ V(U ∩ V(U)).

Step 2.b (Una is the largest). The second property is proved as follows:

U ′ ⊆ U ⇒ U ′ ∩ V(U ′) ⊆ U ∩ V(U)⇒ U ′ = U ′ ∩ A(U ′) = U ′ ∩ V(U ′) ⊆ U ∩ V(U) ,

where the first implication comes from the definition of V(U ′) and the fact that U ′ ⊆ U .

The second implication first exploits the fact that U ′ ⊆ A(U ′) and then that A(U ′) = V(U ′).

This concludes the proof.
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Bounded Conditional Market Risk Property for U1

Exploiting the result of Theorem 1.6.3, we can now provide a proof of Lemma 1.4.1.

Specifically, since U1 is a closed convex set, the theorem provides a recipe to construct the

no-arbitrage subset of U1, i.e. Una := U ∩V(U). In the context that is studied V(U) reduces

to

V(U) =r ∈ RK

∣∣∣∣∣∣∣
maxk∈{1,...,K} µ

√
kT/K/σ − Γ ≤ 0(

maxk′∈{k,...,K}

∣∣∣∣∑k
`=1 log(1+r`)−µk′T/K

σ
√
k′T/K

∣∣∣∣− Γ ≤ 0

)
∨ (r1:k /∈ U1:k),∀k ∈ {1, ...,K}


One can easily verify that W ∩ U = V(U) ∩ U under the conditions of Lemma 1.4.1.

Bounded Conditional Market Risk Property for U2

In this section, we show that the worst-case risk measure defined based on the set U2 satisfies

the bounded conditional market risk property by showing that A(U2) = RK and exploiting

Lemma 1.6.2. Specifically, we can show that for all r ∈ RK and all k ∈ {0, . . . ,K − 1},

either r1:k /∈ U1:k or

πk(r1:k) := inf
ζk,...,ζK−1

sup
r̄k+1:K∈Uk+1:K(r1:k)

−
K−1∑
`=k

ζ`r̄`+1 = 0 .

Indeed, when r1:k /∈ U1:k, one can rewrite

πk(r1:k) = inf
ζk

sup
r̄k+1∈Uk+1(r1:k)

−ζkr̄k+1 + πk+1([rT1:k r̄k+1]T ) ,

where

πK−1(r1:K−1) = inf
ζK−1

sup
r̄K∈UK:K(r1:K−1)

−ζK−1r̄K .

Given that for all k, the function πk is evaluated with some non-empty and symmetric

Uk+1(r1:k), we thus have that:

πK−1(r1:K−1) = inf
ζK−1

|ζK−1| sup
r̄K∈UK:K(r1:K−1)

r̄K = 0 ,

and recursively for k = K − 1, . . . , 0,

πk(r1:k) = inf
ζk

sup
r̄k+1∈Uk+1(r1:k)

−ζkr̄k+1 + πk+1([rT1:k r̄k+1]T ) = inf
ζk

sup
r̄k+1∈Uk+1(r1:k)

−ζkr̄k+1 + 0

= inf
ζk
|ζk| sup

r̄k+1∈Uk+1(r1:k)
r̄k+1 = 0 .
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This confirms that the worst-case risk measure defined based on the set U2 satisfies bounded

conditional market risk property.

1.6.13 Worst-case Risk Measures with U1 or U2 Satisfying the Markov

Property

In this section we identify two state processes θk : RK → R under which the worst-case risk

measures with U1 and U2 are respectively Markovian.

Starting with the set inspired from Bandi and Bertsimas (2014), we let θk :=
∑k

`=1 log(1+

r`). With this definition in hand, we can demonstrate the properties that are described

in Definition 5. First, we have that θk+1 =
∑k+1

`=1 log(1 + r`) = log(1 + rk+1) + θk and

hence can be measured directly from (θk, rk + 1). Second, we can confirm that for all

X ∈ Lp(Ω,Fk+1,P), if r1:k ∈ U1:k, then:

ρk(X, r) = sup
r′∈U :r′1:k=r1:k

X(r′)

= sup
r̄k+1∈Uθk (

∑k
`=1 log(1+r`))

X([rT1:k r̄k+1 rk+2:K ]T )

= sup
r̄k+1∈Uθk (θk(r))

Πk(X, r̄k+1) = ρ̄k(Πk(X, r), θk(r)) ,

where

Uθk (θk) :=

{
r ∈ R

∣∣∣∣∣
∣∣∣∣∣θk + log(1 + r)− µk′T/K

σ
√
k′T/K

∣∣∣∣∣ ≤ Γ, ∀k′ ≥ k

}

and

ρ̄k(X, θk) :=

 suprk+1∈Uθk (θk)X(rk+1) if Uθk (θk) 6= ∅

X(0) otherwise
.

In the case of the set U2 inspired from Bernhard (2003), we let instead θk :=
∑k

`=1 r
2
` ,

with θk+1 := θk + r2
k+1 and ρ̄k(X, θk) := suprk+1∈Uθk (θk)X(rk+1) where

Uθk (θk) :=
{
r ∈ R

∣∣∣ θk + r2 ∈ [σiNT/K − Γ
√
iN, σiNT/K + Γ

√
iN ] , ∀ i ≥ k/N

}
.

The rest of the details are very similar as previously.
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1.6.14 Implementation Details Regarding How the Dynamic Program

Was Solved

In order to solve the dynamic programs of the models, in the first step, we divide our

simulated stock paths into a training, Dtrain, and a test set, Dtest. Then we calibrate

the uncertainty set parameter Γ in a way that 95 percent of the train paths fall into the

uncertainty set. Depending on the type of the uncertainty set, U1 or U2, we consider either

cumulative log returns
∑k

l=1 log(1 + rl), or cumulative square returns
∑k

l=1 r
2
l along with

the stock price Sk as state variables of the DP. Next, we generate a two-dimensional grid

for the state variables at each time step. The upper and lower bounds of the grid for the

stock prices are obtained by simply considering the price bounds in Dtrain. The bounds

could be computed in a more conservative way by considering some deviations from the

minimum and maximum values of Dtrain so that they contain with a higher probability

the paths of the Dtest, however, we did not observe improvements in terms of the hedging

performance by considering such bounds in our setting. Another issue worth mentioning is

regarding the time dependency of the grid bounds. In our implementation we consider the

same bounds for all time periods. This would allow the model to consider the cases where

the whole budget of the uncertainty sets are used up in the very first steps. However, in

general, the bounds of the grid could be time dependent and determined at each time by

using the price paths in that time. For the other state variable, we first use the Dtrain to

compute the associated paths of
∑k

l=1 log(1 + rl) or
∑k

l=1 r
2
l . The upper and lower bounds

of the grid could be computed from these values.

In order to solve the dynamic model, starting from the last period, for each combination

of state variables, and for each side of the contract, the “best hedging risk to go” is computed

and assigned to the point. For periods other than the last period, we need to solve an

optimization model to obtain the optimal allocation of wealth. Since we discretized the

state space, at each point we find the reachable values in the next period for the two state

variables (θk, Sk). To do so, we start with the reachable values for rk+1 using the definition

of the projected uncertainty set. Specifically, for U1 we will have rk+1 ∈ [rk+1, rk+1], while

for U2 we will have rk+1 ∈ [r1
k+1, r

1
k+1] ∪ [r2

k+1, r
2
k+1]. When choosing the reachable grid

points, we always include up to the first grid point that falls outside the intervals in order
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to induce a conservative bias to our approximation. Having these points, the next step is

to find the optimal wealth allocation by solving a piece-wise linear convex optimization

problem. We pursue recursively until k = 0.
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Chapter 2
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Abstract

Recently equal risk pricing, a framework for fair derivative pricing, was extended to consider

dynamic risk measures. However, all current implementations either employ a static risk

measure that violates time-consistency, or are based on traditional dynamic programming

solution schemes that are impracticable in problems with a large number of underlying

assets (due to the curse of dimensionality) or with incomplete asset dynamics information.

In this article, we extend for the first time a famous off-policy deterministic actor-critic

deep reinforcement-learning (ACRL) algorithm to the problem of solving a risk-averse

Markov decision process that models risk using a time-consistent recursive expectile risk



measure. This new ACRL algorithm allows us to identify time-consistent hedging policies

(and equal risk prices) for options, such as basket options, that cannot be handled using

traditional methods, or in context where only historical trajectories of the underlying assets

are available. Our numerical experiments, which involve both a simple vanilla option and a

more exotic basket option, confirm that the new ACRL algorithm can produce 1) in simple

environments, nearly optimal hedging policies, and highly accurate prices, simultaneously

for a range of maturities 2) in complex environments, good quality policies and prices using

reasonable amount of computing resources; and 3) overall, hedging strategies that actually

outperform the strategies produced using static risk measures when the risk is evaluated at

later points of time.

2.1 Introduction

Derivative pricing remains a challenging problem in finance when the markets are incomplete

and the derivatives are dependent on multiple underlying assets. The incompleteness of a

market implies that the price of some derivatives cannot be uniquely determined by the

standard replication argument, as in such a market no self-financing hedging strategy exists

that can perfectly replicate the payoffs of some derivatives. Many mechanisms have been

proposed for pricing in an incomplete market but most were developed from the perspective

of a single trader. Unfortunately, a price that is set only according to one party’s interest,

e.g. a super-replication price that a seller may wish to charge, may not be acceptable to

the buyer and thus does not represent a plausible transaction price. Recently, a new pricing

scheme, known as Equal Risk Pricing (ERP), was proposed by Guo and Zhu (2017) and

further adapted to convex risk measures in the work of Marzban et al. (2020).

The scheme of ERP is built upon the idea of modelling separately the risk exposure

of the buyer and the seller of a derivative, and seeking a price that ensures that the risk

exposure of both parties is the same under their respective optimal self-financing hedging

strategy. The price generated from ERP thus has the merit of fairness to both parties.

While ERP has its conceptual appeal, there remains a gap between its general construct

and the actual implementation. In particular, as shown in Marzban et al. (2020), great care

must be taken to define properly how risk should be measured in a dynamic hedging setting
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in order to obtain hedging problems that are operationally meaningful and computationally

solvable. The work of Marzban et al. (2020) provides necessary analysis for solving the

equal risk pricing and hedging problem based on traditional dynamic programming (DP).

It is known however that DP suffers from the issue of the curse of dimensionality, which

restricts the applicability of the results in Marzban et al. (2020). In addition, traditional

DP assumes the knowledge of a stochastic model that precisely captures the dynamics of

the markets, which may not be available in practice.

In the past decade, Deep Reinforcement-Learning (DRL) has proven to be a powerful

tool for solving dynamic optimization problems when the number of state variables is large

and/or when no stochastic model is known for the underlying system dynamics. In particular,

the recent works of Carbonneau and Godin (2020) and Carbonneau and Godin (2021) are

the first that apply DRL to solve ERP problems and they demonstrate the possibility of

pricing a broad range of over-the-counter options such as basket options. Unfortunately, the

DRL approaches proposed in Carbonneau and Godin (2020) and Carbonneau and Godin

(2021) can only be used in settings where the risk is measured according to a static risk

measure. This raises the serious issue that the hedging problem exploited by the ERP could

be time inconsistent, i.e. the hedging decisions planned for future state of the world may

no longer be considered optimal once the state is visited. The violation of time-consistency

implies that equal risk prices calculated based on static risk measures will assume a hedging

policy that cannot be implemented in practice, and thus are optimistically biased. From a

numerical perspective, employing a static risk measure in ERP also limits the type of DRL

algorithms that can be used to solve each party’s hedging problem. Specifically, Carbonneau

and Godin (2020) and Carbonneau and Godin (2021) employ a policy optimization scheme,

a.k.a. Actor-Only RL (AORL) algorithm (see Williams (1992) as an example of this

method), while other approaches such as critic-only or actor-critic algorithms (such as

Mnih et al. (2015) and Lillicrap et al. (2015) respectively) that rely on an equivalent DP

formulation remain out of reach.

In this article, we seek to develop a DRL approach for solving a class of time-consistent

ERP problems. It is known that, to ensure time-consistency, a dynamic risk measure should

be employed to measure risk in a recursive fashion. In particular, motivated by the theory

of coherent risk measures, which identifies expectile risk measures as the only elicitable
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coherent risk measures, we propose in this article the use of dynamic expectile risk measures

to formulate time-consistent ERP problems. The dynamic nature of risk measures suggests

the consideration of an Actor-Critic RL (ACRL) algorithm for solving the hedging problem.

It turns out that the elicitability property of expectile risk measures facilitates greatly the

design of a model-free ACRL algorithm. The convergence of this algorithm is also greatly

improved due to the translation invariance property of the risk measures.

Overall, we may summarize the contribution of this paper as follows:

• We present the first model-free DRL based algorithm for computing equal risk prices

that rely on option hedging strategies that are time-consistent. To reinforce the

importance of this contribution, we in fact demonstrate using a simple single asset

two-period horizon option pricing problem how equal risk prices might suffer from

an optimistic bias when static risk measures are used (as in Carbonneau and Godin

(2020) and Carbonneau and Godin (2021)). A side benefit from pricing an option

with maturity T using dynamic risk measures will be that we will easily obtain equal

risk prices for any other maturity T ′ < T .

• The ACRL algorithm that we propose is the first model-free DRL algorithm to

naturally extend the famous off-policy deterministic actor-critic method presented in

Silver et al. (2014) to the risk-averse setting. Unlike the ACRL proposed in Tamar

et al. (2015) and Huang et al. (2021) for risk-averse DRL, which can employ up to five

neural networks, our algorithm will only require two deep neural networks: a policy

network (actor) and a Q network (critic). While our policy network will be trained

following a stochastic gradient procedure similar to Silver et al. (2014), to the best of

our knowledge we are the first to leverage the elicitability property (i.e. existence of

a scoring function) of expectile risk measures and to propose a procedure for training

the “risk-to-go” Q network that is also based on stochastic gradient descent.

• We perform a comprehensive evaluation of the training efficiency, quality of option

hedging strategies, and quality of equal risk prices obtained using our ACRL algorithm

on a synthetic multi-asset geometric Brownian motion market model. In the simple

case of vanilla option pricing, we provide empirical evidence that ACRL provides
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nearly optimal hedging policies, and highly accurate prices, simultaneously for a

range of maturities. The latter is in sharp contrast with approaches, such as in

Carbonneau and Godin (2021), that employ time inconsistent risk measures and

produce investment strategies that are visibly outperformed by the ACRL strategy

in terms of the risk measured as time to maturity reduces. This phenomenon is

also observed, although less prominently, in the context of a basket option over 5

underlying assets, where good quality policies and prices are obtained using our ACRL

algorithm using a reasonable amount of computing resources.

The rest of this article is organized as follows. Section 2.2 introduces equal risk pricing

and illustrates using a simple two-period pricing problem the practical issues related to

using static risk measures for option hedging and pricing. Section 2.3 adapts the ERP

framework to the case of a dynamic expectile risk measure and proposes the new ACRL

algorithm. Finally, Section 2.4 presents and discusses our numerical experiments.

2.2 Equal risk pricing and hedging under coherent risk

measures

In this section, we provide a brief overview of ERP under coherent risk measures based on

the recent work of Marzban et al. (2020). We pay particular attention to the issue of time

(in)consistency by presenting an example that demonstrates numerically that employing a

time-inconsistent static risk measure can lead to an under-evaluation of the risk to which

each party are actually exposed in practice.

2.2.1 ERP under coherent risk measures

The problem of ERP can be formalized as follows. Consider a frictionless market, i.e.

no transaction cost, tax, etc, that contains m risky assets, and a risk-free bank account

with zero interest rate. Let St : Ω → Rm denote the values of the risky assets adapted

to a filtered probability space (Ω,F ,F := {Ft}Tt=0,P), i.e. each St is Ft measurable. It is

assumed that St is a locally bounded real-valued semi-martingale process and that the set

of equivalent local martingale measures is non-empty (i.e. no arbitrage opportunity). The
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set of all admissible self-financing hedging strategies with the initial capital p0 ∈ R is shown

by X (p0):

X (p0) =

{
X : Ω→ RT

∣∣∣∣∣∃{ξt}T−1
t=0 , Xt = p0 +

t−1∑
t′=0

ξ>t′∆St′+1, ∀t = 1, . . . , T

}
,

where ∆St+1 := St+1 − St, the hedging strategy ξt ∈ Rm is a vector of random variables

adapted to the filtration F and captures the number of shares of each of the risky assets

held in the portfolio during the period [t, t+ 1], ξ>t ∆St′+1 is the inner product of the two

random vectors, and Xt is the accumulated wealth.

Let F ({St}Tt=1) denote the payoff of a derivative. Throughout this paper, we assume

F ({St}Tt=1) admits the formulation of F (ST ,YT ) where Yt is an auxiliary fixed-dimensional

stochastic process that is Ft-measurable. This class of payoff functions is common in the

literature, (see for example Bertsimas et al. (2001) and Marzban et al. (2020)). The problem

of ERP is defined based on the following two hedging problems that seek to minimize

the risk of hedging strategies, one is for the writer and the other is for the buyer of the

derivative:

(Writer) %w(p0) = inf
X∈X (p0)

ρw(F (ST ,YT )−XT ) (2.1)

(Buyer) %b(p0) = inf
X∈X (−p0)

ρb(−F (ST ,YT )−XT ) , (2.2)

where ρw and ρb are two risk measures that capture respectively the writer and the buyer’s

risk aversion. In words, equation (2.1) describes a writer that is receiving p0 as the

initial payment and implements an optimal hedging strategy for the liability captured by

F (ST ,YT ). On the other hand, in (2.2) the buyer is assumed to borrow p0 in order to pay

for the option and then to manage a portfolio that will minimize the risks associated to his

final wealth F (ST ,YT ) +XT . With equations (2.1) and (2.2), ERP defines a fair price p∗0

as the value of an initial capital that leads to the same risk exposure to both parties, i.e.

ρw(p∗0) = ρb(p∗0).

Motivated by the theory of coherent risk measures (Artzner et al. (1999)), Marzban et al.

(2020) study the ERP problem by imposing the property of coherency to the risk measures

ρw and ρb. Namely, a risk measure is said to be coherent if it satisfies the following five

conditions:
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• Monotonicity: if X ≤ Z a.s. then ρ(X) ≤ ρ(Z)

• Subadditivity: ρ(X + Z) ≤ ρ(X) + ρ(Z)

• Positive homogeneity: If λ ≥ 0, then ρ(λX) = λρ(X)

• Translation invariance: If m ∈ R, then ρ(X +m) = ρ(X) +m

• Normalized risk: ρ(0) = 0.

It is well known that Value-at-Risk (VaR), a risk measure commonly applied in financial

risk management, is not coherent, whereas its convex counterpart, namely Conditional

Value-at-Risk (CVaR) is coherent. The application of CVaR in ERP can be found for

example in Carbonneau and Godin (2020). As one of the key results in ERP, Marzban

et al. (2020) establishes that an equal risk price p∗0 can actually be found by solving the

writer and buyer’s hedging problem with no initial payment, i.e. (2.1) and (2.2), separately.

Namely, it can be calculated by the following result.

Theorem 2.2.1. Let ρw and ρb be two coherent risk measures. In the case where the equal

risk price p∗0 exists, it can be calculated by

p∗0 = (%w(0)− %b(0))/2 ,

when ∞ > %w(0) ≥ %b(0) > −∞.

2.2.2 The issue of time inconsistency

As briefly mentioned in the introduction, measuring risk in a dynamic setting requires

additional care. The use of a coherent risk measure, without any further adaptation to

a dynamic setting, can lead to solutions that suffer from the issue of time inconsistency.

The goal of this section is to carefully demonstrate this point by presenting a numerical

example that quantifies the impact of time inconsistency. Our demonstration is inspired by

the work of Rudloff et al. (2014), where the impact of time inconsistency is discussed in

a portfolio management problem. Here, we present an example based on a vanilla option

hedging problem.
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In this example, we consider a stock price process modelled by a simple two-stage

trinomial tree. Specifically, the horizon spans t ∈ {0, 1, 2} and the probability space

(Ω,F ,P) is such that Ω = {ωi}9i=1, F1 := σ({{ωi}3i=1, {ωi}6i=4, {ωi}9i=7}), and all outcomes

are equiprobable. The market contains a risk-free asset (with a risk-free rate of zero) and a

risky asset S which are used to hedge a vanilla at-the-money call option on S2 with strike

price K := S0. The details of the price process is shown in Table 2.1. For simplicity, we set

the initial capital for hedging to zero and employ a CVaR60% risk measure for hedging 1.

When hedging the call-option using a static CVaR measure, the writer of the option

solves the following two-period optimization model:

min
ξ0,ξ1

CVaR60%((S2(ω)−K)+ − (S1(ω)− S0)ξ0 − (S2(ω)− S1(ω))ξ1(ω)) (2.3)

where (y)+ := max(y, 0) and K := S0. The optimal solution of this problem will prescribe

purchasing 0.93 shares of the risky asset at time 0, i.e. ξ0 = 0.9341, using money borrowed

at the risk-free rate (see Table 2.1 for the optimal shares to hold at t = 1). The resulting

CVaR60% is 26.36, implying that if the writer charges the buyer with a price above 26.36,

the writer would consider the price being sufficient to cover the hedged risk of this call

option.

Note that in the risk-averse hedging problem (2.3), it is not clear what motivates the

writer of the option to implement the prescribed hedging strategy once new information is

revealed at time t = 1. In particular, he/she might be curious to compare the prescribed

strategy with the strategy that minimizes the CVaR from the new perspective at t = 1, i.e.,

the following hedging problem:

min
ξ̄1

CVaRᾱ1

(
(S2(ω)−K)+ − (S1(ω)− S0)ξ∗0 − (S2(ω)− S1(ω))ξ̄1(ω)|F1

)
, (2.4)

where ᾱ1 := 60% and where ξ∗0 = 0.9341, i.e. the optimal first stage solution in (2.3).

Table 2.1 presents the optimal conditional hedging strategy ξ̄∗1 as a function of the

information revealed by F1. While it does appear that ξ̄∗1 agrees with ξ∗1 when ω ∈ {ωi}3i=1,

the investment in the risky asset ends up significantly reduced in the other two sets of

outcomes. More importantly, we established numerically2 that in order to motivate the
1The issue could arise for any risk level when the outcome space is large enough. Here 60% CVaR was

used to produce a simple example.
2https://github.com/saeedmarzban/ERP-Dynamic-Expectile-RM.git
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prescribed hedging strategy ξ∗1 , the risk aversion level used in problem (2.4) would need to

be in the range of [0.4580, 0.4585], when ω ∈ {ωi}6i=4, or [0.1992, 0.2], when ω ∈ {ωi}9i=7.

This confirms that ξ∗ is likely to be perceived as overly risky given the information revealed

at time t = 1. Ultimately, in the likely case where the writer decides to replace ξ∗1 with ξ̄∗1 ,

one can establish that the overall exposition to risk from the perspective of t = 0 should

have rather been estimated to 27.94 instead of 26.36. This implies that employing a static

risk measure here underestimated the necessary coverage capital by 6%.

While this issue of time-consistency has been discussed significantly in the recent years,

a common approach to overcome it is to employ a so-called dynamic risk measure (Detlefsen

and Scandolo, 2005) as will be done in the following section. In the context of this example,

this would reduce to replacing problem (2.3) with:

min
ξ0,ξ1

CVaRα
(
CVaRα((S2(ω)−K)+ − (S2(ω)− S1(ω))ξ1(ω)− (S1(ω)− S0)ξ0|F1(ω))

)
,

where α can be chosen to characterize the right level of risk aversion for the “dynamic

conditional value-at-risk measure”. This formulation ensures that the prescribed policy at

time t = 1 remains optimal (according to problem (2.4)) at the moment where it is actually

implemented thus preventing the necessary coverage capital from being under estimated.

Table 2.1 – Example of a time inconsistent hedging strategy obtained from employing a
static risk measure. ξ∗ is obtained by solving problem (2.3), ᾱ1 is the risk aversion level
that motivates ξ∗1 at t = 1, ξ̄∗1 is the actual investment prescribed by CVaR60% at t = 1.

Atoms Price process Time inconsistent Optimal conditional
of F1 hedging strategy hedging strategy

S0(ω) S1(ω) S2(ω) ξ∗0 ξ∗1(ω) ᾱ1(ξ∗) ξ̄∗1(ω)
ω ∈ {ωi}3i=1 100 150 {270,150,75} 0.9341 0.8718 [0.4580,1.0000] 0.8718
ω ∈ {ωi}6i=4 100 100 {180,100,50} 0.9341 0.7665 [0.4580,0.4585] 0.6154
ω ∈ {ωi}9i=7 100 80 {120,80,64} 0.9341 0.5000 [0.1992,0.2000] 0.3571

2.3 ERP under dynamic expectile risk measure and an

actor-critic algorithm

While time-consistent ERP problems can be formulated by employing dynamic risk measures

and be calculated, in principle, by solving a set of dynamic programming (DP) equations
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(Marzban et al. (2020)), there remains the challenge of determining which dynamic risk

measure one should employ and how these equations might be solved in high dimension, i.e.

multiple underlying assets. In this section, we address the two issues by first motivating the

use of dynamic expectile risk measures to formulate time-consistent ERP hedging problems

and then presenting a Deep Reinforcement-Learning approach (DRL) for approximately

solving this problems.

2.3.1 Dynamic expectile risk measures and DP equations

Expectile has been proposed in the recent literature (see Bellini and Bignozzi (2015)) as

a replacement of VaR and CVaR given that it is not only coherent but also elicitable. It

is known that VaR is not coherent but is elicitable, whereas CVaR is coherent but is not

elicitable. A risk measure is said to be elicitable if it can be expressed as the minimizer of

a certain scoring function, and this property is found to be critical in practice due to the

need of backtesting (Chen, 2018). In fact, the expectile is the only elicitable coherent risk

measure. Recall the following definition of expectile.

Definition 12. (Bellini and Bernardino (2017)) The τ−expectile of a random liability X

is defined as:

ρ̄(X) := arg min
q

τE
[
(q −X)2

+

]
+ (1− τ)E

[
(q −X)2

−
]
.

Like CVaR, expectile covers at one extreme the case of risk-neutrality, i.e. with τ = 1/2,

and at the other extreme the case of converging towards the worst-case risk, i.e. as τ → 1.

Thus, expectile also allows for modelling a wide spectrum of risk aversion. Using expectile

as the basis, we define its dynamic version as follows.

Definition 13. A dynamic recursive expectile risk measure takes the form:

ρ(X) := ρ̄0(ρ̄1(. . . ρ̄T−1(X))) ,

where each ρ̄(·) is an expectile risk measure that employs the conditional distribution based

on Ft. Namely,

ρ̄t(Xt+1) := arg min
q

τE
[
(q −Xt+1)2

+|Ft
]

+ (1− τ)E
[
(q −Xt+1)2

−|Ft
]

where Xt+1 a random liability measureable on Ft+1.
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We apply dynamic expectile risk measures to formulate the two hedging problems in

ERP. By further imposing the following assumption that there exists a sufficient statistic

process ψt such that {(St,Yt, ψt)}Tt=0 satisfies the Markov property, we can obtain compact

dynamic equations for them.

Assumption 2.3.1. [Markov property] There exists a sufficient statistic process ψt adapted

to F such that {(St,Yt, ψt)}Tt=0 is a Markov process relative to the filtration F. Namely,

P((St+s,Yt+s, ψt+s) ∈ A|Ft) = P((St+s,Yt+s, ψt+s) ∈ A|St,Yt, ψt) for all t, for all s ≥ 0,

and all sets A.

In particular, based on Proposition 3.1 and the examples presented in section 3.3 of

Marzban et al. (2020), together with the fact that both ρw and ρb are dynamic recursive

expectile risk measures, the Markovian assumption allows us to conclude that the ERP can

be calculated using two sets of dynamic programming equations. Specifically, on the writer

side, we can define

V w
T (ST ,YT , ψT ) := F (ST ,YT ) ,

and recursively

V w
t (St,Yt, ψt) := inf

ξt
ρ̄(−ξ>t ∆St+1 + V w

t+1(St + ∆St+1,Yt + ∆Yt+1, ψt+1)|St,Yt, ψt) ,

where ρ̄(·|St,Yt, ψt) is the expectile risk measure that uses P(·|St,Yt, ψt). This leads to

considering %w(0) = V w
0 (S0,Y0, ψ0). On the other hand, for the buyer we similarly define:

V b
T (ST ,YT , ψT ) := −F (ST ,YT ) ,

and

V b
t (St,Yt, ψt) := inf

ξt
ρ̄(−ξ>t ∆St+1 + V b

t+1(St + ∆St+1,Yt + ∆Yt+1, ψt+1)|St,Yt, ψt) ,

with %b(0) = V b
0 (S0,Y0, ψ0). The following lemma summarizes how DP can be used to

compute ERP.

Lemma 2.3.1. Under Assumption 2.3.1, the ERP that employs dynamic recursive expectile

riks measure can be computed as: p∗0 = (V w
0 (S0,Y0, ψ0)− V b

0 (S0,Y0, ψ0))/2.
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2.3.2 A novel Expectile-based actor-critic algorithm for ERP

In this section, we formulate each option hedging problem as a Markov Decision Process

(MDP) denoted by (S,A, r, P ). In this regard, the agent (i.e. the writer or buyer) interacts

with a stochastic environment by taking an action at ≡ ξt ∈ [−1, 1]m after observing the

state st ∈ S, which includes St, Yt, and ψt. Note that to simplify exposition, in this

section we drop the reference to the specific identity (i.e. w or b) of the agent in our

notation. The action taken at each time t results in the immediate stochastic reward

that takes the shape of the immediate hedging portfolio return, i.e. rt(st, at, st+1) :=

ξ>t ∆St+1 when t < T and otherwise of the option liability/payout rT (sT , aT , sT+1) :=

F (ST ,YT )(1− 2 · 1{agent=writer}), which is insensitive to sT+1. Finally, the Markovian

exogeneous dynamics described in Assumption 2.3.1 are modeled using P as P (st+1|st, at) =

P(St+1,Yt+1, ψt+1|St,Yt, ψt). Overall, each of the two dynamic derivative hedging problems

presented in Section 2.3.1 reduce to a version of the following risk-averse reinforcement-

learning problem:

%(0) = V0(S0,Y0, ψ0) = min
π
Qπ0 (s̄0, π0(s̄0)) ,

where s̄0 := (S0,Y0, ψ0) is the initial state in which the option is priced while

Qπt (st, at) := ρ̄(−rt(st, at, st+1) +Qπt+1(st+1, πt+1(st+1)) |st) ,

and QπT (sT , aT ) := −rT (sT , aT , sT ).

Lemma 2.3.2. Let π̄ be an arbitrary reference policy that puts strictly positive probability

on all of A for each state, and has a strictly positive probability of reaching all of S for all

t ≥ 1 when starting from s̄0.3 For any π∗ that satisfies

π∗ ∈ arg min
π

E t̃∼{0,...,T}
st+1∼P (·|st,π̄t(st))

[Qπ
t̃
(st̃, πt̃(st̃))] (2.5)

where s0 := s̄0 and t̃ is uniformly drawn, we necessarily have that π∗ minimizes Qπ0 (s̄0, π0(s̄0)).

Proof. We start by proving first that given any π∗ that satisfies (2.5), it must also satisfy

π∗ ∈ arg min
π

E(s,t)∼β[Qπ
∗
t (s, πt(s))] , (2.6)

3In our option hedging problem, given that st is entirely exogenous, the distribution of st+1 is unaffected
by π̄, which can therefore be chosen arbitrarily.
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where β captures the distribution of (t̃, st̃) used in (2.5). We do so by contradiction. Let’s

assume that there exists a π̄ such that

E(s,t)∼β[Qπ
∗
t (s, π̄t(s))] < E(s,t)∼β[Qπ

∗
t (s, π∗t (s))] .

Then, one can design the following policy:

π̄∗t (s) :=

 π̄t(s) if Qπ∗t (s, π̄t(s)) < Qπ
∗
t (s, π∗t (s))

π∗t (s) otherwise.

Using a recursive argument, one can show that Qπ̄∗t (st, at) ≤ Qπ
∗
t (st, at) for all t and (st, at)

pair. In this recursion, we start with:

Qπ̄
∗
T (sT , aT ) = −rT (sT , aT , sT ) = Qπ

∗
T (sT , aT ) .

Moreover, for all t, and (st, at) pairs, we have that:

Qπ̄
∗
t (st, at) = ρ̄(−rt(st, at, st+1) +Qπ̄

∗
t+1(st+1, π̄

∗(st+1))|st)

≤ ρ̄(−rt(st, at, st+1) +Qπ
∗
t+1(st+1, π̄

∗(st+1))|st)

≤ ρ̄(−rt(st, at, st+1) +Qπ
∗
t+1(st+1, π

∗(st+1))|st) = Qπ
∗
t (st, at),

where we first used Qπ̄∗t+1(st, at) ≤ Qπ
∗
t+1(st, at), then exploited the definition of π̄∗t . With

this result in hand we can obtain that for all t and st

Qπ̄
∗
t (st, π̄

∗
t (st)) ≤ Qπ

∗
t (st, π̄

∗
t (st)) ≤ Qπ

∗
t (st, π̄t(st)),

where we again used the definition of π̄∗. Finally, we must therefore have that:

E(s,t)∼β[Qπ̄
∗
t (s, π̄∗t (s))] ≤ E(s,t)∼β[Qπ

∗
t (s, π̄t(s))] < E(s,t)∼β[Qπ

∗
t (s, π∗t (s))]

which leads to a contradiction, hence (2.6) must hold.

Next, applying the interchangeability property (see Shapiro (2017)) to equation (2.6)

and using the fact that the β distribution puts positive probability on all time periods and

all sub-regions of S ×A, we know that the following necessarily hold:

π∗t (s) ∈ arg min
a
Qπ
∗
t (s, a), ∀s ∈ S,∀t ∈ {0, . . . , T} .
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Our last step involves using recursion to show that π∗ ∈ arg minπ Q
π
t (st, πt(st)) for all t

and all st. We start once more at t = T where:

Qπ
∗
T (sT , π

∗
T (s)) = min

aT
Qπ
∗
T (sT , aT ) = min

aT
−rT (sT , aT , sT ) = QπT (sT , πT (sT )), ∀π.

And then recursively,

Qπ
∗
t (st, π

∗
t (st)) = min

at
Qπ
∗
t (st, at)

= min
at

ρ̄(−rt(st, at, st+1) +Qπ
∗
t+1(st+1, π

∗
t+1(st+1))|st)

≤ min
at

ρ̄(−rt(st, at, st+1) +Qπt+1(st+1, πt+1(st+1))|st) ∀π

≤ ρ̄(−rt(st, πt(st), st+1) +Qπt+1(st+1, πt+1(st+1))|st) ∀π

≤ min
π
Qπt (st, πt(st)).

In the context of a deep reinforcement-learning approach, we can employ a procedure

based on off-policy deterministic policy gradient (Silver et al., 2014) to optimize (2.5).

Specifically, given a policy network πθ, we wish to optimize:

min
θ

E t̃∼{0,...,T−1}
st+1∼P (·|st,π̄t(st))

[Qπ
θ

t̃
(st̃, π

θ
t̃
(st̃))] ,

using a stochastic gradient algorithm. In doing so, we rely on the fact that:

∇θE t̃∼{0,...,T−1}
st+1∼P (·|st,π̄t(st))

[Qπ
θ

t̃
(st̃, π

θ(st̃))]

= E t̃∼{0,...,T−1}
st+1∼P (·|st,π̄t(st))

[
∇θQπ

θ

t̃
(st̃, a)

∣∣∣
a=πθ

t̃
(st̃)

+ ∇aQπ
θ

t̃
(st̃, a)∇θπθt̃ (st̃)

∣∣∣
a=πθ

t̃
(st̃)

]
≈ E t̃∼{0,...,T−1}

st+1∼P (·|st,π̄t(st))

[
∇aQπ

θ

t̃
(st̃, a)∇θπθt̃ (st̃)

∣∣∣
a=πθ

t̃
(st̃)

]
.

Note that in the above equation, we have dropped the the term that depends on ∇θQπ
θ

t̃
as

is commonly done in off-policy deterministic gradient methods and usually motivated by a

result of Degris et al. (2012), who argue that this approximation preserves the set of local

optima in a risk neutral setting, i.e. ρ(·) := E[·]. While we do consider as an important

subject of future research to extend this motivation to general recursive risk measures, our
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numerical experiments (see Section 2.4.3) will confirm empirically that the quality of this

approximation permits the identification of nearly optimal hedging policies.

Given that we do not have access to an exact expression for Qπθ
t̃

(st̃, a), this operator

needs to be estimated directly from the training data. Exploiting the fact that ρ is a

utility-based shortfall risk measure, we get that:

Qπt (st, at) ∈ arg min
q

Est+1∼P (·|st,at)[`(q + r(st, at, st+1)−Qπt+1(st+1, πt+1(st+1)))]

where `(y) := (τ1{y > 0} − (1 − τ)1{y ≤ 0})y2 is the score function associated to the

τ -expectile risk measure (see Definition 12). As explained in Shen et al. (2014) for the case

of a tabular MDP, this suggests using the following stochastic gradient step to improve

each expectile estimators:

Qπt (st, at)← Qπt (st, at)− α∂`(Qπt (st, at) + r(st, at, st+1)−Qπt+1(st+1, πt+1(st+1))) ,

where ∂`(y) := 2(τ max(0, y)− (1− τ) max(0,−y)) is the derivative of `(y).

In the non-tabular setting, we replace Qπt (st, at) with two estimators: i.e. the “main” net-

work Qπt (st, at|θQ) for the immediate conditional risk and the “target” network Qπt (st, at|θQ
′
)

for the next period’s conditional risk. The procedure consists in iterating between a step that

attempts to make the main network Qπt (st, at|θQ) a good estimator of ρ(−r(st, at, st+1) +

Qπt+1(st+1, at+1|θQ
′
)) and a step that replaces the target network Qπt (st, at|θQ

′
) with a

network more similar to the main one Qπt (st, at|θQ). The former is achieved, similarly as

with the policy network, by searching for the optimal θQ according to:

min
θQ

E t̃∼{0,...,T−1}
st+1∼P (·|st,π̄t(st))

[`(Qπ
t̃
(st̃, π̄t̃(st̃)|θ

Q)+r(st̃, π̄t̃(st̃), st̃+1)−Qπ
t̃+1

(st̃+1, πt̃+1(st̃+1)|θQ′))] ,

which suggests a stochastic gradient update of the form:

θQ ← θQ−α∂`(Qπt̃ (st̃, π̄t̃(st̃)|θQ)+r(st̃, π̄t̃(st̃), st̃+1)−Qπt̃+1(st̃+1, πt̃+1(st̃+1)|θQ
′
))∇θQQπt̃ (st̃, π̄t̃(st̃)|θQ) .

These two types of updates are integrated in our proposed expectile-based actor-critic deep

RL (a.k.a. ACRL) algorithm described in Algorithm 1. One may note that in each episode,

the reference policy π̄t is updated to be a perturbed version of the main policy network in

order to focus the accuracy of the main critic network Q(s, a|θQ) value and derivatives on

actions that are more likely to be produced by the main policy network. We also choose to
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update the target networks using convex combinations operations as is done in Lillicrap

et al. (2015) in order to improve stability of learning.

Algorithm 1 : The actor-critic RL algorithm for the dynamic recursive expectile

option hedging problem (ACRL)

Randomly initialize the main actor and critic networks’ parameters θπ and θQ;

Initialize the target actor, θπ
′ ← θπ, and critic, θQ

′ ← θQ, networks;

for j = 1 : #Episodes do

Randomly select t ∈ {0, 1, ..., T − 1};

Sample a minibatch of N triplets {(sit, ait, sit+1)}Ni=1 from P (·|st, π̄t(st)), where

π̄t(st) := πt(st|θπ) +N (0, σ);

Update the main critic network:

θQ ← θQ − α 1

N

N∑
i=1

∂`[Qt(s
i
t, a

i
t|θQ) + r(sit, a

i
t, s

i
t+1)−

Qt+1(sit+1, πt+1(sit+1|θπ
′
)|θQ

′
)]∇θQQt(sit, ait|θQ)

(2.7)

Update the main actor network:

θπ ← θπ − α 1

N

N∑
i=1

∇aQt(sit, a|θQ)|a=πt(sit|θπ)∇θππt(sit|θπ)

Update the target networks:

θQ
′
← αθQ + (1− α)θQ

′

θπ
′
← αθπ + (1− α)θπ

′
(2.8)

end

Remark 3. We note that in our problem,

P (st+1|st, at) = P (st+1|st, a′t) = P(St+1,Yt+1, ψt+1|St,Yt, ψt)

meaning that the action is not affecting the distribution of state in the next period. This is

a direct consequence of using a translation invariant risk measure, which eliminates the need

to keep track of the accumulated wealth in the set of state variables as explained in Marzban

et al. (2020) and allows the reward function to provide an immediate signal regarding

the quality of implemented actions. In the context of our deep reinforcement-learning

approach, we observed that convergence speed is improved in training due to this property.
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Furthermore, the fact that this property makes the dynamics exogenous lifts the need for

keeping a replay buffer, which is also known to affect negatively convergence speed.

Remark 4. It is worth noting that there has been a large number of DRL approaches

recently proposed to address risk-averse MDP using coherent risk measures. However,

to the best of our knowledge, all of those that are model-free, except for two exceptions,

consider a law invariant risk measure (i.e. a static risk measure) applied on the discounted

sum of total rewards (see Castro et al. (2019); Singh et al. (2020); Urpí et al. (2021)). Such

methods therefore suffer from the issues identified in Section 2.2.2. The two exceptions

consist of Tamar et al. (2015) and Huang et al. (2021) who propose ACRL algorithms to

deal with general dynamic law-invariant coherent risk measures. While being applicable

to a wider range of dynamic risk measures, the two algorithms either assume that it is

possible to generate samples from a perturbed version of the underlying dynamics, or rely on

training three additional neural networks (namely a state distribution reweighting network, a

transition perturbation network, and a Lagrangean penalisation network) concurrently with

the actor and critic networks. Furthermore, only Huang et al. (2021) actually implemented

their method. This was done on a toy tabular problem involving 12 states and 4 actions

where it produced questionable performances4. While our approach can only be used with

the dynamic expectile risk measure, it offers a much simpler implementation that naturally

extends DDPG to the risk-averse setting. Section 2.4 will present a real application of this

approach on an option hedging problem involving a portfolio of 6 different assets.

2.4 Experimental results

In this section we provide two different sets of experiments that are run over one vanilla

and one basket option. We will compare both algorithmic efficiency and quality, in terms

of pricing and hedging strategies, of the dynamic risk model (DRM), which employs a

dynamic expectile risk measure and is solved using our new ACRL algorithm, and the

static risk model (SRM), which employs a static expectile measure and is solved using an

AORL algorithm similar to Carbonneau and Godin (2021). All experiments are done using
4At the time of writing this paper, the risk-averse implementation of this algorithm in Huang et al.

(2021) was unable to recommend an optimal risk neutral policy in a deterministic setting, while the risk
neutral implementation produced policies that were outperformed by risk-averse ones in a stochastic setting.
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simulated price processes of five risky assets: AAPL, AMZN, FB, JPM, GOOGL. The price

paths are simulated using correlated Brownian motions considering the empirical mean,

variance, and the correlation matrix of five reference stocks (AAPL, AMZN, FB, JPM,

and GOOGL) over the period between January 2019 to January 2021. The vanilla option

will be over AAPL while the basket option will contain all five stocks. In both cases, the

maturity of the option will be one year and the hedging portfolios will be rebalanced on a

monthly basis. Table 2.2 provides the descriptive statistics of our underlying stochastic

process.

Table 2.2 – Stock data including the mean, standard deviation, and the correlation matrix

AAPL AMZN FB JPM GOOGL
S0 78.81 1877.94 221.77 137.25 1450.16
µ -0.0015 -0.0017 -0.0001 0.0006 -0.0004
σ 0.0298 0.0243 0.0295 0.0345 0.0246
AAPL 1.0000 0.7133 0.7744 0.5383 0.7680
AMZN 0.7133 1.0000 0.6903 0.2685 0.6837
FB 0.7744 0.6903 1.0000 0.4807 0.8054
JPM 0.5383 0.2685 0.4807 1.0000 0.6060
GOOGL 0.7680 0.6837 0.8054 0.6060 1.0000

In what follows, we first explain the network architecture of our ACRL model, which is

composed of an actor and a critic network. Then, the training procedure of the network

under the conditional risk measurement using unconditional assessment of risk is elaborated.

We also numerically demonstrate the benefit of exploiting translation invariance in an

option hedging problem using RL, which is for a different purpose than what is previously

shown by Marzban et al. (2020) in a DP setting. Finally, the main numerical results of the

paper is presented for pricing and hedging a vanilla and a basket option. This example

illustrates and quantifies the advantages of a time-consistent risk measurement over a

time inconsistent approach. In particular, we first focus on the vanilla option to show the

precision of our approach by bench-marking its results against a discretized DP model and

then extend the results to the case of basket options.
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2.4.1 Actor and critic network architecture

Our implementation of the ACRL algorithm involves two networks, one for the actor and

one for the critic, both of which are presented in Figure 2.1. Since the numerical experiments

assume that the underlying assets of the options follow a Brownian motion process, the

model only needs to consider the most recent price for each asset to make investment

decisions and the time to maturity. Consequently, the input state to each of the actor

and critic networks includes the logarithm of each asset’s cumulative return, and the time

remaining until maturity, which together correspond to an input vector of dimension m+ 1.

The actor network is composed of three fully connected layers where the number of

neurons are chosen to be k = 32 in the first two layers and then maps back to the number

of assets in the last layer so that the model generates the investment policy accordingly for

each asset. The activation functions in our networks are considered to be tanh functions.

In the last layer, this implies that the actions will lie in [−1, 1]m.

The critic network is operating on the same state information, while the m dimensional

action information vector is only concatenated to the output of the third layer. The first

three layers of the critic network follow the same structure as the actor network in terms

of the number of neurons, then after concatenating the action into the network, the two

fully connected layers following the concatenation maps the number of neurons again to

k = 32. Finally, the last layer is a fully connected layer with one neuron to make sure that

the output is a scalar representing the approximated Q value function.

2.4.2 ACRL training procedure for DRM and the role of translation

invariance

We now explain the training procedure employed for the actor and critic networks in the

DRM. Recall that in an SRM setting, overfitting of any DRL algorithm can be controlled

by measuring the performance of the trained policy on a validation data set using an

empirical estimate of the risk-averse objective as validation score. Unfortunately, this is

no longer possible in the case of DRMs since the risk measure relies on conditional risk

measurements of the trajectories produced by our policy. In theory, estimates of such

conditional measurements could be obtained by training a new critic network using the
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Figure 2.1 – The architecture of the actor and critic networks in ACRL algorithm.

validation set (while maintaining the policy fixed to the trained one). In practice, this is

highly computationally demanding to perform in the training stage and raises a new issue

of how to control overfitting of the validation score estimate. Our solution for this problem

is to rely on using a static risk measure as validation score. Given that it is unclear how

to best replace a dynamic expectile risk measure with a static one, we choose to compute

a set of validation scores that report the performance for a set of static expectiles at risk

levels that are larger or equal to the risk level of the DRM. Relying on higher risk levels is

motivated by the fact that dynamic expectile measures capture a more risk-averse attitude

than their static counterpart at the same risk level τ . Figure 2.2(a) and (b) show examples

of learning curves for the validation performance of a DRM when trained to hedge the

writer and buyer positions of a vanilla option at a risk level of τ = 90%. In this experiment,

there is evidence that convergence happens for all levels of τ ≥ 90%. This approach is

applied in all of our experiments for choosing the optimal number of episodes. We also note

that both our training and validation sets included 1000 trajectories from the underlying

geometric Brownian motion process. This implies that the training procedure used in these

experiments can naturally extend to settings where only historical data is available.

We close this section with a short discussion about the role of the translation invariance
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(a) ACRL for DRM’s writer (b) ACRL for DRM’s buyer

(c) AORL for SRM’s writer (d) AORL for SRM’s buyer

Figure 2.2 – Learning curves of the DRM and SRM for an at-the-money vanilla call option
on AAPL when a 90% expectile measure is used. The graphs show the validation scores for
a range of static expectile measures with risk level ranging from 90% to 99%.

property of dynamic risk measures. In particular, the work of Marzban et al. (2020) explains

how, without this property, the dynamic programming equations need to keep track of the

wealth accumulated since t = 0 using an additional state variable that gets only employed

at t = T . More importantly, without translation invariance, the MDP representation ends

up only having a reward at t = T thus preventing the ACRL algorithm from receiving

quick feedback about the quality of the actions that it is proposing. To illustrate the

effect of this property, we compared the convergence of the training process for the ACRL

algorithm under both form of DP representation of the buyer’s DRM. Namely, Figure 2.3

presents the learning curves of ACRL with immediate rewards as described in Section 2.3.2,

while (b) presents the learning curves for an implementation in which all the rewards are

delayed (using an additional state variable) until t = T . These figures clearly show that the

MDP with immediate rewards is much easier to train than the delayed rewards MDP. In
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(a) With immediate rewards (b) With delayed rewards

Figure 2.3 – Learning curves of the ACRL algorithm for the buyer’s DRM when using (a) the
immediate rewards versus (b) delayed rewards in the hedging of a vanilla call at-the-money
option.

particular, not only does this model converge in less number of episodes, it also ends up

converging to a better solution: the immediate rewards MDP converges to a risk of -0.59

for the buyer (0.91 for the writer), while with delayed rewards it converges to -0.41 (1.01).

2.4.3 Vanilla call option pricing and hedging

In our first set of experiments, we consider pricing and hedging an at-the-money vanilla call

option on AAPL. We should first note that solving a hedging problem, e.g. DRM, for a

vanilla option is not particularly difficult since the number of state variables in this case is

small. It is possible to obtain (approximately) optimal solutions by dynamic programming

(Marzban et al. (2020)). Our purpose of considering the case of vanilla option is twofold.

First, it provides a useful basis for checking the accuracy of solutions obtained from our deep

reinforcement-learning (DRL) methods against the "true" optimal solutions, namely by

comparing against the DP solutions. Such an accuracy check would be useful for justifying

our use of DRL later in this article as a general means to evaluate hedging performance and

calculate the equal risk price (which becomes necessary for problems that cannot be solved

by DP such as the case of basket options discussed in the next section). Second, the setting

of a vanilla option also allows us to provide a more accurate comparison between DRM

and SRM and demonstrate the advantage of the former, i.e. the benefit of time-consistent

hedging policies, particularly when options with different time to maturity need to be

considered.
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To proceed, we first detail how the experiments are conducted. First, the initial price of

the underlying stock AAPL is always set to be 78.81, and the hedging portfolio is rebalanced

on a monthly basis. Options with different time to maturity are considered, ranging from

one month to one year. We generate from a Brownian motion three sets of price trajectories

with one year time window, one for training, one for validation, and one for testing, and

each consists of 1000 trajectories. In the training phase, we solve both DRM and SRM for

the writer and buyer’s hedging problems using the longest maturity time, i.e. one year,

as the hedging horizon. In solving the DRM, a policy and a critic network are trained

using ACRL, whereas in solving the SRM, only a policy network is trained using AORL.

See also Section 4.2 regarding how the validation is done to guide the training. Figure 2.2

presents the learning curves for the training of the hedging policies of the DRM and the

SRM with a risk level of τ = 90%. SRM appears to have a faster rate of convergence than

DRM, which might not be surprising given that the architecture of SRM is simpler 5. It

is however worth noting that the issue of time inconsistency for SRM implies that it can

potentially produce poor quality policies and prices when the maturity of the option is

modified unless it is completely retrained for each type of maturity. This is not the case for

DRM and will be further discussed below.

With the trained DRM and SRM policy networks for a fixed 1 year maturity and risk

aversion level τ ∈ {75%, 90%, 95%}, we can evaluate the writer and the buyer’s (out-of-

sample) risk exposure over a pre-specified time horizon so as to calculate the corresponding

ERP. We consider the following three metrics for measuring the realized risk under different

hedging policy and explain the methods used for calculating the metrics:

• Out-of-sample static expectile risk : Given a trained policy network, use the testing

data to calculate the static expectile risk obtained when hedging the option using

this policy.

• RL based out-of-sample dynamic expectile risk estimation: Use the testing data to

train only the critic network in ACRL for evaluating the out-of-sample dynamic risk.

In particular, by fixing the policy network in ACRL to a trained policy network, the

5The policy network at SRM model is exactly the actor network of DRM, while the quality of actions
are directly evaluated in the absence of a trained critic network.
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critic network trained based on testing data provides an estimate of the out-of-sample

dynamic expectile risk. To speed up the training of the critic network, one may

initialize the critic network using the network trained previously with the training

data.

• DP based out-of-sample dynamic expectile risk estimation: Given a trained policy

network, evaluate the “true” dynamic expectile risk by solving the dynamic program-

ming equations, under the fixed policy, using a high precision discretization of the

states, actions, and transitions. Note that this metric is available neither for the case

of basket option nor in a data-driven environment where the stochastic process is

unknown.

We note that our RL based estimate of out-of-sample dynamic risk is a novel concept, which

refers to the calculation of dynamic risk based on testing data. This is possible, as explained

above, by training only the critic network using ACRL on the test data. This metric is

especially relevant given that classical methods for calculating dynamic risk, such as our DP

based estimate, assume full knowledge of the stochastic model that captures the dynamics of

an underlying system, i.e. stock price, and require the resolution of dynamic programming

equations, which is known to suffer from the curse of dimensionality. Consequently, such

methods can no longer be used when the DP equations require a large state space, as can be

the case with basket options, or when the description of the underlying stochastic process

is unknown.

In our experiments, we apply the second and third metric to the trained DRM policies

and the first metric to both the trained DRM and SRM policies. In the former case, we

are interested in demonstrating that the RL based out-of-sample expectile risk estimate

is an accurate metric. Namely, we will compare the RL based estimate against the “true”

DP based estimate. In the latter case, we will shed light on how the DRM policy performs

when evaluated according to other metrics that are also of interest to practitioners. In

particular, the static expectile risk measure, despite its issue of time inconsistency, can still

have its intuitive appeal as a metric, and one may be interested in knowing how a DRM

policy performs against this metric as compared to an SRM policy.
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Figure 2.4 summarizes the evaluations of out-of-sample dynamic risk for DRM policies

trained for 1 year maturity then applied to options of different maturities ranging from 12

months to 2 months. One can observe that the risk of the writer decreases monotonically for

options of shorter maturities, whereas the risk of the buyer increases monotonically. This is

consistent with the fact that there is less uncertainty for a shorter hedging horizon, which

favors the writer’s risk exposure more than the buyer’s when considering an at-the-money

option. This also provides the evidence that the DRM policies, albeit only trained based on

the longest time to maturity, i.e. one year, can be well applied to hedge options with shorter

time to maturity and be used to draw consistent conclusion. The observation that the

DRM policies remain good policies for problems with shorter time to maturity testifies of

the value of using a time-consistent hedging model. Another important observation one can

make is that the RL based out-of-sample dynamic risk estimate is generally very close to

the DP based estimate across all conditions. The difference between the two appears to be

more noticeable for the case of high risk aversion, i.e. τ = 95% and long time to maturity,

but the difference remains minor overall. This observation allows us to confirm the accuracy

of our RL based out-of-sample dynamic risk estimation procedure as a replacement for the

DP based estimation in settings where the latter cannot be used.

Figure 2.5 reports the out-of-sample static risk for both SRM policies and DRM policies.

The results are interesting and perhaps surprising. First, unlike the consistent behavior

observed in the case of dynamic risk, i.e. Figure 2.4, the static risk of SRM policies for

the seller (resp. buyer) may increase (resp. decrease) when hedging an option with shorter

maturity. The possibility that a seller’s policy may actually increase risk when applied to

an option with shorter maturity is clearly problematic when the underlying asset follows a

geometric Brownian motion with positive drift, as it is inconsistent with the fact that there

is less uncertainty (and lower expected value) regarding the payout of such options. This

inconsistency occurs because the SRM policies are only trained based on the longest time to

maturity, i.e. one year, and they cannot be well applied, unlike for the case of DRM policies,

to problems with shorter time to maturity due to the violation of the time-consistency

property. It is clear from the figures that the SRM policies can be far from the optimal

policies when applied to a shorter time to maturity. On the other hand, the DRM policies

can actually be found not only to outperform SRM policies in terms of static risk exposure
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but also to generate consistent results across time, i.e. risk decreases (resp. increases) for

the seller (resp. buyer) as the time to maturity decreases. This can be somewhat surprising,

as the DRM policies are optimized based on dynamic risk measures rather than the static

ones, but the policies can still perform well when evaluated according to static risk measures.

Overall, the results presented in Figure 2.5 best showcase the strength of time-consistent

policies and why such policies are important to consider in settings where risk needs to be

re-evaluated across different time points or maturity dates.6 We suspect that the possibility

that SRM policies may not account properly for risk aversion at some future time point or

for other range of option maturities should seriously hinder their use in practice.

In order to be more precise about results presented in figures 2.4 and 2.5, we detail in

Table 2.3 all the numerical results for the case of high risk aversion, i.e. τ = 90% , along

with the equal risk prices calculated based on RL based out-of-sample dynamic risk estimate

and based on the discretized DP (referred as True ERP).7 One first confirm that the RL

based estimateof ERP is a high quality approximation of the true ERP in this vanilla

option pricing setting, with a maximum approximation error of 0.01 over all maturity dates.

Moreover, we can see that the prices for the SRM polices are generally higher than the

prices for the DRM polices. The observation is that while DRM policies are less risky than

SRM policies across different time to maturity, it is the writer that benefits more from the

use of DRM than the buyer. This could be related to the fact that the writer’s loss due to

the option payout is unbounded while the option protects the buyer from losses. This in

turns implies that the writer’s risk exposure is larger in this transaction. Thus, the choice

of a policy can be more critical to the writer than the buyer. As the risk exposure of the

writer decreases more than for the buyer, this leads to lower ERP price for DRM policies.

Finally, Figure 2.6 presents the optimal policies of the two models (i.e., DRM and SRM),

together with the actual optimal policy of DRM, obtained using a high precision dynamic

program (referred as DP-DRM). Each subfigure shows the policy as a function of current

6Indeed, recall that the example in Section 2.2.2 demonstrated that the fact that SRM was time
inconsistent implied that its policy might not remain a reasonable risk-averse policy at future time points.
This phenomenon is implicitly observed in Figure 2.5 given that the MDP is stationary so that the risk
measured for a maturity t is exactly equal to the risk measured at time T − t when St = S0.

7Note that in a purely data-driven setting, the ERP could either be estimated using the in-sample
trained critic network, or by calculating our RL based estimate using some freshly reserved data to reduce
overfitting biases.
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(a) Writer, τ = 75% (b) Buyer, τ = 75%

(c) Writer, τ = 90% (d) Buyer, τ = 90%

(e) Writer, τ = 95% (f) Buyer, τ = 95%

Figure 2.4 – The out-of-sample dynamic risk imposed to the two sides of a vanilla at-
the-money call option over AAPL (with maturity ranging from 12 months to 0 months)
under the DRM policy trained for a 12 months maturity and at different risk levels
τ ∈ {75%, 90%, 95%}.
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(a) Writer, τ = 75% (b) Buyer, τ = 75%

(c) Writer, τ = 90% (d) Buyer, τ = 90%

(e) Writer, τ = 95% (f) Buyer, τ = 95%

Figure 2.5 – The out-of-sample static risk imposed to the two sides of a vanilla at-the-money
call option over AAPL (with maturity ranging from 12 months to 2 months) under the
DRM and SRM policies trained for a 12 months maturity and at different risk levels
τ ∈ {75%, 90%, 95%}.
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Table 2.3 – The out-of-sample dynamic and static 90%-expectile risk imposed to the two
sides of vanilla at-the-money call options over AAPL, with maturities ranging from 12 to 0
months, when hedged using the DRM and the SRM policies trained at risk level τ = 90%
and for a 12 months maturity. Associated ERPs under the DRM are also compared to the
“true” ERP measured using a discretized MDP.

Time to maturity
Policy Est.† 12 11 10 9 8 7 6 5 4 3 2 1

Dynamic 90%-expectile risk

Writer’s DRM RL 0.77 0.73 0.69 0.65 0.62 0.58 0.53 0.48 0.45 0.38 0.29 0.23
DP 0.75 0.71 0.68 0.65 0.61 0.57 0.53 0.49 0.43 0.38 0.31 0.23

Buyer’s DRM RL -0.22 -0.21 -0.20 -0.19 -0.18 -0.16 -0.15 -0.13 -0.11 -0.09 -0.07 -0.05
DP -0.23 -0.22 -0.21 -0.20 -0.18 -0.17 -0.16 -0.14 -0.12 -0.11 -0.08 -0.06

Static 90%-expectile risk
Writer’s SRM ED 0.55 0.54 0.54 0.53 0.53 0.53 0.52 0.50 0.48 0.46 0.41 0.31
Writer’s DRM ED 0.56 0.54 0.52 0.50 0.47 0.44 0.42 0.39 0.36 0.33 0.29 0.24
Buyer’s SRM ED -0.35 -0.33 -0.30 -0.27 -0.23 -0.20 -0.17 -0.13 -0.09 -0.07 -0.07 -0.06
Buyer’s SRM ED -0.36 -0.34 -0.32 -0.30 -0.28 -0.26 -0.24 -0.21 -0.18 -0.14 -0.11 -0.06

Equal risk prices with DRM
True ERP 0.49 0.47 0.45 0.42 0.40 0.37 0.34 0.31 0.28 0.24 0.19 0.14

DRM RL 0.50 0.47 0.45 0.42 0.40 0.37 0.34 0.31 0.28 0.24 0.18 0.14
SRM RL 0.49 0.46 0.44 0.43 0.40 0.38 0.35 0.33 0.30 0.27 0.24 0.22

† Estimation (Est.) is either made based on reinforcement-learning (RL), discretized dynamic programming
(DP), or with the empirical distribution (ED).

price (x-axis) and time period (colors). The figure further confirms that the policies of

both DRM and SRM follow a similar pattern as DP-DRM, which ensures the quality of

implementation of both AORL for SRM and ACRL for DRM.

2.4.4 Basket options

In our second set of experiments, we extend the application of ERP pricing framework to

the case of basket options where traditionnal DP solution schemes are not computationally

tractable. In particular, we consider an at-the-money basket option with the strike price of

753$ on five underlying assets: AAPL, AMZN, FB, JPM, and GOOGL, where the option

payoff is determined by the average price of the underlyings. Similarly to the case of the

vanilla option, the rebalancing of the portfolio is happening once per month, options with

different maturities from one month to twelve months are considered, and three sets of price

trajectories are used for training, validation, and testing the models. We train the ACRL

and AORL networks for a one year basket option and then use the same policy network for

hedging options with shorter time to maturity.

Our first observation in this set of experiments relates to the training time of the model

for the basket option with five assets. Figure 2.7 presents the convergence of the training

of the ACRL model under τ = 90%. When comparing to the case of the vanilla option,
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(a) DRM’s writer (b) DRM’s buyer

(c) SRM’s writer (d) SRM’s buyer

(e) DP-DRM’s writer (f) DP-DRM’s buyer

Figure 2.6 – Comparison of the optimal DRL policies obtained for DRM and SRM (with
90% expectile measures) to the discretized DP solution (DP-DRM) for an at-the-money
vanilla call option on AAPL with a one year maturity. Each figure presents the sampled
actions in our simulated trajectories as a function of the AAPL stock value. The strike
price is marked at 78.81.
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the convergence rate appears to have a similar behavior, i.e., the number of episodes and

the time spent on each episode is similar for both the case of the writer and the buyer.

This is important as it indicates that the training time might not be very sensitive to the

number of assets, while traditional DP approaches are known to become intractable when

the option is written on multiple assets.

In this section, dynamic risk is estimated using the RL based estimator described in

Section 2.4.3 given that the DP estimator requires too much computations and that the

RL based one was shown to provide a relatively high precision estimation of the “true"

dynamic risk. Following this, in Figure 2.8 (a) and (b) we present the dynamic risk obtained

from applying the DRM policy on the test data when the model is trained for a one year

maturity option. Hedging risk using the same trained policy is presented for 12 different

options with maturity ranging from 0 to 12 months. Similar to the vanilla option case, the

dynamic risk of the writer is monotonically decreasing as we get closer to the maturity of

the option, which can be attributed to the reduced probability that the average price of

the assets significantly diverges from the initial average (i.e., the strike price of the option).

On the other side, i.e. for the buyer of the option, although overall the risk is increasing

to zero as the maturity gets closer to zero, for longer time to maturities we observe some

degradation of risk. We attribute this behavior to the estimation error of the RL based

dynamic risk estimator.

In order to have a view of risk that is not perturbed by estimation errors, we also

compare the static risk under DRM and SRM as we did for vanilla options. Figure 2.9 (a)

and (b) shows the static risk under τ = 90%. One can first recognize the same monotone

convergence to zero of the two sides of the options. However, contrary to the case of the

vanilla option, the difference between the static risk performance of DRM and SRM policies

are rather similar for all maturity times. It therefore appears that in these experiments with

a basket option, both SRM and DRM produce similar polices. One possible reason could

be that the range of “optimal” risk-averse investment plans, whether using DRM or SRM,

is more limited. Indeed, while for the vanilla option, we observed that the optimal policies

generated investments in the range [0, 1] and [-1, 0] for the writer and the buyer respectively,

for the basket option we observed wealth allocations that are more concentrated around

0.20 (i.e. the uniform portfolio known for its risk hedging properties) and -0.20 for each of
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(a) Writer (b) Buyer

Figure 2.7 – Learning curves of the ACRL algorithm for the writer and buyer’s DRM for
a basket at-the-money call option over AAPL, AMZN, FB, JPM, and GOOGL at the
risk level τ = 90%. The graphs show the validation scores for a range of static expectile
measures with risk level ranging from 90% to 99%.

(a) Writer (b) Buyer

Figure 2.8 – The out-of-sample dynamic risk imposed to the two sides of a basket at-the-
money call option over AAPL, AMZN, FB, JPM, and GOOGL at the risk level τ = 90%
(as maturity ranges from 12 to 0 months) under a DRM policy trained for a 12 months
maturity.

the 5 assets asset respectively. Finally, similar to the vanilla option case, Table 2.4 presents

more details on the results used to produce figures 2.8 and 2.9, along with the equal risk

prices computed based on our RL based out-of-sample dynamic risk estimator. The higher

ERP price for the SRM policy is an obvious observation in this table, which again can be

attributed to the better performing (in terms of dynamic risk) hedging policy produced by

ACRL for the DRM, compared to the policy produced by AORL for the SRM.
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(a) Static risk, writer (b) Static risk, buyer

Figure 2.9 – The out-of-sample static risk imposed to the two sides of a basket at-the-money
call option over AAPL, AMZN, FB, JPM, and GOOGL at the risk level τ = 90% (as
maturity ranges from 12 to 0 months) under the DRM and SRM policies trained for a 12
months maturity.

Table 2.4 – The out-of-sample dynamic and static 90%-expectile risk imposed to the two
sides of basket at-the-money call options over AAPL, AMZN, FB, JPM, and GOOGL,
with maturities ranging from 12 to 0 months, when hedged using the DRM and the SRM
policies trained at risk level τ = 90% and for a 12 month maturity. Associated ERPs under
the DRM are also compared.

Time to maturity
Policy Est.† 12 11 10 9 8 7 6 5 4 3 2 1

Dynamic 90%-expectile risk
Writer’s DRM RL 3.92 3.62 3.38 3.15 2.95 2.72 2.48 2.25 2.00 1.70 1.39 1.10
Buyer’s DRM RL -0.48 -0.49 -0.51 -0.52 -0.50 -0.49 -0.48 -0.48 -0.47 -0.37 -0.33 -0.29

Static 90%-expectile risk
Writer’s SRM ED 2.43 2.36 2.28 2.16 2.08 1.97 1.91 1.76 1.61 1.45 1.26 0.94
Writer’s DRM ED 2.38 2.28 2.18 2.06 1.96 1.86 1.76 1.64 1.51 1.39 1.20 0.92
Buyer’s SRM ED -1.31 -1.24 -1.15 -1.01 -0.94 -0.85 -0.75 -0.66 -0.56 -0.48 -0.36 -0.22
Buyer’s SRM ED -1.39 -1.32 -1.24 -1.13 -1.07 -0.98 -0.88 -0.78 -0.66 -0.56 -0.40 -0.23

Equal risk prices with DRM
DRM RL 2.20 2.06 1.95 1.84 1.73 1.61 1.48 1.37 1.24 1.04 0.86 0.70
SRM RL 2.23 2.10 2.01 1.91 1.79 1.65 1.52 1.39 1.21 1.03 0.92 0.82

† Estimation (Est.) is either made based on reinforcement-learning (RL), discretized dynamic programming
(DP), or with the empirical distribution (ED).

2.5 Conclusion

In this article, we developed and implemented the first deep reinforcement-learning algorithm

for calculating equal risk prices under time-consistent dynamic risk measures. This algorithm

exploits the elicitability property of the expectile risk measure to extend in a natural way the

famous off-policy deterministic actor-critic method presented in Silver et al. (2014) to the risk-

averse setting. Our numerical experiments confirmed that it can identify risk-averse hedging

strategies of good quality and be used to estimate the ERP, simultaneously for a range

of maturities, using a reasonable amount of computational resources in conditions where
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traditional DP methods are impracticable. We also demonstrated important issues regarding

the implementability of hedging strategies that are based on static (time inconsistent)

risk measures. Namely, both our illustrative example and two numerical experiments

demonstrated how the time-consistent policy produced using the DRM might in fact appear

preferable to the investor (from the point of view of the time inconsistent static risk measure)

as the risk is measured at later points of time, i.e. with shorter maturity. We only evaluated

the performance of our model in a synthetic environment using a simple neural network

architecture. One may be interested in examining the performance of this model under

real market conditions. In particular, in a simulation environment having access to infinite

i.i.d. samples makes training much easier to machine learning models. In a real market

environment, where the available data is limited to some non-stationary samples of past

historical prices, training an on-policy network will face serious issues associated to lack

of exploration. This might result in even higher out performance of the ACRL model

compared to the AORL, and therefore superior hedging precision under the time-consistent

dynamic risk measure. In addition, we only consider European style options in this article,

where as demonstrated in Marzban et al. (2020), the ERP model can also be investigated

in the case of American options.
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Chapter 3

WaveCorr: Correlation-savvy Deep

Reinforcement-Learning for Portfolio

Management
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Abstract

The problem of portfolio management represents an important and challenging class

of dynamic decision making problems, where rebalancing decisions need to be made

over time with the consideration of many factors such as investors’ preferences, trading

environments, and market conditions. In this article, we present a new portfolio policy

network architecture for deep reinforcement-learning (DRL) that can more effectively

exploit cross-asset dependency information and achieve better performance than state-

of-the-art architectures. In particular, we introduce a new property, referred to as asset-

permutation invariance, for portfolio policy networks that exploit multi-asset time series

data, and design the first portfolio policy network, named WaveCorr, that preserves this



invariance property when treating asset correlation information. At the core of our design

is an innovative permutation invariant correlation processing layer. An extensive set of

experiments are conducted using data from both Canadian and American stock markets,

and WaveCorr consistently outperforms other architectures with an impressive 3%-25%

absolute improvement in terms of average annual return, and up to more than 200% relative

improvement in average Sharpe ratio. We also measured an improvement of a factor of up to

5 in the stability of performance under random choices of initial asset ordering and weights.

The stability of the network has been found as particularly valuable by our industrial

partner.

3.1 Introduction

In recent years, there has been a growing interest in applying Deep Reinforcement-Learning

(DRL) to solve dynamic decision problems that are complex in nature. One representative

class of problems is portfolio management, whose formulation typically requires a large

amount of continuous state/action variables and a sophisticated form of risk function for

capturing the intrinsic complexity of financial markets, trading environments, and investors’

preferences.

In this article, we propose a new architecture of DRL for solving portfolio management

problems that optimize a Sharpe ratio criterion (Moody and Saffell, 1999). While several

works in the literature apply DRL for portfolio management problems such as Moody

et al. (1998); He et al. (2016); Liang et al. (2018) among others, little has been done to

investigate how to improve the design of a neural network (NN) in DRL so that it can

capture more effectively the nature of dependency exhibited in financial data. In particular,

it is known that extracting and exploiting cross-asset dependencies over time is crucial to

the performance of portfolio management. The neural network architectures adopted in

most existing works, such as Long-Short-Term-Memory (LSTM) or convolutional neutral

network (CNN), however, only process input data on an asset-by-asset basis and thus lack

a mechanism to capture cross-asset dependency information. The architecture presented

in this paper, named as WaveCorr, offers a mechanism to extract the information of both

time-series dependency and cross-asset dependency. It is built upon the WaveNet structure
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(Oord et al., 2016), which uses dilated causal convolutions at its core, and a new design of

correlation block that can process and extract cross-asset information.

In particular, throughout our development, we identify and define a property that can

be used to guide the design of a network architecture that takes multi-asset data as input.

This property, referred to as asset-permutation invariance, is motivated by the observation

that the dependency across assets (cross-asset correlation) has a very different nature

from the dependency across time (auto correlation). Namely, given a multivariate time

series data, the information that can be extracted from the data for prediction purpose

would not be considered the same if the time indices are permuted, while it should remain

the same if the asset indices are permuted. While this property may appear more than

reasonable, as discussed in section 3, a naive extension of CNN that accounts for both

time and asset dependencies can easily fail to satisfy this property. To the best of our

knowledge, the only other works that have also considered extracting cross-asset dependency

information in DRL for portfolio management are the recent works of Zhang et al. (2020)

and Xu et al. (2020). While Zhang et al.’s work is closer to ours in that it is also built

upon the idea of adding a correlation layer to a CNN-like module, its overall architecture

is different from ours and, most noticeably, their design does not follow the property of

asset-permutation invariance and thus its performance can vary significantly when the

ordering of assets changes. As further shown in the numerical section, our architecture,

which has a simpler yet permutation invariant structure, outperforms in many aspects

Zhang et al.’s architecture. The work of Xu et al. (2020) takes a very different direction

from ours, which follows a so-called attention mechanism and an encoder-decoder structure.

A more detailed discussion is beyond the scope of this paper.

Overall, the contribution of this paper is threefold. First, we introduce a new property,

referred to as asset-permutation invariance, for portfolio policy networks that exploit

multi-asset time series data. Second, we design the first portfolio policy network, named

WaveCorr, that accounts for asset dependencies in a way that preserves this invariance. This

achievement relies on the design of an innovative permutation invariant correlation processing

layer. Third, and most importantly, we present evidence that WaveCorr significantly

outperforms state-of-the-art policy network architectures using data from both Canadian

(TSX) and American (S&P 500) stock markets. Specifically, our new architecture leads
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to an impressive 5%-25% absolute improvement in terms of average annual return, up to

more than 200% relative improvement in average Sharpe ratio, and reduces, during the

period of 2019-2020 (i.e. the Covid-19 pandemic), by 16% the maximum daily portfolio

loss compared to the best competing method. Using the same set of hyper-parameters, we

also measured an improvement of up to a factor of 5 in the stability of performance under

random choices of initial asset ordering and weights, and observe that WaveCorr consistently

outperforms our benchmarks under a number of variations of the model: including the

number of available assets, the size of transaction costs, etc. Overall, we interpret this

empirical evidence as a strong support regarding the potential impact of the WaveCorr

architecture on automated portfolio management practices, and, more generally, regarding

the claim that asset-permutation invariance is an important NN property for this class of

problems.

3.2 Problem statement

3.2.1 Portfolio management problem

The portfolio management problem consists of optimizing the reallocation of wealth among

many available financial assets including stocks, commodities, equities, currencies, etc. at

discrete points in time. In this paper, we assume that there are m risky assets in the market,

hence the portfolio is controlled based on a set of weights wt ∈W := {w ∈ Rm+ |
∑m

i=1w
i =

1}, which describes the proportion of wealth invested in each asset. Portfolios are rebalanced

at the beginning of each period t = 0, 1, ..., T − 1, which will incur proportional transaction

costs for the investor, i.e. commission rates are of cs and cp, respectively. We follow Jiang

et al. (2017) to model the evolution of the portfolio value and weights (see Figure 3.1).

Specifically, during period t the portfolio value and weights start at pt−1 and wt−1, and the

changes in stock prices, captured by a random vector of asset returns ξt ∈ Rm, affect the

end of period portfolio value p′t := pt−1ξ
>
t wt−1, and weight vector w′t := (pt−1/p

′
t)ξt wt−1,

where is a term-wise product. The investor then decides on a new distribution of his

wealth wt, which triggers the following transaction cost:

cs

m∑
i=1

(p′tw
′i
t − ptwit)+ + cp

m∑
i=1

(ptw
i
t − p′tw′it )+ .
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Denoting the net effect of transaction costs on portfolio value with νt := pt/p
′
t, as reported

in Li et al. (2018) one finds that νt is the solution of the following equations:

νt = f(νt,w
′
t,wt) := 1− cs

m∑
i=1

(w′it − νtwit)+ − cp
m∑
i=1

(νtw
i
t − w′it )+.

This, in turn, allows us to express the portfolio’s log return during the t+ 1-th period as:

ζt+1 := ln(p′t+1/p
′
t) = ln(νtp

′
t+1/pt) = ln(νt(w

′
t,wt)) + ln(ξ>t+1wt) (3.1)

where we make explicit the influence of w′t and wt on νt.

Figure 3.1 – Portfolio evolution through time

We note that in Jiang et al. (2017), the authors suggest to approximate νt using an

iterative procedure. We actually show in Appendix 3.5.1 that νt can easily be identified

with high precision using the bisection method.

3.2.2 Risk-averse Reinforcement-Learning Formulation

In this section, we formulate the portfolio management problem as a Markov Decision

Process (MDP) denoted by (S,A, r, P ). In this regard, the agent (i.e. an investor) interacts

with a stochastic environment by taking an action at ≡ wt ∈W after observing the state

st ∈ S composed of a window of historical market observations, which include the latest

stock returns ξt, along with the final portfolio composition of the previous period w′t. This

action results in the immediate stochastic reward that takes the shape of an approximation of

the realized log return, i.e. rt(st, at, st+1) := ln(f(1,w′t,wt))+ln(ξ>t+1wt) ≈ ln(ν(w′t,wt))+

ln(ξ>t+1wt), for which a derivative is easily obtained. Finally, P captures the assumed

Markovian transition dynamics of the stock market and its effect on portfolio weights:

P (st+1|s0, a0, s1, a1, ..., st, at) = P (st+1|st, at).

Following the works of Moody et al. (1998) and Almahdi and Yang (2017) on risk-averse

DRL, our objective is to identify a deterministic trading policy µθ (parameterized by θ), i.e.
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µθ : S → A, that maximizes the expected value of the Sharpe ratio measured on T -periods

log return trajectories generated by µθ. Namely:

max
θ

JF (µθ) := E s0∼F
st+1∼P (·|st,µθ(st))

[SR(r0(s0, µθ(s0), s1), ..., rT−1(sT−1, µθ(sT−1), sT ))](3.2)

where F is some fixed distribution and

SR(r0:T−1) :=
(1/T )

∑T−1
t=0 rt√

(1/(T − 1))
∑T−1

t=0 (rt − (1/T )
∑T−1

t=0 rt)2

.

The choice of using the Sharpe ratio of log returns is motivated by modern portfolio theory

(see Markowitz (1952)), which advocates a balance between expected returns and exposure

to risks, and where it plays the role of a canonical way of exercising this trade-off (Sharpe,

1966). While it does not distinguish downside from upside risk, it is still considered a “gold

standard of performance evaluation" by the financial community (Bailey and Lopez de

Prado, 2012). In Moody et al. (1998), the trajectory-wise Sharpe ratio is used as an

estimator of the instantaneous one in order to facilitate its use in RL. A side-benefit of this

estimator is to offer some control on the variations in the evolution of the portfolio value

which can be reassuring for the investor.

In the context of our portfolio management problem, since st is composed of an

exogeneous component sexot which includes ξt and an endogenous state w′t that becomes

deterministic when at and sexot+1 are known, we have that:

JF (µθ) := E s0∼F
st+1∼P (·|st,β(st)))

[SR(r0(s̄θ0, µθ(s̄
θ
0), s̄θ1), . . . , rT−1(s̄θT−1, µθ(s̄

θ
T−1), s̄θT ))]

where β(st) is an arbitrary policy1, and where the effect of µθ on the trajectory can be

calculated using

s̄θt :=

(
sexot ,

ξt µθ(s̄
θ
t−1)

ξ>t µθ(s̄
θ
t−1)

)
,

for t ≥ 1, while s̄θ0 := s0. Hence,

∇θJF (µθ) := E[∇θSR(r0(s̄θ0, µθ(s̄
θ
0), s̄θ1), . . . , rT−1(s̄θT−1, µθ(s̄

θ
T−1), s̄θT ))] , (3.3)

where ∇θSR can be obtained by backpropagation using the chain rule. This leads to the

following stochastic gradient step:

θk+1 = θk + α∇θSR(r0(s̄θ0, µθ(s̄
θ
0), s̄θ1), . . . , rT−1(s̄θT−1, µθ(s̄

θ
T−1), s̄θT ) ,

1This model is insensitive to the choice of the β-policy given that the effect of the actions on the state
is known and will be exactly recomputed for µθ.
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with α > 0 as the step size.

3.3 The New Permutation Invariant WaveCorr Architecture

There are several considerations that go into the design of the network for the portfolio

policy network µθ. First, the network should have the capacity to handle long historical

time series data, which allows for extracting long-term dependencies across time. Second,

the network should be flexible in its design for capturing dependencies across a large

number of available assets. Third, the network should be parsimoniously parameterized

to achieve these objectives without being prone to overfitting. To this end, the WaveNet

structure (Oord et al., 2016) offers a good basis for developing our architecture and was

employed in Zhang et al. (2020). Unfortunately, a direct application of WaveNet in portfolio

management struggles at processing the cross-asset correlation information. This is because

the convolutions embedded in the WaveNet model are 1D and extending to 2D convolutions

increases the number of parameters in the model, which makes it more prone to the issue

of over-fitting, a notorious issue particuarly in RL. Most importantly, naive attempts at

adapting WaveNet to account for such dependencies (as done in Zhang et al. (2020)) can

make the network become sensitive to the ordering of the assets in the input data, an issue

that we will revisit below.

We first present the general architecture of WaveCorr in Figure 3.2. Here, the network

Figure 3.2 – The architecture of the WaveCorr model

takes as input a tensor of dimension m× h× d, where m : the number of assets, h : the size
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of look-back time window, d : the number of channels (number of features for each asset),

and generates as output an m-dimensional wealth allocation vector. The WaveCorr blocks,

which play the key role for extracting cross time/asset dependencies, form the body of the

architecture. In order to provide more flexibility for the choice of h, we define a causal

convolution after the sequence of WaveCorr blocks to adjust the receptive field so that it

includes the whole length of the input time series. Also, similar to the WaveNet structure,

we use skip connections in our architecture.

Figure 3.3 – WaveCorr residual block

The design of the WaveCorr residual block in WaveCorr extends a simplified variation

(Bai et al., 2018) of the residual block in WaveNet by adding our new correlation layers (and

Relu, concatenation operations following right after). As shown in Figure 3.3, the block

includes two layers of dilated causal convolutions followed by Relu activation functions

and dropout layers. Having an input of dimensions m × h × d, the convolutions output

tensors of dimension m× h× d′ where each slice of the output tensor, i.e. an m× 1× d

matrix, contains the dependency information of each asset over time. By applying different

dilation rates in each WaveCorr block, the model is able of extracting the dependency

information for a longer time horizon. A dropout layer with a rate of 50% is considered to

prevent over-fitting, whereas for the gradient explosion/vanishing prevention mechanism

of residual connection we use a 1 × 1 convolution (presented on the top of Figure 3.3),

which inherently ensures that the summation operation is over tensors of the same shape.

The Corr layer generates an output tensor of dimensions m × h × 1 from an m × h × d

input, where each slice of the output tensor, i.e. an m× 1× 1 matrix, is meant to contain

cross-asset dependency information. The concatenation operator combines the cross-asset
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dependency information obtained from the Corr layer with the cross-time dependency

information obtained from the causal convolutions.

Before defining the Corr layer , we pause to introduce a property that will be used to

further guide its design, namely the property of asset-permutation invariance. This property

is motivated by the idea that the set of possible investment policies that can be modeled by

the portfolio policy network should not be affected by the way the assets are indexed in the

problem. On a block per block level, we will therefore impose that, when the asset indexing

of the input tensor is reordered, the set of possible mappings obtained should also only differ

in its asset indexing. More specifically, we let σ : Rm×h×d → Rm×h×d denote a permutation

operator over a tensor T such that σ(T )[i, :, :] = T [π(i), :, :], where π : {1, ...,m} →

{1, ...,m} is a bijective function. Furthermore, we consider σ−1 : Rm×h×d′ → Rm×h×d′

denote its “inverse” such that σ−1(O)[i, :, :] := O[π−1(i), :, :], with O ∈ Rm×h×d′ .

Definition 14. (Asset-Permutation Invariance) A block capturing a set of functions

B ⊆ {B : Rm×h×d → Rm×h′×d′} is asset-permutation invariant if given any permutation

operator σ, we have that {σ−1◦B◦σ : B ∈ B} = B, where ◦ stands for function composition.

One can verify, for instances, that all the blocks described so far in WaveCorr are

permutation invariant and that asset-permutation invariance is preserved under composition

(see Appendix 3.5.2).

With this property in mind, we can now detail the design of a permutation invariant

Corr layer via Algorithm2, where we denote as CC : R(m+1)×h×d → R1×h×1 the operator

that applies an (m+ 1)× 1 convolution, and as Concat1 the operator that concatenates

two tensors along the first dimension. In Algorithm 2, the kernel is applied to a tensor

Omdl ∈ R(m+1)×h×d constructed from adding the i-th row of the input tensor on the top of

the input tensor. Concatenating the output tensors from each run gives the final output

tensor. Figure 3.4 gives an example for the case with m = 5, and h = d = 1. Effectively,

one can show that Corr layer satisfies asset-permutation invariance (proof in Appendix).

Proposition 3.3.1. The Corr layer block satisfies asset-permutation invariance.

Table 3.1 summarizes the details of each layer involved in the WaveCorr architecture:

including kernel sizes, internal numbers of channels, dilation rates, and types of activation
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Algorithm 2 : Corr layer
Result : Tensor that contains correlation information, Oout of dimension m× h× 1
Inputs: Tensor Oin of dimension m× h× d;
Define an empty tensor Oout of dimension 0× h× 1;
for i = 1 : m do

Set Omdl = Concat1(Oin[i, :, :],Oin);
Set Oout = Concat1(Oout, CC(Omdl)));

end

functions. Overall, the following proposition confirms that this WaveCorr portfolio policy

network satisfies asset-permutation invariance (see Appendix for proof).

Proposition 3.3.2. The WaveCorr portfolio policy network architecture satisfies asset-

permutation invariance.

Figure 3.4 – An example of the Corr layer over 5 assets

Table 3.1 – The structure of the network

Layer Input shape Output shape Kernel Activation Dilation rate

Dilated conv (m× h× d) (m× h× 8) (1× 3) Relu 1
Dilated conv (m× h× 8) (m× h× 8) (1× 3) Relu 1
Corr layer (m× h× 8) (m× h× 1) ([m+ 1]× 1) Relu -

Dilated conv (m× h× 9) (m× h× 16) (1× 3) Relu 2
Dilated conv (m× h× 16) (m× h× 16) (1× 3) Relu 2
Corr layer (m× h× 16) (m× h× 1) ([m+ 1]× 1) Relu -

Dilated conv (m× h× 17) (m× h× 16) (1× 3) Relu 4
Dilated conv (m× h× 16) (m× h× 16) (1× 3) Relu 4
Corr layer (m× h× 16) (m× h× 1) ([m+ 1]× 1) Relu -

Causal conv (m× h× 17) (m× h× 16) (1× [h− 28]) Relu -
1× 1 conv (m× h× 16) (m× h× 1) (1× 1) Softmax -

Finally, it is necessary to discuss some connections with the recent work of Zhang et al.

(2020), where the authors propose an architecture that also takes both sequential and

cross-asset dependency into consideration. Their proposed architecture, from a high level
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perspective, is more complex than ours in that theirs involves two sub-networks, one LSTM

and one CNN, whereas ours is built solely on CNN. Our architecture is thus simpler to

implement, less susceptible to overfitting, and allows for more efficient computation. The

most noticeable difference between their design and ours is at the level of the Corr layer

block, where they use a convolution with a m × 1 kernel to extract dependency across

assets and apply a standard padding trick to keep the output tensor invariant in size. Their

approach suffers from two issues (see Appendix 3.5.3 for details): first, the kernel in their

design may capture only partial dependency information, and second, most problematically,

their design is not asset-permutation invariant and thus the performance of their network

can be highly sensitive to the ordering of assets. This second issue is further confirmed

empirically in section 3.4.3.

3.4 Experimental results

In this section, we present the results of a series of experiments evaluating the empirical

performance of our WaveCorr DRL approach. We start by presenting the experimental

set-up. We follow with our main study that evaluates WaveCorr against a number of

popular benchmarks. We finally shed light on the superior performance of WaveCorr with

comparative studies that evaluate the sensitivity of its performance to permutation of

the assets, number of assets, size of transaction costs, and (in Appendix 3.5.6) maximum

holding constraints. All code is available at (hyperlink hidden).

3.4.1 Experimental set-up

Data sets: We employ three data sets. Can-data includes the daily closing prices of

50 Canadian assets from 01/01/2003 until 01/11/2019 randomly chosen among the 70

companies that were continuously part of the Canadian S&P/TSX Composite Index during

this period. US-data contains 50 randomly picked US assets among the 250 that were part

of S&P500 index during the same period.2 Finally, Covid-data considered 50 randomly

resampled assets from S&P/TSX Composite Index for period 01/11/2011-01/01/2021 and
2Note that by choosing stocks that are continuously part of the index for a long period of time introduces

a survivorship bias in our results, however, this bias is affecting both our model and our benchmarks the
same way, therefore, relative results are still meaningful.
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included open, highest, lowest, and closing daily prices. The Can-data and US-data sets

were partitioned into training, validation, and test sets according to the periods 2003-

2009/2010-2013/2014-2019 and 2003-2009/2010-2012/2013-2019 respectively, while the

Covid-data was only divided in a training (2012-2018) and testing (2019-2020) periods

given that hyper-parameters were reused from the previous two studies. We assume with

all datasets a constant comission rate of cs = cp = 0.05% in the comparative study, while

the sensitivity analysis considers no transaction costs unless specified otherwise.

Benchmarks: In our main study, we compare the performance of WaveCorr to CS-PPN

(Zhang et al., 2020), EIIE (Jiang et al., 2017), and the equal weighted portfolio (EW). Note

that both CS-PPN and EIIE were adapted to optimize the Sharpe-ratio objective described

in section 3.2.2 that exactly accounts for transaction costs.

Hyper-parameter selection: Based on a preliminary unreported investigation, where

we explored the influence of different optimizers (namely ADAM, SGD, RMSProp, and SGD

with momentum), we concluded that ADAM had the fastest convergence. We also narrowed

down a list of reasonable values (see Table 3.6) for the following common hyper-parameters:

initial learning rate, decay rate, minimum rate, look-back window size h, planning horizon

T . For each method, the final choice of hyper-parameter settings was done based on the

average annual return achieved on both a 4-fold cross-validation study using Can-data and a

3-fold study with the US-data. The final selection (see Table 3.6) favored, for each method,

a candidate that appeared in the top 5 best performing settings of both data-sets in order

to encourage generalization power among similarly performing candidates. Note that in

order to decide on the number of epochs, an early stopping criteria was systematically

employed.

Metrics: We evaluate all approaches using out-of-sample data (“test data”). “Annual

return” denotes the annualized rate of return for the accumulated portfolio value. “Annual

vol” denotes the prorated standard deviation of daily returns. Trajectory-wise Sharpe

ratio (SR) of the log returns, Maximum drawdown (MDD), i.e. biggest loss from a peak,

and average Turnover, i.e. average of the trading volume, are also reported (see (Zhang
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et al., 2020) for formal definitions). Finaly, we report on the average “daily hit rate” which

captures the proportion of days during which the log returns out-performed EW.

Important implementation details: Exploiting the fact that our SGD step involves

exercising the portfolio policy network for T consecutive steps (see equation (3.3)), a

clever implementation was able to reduce WavCorr’s training time per episode by a factor

of 4. This was done by replacing the T copies of the portfolio policy network producing

a0, a2, . . . , aT−1, with an equivalent single augmented multi-period portfolio policy network

producing all of these actions simultaneously, while making sure that all intermediate

calculations are reused as much as possible (see Appendix 3.5.4 for details). We also

implement our stochastic gradient descent approach by updating, after each episode k, the

initial state distribution F to reflect the latest policy µθk . This is done in order for the

final policy to be better adapted to the conditions encountered when the portfolio policy

network is applied on a longer horizon than T .

3.4.2 Comparative Evaluation of WaveCorr

In this set of experiments the performances of WaveCorr, CS-PPN, EIIE, and EW are

compared for a set of 10 experiments (with random reinitialization of NN parameters) on

the three datasets. The average and standard deviations of each performance metric are

presented in Table 3.2 while Figure 3.8 (in the Appendix) presents the average out-of-

sample portfolio value trajectories. The main takeaway from the table is that WaveCorr

significantly outperforms the three benchmarks on all data sets, achieving an absolute

improvement in average yearly returns of 3% to 25% compared to the best alternative. It

also dominates CS-PPN and EIIE in terms of Sharpe ratio, maximum drawdown, daily hit

rate, and turnover. EW does appear to be causing less volatility in the US-data, which

leads to a slightly improved SR. Another important observation consists in the variance of

these metrics over the 10 experiments. Once again WaveCorr comes out as being generally

more reliable than the two other DRL benchmarks in the Can-data, while EIIE appears to

be more reliable in the US-data sacrificing average performance. Overall, the impressive

performance of WaveCorr seems to support our claim that our new architecture allows for

a better identification of the cross-asset dependencies. In conditions of market crisis (i.e.
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the Covid-data), we finally observe that WaveCorr exposes the investors to much lower

short term losses, with an MDD of only 31% compared to more than twice as much for

CS-PPN and EIIE, which reflects of a more effective hedging strategy.

Table 3.2 – The average (and standard deviation) performances using three data sets.

Method Annual return Annual vol SR MDD Daily hit rate Turnover

Can-data

WaveCorr 27% (3%) 16% (1%) 1.73 (0.25) 16% (2%) 52% (1%) 0.32 (0.01)
CS-PPN 21% (4%) 19% (2%) 1.14 (0.34) 17% (4%) 51% (1%) 0.38 (0.05)
EIIE -1% (8%) 29% (4%) -0.01 (0.28) 55% (9%) 47% (1%) 0.64 (0.08)
EW 4% (0%) 14% (0%) 0.31 (0.00) 36% (0%) - 0.00 (0.00)

US-data

WaveCorr 19% (2%) 16% (2%) 1.17 (0.20) 20% (4%) 50% (1%) 0.11 (0.02)
CS-PPN 14% (2%) 15% (2%) 0.94 (0.17) 22% (6%) 49% (1%) 0.15 (0.08)
EIIE 16% (1%) 15% (0%) 1.09 (0.06) 20% (1%) 50% (0%) 0.17 (0.02)
EW 15% (0%) 13% (0%) 1.18 (0.00) 18% (0%) - 0.00 (0.00)

Covid-data

WaveCorr 56% (13%) 26% (5%) 2.16 (0.50) 31% (9%) 51% (2%) 0.19 (0.05)
CS-PPN 31% (27%) 51% (6%) 0.60 (0.48) 67% (7%) 50% (2%) 0.3 (0.09)
EIIE 11% (30%) 76% (17%) 0.20 (0.43) 77% (13%) 46% (2%) 0.76 (0.27)
EW 27% (0%) 29% (0%) 0.93(0.00) 47% (0%) - 0.01 (0.00)

3.4.3 Sensitivity Analysis

Sensitivity to permutation of the assets: In this set of experiment, we are interested

in measuring the effect of asset-permutation on the performance of WaveCorr and CS-PPN.

Specifically, each experiment now consists in resampling a permutation of the 50 stocks

instead of the initial parameters of the neural networks. The results are summarized in Table

3.3 and illustrated in Figure 3.5. We observe that the learning curves and performance

of CS-PPN are significantly affected by asset-permutation compared to WaveCorr. In

particular, one sees that the standard deviation of annual return is reduced by more than

a factor of about 5 with WaveCorr. We believe this is entirely attributable to the new

structure of the Corr layer in the portfolio policy network.

Table 3.3 – The average (and standard dev.) performances over random asset-permutation
in Can-data.

Annual return Annual vol SR MDD Daily hit rate Turnover

WaveCorr 48% (1%) 15% (1%) 3.15 (0.19) 14% (3%) 56% (0%) 0.48 (0.01)
CS-PPN 35% (5%) 18% (1%) 2.00 (0.37) 22% (4%) 54% (1%) 0.54 (0.03)
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(a) WaveCorr (b) CS-PPN

Figure 3.5 – Comparison of the wealth accumulated by WaveCorr and CS-PPN under
random initial permutation of assets on Can-data’s test set.

Sensitivity to number of assets: In this set of experiments, we measure the effect of

varying the number of assets on the performance of WaveCorr and CS-PPN. We therefore

run 10 experiments (randomly resampling initial NN parameters) with growing subsets of

30, 40, and 50 assets from Can-data. Results are summarized in Table 3.4 and illustrated in

Figure 3.9 (in Appendix). While having access to more assets should in theory be beneficial

for the portfolio performance, we observe that it is not necessarily the case for CS-PPN. On

the other hand, as the number of assets increase, a significant improvement, with respect to

all metrics, is achieved by WaveCorr. This evidence points to a better use of the correlation

information in the data by WaveCorr.

Table 3.4 – The average (and std. dev.) performances as a function of the number of assets
in Can-data.

# of stocks Annual return Annual vol SR MDD Daily hit rate Turnover

WaveCorr

30 37.7% (4%) 19% (1%) 2.02 (0.27) 22% (3%) 55% (1%) 0.39 (0.02)
40 38.5% (4%) 21% (1%) 1.81 (0.17) 23% (2%) 55% (1%) 0.44 (0.04)
50 43.0% (5%) 17% (2%) 2.57 (0.52) 20% (6%) 55% (1%) 0.43 (0.02)

CS-PPN

30 30.3% (3%) 17% (1%) 1.80 (0.20) 21% (4%) 53% (1%) 0.42 (0.04)
40 29.8% (7%) 17% (2%) 1.70 (0.34) 22% (3%) 53% (1%) 0.41 (0.09)
50 32.2% (4%) 16% (1%) 2.07 (0.28) 18% (3%) 52% (1%) 0.43 (0.05)

Sensitivity to commission rate: Table 3.5 presents how the performances of WaveCorr

and CS-PPN are affected by the magnitude of the commission rate, ranging among 0%,

0.05%, and 0.1%. One can first recognize that the two methods appear to have good

control on turnover as the commission rate is increased. Nevertheless, one can confirm from
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this table the significantly superior performance of WaveCorr prevails under all level of

commission rate.
Table 3.5 – The average (and std. dev.) performances as a function of commission rate
(CR) in Can-data.

Method Annual return Annual vol SR MDD Daily hit rate Turnover

CR = 0

WaveCorr 42% (3%) 15% (0%) 2.77 (0.20) 13% (1%) 55% (1%) 0.44 (0.02)
CS-PPN 35% (4%) 17% (1%) 2.04 (0.27) 14% (3%) 53% (1%) 0.47 (0.05)

CR = 0.05%

WaveCorr 27% (3%) 16% (1%) 1.73 (0.25) 15% (2%) 52% (1%) 0.32 (0.01)
CS-PPN 21% (4%) 19% (2%) 1.14 (0.34) 17% (4%) 51% (1%) 0.38 (0.05)

CR = 0.1%

WaveCorr 19% (2%) 15% (1%) 1.34 (0.16) 16% (2%) 50% (1%) 0.22 (0.01)
CS-PPN 14% (7%) 17% (3%) 0.92 (0.50) 19% (8%) 50% (1%) 0.22 (0.09)

3.5 Appendix

3.5.1 Solving ν = f(ν)

In order to apply the bisection method to solve ν = f(ν), we will make use of the following

proposition.

Proposition 3.5.1. For any 0 < cs < 1 and 0 < cp < 1, the function g(ν) := ν − f(ν) is

strictly increasing on [0, 1] with g(0) < 0 and g(1) > 0.

Proof. Recalling that f(ν,w′,w) := 1 − cs
∑m

i=1(w′i − νwi)+ − cp
∑m

i=1(νwi − w′i)+, we

first obtain the two bounds at g(0) and g(1) as follows:

g(0) = 0−

(
1− cs

m∑
i=1

(w′i)+ − cp
m∑
i=1

(−w′i)+

)
= 0− 1 + cs < 0 ,

since cs < 1, and

g(1) = 1−

(
1− cs

m∑
i=1

(w′i − wi)+ − cp
m∑
i=1

(wi − w′i)+

)
≥ min(cs, cp)‖w′i −wi‖1 > 0 ,

since min(cs, cp) > 0. We can further establish the convexity of g(ν), given that it is the

sum of convex functions. A careful analysis reveals that g(ν) is supported at 0 by the plane

g(ν) ≥ g(0) + ν

(
1− cs + cp

m∑
i=1

1{w′i = 0}wi
)
,
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where 1{A} is the indicator function that returns 1 if A is true, and 0 otherwise. Hence,

by convexity of g(ν), the fact that this supporting plane is strictly increasing implies that

g(ν) is strictly increasing for all ν ≥ 0.

Given Proposition 3.5.1, we can conclude that a bisection method can be used to find

the root of g(ν), which effectively solves ν = f(ν).

3.5.2 Proofs of Section 3.3

We start this section with a lemma that will simplify some of our later derivations.

Lemma 3.5.2. A block capturing a set of functions B ⊆ {B : Rm×h×d → Rm×h′×d′} is

asset-permutation invariant if and only if given any permutation operator σ, we have that

{σ−1◦B◦σ : B ∈ B} ⊇ B.

Proof. The “only if” follows straightforwardly from the fact that equality between two sets

implies that each set is a subset of the other.

Regarding the “if” part, we start with the assumption that

∀σ, {σ−1◦B◦σ : B ∈ B} ⊇ B .

Next, we follow with the fact that for all permutation operator σ:

{σ−1◦B◦σ : B ∈ B} ⊆ {σ−1◦B◦σ : B ∈ {σ◦B′◦σ−1 : B′ ∈ B}}

= {σ−1◦σ◦B′◦σ−1◦σ : B′ ∈ B} = B ,

where we assumed for simplicity of exposition that h = h′ and d = d′, and exploited the

fact that σ−1 is also a permutation operator.

Proof of Proposition 3.3.1

We first clarify that the correlation layer is associated with the following set of functions

(see Algorithm 1):

B := {Bw,b : w ∈ R(m+1)×d, b ∈ R}

where

Bw,b(T )[i, :, 1] :=

T [i, :, :] (~1w>0 ) +
m∑
j=1

T [j, :, :] (~1w>j )

~1 + b, ∀ i = 1, ...,m,
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with denoting the Hadamard (element-wise) product.

Let σ (associated with the bijection π) be an asset-permutation operator. For any

correlation layer function Bw,b ∈ B, one can construct a new set of parameters w′0 := w0,

w′j := wπ(j), for all j = 1, . . . ,m, and b′ := b such that for all input tensor T , we have that

for all i:

Bw′,b′(σ(T ))[i, :, 1] =

σ(T )[i, :, :] (~1w>0 ) +
m∑
j=1

σ(T )[j, :, :] (~1w>π(j))

~1 + b (3.4)

=

T [π(i), :, :] (~1w>0 ) +
m∑
j=1

T [π(j), :, :] (~1w>π(j))

~1 + b (3.5)

=

T [π(i), :, :] (~1w>0 ) +

m∑
j′=1

T [j′, :, :] (~1w>j′ )

~1 + b. (3.6)

Hence,

σ−1(Bw′,b′(σ(T )))[i, :, 1] =

T [i, :, :] (~1w>0 ) +
m∑
j=1

T [j, :, :] (~1w>j )

~1 + b = Bw,b(T )[i, :, 1] .

We can therefore conclude that {σ−1◦B◦σ : B ∈ B} ⊇ B. Based on Lemma 3.5.2, we

conclude that B is asset-permutation invariant.

Proof of Proposition 3.3.2

To prove Proposition 3.3.2, we demonstrate that all blocks used in the WaveCorr architecture

are asset-permutation invariant (Steps 1 to 3). We then show that asset-permutation

invariance is preserved under composition (Step 4). Finally, we can conclude in Step 5 that

WaveCorr is asset-permutation invariant.

Step 1 - Dilated convolution, Causal convolution, Sum, and 1 × 1 convolution

are asset-permutation invariant: The functional class of a dilated convolution, a

causal convolution, a sum, and a 1× 1 convolution block all have the form:

B := {Bg : g ∈ G},

where

Bg(T )[i, :, :] := g(T (i, :, :)), ∀ i = 1, ...,m,
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for some set of functions G ⊆ {G : R1×h×d → R1×h×d′}. In particular, in the case of dilated,

causal, and 1× 1 convolutions, this property follows from the use of 1× 3, 1× [h− 28], and

1× 1 kernels respectively. Hence, for any g ∈ G, we have that:

σ−1(Bg(σ(T ))) = σ−1(σ(Bg(T ))) = Bg(T ) ,

which implies that {σ−1◦B◦σ : B ∈ B} = B.

Step 2 - Relu and dropout are asset-permutation invariant: We first clarify that

Relu and dropout on a tensor in Rm×h×d are singleton sets of functions:

B := {Bg}

where g : R → R and Bg(T )[i, j, k] := g(T [i, j, k]). In particular, in the case of Relu, we

have:

Bg(T )[i, j, k] := max(0, T [i, j, k]) ,

while, for dropout we have:

Bg(T )[i, j, k] := T [i, j, k] ,

since a dropout block acts as a feed through operator. Hence, we naturally have that:

σ−1(Bg(σ(T ))) = σ−1(σ(Bg(T ))) = Bg(T ) ,

which again implies that {σ−1◦B◦σ : B ∈ B} = B.

Step 3 - Softmax is asset-permutation invariant: We first clarify that softmax on

a vector in Rm×h×1 is a singleton set of functions:

B := {B}

where

B(T )[i, j, 1] :=
exp(T [i, j, 1])∑m
i′=1 exp(T [i′, j, 1])

.

Hence, we have that:

B(σ(T ))[i, j, 1] :=
exp(T [π(i), j, 1])∑m
i′=1 exp(T [π(i′), j, 1])

=
exp(T [π(i), j, 1])∑m
i′=1 exp(T [i′, j, 1])

.

This allows us to conclude that:

σ−1(B(σ(T )))[i, j, 1] = B(T )[i, j, 1] .

Hence, we conclude that {σ−1◦B◦σ : B ∈ B} = B.
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Step 4 - Asset-permutation invariance is preserved under composition: Given

two asset-permutation invariant blocks representing the set of functions B1 and B2, one can

define the composition block as:

B := {B1◦B2 : B1 ∈ B1, B2 ∈ B2} .

We have that for all B1 ∈ B1 and B2 ∈ B2:

B = B1◦B2

= (σ−1◦B′1◦σ)◦(σ−1◦B′2◦σ)

= σ−1◦B′1◦B′2◦σ

= σ−1◦B′◦σ ,

where B′1 ∈ B1 and B′2 ∈ B2 come from the definition of asset-permutation invariance, and

where B′ := B′1◦B′2 ∈ B. We therefore have that {σ−1◦B◦σ : B ∈ B} ⊇ B. Finally, Lemma

3.5.2 allows us to conclude that B is asset-permutation invariant.

Step 5 - WaveCorr is asset-permutation invariant: Combing Step 1 to 4 with

Proposition 3.3.1, we arrive at the conclusion that the architecture presented in Figure

3.2 is asset-permutation invariant since it is composed of a sequence of asset-permutation

invariant blocks.

3.5.3 Correlation Layer in Zhang et al. (2020) Violates

Asset-Permutation Invariance

Assuming for simplicity that m is odd, the “correlational convolution layer” proposed in

Zhang et al. (2020) takes the form of the following set of functions:

B := {Bw,b :W ∈ Rm×d×d, b ∈ R}

where

Bw,b(T )[i, j, k] :=
m∑
`=1

d∑
k′=1

T [i− (m+ 1)/2 + `, j, k′]W[`, k, k′] + b,

∀ i = 1, . . . ,m

∀j = 1, . . . , h

∀k = 1, . . . , d

,

130



where T [i′, :, :] := 0 for all i′ 6∈ {1, . . . ,m} to represent a zero padding. Figure 3.6 presents

an example of this layer when m = 5, h = 1, and d = 1. One can already observe in

this figure that correlation information is only partially extracted for some of the assets,

e.g. the convolution associated to asset one (cf. first row in the figure) disregards the

influence of the fifth asset. While this could perhaps be addressed by using a larger kernel,

a more important issue arises with this architecture, namely that the block does not satisfy

asset-permutation invariance.

Figure 3.6 – An example of the correlation layer in Zhang et al. (2020)’s work over 5 assets

Proposition 3.5.3. The correlational convolution layer block used in Zhang et al. (2020)

violates asset-permutation invariance already when m = 5, h = 1, and d = 1.

Proof. When m = 5, h = 1, and d = 1, we first clarify that the correlational convolution

layer from Zhang et al. (2020) is associated with the following set of functions:

B := {Bw,b : w ∈ R5, b ∈ R}

where

Bw,b(T )[i] :=



w3T [1] + w4T [2] + w5T [3] + b if i = 1

w2T [1] + w3T [2] + w4T [3] + w5T [4] + b if i = 2

w1T [1] + w2T [2] + w3T [3] + w4T [4] + w5T [5] + b if i = 3

w1T [2] + w2T [3] + w3T [4] + w4T [5] + b if i = 4

w1T [3] + w2T [4] + w3T [5] + b if i = 5

,

where we shortened the notation T [i, 1, 1] to T [i]. Let’s consider the asset-permutation

operator that inverts the order of the first two assets: π(1) = 2, π(2) = 1, and π(i) = i for

all i ≥ 3. We will prove our claim by contradiction. Assuming that B is asset-permutation

invariant, it must be that for any fixed values w̄ such that w̄4 6= w̄1, there exists an associated
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pair of values (w′, b′) that makes Bw′,b′ ≡ σ−1◦Bw̄,0◦σ. In particular, the two functions

should return the same values for the following three “tensors”: T0[i] := 0, T1[i] := 1{i = 1},

and at T2[i] := 1{i = 2}. The first implies that b′ = 0 since

b′ = Bw′,b′(T0)[1] = σ−1(Bw̄,0(σ(T0)))[1] = 0 .

However, it also implies that:

w′2 = Bw′,0(T1)[2] = σ−1(Bw̄,0(σ(T1)))[2] = Bw̄,0(T2)[1] = w̄4

and that

w′2 = Bw′,0(T2)[3] = σ−1(Bw̄,0(σ(T2)))[3] = Bw̄,0(T1)[3] = w̄1 .

We therefore have a contradiction since w̄4 = w′2 = w̄1 6= w̄4 is impossible. We must

therefore conclude that B was not asset-permutation invariant.

We close this section by noting that this important issue cannot simply be fixed by using

a different type of padding, or a larger kernel in the convolution. Regarding the former,

our demonstration made no use of how padding is done. For the latter, our proof would

still hold given that the fixed parameterization (w̄, 0) that we used would still identify a

member of the set of functions obtained with a larger kernel.

3.5.4 Augmented policy network to accelerate training

We detail in this section how the structure of the portfolio management problem (3.2) can

be exploited for a more efficient implementation of a policy network, both in terms of

computation time and hardware memory. This applies not only to the implementation of

WaveCorr policy network but also policy networks in Jiang et al. (2017) and Zhang et al.

(2020). In particular, given a a multiperiod objective as in (3.2), calculating the gradient

∇θSR involves the step of generating a sequence of actions a0, a1, ..., aT−1 from a sample

trajectory of states s0, s1, ..., sT−1 ∈ Rm×h×d over a planning horizon T , where m : the

number of assets, h : the size of a lookback window, d : the number of features. The common

way of implementing this is to create a tensor T of dimension m×h×d×T from s0, ..., sT−1

and apply a policy network µθ(s) to each state st in the tensor T so as to generate each

action at. Assuming for simplicity of exposition that the state is entirely exogenous, this
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procedure is demonstrated in Figure 3.7(a), where a standard causal convolution with d = 1

and kernel size of 2 is applied. In this procedure, the memory used to store the tensor T and

the computation time taken to generate all actions a0, ..., aT−1 grow linearly in T , which

become significant for large T . It is possible to apply the policy network µθ(s) to generate

all the actions a0, ..., aT−1 more efficiently than the procedure described in Figure 3.7(a).

Namely, in our implementation, we exploit the sequential and overlapping nature of sample

states s0, ..., sT−1 used to generate the actions a0, ..., aT−1, which naturally arises in the

consideration of a multiperiod objective. Recall firstly that each sample state st ∈ Rm×h×d,

t ∈ {0, ..., T − 1}, is obtained from a sample trajectory, denoted by S ∈ Rm×(h+T−1)×d,

where st = S[:, t + 1 : t + h, :], t = 0, ..., T − 1. Thus, between any st and st+1, the last

h− 1 columns in st overlap with the first h− 1 columns in st+1. The fact that there is a

significant overlap between any two consecutive states st, st+1 hints already that processing

each state st+1 separately from st, as shown in Figure 3.7(a), would invoke a large number

of identical calculations in the network as those that were already done in processing st,

which is wasteful and inefficient. To avoid such an issue, we take an augmented approach

to apply the policy network. The idea is to use a sample trajectory S directly as input

to an augmented policy network ~µθ : Rm×(h+T−1)×d → Rm×T , which reduces to exactly

the same architecture as the policy network µθ(st) when generating only the t-th action.

Figure 3.7(b) presents this augmented policy network ~µθ(S) for our example, and how

it can be applied to a trajectory S to generate all actions a0, ..., aT−1 at once. One can

observe that the use of an augmented policy network allows the intermediate calculations

done for each state st (for generating an action at) to be reused by the calculations needed

for the other states (and generating other actions). With the exact same architecture as the

policy network µθ(s), the augmented policy network ~µθ(S), which takes a trajectory with

width h+ T − 1 (thus including T many states), would by design generate T output, each

corresponds to an action at. This not only speeds up the generation of actions a0, ..., aT−1

significantly but also requires far less memory to store the input data, i.e. the use of a

tensor with dimension (m× (h+ T )× d) instead of m× h× d× T . The only sacrifice that

is made with this approach is regarding the type of features that can be integrated. For

instance, we cannot include features that are normalized with respect to the most recent

history (as done in Jiang et al. (2017)) given that this breaks the data redundancy between
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two consecutive time period. Our numerical results however seemed to indicate that such

restrictions did not come at a price in terms of performance.

(a) µθ(s) applied to each state separately (b) ~µθ(S) applied to the full trajectory

Figure 3.7 – Comparison between the use of policy network µθ(s) and of the augmented
policy network ~µθ(S)

3.5.5 Hyper-parameters Selection

Table 3.6 – List of Selected Hyper-parameters.

Hyper-parameter Search range WaveCorr CS-PPN EIIE

Learning rate {5× 10−5, 10−4, 10−3, 5× 10−3} 5× 10−5 5× 10−5 10−4

Decay rate {0.9999, 0.99999, 1} 0.99999 0.99999 1
Minimum rate { 10−6, 10−5} 10−5 10−5 10−5

Planning horizon T {32, 64} 32 32 32
Look back window size h {32, 64} 32 32 32
Number of epochs [0, ∞) 5000 5000 5000
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3.5.6 Additional results

Comparative Study

(a) Can-data

(b) US-data

(c) Covid-data

Figure 3.8 – Average (solid curve) and range (shaded region) of out-of-sample wealth
accumulated by WaveCorr, CS-PPN, EIIE, and EW over 10 experiments using Can-data,
US-data, and Covid-data.

135



Sensitivity to number of assets

(a) WaveCorr (b) CS-PPN

Figure 3.9 – Average (solid curve) and range (shaded region) of the out-of-sample wealth
accumulated, on 10 experiments using Can-data, by WaveCorr and CS-PPN when increasing
the number of assets.

Performance comparison under maximum holding constraint

In practice, it is often required that the portfolio limits the amount of wealth invested in a

single asset. This can be integrated to the risk-averse DRL formulation:

J̄F (µθ) := E s0∼F
st+1∼P (·|st,µθ(st))

[SR(r0(s0, µθ(s0), s1), ...)]− M

T

T−1∑
t=0

m∑
i=1

max(0, wit − wmax)

where wmax is the maximum weight allowed in any asset, and M is a large constant.

This new objective function penalizes any allocation that goes beyond wmax, which will

encourage µθ to respects the maximum weight allocation condition. The commission rates

are considered to be cs = cp = 0.5%, and the experiments here are done over Can-data

using the full set of 70 stocks, with a maximum holding of 20%. The results are summarized

in Table 3.7 and illustrated in Figure 3.10. As noted before, we observe that WaveCorr

outperforms CS-PPN with respect to all performance metrics.

Table 3.7 – The average (and standard dev.) performances when imposing a maximum
holding constraints over 10 random initial NN weights in Can-data.

Annual return Annual vol SR MDD Daily hit rate Turnover

WaveCorr 20% (2%) 13% (0%) 1.55 (0.18) 14% (1%) 53% (1%) 0.17 (0.01)
CS-PPN 13% (1%) 13% (1%) 1.00 (0.15) 15% (2%) 50% (1%) 0.22 (0.03)
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(a) Out-of-sample cumulative returns

Figure 3.10 – Average (solid curve) and range (shaded region) of the out-of-sample wealth
accumulated, on 10 experiments using Can-data, by WaveCorr and CS-PPN under maximum
holding constraint.

References

Almahdi, S. and Yang, S. Y. (2017). An adaptive portfolio trading system: A risk-return

portfolio optimization using recurrent reinforcement learning with expected maximum

drawdown. Expert Systems with Applications, 87:267–279.

Bai, S., Kolter, J. Z., and Koltun, V. (2018). An empirical evaluation of generic convolutional

and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271.

Bailey, D. H. and Lopez de Prado, M. (2012). The Sharpe ratio efficient frontier. Journal

of Risk, 15(2):13.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages

770–778.

Jiang, Z., Xu, D., and Liang, J. (2017). A deep reinforcement learning framework for the

financial portfolio management problem. arXiv preprint arXiv:1706.10059.

Li, B., Wang, J., Huang, D., and Hoi, S. C. H. (2018). Transaction cost optimization for

online portfolio selection. Quantitative Finance, 18(8):1411–1424.

Liang, Z., Chen, H., Zhu, J., Jiang, K., and Li, Y. (2018). Adversarial deep reinforcement

learning in portfolio management. arXiv preprint arXiv:1808.09940.

Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1):77–91.

137



Moody, J., Wu, L., Liao, Y., and Saffell, M. (1998). Performance functions and reinforcement

learning for trading systems and portfolios. Journal of Forecasting, 17(5-6):441–470.

Moody, J. E. and Saffell, M. (1999). Reinforcement learning for trading. Advances in Neural

Information Processing Systems, pages 917–923.

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner,

N., Senior, A., and Kavukcuoglu, K. (2016). Wavenet: A generative model for raw audio.

arXiv preprint arXiv:1609.03499.

Sharpe, W. F. (1966). Mutual fund performance. The Journal of Business, 39(1):119–138.

Xu, K., Zhang, Y., Ye, D., Zhao, P., and Tan, M. (2020). Relation-aware transformer for

portfolio policy learning. IJCAI.

Zhang, Y., Zhao, P., Li, B., Wu, Q., Huang, J., and Tan, M. (2020). Cost-sensitive portfolio

selection via deep reinforcement learning. IEEE Transactions on Knowledge and Data

Engineering.

138



General Conclusion

In this thesis, we investigated two problems whose solutions are the main component for

many other problems in finance, namely option pricing and portfolio management. Chapter

1 extends the theoretical ground for a new option pricing scheme called equal risk pricing

(ERP), where the determining factor in pricing an option is the risk exposure of the two

sides in the contract. We studied this framework in an incomplete market where a complete

hedging of all the risk is impossible. We derived the risk-averse dynamic programming

equations required to solve two hedging problems for each side of the contract, where

the risk measures chosen by each side are convex. The equations were derived for both

American and European options, where by exploiting the translation invariance property

of the risk measure, we were able to reduce the dimensionality of the state space in the

dynamic programming model to be able to solve it by a grid based method in tractable time.

We further used worst-case risk measures to test the performance of this new pricing and

hedging scheme using synthetic data compared to ε-arbitrage and Black–Scholes models.

The numerical results confirmed that under the ERP both the writer and the buyer have

risks that are more similar and on average smaller than the risks that they would experience

by the two other methods.

In the second chapter we extended the ERP framework by exploiting Deep Reinforcement-

Learning (DRL). We differentiate our work as being the first to study ERP under a time-

consistent dynamic risk measure. In particular, we exploited the elicitability property of

the expectile risk measure to extend the famous off-policy deterministic actor-critic method

to the risk-averse setting. In our numerical results, we illustrated how our model can

benefit from time-consistency of the optimal solution in order to price a range of option

contracts with different maturities by training the model only on the option with longest



time to maturity. This is in contrast to time inconsistent models where the optimal policy

is potentially lost if risk is evaluated at any later time, hence we need to retrain a different

model to price options with different maturities.

As the potential limitation of our works on ERP, we only evaluated the performance of

our model in a synthetic environment using a simple neural network architecture. One may

be interested in examining the performance of this model under real market conditions, as

training a model in a synthetic environment is significantly simpler than a real market that

often exhibits non-stationary behaviors. In addition, we only considered European style

options in our implementation of DRL. Extending our DRL approach to solve the case of

American options is an interesting direction that has not been well explored in our works.

We leave these as the future work that can reveal more interesting results regarding our

framework.

In our last chapter we developed a DRL model for time series analysis in a portfolio

management problem using real market data. In particular, we built on the literature

on DRL models suggested for the task of portfolio management and introduced a new

architecture that can effectively take the cross asset correlations into account and come

up with high performance portfolio policies. We called this new architecture WaveCorr.

As an important contribution, in the last chapter we introduced an essential property

that is called asset-permutation invariance. We numerically demonstrated the importance

of satisfying this property by running experiments on real market data that provided

highly stable portfolio policies compared to our benchmark model that does not satisfy this

property. Also, by testing the model on a diverse set of data sets, including one that spans

through the COVID-19 pandemic, we showed that our framework is able to outperform

other state-of-the-art DRL based portfolio selection models.

Although the numerical experiments in the last chapter is performed for a portfolio

management problem, the model can be easily embedded in our ACRL framework that

is introduced in the second chapter. In fact, we believe the results of this thesis can be

complemented by further studying WaveCorr under ACRL setting where we can benefit

from the exploration ability of ACRL for both option pricing and portfolio management

applications.
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