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Résumé

Dans cette thèse, nous étudions les problèmes de choix de portefeuille optimal en temps

discret, donc dans une marché incomplète. Nous donnons une introduction générale

dans la partie I.

Dans la partie II, nous développons un algorithme de programmation dynamique

vers l’avant pour résoudre les problèmes de choix de portefeuille optimal. Cette méthode

itérative est basée sur des simulations et offre ainsi une grande flexibilité pour la modélisation

des rendements des actifs. Cette méthode avancée est vers l’avant dans le sens que le

choix de la décision dans chaque scénario est effectué depuis l’instant 0 jusqu’ la fin

de l’horizon, par opposition aux méthodes traditionnelles de programmation dynamique

par l’arrière (BDP). Notre méthode réduit considérablement le fardeau de calcul des

méthodes typiques de BDP car il n’y a pas besoin de discrétiser l’espace d’état ni

l’espace de décision/action. L’algorithme résultant est adapté aux problèmes où le

nombre d’actifs dans le pool d’investissement est important. En outre, il existe des

indications selon lesquelles la méthode pourrait être naturellement étendue pour inclure

d’autres caractéristiques telles que les coûts de transaction et la consommation intertem-

porelle.

Dans la troisième partie de cette thèse, nous développons un algorithme de program-

mation dynamique par l’arrière pour résoudre le problème de choix de portefeuille opti-

mal dans le contexte des rendements non-gaussiens (la distribution de Johnson-SU ), une

caractéristique prédominante des actifs financiers. Nos tests numériques avec des données

historiques suggèrent que les politiques optimales sont significativement différentes selon

les deux hypothèses (la distribution de Johnson-SU et la distribution gaussienne) pour

les rendements d’acitif. Notre contribution principale est d’explorer comment les rende-

ments journaliers non-gaussiens peuvent modifier la décision d’un investisseur typique



lorsque les rendements sont prévisibles.

Mots clés: choix de portefeuille optimal, sélection optimale de portefeuille, pro-

grammation dynamique approximative, distribution Johnson-SU , VAR(1), CRRA, pro-

grammation dynamique vers l’avant.

Méthodes de recherches: analyse numérique, recherche quantitative.
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Abstract

In this thesis, we study optimal portfolio choice problems in discrete time, thus in an

incomplete market economy. We give a general introduction in Part I.

In Part II, we develop a forward dynamic programming algorithm to solve optimal

portfolio choice problems. This iterative method is based on simulations and thus offers

great flexibility for the modelling of assets’ returns. It is a forward method in that the

choice of decision for any scenario is effectively done from time 0 to the end of horizon, in

opposition to traditional backward dynamic programming (BDP) methods. Our method

reduces significantly the computational burden of typical BDP methods since there is no

need to discretize the state space nor the decision/action space. The resulting algorithm

is suitable for problems where the number of assets in the investment pool is large.

Furthermore, there are indications that the method could naturally be extended to

include other features such as transaction costs and inter-temporal consumption.

In Part III of this thesis, we develop a backward dynamic programming algorithm

to solve the optimal portfolio choice problem in the context of non Gaussian returns, a

prevalent feature of financial assets. Our numerical tests with historical data suggest that

the assumption of Johnson-SU distribution leads to quite different optimal policies than

the case with Gaussian returns. Our major contribution is to explore how non-Gaussian

log-returns can alter a typical investor’s decision when returns are predictable.

Key Words: optimal portfolio choice, optimal portfolio selection, approximate dy-

namic programming, Johnson-SU distribution, vector auto-regressive, CRRA, forward

dynamic programming.

Research methods: numerical analysis, quantitative research.
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mon PhD. Ce sont les personnes les plus importantes dans mon monde et je leur dédie
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Part I

General Introduction



The problem of portfolio selection and management with rebalancing has been in-

tensively studied in the financial economics literature after the pioneering works of

[40, 41, 42] and [53]. This problem is a mathematical framework for assembling a portfo-

lio of assets such that the investor’s objective is attained according to a certain criterion.

Typically the criterion must take both assets’ returns and risks into account while the

objective is to maximize the expected utility of final wealth after a number of time peri-

ods. The optimal policy to this problem strikes a balance between risk and reward and

both in the present and the future. The investor benefits from a properly structured in-

vestment plan based on his/her knowledge from the past. This problem has many names

in the literature, such as “modern portfolio theory”, “optimal portfolio choice”, “portfo-

lio selection”, “optimal portfolio allocation”, “portfolio optimization” or “intertemporal

portfolio choice” to name a few. While there is no consensus for the nomenclature, we

use “optimal portfolio choice problem” (OPCP) for the purpose of this thesis.

Recent academic research on OPCP has focused on the identification of key aspects

of real-word OPCPs and to understand both qualitatively and quantitatively their role

in the optimal investment decisions of individuals and institutions. To find realistic

solutions to OPCPs, a critical step is to relate the theoretical formulation of the problem

and its solution to the data. There are several ways to accomplish this task, yet no

single approach has emerged as a clear favourite. Each approach has its advantages

and disadvantages, and an approach favoured in one context is often less attractive in

another.

An OPCP can be formulated either in continuous or discrete time. In the continuous

time formulation, it is assumed that the portfolio can be balanced at every single instant.

Its advantage is the analytical tractability – closed-form solutions can be derived by the

use of stochastic calculus for problems which are analytically intractable in discrete

time. However, the real world seems to be more in concordance with a discrete time

modelling because a portfolio cannot be rebalanced at every instant of time. Even though

the continuous-time Bellman equation is the limit of its discrete-time counterpart, the

solutions to the two problems are different. The reason is that the continuous-time

optimal policies are not necessarily admissible in discrete time due to possible negative

wealth [6]. One may argue that continuous time modelling can be approximated by

trading at extremely high frequency, but the resulting transaction costs due to liquidity

problems (or market depth) may be exceptionally large thus considerably degrading a

trading strategy’s performance.
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In the discrete time formulation, portfolio weights are rebalanced only at a finite

number of decision moments. At each decision moment, the optimal allocation depends

in general on the level of state variables (e.g. amount of wealth, past asset returns, etc.)

at the beginning of current time period. Asset returns within the current time period are

observed, resulting in a new amount of wealth for the next decision moment. This process

is repeated until the end of the investment horizon. A favourite method for solving an

OPCP in discrete time is dynamic programming, a method which takes future decision-

making into account while making decisions for the present. In traditional dynamic

programming, optimal policies are calculated backward: the last period decision rule,

contingent on available wealth and the realizations of all previous periods’ asset returns,

is devised in advance using the terminal condition; then the next-to-last period’s decision

rule is devised, taking into account how the results of this period will influence the final

period’s decisions; and so forth backward in time. This procedure quickly becomes very

complex if there are more than a few time periods or more than a few assets.

In this thesis, we focus on two methods to solve OPCPs in the discrete time formula-

tion with finite investment horizon and where the investor’s preferences are characterized

by the CRRA utility function.

In Part II, we develop a forward dynamic programming (FDP) algorithm. This is a

forward method in that the choice of decision for any scenario is effectively done from

time 0 to the end of horizon, in opposition to traditional backward dynamic programming

(BDP). The resulting algorithm is iterative and based on simulations and thus offers a

great flexibility for modelling assets’ returns. Value function approximations are used to

make decisions in every iteration. In the first iteration, decisions can be very far from the

optimal ones since the initial approximations are arbitrarily selected and thus represent a

poor description of the true value functions. Even so, the information collected within the

current iteration will be used to correct and improve the quality of these approximations.

The updated approximated value functions are used in the next iteration for decision-

makings; and so on back and forth until the approximations are stable or the convergence

of optimal weights is obtained.

Compared to BDP, the FDP offers comparable precision in portfolio weights while

reducing the computational burden by avoiding the trouble of discretizing in both the

state and action space. Our method dissociates the decision process from the return

generation process. In other words, the simulation-based algorithm remains the same

regardless of the underlying return distribution. Assets’ returns are considered as exoge-

3



nously given and fed to the algorithm as input. The whole decision-making algorithm

is independent from the way that assets’ return are simulated. Finally, there are indi-

cations that the method could naturally be extended to include other features such as

transaction costs and inter-temporal consumption.

In Part III, we follow the main stream of methodology in the literature – backward

dynamic programming (BDP). We put the commonly used Gaussian distribution for

assets’ return into question and develop a quasi-analytic BDP method through the use

of Gauss-Hermite quadrature for OPCPs where returns are predictable and follow a

restricted vector auto-regressive (VAR) process with Johnson-SU noises.

Parts II and III of this thesis each opens with an introduction and literature review

specific to that part in order to highlight our motivations, followed by descriptive sections

of the methods, sections presenting numerical results, and a discussion of managerial

impacts. The final part of this thesis concludes and outlines our contributions to the

literature.

4



Part II

Optimal Portfolio Choice

Problems with Forward Dynamic

Programming



In Part II of this thesis, we present our forward dynamic programming approach to

solve OPCPs where the portfolio may be rebalanced at finite decision moments. The

objective of our representative investor is to maximize the utility of his final wealth at

the end of the investment horizon. In this simulation-based iterative approach, decisions

are made from the starting point forth and updates of value functions are completed

backward in time. The algorithm relies on appropriate value function approximations

and a reliable updating procedure. It starts with a relatively poor estimation of value

functions and learns from trial-and-error through realistic simulations of risky assets’

returns. The information acquired is used to correct the estimated value function. The

algorithm stops when the pre-defined criteria are satisfied.

This part is structured as follow. Chapter 1 consists of a literature review on OPCPs

in discrete time formulation. This chapter also brings out the motivation of our FDP

approach. Chapter 2 sets up the theoretical formulation of multi-period OPCPs with

utility maximization in discrete time. The section opens with arbitrary utility functions

and then focuses on the particular case of CRRA utility function. Chapter 3 is dedicated

to our forward approach. It begins by establishing the theoretical foundation of the FDP

before presenting the very algorithm and various discussions on the algorithm’s param-

eters. Numerical examples are included in Chapter 4 to illustrate the performance and

computation time of FDP compared to the classical BDP approach by Gauss-Hermite

quadrature. This section also contains a sensitivity analysis of FDP algorithm param-

eters. Finally, Chapter 5 summarizes the principle features of the FDP approach and

highlights our contributions to the literature.
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Chapter 1

Literature Review for Part II

The first section is devoted to a brief review of methods used in the literature to solve

OPCPs with a focus on the intertemporal expected utility maximization. The second

section examines the existing literature of forward dynamic programming (FDP), also

known as approximate dynamic programming which finds its origin in reinforcement

learning or machine learning. The last section consists of a review of applications of

FDP on finance related fields.



CHAPTER 1. LITERATURE REVIEW FOR PART II

1.1 The Optimal Portfolio Choice Problem in Discrete Time

A first approach to formulate the optimal portfolio choice problems in discrete time is

the mean-variance paradigm of [40]. This paradigm, capable of capturing the two fun-

damental aspects of portfolio choice – diversification and the trade-off between expected

return and risk – is currently the most common formulation in industry. However, de-

spite its simplicity and analytical form, this paradigm has its limits. For instance, it is

a myopic single-period problem while most investment problems involve longer horizons

with intermediate portfolio rebalancing. Furthermore, the mean-variance formulation,

only representing the special case of quadratic utility, ignores any preferences toward

higher-order return moments [6]. This ignorance is not desirable according to recent

literature. For example, [27] show that systematic skewness of asset returns is economi-

cally important and recommands a risk premium of 3.6% on average per year. Similar

conclusions were drawn in [44], where the authors find that empirically investors sacrifice

mean-variance efficiency for higher skewness exposure.

The limits of the mean-variance framework lead to the second formulation, the inter-

temporal expected utility maximization. Its dynamic nature suggests the use of dynamic

programming to solve multi-period OPCPs in discrete time. Unfortunately, closed-form

solutions are available only for a few special cases. The recent literature has been focused

on the development of various numerical and approximate methods to incorporate real-

istic features of the investor’s preferences and return dynamics. Some authors assume

simple, sometimes even unrealistic, return distributions or particular utility function

forms, and perform various expansions of the value function for which the problem can

be solved analytically. For example, [12] log-linearize the first-order conditions (FOCs)

and budget constraint. [33] identify the equilibrium in multi-agent economies by asymp-

totic analysis and assuming power utilities. [20] substitute a general polynomial form

for the value function into the FOCs to solve for optimal controls. Other authors pre-

fer the discretization approach which requires firstly discretizing over the state space,

and evaluating the value function at each point on the grid by a choice of quadrature

integration [2], simulations [3], binomial discretizations [19], nonparametric regressions

[5], or Taylor expansion [25, 26]. Then the value function over the entire state space is

approximated by interpolation and the dynamic optimization can be solved by backward

recursion.

However, the discretization approach suffers from the so-called “curse of dimension-

8
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ality” when the problem involves more than a few number of state variables. Recent

research has been focused on the development of simple, precise, and efficient algorithms

to deal with potentially large-scale problems with path-dependency or non-stationary dy-

namics. For this purpose, the simulation-and-regression method, pioneered by [34] for

pricing American-style options, has lately received particular attention from for example

[7, 22, 21]. The idea is to repeat a two-step procedure beginning from the last period

T where we know the exact form of the objective function. These algorithms involve

simulating a set of sample paths of state variables in a first step, and then regressing

the realized values over a set of basis functions to obtain approximate value functions.

The algorithm in [7] relies on the maximization of a Taylor expansion of the investor’s

expected utility where conditional moments are computed with least squares regression

of the realized utility and its derivatives on basis functions. [22, 21] propose to regress

over the decision space as well (also known as “Q-learning”). This approach is interest-

ing since it avoids the overhead work associated with deriving the first four derivatives

of the value function, unlike the Taylor series based approach. Moreover, it can also

handle functions that are not differentiable. The authors show with numerical examples

that only relatively few discretization points on the decision space are needed to obtain

good precision.

In Part II of this thesis, we develop an algorithm following the idea of regression over

the decision space, similar to in [22] except for solving the problems with forward instead

of backward recursion. The next subsection provides a brief review on the development

of forward dynamic programming and its applications.

1.2 The Origin of Forward Dynamic Programming

The ideas and techniques of forward dynamic programming find their roots in rein-

forcement learning (or machine learning) from the optimal control community or neuro

dynamic programming from the artificial intelligence community. [4] treated the theo-

retical aspects in the language of control theory. Later, [55] describe the field from the

perspective of artificial intelligence and computer science community. And recently, [51]

tells the story to the operational research community. This family of algorithms uses

forward iterations to solve a forward version of Bellman’s equation. Although many

forward algorithms are highly related to their backward twin, for many problems the

forward approach is more convenient or sometimes even the only feasible one, especially

9
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when the final state set is unknown. Scientists from different communities appear to be

working in different worlds and have their own terminology unique to themselves for the

same technique. The book of [51] does mention some connections between those related

fields.

As their backward twin, FDP algorithms are often used to solve a Markov decision

process (MDP) which are used in a wide area of disciplines including robotics, automated

control, economics, finance and manufacturing. A core body of research on Markov

decision processes results from the book of [28]. In the context of solving a MDP, a

typical FDP algorithm starts from time zero. The decision maker chooses an action

based on all available information he possesses up to that instant and from his current

state. Then he receives an observation of the exogenous environment including a random

realization (which leads the system transit to the next state), and a reward (which is

then used to update his beliefs on the environment based on which next actions will be

taken). It is worth to note that a key advantage of FDP algorithms is that the knowledge

of explicit specification of the transition probabilities is not required. In contrast, this

knowledge is required with BDP algorithms. In other words, if transition probabilities

are unknown in a particular problem, as long as they can be observed or accessed through

an exogenous simulator, forward algorithms can be applied. FDP algorithms are also

suitable for on-line problems where decisions are taken in a serial fashion or in the order

that the input is fed to the algorithm, without having the entire input available from

the start.1

The idea of proceeding forward can be further combined with function approxima-

tions to address problems with a very large number of states. Popular choices include

piecewise linear approximations, basis function approximations, etc. Common FDP algo-

rithms include for example Q-learning, temporal difference learning. There exists a rich

literature for FDP algorithms2. For example, in the control community, [48] study policy

evaluation algorithms using linear function approximation for an infinite-horizon prob-

lem. In the operational research community, [14] examine the portfolio selection problem

in the mean-variance framework and provide an algorithm using Bayesian inference to

accommodate qualitative input about expected returns. [52] use basis functions to ap-

proximate value of states and a Bayesian belief structure to represent uncertainty about

unknown values, based on the knowledge gradient concept from the optimal learning

1When the algorithm’s performance is compared to that where an agent acts optimally from the
beginning (an offline algorithm), the difference in performance gives rise to the notion of regret.

2We refer the readers to [55, 50, 51] for a more complete introduction and available FDP algorithms.
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literature.

In summary, two features make FDP algorithms powerful: the use of samples to

optimize performance and the use of function approximations to deal with large-scale

environments.

1.3 Solving OPCPs by FDP: Motivations

In Part II of this thesis, we propose a FDP algorithm to solve multi-period OPCPs in

discrete time within the maximization of expected utility of an investor’s final wealth.

Decisions are taken progressively forward in time while updates of approximate value

function are completed backwardly. The decision process is totally independent from

the simulation process of exogenous state variables.

Our approach bypasses the need of any form of expansion, thus can handle more gen-

eral form of utility functions. The simulation-based recursive algorithm does not require

any discretization neither on the state space nor on the decision space. It is therefore a

potential candidate algorithm for large-scale problems. Moreover, our numerical results

show that the approach offers better precision within less computation time as compared

to a BDP approach with discretization and Gauss-Hermite quadrature.

The rest of Part II is organized as follows. Chapter 2 describes the dynamics of the

returns and portfolio problem examined in this study. Chapter 3 is the core chapter of

this part. It presents the detailed FDP approach. This chapter opens with an intro-

duction (Subsection 3.1) presenting a scketch and an illustrative example of the FDP

method, followed by a description of the theoretical framework (Section 3.2). Section

3.3 offers algorithms in the general case (3.3.1) and in the particular case where the

investor’s preferences can be characterised by the CRRA utility function (3.3.3 for inter-

dependant assets’ returns and 3.3.4 for iid assets’ returns). This core section ends with

a discussion of parameter selection. Chapter 4 examines numerical results, and Chapter

5 concludes.
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Chapter 2

The Optimal Portfolio Choice

Problem

This chapter first describes the general formulation of an OPCP with a generic utility

function before presenting the set-up of the particular case studied in this project i.e.

with the CRRA utility. Problem set-ups for two specific dynamics of assets’ returns (iid

and VAR(1)) within the CRRA utility framework are presented.



CHAPTER 2. THE OPTIMAL PORTFOLIO CHOICE PROBLEM

2.1 General Formulation

The investment opportunity set consists of Na risky assets and a risk-free asset (cash).

The return of the risk-free asset is denotedRf which is assumed to be known and constant

over time. The excess return of risky assets are denoted by Rt = (R̂t,1, . . . , R̂t,Na), where

R̂t,k, for k = 1, . . . , Na is the excess return over the risk-free asset of asset i for the period

(t− 1, t]. We define the excess return as the difference between the gross return of risky

assets (Rg
t ) and the risk-free asset: Rt := Rg

t − Rf . We will allow the possibility that

assets’ returns exhibit some degree of predictability. To model this, let zt be a vector of

exogenous information. One can view zt as a vector of observable market state variables

influencing risky assets’ returns Rt+1.

Our investor is provided with initial wealth W0 at time t = 0 and wishes to maximize

the expected utility of his terminal wealth at date T through a series of portfolio rebal-

ance strategies among risky assets and the risk-free security at times t = 0, 1, . . . , T − 1.

There are no transaction costs nor taxes, and no intermediate consumption. With these

assumptions, the investor’s OPCP can be expressed as

V0(W0, z0) = max
{xt}T−1

t=0

E0 [u(WT )] , (2.1)

with the following self-financing constraints at all t:

Wt+1 = Wt (xtRt+1(zt) +Rf ) , (2.2)

where xt is the vector of percentage allocation of the investor’s wealth in risky assets

at time t, E0 denotes the expectation conditional on the information available at time

t = 0, which is in this case, the initial wealth W0 and the initial exogenous states value

z0, and u(·) is a non-decreasing concave utility function describing the investor’s risk

preferences. In the previous equation, asset returns are expressed as a function of the

exogenous state variables to emphasize the inherent dependence of Rt+1 on zt.

At each rebalancing moment t, an investor allocates his total wealth Wt into the set

of available assets by deciding the percentage amount xt,i to invest (the decision variable)

in asset i. The vector xt = [xt,1, . . . , xt,Na ], where xTt I ≤ 1 is the portfolio allocation in

risky assets immediately after decisions at time t are taken but before new returns for

the next period t+ 1 become available.

13
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According to the Bellman principle, solving the equation (2.1) above is equivalent to

solving the so-called Bellman equation

Vt(St) = max
xt

Et [Vt+1(St+1)] , (2.3)

subject to the self-financing constraint (2.2) where St = (zt,Wt) is the vector of state

variables of this dynamic program problem. The Bellman equation (2.3) defines the

function Vt which represents the best value one can achieve from time t to the end

of the investment horizon given the current state St. The value function at the end

of the investment horizon is assumed to be the utility of terminal wealth1: VT (ST ) =

VT (zT ,WT ) = u(WT ),∀zT .

Conditional expectations in (2.3) are taken over the random asset returns Rt+1 and

the next period information state zt+1. We assume all expectations are well defined and

there is no opportunity of arbitrage in the market, a sufficient condition for the OPCP

to have a unique solution (see for example the “Portfolio Choice Theorem” in Section

9.7 of [35]). Following the Proposition 2.1 in [10], the value function Vt(zt,xt,Wt) is non

decreasing in total wealth Wt and jointly concave in (xt,Wt) for any market state zt.

Therefore, the optimization problem (2.3) is convex, as the maximization of a concave

function over a convex set.

The next section presents the particular case studied in this project where the

investor’s risk preferences can be characterized by the constant relative risk aversion

(CRRA) utility function.

2.2 OPCPs with CRRA Utility

Consider the constant relative risk aversion (CRRA) utility function:

u(WT ) =
W 1−γ
T

1− γ
, γ > 1.

It is well known in the OPCP literature, e.g. [7, 25], that the homotheticity of CRRA

utility implies the fact that optimal portfolio weights are independent of the level of

wealth. This property of the CRRA utility function allows to remove the variable Wt

1We could have instead defined the final wealth in terms of the liquidation value of the portfolio,
including the transaction costs associated with liquidation.
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from the list of state variables, yielding the reduced Bellman equation

Vt(zt) = max
xt

Et
[
(Rf + xtRt+1(zt))

1−γ Vt+1(zt+1)
]
, (2.4)

with terminal condition VT (zT ) = 1/(1 − γ),∀zT . In equation (2.4), it is assumed that

assets’ returns at time t + 1 can be predicted by the vector of information zt. Two

specific return dynamics will be studied in this project. In the first case, assets’ returns

follow a vector autoregressive (VAR) process of order 1, and in the second case assets’

returns are assumed to be independent and identically distributed (iid). The next two

subsections are dedicated to the description of the problem setups with these two specific

return dynamics respectively.

2.2.1 Predictable Asset Returns

Let’s first consider a problem similar to the one examined in [56, 26] and in [21]. In this

problem, it is assumed that the excess returns are predictable with a dynamics given by

the following 1st order vector autoregressive process VAR(1):

Rt+1 = A0 +A1Rt + ξt+1,

where A0 and A1 are matrices of size Na-by-1 and Na-by-Na respectively for constant

parameters, and ξt+1 is a vector of Gaussian error terms with constant covariance matrix

Σ. This model is the multidimensional version of the AR(1) process and it captures linear

interdependencies among asset returns. The exogenous state variables zt introduced in

the last section are the 1-period lagged returns Rt, which influence assets’ returns in the

next period Rt+1 through the VAR(1) dynamic.

The Bellman equation (2.4) for the OPCP with CRRA utility and VAR(1) return

dynamic can be expressed as

Vt(Rt) = max
xt

Et
[
(Rf + xtRt+1(Rt))

1−γ Vt+1(Rt+1(Rt))
]

(2.5)

under the self-financing constraint (2.2) and with the terminal condition

VT (RT ) = 1/(1− γ),∀RT .
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2.2.2 IID Assets Returns

Now let’s consider the case as studied by [25] where risky assets’ returns are assumed

to be independent and identically distributed from one period to another. In this case,

no exogenous state variable need to be modelled because returns are independent thus

cannot be predicted. The Bellman equation (2.4) simplifies to

Vt = max
xt

Et
[
(Rf + xtRt+1)

1−γ Vt+1

]
(2.6)

with constraint (2.2) and terminal condition VT = 1/(1 − γ). Notice that the value

function at time t is independent of the physical state of the system and simplifies to

a constant regardless the value of assets’ returns or wealth level. As demonstrated in

[25], an important feature of OPCPs with CRRA utility function and iid asset returns

is that the multi-period problem reduces to a series of single period problems and the

percentage allocations in risky assets are the same for all periods.
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Chapter 3

Solving Portfolio Choice Problem

Using FDP

This chapter presents our forward dynamic programming algorithm. In Section 3.1,

we first motivate our forward approach by an example which illustrates the “curse of

dimensionality” suffered by usual BDP approaches. Then in the same section, we provide

a sketch of our proposed forward algorithm. Next, Section 3.2 presents the notions of

post-decision state variables and post-decision value functions, which are one of the

core parts in our forward algorithm. It will be shown that, through the use of post-

decision value functions around post-decision state variables, the order of maximization

and conditional expectation can be inverted in the usual Bellman equation, which further

gives rise to the forward approach. Pseudocode of forward algorithms for the general

case and two specific cases are presented in Section 3.3. Finally implementation details

and parameter tuning are discussed in Section 3.4.

3.1 Introduction and Overview

The dynamic nature of multi-period OPCPs suggests the use of dynamic programming to

solve it. DP is a well-known method widely used in many fields and relies on the Bellman

principle. In a typical DP algorithm, the solution is obtained through backward recursion
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on a grid of state variables1. These BDP algorithms suffer from the well-known “curse

of dimensionality” due to the need of discretization. As an illustration, assume there are

3 exogenous state variables (zt is a 3-by-1 vector). If the domain of each state variable

and of total wealth are discretized into a grid with 20 points in each dimension (which

is a coarse grid), the state space would consist of 203+1 = 160, 000 points in total. This

means that, at each rebalancing moment t, we need to solve the optimization problem

in (2.3) 160, 000 times. And in addition, for each of the possible states, we repeatedly

have to compute numerically the conditional expectation of random returns in (2.3) with

computationally expansive numerical methods2.

As the BDP approach becomes very inefficient when the dimension of state vari-

ables exceeds a few, we propose a forward version of dynamic programming to solve

OPCPs. The forward dynamic programming (FDP), springing from Artificial Intelli-

gence or Reinforcement Learning, is a simulation-based algorithm and does not require

any discretization. It is thus naturally a candidate for high-dimensional problems. In our

proposed approach, the decision process is totally independent from the simulation pro-

cess of exogenous state variables, which offers possibilities of easy extensions to include

interesting features of assets’ returns or the investor’s risk preferences.

The recursive FDP algorithm we proposed in this project is composed of two passes –

forward and backward as sketched in Figures 3.1 and 3.2. The rest of the current section

draws an overview of our approach without getting into any technical details. Our

intention here is to introduce the general idea instead of providing thorough explanation

about each step in our algorithm which will be found in later sections of this chapter.

Our algorithm starts with a forward pass as illustrated in Figure 3.1. The number

inside the parenthesis stands for the iteration number. Within iteration n, decisions are

taken forward in time at each step t = 0, 1, . . . , T − 1 based on a set of value function

approximations Ṽ
(n)
t (St;xt) which represents one’s best knowledge about the system.

The value functions and its approximations usually depend on the state variable St and

the decision variable xt. It is the modeller’s responsibility to choose the appropriate form

of approximations based on problem-specific features such as the utility function and the

dynamics of the state variables. Examples of popular approximations include look-up

tables, polynomial approximations, or neural network. Our choice of approximation will

1Please refer to Part III where we developed a BDP algorithm with GH quadrature to study OPCOs
with non-Gaussian assets’ returns. A literature review of BDP methods can also be found in this part.

2Of course this can be avoided if there exist analytical expressions for the conditional expectation,
which is the case only in few particular cases for return distribution.
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be presented later in section 3.3; in the current section, we invite the reader to visualise

the value function approximations in an arbitrary form or just think of an approximation

of his choice. In the rest of this thesis and where the context allows, we will omit the state

variable inside the parenthesis and use Ṽ
(n)
t to denote the value function approximations

within the n-th iteration.

Figure 3.1: FDP algorithm illustration: forward pass

After the time-t decision is taken based on the value function approximations from

the previous iteration Ṽt(·)(n−1) – a strategy called “exploitation” – a realization of the

exogenous state variables for the next period (t, t+ 1] is observed or simulated from an

external simulator. The observed or simulated z
(n)
t+1 produces a realization for assets’

returns R
(n)
t+1(z

(n)
t+1), leading the system to the next state S

(n)
t+1. Recall the state of the

system is composed of the vector of exogenous variables which influence future assets’

returns and the level of total wealth S
(n)
t := (z

(n)
t ,W

(n)
t ). This very procedure is repeated

until the reach of the terminal time T , where the exact form of the value function VT (·)
is known thanks to the terminal condition.

Next, the algorithm enters a backward pass to update value function approximations

as illustrated by Figure 3.2. Starting from the terminal time T , the realized value on

current path is computed by ν̂
(n)
T = VT (S

(n)
T ) (see step(1)). Then in step(2), the time

T − 1 realized value ν̂
(n)
T−1 is calculated backward in time by the Bellman principle and

using the decision x
(n)
T−1 made previously in the forward path, the simulated assets’

returns R
(n)
T as well as the time T realized value ν̂

(n)
T which is just obtained in step(1).

Note that the time T − 1 realized value is in fact a function of the decision x
(n)
T−1, the
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state variable S
(n)
T and the next period realized value ν̂

(n)
T . We denote this relation by

ν̂
(n)
T−1 = h(x

(n)
T−1,S

(n)
T , ν̂

(n)
T ), where h(·) is a generic function linking ν̂

(n)
T−1 to its arguments.

The actual form of h(·) is problem specific since it depends on the underlying utility

function and the dynamics of state variables. For the moment, we consider the most

general case and do not specify h(·). Two particular cases with CRRA utility will be

described in sections 3.3.3 and 3.3.4. Once ν̂
(n)
T−1 is obtained, it is used to update the

value function approximations at T − 1 (see step(3)). The procedure is continued by

repeating steps (2)− (3) for every decision moment t until time zero. The set of updated

approximate value functions will be used in the next iteration for the decision-making

processes in the forward path.

Figure 3.2: FDP algorithm illustration: backward pass

It is possible that the reader finds the description of our forward approach too general.

This is normal at this point since the current section is intended to only provide an

overall view of our forward approach without going into details. A detailed algorithm

will be presented in Section 3.3.1 with a general form of utility function and arbitrary

approximate value functions. Algorithms will be provided for two particular return

dynamics with CRRA utility function in sections 3.3.3 and 3.3.4. Finally, Section 3.4 will
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cover a discussion on parameter tuning as well as implementation details. In preparation

for these sections presenting the detailed algorithms, the next section introduces first the

notion of post-decision, which is a key concept in our forward approach.

3.2 The Notion of Post-Decision

The term of post-decision state, essentially used by W. Powell and his co-authors [50,

51, 46, 52] may first appear unfamiliar to the readers, yet it is not a brand new notion.

In fact, the post-decision state is equivalent to the state-action pair or augmented state

in the reinforcement learning literature. It represents the “state” of the system once a

decision xt is taken but before the arrival of new exogenous information zt+1 (hence the

name post-decision). The following definition states the post-decision state variables in

the context of general OPCP formulation.

Definition 3.2.1. The post-decision state variable is defined as the triplet of exogenous

variables representing market information, the decision vector, and the endogenous state

variable representing the total wealth at time t:

Sxt ≡ (zt,xt,Wt). (3.1)

The superscript x in previous definition indicates that the system is in the state

after a decision x is made. The usual definition of state St = (zt,Wt) in BDP can

be considered as the pre-decision state. The relation between post-decision states and

pre-decision states is depicted by Figure 3.3: suppose that the system is in a pre-decision

state St at time t. From this state, assuming the decision xt is taken, then the system

transits to the time-t post-decision state Sxt . Next, realizations of the exogenous market

variables zt+1 and thus asset returns Rt+1 for the period (t, t + 1] are observed or

simulated, which leads the system to the next pre-decision state St+1 according to the

state transition equation (2.2).

Compared to Figures 3.1 and 3.2, the system transition within each time period is

intentionally separated into 2 steps: first from St to Sxt and then from Sxt to St+1. From

Figure 3.3, it can be noticed that the portfolio composition is changed by new decisions

xt at time t, but the total wealth Wt remains unchanged. On the other side, the arrival

of new market information zt+1 generates new assets’ returns Rt+1 which change the
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Figure 3.3: Illustration of the pre-post-pre transition process

total wealth from Wt to Wt+1 but not the portfolio composition xt. One should be aware

that the post-decision states do not exist in reality and cannot be observed in a physical

system; they are only auxiliary tools to illustrate the logic behind our forward approach.

Now we define the post-decision value function around the post-decision state:

Definition 3.2.2. The post-decision value function at time t is defined as the conditional

expectation of the value function at time t+1 given that the system is in the post-decision

state Sxt :

V x
t (Sxt ) ≡ Et [Vt+1(ST+1)|Sxt ] . (3.2)

where Sxt is defined in (3.1).

The post-decision value function is equivalent to the Q-factor in Q-learning (au-

thor?) [50]. In a similar way that the post-decision state is related to the pre-decision

state, the post-decision value function is linked to the pre-decision value function in the

following way:

Vt(St) = max
xt

V x
t (Sxt ), (3.3)

Equation (3.3) indicates an important distinction between the pre-decision and post-

decision value functions: by construction, the post-decision value function represents

the expected value at time t by taking a specific decision, which might or might not be

optimal, whereas the pre-decision value function is the consequence of taking the best

decision at time t due to the maximisation. In other words, the post-decision value

function is decision-dependent, while the pre-decision value function is the “best” value

of post-decision value function by taking the most appropriate decision.
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Substituting equation (3.3) into equation (3.2) but for time t + 1, we obtain the

recursive Bellman equation around the post-decision state at time t:

V x
t (Sxt ) = Et

[
max
xt+1

V x
t+1(S

x
t+1)|Sxt

]
. (3.4)

There are two key distinctions between the post-decision version (3.4) and the usual

version of Bellman equation which is given in equation (2.3). Firstly, as illustrated by

Figure 3.4, the post-decision Bellman equation establishes a recursive relation around the

post-decision states, while the usual Bellman equation is around the pre-decision states.

Secondly, in the post-decision version, the conditional expectation and maximisation

operators are inverted compared to the usual version.

Figure 3.4: Illustration of the Post-decision Bellman Equation

One notable implication of this inversion is that the maximisation problem in (3.4)

is deterministic rather than stochastic as it is the case in the usual Bellman equation

(2.3). As a matter of fact, it can be considered that the maximisation in (2.3) is made

at the beginning of the period [t, t + 1), before new returns become available. Since

assets’ returns are assumed to be predicted by the exogenous market variables zt, the

optimisation problem must take the conditional distribution of zt+1 given zt into con-

sideration, and thus is stochastic even if the functional form of Vt(St) is known. The

situation is slightly different in the post-decision Bellman equation. Due to the inver-
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sion, the maximisation operation is done before the conditional expectation. Moreover,

this maximisation problem can be considered to be made at the beginning of the pe-

riod [t + 1, t + 2) and thus after assets’ returns Rt+1 become available. Therefore, if

V x
t+1(S

x
t+1) is known, this optimisation problem is deterministic, which can still be quite

a challenging problem, but there is an extensive pool of efficient tools available to find a

solution.

The next section presents three FDP algorithms. The first one is for the most general

case with arbitrary choices of utility function and of approximated post-decision value

function. The other two algorithms are designed for two particular cases of return

dynamics with CRRA utility. In the two particular cases, post-decision value functions

are approximated by a set of polynomial bases.

3.3 FDP algorithms

3.3.1 The Basic FDP Algorithm

In Section 3.1, we explained the general idea of our FDP algorithm without getting

into technical details. This explanation was, however, in the language of the usual def-

inition of state variables and value functions since the notion of post-decision had not

been introduced yet. In our actual algorithm, the forward and backward passes are

performed using the concept of post-decision value functions around post-decision states

such as defined in Section 3.2. The goal is to obtain reliable estimates of these value

functions for all post-decision states in order to make decisions optimally. However,

if the state space is large (e.g. continuous state variables), it would be impossible to

have an exact representation of the optimal value being in each state over the entire

state space. A common technique is to approximate the post-decision value function

by a certain functional form. We denote the approximation of V x
t (Sxt ) introduced on

page 22 by Ṽ x
t (Sxt ), t = 0, . . . , T − 1. A series of strategies for this purpose includes

linear approximation, separable piecewise linear and concave approximation, and gen-

eral linear regression models with non-linear base functions. The selection of function

approximations should be problem-specific and based on the principle of parsimony.

Two important notational remarks merit some attention. First, we will omit the

functions’ arguments in the rest of this thesis if the context allows no ambiguity. Thus
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Ṽ (n) stands for Ṽ (n)(S
(n)
t ) and Ṽ x,(n) stands for Ṽ x,(n)(S

x,(n)
t ). Second, notations with

the superscript (n) denotes the sample realisation on the n-th path, while those without
(n) has a general meaning. As an example, Sxt represents the general post-decision state

variable at time t. It is a random variable thus its value is arbitrary. While S
x,(n)
t refers

to the realisation of Sxt on the n-th path. Its value is known after the time-t decision is

made.

Figures 3.5 and 3.6 illustrate the forward and backward pass in our FDP algorithm

with approximated post-decision value functions around post-decision states. Compared

to Figures 3.1 and 3.2, the idea is the same except that a post-decision state S
x,(n)
t

is added between S
(n)
t and S

(n)
t+1 and that the approximations are with respect to the

post-decision value functions Ṽ x,(n) rather than the pre-decision value functions Ṽ (n).

In these figures, we suppose the exogenous state variables are the lagged assets’

returns themselves zt ≡ Rt. Within each iteration n, the forward pass (Figure 3.5)

starts from t = 0. Given an initial state S
(n)
0 , a decision x

(n)
0 is made by maximizing the

current post-decision value function Ṽ
x,(n−1)
0 over the admissible decision space. This

decision brings the system to the post-decision state S
x,(n)
0 . Then a path of assets’

returns R
(n)
1 is simulated and the system transits to the next pre-decision state S

(n)
1 .

The procedure is repeated until the end of horizon T .

Each pre-decision state S
(n)
t is related to a pre-decision value function Ṽ

(n−1)
t , and

each post-decision state S
(n)
t is related to a post-decision value function Ṽ

x,(n−1)
t . More-

over, pre-decision and post-decision value functions are tied to each other. For example,

the two items embraced by the bracket 1 are linked in the following way:

1 : Ṽ
(n−1)
0 = max

x0
Ṽ
x,(n−1)
0 (3.5)

which is in fact equation (3.3) for t = 0. Similarly, the two items inside bracket 2 are

linked by:

2 : Ṽ
x,(n−1)
0 (S

x,(n)
0 ) = E[Ṽ

(n−1)
1 (S

(n)
1 )|Sx,(n)0 ] (3.6)

which is actually the definition of the post-decision value function (3.2) for t = 0. The

expectation in the above equation is conditional on S
x,(n)
0 because asset returns R

(n)
1 are

not known yet at node S
x,(n)
0 (see Figure 3.5). Note that replacing Ṽ

x,(n−1)
0 by 2 in

1 yields the usual Bellman equation for t = 0.
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Finally, the relation of the two items inside 3 is given by:

3 : Ṽ
(n−1)
1 (S

(n)
1 ) = max

x1
Ṽ
x,(n−1)
1 (S

x,(n)
1 ) (3.7)

which is in fact equation (3.3) for t = 1. Also note that replacing Ṽ
(n−1)
1 by 3 in 2

yields the post-decision Bellman equation for t = 0.

In the backward pass (Figure 3.6), at each decision moment t starting from t = T −1

until t = 0, realized values ν̂
(n)
t on the current path are first calculated in step(a), and

value function approximations are updated in step(b) around the post-decision states

S
x,(n)
t = (R

(n)
t ,x

(n)
t ,W

(n)
t ) rather than around the pre-decision states S

(n)
t . In other

words, updates around post-decision states involve the decision variable xt in addition

to the exogenous state variable Rt and the total wealth Wt. It is worth to point out

that the value function at t = T is known and given by the utility of final wealth:

VT (ST ) = u(WT ), ST = (RT ,WT ). (3.8)

Thus the time T − 1 realized value equals to:

ν̂T−1 = E[u(WT )]

In the case that only one path of assets’ returns is simulated, the expectation operator

is unnecessary and we have:

ν̂
(n)
T−1 = u(W

(n)
T ).

Realized values for t < T − 1 are obtained by the post-decision Bellman equation

(3.4) and the expectation operator is omitted if only one path is simulated. Therefore,

we have:

ν̂
(n)
t = max

xt+1

Ṽ
x,(n)
t+1 , 0 ≤ t < T − 1

Following the literature (see for example Section 10.2.5 in [51]), the quantity ν̂
(n)
t is a

valid, unbiased estimate of the value of being in state S
x,(n)
t and following the policy pro-

duced by Ṽ x,(n−1). Also notice that, since the update procedure is completed backward,

at the moment of calculating ν̂
(n)
t , the value function from the next period Ṽ

x,(n−1)
t+1 has

already been updated to Ṽ
x,(n)
t+1 . Therefore, we use the latest approximation Ṽ

x,(n)
t+1 to

obtain ν̂
(n)
t . Then the quantities ν̂

(n)
t are used to update the value function approxima-

tion at time t according to the pre-selected updating rule to get the new approximation
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Ṽ
x,(n)
t . The algorithm subsequently steps back one period to t − 1 and the same steps

repeat until it reaches t = 0.

Figure 3.7 presents our FDP algorithm in the general case where we don’t yet impose

a particular form for the utility function, value function approximations and update rules.

The main purpose of this recursive FDP algorithm is to “learn and update” iterative

approximations for the post-decision value functions through trial-and-errors at each

decision moment t. The following parameters must be set before starting the algorithm:

• Ṽ x,(0)
t (Sxt ), ∀t = 0, 1, . . . , T−1: initial guesses of the approximated value functions;

• N : total number of iterations (or stopping rules);

• Update(·): a technique to update the value function approximations.

The proposed basic FDP algorithm consists of several iterations of three main steps

excluding the initialization step where an initial (pre-decision) state S
(n)
0 = (z

(n)
0 ,W

(n)
0 )

is chosen and the iteration counter is set to n = 1. Within each iteration, the first main

step is to simulate a path for the exogenous state variables Z(n) = {z(n)1 , z
(n)
2 , . . . ,z

(n)
T }.

Then the algorithm enters the second main step – the forward pass as depicted by

Figure 3.5 – where one has in hand the current set of approximations Ṽ x,(n−1)(·) obtained

from previous iteration n−1. Starting from t = 0, decisions x
(n)
t are made based on these

approximations by solving the deterministic optimisation problem (3.9). These decisions

x
(n)
t bring the system to the time-t post-decision state S

x,(n)
t =

(
z
(n)
t ,x

(n)
t ,W

(n)
t

)
. Then

assets’ returns for the next period t + 1 are derived from z
(n)
t+1 which is part of the

simulated path of exogenous variables obtained in the simulation step. With the time

t + 1 assets’ returns, the total wealth evolves according to the self-financing constraint

(2.2). This procedure is repeated until T − 1, where the post-decision value function is

given by the expected utility of final wealth.

The third and final step is a backward pass to calculate realized values ν̂
(n)
t before

updating value function approximations, as illustrated by Figure 3.6. Starting from

t = T − 1, the realized values ν̂
(n)
t are first computed recursively by equation (3.10), and

then plugged into the pre-determined update rule to produce a new set of value function

approximations Ṽ
x,(n)
t , which will be used in the next iteration. It is worth noting that

equation (3.10) is in fact a simplified version of the actual recursive equation which is
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Basic Algorithm

1. Initialization.

1.1 Initialize the pre-decision state S
x,(n)
0 at t = 0 for all iterations n.

1.2 Set n = 1.

2. Simulation step: simulate a path of the exogenous state variables which

determine asset returns: Z(n) = {z(n)
1 ,z

(n)
2 , . . . , z

(n)
T }.

3. Forward pass: for t = {0, 1, . . . , T − 1}, do:

3.1 Decision step: Determine the optimal decision at t using current approximations

Ṽ
x,(n−1)
t by solving:

x
(n)
t = argmax

xt

Ṽ
x,(n−1)
t (S

(n)
t ,xt), (3.9)

where S
(n)
t = (z

(n)
t ,W

(n)
t ).

3.2 Save the realized values of the triplet S
x,(n)
t ≡

(
z
(n)
t ,W

(n)
t ,x

(n)
t

)
.

3.3 Calculate W
(n)
t+1 by the transition function: W

(n)
t+1 = W

(n)
t

(
x

(n)
t R

(n)
t+1 +Rf

)
, where

R
(n)
t+1 are obtained from z

(n)
t+1.

3.4 If t < T − 1, t = t+ 1, go to step 3.1; else end loop on t.

3.5 At the end of the forward pass, one should have in hand the n-th realisation of

the triplets S
x,(n)
t ≡

(
z
(n)
t ,W

(n)
t ,x

(n)
t

)
, at all decision moments t = 0, . . . , T − 1.

These triplets will be used in the backard pass to update value function
approximations.

4. Backward pass: for t = {T − 1, . . . , 0}, do:

4.1 Calculate the time-t realized value on current path using the
following recursive equation:

ν̂
(n)
t =

{
u(W

(n)
T ) if t = T − 1,

maxxt+1 Ṽ
x,(n)
t+1 (S

x,(n)
t+1 ) if t < T − 1

(3.10)

4.2 Update the value function approximation using the triplet S
x,(n)
t and the realized

value on current path ν̂
(n)
t by the pre-chosen update rule:

Ṽ
x,(n)
t (S

x,(n)
t ) = Update(Ṽ

x,(n−1)
t (S

x,(n)
t ), ν̂

(n)
t ).

4.3 If t > 0, t = t− 1, go to step 4.1; else end loop on t.

5. If n < N,n = n+ 1, go to step 2; else return the approximations Ṽ
x,(N)
t (·), ∀t.

Figure 3.7: Basic FDP algorithm with arbitrary choices of utility function and approxi-
mate post-decision value functions.

given below:

ν̂
(n)
t =

{
Et[u(W

(n)
T )] if t = T − 1,

Et[maxxt+1 Ṽ
x,(n)
t+1 (S

x,(n)
t )] if t < T − 1

(3.11)

Compared to equation (3.11), the expectation operators are removed in (3.10) since only

one path is simulated within each iteration. In practice, the actual performance of the

FDP algorithm depends on the quality of the input signal (or measurement) sequences

ν̂
(n)
t . If there is too much noise in the input signals, the approximations may actually
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not converge to the true value functions. To decrease input noises and to prevent brutal

oscillation of the estimates of ν̂
(n)
t , we could use equation (3.11) instead of (3.10) to

calculate the realized value in the backward pass. The expectation can be computed

either by closed formula (if available), quadrature methods (see [31]) or Monte Carlo

simulation (which is in fact what we suggest in Section 3.3.3).

This three-step procedure is repeated until the maximum number of iteration is

attained or the stopping criteria are satisfied. The proposed FDP algorithm is similar

to the double-pass algorithm for finite horizon (Figure 10.5) in [51]. The main difference

is that the double-pass algorithm in [51] proposes only to update the value function

approximation at t = 0 and thus the optimal policy is updated only at t = 0 through

one maximization. While in our algorithm, value function approximations at all decision

moments t = 0, . . . , T − 1 are updated and consequently the optimal policies at all

decision moments are updated. The next section presents a simplified 2-period example

to illustrate the basic FDP algorithm.

3.3.2 An Illustrative Example for the General FDP Algorithm

To better illustrate the general algorithm, consider the following 2-period example with

a single risky asset and a risk free asset. The risk free rate is 2%, meaning Rf = 1.02.

At each decision moment, the investor has two choices: xt ∈ {0, 100%}, t = 0, 1, which

means investing either none or all of his/her wealth in the risky asset. The exogenous

variable can take two values in each period: zt ∈ {−0.5, 0.5}, t = 1, 2. The asset returns

are influenced by the exogenous state variable in the following way:

Rt =

{
0.1, if zt = −0.5

−0.1, if zt = 0.5

It is worth to emphasize that the type of notations without the superscript (n) such

as zt stands for either a state or a decision variable, whose value is unknown. Once

the iteration number (n) is added as a superscript, notations such as z
(n)
t denote one

realization (sample path) of the corresponding variable zt and thus its value becomes

known and deterministic, i.e. no more uncertainty.

Before launching the algorithm, one has to decide how to update value function

approximations. The update rule should be problem specific. In the current example,
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we use a simple average rule for illustration purpose and refer the readers to Section 3.4

for more discussions on this subject.

At the beginning of the nth iteration, the initial state is set to z
(n)
0 = 0 and W

(n)
0 = 1.

Next, a random path of the exogenous variable is generated: Z(n) = {z(n)1 , z
(n)
2 } =

{−0.5. 0.5}, which yields the following return path: R
(n)
1 = 0.1, R

(n)
2 = −0.1.

Then the forward pass starts: based on the set of value function approximations

obtained in iteration n − 1, decisions are made forward in time. The value function

approximations can be very simple such as a lookup table representation or rather com-

plex. Let’s assume a lookup table representation in the current example and suppose

that V
(n−1)
0 is given by

Ṽ
x,(n−1)
0 (z0, x0,W0) =


4, if (z0, x0,W0) = (0, 0%, 1)

5, if (z0, x0,W0) = (0, 100%, 1)

10, otherwise.

Therefore, the optimal decision at t = 0 for this iteration will be x
(n)
0 = 100% since

V
x,(n−1)
0 (0, 0%, 1) = 4 < V

x,(n−1)
0 (0, 100%, 1) = 5. The decision x

(n)
0 changes the total

wealth to W
(n)
1 according to the transition function (2.2):

W
(n)
1 = W

(n)
0 (Rf + x

(n)
0 R

(n)
1 ) = 1 ∗ (1.02 + 100% ∗ 0.1) = 1.12

The procedure is very the same for t = 1. Suppose the current approximation of V
(n−1)
1

tells us:

V
x,(n−1)
1 (z1, x1,W1) =


3, if (z1, x1,W1) = (−0.5, 0%, 1.12)

2, if (z1, x1,W1) = (−0.5, 100%, 1.12)

1, otherwise.

So the optimal decision at t = 1 is x
(n)
1 = 0 because V

x,(n−1)
1 (−0.5, 0%, 1.12) = 3 >

V
x,(n−1)
1 (−0.5, 100%, 1.12) = 2. Accordingly, the final wealth at t = T = 2 on current

path is given by

W
(n)
2 = W

(n)
1 (Rf + x

(n)
1 R

(n)
2 ) = 1.12 ∗ (1.02 + 0% ∗ (−0.1)) = 1.1424.

The last step is the backward pass to first calculate the realized value on current
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path and then use them to update backwardly value function approximations. The

backward pass starts from t = T − 1 = 1 by either calculating ν̂
(n)
1 in its full version

according to equation (3.11) or by approximating it according to equation (3.10). Note

that, in either way, the actual calculation of ν̂
(n)
1 depends on the underlying utility

function. In this illustrative example, we assume an arbitrary utility function which

gives ν̂
(n)
1 = u(W

(n)
2 ) = u(1.1424) = 11. This value is then used to update V

x,(n−1)
1 (Sx1)

by the pre-determined updating rule:

V
x,(n)
1 (Sx1) =

{
V
x,(n−1)
1 (Sx1 )+ν̂

(n)
1

2 = 3+11
2 = 7, if Sx1 = (z

(n)
1 , x

(n)
1 ,W

(n)
1 ) = (−0.5, 0%, 1.12),

V
x,(n−1)
1 (Sx1), otherwise.

Notice that when a lookup table representation is used to approximate value functions,

only values related to states visited by the simulated paths are updated. Values of

unvisited states remain unchanged.

Similarly, the update at t = 0 is completed by first computing ν̂
(n)
0 either by equation

(3.10) or its full version (3.11), which again depends on the underlying utility function.

Again, we adopt the simplified version (3.10), thus ν̂
(n)
0 = maxx1 Ṽ

x,(n)
1 (S

x,(n)
1 ) = 7, and

the new set of approximations at t = 0 is given by:

V
x,(n)
0 (Sx0) =

{
V
x,(n−1)
0 (Sx0 )+ν̂

(n)
0

2 = 5+7
2 = 6, if Sx0 = (z

(n)
0 , x

(n)
0 ,W

(n)
0 ) = (0, 100%, 1),

V
x,(n−1)
0 (Sx0), otherwise

The same steps are repeated until the maximum number of iterations is attained or the

stopping criteria are satisfied. Note that when a lookup table representation is used as

approximation, only values of the visited states are updated. If a state is never visited,

its corresponding value will not be updated and thus stays at the initial guess. For

this reason, the choice of initial guesses often has significant impact on the algorithm’s

performance. Bad initial guesses might bias the decision making process, leading to

suboptimal policies. Therefore, value function approximations should be initiated with

care and caution.

A useful approach to reduce the impact of initial guesses on performance is to in-

troduce the ε − greedy strategy: with probability ε, choose a decision at random; and

with probability 1 − ε, choose a decision as usual, i.e. by solving equation (3.9) using

the old set of approximations. In the literature, the former way is known as exploration

and the latter is known as exploitation. Exploring new states from time to time can
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greatly enhance the algorithm’s estimating behaviour, while on the other side too much

exploration may also deteriorate the convergence speed, especially when the decision

space is large. This is the so called the exploration-exploitation dilemma which will be

further discussed in Section 3.4.

FDP algorithms can substantially change flavour according to the choices of func-

tional approximation and the update procedure. The following two sections focus on

the particular cases of OPCPs with CRRA utility, where post-decision value functions

are approximated by polynomial bases and coefficients are updated by regression and

exponential smoothing. Other possible update techniques are discussed in Section 3.4.

3.3.3 FDP Algorithm with CRRA Utility, Predictable Returns and

Polynomial Bases

Consider the problem described in Section 2.2.1 where the utility function is character-

ized by CRRA, assets’ returns follow a VAR(1) process and the bases are polynomials.

As discussed previously, with the CRRA utility function, optimal policies do not depend

on the level of total wealth which is thus removed from the list of state variables. The

VAR(1) dynamic implies that the exogenous state variables are the one-period lagged

assets’ returns. Therefore, the pre-decision and post-decision state variables reduce to

St = Rt, and Sxt = (Rt,xt) respectively. The post-decision version of Bellman equation

on the reduced3 value function is given by

Vxt (Sxt ) = Et
[
(Rf + xtRt+1)

1−γ max
xt+1

Vxt+1(S
x
t+1)|Sxt

]
, (3.12)

with the terminal condition VxT−1(S
x
T−1) = ET−1

[
(Rf + xT−1RT )1−γ /(1− γ)

]
.

From this section forth, we use polynomial bases to approximate post-decision value

functions around post-decision states. Precisely, we consider the linear regression model:

Vxt (Sxt ) ≈ Ṽxt (Sxt ) :=

P∑
p=1

θt,pφp(S
x
t ) = θ′tΦ(Sxt ), t = 0, . . . , T − 1. (3.13)

where φp(S
x
t ) : Sxt 7→ R is the pth base function whose value depends on the post-

3Recall that the term “reduced” refers to the fact that the value functions are independent of total
wealth.
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decision state variable Sxt and θt,p is its associated parameter or coefficient which will be

estimated by regression. It is worth to point out that this model is linear with respect

to the coefficients θt, but the base φp themselves can be non-linear regarding to state

variables Sxt . Using this form of representation, the post-decision value functions Vxt (Sxt )

are “summarized” by the coefficients θt. Our parametric value function approximation

(VFA) reduces the problem of finding the optimal value for each state to a much simpler

problem of estimating P parameters θt,p at each time step. It is assumed that the base

functions φp are time-invariant (and thus are not indexed by t), while their associated

coefficients θt,p are time-dependent. In this way, the form of the function approximations

is preserved while their value can evolve across time steps. This time-variant feature

is typical for finite horizon problems, in contrast to infinite horizon problems where

the system is assumed to be in a steady-state and thus the coefficients θt are time-

independent. The non-stationary property of finite horizon problems causes additional

difficulties, because the number of coefficients to be estimated is P ∗T instead of P as it is

the case for an infinite horizon problem. Moreover, estimation errors might accumulate

quickly across time periods.

There are many candidates for the basis functions φp(S
x
t ). The best choice varies

from one problem to another, and there is no general rule (except for theoretical analyses

which require some additional conditions). The best practice is to exploit as much as

possible problem-specific characteristics and to select base functions that reflect most

these characteristics. In the CRRA utility case, we adopt linear, quadratic and cross-

product terms of decisions and cross-product terms of decisions-returns as well as the

constant term (please refer to Chapter 4 for implementation details).

The selected updating rule is the exponential smoothing with a stepsize λ:

θ
(n+1)
t = λθ

(n)
t + (1− λ)θMt .

The parameter λ is also known as the “forgetting factor”. It controls the smoothing

or “forgetting” speed. By varying the value of λ, one adjusts the weights attributed

to current approximations θ
(n)
t and new information obtained in the last iteration θMt .

Large values of λ means more confidence on current approximations. We refer the readers

to Section 3.4 for a discussion on the selection of stepsize.

Having these approximated value functions and updating rule in hand, we propose

an algorithm for the case with CRRA utility and VAR(1) return dynamic as shown in
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Figure 3.8. This algorithm represents a refinement of the basic algorithm in Figure 3.7.

Recall that our basic algorithm is inspired by the double-pass algorithm for approximate

policy iteration (Figure 10.5 on page 392) in [51]. The main difference between the

double-pass algorithm and our basic algorithm is that the former only updates value

function approximations at t = 0, while the latter performs updates at all decision

moments t = 0, . . . , T − 1.

The algorithm in Figure 3.8 is almost the same as the general algorithm, except for

two major variations which need further explications. These two variations, to the best

of our knowledge, have not been applied in the context of solving OPCP by FDP, and

hence represent our major innovations to the literature. The first variation is within the

forward pass: an inner loop on m is added within each iteration n. The objective of this

inner loop is to build M pairs of (x
(m,n)
t ,R

(m,n)
t ) which are used later in the regression

of the backward pass. In this inner loop, the current set of approximations is evaluated

M times with additional simulated paths before any update is made. In other words,

the coefficients θ
(n−1)
t , which summarize the approximated value functions after n − 1

iterations, are kept unchanged within the nth iteration and are used to make decisions

on all the M additional paths, just as depicted in the decision step 3.1.1. The parameter

M can thus be viewed as the number of points in the regression. Note that, by adding

this inner loop, the resulting complete algorithm consists of N ∗M forward passes and

N backward passes (each involving M paths), compared to the general algorithm which

includes N forward passes and N backward passes.

The second variation is in step 4.1.1.2 of the backward pass, where a sub-simulation

step is introduced to estimate the realized value on current path ν̂
(m,n)
t which is in fact

a conditional expectation. This step aims to prevent big swings in the realized value

ν̂
(m,n)
t from one simulated path to another, and thus to insure faster convergence and

more accurate estimations. Other techniques, such as quadrature methods, can also be

used here as an alternative way to estimate the conditional expectation. We adopt the

Monte Carlo simulation method because it is robust, efficient and can be easily extended

to multidimensional cases.
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Algorithm – VAR(1) Asset Returns

1. Initialization.

1.1 Initialize S
(m,n)
0 for all iterations m,n.

1.2 Make an initial guess for the coefficients θ
(0)
t = 0.

1.3 Set n = 1.

2. Simulation step: simulate M paths of asset returns:

{R(m,n)
1 ,R

(m,n)
2 , . . . ,R

(m,n)
T }, m = 1, . . . ,M.

3. Forward pass: set m = 1, then do:

3.1 Set t = 0, and do:

3.1.1 Decision step: Determine the optimal decision at time t using the ε-greedy strategy:
with probability ε, choose a decision at random; with probability 1 − ε, choose a decision
optimally by solving:

x
(m,n)
t = argmax

xt

θ
(n−1)
t Φ(xt,R

(m,n)
t )

3.1.2 Save the pair (x
(m,n)
t ,R

(m,n)
t ).

3.1.3 If t < T − 1, t = t+ 1, go to step 3.1.1; else end loop on t.

3.2 If m < M, m = m+ 1, go to step 3.1); else end loop on m.

3.3 At the end of the forward pass, one should have in hand M realisations of the triplets

S
x,(n)
t ≡

(
z
(n)
t ,W

(n)
t ,x

(n)
t

)
, at all decision moments t = 0, . . . , T − 1. These triplets will be

used in the backard pass to update value function approximations.

4. Backward pass: For t = {T − 1, . . . , 0}, do:

4.1 Set m = 1 and do:

4.1.1 For the path (m,n) obtained in the forward pass, calculate the realized value ν̂
(m,n)
t by

estimating the time-t conditional expectation:

4.1.1.1 Sub-simulation step: given the time-t return R
(m,n)
t , simulate Nsub return paths for

time t+ 1 according to the VAR(1) dynamic:
{
R

(m,n,k)
t+1

}Nsub
k=1

.

4.1.1.2 Calculate the realized value on path (m,n) by:

ν̂
(m,n)
t =

1

Nsub

Nsub∑
k=1

(
Rf + x

(m,n)
t Rm,n,k

t+1

)1−γ
f(R

(m,n,k)
t+1 ), (3.14)

where the function f(·) is defined by:

f(R
(m,n,k)
t+1 ) =

{
1

1−γ , if t = T − 1,

maxxt+1 θ
(n)
t+1Φ(xt+1,R

(m,n,k)
t+1 ), otherwise

(3.15)

4.1.2 If m < M,m = m+ 1, go to step 4.1.1; else end loop on m.

4.2 Calculate the values of base functions on all paths: X := {Φ(x
(m,n)
t ,R

(m,n)
t )}Mm=1.

4.3 Regress the vector of realized values y := {ν̂(m,n)t }Mm=1 over X to obtain the

estimated coefficients within the n-th iteration: θMt = X\y.

4.4 Update the coefficients via exponential smoothing: θ
(n)
t = λθ

(n−1)
t + (1− λ)θMt .

4.5 If t > 0, t = t− 1, go to step 4.1; else end loop on t.

5. If n < N,n = n+ 1, go to step 2; else return the coefficients θ
(N)
t , ∀t.

Figure 3.8: FDP algorithm with CRRA utility function and assets’ returns follow the VAR(1) process
as given in Section 2.2.1.
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3.3.4 FDP Algorithm with CRRA Utility and IID Returns

Now let’s consider the problem formulation described in Section 2.2.2 where assets’

returns are assumed to be IID. In this particular case, the pre-decision value function

at each time step does not depend on any state variable and thus reduces to a constant.

The post-decision state consists of only the decision vector: Sxt := xt, t = 0, . . . , T − 1,

and the post-decision Bellman equation is given by:

Ṽ x
t (xt) = Et

[
(Rf + xtRt+1)

1−γ max
xt+1

Ṽ x
t+1(xt+1)

]
, (3.16)

with the terminal condition

Ṽ x
T−1(xT−1) = E[VT ] = ET−1

[
(Rf + xT−1RT )1−γ

1− γ

]
, ∀xT−1.

Figure 3.9 provides an algorithm for the IID-return case. Compared to the algorithm

in previous section (Figure 3.8), the only adjustment is in equation (3.17), the calculation

of ν̂
(m,n)
t . Note in this case of IID assets’ returns, the expression of bases Φ(·) only

has one argument which is the decision vector. In other words, the decision does not

depend on the previous asset returns. Thus the deterministic maximisation problem

maxxt+1 θ
(n−1)
t+1 Φ(xt+1) need be solved only once at each time t for all return paths in

the sub-simulation step.

Algorithm – IID Asset Returns

1. Complete steps 1 through 2.2 - a.1) of the algorithm in Figure 3.8.

2. In Step 4.1.1.2 of the backward pass, use instead the following recursive equation to
calculate the realized value on path (m,n):

ν̂
(m,n)
t =

1

Nsub

Nsub∑
k=1

(
Rf + x

(m,n)
t Rm,n,k

t+1

)1−γ
max
xt+1

θ
(n)
t+1Φ(xt+1) (3.17)

3. Complete the other steps of the algorithm in Figure 3.8.

Figure 3.9: FDP algorithm with CRRA utility function and iid assets’ returns as de-
scribed in Section 2.2.2.

3.4 Algorithm Tuning and Parameter Selection

Forward algorithms are usually sensitive to the choice of algorithmic parameters such

as N,M,Nsub, λ and ε. Ill-chosen parameters may lead to undesirable or unstable
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estimation results. Unfortunately, universal rules do not generally exist in the literature

for parameter selection so the choice is often heuristic. This section is devoted to a

discussion on parameter selection. Sensitivity analyses with numerical examples are

presented in Section 4.1.2.

Number of iteration N

The choice of total number of iterations N is usually straightforward and relatively

easy. If historical data is used, N is limited to the maximum number of data points

available. Otherwise, if a simulator is used to simulate exogenous state variables, N is

not bounded upward. The easiest and most naive method is to choose an arbitrary N .

The idea is to fix N to a sufficiently large number, and “hopefully” convergence can be

achieved within those iterations but nothing is guaranteed. An alternative way widely

used in operational research is to stop the algorithm once the pre-selected criteria are

met. Examples of such criteria include

1. Stop criterion on optimal weights: stop if
∥∥∥x(n)

t − x
(n−1)
t

∥∥∥ < ψ

2. Stop criterion on approximation coefficients: stop if
∥∥∥θ(n)t − θ

(n−1)
t

∥∥∥ < ψ

3. Stop criterion on approximated value functions: stop if
∥∥∥V (n)

t − V (n−1)
t

∥∥∥ < ψ

where || · || is the lp-norm from the vector space of its argument to R and ψ is the

predetermined tolerance level.

In this thesis, we use a variant of the stopping criterion on optimal weights, i.e.

criterion (1). In fact, at the end of the n− th iteration, we calculate the average weights

of the last 10 iterations x
(n,10)
t and of the 20 last iterations x

(n,20)
t in additional to x

(n)
t .

The algorithm is stopped when

1.a)
∥∥∥x(n)

t − x
(n−1)
t

∥∥∥ < ψ,

1.b)
∥∥∥x(n,20)

t − x(n)
t

∥∥∥ < ψ, and

1.c)
∥∥∥x(n,10)

t − x(n)
t

∥∥∥ < ψ.
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Sub-simulation parameter Nsub

In the algorithms presented in Sections 3.3.3 and 3.3.4, Monte Carlo simulation is used

to improve the quality of the input signal (or measurement) sequences ν̂
(m,n)
t . In fact,

the following expectation

ν̂
(m,n)
t = E

[(
Rf + x

(m,n)
t R

(m,n)
t+1

)1−γ
max
xt+1

Ṽx,(n−1)t+1 (Sxt+1)

]
. (3.18)

is approximated by first performing a sub-simulation of size K for R
(m,n,k)
t+1 given Rt,

k = 1, . . . ,K and then computing the average realized value by equation (3.14) which is

repeated below:

ν̂
(m,n)
t =

1

Nsub

Nsub∑
k=1

(
Rf + x

(m,n)
t R

(m,n,k)
t+1

)1−γ
max
xt+1

θ
(n)
t+1Φ(xt+1,R

(m,n,k)
t+1 )

Since the goal of this sub-simulation is to approximate the expectation in (3.18), in-

creasing the number of simulated paths Nsub improves the approximation’s quality.

Moreover, variance reduction techniques can be employed to obtain more accurate re-

sults with less numerical efforts. Our numerical results suggest that Nsub should increase

when there are more risky assets. And by setting Nsub ∈ [20, 200] and combining vari-

ance reducing techniques such as antithetic variables and sample moment matching, is

sufficient to assure convergence.

Number of inner iteration M

The parameter M controls the number of sub-iterations in order to evaluate a set of

value function approximations before any update is made. It also corresponds to the

number of data points in the linear regression within each iteration n to obtain a new

vector of coefficients θMt . Therefore, M should be large enough to make the regression

estimates statistical significant. A rule of thumb in statistics for the minimum data size

is to add 10 points for each additional coefficient to be estimated. Our numerical tests

agree with this empirical rule. Hence we suggest to set M = 10 ∗ P ±M0 where P is

the number of bases or the number of coefficients to be estimated and M0 ∈ [0, 20] is an

integer to allow a certain degree of flexibility.
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Stepsize λ

The coefficients θt are updated by exponential smoothing with a stepsize λ. The choice

of λ is often crucial for the algorithm’s convergence. Inappropriate choices have led many

to conclude that their algorithm does not work at all4. Empirical studies suggest that

choosing λ ∈ [0.9, 0.99] works fine.

In this thesis, we adopt a two-stage constant stepsize rule, which means

λ =

{
λ1, if 0 < n ≤ Nλ,

λ2, if n > Nλ,

where 0.9 ≤ λ1 ≤ λ2 < 1 are constant stepsizes in the first and second stage respectively,

and Nλ is the number of iterations in the first stage, an integer not too large (≤ 50).

The intuition behind this strategy is to rely less on earlier approximations when the

algorithm starts since the initial guess may contain little useful information. Then as

iterations advance, approximations improve with trials and errors, and we consequently

adjust the stepsize upward to put more weights on existing approximations (i.e. what we

already know). When λ1 = λ2, the 2-stage rule reduces evidently to the usual constant

stepsize rule.

In the literature, adaptive stepsize and stochastic stepsizes rules have been developed

to deal with more complex problems5. The main idea is to try to find a balance between

noise and the change in the signal by adjusting to the data in a way that keeps the stepsize

larger when the parameter being estimated is still changing quickly. In this thesis, only

constant stepsizes are considered since they behave quite well and we want to keep the

FDP algorithm to its simplest form, although incorporating adaptive stepsizes into the

proposed FDP algorithm is a natural extension of our works and is one of our future

research directions.

Exploration percentage ε

An important question for a typical FDP algorithm is the “exploitation-exploration

dilemma”: in order to act near optimally, the agent must choose between what he knows

4Reference:[51], page 426.
5See for example Chapter 11 in [51].
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and gets something close to what he expects (exploitation) and something he is not sure

about and possibly learns more (exploration). Taking an action because it appears to

be the most appropriate way is called “exploitation”. However, remember that the state

space might be so big that there might be states with better values which would never

be visited if we always do what we think the best. Sometimes, we need to try something

new in the hope to explore more valuable states. This is called “exploration”, i.e. take

an action by exploring a new option even it is suboptimal.

Finding a good balance between exploration and exploitation is a challenge. On one

hand, it can cost time (and money in some cases) to visit a new state; on the other hand,

we may have doubt about how well we know the value of being in a state and whether a

decision will help us learn this value better. Sometimes a simple heuristic rule like pure

exploration or pure exploitation works, while other times more sophisticated technique

such as Bayesian belief structures must be used in order to obtain convergence. It is

thus the modeller’s responsibility to seek for the problem-specific features and adopt the

appropriate strategy.

We employ in this paper the ε-greedy exploration strategy, i.e. with probability ε we

explore by taking decision randomly, and with probability 1− ε we make decision opti-

mally by exploiting what we already know. The intuition is that we force the algorithm

to explore to a certain degree, while the rest of iterations focus on states appearing to be

the most valuable. This strategy is well-known and widely-employed in the literature.

For example, [47] propose to use a pure exploitation strategy (ε = 0%) in their algo-

rithm with piecewise linear function approximations to solve mutual fund cash balance

problem and lagged asset acquisition problem. The convergence of their algorithm is

demonstrated in [46].

Similar to the stepsize λ, we allow a 2-stage ε-greedy exploration. Precisely,

ε =

{
ε1, if 0 < n ≤ Nε,

ε2, if Nε < n,

where 0 ≤ ε1 ≤ ε2 ≤ 1, and Nε is the number of iterations in the first stage for ε.

Obviously Nε can be set to Nλ for simplicity. And letting ε1 = ε2, one finds the standard

ε-greedy exploration rule.

An interesting variation suggested by [50] is to allow the percentage of exploration ε
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to decrease with the number of iterations, for example

εn(s) =
c

Nn(s)
,

where 0 < c < 1 is a tuning parameter and Nn(s) is the number of times state s

has been visited by iteration n. This variation is useful when the approximation is

poor when the algorithm starts, thus to explore more at the first stage. It is expected

that the approximations improve along with iterations so that one could reduce the

exploration and rely on the most recent approximation (i.e. to use more exploitation).

However, this variation has a danger: if exploration percentage decreases faster than

the approximations converge to the “real” solution, the algorithm could diverge and fail

to find the optimal solution. It is thus important to control the exploration decreasing

speed, which is done by varying the constant c in the formula above. Yet the best value

of c to be used is a tricky question and only can be found by try-and-error in problem

specific practices.
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Numerical Results

This chapter compares, through numerical tests, the performance (optimal weights and

certainty equivalent rates) of our FDP algorithm to a BDP algorithm (presented in

Appendix C) which discretizes the state space and uses Gauss-Hermite quadrature (Ap-

pendix A) to compute conditional expectations. We start by considering the simplest

case with one single risky asset whose returns are IID (Sections 4.1.1 and 4.1.2), followed

by a little more complex case with three risky assets but still IID returns (Section 4.1.3).

Next, cases with predictable returns are studied in Section 4.2.

In all our numerical examples, short selling and borrowing at risk-free rate are for-

bidden in all risky assets, thus the percentage allocations in asset i are bounded by [0, 1]

and the sum of all allocations cannot exceed 1. The self-financing constraint is imposed,

and thus total wealth evolves according to (2.2). Note that, due to this constraint, the

allocation in risk-free asset need not to be modelled explicitly and is given by the balance

of the total wealth (equals to 1 in the CRRA utility case) minus holdings in all risky

assets.

4.1 Test 1: CRRA Utility with IID Returns

When assets’ returns are IID, we use polynomials up to order 2 of the decision variables

to approximate the post-decision value functions. As an example, for the case with 3
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risky assets, the approximation of the time-t post-decision value function is given by

Ṽ x
t (xt) =θt,1 +

3∑
i=1

θt,i+1xt,i + θt,i+4x
2
t,i +

∑
j>i

θt,5+i+jxt,ixt,j


=θ

′
tΦ(xt),

where

θt = [θt,1, . . . , θt,10]
′

Φ(xt) = [1, xt,1, xt,2, xt,3, x
2
t,1, x

2
t,2, x

2
t,3, xt,1xt,2, xt,1xt,3, xt,2xt,3]

′.

In addition to the comparison of optimal weights, for multi-asset cases, we also

compare certainty equivalent rates. In fact, it is more common to compare certainty

equivalent rates in a multidimensional environment (rather than only comparing optimal

weights themselves) because policies which appear quite different in asset weights may

lead to similar certainty equivalent rates.

The certainty equivalent is a guaranteed return that someone would accept rather

than taking a chance on a possibly higher, but uncertain, return. It represents the

guaranteed amount of cash that would yield the same exact expected utility as a given

risky asset with absolute certainty.

Following [26], we evaluate the certainty equivalent rates (CER) resulting from a

certain decision policy through Monte Carlo simulation.

Specifically, we simulate a sample of I return paths according to assets’ return dis-

tribution rt ∼ N (µ,Σ). For each simulated path i, we obtain the associated terminal

wealth ŴT,i and utility u(ŴT,i). Then the expected utility of terminal wealth is esti-

mated by the sample mean of realized utility across all simulated paths:

EUpolicy =
1

I

I∑
i=1

u(ŴT,i), (4.1)

where the policy could be FDP or BDP. The estimated certainty equivalent associ-

ated with the expected utility can be calculated by CEpolicy =
(
u−1(EUpolicy)

)
. The

estimated CER over T periods related to the selected policy is then obtained by the
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certainty equivalent minus 1:

CERpolicy = CEpolicy − 1 =
(
u−1(EUpolicy)

)
− 1. (4.2)

4.1.1 Single Risky Asset - IID Returns

We start by applying the algorithm in Section 3.3.4 to the single-period portfolio choice

problem between one risky asset and a risk-free asset of a CRRA investor with γ = 5

and a holding period of one month. This simple example has more pedagogic value than

practical value. We first illustrate that the FDP policy converges to the BDP policy.

Then we analyse the sensitivity of FDP policies to the algorithm parameters such as

M,Nsub, λ and ε.

Following the example studied in [7], the constant risk free rate is 6% per year and

the stock excess returns are IID log-normal with a mean and volatility which match the

sample moments1: mean = 0.73% and standard deviation = 4.42%.

In this test, we set the number of inner loop, the number of sub-simulation, the

stepsize in both phases, and the percentage of exploration in both phases to respectively

M = 100, Nsub = 100, λ1 = λ2 = 0.99, ε1 = ε2 = 100%. The tolerance parameter for

stopping criteria (1.a) – 1.c) on page 38) is set to ψ = 0.001. The initial values for the

coefficients θt of value function approximations are set to 0.

Figure 4.1a shows the evolution of optimal allocations at t = 0 with respect to the

number of iteration. The dotted line is the BDP policy xBDP0 = 76.01%. The solid line

represents the optimal weights by FDP after iteration n, and the dashed line and the

dotted-dashed line are respectively average weights of the last 10 and 20 iterations.

In this test, the algorithm stopped after N = 125 iterations. It can be observed

from the figure that the FDP policy start to converge to the BDP policy after about

15 iterations, and it stabilizes around the BDP solution after about 50 iterations. The

FDP weight at the last iteration x
(125)
0 = 76.02% when the algorithm stopped is very

close to the BDP weight.

It is worth to notice that, due to its simulation-based nature, the estimates of the

1Sample moments are derived from historical data on the value-weighted CRSP index from January
1986 to December 1995 by [7].
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(a) Evolution of optimal weights at t = 0 as the number of iteration increases.

(b) Histogram of FDP optimal weights at t = 0 with 50 recalculations.

Figure 4.1: FDP results with CRRA utility single asset single period.
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FDP algorithm vary from one test to another even using the same algorithm parameters.

In fact, the performance of the FDP algorithm depends strongly on the “training data

set”. To illustrate this variability, we repeat the algorithm K = 50 times with the

same parameters except that N is fixed to 200 instead of using the stopping criteria.

Figure 4.1b presents the histogram of optimal weights at the last iteration x
(200),k
0 , k =

1, 2, . . . ,K. The dashed line is the BDP solution and the solid line is the average of

x
(200),k
0 . Although there is some degree of deviation from one test to another, repeating

the FDP algorithms several times leads to estimates very close to the conventional BDP

solution.

4.1.2 Parameter Sensitivity

The performance of the FDP relies on appropriate choices of the algorithmic parameters:

• M : the number of inner loop which can also be viewed as the number of points in

regression,

• Nsub: the number of paths in the sub-simulation to calculate the realized values

on current path,

• λ: the stepsize, and

• ε: the exploration percentage.

We use the simple single period and single asset example to study the sensitivity of the

FDP policy with respect to these parameters. This study provides, at least qualitatively,

a view on how each parameter impacts the behaviour of the forward algorithm.

Let’s first examine M and Nsub together since the joint effect of M and Nsub

determines the convergence of the FDP algorithm. We run the FDP algorithm several

times by varying the value of M and Nsub while keeping other parameters constant.

Figure 4.2 summarizes results by plotting the dynamics of FDP estimates for optimal

weights at t = 0 as the number of iteration increases. The three sub-figures on the left

are obtained with M = 1000 and those on the right are results with M = 10000. The

three lines correspond to experiences with Nsub = 20 and 200 respectively.

The FDP algorithm performs as expected: as M and Nsub increase, the FDP es-

timates stabilize around the BDP solution within less iterations. Generally speaking,

for the same value of M , the convergence is better when more paths are used in the
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(a) M = 1000, Nsub = 20 (b) M = 10000, Nsub = 20

(c) M = 1000, Nsub = 200 (d) M = 10000, Nsub = 200

Figure 4.2: Sensitivity study of M and Nsub with N = 500, λ = 0.99, ε = 100%.
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sub-simulation, i.e. larger Nsub. The same conclusion can be drawn for M . However,

larger M and Nsub requires more computation time. As a rule of thumb, we set

• M = min(100; 10∗P±10), where P is the number of coefficients θt to be estimated

at each time step t,

• Nsub ∈ [20, 200].

The next study is with respect to the exploration percentage ε. Figure 4.3 shows

the dynamics of x0 for three levels of exploration ε = 10%, 50%, 90% while setting N =

500,M = 100 and λ = 0.99. The sub-figures on the left column are obtained with

Nsub = 20 while those on the right are with Nsub = 200. In all the sub-figures, the

dotted line stands for the BDP solution, the solid line represents the FDP estimates,

and the dashed line and the dash-dotted line represent the average FDP estimates of

the last 100 and 200 iterations respectively.

Figure 4.3 gives two interesting observations. First, when looking at the two sub-

figures within the same line (i.e. tests with the same exploration level), it can be seen that

FDP estimates are less volatile in the right sub-figure and they converge more quickly

to the red dotted line which is the BDP solution. Therefore, it can be concluded that,

regardless the exploration level, better convergence is achieved when more paths are used

in the sub-simulation. The second observation is that the proposed FDP algorithm is

robust to the exploration level if other parameters are appropriately tuned. In fact, when

comparing the three figures in the same column (i.e. tests with the same Nsub), similar

convergence patterns are observed for different levels of exploration ε. In this thesis,

we set the exploration percentage in both phases to ε1 = ε2 = 100% in the following

numerical examples.

Finally, a similar study is performed to examine the sensitivity to the value of stepsize

λ. Three values of λ ∈ {0.9, 0.95, 0.99} are considered and other algorithmic parameters

are set to N = 500,M = 100, Nsub = 200, ε = 100%. Figure 4.4 presents the test

results. As anticipated, the FDP estimates are more volatile for smaller values of λ.

Volatility is a desired feature in first iterations when the algorithm starts, because it

reduces the risk that estimates are “absorbed” in a suboptimal state due to inaccurate

value function approximations in early stage. However, as the iterations progress, the

approximations become more and more reliable. It is thus necessary to stop the algorithm

from “trusting” new information a lot and put more weight on existing approximations.

These observations support the use of 2-phase strategy, where iterations are divided into
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(a) Nsub = 20, ε = 10% (b) Nsub = 200, ε = 10%

(c) Nsub = 20, ε = 50% (d) Nsub = 200, ε = 50%

(e) Nsub = 20, ε = 90% (f) Nsub = 200, ε = 90%

Figure 4.3: Sensitivity study of the percentage of exploration ε with N = 500,M =
100, λ = 0.99.
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(a) λ = 0.9 (b) λ = 0.95

(c) λ = 0.99

Figure 4.4: Sensitivity study of the stepsize λ with N = 500,M = 100, Nsub = 200, ε =
100%.
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two part and a different stepsize is used in each part2. This strategy will be used in

examples with predictable returns in Section 4.2, where we set λ1 ∈ [0.9, 0.95] in the

first phase, and λ2 = 0.99 in the second phase.

4.1.3 Multiple Risky Assets - IID Returns

Now we consider the static OPCP of a CRRA investor examined in the section 2.3

of [26] where the investment opportunity set consists of the risk-free asset (cash) and

three index for the United States, Europe, and Asia-Pacific respectively, obtained from

Morgan Stanley Capital International (MSCI)-Barra. In this particular example, it is

assumed that log excess returns, defined by rt := log(Rt/Rf ) where Rt is the excess

returns, are normally distributed. Using a time series from December 1969 to July 2006,

the estimated annual mean and covariance matrix of the log excess returns on the three

index are

µ =

 0.0530

0.0620

0.0570

 , Σ =

 0.0263

0.0219 0.0324

0.0183 0.0282 0.0714

 .
Applying the algorithm in Section 3.3.4 with γ = 5,M = 100, Nsub = 200, ε = 100%

and λ = 0.99, we obtain results as shown in Figure 4.5a. The dotted lines stand for the

BDP policy: x0 = [23.91%, 22.82%, 10.70%]′. The solid line is the FDP estimates and

the dashed line and the dash-dotted line represent the average FDP estimates of the

last 10 and 20 iterations respectively. The algorithm stopped after N = 130 iterations

because the stopping criteria 1.a)-1.c) are fulfilled with ψ = 0.001. The FDP estimates

at the final iteration are x
(130)
0 = [24.25%, 20.55%, 12.95%]′, which is close to but still

different from the BDP solution.

Since the FDP estimates vary from one test to another due to the dependence on

the underlying datasets used to train the algorithm (as discussed in Section 4.1.1), we

repeated the same test K = 50 times by fixing N = 200. Figure 4.5b presents the

histogram of optimal weights at the last iteration x
(200),k
0 , k = 1, 2, . . . ,K. The dashed

line is the BDP solution and the solid line is the average of x
(200),k
0 . Again, as in the

single asset case, although there is some degree of deviation from one test to another,

repeating the algorithm several times and taking the average can reduce the variability

2Please refer to Section 3.4 on page 40 for details.
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(a) Optimal weights

(b) Histogram of x0 with 50 recalculations.

Figure 4.5: FDP estimates with CRRA utility and 3 risky assets, single period, γ =
5, N = 100,M = 400, Nsub = 200, ε = 100% and λ = 0.99.

in FDP estimates.

It is possible to put the FDP’s performance into question by looking at the histogram

(Figure 4.5b) since the estimates for optimal weights in the 2nd and the 3rd assets are

still distant from the BDP solution even averaging over 50 recalculations. In fact, the

deviation from the BDP solution is not worrisome because in a multi-dimensional op-

timization, more than one local optimum may exist. Therefore, it is more common to

compare certainty equivalent rates rather than comparing optimal weights themselves

because policies which appear quite different in asset weights may lead to similar cer-

tainty equivalent rates.

We evaluate the certainty equivalent rates (CER) resulting from the BDP and from

the FDP optimal policies at each iteration through Monte Carlo simulation as described

on page 43 with a sample of I = 10, 000 return paths. As illustrated by Figure 4.6, the

CER of FDP (the solid line) increases quickly within first iterations and converges to

the CER of the BDP policy (the dotted line)3 which is CERBDP = 735.79 basis points

(bps). The CER of the FDP policy at the last iteration is CERFDP = 734.86 bps. The

difference in CERs between BDP and FDP policies is less than 1 bps when the FDP

algorithm stopped despite the fact that their optimal weights are not exactly the same.

3Certainty equivalent rates are obtained with the same set of 100, 000 paths for BDP and FDP
policies.
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Figure 4.6: Certainty equivalent rates with CRRA utility and 3 risky assets, single
period, γ = 5, N = 100,M = 400, Nsub = 200, ε = 100% and λ = 0.99.
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4.1.4 Multiple periods

As demonstrated in [25, 26], an important feature of OPCPs with CRRA utility function

is that, when asset returns are iid, the multi-period problem reduces to a series of single

period problems and the percentage in risky asset is the same for all periods. For this

reason, rather than presenting multi-period results of cases with iid returns, we will study

the performance of FDP in a multi-period environment with more complex dynamics for

assets’ returns in the following section.

4.2 Test 2: CRRA Utility with Predictable Asset Returns

This section examines the performance of the proposed forward algorithm within a multi-

period environment where assets’ returns can be predicted by the one-period lagged re-

turns. We consider the custom-made VAR(1) dynamic used in [21] to test the robustness

of an OPCP when several state variables are present:

Rt+1 = A0 +A1Rt + ξt+1, (4.3)

where ξt+1 is a vector of Gaussian error terms with zero mean and constant covariance

matrix Σ. The vector A0 is the drift term and A1 is a time-invariant Na×Na matrix of

parameters. The values of A0, A1 and Σ are given in Appendix B for the cases with 1,

2 and 3 risky assets.

This VAR(1) dynamics is interesting since it induces substantial differences between

the single period and multi-period portfolio allocations. A restricted version of the

VAR(1) return dynamic is studied by [12? , 36, 56, 25] and in [22]. In the restricted

version, it is assumed that all asset returns can be predicted by one single exogenous vari-

able which is the log dividend yield. Compared to the restricted VAR(1), the complete

version studied in this part of the thesis allows for more complex interdependency struc-

ture among asset returns. More importantly, it shows the ability of the FDP algorithm

to handle environments with more than one exogenous variable.

For the VAR(1) case, we use linear, quadratic and cross-product terms of decisions

and cross-product terms of decisions-returns as well as the constant term to construct

value function approximations. For instance, if there are three risky assets Na = 3, the
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approximation of value function at each time step is represented by 19 basis φt,p and

their associated coefficients θt,p:

Ṽxt (Sxt ) = θ
′
tΦt, (4.4)

where

θt = [θt,1, . . . , θt,19]
′,

Φ(xt) = [1, xt,1, xt,2, xt,3, x
2
t,1, x

2
t,2, x

2
t,3,

xt,1xt,2, xt,1xt,3, xt,2xt,3, xt,1Rt,1, xt,1Rt,2, xt,1Rt,3,

xt,2Rt,1, xt,2Rt,2, xt,2Rt,3, xt,3Rt,1, xt,3Rt,2, xt,3Rt,3]
′.

4.2.1 Optimal Weights and Certainty Equivalent Rate Comparison

Using the VAR(1) dynamic, we studied the performance of our FDP algorithm for a

multi-period OPCP with 1, 2 and 3 risky assets respectively and compared to solu-

tions obtained by a BDP approach using discretization and a generalisation of the GH

quadrature as described in Appendix C.

For this multi-period OPCP, we performed tests with three investment horizons

T = 2, 6, 12 and with three levels of risk aversion γ = 2, 5, 10, Then we noticed that:

a) the FDP approach is robust to the risk aversion level. It behaves similarly for

various levels of risk aversion and offers comparable optimal weights and certainty

equivalent rate to the BDP approach. More importantly, for multi-asset cases

(Na = 2, 3) the optimal policies produced by the FDP yield higher certainty

equivalent rates than the BDP approach;

b) the FDP performance is robust with respect to the investment horizon. Longer

horizon requires more computation time for both approaches. Our tests suggest

that the BDP approach is faster for shorter horizon T = 1, 2 in all cases (single-

asset and multi-asset), while the FDP dominates in computation time for longer

horizon, especially in the multi-asset cases.

For illustration purpose, we set the investment horizon to T = 6 (medium term)

and the relative coefficient of risk aversion equals to γ = 5. The next step is to select
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parameters for both the BDP and FDP approaches.

For the BDP approach, we will show the case where the state variables (lagged

asset returns) are discretized into 20 points in each dimension and 10 nodes are used

in GH quadrature. Tests with 10, 30, 40 discretization points are performed and we

observed that a grid with 10 points is not enough to provide good precision for a medium

term problem (T = 6), while grids with 30 or 40 points do not improve significantly the

precision in term of optimal weights and certainty equivalent rates but consume too much

time. The choice for number of nodes to use in the GH quadrature is quite common

in the literature for Gaussian distributed variables. We performed tests by setting the

number of nodes to 10, 20, 30, 40 and do not see significant variation in optimal weights

nor certainty equivalent rates.

The FDP algorithmic parameters selected in our numerical tests are presented in

Table 4.1 for cases with 1, 2, 3 risky assets. Some of them are slightly different when

more assets (such more exogenous state variables) are involved. Note that we employed

a pure exploration strategy in both phases ε = ε1 = ε2 = 100%. Our numerical tests

suggest that other values of ε can also lead to convergence if the parameters Nsub,M

and λ are appropriately tuned. A pure exploration strategy is selected here from a time

efficient point of view: in the current OPCP set-up, our simulation process (Matlab

codes) is faster than the optimisation process (Matlab codes).

Table 4.1: FDP parameters for OPCP with VAR(1) return process

Parameter Name Symbol 1 Asset 2 Assets 3 Assets

Nb. of iterations in inner loop M 40 100 400
Nb. of paths in sub-simulation Nsub 40 80 80

Stepsize (phase 1) λ1 0.9 0.9 0.9
Stepsize (phase 2) λ2 0.99 0.99 0.99

Nb. of iterations in phase 1 Nλ 20 20 20
Exploration percentage ε1 = ε2 100% 100% 100%

Tolerance for stopping criteria ψ 0.001 0.001 0.005

Using these parameters, we performed numerical tests with one to three risky assets

Na = 1, 2, 3. Figure 4.7 illustrates the evolution of FDP weights at t = 0 (the solid

line) regarding the number of iterations. The dashed line and the dash-dotted line are

respectively average weights of the last 10 and 20 iterations. This figure suggests that

the FDP weights converge quickly to the BDP solution, which is indicated by the dotted
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(a) Na = 1 (b) Na = 2

(c) Na = 3

Figure 4.7: Comparison of FDP weights and BDP weights for VAR(1) returns.
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line. Comparative results of optimal weights at t = 0 and computational time4 as well

as certainty equivalent rates are shown in Table 4.2. The certainty equivalent rates are

obtained through Monte Carlo simulation such as described on page 44. Specifically,

we simulate a sample of I = 5000 return paths according to the VAR(1) dynamic with

antithetic variables for variance reduction, and computed CERBDP and CERFDP by

equations (4.1 – 4.2). The FDP policy evaluated is the one obtained at the last iteration

when the algorithm is terminated by stopping criteria 1.a)-1.c). The last line of Table

4.2 shows the number of iterations performed (N) before these criteria are fulfilled in

each test.

Table 4.2: Comparative results of FDP and BDP algorithms for VAR(1) returns with
1, 2 and 3 risky assets and T = 6

1 Asset 2 Assets 3 Assets

BDP FDP BDP FDP BDP FDP

x0,1 41.06% 41.02% 18.04% 14.23% 30.07% 28.82%
x0,2 - - 29.84% 31.46% 9.29% 6.75%
x0,3 - - - - 14.28% 16.46%

Time (sec) 3.80 3.93 116.62 134.41 5,086.94 2,002.32
N - 34 - 36 - 54

CER 373.75 373.09 443.56 447.57 464.31 477.41

From results presented in Table 4.2, several interesting observations can be made.

Three of them are highlighted below. First of all, for the case of single risky asset, the

FDP approach yields optimal weights and estimated CER very close to those obtained

by the BDP approach within comparable time5.

Secondly and more importantly, for multi-asset cases, the FDP approach produces

policies which lead to higher estimated CER than the BDP approach and within less

computational time. Actually, the estimated CER related to FDP policies CERFDP

exceeds the one related to BDP policies by about 4 bps for the 2 risky assets case and

13 bps for the 3 risky assets case.

Thirdly, our FDP approach has an advantage over the BDP approach regarding the

calculation time: as the number of risky assets Na increases, the FDP computational

time increases much less dramatically compared to the BDP computational time. As

4Computation time is obtained on a personal laptop with Intel Core i3-2350M CPU @ 2.30 GHz and
8.00 GB RAM. No parallel computing.

5Certainty equivalent rates are obtained by evaluating the FDP and BDP policies using the same
sample.
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an illustration, when Na passes from 2 to 3, the BDP run time jumps from 116 seconds

to 5,087 seconds. This phenomena is the well-known curse of dimensionality due to the

need of discretizing over the state space as discussed in the beginning of Section 3.1. On

the other side, the increase of FDP run time is relatively moderate – from 134 seconds

to 2,002 seconds, which represents only about 40% of the BDP run time. Therefore, the

FDP approach can be potentially more suitable for OPCPs with three or more exogenous

state variables.

Studies of parameters’ sensitivity are also conducted under this example with VAR(1)

return process. We obtain similar conclusions as in the IID case which are summarized

below6:

• M : the number of iterations in the inner loop, which can also be viewed as the

number of points available for regression. Must be large enough to ensure statistical

significance. A rule of thumb is to set M approximatively equal to min(100; 10∗P ),

where P is the number of coefficients θt to be estimated at each time step t.

• Nsub: the number of paths in the sub-simulation. Larger values of Nsub decrease

noises in input signals (realized values), and thus improve the algorithm’s estima-

tion performance. We propose to set Nsub ∈ [40, 200]. Qualitatively, Nsub should

increase as the number of risky assets Na increases, but the relation does not seem

to be strictly proportional. Larger values of Nsub require more computational

time.

• λ: the stepsize. We adopted the 2-phase stepsize rule in numerical tests of the

current section. We tested λ1 = [0.9, 0.95, 0.99], λ2 = [0.9, 0.95, 0.99]. Our

numerical tests suggest that λ1 = 0.9 and λ2 = 0.99 works the best. Other

combinations also lead to convergence (in terms of optimal weights) but require

more iterations.

• ε: the percentage of exploration. Our numerical tests suggest that the impact of

this parameter is not material if other parameters (M,Nsub, λ) are properly tuned.

Since exploitation is more time consuming, we choose a pure exploration strategy.

6Details results and graphs are available upon demande.
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Conclusion on Part II

We propose a recursive forward approach for dynamic programming that relies on sim-

ulation and regression with respect to both state variables and decision variables. The

tools used in our approach are simple and well researched: Monte Carlo simulation, or-

dinary least-squares, continuous optimization, approximation by polynomial basis, and

exponential smoothing. The forward approach, however, is little known in the area

of portfolio optimization. To the best of our knowledge, our study is one of the first

explorations to apply forward algorithms for a variety of portfolio choice problems. Im-

plemented with care, the algorithm is very flexible, robust, and its performance degrades

at a much slower rate than a standard quadrature approach, when the number of dimen-

sion increases. It is worth noting that, the simulation process is independent from the

decision process. Even Monte Carlo simulation is used in our algorithm, the external sim-

ulator need not to be explicitly modelled: it can be either black-boxed or bootstrapping

with historical data. Moreover, the computation time of the forward approach increases

much less quickly compared to a standard BDP approach with quadrature, and thus

provide a possible way to handle, at least partially, the curses of dimensionality.
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Chapter 6

Literature Review for Part III

Multi-period dynamic OPCPs with predictable returns have been intensively studied

in recent literature. One of the main streams in the literature, pioneered by [43] and

followed by for example [17], [18], focuses on developing models in continuous time.

The main advantage of continuous time modelling is its tractability, which means that,

under usual conditions and assumptions, solutions to the OPCP exist in closed-form.

However, the real world seems to be more in concordance with a discrete time modelling

because a portfolio cannot be rebalanced continuously at every instant of time. One

may argue that continuous time modelling can be approximated by trading at extremely

high frequency, but the resulting transaction costs due to liquidity problems (or market

depth) may be exceptionally large thus deteriorating considerably a trading strategy’s

performance.

In the discrete modelling stream of OPCPs, following the mean-variance paradigm of

[40] which is a single-period set up, a number of papers address the multi-period OPCP

where an investor has the option to rebalance dynamically his portfolio allocation when

future returns of risky assets can be predicted. The predictability of asset’s returns

can change considerably the optimal allocation in a multi-period setting, compared to a

single-period case. [32], [8] and [3] explore the impacts of ignoring the predictability in

a multi-period setting by comparing a myopic policy (where one optimizes only for the

following period) and a dynamic policy (where one optimizes until the end of planning

horizon). [13] use log-linear approximations to obtain a closed-form solution to the multi-

period portfolio choice problem with return predictability and intermediate consumption;
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[38] examine the same problem but with transaction costs. A key motivation of taking

predictability into consideration is to achieve a better allocation when one has more

information about the future. Furthermore, empirical studies suggest that asset’s returns

exhibit mean-reversion. Thus a multi-period setting, which takes long term developments

of asset’s returns into account, may help to smooth optimal allocations over time.

But are asset’s returns really predictable? Numerous recent empirical works show

that stock returns exhibit a certain predictability by a set of lagged instruments. For

example, [11] finds that the risk premium on stocks move closely together with those

on 20-year T-bonds. [23] find that the dividend yield, a quantity that is related to the

default spread and moves in a similar way with long-term business conditions, forecasts

future stock returns.

Therefore, we choose a restricted vector auto-regressive (VAR) process for asset re-

turns as discussed by [32], [13], [3], [38], [37], [57], [25], [6] and [39]. This model assumes

that asset’s returns, as well as the log-dividend yield, are both forecast by the one pe-

riod lagged log-dividend yield. It is preferred by the literature due to its simplicity

and ability to include a certain degree of predictability. Standard analysis of OPCPs

with the restricted VAR(1) model is based on the assumption of normal innovations.

This assumption is convenient since it reduces computation burdens in finding optimal

solutions to the OPCP thanks to some nice properties of Gaussian distribution. In par-

ticular, Gaussian distribution allows one to compute expectations in Bellman equation

efficiently by quadrature methods such as Gauss-Hermite quadrature ([31]). However,

Gaussian distribution is not always suitable for financial time series modelling due to

its inability to capture the typical empirical features of stock returns such as leptokur-

tic and heavy tails, especially when data frequency is high (monthly, daily or intra-day

returns). A long list of papers has established that many financial assets exhibit clearly

non-Gaussian log-returns. Among others, [24], [9], [1] demonstrate that distributions of

hedge funds returns have a negative skewness and an excess kurtosis larger than zero

using monthly data.

These drawbacks of Gaussian distribution lead us to choose an alternative distribu-

tion for log-returns – the Johnson-SU . This distribution with four-parameters, first inves-

tigated in 1949 by [29], is proposed as a continuous transformation of a standard Normal

variable. [15] and [54] both examine GARCH processes with Johnson-SUdistribution,

and find that the Johnson-SUdistribution outperforms the normal and student-t distri-

butions in describing the shape and extreme tails of daily returns. In fact, the Johnson
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distribution family can calibrate independently the four first moments “while disregard-

ing potentially insignificant moments of order higher than 5”, as remarked by [49] and

highlighted in [45].

We improve the restricted VAR(1) model by replacing Gaussian innovations by mul-

tivariate Johnson-SU innovations, which will be presented in Chapter 7, and solve multi-

period OPCPs with CRRA utility by backward dynamic programming using Gauss-

Hermite quadrature to calculate expectations, which will be presented in Chapter 8.

Numerical experiments are presented in Chapter 10, where we compare policies result-

ing from Gaussian and Johnson-SUdistributions with one and two risky assets, as well

as with intermediate consumption. Section 10.4 compares performance of Johnson and

Gaussian policies by first conducting a scenario analysis in subsection 10.4.1 and then

performing out-of-sample tests in Subsection 10.4.2. Chapter11 concludes. Our major

contribution is to explore how non-Gaussian log-returns can alter a typical investor’s

decision when returns are predictable.
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Chapter 7

Market Model – Restricted VAR

This chapter describes our market model, a restricted vector auto-regressive (VAR)

process for log-excess returns and log-dividend yield. We first define the general process

with arbitrary hypothesis on assets’ return distribution. Then sections 7.2 and 7.3

present special cases with Gaussian and Johnson-SU noises respectively. In these two

sections, we indicate how Gauss-Hermite quadrature can be used to compute conditional

expectations efficiently.
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7.1 Restricted vector auto-regressive process

The market model studied in this chapter has been used extensively in the portfolio

choice literature (see the introduction). Let Rf denote the constant risk free rate of

return at time t and Rgi,t the one period gross return for asset i at time t. The excess

return and log excess return for asset i are then defined respectively by Ri,t :=

Rgi,t −Rf , and rei,t = ln (1 +Ri,t) respectively. The model for the dynamic of log excess

returns of Na risky assets is given by:

rei,t+1 = αi + βiδt + σiνi,t+1, i = 1, . . . , Na (7.1)

where αi, βi and σi > 0 are constant parameters, and the νi,t for i = 1, . . . , Na are

zero-mean, unit-variance random noises with correlations ρij . Here δt is the log dividend

yield of a stock index, defined as

δt = ln (1 +Dt) ,

where Dt is the dividend-to-price ratio of a stock index (dividend yield of a stock index),

which is computed as the sum of the past 12 months dividends divided by the current

level of the index (we refer to [6] for this definition). It is assumed that the dividend

yield1 has an AR(1) dynamics, written as:

δt+1 = αδ + βδδt + σδνδ,t+1

where αδ, βδ and σδ > 0, are constant parameters and νδ,t+1 is a zero-mean, unit-

variance error term. Stacking up the above Na + 1 = n equations, and dropping the

time subscripts for notational convenience, we can write the resulting system in matrix

form as

y = µ+ σν ν (7.2)

1Note that for the sake of simplicity, we shall refer to “log excess returns” and “log dividend yield”
respectively as “returns” ad “dividend yield” (or simply “dividend”).
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where y, µ and ν are the following n× 1 vectors

y =


re1,t+1

...

reN,t+1

δt+1

 , µ =


α1 + β1 δt

...

αN + βN δt

αδ + βδ δt

 , and ν =


ν1,t+1

...

νN,t+1

νδ,t+1


and σν is a n × n diagonal matrix of standard error parameters, and where ν has

correlation matrix Cν . It is worth noting that the distribution of the noise vector ν has

not been identified yet. In the next two sections, we consider the two cases where the

noise vector ν follows a Gaussian distribution and a Johnson-SUdistribution, and how

Gauss-Hermite quadrature can be applied.

7.2 Gaussian noises

In the literature, it is usually assumed that the elements of the noise vector are jointly

Gaussian-distributed ν ∼ z, where z is multivariate Gaussian with zero-mean and cor-

relation matrix Cz. The density function of this standard normal vector can be written

as:

f (z) =
1√

(2π)n det (Cz)
exp

(
−1

2
z′C−1z z

)
. (7.3)

Using equation (7.2) and a multivariate change of variable2, the density of y is given by

f (y) = f (z)×
∣∣∣∣det

(
∂z

∂y

)∣∣∣∣ , (7.4)

where
∂z

∂y
is the Jacobian matrix, det(·) is the determinant of a matrix and |a| is the

absolute value of a. Equation (7.2) implies z = σ−1z (y−µ), thus
∂z

∂y
= σ−1z . By defining

Σ =σzCzσ
′
z and by replacing

∂z

∂y
and (7.3) in (7.4), we obtain the density function of

2This is the technique integration by substitution, which can be found in any textbook on Calculus
such as [31], Section 7.2 and [16], Chapter IV.
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y

f (y) =
1√

(2π)n det (Cz) det (σz)
exp

(
−1

2

(
σ−1z (y − µ)

)′
C−1z

(
σ−1z (y − µ)

))

=
1√

(2π)n det (Σ)
exp

(
−1

2
(y − µ)′Σ−1 (y − µ)

)
.

Thus the vector y is multivariate Gaussian with mean µ and covariance Σ. We can

write the expectation of a continuous function g(y) of y as:

E [g (y)] =

∫
Rn

g (y) f (y) dy,

=
1√

(2π)n det (Σ)

∫
Rn

g (y) exp

(
−1

2
(y − µ)′Σ−1 (y − µ)

)
dy. (7.5)

As discussed in [31] (section 7.2), this last integral can be approximated by Gauss-

Hermite (GH) quadrature. To do this, we define the change of variable

x = Ω−1 (y − µ) /
√

2 ←→ y =
√

2Ωx+µ (7.6)

where Ω is the Cholesky decomposition of Σ with:

Σ = ΩΩ′ and Σ−1 =
(
Ω−1

)′
Ω−1.

The vector x is a zero-mean and unit-variance multivariate Gaussian variable within-

dependant elements. The change of variable in (7.6) puts equation (7.5) ready for GH
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quadrature integration:

E [g (y)] =
1√

(2π)n det (Σ)
×∫

Rn
g
(√

2Ωx+µ
)

exp

(
−1

2

(√
2Ωx+µ

)′
Σ−1

(√
2Ωx+µ

)) ∣∣∣∣det

(
∂y

∂x

)∣∣∣∣ dx,
=

1√
(2π)n det (Σ)

∫
Rn

g
(√

2Ωx+µ
)

exp
(
−x′x

)√
2n |det (Ω)| dx,

=
|det (Ω)|√
πn det (Σ)

∫
Rn

g
(√

2Ωx+µ
)

exp
(
−x′x

)
dx,

≈ |det (Ω)|√
πn det (Σ)

Q1∑
k1=1

· · ·
Qn∑
kn=1

g
(√

2Ωm+µ
)
pk1 . . . pkn , (7.7)

where m = [mk1 , . . . , mkn ] ′ is a vector of GH nodes for all n dimensions with mki

being one of the Qi nodes in the ith dimension and pki being the corresponding weights

(ki = 1, . . . , Qi). The second line follows by the fact that (due to the change of variable

in (7.6))

∣∣∣∣∂y

∂x

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣

∂y1
∂x1

0 0 0

0 ∂y2
∂x2

0 0

0 0
. . . 0

0 0 0 ∂yn
∂xn

∣∣∣∣∣∣∣∣∣∣
=
√

2n |det (Ω)| .

7.3 Johnson-SU noises

It is well known by practitioners and researchers who have handled financial market data

that asset returns do not behave according to the Gaussian distribution. Thus “the use

of Gaussian models when the asset return distributions are not normal could lead to a

wrong choice of portfolio, the underestimation of extreme losses or mispriced derivative

products” (stated by [30]). Consequently, non-Gaussian models and models based on

processes with jumps have gained popularity among financial market practitioners.

In this section, in order to introduce non-normality, we assume that the noise vector
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in equation (7.2) follows a multivariate Johnson-SUdistribution, which means that ν ∼ u

and

y = µ+ σuu

where the elements of u are standard JJohnson-SU random variables with zero-mean,

unit-variance and correlation matrix Cu. These standard Johnson-SU random variables

are continuous transformation of Cz-correlated standard normal random variables zi

ui = ci + di sinh

(
zi − ai
bi

)
←→ zi = ai + bi sinh−1

(
ui − ci
di

)
i = 1, . . . , n (7.8)

where ai , bi > 0, ci, di > 0 are the four parameters characterizing a Johnson-SUdistribution,

and σu is a diagonal matrix of standard error parameters. The zi are standard normal

random variables with correlations given by Cz. The covariance matrix of y is given by

Σ =σuCuσu. It is important to notice that the correlation between zi and zj is different

from the correlation between ui and uj , i.e. Cz 6= Cu, because of the non linear transfor-

mation in (7.8). Appendix D shows how to derive ρzi,zj (the correlation between normal

variables) from ρui,uj (the correlation between Johnson-SUvariables) and vice-versa.

Using transformation (7.8), the relationship between yi and zi can be written as

yi = µi + σu,i

(
ci + di sinh

(
zi − ai
bi

))

←→ zi = ai + bi sinh−1


(
yi−µi
σu,i

)
− ci

di

 i = 1, . . . , n (7.9)

which can be generically written as the following multivariate mapping:

y = h (z) ←→ z = h−1 (y) , (7.10)

where h(z) = [h1(z1) , . . . , hn(zn)]′, with hi(zi) = µi + σu,i

(
ci + di sinh

(
zi−ai
bi

))
for

i = 1, . . . , n, and h−1(y) = [h−11 (y1) , . . . , h
−1
n (yn)]′.

Similarly as in section 7.2, the density function of y can be obtained by the multi-

variate change of variable as described in equation (7.9). The resulting density function
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can be written as

f (y) = f (z)×
∣∣∣∣det

(
∂z

∂y

)∣∣∣∣ ,
=

1√
det (Cz) (2π)n

exp

(
−1

2
z′C−1z z

) ∣∣∣∣det

(
∂z

∂y

)∣∣∣∣ ,

=
1√

det (Cz) (2π)n
exp

(
−1

2
h−1 (y)′C−1z h−1 (y)

) ∣∣∣∣det

(
∂z

∂y

)∣∣∣∣ ,
where f (z) is given by (7.3) and

∂z

∂y
is the diagonal Jacobian matrix.

Given this density function of y, one can compute the expectation of an arbitrary

function g (y):

E [g (y)] =

∫
Rn

g (y) f (y) dy,

=
1√

det (Cz) (2π)n

∫
Rn

g (y) exp

(
−1

2
h−1 (y)′C−1z h−1 (y)

) ∣∣∣∣det

(
∂z

∂y

)∣∣∣∣ dy.
The second line in previous equation is obtained by simply replacing the expression for

the density of y. Since y = h (z) and h−1(h(z)) = z as defined previously in equation

(7.10), we have

E [g (y)] =
1√

det (Cz) (2π)n

∫
Rn

g (h (z))

∣∣∣∣det

(
∂y

∂z

)∣∣∣∣ exp

(
−1

2
z′C−1z z

) ∣∣∣∣det

(
∂z

∂y

)∣∣∣∣ dz,

=
1√

det (Cz) (2π)n

∫
Rn

g (h (z)) exp

(
−1

2
z′C−1z z

)
dz (7.11)

since

∣∣∣∣det

(
∂z

∂y

)∣∣∣∣× ∣∣∣∣det

(
∂y

∂z

)∣∣∣∣ = 1.

Equation (7.11) can be reorganized in order to use GH quadrature integration by

defining a vector x as

x = Λ−1z/
√

2 ←→ z =
√

2Λx
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where Cz = ΛΛ′ and C−1z =
(
Λ−1

)′
Λ−1, which yields the following expression, that

is amenable to Gauss-Hermite quadrature approximation

E [g (y)] =
1√

det (Cz) (2π)n∫
Rn

g
(
h
(√

2Λx
))

exp

(
−1

2

(√
2Λx

)′
C−1z

(√
2Λx

)) ∣∣∣∣det

(
∂z

∂x

)∣∣∣∣ dx
=

1√
det (Cz) (2π)n

∫
Rn

g
(
h
(√

2Λx
))

exp (−xx) |det (Λ)| 2n/2dx

=
|det (Λ)|√
det (Cz)πn

∫
Rn

g
(
h
(√

2Λx
))

exp (−xx) dx

≈ |det (Λ)|√
det (Cz)πn

Q1∑
k1=1

· · ·
Qn∑
kn=1

g
(
h
(√

2Λm
))
× pk1 . . . pkn (7.12)

where n = N+1 with N being the number of risky assets in the portfolio; h is defined in

equation (7.10); and as in section 7.2, m = [mk1 , . . . , mkn ] ′ is a vector for GH nodes

in all n dimensions with mki being one of the Qi GH nodes in the ith dimension and

pki being its corresponding weight, i = 1, . . . , n .
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Chapter 8

A Gauss-Hermite Algorithm for a

Non-Gaussian OPCP

8.1 Problem formulation with CRRA utility function

We now turn our attention to optimal portfolio choice problems. Precisely, we study

optimal portfolio allocations of an investor whose risk aversion can be described by the

constant relative risk aversion (CRRA) utility function for the market model discussed

in previous section. Mathematically, we want to maximize the expected utility of the

final wealth by choosing the optimal asset allocations over an investment horizon of T

periods

max
x0,...,xT−1

E[u(WT )], (8.1)

where the wealth transits according to Wt+1 = Wt

(
Rf + xt(e

ret+1 − I)
)
. Here 0 ≤ xt ≤ I

is the vector of optimal weights in risky assets for period [t, t+1), t = 0, . . . , T−1; I is the

vector of ones the appropriate size and u(Wt) =
W 1−γ
t

1−γ is the CRRA utility function, and

its parameter γ controls the degree of risk aversion: the larger is its value, the greater is

the risk aversion.

This optimization problem can be solved by dynamic programming. Define the value

function by

Vt(Wt,yt) := max
xt,...,xT−1

E[u(WT )],
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where the vector yt contains returns of risky assets and dividend yield: yt = [ret,1, . . . , r
e
t,N , δt]

′.

The value function Vt is usually interpreted as the best possible value one can achieve

from a state (Wt,yt) until the end of planning horizon T by always acting optimally.

The associated Bellman equation is given by (see e.g. [25]):

Vt(Wt,yt) = max
xt

E
[(
Wt

(
Rf + xt(e

ret+1 − 1)
))1−γ

Vt+1(yt+1)
]
. (8.2)

Assuming that the investor liquidates all assets at the end of investment horizon T , the

terminal conditions are VT (WT ,yT ) =
W 1−γ
t

1− γ
, ∀yT and ∀WT . The goal of the PCP is

then to find V0(W0,y0) and more importantly, the optimal allocation x0 that goes with

it.

An important property of CRRA utility function is that optimal decisions are inde-

pendent on wealth Wt. Thus we can always normalize the wealth Wt to 1 in the above

Bellman equation without loss of generality.

Also, one characteristic of our market model presented earlier is that the asset’s

return, ri,t, depend only on the one-period-lagged dividend yield (δt−1). Thus the sole

state variable in equation (8.2) is in fact the dividend yield δt. The Bellman equation

(8.2) thus amounts to the following reduced version:

Vt(δt) = max
xt

E
[(
Rf + xt(e

ret+1 − 1)
)1−γ Vt+1(δt+1)

]
, (8.3)

with terminal condition VT (δT ) = 1/(1− γ),∀δT .

8.2 Gauss-Hermite solutions with Gaussian and Johnson-

SU noises

The expectation in this reduced Bellman equation (8.3) can be computed by Gauss-

Hermite quadrature approximation using equations (7.7) in section 7.2 or equation (7.12)

in section 7.3 respectively for the Gaussian or Johnson case. Precisely, define

g(yt+1,xt) :=
(
Rf + xt(e

ret+1 − 1)
)1−γ Vt+1(δt+1).
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Then for the Gaussian case, equation (8.3) can be approximated by

Vt(δt) = max
xt

E [g(yt+1,xt)] ,

≈ max
xt

| det(Ω)|√
det(Σ)πn

Q∑
k1=1

· · ·
Q∑

kn=1

pk1 . . . pkng
(√

2Ωm+µ
)
,

= max
xt

|det(Ω)|√
det(Σ)πn

Q∑
k1=1

· · ·
Q∑

kn=1

pk1 . . . pkn
(
Rf + xt(e

ret+1 − 1)
)1−γ Vt+1(δt+1),

(8.4)

where Σ = σzCzσ
′
z , Σ = ΩΩ′ with Ωi being the ith line of Ω , and

rei,t+1 = αi + βiδt + σu,i
√

2Ωim, i = 1, . . . , N (8.5)

δt+1 = αn + βnδt + σu,n
√

2Ωnm. (8.6)

And for the Johnson case, let the function h(·) being defined as in section 7.3

hi(zi) = µi + σu,i

(
ci + di sinh

(
zi − ai
bi

))
and h(z) = [h1(z1) , . . . , hn(zn)]′ ,

then an approximation of equation (8.3) is given by

Vt(δt) = max
xt

E [g(yt+1,xt)] ,

≈ max
ωt

| det(Λ)|√
det(Cz)πn

Q∑
k1=1

· · ·
Q∑

kn=1

pk1 . . . pkng
(
h
(√

2Λm
))

,

= max
ωt

| det(Λ)|√
det(Cz)πn

Q∑
k1=1

· · ·
Q∑

kn=1

pk1 . . . pkn
(
Rf + xt(e

ret+1 − 1)
)1−γ Vt+1(δt+1),

(8.7)

where Cz = ΛΛ′ with Λi being the ith line of Λ , and for i = 1, . . . , N :

rei,t+1 = hi(
√

2Λim) = αi + βiδt + σu,i

(
ci + di sinh

(√
2Λim− ai

bi

))
, (8.8)

δt+1 = hn(
√

2Λnm) = αn + βnδt + σu,n

(
cn + dn sinh

(√
2Λnm− an

bn

))
.

(8.9)
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In equations (8.4) to (8.9), m = [mk1 , . . . , mkn ]′ is the vector of standard Gauss-

Hermite nodes and pki is the associated weight as defined previously in sections 7.2 and

7.3.

8.3 Backward dynamic programming algorithm

Backward dynamic programming (DP) is used to solve equations (8.4) for Gaussian case,

or (8.7) for Johnson case. The method is explained in details in an algorithm, described

in Figure 8.1. We consider for simplicity the case with one risky asset, but the algorithm

can easily be extended to cases with multiple risky assets. The general idea of this

algorithm is, beginning from the final stage and going backward, to discretize the state

variable δt into grids Dt at each time step, and compute the associated value function

Vt(δt) for each point on the grid using linear interpolation when it’s necessary.

More precisely, steps 1 to 3 are preparation steps for the backward recursion. In step

1, we calculate the 2-dimensional GH nodes and their corresponding weights. These

quantities are used repetitively in step 4 but need only to be computed once in advance.

In step 2, the state variable (δt) is discretized at each time stage. Appendix F presents

several discretization methods. In step 3, the backward recursion is initialized at the

final stage to the terminal condition.

Step 4 is the core step of Algorithm 1, where the value function is computed for each

point of state variable on the grid and at each time stage. Linear interpolation is used

when necessary. Specifically, we follow the technique used in [25]: when an interpolation

is required, firstly the value functions Vt are transformed to their certain equivalent

(CE) functions CEt which is defined by CEt(δt) = u−1(Vt(δt)) =
[
(1 − γ)Vt(δt)

] 1
1−γ

.

Then linear interpolations are applied to CEt(δt). Finally, we transform the interpolated

value (in certainty equivalent) back to its corresponding value in value function. This

transformation aims to increase the computational precision, since CE functions are

much more linear than the value function itself in general.
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Algorithm
Preparation steps:

a) Compute the correlated nodes for Johnson distribution and their
corresponding weights in 2-dimension:

a)1. Choose Q, the number of nodes used in Gauss-Hermite quadrature.
Determine the GH nodes m and their corresponding weights p.

a)2. Compute the Cartesian product of m and p: M = m×m and P = p× p.
a)3. Compute ProdP by multiplying elements in each line of P.

b) Discretize the state variable δt at each time step: Dt := {δt}
Ng

n=1, ∀t =
1, . . . , T, where Ng is the number of discretization points.

c) Initialize VT (δT ) = 1
1−γ ,∀δT ∈ DT .

Solve the reduced Bellman equation for each time t and discretized dividend
point:

d) For t = T − 1, . . . , 0, do

d)1. For all δ
(n)
t ∈ Dt, n = 1, . . . , Ng, do

d)1.1. Using M and Prodp found in step 1, compute r
(n,k)
t+1 and δ

(n,k)
t+1 by

equations (8.5) and (8.6) (Gaussian case), or by equations (8.8)
and (8.9) (Johnson case).

d)1.2. Optimize over xt:

Vt(δ(n)t ) = max
xt∈[0,1]

Ψ

Q2∑
k=1

ProdP (k)
(
Rf + xt(e

r
(n,k)
t+1 − 1)

)1−γ
Vt+1(δ

(n,k)
t+1 ),

where Ψ is defined by

Ψ :=

{
|det(Ω)|/

√
det(Σ)π2, for the Gaussian case

|det(Λ)|/
√

det(Cz)π2, for the Johnson case

Note that the quantities Vt+1(δ
(n,k)
t+1 ) are obtained by linear

interpolation using the grid Dt+1 and {Vt+1(δ
(n)
t+1)}Ng

j=1.

Let x∗t (δ
(n)
t ) denotes the optimal solution.

d)1.3. If n < Ng, n = n + 1, and go to step d)1.; else return {Vt(δ(n)t )}Ng

n=1

and {x∗t (δ
(n)
t )}Ng

n=1.

d)2. If t > 0, t = t− 1, and go to step d); else return V0(δ0) and x∗0(δ0).

Figure 8.1: A backward DP algorithm for a multi-period OPCP with CRRA utility.
Singly risky asset with log-normal returns which follow a restricted AR(1) dynamic.
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CHAPTER 9. OPTIMAL PORTFOLIO CHOICES WITH INTERMEDIATE
CONSUMPTION

9.1 Problem formulation

This section generalizes the multi-period OPCP with CRRA utility discussed previously

to include inter-temporal consumption. Following the framework in [6] section 2.4.2, the

discrete-time problem with time-separable CRRA utility of consumption is

V (t,Wt, δt) = max
{xs,cs}T−1

s=t

Et

[
T∑
s=t

(csWs)
1−γ

1− γ

]
, (9.1)

subject to the budget constraint:

Ws+1 = (1− cs)Ws

(
Rf + xs(e

res+1 − 1)
)
,

where ct is the proportion of total wealth used for consumption at time t, and other

variables are defined as before. The above problem is also subject to the no-bankruptcy

constraint Ws ≥ 0, and the terminal condition cT = 1. Due to the homogeneity of

CRRA utilities with respect to wealth and following steps similar to the case without

consumption, the Bellman equation in this case is given by:

1

1− γ
φt(δt) = max

xt,ct

[
c1−γt

1− γ
+ E

[(
(1− ct)(Rf + xt(e

ret+1 − 1))
)1−γ φt+1(δt+1)

1− γ

]]
. (9.2)

Also similar to the case without intermediate consumption, the value function at time

t, φt(δt), depends only on the sole state variable δt, and is linked to the consumption by

φt(δt) =

{
c−γt if γ > 0 and γ 6= 1;

1 if γ = 1.

This explicit form of the value function implies that it can be obtained as a by-product

of the optimization problem provided by the consumption policy. Furthermore, as high-

lighted by [6], with CRRA utility, the portfolio and consumption choices turn out to be

sequential: “Because the value function is homothetic in wealth and the consumption

choice ct only scales the investable wealth (1− ct)Wt, the FOCs for the portfolio weights

xt are independent of ct.” Consequently, at each decision moment t, the optimal portfo-

lio allocation is first determined ignoring consumption, and then the consumption choice

is made given the optimal weights.
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9.2 Algorithm with intermediate consumption

Figure 9.1 illustrates an algorithm for the PCP with inter-temporal consumption and

one risky asset. This algorithm is almost identical to Algorithm 1 (steps 1 to 4.1.3

are the same as Algorithm 1), except here we have one extra step 4.1.4 where optimal

consumption (in proportion) is calculated given the optimal weight in risky asset. Steps

4.1.3 and 4.1.4 reflect the sequential computation for optimal portfolio and consumption

choices with CRRA utilities.

Algorithm

Perform the steps of Algorithm 1 in Figure 8.1.

4.1.4 Optimize over ct ∈ [0, 1]:

Vt(δ
(n)
t ) = max

ct

c1−γt

1− γ
+ (1− ct)f(x∗t (δ

(n)
t )),

and let c∗t (δ
(n)
t ) be the solution.

Figure 9.1: A backward DP algorithm for multi-period OPCPs with 1 risky asset and
consumption, CRRA utility function.
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Chapter 10

Numerical Experiments

10.1 Data Description

Monthly returns of size portfolios studied in this paper are obtained from French’s web-

site, where one can download data of “five quintiles size portfolios constructed using

the June market equity and NYSE breakpoints at the end of each June”1. Dividend

yields are constructed using data from WRDS database. Precisely, one first downloads

directly from WRDS monthly returns including and excluding dividend of the CRSP

index (AMEX/NASDAQ/NYSE combined index). We then compute the monthly div-

idend return by taking difference between returns including and excluding dividend

payment. For each month in the sample period, multiplying the dividend return by the

index’s market value at the beginning of that month yields the dividend distribution in

dollar for that month. Finally, dividend yields are computed as the sum of all dividend

distribution (in dollar) over last 12 months divided by the index’s market value of the

current month. The study period spans from January 1960 to December 2013. We

normalize dividend yields for this period by subtracting its average and dividing by its

standard deviation.

1Description from French’s website:
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data Library/det port form sz.html
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10.2 Parameter Estimation

Before estimating the parameters of the restricted VAR process, we regress the time se-

ries of each quintile portfolio’s excess returns on (the time series of) the 1-period lagged

dividend yield. We then test the Gaussian distribution assumption by plotting residuals

obtained from previous regressions against theoretical probabilities from a normal dis-

tribution, as illustrated in Figure 10.1. If residuals are normally distributed, the plots

will be linear (a straight line with slope of 45 degree as indicated by the dashed line),

other distribution types will introduce curvature in the plot. Strong non linearities are

observed on all plots, especially for the right tail side of the dividend yield, and for size

portfolios on the left tail side.

Figure 10.1: Normal probability plots of residuals obtained from regressions of size
portfolios’ excess returns and of log-dividend yield on the one-period lagged log-dividend
yield.

The parameters are estimated by Maximum Log-Likelihood (MLL) procedures which

are described in Appendix E. Precisely, in our market model the joint dynamic of asset
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returns and log-dividend yield is given by a restricted VAR process of type:

yt+1 = α+ βδt + σνt+1. (10.1)

The estimated parameters for all five quintile portfolios and dividend yield, by assuming

the noise term νt are either Johnson-SUor Gaussian distributed, are shown respectively

in Tables 10.2 and 10.1. Standard errors of estimated parameters are reported in paren-

thesis. A superscript ∗, ∗∗ or ∗∗∗ indicates respectively that the corresponding estimated

parameter is significant at confidence level of 90%, 95% or 99%.

Tables 10.2 and 10.1 also report the results of significance tests for αi and βi. These

test results suggest strong serial correlation in the dividend yield series in both Gaussian

and Johnson cases, while the relationships between portfolios’ returns and the lagged

dividend yield are only significant at lower confidence levels.

Table 10.1: ML estimation for the restricted VAR(1) parameters with Gaussian noises.

PF Q1 PF Q2 PF Q3 PF Q4 PF Q5 Dividend

LLH 867.5536 908.1319 964.7856 1005.0001 1118.0713 315.2865

αi 0.0054∗∗ 0.0057∗∗ 0.0057∗∗ 0.0054∗∗ 0.0038∗∗ -0.0020
(0.0026) (0.0025) (0.0023) (0.0022) (0.0018) (0.0079)

βi 0.0027 0.0040∗ 0.0037∗ 0.0029 0.0021 0.9893∗∗∗

(0.0023) (0.0022) (0.0020) (0.0018) (0.0015) (0.0059)
σz,i 0.0633∗∗∗ 0.0595∗∗∗ 0.0545∗∗∗ 0.0512∗∗∗ 0.0430∗∗∗ 0.1486∗∗∗

(0.0012) (0.0011) (0.0010) (0.0010) (0.0009) (0.0015)

Cz

1
0.9649 1
0.9282 0.9806 1
0.8860 0.9489 0.9775 1
0.7503 0.8276 0.8763 0.9216 1
-0.7576 -0.8150 -0.8448 -0.8723 -0.8896 1
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Table 10.2: ML estimation for the restricted VAR(1) parameters with Johnson-SU noises.

PF Q1 PF Q2 PF Q3 PF Q4 PF Q5 Dividend

LLH 900.2177 940.2779 996.9832 1033.4106 1141.6324 388.0529

αi 0.0055∗∗ 0.0057∗∗ 0.0057∗∗∗ 0.0054∗∗∗ 0.0038∗∗ -0.0005
(0.0025) (0.0023) (0.0021) (0.0020) (0.0017) (0.0067)

βi 0.0029 0.0038∗∗ 0.0035∗∗ 0.0029∗ 0.0016 0.9758∗∗∗

(0.0021) (0.0019) (0.0018) (0.0017) (0.0014) (0.0046)

σu,i 0.0632∗∗∗ 0.0592∗∗∗ 0.0542∗∗∗ 0.0509∗∗∗ 0.0431∗∗∗ 0.1559∗∗∗

(0.0028) (0.0023) (0.0021) (0.0019) (0.0018) (0.0116)

ai 0.3632∗ 0.7356∗∗∗ 0.8737∗∗∗ 0.7365∗∗∗ 0.5933∗∗∗ −0.4253∗∗∗

(0.1467) (0.2207) (0.2546) (0.2574) (0.2188) (0.0992)
bi 1.6053∗∗∗ 1.8838∗∗∗ 1.9647∗∗∗ 1.9619∗∗∗ 1.8636∗∗∗ 1.1715∗∗∗

(0.1876) (0.2475) (0.2669) (0.2826) (0.2767) (0.1046)
ci 0.3511 0.6892 0.8067 0.6941 0.5663 -0.3822
di 1.2670 1.4946 1.5424 1.5861 1.5144 0.7156

Correlation matrix among Johnson innovations (Cu)

1
0.9649 1
0.9282 0.9806 1
0.8860 0.9489 0.9775 1
0.7502 0.8275 0.8763 0.9215 1
-0.7547 -0.8114 -0.8410 -0.8687 -0.8848 1

Correlation matrix among Gaussian innovations (Cz)

1
0.9628 1
0.9234 0.9794 1
0.8795 0.9465 0.9767 1
0.7388 0.8199 0.8714 0.9188 1
-0.7444 -0.8077 -0.8413 -0.8721 -0.8913 1
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10.3 Optimal weights with predictable returns

10.3.1 One risky asset

We first consider the case of one single risky asset with predictable returns by log-

dividend yield. The joint dynamic of asset return and log-dividend is described by the

restricted VAR discussed previously in section 7. We use estimated parameters from

Table 10.2 where columns 1 to 5 represent respectively the first to the fifth quintile

portfolio, and the last column is for log-dividend yield. For example, if the only risky

asset in our portfolio is the 1st quintile size portfolio, we take parameters in the first and

last columns of Table 10.2. We use our recursive algorithm described in Figure 8.1 to

compute optimal weights, under both Gaussian and Johnson assumptions, for different

values of risk aversion γ, investment horizon T and initial state (log-dividend yield) value

δ0. Ten (10) nodes are used for Gauss Hermite quadrature in each dimension.

Figure 10.2 shows, for the single-period case (one month, T = 1), optimal weights at

t = 0 in the risky asset. We only present results with the fifth quintile portfolio in this

paper because results for other quintile portfolios are quite similar. It can be observed

that for the single-period case, Johnson and Gaussian assumptions predict significantly

different optimal weights, especially for highly positive values of initial dividend yield

and higher values for the risk aversion coefficient γ: as the initial dividend yield increases,

the difference becomes more pronounced, and this difference is bigger for larger values

of γ.

Figure 10.3 illustrates how optimal allocation in risky asset at the initial period varies

as the investment horizon becomes longer. Three (3) different values for initial dividend

are considered δ0 ∈ {−2, 0, 2}. Since the dividend yields are normalized, these values

correspond respectively to -2 times its standard deviation, the mean and +2 times the

standard deviation. We present results with the fifth quintile portfolio as in the case for

single-period. Results for other portfolios are close to those of the fifth quintile portfolio.

Some interesting remarks can be drawn from Figure 10.3. Firstly, under both Gaus-

sian and Johnson assumptions, the optimal allocation to risky asset increases as planning

horizon becomes longer, but the increase is less important and more stable for the John-

son case compared to the Gaussian case. Secondly, differences in optimal allocations

between Gaussian and Johnson policies are noticeable for all levels of initial dividend
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Figure 10.2: Optimal allocation in risky asset as a function of initial dividend yield for
different values of γ with one period and one risky asset, Rf = 1.0028.

yield δ0 considered, and the differences are larger for higher levels of δ0. Table 10.3,

which lists optimal allocations in risky asset at t = 0 for both policies and for different

initial dividend yield, helps to better visualize previous remarks.
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Figure 10.3: Optimal fraction in risky asset at t = 0 for different length of investment
horizon T (in year) for Gaussian and Johnson-SU assumptions. One risky asset (the fifth
quintile portfolio), γ = 10, Rf = 1.0028, initial state δ0 = −2 (left), δ0 = 0 (midddle)
and δ0 = 2 (right).

Table 10.3: Optimal allocations in risky asset at t = 0 for different inverstment horizons.
One risky asset, Rf = 1.0028.

δ0

T = 12 T = 120
γ = 2 γ = 5 γ = 10 γ = 2 γ = 5 γ = 10

John Gaus John Gaus John Gaus John Gaus John Gaus John Gaus

-2.0 0.4291 0.1500 0.1757 0.0619 0.0886 0.0313 0.4959 0.2674 0.2338 0.1727 0.1228 0.0985
-1.5 0.6447 0.4423 0.2641 0.1810 0.1331 0.0912 0.7160 0.5834 0.3277 0.3209 0.1705 0.1765
-1.0 0.8552 0.7348 0.3512 0.3005 0.1770 0.1513 0.9269 0.8936 0.4199 0.4697 0.2176 0.2549
-0.5 1.0000 1.0000 0.4370 0.4200 0.2204 0.2114 1.0000 1.0000 0.5106 0.6182 0.2639 0.3338
0.0 1.0000 1.0000 0.5214 0.5395 0.2632 0.2715 1.0000 1.0000 0.6002 0.7651 0.3099 0.4131
0.5 1.0000 1.0000 0.6044 0.6590 0.3054 0.3317 1.0000 1.0000 0.6883 0.9081 0.3552 0.4922
1.0 1.0000 1.0000 0.6858 0.7785 0.3469 0.3918 1.0000 1.0000 0.7747 1.0000 0.3999 0.5715
1.5 1.0000 1.0000 0.7657 0.8978 0.3878 0.4520 1.0000 1.0000 0.8590 1.0000 0.4438 0.6505
2.0 1.0000 1.0000 0.8440 1.0000 0.4280 0.5122 1.0000 1.0000 0.9420 1.0000 0.4873 0.7296
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It is important to highlight that there are two sources for the differences between

Gaussian and Johnson optimal allocations. The first and more intuitive source is the

difference in the assumption of underlying distribution. The other one comes from

differences in the ML estimates. By comparing Tables 10.2 and 10.1, the “common”

parameters (αi, βi and σi) are slightly different when changing from one distribution

assumption to another. Thus the difference in portfolio allocation may be not only

due to different distribution assumption, but also to differences in the estimation of

“common” parameters.

To isolate the impact of the distribution assumption, we next perform a controlled

study. The controlled Gaussian case is similar to the Gaussian case except that rather

than using the ML estimations assuming a Gaussian distribution as given by Table 10.1,

we use the estimated parameters assuming a Johnson-SUdistribution (only αi, βi and σi)

as given by Table 10.2. In other words, in the controlled Gaussian case we vary only the

distribution assumption while keeping the parameter estimations constant. Table 10.4

compares optimal allocations in the risky asset for Johnson, Gaussian assumption and

the controlled case, for various investment horizons and risk aversion levels when initial

dividend yield δ0 = 0. The risky asset chosen to produce results in Table 10.4 is again

the fifth quintile portfolio to keep consistency with our results presented previously.

Table 10.4: Controlled experiment for impacts of distributional assumption for different
T and γ with 1 risky asset including dividend yield. Rf = 1.0028, δ0 = 0

γ = 2 γ = 5 γ = 10

T Johnson Gaussian Gaussian Johnson Gaussian Gaussian Johnson Gaussian Gaussian
(Year) (controlled) (controlled) (controlled)

1/12 1.0000 1.0000 1.0000 0.5001 0.5082 0.5107 0.2510 0.2540 0.2553
1 1.0000 1.0000 1.0000 0.5212 0.5294 0.5394 0.2630 0.2660 0.2715
2 1.0000 1.0000 1.0000 0.5396 0.5482 0.5700 0.2737 0.2767 0.2890
3 1.0000 1.0000 1.0000 0.5543 0.5633 0.5994 0.2823 0.2854 0.3061
4 1.0000 1.0000 1.0000 0.5658 0.5754 0.6275 0.2891 0.2924 0.3227
5 1.0000 1.0000 1.0000 0.5749 0.5848 0.6541 0.2945 0.2980 0.3387
6 1.0000 1.0000 1.0000 0.5820 0.5923 0.6793 0.2988 0.3024 0.3540
7 1.0000 1.0000 1.0000 0.5876 0.5982 0.7028 0.3022 0.3059 0.3685
8 1.0000 1.0000 1.0000 0.5920 0.6029 0.7245 0.3048 0.3087 0.3824
9 1.0000 1.0000 1.0000 0.5954 0.6065 0.7446 0.3070 0.3109 0.3955
10 1.0000 1.0000 1.0000 0.5981 0.6093 0.7629 0.3086 0.3127 0.4078
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10.3.2 Two risky assets with predictable returns

We now examine the case with two or more risky assets. We only report in this section

results with the first and fifth quintile size portfolios as risky assets. Figure 10.4 illus-

trates how optimal weights in risky assets (the 1st and 2nd columns) and in risk-free

asset (the 3rd column) change with initial dividend yield for a single-period (T = 1)

investor. Three levels of risk aversion are considered.

Figure 10.4: Single-period optimal fraction in risky assets and in risk-free asset for
various initial dividend yield when error term is Gaussian and Johnson-SUdistributed.
Results with three levels of risk aversion are illustrated: γ = 2, 5, 10, Rf = 1.0028.

At least two remarks should be made from Figure 10.4. First of all, by comparing

across three levels of risk aversion (comparison by line), the proportion in risky assets

decreases for higher risk aversion levels, which is coherent with the design of CRRA

utility.
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Table 10.5: Comparison of Johnson and Gaussian policies for various risk aversion levels
and initial dividend yield. Single period case

Low γ = 2 Medium γ = 5 High γ = 10

Johnson Gaussian Johnson Gaussian Johnson Gaussian

δ0 < 0 Q5 Q1 Q5 Q1 Q5 Q1
δ0 = 0 Q1 Q1 ≈ ≈ ≈ ≈
δ0 > 0 Q1 Q1 Q1 Q5 Q1 Q5

Second, by comparing across risky assets (sub-figures in the 1st (for portfolio Q1) and

2nd columns (for portfolio Q5) ), we notice the Gaussian and Johnson policies allocate

wealth among risky assets in a different way. Table 10.5 gives a clearer idea of asset

preference (larger allocation) of Johnson and Gaussian policies. At least three factors

influence allocation to risky assets: initial dividend yield, risk aversion and asset specific

characteristics (mean, variance, skewness and kurtosis). In our example of this section,

portfolio Q1 has a higher average, higher variance, slightly higher Sharpe Ratio, higher

kurtosis and more skewed to the left than portfolio Q5 (see Table 10.6).

Table 10.6: Descriptive statistics of portfolio returns and dividend yields.

PF Q1 PF Q2 PF Q3 PF Q4 PF Q5 Dividend

mean 0.0054 0.0057 0.0056 0.0053 0.0037 -0.0000
s.d 0.0634 0.0596 0.0546 0.0513 0.0431 1.0000
skewness -0.6371 -0.8324 -0.8567 -0.7892 -0.6190 0.2971
kurtosis 6.0720 6.1601 6.1231 5.9893 5.1544 2.4515
S.R. 0.0852 0.0951 0.1025 0.1029 0.0848 -0.0000

When δ0 is low, the Gaussian policy invests more in portfolio Q1 because it has

the higher Sharp Ratio, while the Johnson policy does the inverse and prefers portfolio

Q5. One possible explanation is that when δ0 is strongly negative and according to our

market model (the restricted VAR(1) ), the possibility to have a strongly negative return

during the following period is higher for assets more skewed to the left (portfolio Q1).

Thus the Johnson policy judges the situation as too risky and allocates more wealth

to the “safer” asset (portfolio Q5), even when the investor is willing to take more risk

(small values of γ).

When δ0 equals to zero, both policies favor portfolio Q1 for an investor willing to

take more risk, and assign similar weights to both assets for an investors more averse to
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risk.

When the initial dividend yield (δ0) is high, the possibility to have a strongly positive

return during the following period is higher for assets with higher kurtosis, thus the

Johnson policy puts more wealth in portfolio Q1 regardless of the risk aversion level. As

for the Gaussian policy, it prefers portfolio Q5 due to a lower variance, except when the

risk aversion level is low.

We next examine the multi-period case with two risky assets. Figure 10.5 shows

optimal weights in risky and risk-free assets. The risky assets used to produce this

figure are again the 1st and 5th quintile portfolios. Three levels of initial dividend yield

are considered, δ0 ∈ {−2, 0, 2} which corresponds respectively to -2 times of its standard

deviation, the mean and 2 times of its standard deviation. According to this figure,

the preference between risky assets is in accordance with our previous analysis for the

single-period case. Another remark is that both Gaussian and Johnson policies allocate

less wealth to the risk-free asset as investment horizon becomes longer, a fact consistent

with the existing literature. Yet, the risk-free allocation decreases faster for the Gaussian

policy compared to its Johnson twin.
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Figure 10.5: Multi-period optimal fraction in risky assets and in risk-free asset for various
investment horizon T (in month) with Gaussian and Johnson assumptions. Medium risk
aversion γ = 5 and Rf = 1.0028.
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10.3.3 Optimal weights with inter-temporal consumption

We next study the case with one risky asset and adding inter-temporal consumption.

The approach illustrated in this subsection can be easily extended to cases with multiple

risky assets. Figure 10.6 illustrates the optimal fraction of total wealth in consumption

(left) and in risky asset (right) at t = 0 as a function of initial dividend yield, for both

Gaussian and Johnson error terms with an investment horizon of 10 years (120 months

T = 120). We consider three different relative risk aversion levels: low γ = 2 (solid

line), median γ = 5 (dashed line) and high γ = 10 (dotted line). Parameter values are

taken from Table 10.2 with Rf = 1.0028. We take the five quintile size portfolios, one

at a time, as the only risky asset. Results are similar for all five quintile portfolios and

we only report those with the fifth quintile portfolio to stay in line with our previous

results. For a clearer illustration of these results, Table 10.7 lists the numbers used to

plot Figure 10.6. Comparing optimal allocations in Table 10.7 to those in Table 10.3, we

find that when consumption is taken into account, both Johnson and Gaussian policies

put less wealth in risky asset.

Several remarks should be made about Figure 10.6. First, for an investor with

fixed risk aversion, the proportions allocated to consumption and to the risky asset

increase with initial dividend yield. Second, for different investors with different risk

aversions, the ones willing to take more risk put more wealth into risky asset, while the

proportion of consumption remains almost the same. Thirdly, the Johnson policy seems

to be more bullish when initial dividend yield level is low, thus puts more allocations to

consumption and risky asset than Gaussian policy. In contrary, when initial dividend

level rises, Johnson policy becomes more bearish than Gaussian policy.
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Figure 10.6: Optimal fraction in consumption and in risky asset at t = 0 for different
initial dividend yield when error term is Gaussian- and Johnson-SU -distributed with 10
years of investment horizon, and three risk aversion level γ = 2, 5, 10., Rf = 1.0028

Table 10.7: Optimal allocations to consumption and risky asset for the 5th quintile
portfolio with T = 120 (10 years), Rf = 1.0028.

γ = 2 γ = 5 γ = 10
Johnson Gaussian Johnson Gaussian Johnson Gaussian

δ0 ω0 c0 ω0 c0 ω0 c0 ω0 c0 ω0 c0 ω0 c0
-2.0 0.4581 0.0094 0.1985 0.0092 0.2013 0.0097 0.1019 0.0096 0.1038 0.0098 0.0550 0.0097
-1.5 0.6719 0.0095 0.4999 0.0093 0.2911 0.0098 0.2330 0.0097 0.1493 0.0098 0.1222 0.0097
-1.0 0.8797 0.0096 0.7981 0.0094 0.3796 0.0099 0.3646 0.0098 0.1943 0.0098 0.1899 0.0098
-0.5 0.9807 0.0097 0.9808 0.0096 0.4667 0.0100 0.4961 0.0100 0.2386 0.0099 0.2575 0.0099
0.0 0.9805 0.0098 0.9805 0.0098 0.5523 0.0101 0.6270 0.0102 0.2824 0.0099 0.3250 0.0100
0.5 0.9803 0.0099 0.9801 0.0100 0.6364 0.0102 0.7566 0.0104 0.3256 0.0100 0.3923 0.0101
1.0 0.9801 0.0100 0.9797 0.0102 0.7189 0.0103 0.8837 0.0107 0.3680 0.0101 0.4593 0.0103
1.5 0.9799 0.0101 0.9793 0.0104 0.7998 0.0104 0.9782 0.0110 0.4098 0.0101 0.5260 0.0105
2.0 0.9797 0.0102 0.9789 0.0106 0.8789 0.0105 0.9775 0.0113 0.4509 0.0102 0.5924 0.0107
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10.4 Policy Performance Analysis

From the previous section, it is easy to see that Johnson and Gaussian assumption ob-

tain different portfolio weights, especially when the number of risky assets exceeds one

and when the investment horizon becomes longer. Then the question is which assump-

tion/policy results in better performance? This section is devoted to answering this

question by evaluating and comparing Gaussian and Johnson-Su policies according to

two axis, which are presented in two sub-sections. The first axis (subsection 10.4.1)

consists of simulation studies based on arbitrarily chosen but realistic, parameter val-

ues, and the second one (in subsection 10.4.2) is composed of out-of-sample tests using

empirical data collected from the market.

10.4.1 Robustness with respect to a wrong distributional assumption

In this subsection, we perform scenario analysis to examine the impact of an incorrect

distribution assumption on portfolio performance. We first create two scenarios where

the “real” distribution is respectively Johnson-Su and Gaussian, and in each scenario

compute the loss in annualized certainty equivalent rate by applying optimal policies

resulted from the native distribution (the same as the distribution in the scenario) and

the foreign distribution (different from what is assumed in that scenario).

To be precise, we first compute our optimal policies by assuming the underlying

return distribution is respectively Gaussian or Johnson-Su, using fictive but realistic

parameters for both Gaussian and Johnson-Su distributions2 (see Appendix G for details

about values of the fictive parameters used in the simulation study). Denote these

policies respectively by πG and πJ .

In a second step, we assume the “real” environment is generated by a Gaussian

or Johnson-Su distribution and simulate returns of the risky asset and dividend yield

according to the restricted VAR process with the “real” distribution. Next we apply πG

and πJ to these simulated paths. Thus four different scenarios are created, namely the

Gaussian policy applied to a Gaussian environment (πGG), the Gaussian policy applied

to a Johnson environment (πJG), the Johnson policy applied to a Johnson environment

(πJJ ) and the Johnson policy applied to a Gaussian environment (πGJ ).

2The value of parameters used in our simulation study are closed to those calibrated according to
real data.
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Finally, we compute and compare the annualized certainty equivalent rate, which can

be interpreted as the certain return that an investor would accept rather than taking

an uncertain but potentially higher return, of the average final utility over all paths

obtained in all scenarios. For example, for scenario πGG (Gaussian policy applied to a

Gaussian environment), the average final utility is given by

uT =
1

Nsim

Nsim∑
n=1

(
W

(n)
T

)1−γ
1− γ

,

where T is the planning horizon (in months), W
(n)
T = ΠT−1

t=0 (Rf + ω
(n)
t (er

(n)
t+1 − 1)), and

ω
(n)
t (t = 0, . . . , T −1) is the optimal weight given by policy πG. The annualized certainty

equivalent rate for this scenario, ACEGG , is obtained by

uT =
(1 +ACEGG)

T (1−γ)
12

1− γ
←→ ACEGG = ((1− γ)uT )

12
T (1−γ) .

For presentation clarity, we name a policy the “native policy” if it is computed with

the same distribution assumption as in the simulation, otherwise it is named as the

“foreign policy”. We compare the ACE across the native policy and the foreign policy

within each environment by taking their difference. Precisely, we obtain the difference

between ACE when the real environment is Gaussian ∆ACEG = ACEGG −ACEGJ , and

when the real environment is Johnson ∆ACEJ = ACEJJ − ACEJG. Recall that the

subscript stands for the assumption based on which the policy is computed, and the

superscript stands for the real environment according to which paths are simulated. It

is expected that both ∆ACEG and ∆ACEJ to be positive since in each case, the native

policy should perform better than the foreign policy.

Figure 10.7 illustrates ∆ACEG and ∆ACEJ in basis point for three different degrees

of risk aversion and various initial dividend yield δ0 with a planning horizon T = 120 (10

years). We observe that the native policy always dominates the foreign policy in term

of higher annualized certainty equivalent, and this observation is valid for other lengths

of investment horizon, initial dividend yield and risk aversion levels.
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Figure 10.7: Differences of annualized certainty equivalent rate (in bps) by scenario
analysis for three different degrees of risk aversion and various initial dividend yield δ0
with planning horizon T = 120, Rf = 1.0028, 100000 simulation paths.

(a) γ = 2 (b) γ = 5

(c) γ = 10
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10.4.2 Out of Sample Performance

We test the out-of-sample (OOS) performance of policies produced with Gaussian and

Johnson assumptions. The last 120 months of our sample period (2003/12 – 2013/12)

are used for OOS performance tests. Three types of tests are conducted, all assuming

an initial wealth W0 = 1. Note the OOS period includes the recent financial crisis 2008

– 2009.

In the first test, we fix the investment horizon T = 6 (one half year) and divide the

OOS period (120 months) into 20 blocks (120/6 = 20). At the beginning of each block,

we compute the optimal policies for Gaussian and Johnson assumptions with parameters

estimated with all available data up to that moment. These policies are implemented

until the end of the block. Using empirical data and by adopting the Johnson or Gaussian

policies, we compute the “realized” final wealth for each block, which are illustrated in

Figure 10.8 together with the mean final wealth of all blocks.

The second test is very similar to the first one, except that we re-optimize at each

month. That-is-to-say, for each block of T months, we compute the optimal policies at

t = 0, and hold it for one month. Then we re-compute the optimal policies at t = 1

with a investment horizon of T − 1, and hold it for another month. The procedures are

repeated until the end of investment horizon. Figure 10.9 compares the realized final

wealth at the end of each block together with the average final wealth over all blocks for

Johnson and Gaussian policies of this test.

In the third test, we proceed as in the second one, except fixing the investment

horizon always to T = 6 and re-optimize at the beginning of each month. Thus at each

(re-)optimization, only the policy for the first period is implemented, and re-balancing

is made at each period until the end of our out-of-sample period (120 months). Figure

10.10 compares the wealth at each period calculated using empirical returns and by

implementing Johnson and Gaussian policies, together with the average wealth over the

whole OOS period.

From the three tests and figures, it can be observed that the Johnson policy outper-

forms the Gaussian policy during market disturbance, while the inverse is true during

market recovery and expansion time. This observation may suggest the evidence of a

regime switching dynamic in the market.
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Chapter 11

Conclusion on Part III

In this part, we have examined multi-period portfolio choice problems of an investor with

CRRA utility function in an incomplete market with Gaussian and Johnson-SU returns.

Our market model is a restricted VAR(1) process. We use dynamic programming to find

optimal solutions and use Gauss-Hermite quadrature to compute efficiently conditional

expectations.

Our numerical results suggest that 1) there are noticeble differences in optimal alloca-

tions between Johnson and Gaussian policies; 2) the Johnson policy is more conservative

than the Gaussian policy; and 3) the distributional assumption is important, especially

during market turbulence. Consequently, we suggest to use Johnson returns in financial

modeling during difficult market periods.



Part IV

General Conclusion



This thesis studies methods to solve optimal portfolio choice problems by dynamic

programming. Part II proposes a forward version of DP. The recursive algorithm is

based on simulation of asset returns and regression of realized values on basis functions

depending on decision and state variables. Compared to a standard BDP method with

discretization and GH quadrature to compute optimal portfolios, our method offers

similar or even better performance in terms of certainty equivalent rates. In addition,

our approach is much more time-efficient as the number of assets increases. It is thus a

possible way to partially handle the curse of dimensionality in dynamic programming.

Part III presents a standard backward DP technique with Gauss-Hermite quadrature.

We apply this technique to an environment where risky assets’ returns follow a restricted

VAR dynamic with Johnson-SU noises. Our numerical tests using historical data suggest

that the optimal policy in the Johnson-SU return environment differs from the Gaussian

environment. In period of market crises, the Johnson-SU distribution seems to be a more

appropriate assumption for fund managers.
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Appendix A

Gauss-Hermite Quadrature

In numerical analysis, a quadrature rule, which is usually stated as a weighted sum of

function values evaluated at specified points within the domain of integration, is used

to approximate the definite integral of a certain function. A Gaussian quadrature rule

seeks to obtain the best estimate of an integral by carefully picking n optimal abscissas

xi, i = 1, . . . , n. This class of quadrature rules, named after Carl Friedrich Gauss, yields

exact results for polynomials up to 2n− 1 degree.

The Gauss-Hermite quadrature is a Gaussian quadrature over (−∞,∞) with weight-

ing function w(x) = e−x
2
. It approximates the value of integrals of the following kind:∫ ∞

−∞
e−x

2
f(x)dx ≈

n∑
i=1

ωif(xi),

where n is the number of nodes xi used. The nodes are roots of the Hermite polynomials

Hn(x), i = 1, 2, . . . , n, which can be determined recursively by

H0(x) = 1, H1(x) = 2x, Hn+1(x) = 2xHn(x)− 2nHn−1(x),

and the associated weights ωi are given by

ωi =
2n−1n!

√
π

n2[Hn−1(xi)]2
.

For further details on Gaussian quadrature methods, we refer to the Chapter 7 in [31].
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Appendix B

Parameters of the VAR(1)

Dynamic Studied in Part I

This appendix presents the custom-built parameters of the VAR(1) dynamic studied in

the FDP part for cases with 1, 2 and 3 risky assets. The VAR(1) dynamic is given by:

Rt+1 = A0 +A1Rt + ξt+1, (B.1)

where ξt+1 is a vector of Gaussian error terms with zero mean and constant covariance

matrix Σ. The parameter matrix A0, A1 and Σ are given by

• One risky asset:

A0 = 0.0055, A1 = 0.2967, Σ = 0.0021.

• Two risky assets:

A0 =

[
0.0055

0.0059

]
, A1 =

[
0.1989 −0.1436

0.1285 0.0809

]
, Σ =

[
0.0021 0.0018

0.0018 0.0025

]
.

• Three risky assets:

A0 =

0.0062

0.0054

0.0059

 , A1 =

0.1959 0.0099 −0.1492

0.0236 0.1253 −0.0195

0.1150 0.0450 0.0556

 ,Σ =

0.0022 0.0017 0.0018

0.0017 0.0019 0.0019

0.0018 0.0019 0.0025

 .
ii



Appendix C

BDP Algorithm

In the numerical examples of Part II, a BDP approach is used as benchmark for our

FDP approach. This appendix illustrates this BDP algorithm with the CRRA utility

function and one risky asset whose returns are Gaussian and follow a AR(1) process and

given by:

R̂t+1 = A0 +A1R̂t + ξt+1, (C.1)

where ξt+1 ∼ N (0, σξ) is a Gaussian-distributed noise term. The BDP algorithm pre-

sented here discretizes the state space and uses Gauss-Hermite quadrature to compute

conditional expectations.We refer to Appendix F for the discretization method and to

Appendix A for the derivation of Gauss-Hermite quadrature formula within the context

of the restricted VAR(1) dynamic.
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APPENDIX C. BDP ALGORITHM

BDP Algorithm - CRRA - AR(1) Returns
Preparation steps:

a) Choose Q, the number of nodes used in Gauss-Hermite quadrature.
Determine the vector of GH nodes m = [m1, . . . , mk, . . . ,mQ] and their
corresponding weights p = [p1, . . . , pk, . . . , pQ].

b) Discretize the state variable R̂t at each time step: Gt := {Rjt}
Ng

j=1,

∀t = 1, . . . , T, where Ng is the number of discretization points.

c) Initialize VT (RjT ) = 1
1−γ , ∀R

j
T ∈ GT .

Solve the reduced Bellman equation for each time t and discretized point for
asset returns:

d) For t = T − 1, . . . , 0, do

d)1. For all Rjt ∈ Gt, j = 1, . . . , Ng, do

d)1.1. Using m and p determined in step 1, compute R
(j,k)
t+1 by :

R
(j,k)
t+1 = A0 +A1R

j
t + σξ

√
2mk

d)1.2. Optimize over xt:

Vt(R
j
t ) = max

xt∈[0,1]

1√
π

Q∑
k=1

pk

(
Rf + xtR

(j,k)
t+1

)1−γ
Vt+1(R

(j,k)
t+1 ),

where Vt+1(R
(j,k)
t+1 ) is obtained by linear interpolation using the

grid Gt+1 and {Vt+1(Rjt+1)}Ng

j=1.

Let x∗t (R
j
t ) denote the optimal solution.

d)1.3. If j < Ng, j = j + 1 and go to step d)1.; else return {Vt(Rjt )}
Ng

j=1 and

{x∗t (R
j
t )}

Ng

j=1.

d)2. If t > 0, t = t− 1 and go to step d); else return V0(Rj0) and x∗0(Rj0).

Figure C.1: A backward DP algorithm for a multi-period OPCP with 1 risky asset whose
returns are Gaussian and follow an AR(1) process, CRRA utility.
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Appendix D

Correlation between two Johnson

Su random variables

From Choi and Nam (2008), the correlation ρui,uj between two Johnson Su random

variables with parameters ai, bi, aj and bj can be computed with

ρui,uj = φ×

[
1
2e
ρzi,zj vivj cosh (−Γi − Γj)

−1
2e
−ρzi,zj vivj cosh (−Γi + Γj)− sinh (−Γi) sinh (−Γj)

]

where ρzi,zj is the correlation between the standard normal random variates and

φ =
exp

(
1
2

(
v2i + v2j

))
√
Vi
√
Vj

with vi = 1
bi

, Γi = ai
bi

and Vi = 1
2 (w − 1) (w cosh (2Γ) + 1) .
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Appendix E

Maximum Log-Likelihood

Estimation

In this section, we derive the Maximum Log-Likelihood (MLL) function to estimate the

parameters in the restricted VAR(1) model with Johnson-Su noise terms. The MLL

function of the same model with Gaussian noises is standard and can be performed

using any computing software such as MATLAB.

Let’s denote the vector containing return of the risky asset and the log-dividend yield

at time t by yt := [rt, δt]
′. The i-th component of yt evolves according to:

yi,t = αi + βiδt−1 + εi,t, i = 1, . . . , N + 1

where N is the number of risky assets, the residuals εi,t = σu,iui,t and ui,t is a standard

Johnson-Su variable given by

ui,t =
sinh

(
zi,t−ai
bi

)
−My√

Vy
,

with My = −ω1/2 sinh(Ω), Vy = 0.5(ω − 1)(ω cosh(2Ω) + 1), ω = e(1/bi)
2
,Ω = ai/bi, and

zi,t is a standard Normal random error.

We can now express the standard Normal error zi,t as a function of the residues εi,t
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APPENDIX E. MAXIMUM LOG-LIKELIHOOD ESTIMATION

(and thus yi,t):

zi,t = ai + bi sinh−1(My +
√
Vyεi,t/σu,i),

∂zi,t
∂εi,t

=
bi
√
Vy

σu,i

√
1 +

(
My +

√
Vyεi,t/σu,i

)2 ,
where εi,t = yi,t − (αi + βiδt−1).

The density function of εi,t and its log-likelihood function are given by:

f(εi,t) = f(zi,t)

∣∣∣∣∂zi,t∂εi,t

∣∣∣∣
=

1

2π
exp

−1

2

(
ai + bi sinh−1(My +

√
Vyεi,t

σu,i
)

)2


×
bi
√
Vy

σu,i

1√
1 +

(
My +

√
Vyεi,t
σu,i

)2
, (E.1)

ll(εi,t) = log (f(εi,t))

= −1

2
log(2π)− 1

2

(
ai + bi sinh−1(My +

√
Vyεi,t

σu,i
)

)2

+ log(bi)

+
1

2
log(Vy)− log(σu,i)−

1

2
log

1 +

(
My +

√
Vyεi,t

σu,i

)2
 . (E.2)

Similarly, by the relation εi,t = yi,t − (αi + βiδt−1), and thus ∂εi,t/∂yi,t = 1, which

gives the log-likelihood function of yi,t:

ll(yi,t) = log
(
f(yi,t)

)
= log

(
f(εi,t)

∣∣∣∣∂εi,t∂yi,t

∣∣∣∣)

= −1

2
log(2π)− 1

2

(
ai + bi sinh−1(My +

√
Vy(yi,t − αi − βiδt−1)

σu,i
)

)2

+ log(bi) +
1

2
log(Vy)− log(σu,i)

− 1

2
log

1 +

(
My +

√
Vy(yi,t − αi − βiδt−1)

σu,i

)2
 . (E.3)
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Appendix F

Discretization Methods

There are various ways to discretize the state variable δt into grids Dt. It is important to

use the appropriate method depending on the problem-specific characteristics, because

an improperly chosen grid may strongly deteriorate the algorithm’s performance. This

appendix proposes several discretization methods all suitable for the OPCP presented

previously.

The first approach fixes the maximum and minimum points on the grid at each time

step at the conditional expectation plus αu times or minus αl times of the conditional

standard deviation, i.e. the maximum and minimum on Dt are respectively given by

E[δt|δt−1] + αuσ(δt|δt−1) and E[δt|δt−1]− αlσ(δt|δt−1).

The second method simulates Nsim trajectories for dividend yield with the estimated

parameters and fixes the maximum and minimum points to respectively the 99th and

the 1st simulated percentiles (or alternatively to the maximal and minimal simulated

values). We refer this grid as the simulated grid.

A third method is to use a grid determined implicitly by nodes used in Gauss-Hemite

interpolation. This grid has the advantage to avoid extrapolations in the computations

of Vt(δt). More precisely, let δmt ∈ Dt be an arbitrary point on the grid at time stage t.

As discussed in section 8: given a value of δmt , all values of δt+1 needed (also referred as

“implied” dividend-nodes) to compute Vt(δ
m
t ) by GH quadrature can be determined by

equation (8.6) for the Gaussian case or by equation (8.9) for the Johnson case. Denote

this set of “implied” nodes by {δt+1|δmt }. We repeat the same procedures for all points

viii



APPENDIX F. DISCRETIZATION METHODS

δmt on grid Dt. We obtain Ng sets of “implied” nodes {δt+1|δmt }, m = 1, . . . , Ng where

Ng is the number of discretization points. The maximum and minimum points of Dt+1

are then given respectively by the maximum and minimum of all sets of “implied” nodes:

δmax
t+1 := max

m=1, ..., Ng
{δt+1|δmt }, δmin

t+1 := min
m=1, ..., Ng

{δt+1|δmt }.

And finally we discretize the range between [δmin
t+1 , δ

max
t+1 ] into Ng − 1 intervals to obtain

the grid for time stage t + 1. The same steps are repeated until the final stage T is

attained. We refer this grid as the implicit grid.

An important issue when employing the implicit grid is that the range of Dt increases

extremely quickly with t, especially for the Johnson case. We list maximum and min-

imum at various t for both Gaussian and Johnson distribution in Table F.1 assuming

initial state δ0 = 1. If a wide range (minimum – maximum) is discretized into equally

spaced intervals to form Dt, most of points on the grid would be associated to optimal

allocations of either 0% or 100%, which gives little information, while only a small part

of Dt is associated to optimal allocations between 0% and 100% (due to our no short

sale and no borrowing constraints), which is nonetheless the useful part.

Table F.1: Range of Dt for Gaussian and Johnson cases (δ0 = 1).

Gaussian Johnson
t min max min max

1 -0.01 1.99 -84.3 160.5151
3 -1.99 3.92 -251.9 473.7110
5 -3.94 5.81 -415.3 779.2857
10 -8.58 10.33 -806.8 1511.1
20 -17.85 18.58 -1521.0 2846.2
40 -31.17 32.33 -2710.6 5070.1
60 -42.20 43.08 -3640.5 6808.4

To solve the previous issue, one can increase the number of discretization points on

the grid, but the computational burden also increases exponentially. Another solution is

to refine partially the grid Dt while keeping the number of points relatively small. That is

to say, the minimum (min) and maximum (max) points on Dt are as given by the implicit

grid. Then we choose a range [lb, ub],min < lb < ub < max to be refined and discretize

it into Nref − 1 equally spaced intervals, where Nref < Ng is a user-chosen parameter

representing the number of points on the refined part. Next, the ranges [min, lb] and

ix
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[ub,max] are discretized into Nsub := (Ng −Nref )/2− 1 equally spaced intervals. Note

that attentions must be paid while choosing Ng and Nref so that Nsub is an integer.

And finally, the three sub-grids are assembled together to produce a new grid Dreft . We

refer this grid as the hybrid grid.
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Appendix G

Values of parameter used in our

simulation study

Table G.1 presents values of parameters used for Gaussian and Johnson-Su distributions

in our simulation study of section 10.4.1. The choice of these values are heuristic but

somehow realistic. Figure G.1 shows qq-plots for two simulated single-period samples

(Johnson and Gaussian) containing 100, 000 paths each, with initial dividend yield δ0 =

0. The Johnson sample manifests clearly heavier tails than the Gaussian sample.

Table G.1: Parameters used in simulation study.

Johnson Gaussian

Risky Dividend Risky Dividend

α 0.02 -0.03 0.02 -0.03
β 0.015 0.975 0.015 0.975
σu 0.2 0.0632 0.2 0.0632
a 0.5 -0.76 n.a. n.a.
b 2 1.52 n.a. n.a.
c 0.4855 -0.6764 n.a. n.a.
d 1.6961 1.0454 n.a. n.a.
ρu -0.85 n.a. n.a.
ρz -0.8674 -0.85

xi



APPENDIX G. VALUES OF PARAMETER USED IN OUR SIMULATION STUDY

Figure G.1: Simulated samples with parameters in Table G.1. 100,000 paths, δ0 = 0
and single period.

(a) Simulated Johnson paths (b) Simulated Gaussian paths
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