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Michel Denault
HEC Montréal
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Résumé

L’optimisation robuste a beaucoup attiré l’attention de la communauté scientifique dans la

dernière décennie. Cette approche est maintenant considérée comme une approche standard

pour aborder l’incertitude dans les problèmes de prise de décision. Plusieurs études ont

démontré la valeur ajoutée de cette approche dans des problèmes industriels pour lesquels il

est difficile de représenter l’incertitude à l’aide d’une distribution. Le succès de l’approche

est principalement dû à la simplicité du processus de modélisation ainsi qu’à l’efficacité

des méthodes de résolution disponibles. Malheureusement, il existe de nombreuses situa-

tions, en particulier en ce qui concerne la gestion des stocks et les problèmes de localisa-

tion d’installations, pour lesquelles la deuxième propriété est perdue. Cette thèse étudie la

traitabilité du problème d’optimisation robuste dans ce type d’applications.

Dans le premier chapitre, nous nous concentrons sur des problèmes d’optimisation ro-

buste dans lesquels la fonction de coût qui doit être � robustifiée � n’est pas linéaire (ou

même concave) par rapport aux paramètres incertains. Ces fonctions se présentent, par

exemple, dans des problèmes bien connus de marchands de journaux et d’inventaire. Étant

donné que ces problèmes sont reconnus pour être insolubles en temps polynomial, nous pro-

posons une nouvelle technique de construction d’une approximation dite conservatrice basée

sur la relaxation d’un programme linéaire en nombres entiers quivalent. De plus, nous re-

lions cette technique aux méthodes d’approximation qui sont basées sur l’exploitation de

règles de décision affines. Notre nouvelle technique nous permet de proposer deux modèles

d’approximation prenant respectivement la forme d’un programme linéaire et d’un problème

d’optimisation semi-définie positive. Cette deuxième formulation a le potentiel de fournir des

solutions de meilleure qualité au prix de calculs plus laborieux. Finalement, nous identifions

des conditions sous lesquelles nos deux modèles d’approximation fournissent des solutions

qui sont exactes. En particulier, nous sommes en mesure de proposer les premières refor-

mulations exactes pour la version robuste du problème de vendeur de journaux à plusieurs



items pour l’ensemble d’incertitude budgété et du problème de gestion d’inventaire pour une

région d’incertitude ayant la forme d’une sphère L1 ou d’une boite.

Dans le deuxième chapitre, nous étudions la version robuste d’un problème multi période

de localisation et de transport à coût fixe avec capacités limitées. Dans ce problème, la lo-

calisation et la capacité de chaque installation doivent être déterminés immédiatement, alors

que la décision de la quantité à produire et de la distribution peut être retardée jusqu’au

moment où les commandes sont reçues (i.e. au début de chaque période). Malheureusement,

il est bien connu que ce type de problèmes de décisions à plusieurs périodes sont insol-

ubles en temps polynomial. Pour surmonter cette difficulté, nous proposons un ensemble

de modèles d’approximation conservatrice. Chaque modèle exploite à un différent niveau le

concept de la flexibilité des décisions futures et atteint un certain compromis entre efficacité

de résolution et qualité de la solution obtenue. Un algorithme de génération de lignes est

également présenté afin de permettre de résoudre des problèmes de grande taille. Finale-

ment, nous démontrons empiriquement qu’une flexibilité entière n’est souvent pas nécessaire

pour obtenir des emplacements et capacités d’installation de très grande qualité ou même

optimale.

Dans le troisième chapitre, nous étudions un problème d’optimisation robuste à deux

étapes. Compte tenu de la difficulté de résolution de ce type de problème, une approx-

imation conservatrice est proposée. Celle-ci est inspirée par les méthodes de linéarisation

employées pour les problèmes d’optimisation bilinéaire. Nous établissons que notre approche

peut être considérée équivalente aux approches basées sur l’usage de règles de décision affines

et expliquons comment améliorer l’efficacité de ces méthodes. Finalement, nous illustrons

comment employer notre méthode d’approximation dans trois applications.

Mots clés : Optimisation robuste, approximation conservatrice traitable, optimisation en

deux étapes, inventaire, localisation.
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Abstract

Robust optimization has attracted a large amount of attention regarding how to address

uncertainty in decision making problems, especially in a vast number of industrial problems

where probability distributions are hard to identify. This is mainly due to the simplicity of

the modeling process and to the ease of resolution, even for large scale models. Unfortu-

nately, there are many cases, especially with respect to inventory management and facility

location problems, wherein the second property is lost. This thesis studies the tractability

of robust optimization problem with application to inventory and facility location problems.

In the first chapter, we study robust optimization of problems wherein the cost function

that needs to be robustified is not concave (or linear) with respect to the uncertain param-

eters. Such functions arise, for instance, in the famous newsvendor and inventory problems.

Given that these problems are known to be intractable, we propose a new scheme for con-

structing conservative approximations based on the relaxation of an embedded mixed-integer

linear program and relate this scheme to methods that are based on exploiting affine decision

rules. Our new scheme gives rise to two tractable models that respectively take the shape of

a linear program and a semi-definite program, with the latter having the potential to provide

solutions of better quality than the former at the price of heavier computations. We present

conditions under which our approximation models are exact. In particular, we are able to

propose the first exact reformulations for a robust (and distributionally robust) multi-item

newsvendor problem with budgeted uncertainty set and a reformulation for robust multi-

period inventory problems that is exact when the uncertainty region reduces to a L1-norm

ball or to a box.

In the second chapter, we study a multi-period robust capacitated fixed-charge location-

transportation problem in which, while the location and capacity of each facility need to be

determined immediately, the determination of final production and distribution of products

can be delayed until actual orders are received in each period. Unfortunately, it is well known
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that these types of multi-period robust decision problems are computationally intractable.

To overcome this difficulty, we propose a set of tractable conservative approximations to the

problem that each exploits to a different extent the idea of reducing the flexibility of the

delayed decisions. While all of these approximation models outperform previous approxima-

tion models that have been proposed for this problem, each of them also has the potential

to reach a different level of compromise between efficiency of resolution and quality of the

solution. A row generation algorithm is also presented in order to address problem instances

of realistic size. We also demonstrate that full flexibility is often unnecessary to reach nearly,

or even exact, optimal robust locations and capacities for the facilities.

In the third chapter, we study two-stage robust optimization problem with right-hand

side uncertainty. Due to the computational difficulty of this problem, a tractable conservative

approximation is developed based on linear programming relaxation. We show some insights

about this approximation, including its relation with affinely adjustable robust counterpart,

and different methods of improvement of its bound. We further employ our proposed ap-

proximation in various applications.

Keywords : Robust optimization, tractable conservative approximation, two-stage opti-

mization, inventory, facility location.
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Introduction

Robust Optimization (RO) is a methodology, combined with computational tools, that allows

one to process optimization problems in which some data is uncertain and only known to

belong to some uncertainty set (Ben-Tal and Nemirovski 2002). To the best of our knowledge,

Soyster (1973) was the first to discuss the use of RO in the context of linear programming

models. There were only a few more appearances of this methodology in the two subsequent

decades. The main reasons for such impopularity might be attributed to the conception that

robust optimization was either too conservative or too computational difficult.

In the 1990s, we have witnessed a rebirth of RO wherein some important works were

published in the context of both integer programming (Kouvelis and Yu 1997) and convex

programming (Ben-Tal and Nemirovski 1997, 1998, El Ghaoui and Lebret 1997, El Ghaoui

et al. 1998). It has been argued in a survey by Bertsimas et al. (2011a) that the work of Ben-

Tal and Nemirovski (e.g., Ben-Tal and Nemirovski (1998, 1999, 2000)) and El Ghaoui and

Lebret (1997), El Ghaoui et al. (1998) in the late 1990s, coupled with advances in computing

technology and the development of fast interior point methods for convex optimization, par-

ticularly for semidefinite optimization (e.g., Vandenberghe and Boyd (1996)), has inspired a

massive interest in the field of RO. As a consequence, in the last ten years, RO has attracted

a large amount of attention regarding how to address uncertainty in decision making prob-

lems, especially in a vast number of industrial problems where probability distributions are

hard to identify for uncertain elements of the decision problem. Overall, this interest can

mainly be attributed to the simplicity of the modeling paradigm and to the ease of resolution

of many robust optimization models, even for large scale problems.

Unfortunately, there are still many situations wherein the “ease of resolution” property

is lost and we will describe two important cases. The first difficulty arises when the profit

(or cost) function that needs to be “robustified” is not convex (or respectively not concave)

with respect to the perturbing parameters. Newsvendor problem can be mentioned as an



application where this difficulty arises. Unfortunately, robust counterpart (RC) models for

these problems are computationally intractable (See Theorem 1.9.4) even when a polyhedral

uncertainty set is considered. Furthermore, the classical robust optimization paradigm con-

siders all decisions to be “here-and-now” decisions, i.e., decisions that must be implemented

before the uncertain elements will be observed. However this assumption is not always a

realistic one to make. To address the uncertainty in problems where some decisions can be

delayed until some uncertain elements are observed, the pioneering work of Ben-Tal et al.

(2004) proposed an adjustable robust optimization problem. Unfortunately, intractability

quickly arises in such adjustable robust optimization problems. In fact, the question of how

to address the tractability issues associated to adjustable RO has been an active direction

of research since then and is highlighted as an important direction of future research in

Bertsimas et al. (2011a).

The popular approach to address the intractability issues associated to the two afore-

mentioned situations is to replace the troublesome non-linear function or adjustable decision

variable with an affine function of the perturbing parameters (only the observable ones in

the later case). This approach leads to a model known as the affinely adjustable robust

counterpart (AARC) of the robust optimization problem and was introduced in Ben-Tal

et al. (2004). Although AARC is a tractable approximation and can often address the com-

putational difficulty associated to the two situations, to this day there are still many open

questions regarding the efficiency of AARC models. In our opinion, the most important ones

that need to be answered are as follows:

• What are the conditions under which an AARC model provides an exact solution?

• How good is the quality of the solutions obtained when the AARC model is an approx-

imation?

• What are efficient procedures that can be used to improve the quality of the solution

returned by an AARC model?



While these are questions that require serious consideration, there is only a limited amount

of work in the literature that attempts to address them. Consequently, these three questions

constitute the main motivation of this thesis with which we aim to pave a way to some

answers. Overall, the main ideas of this thesis can be summarized as follows. Let’s consider

the following robust optimization problem

maximize
x∈X

min
ζ∈U

h(x, ζ) , (1)

where x and ζ are respectively the decision variable vector in feasible region X and the

perturbation parameter vector defined in uncertainty set U . The function h(x, ζ) can be

considered as a profit function that is concave with respect to ζ or a function capturing the

sum of future profits in an adjustable model. Our idea relies on proposing a linearization

scheme that will correct for the concavity of the objective function involved in the inner

problem

min
ζ∈U

h(x, ζ) . (2)

This linearization scheme will lead to a tractable conservative approximation (i.e., it captures

a lower bound on profit) that we will refer as the linearized robust counterpart (LRC) model.

In this thesis, we focus on two important family of robust optimization problems: prob-

lems that involve functions that decompose as sums of piecewise linear functions and ad-

justable two-stage problems with uncertainty in the right-hand side of the recourse problem.

For these problems, we show that a basic application of LRC is equivalent to AARC. This

results ends up connecting the quality of an AARC model to the tightness of the relaxation

obtained from the linearization process applied to the inner problem (2). Consequently, we

are able to shed some light on the three questions as follows. An AARC model is exact if the

relaxation obtained by linearization is tight. Otherwise, a bound on the quality of optimal



solutions obtained using the AARC model should be measured in terms of the largest re-

laxation gap that can be obtained through linearization. Finally, the quality of solutions

obtained from an AARC model can be improved by employing techniques that effectively

reduce the relaxation gap.

Next, we explain the main contributions of each chapter as follows.

In the first chapter, we study the robust optimization of a sum of piecewise linear

functions. Such functions arise for instance in most inventory management problems, but

also in some machine learning and multi-attribute optimization problems. We propose for

the first time a LRC model that is based on the linearization and relaxation of a mixed-

integer program (MIP) that is embedded in problems of this type. We also relate this new

model to models obtained with AARC. In fact, we propose two forms of LRC models: the

first one takes the form of a linear program (hence its name LP-RC) that is equivalent

to AARC, while the second takes the form of a semi-definite program (SDP-RC) and is

guaranteed to provide better solutions at the price of heavier computations. By exploiting

the totally unimodularity property of the matrix describing the feasible set of LP-RC, we are

able to establish new conditions under which LP-RC (and consequently AARC) provides an

exact solution. This is for instance the case for some interesting robust (and distributionally

robust) multi-item newsvendor problems.

In the second chapter, we study the application of robust optimization to a multi-period

robust capacitated fixed-charge location-transportation problem which naturally decomposes

into many stages of decisions: the choice of locations followed by a sequence of decisions

about production and transportation of goods. Perhaps surprisingly, we were the first to

propose tractable solution methods that account for the dynamics of this robust optimization

problem. Our research leads to two interesting improvement for the robust formulation; we

first employ the AARC framework to the problem and later improve AARC with a model

called extended lifted AARC (ELAARC). The second model exploits for the first time the

idea that the approximation is tighter when applying AARC on transportation problems



where the constraints are allowed to be violated but at a certain well designed price. Finally,

we develop a row-generation algorithm to solve AARC due to computational difficulty of

AARC in large instances. This algorithm is developed so that it exploits the structure that

emerges in the LRC formulation and allows us to solve problems with 15 facility locations,

and 30 possible demand points and 20 periods in a very reasonable amount of time.

In the third chapter, we generalize the results of the first chapter and describe the

LRC framework when appied to two-stage robust optimization problems. We show that

both problems of previous chapters can be considered as special cases of the canonical form

that is studied. By demonstrating the equivalence between LRC and AARC, we offer a

valuable connection between AARC and the literature on approximation methods for bilinear

optimization problems. This connection allows us to identify new ways of improving AARC

that are inspired by the use of linear and conic valid inequalities. We show for instance that

adding a special type of valid inequality in LRC can be interpreted as allowing for penalized

violation of constraints in the AARC model (a technique that we exploited to obtain the

ELAARC model in Chapter two). Finally, we show how one might apply LRC for two-stage

robust adaptable problem with uncertainty set that are not polyhedral. We conclude by

providing new insights about the newsvendor and facility location problems presented in

Chapters 1 and 2 and describe some implications for a multi-product assembly problem.
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Abstract

Robust optimization is a methodology that has gained a lot of attention in the recent years.

This is mainly due to the simplicity of the modeling process and ease of resolution even for large

scale models. Unfortunately, the second property is usually lost when the cost function that needs to

be “robustified” is not concave (or linear) with respect to the perturbing parameters. In this paper,

we study robust optimization of sums of piecewise linear functions over polyhedral uncertainty set.

Given that these problems are known to be intractable, we propose a new scheme for constructing

conservative approximations based on the relaxation of an embedded mixed-integer linear program

and relate this scheme to methods that are based on exploiting affine decision rules. Our new scheme

gives rise to two tractable models that respectively take the shape of a linear program and a semi-

definite program, with the latter having the potential to provide solutions of better quality than the

former at the price of heavier computations. We present conditions under which our approximation

models are exact. In particular, we are able to propose the first exact reformulations for a robust

(and distributionally robust) multi-item newsvendor problem with budgeted uncertainty set and

a reformulation for robust multi-period inventory problems that is exact whether the uncertainty

region reduces to a L1-norm ball or to a box. An extensive set of empirical results will illustrate

1 This article is published online by “Operations Research”.



the quality of the approximate solutions obtained using these two models on randomly generated

instances of the latter problem.

Keywords

Robust optimization, piecewise linear, linear programming relaxation, semi-definite program,

tractable approximations, newsvendor problem, inventory problem.

1.1 Introduction

Since the seminal work of Ben-Tal and Nemirovski (1998), robust optimization is a

methodology that has attracted a large amount of attention. Such attention has stemmed

in application fields that range from engineering problems like structural design (Ben-Tal

and Nemirovski 1997) and circuit design (Boyd et al. 2005), management problems such

as portfolio optimization (Goldfarb and Iyengar 2002) and supply chain management (Ben-

Tal et al. 2005), to an array of data mining applications such as classification (Xu et al.

2009), regression (El Ghaoui and Lebret 1997) and parameter estimation (Calafiore and

El Ghaoui 2001) (see Bertsimas et al. (2011a) for a detailed review of such applications).

Two important factors that have contributed to this success are 1) the simplicity of the

modeling paradigm, and 2) the tractability of many resulting formulations thus enabling

the resolution of problems of scales that can match the practical needs. Unfortunately, the

second property is usually lost when the cost function that needs to be “robustified” is not

concave (or linear) with respect to the perturbing parameters.

This paper focuses on the following robust optimization problem:

minimize
x∈X

max
ζ∈Z

N∑
i=1

hi(x, ζ) , (1.1)

where X ⊆ Rn is a bounded polyhedral set of feasible solution for the decision x, Z ⊆ Rm

is the set containing the possible perturbation ζ and for each i, the cost function hi(x, ζ) is

piecewise linear and convex in both x and ζ (although not necessarily jointly convex). In

particular, this means that the cost function can be expressed as follows:

hi(x, ζ) := max
k
ci,kx (ζ)Tx+ di,kx (ζ) := max

k
ci,kζ (x)T ζ + di,kζ (x) ,
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for some affine mappings ci,kx : Rm → Rn, di,kx : Rm → R, ci,kζ : Rn → Rm and di,kζ : Rn → R.

Although objective functions that take the form of sums of piecewise linear function abound

in practice, exact solutions to the robust version of these problems are often considered

impossible to obtain because of the computational difficulties that arise in solving the inner

maximization problem (a.k.a. adversarial problem). Beside the two inventory problems

that will be discussed later, such structured functions also play an important role in multi-

objective optimization and machine learning (see Appendix 1.9.2 for details).

Recently, Gorissen and den Hertog (2013) have made a valuable effort at presenting a

comprehensive overview of three families of solution methods that can be employed for this

problem: namely, exact methods, tractable conservative approximations2 , and cutting-plane

methods. Unfortunately, while there are a few very special cases for which finding an exact

solution is known to be tractable, still very little is known theoretically about the quality

of conservative approximations that are available. In this paper, we attempt to reduce this

gap by bringing the following contributions:

1. We propose a novel scheme for deriving tractable conservative approximations that

connects for the first time the suboptimality of an approximate solution directly to

the integrality gap of an associated mixed integer linear program (MILP). This allows

us to identify fairly general conditions under which the concept of total unimodularity

can be used to establish that the approximate solution obtained by solving a linear

program of reasonable size is exactly optimal. The connection to MILP optimization

also naturally allows us to propose a tighter conservative approximation model that

takes the shape of a semi-definite program. This is perhaps surprising given that it

is well known that, while schemes that are based on quadratic decision rules will lead

to semi-definite program (SDP) approximation models when the uncertainty set is

2 In other words, the approximate solution is guaranteed to achieve a worst-case cost that is bounded by

the optimal value of the approximate optimization problem.
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ellipsoidal, such adjustment functions lead in general to optimization problems that

are computationally intractable, for instance when the uncertainty set is polyhedral

(see Ben-Tal et al. (2009a) p. 372). Indeed, we show for the first time how to obtain

SDP approximation models for such uncertainty sets by employing affine decision rules

on a clever reformulation of the objective function.

2. We provide for the first time an exact tractable reformulation for a robust multi-item

newsvendor problem with demand uncertainty that is non-rectangular, namely where

it takes the shape of a budgeted uncertainty set with an integer budget. A novel

tractable reformulation is also presented for the distributionally robust version of this

problem in which the distribution information includes a budgeted uncertainty set for

the support, the mean vector, and a list of lower bounds on first order partial moments.

To the best of our knowledge, this appears to be first exact tractable reformulation for

instances of multi-item newsvendor problem where there exists information about how

the demand for different items behave jointly, a problem that was left open since the

early work of Scarf (1958).

3. We propose a new conservative approximation model for a robust multi-period in-

ventory problem where all orders must be made initially. We prove that this model

produces an exact solution when facing a budgeted uncertainty set with a budget equal

to one or to the total size of the horizon. Although exact reformulations exist for each

of these extreme cases, this is the first model known to be exact for both cases simul-

taneously. Our empirical study also provides evidence that the suboptimality gap is

relatively small with our new model (less than 0.3% gap on average with a maximum

observed gap of 5%) when the budget takes on intermediate values. Finally, we present

extensive empirical evidence that this model can be used to identify ordering strate-

gies that make better trade-off between performance and robustness in comparison to

strategies obtained using existing tractable method in the literature.
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The paper is organized as follows. We start in Section 1.2 with a brief review of re-

lated work and currently available methods for solving problem (1.1). Section 1.3 presents

our notation. In Section 1.4, we introduce our new approximation scheme for the robust

optimization problem (1.1) that is based on the fractional relaxation of an associated mixed-

integer linear program. In Section 1.5, we present implications of our results for a robust and

distributionally robust multi-item newsvendor problem. In Section 1.6, we apply the new

models to a robust multi-period inventory problem. Section 1.7 presents experiments on an

inventory problem that attempt to evaluate the relative tightness of different approximation

schemes and illustrate how one can employ these schemes to explore the trade-offs between

expected performance and robustness in choosing an order policy. Finally, we conclude and

provide some directions of future research in Section 1.8.

1.2 Background & Prior Work

Our work follows very closely the initiative of Gorissen and den Hertog (2013) who

were interested in solving problems of the form (1.1) and where a comprehensive overview of

available methods is presented. In Gorissen and den Hertog (2013), the robust optimization

of the sums of maxima of linear functions takes the shape of

minimize
x∈Rn

max
ζ∈Z

`(ζ,x) +
N∑
i=1

max
k
{`i,k(ζ,x)},

where ` and `i,k are bi-affine functions in the uncertain parameter ζ and the decision variable

x ∈ Rn, and where Z is the uncertainty set. Given that Z is convex, the authors first describe

an exact solution approach that is based on reducing the worst-case analysis to a search over

the vertices of Z since the objective function is convex in ζ. This leads to the equivalent

finite formulation

minimize
x,y

max
v∈V

`(ζv,x) +
N∑
i=1

yvi

subject to yvi ≥ `i,k(ζ
v,x) ∀i, ∀k, ∀ v ∈ V ,
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where V = {1, 2, · · · , V } with V the number of vertices of Z, and {ζv}Vv=1 is the finite set

of such vertices. The authors do warn their reader that computational complexity of this

approach grows exponentially with respect to the number of constraints that define Z.

Gorissen and den Hertog also propose using cutting-plane methods to solve these prob-

lems exactly (especially when enumerating the vertices becomes unthinkable). In fact, there

is empirical evidence that seems to indicate that such methods are particularly effective in

practice for solving two-stage robust optimization problems (see Zeng and Zhao (2013)). In

each iteration of a cutting-plane method, there is a need to establish the worst-case ζ for

some fixed x in order to produce a cutting-plane: i.e.,

max
ζ∈Z

{
`(ζ,x) +

N∑
i=1

max
k
{`i,k(ζ,x)}

}
.

While there exists some special cases where an efficient procedure might be identified (see Bi-

enstock and Özbay (2008) for an example), the authors suggest that in general this problem

can be solved by solving a MILP similar to

max
ζ∈Z,y,z

`(ζ,x) +
N∑
i=1

yi

subject to yi ≤ `i,k(ζ,x) +M(1− zi,k) ∀ i, ∀ k
K∑
k=1

zi,k = 1 ∀i

ζ ∈ Z , z ∈ {0, 1}N×K .

Unfortunately, although software products that handle such models are well developed, solv-

ing this problem is generally NP-hard (see NP-hardness discussion in Section 1.4) thus mak-

ing this approach prohibitive for large problems. In particular, the experiments we conduct

in Section 1.4.4 identified instances of such mixed-integer linear programs reformulations

that could not be solved in less than a day of computation already when N = m = 64.

Finally, polynomial-time solvability of cutting-plane methods is not guaranteed except for

the ellipsoid method which is rarely used in practice.
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Gorissen and den Hertog finally explain how the theory of affinely adjustable robust

counterpart (AARC) proposed by Ben-Tal et al. (2004) can be used to obtain a conservative

approximation method. In this case, each convex term of the objective is replaced with an

affine function that is adjusted optimally while ensuring that the objective function upper

bounds the true objective. The resulting model takes the shape:

minimize
x,v,w

max
ζ∈Z

`(ζ,x) +
N∑
i=1

(vi +wT
i ζ)

subject to vi +wT
i ζ ≥ `i,k(ζ,x) , ∀ i, ∀ k, ∀ ζ ∈ Z,

for which one can easily formulate a finite dimensional linear programming reformulation

using duality theory. It is mentioned that this approach can be improved by using a lifting

of the uncertainty space (Chen and Zhang 2009) or by involving quadratic decision rules

if the uncertainty set is ellipsoidal. Although the AARC approach is often tractable, very

little is theoretically known about the suboptimality of the obtained approximate solution

(we refer the reader to Iancu et al. (2013) for the most general results to date on this topic).

As mentioned in the introduction, many robust inventory problems can be considered

a special case of problem (1.1). In Bertsimas and Thiele (2006), the authors seem to have

been the first to propose an approximation method to solve such problems. Their approach

relies on finding the worst-case cost of each period individually before summing the results

over all periods. Effectively, they replace problem (1.1) with the following:

minimize
x∈X

N∑
i=1

max
ζ∈Z

hi(x, ζ) .

Interestingly, when the uncertainty set takes the shape of the budgeted uncertainty set

(see Bertsimas and Sim (2004)), they show that the optimal robust policy is equivalent to

the optimal policy of the nominal problem under a specifically designed demand vector. In

spite of having been used in many occasions (e.g., José Alem and Morabito (2012), Wei et al.

(2011)), as noted in Gorissen and den Hertog (2013), this conservative approximation does

not impose any relation between the worst-case ζ used to evaluate the different periods.
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It appears that Ben-Tal et al. (2004) were the first to address a robust inventory

problem in which there is a possibility to make adjustments to future orders as information

about demand becomes available. They provide conservative approximations of the problem

by applying the concept of affine decision rules. In Ben-Tal et al. (2005), similar ideas are

applied to a supply chain problem. Interestingly, the empirical experiments presented there

seem to indicate that AARC can perform surprisingly well. A similar success was achieved

in Ben-Tal et al. (2009b) as reported in their Section 3.2.

1.3 Notation

We briefly review some notation that is used in the remaining sections. First, let ei

be the i-th column of the identity matrix while 1 is the vector of all ones, both of their

dimensions should be clear from context. Given two matrices of same sizes, A •B refers to

the Frobenius inner product which returns
∑

i,j Ai,jBi,j. We use Ai,: to refer to the i-th row

of A while A:,j would refer to the j-th column of A. For the sake of clarity, given a vector

b we might use (b)i, instead of bi, to refer to the i-th term of the vector b.

1.4 Mixed-integer Linear Programming based Approximation

In this section, we seek to obtain a conservative approximation of problem (1.1) using

linearization schemes that are used in the field of mixed-integer linear programming. In

particular, it is well-known that the inner maximization problem:

maximize
ζ∈Z

N∑
i=1

max
k
cTi,kζ + di,k , (1.2)

where Z is polyhedral and where we dropped the dependence of ci,k and di,k on x for clarity,

is NP-hard (see Appendix 1.9.3 for a proof). Given that Z is polyhedral and bounded, we
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can assume without loss of generality 3 that it is represented as

Z := {ζ ∈ [−1, 1]m |Aζ ≤ b, ‖ζ‖1 ≤ Γ} ,

for some A ∈ Rp×m and b ∈ Rp
+, and some 0 ≤ Γ ≤ m, and with 0 ∈ Z capturing

the “nominal” (i.e., most likely) scenario for ζ. Note that this representation reduces to

the budgeted uncertainty set when A := 0 and b := 0 which is the most natural way of

capturing that each ζi is a perturbation of similar magnitudes while one does not expect

too many terms of ζ being perturbed simultaneously (see Bertsimas and Sim (2004) and its

ubiquitous use in robust optimization applications). In the more general case, we expect this

representation to be especially relevant in problems where one wishes to emphasize that the

uncertainty region is roughly symmetrical around the nominal scenario ζ0 := 0. Hence, we

are left with the following adversarial problem:

maximize
ζ∈Rm

N∑
i=1

max
k
cTi,kζ + di,k (1.3a)

subject to Aζ ≤ b (1.3b)

‖ζ‖∞ ≤ 1 (1.3c)

‖ζ‖1 ≤ Γ . (1.3d)

We will initially present two approximation models that will trade-off between compu-

tational requirements and quality of the solution. We will then relate these models to the

important family of approximation schemes known as AARCs.

3 Note that to obtain such a reformulation one might need to identify some ζ̄ ∈ Z and ζ̂ ∈ Rm such that

Z ⊆ [ζ̄1− ζ̂1, ζ̄1 + ζ̂1]×· · ·× [ζ̄m− ζ̂m, ζ̄m+ ζ̂m] and reformulate the problem in terms of ζ ′j := (ζj − ζ̄j)/ζ̂j for

all j = 1, . . . ,m with ζ ′ ∈ Z ′ ⊆ [−1, 1]m. This would lead to reformulating the objective function according

to ci,kζ
′
(x) := diag(ζ̂)ci,kζ (x) and di,kζ

′
(x) := ci,kζ (x)T ζ̄ + di,kζ (x).
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1.4.1 Linear Programming Approximation Model

Our first step is to convert this convex maximization problem to a mixed-integer quadratic

program by replacing the objective function with

max
{z∈{0,1}N×K |

∑K
k=1 zi,k=1 , ∀i}

N∑
i=1

K∑
k=1

zi,k(c
T
i,kζ + di,k) ,

where we introduced additional adversarial binary decision variables zi,k. As is often done

for mixed-integer quadratic programs, we will circumvent the difficulty of maximizing the

terms that are quadratic in z and ζ by linearizing the objective function, yet only after

replacing the perturbation variables by the sum of their positive and negative parts (i.e.,

ζ := ζ+ − ζ−). Specifically, this linearization is obtained by replacing instances of zi,k · ζ+

by ∆+
i,k and zi,k · ζ− by ∆−i,k. In steps, the objective becomes

N∑
i=1

K∑
k=1

zi,k(c
T
i,k(ζ

+ − ζ−) + di,k) =
N∑
i=1

K∑
k=1

cTi,kζ
+zi,k − cTi,kζ−zi,k + di,kzi,k

=
N∑
i=1

K∑
k=1

cTi,k∆
+
ik − c

T
i,k∆

−
ik + di,kzi,k.

As for the constraints, one can first make explicit the relation between ∆+ and ζ+ by

imposing
∑K

k=1 ∆+
i,k =

∑K
k=1 zi,k · ζ+ = ζ+ and similarly the relation between ∆− and ζ−.

One can also add to the model what is implied by every linear constraint aT ζ ≤ b on the

∆+ and ∆−, in other words that aT (∆+
i,k −∆−i,k) = aT ζ · zi,k ≤ bzi,k. Overall, it is easy to

show that the following MILP is equivalent to problem (1.3):4

maximize
z,ζ+,ζ−,∆+,∆−

N∑
i=1

K∑
k=1

cTi,k(∆
+
i,k −∆−i,k) + di,kzi,k (1.4a)

subject to A(ζ+ − ζ−) ≤ b (1.4b)

4 Note that, when replacing ζ := ζ+− ζ−, we can replace ‖ζ+ + ζ−‖1 ≤ Γ with ‖ζ+ + ζ−‖1 = Γ because

Γ is assumed smaller or equal to m. In particular, if a candidate solution does not use all the budget it

is always possible to find an index for which ζ+
i + ζ−i < 1 and add the same amount to both positive and

negative term without affecting ζ+ − ζ−.
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ζ+ ≥ 0 & ζ− ≥ 0 & ζ+
j + ζ−j ≤ 1 , ∀ j (1.4c)

1T (ζ+ + ζ−) = Γ (1.4d)
K∑
k=1

zi,k = 1 , ∀ i (1.4e)

K∑
k=1

∆+
i,k = ζ+ &

K∑
k=1

∆−i,k = ζ− , ∀ i (1.4f)

A(∆+
i,k −∆−i,k) ≤ bzi,k , ∀ i, ∀ k (1.4g)

∆+
i,k ≥ 0 & ∆−i,k ≥ 0 & ∆+

i,k + ∆−i,k ≤ zi,k , ∀ i, ∀ k (1.4h)
m∑
j=1

(∆+
i,k)j + (∆−i,k)j = Γzi,k , ∀ i, ∀ k (1.4i)

zi,k ∈ {0, 1} , ∀ i, ∀ k . (1.4j)

Based on the observation that the fractional relaxation of problem (1.4) provides an

upper bound for the mixed-integer version, we can already conclude that replacing the ad-

versarial problem in (1.1) with this fractional relaxation will provide us with a conservative

approximation for problem (1.1).

Proposition 1.4.1 The optimization model

minimize
x∈X ,λ+,λ−,∆,ν,γ,ρ,w,ψ,θ

1T∆ + Γν + bTρ+ 1Tγ (1.5a)

subject to ν ≥
N∑
i=1

λ+
i −ATρ−∆ (1.5b)

ν ≥
N∑
i=1

λ−i +ATρ−∆ (1.5c)

γi ≥ bTwi,k + 1Tψi,k + Γθi,k + di,k(x) ∀i, ∀k (1.5d)

θi,k ≥ −λ+
i −ATwi,k −ψi,k + ci,k(x) ∀i, ∀k (1.5e)

θi,k ≥ −λ−i +ATwi,k −ψi,k − ci,k(x) ∀i, ∀k (1.5f)

ρ ≥ 0 , ∆ ≥ 0 , wi,k ≥ 0 , ψi,k ≥ 0 , ∀i, ∀k , (1.5g)

where ρ ∈ Rp, ∆ ∈ Rm, ν ∈ R, γ ∈ RN , λ+
i ∈ Rm, λ−i ∈ Rm, wi,k ∈ Rp, ψi,k ∈ Rm,

and θi,k ∈ R, is a conservative approximation of problem (1.1). Specifically, let x̂∗ and v̂∗
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be respectively the optimal solution and optimal value of this problem, v̂∗ is an optimized

upper bound for the best achievable worst-case cost, as measured by problem (1.1), and x̂∗ is

guaranteed to achieve a lower worst-case cost than v̂∗.

Proof This is simply obtained by constructing the dual of problem (1.4). Specifically, we

identified the dual variables of constraints (1.4b) to (1.4i) respectively as ρ, ∆, ν, γ, (λ+
i ,λ

−
i ),

wi,k, ψi,k, and θi,k. Since problem (1.4) is a linear program for which we can show that there

is always a feasible solution, one can confirm that duality is strict. After combining the dual

problem to the outer minimization in x we obtain problem (1.5). A feasible solution for

problem (1.4) can be identified using ζ0 := 0. We first assign ζ+
j := εj and ζ+

j := −εj for

some ε ∈ Rm chosen so that constraints (1.4b)-(1.4d) are satisfied (see Footnote 4). Given

any binary assignment for zi,k that satisfies constraint (1.4e), one can complete the solution

by setting (∆+
i,k)j := ζ+

j zi,k and (∆−i,k)j := ζ−j zi,k.

At this point, one should wonder how good this approximation scheme is and whether it

can be compared to other schemes that have been proposed in the literature. While we will

later establish valuable connections to existing approximation methods, we will first shed

light on how the quality of our approximation is related to the notion of integrality gap of

mixed-integer programs and whether we can bound it.

Definition The integrality gap for a class of mixed-integer programs, where the objective

function is maximized and the optimal value is known to be positive, is the supremum of

the ratio between the optimal value achieved by a fractional solution and the optimal value

achieved by an integer one. Specifically, if we seek maxζ∈U∩I f(ζ) for instances described by

(U , I, f) ∈ F, where U is polyhedron, I imposes that a set of terms of ζ be integer valued,

and F refers to a certain family of problems that is being studied, then

integrality gap = sup
(U ,I,f)∈F

f ∗U/f
∗
U∩I ,

where f ∗Z := maxζ∈Z f(ζ).
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Proposition 1.4.2 Given that for each i and for all x ∈ X , hi(x, ·) is positive definite

on Z, let x̂ and v̂(x̂) respectively be the optimal solution and optimal value obtained from

problem (1.5), then both the true worst-case value for x̂ and the value v̂(x̂) are less than a

factor of γ away from the optimal value of problem (1.1), where γ is the integrality gap for

problem (1.4).

Proof The integrality gap of problem (1.4) with positive optimal value is defined as a bound

on the largest achievable ratio between the optimal value obtained by a fractional solution

and the one obtained by an integer solution for this type of problem instances. Given that

the integrality gap for problem (1.4) is γ, this indicates that the worst-case value achieved

by any feasible x is bounded between v̂(x) and γv̂(x). Hence,

max
ζ∈Z

N∑
i=1

hi(x̂, ζ) ≤ v̂(x̂) ≤ v̂(x∗) ≤ γmax
ζ∈Z

N∑
i=1

hi(x
∗, ζ) ,

where x∗ is the optimal solution for problem (1.1), and where we used the fact that x̂ is the

minimizer for v̂(·) over X , and that γ is the integrality gap for maxζ∈Z
∑N

i=1 hi(x
∗, ζ). The

arguments for linking v̂(x̂) to the true optimal value is exactly the same.

Our main attempt toward bounding the integrality gap consists of identifying three sets

of conditions on problem (1.4) under which there is no integrality gap for problem (1.4).

Proposition 1.4.3 For any fixed x ∈ Rn, given that A := 0 and b := 0, problem (1.4)

and its fractional relaxation have the same optimal value under either of the following sets

of conditions:

1. The budget Γ is equal to one (L1-norm ball).

2. The budget Γ is equal to m (Box uncertainty set) and there exists αi,k : Rn → R and

βl : Rn → R such that for every (i, k) pair ci,k(x) = αi,k(x)
∑

l<i(βl(x)el).

3. The budget Γ is integer and there exists αi,k : Rn → R such that for every (i, k) pair

ci,k(x) = αi,k(x)ei.

The proof of this proposition is deferred to Appendix 1.9.1 and relies, in the cases

of conditions 1-3, on verifying total unimodularity of a matrix that defines an associated
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polytope to confirm that this polytope has integer vertices. Based on the above result, we

can right away conclude about an important property of problem (1.1).

Corollary 1.4.4 Given that the set of subfunctions {hi(x, ζ)}Ni=1 satisfies one of the sets of

conditions described in Proposition 1.4.3, then problem (1.5) is equivalent to problem (1.1).

Hence, we have in hand a conservative approximation of problem (1.1) that is known

to be exact under a fairly general set of conditions. Reading through the three sets of

conditions, we might first recognize that Condition 1 reduces the uncertainty set to {ζ|‖ζ‖1 ≤

1}, a case for which a tractable robust counterpart can also be obtained through vertex

enumeration. For the second set, the uncertainty set reduces to {ζ|‖ζ‖∞ ≤ 1}, a set for

which the number of vertices is exponential, yet in this case the adversarial problem reduces

to a model that was well studied in Bertsimas et al. (2010). One might consider the more

important contribution to be related to the third condition which impose that each term

of the objective function involve a different term of ζ, and that Γ be integer. Actually,

the fact that this results requires the integrality of Γ indicates that it cannot be explained

through any of the special cases identified in Gorissen and den Hertog (2013) and Chapter 12

of Ben-Tal et al. (2009a). Furthermore, it extends in a non-trivial way the result of Denton

et al. (2010), where hi(x, ζ) := max { 0 , ciζ(x)ζi + diζ(x)} in order to capture delays that are

caused by uncertain duration of surgeries in operating rooms.

Remark Note that while one might be able to design a tractable oracle for providing the

value and sub-gradient in x of the objective function for problems that satisfy these con-

ditions and thus rely on a cutting-plane method to achieve optimality, the proposed linear

programming reformulation has better worst-case convergence rate and can easily be modi-

fied to handle binary decision variables.

Remark Note that many different MILP formulations could have been used to replace

problem (1.4). Namely, the MILP proposed in Gorissen and den Hertog (2013) takes the
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form:

maximize
z,ζ,y

N∑
i=1

yi

subject to yi ≤ cTi,kζ + di,k +M(1− zi,k) , ∀ i, ∀ k

Aζ ≤ b

−1 ≤ ζ ≤ 1 &
m∑
j=1

|ζj| ≤ Γ

K∑
k=1

zi,k = 1 & zi,k ∈ {0, 1} , ∀ i, ∀ k .

Our particular choice of formulation is our own best attempt at strategically tightening the

integrality gap of the resulting model without paying too much of a price in terms of model

size. A side product of our analysis will be to present a perhaps surprising connection to

a family of affine approximations used in robust optimization problem where decisions are

adjustable.

Remark In recent years, total unimodularity has been somewhat of a fruitful tool for iden-

tifying simpler reformulation of risk aware decision problems. In van der Vlerk (2004), the

authors show how a two-stage stochastic linear program with binary recourse variables can

in some cases be reformulated as a two-stage problem with continuous recourse yet under a

different probability measure. In Candia-Véjar et al. (2011), it is a maximum regret mini-

mization problem involving binary variables (e.g., assignment problem) that is reformulated

as a simple mixed-integer linear program. In the context of robust optimization, Düzgün

and Thiele (2010) introduced an extension to the budgeted uncertainty set that allows pa-

rameters to take on values in different sets of intervals and show that the convex hull of

possible realizations has a tractable representation. In Mak et al. (2015), the authors exploit

some “hidden convexity” to identify a tractable reformulation for a distributionally robust

appointment scheduling problem with marginal moment information. Unlike our work which

employs the budgeted uncertainty set, the model that is analysed does not capture any cor-

relation between parameters. However, the authors do identify a clever representation of the
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∑
i hi(x, ζ) that allows them to handle additional terms that are non-linear function of some

ζi.

1.4.2 Semi-Definite Programming Approximation Model

Although Section 1.5 and Section 1.6 will present important applications for which

one of the three conditions laid out in Proposition 1.4.3 is satisfied, there are still many in-

stances of robust optimization model for which problem (1.5) is inexact. For those instances,

there might be a need to dedicate additional computing resources in order to get a better

approximation. Drawing from the techniques used to solve or bound the value of mixed-

integer quadratic programs, we explore the use of semi-definite programming formulations

that might help tighten the integrality gap.

Following the ideas presented in Lovász and Schrijver (1991), we first introduce addi-

tional quadratic constraints that are redundant for the mixed-integer program:

z2
i,k = zi,k & zi,kzi,k′ = 0 , ∀ i, ∀ k 6= k′, ∀ i

0 ≤ (ζ+
j )2 ≤ ζ+

j & 0 ≤ (ζ−j )2 ≤ ζ−j , ∀ j .

Our next step is to introduce a set of N matrices Λi ∈ RK×K , with i = 1, 2, ..., N ,

and two matrices Λ+,Λ− ∈ Rm×m as new decision variables that will help characterize the

quadratic interactions in the model through Λi = zi,:z
T
i,:, Λ+ = ζ+ζ+T , and Λ− = ζ−ζ−

T
.

Indeed, we would need that the following constraints be satisfied: Λi mat(∆+
i,:)

mat(∆+
i,:)

T Λ+

 =

 zTi,:
ζ+

[ zi,: ζ+T

]
, ∀ i (1.6a)

 Λi mat(∆−i,:)

mat(∆−i,:)
T Λ−

 =

 zTi,:
ζ−

[ zi,: ζ−
T

]
, ∀ i (1.6b)

Λi = diag(zTi,:) , ∀ i (1.6c)

Λ+
j,j ≤ ζ+

j & Λ−j,j ≤ ζ−j , ∀ j (1.6d)

Λ+ ≥ 0 & Λ− ≥ 0 , (1.6e)
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where mat(∆+
i,:) refers to the K by m matrix composed of the terms of ∆+

i,: organized such

that (mat(∆+
i,:))k,j = (∆+

i,k)j. On the other hand, diag(·) is an operator that creates a

diagonal matrix from a vector: e.g., (diag(zTi,:))k,k = zik while (diag(zTi,:))k,k′ = 0 for all

k 6= k′.

Unfortunately, equality constraints (1.6a) and (1.6b) are not acceptable in a convex

optimization model hence we relax them using a matrix inequality: Λi mat(∆+
i,:)

mat(∆+
i,:)

T Λ+

 �
 zTi,:
ζ+

[ zi,: ζ+T

]
, ∀ i

 Λi mat(∆−i,:)

mat(∆−i,:)
T Λ−

 �
 zTi,:
ζ−

[ zi,: ζ−
T

]
, ∀ i

which can easily be reformulated as linear matrix inequalities and leads to the following

mixed-integer semi-definite program:

maximize
z,ζ+,ζ−,∆+,∆−,Λi,Λ

+,Λ−

N∑
i=1

K∑
k=1

cTi,k(∆
+
i,k −∆−i,k) + di,kzi,k (1.7a)

subject to A(ζ+ − ζ−) ≤ b (1.7b)

ζ+ ≥ 0 & ζ− ≥ 0 & ζ+
j + ζ−j ≤ 1 , ∀ j (1.7c)

1T (ζ+ + ζ−) = Γ (1.7d)
K∑
k=1

zi,k = 1 , ∀ i (1.7e)

K∑
k=1

∆+
i,k = ζ+ &

K∑
k=1

∆−i,k = ζ− , ∀ i (1.7f)

A(∆+
i,k −∆−i,k) ≤ bzi,k , ∀ i, ∀ k (1.7g)

∆+
i,k ≥ 0 & ∆−i,k ≥ 0 & ∆+

i,k + ∆−i,k ≤ zi,k , ∀ i, ∀ k (1.7h)
m∑
j=1

(∆+
i,k)j + (∆−i,k)j = Γzi,k , ∀ i, ∀ k (1.7i)
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
Λi mat(∆+

i,:) zTi,:

mat(∆+
i,:)

T Λ+ ζ+

zi,: ζ+T 1

 � 0 , ∀ i (1.7j)


Λi mat(∆−i,:) zTi,:

mat(∆−i,:)
T Λ− ζ−

zi,: ζ−
T

1

 � 0 , ∀ i (1.7k)

Λi = diag(zTi,:) , ∀ i (1.7l)

Λ+
j,j ≤ ζ+

j & Λ−j,j ≤ ζ−j , ∀ j (1.7m)

Λ+ ≥ 0 & Λ− ≥ 0 (1.7n)

zi,k ∈ {0, 1} , ∀ i, ∀ k . (1.7o)

Since this mixed-integer semi-definite program is equivalent to problem (1.3) yet contains

additional constraints compared to problem (1.4), we can expect that its fractional relaxation

will lead to a tighter conservative approximation for problem (1.1).

Actually, there are a number of different ways one might choose to tighten the relaxation

of problem (1.4) through the addition of linear cuts or lifting in the space of positive semi-

definite cones. Problem (1.7) is one such example that leads to a somewhat concise semi-

definite program. We refer the interested reader to Lasserre (2002) and Ghaddar et al.

(2011) for a hierarchy of polynomial size semi-definite programming relaxation of mixed-

integer quadratic programs for which the integrality gap is known to converge to 1. Based

on Proposition 1.4.2, it is therefore theoretically possible to find a semi-definite programming

model of polynomial size that will generate a solution within a constant factor of the optimal

one. Unfortunately, this might often be of little practical relevance. First, this would require

us to assess the integrality gap for each of the models in this hierarchy, which can be hard if

not impossible to do. Second, the model that is found to achieve a given factor of optimality

might be of a size that cannot be solved in a reasonable amount of time. To help resolve

this issue, we actually show that one can potentially confirm after solving a conservative
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approximation model of smaller size that the approximate solution obtained is indeed optimal

for problem (1.3). As shown in the following proposition, this is done by verifying whether

there is an optimal assignment for the associated relaxed adversarial problem that lies in the

convex hull of integer solutions. We refer the reader to Appendix 1.9.4 for a complete proof.

Proposition 1.4.5 Given a robust optimization problem of the form

minimize
x∈X

max
ζ∈U∩I

h(x, ζ) ,

where X ⊂ Rn and U ⊂ Rm are both bounded convex sets, I = {ζ ∈ Rm | ζi is integer ∀i ≤ q}

for some q ≤ m, hence imposing that a set of terms of ζ be integer valued, and h(x, ζ) is real

valued, convex in x and linear in ζ. Let x̂ be the solution of the conservative approximation

minimize
x∈X

max
ζ∈U

h(x, ζ) .

If there exists a ζ̂ ∈ arg maxζ∈U minx∈X h(x, ζ) that is a member of the convex hull of U ∩I,

denoted as P(U ∩I), then x̂ is optimal according to the original robust optimization problem.

When X does not impose integer constraints, this proposition allows us to imagine a

solution scheme in which one generates progressively, based on the current pair (x̂, ζ̂), new

tightening constraints based on cutting-planes that separates the current ζ̂ from P(U ∩ I),

adds them to problem (1.4), and re-solves the associated conservative approximation.5 This

process has reached optimality whenever it is impossible to separate ζ̂ from P(U ∩ I). Note

that if U only has integer vertices, although one might not be aware of it, then optimality

of x is confirmed instantly when failing to separate the first proposal for ζ̂.

Corollary 1.4.6 If P(U ∩ I) = U , then the optimality of x̂ ∈ arg minx∈X maxζ∈U h(x, ζ)

is necessarily confirmed when verifying that ζ̂ ∈ arg maxζ∈U minx∈X h(x, ζ) is a member of

the convex hull of U ∩ I.

5 New variables, such as positive semi-definite matrices, can also be added to the adversarial model, in a

lifting and projection fashion, as long as these variables are known to be bounded.
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Remark For completeness, we briefly outline an algorithm that can be used to determine

whether ζ̂ is in the convex hull of U ∩ I. First, let us recall an equivalent definition for

convex hull

P(U ∩ I) =

{
ζ ∈ Rm

∣∣∣∣ cT ζ ≤ sup
ζ′∈U∩I

cT ζ ′ , ∀ c ∈ B(1)

}
,

where B(1) = {c ∈ Rm | ‖c‖2 ≤ 1}. Based on this definition, verifying membership of

ζ̂ to the convex hull reduces to validating whether minc∈B(1) supζ′∈U∩I c
T (ζ ′ − ζ̂) is greater

or equal to zero or not (if not the argument that minimizes this expression can be used to

generate a cutting-plane). Finding the minimum of such an expression can be done using a

cutting-plane algorithm as long as one has an efficient algorithm to solve supζ′∈U∩I c
T (ζ ′− ζ̂)

when c is fixed. In practice, one might use CPLEX to do so.

1.4.3 Relation to Affinely Adjustable Robust Counterparts

We now provide an explicit connection between our approach and affinely adjustable

robust counterparts methods. In fact,we demonstrate below that any model that is obtained

by exploiting affine decision rules can also be motivated using our mixed-integer linear pro-

gramming based approximation scheme. This is interesting since it indicates that our new

scheme is somewhat more flexible and, perhaps more importantly, implies the possibility of

generalizing the techniques discussed in Section 1.4.2 so that they can be used to improve the

quality of solutions obtained from any AARC approximation of robust multi-stage problems.

Proposition 1.4.7 Given an adversarial problem of the type

maximize
ζ∈A

N∑
i=1

max
k
cTi,kζ + di,k ,

where A = {ζ|Aζ ≤ b} is a bounded polyhedron, the optimal value of its affinely adjustable

robust counterpart

minimize
λ,γ

max
ζ∈A

N∑
i=1

λTi ζ + γi (1.8a)

subject to λTi ζ + γi ≥ cTi,kζ + di,k , ∀ i, ∀ k, ∀ ζ ∈ A (1.8b)
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is equal to the optimal value of the fractional relaxation of the mixed-integer linear program-

ming problem

maximize
z,ζ,∆

N∑
i=1

K∑
k=1

cTi,k∆i,k + di,kzi,k (1.9a)

subject to Aζ ≤ b (1.9b)
K∑
k=1

zi,k = 1 , ∀ i (1.9c)

K∑
k=1

∆i,k = ζ , ∀ i (1.9d)

A∆i,k ≤ bzi,k , ∀ i, k (1.9e)

zi,k ∈ {0, 1} , ∀ i, k . (1.9f)

Proof The optimal value of the fractional relaxation of problem (1.9), can be presented in

the form

max
ζ∈A

max
z,∆

N∑
i=1

K∑
k=1

cTi,k∆i,k + di,kzi,k (1.10a)

subject to
K∑
k=1

zi,k = 1 , ∀ i (1.10b)

K∑
k=1

∆i,k = ζ , ∀ i (1.10c)

A∆i,k ≤ bzi,k , ∀ i, k (1.10d)

zi,k ≥ 0 ∀i, k. (1.10e)

For any fixed ζ ∈ A, since the inner problem is linear and has a feasible solution, strict duality

applies and its optimal value is equal to the optimal value of its dual problem. Hence, this

inner problem can be reformulated as

minimize
γ,λ,ψ

N∑
i=1

γi + λTi ζ (1.11a)

subject to γi − bTψi,k ≥ di,k , ∀ i, k (1.11b)

ATψi,k + λi = ci,k , ∀ i, k (1.11c)
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ψi,k ≥ 0 , ∀ i, k , (1.11d)

where γi ∈ R, λi ∈ Rm, and ψi,k ∈ Rp are respectively the dual variables associated to

constraints (1.10b), (1.10c), and (1.10d). Since A is bounded and convex and the objective

function (1.11a) is bilinear in ζ and the set of variable {γ,λ,ψ}, Sion’s minimax theorem

guarantees that the maximin formulation is equal to the minimax one, hence the optimal

value of problem (1.10) is equal to the optimal value of

minimize
γ,λ,ψ

max
ζ∈A

N∑
i=1

γi + λTi ζ (1.12a)

subject to γi − bTψi,k ≥ di,k , ∀ i, k (1.12b)

ATψi,k + λi = ci,k , ∀ i, k . (1.12c)

It can be shown that constraints (1.12b) and (1.12c) are equivalent to robust constraint (1.8b).

Specifically, for all index pair (i, k) the right-hand side of the robust constraint of (1.8b) can

be formulated as

maximize
ζ

cTi,kζ − λTi ζ (1.13a)

subject to Aζ ≤ b . (1.13b)

Since strict duality applies once again, problem (1.13) gives the same optimal value as:

minimize
ψi,k

bTψi,k

subject to ATψi,k = ci,k − λi , ∀ i, k

ψi,k ≥ 0 , ∀ i, k ,

where each ψi,k ∈ Rp contains the dual variables associated to constraint (1.13b). It is

therefore clear that robust constraint (1.8b) can be reformulated as

γi − di,k ≥ bTψi,k , ∀ i, k

ATψi,k = ci,k − λi , ∀ i, k.
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We conclude that formulation (1.9) gives the same optimal value as problem (1.8).

This result is interesting as it establishes that any robust counterpart that is obtained

using an affine decision rule scheme can be thought of in terms of replacing the adversarial

problem with the fractional relaxation of an equivalent MILP. In particular, one can easily

verify that using affine decision rules under the particular lifting ζ := ζ+ − ζ−, with ζ+ ≥ 0

and ζ− ≥ 0, is equivalent to problem (1.5).

Corollary 1.4.8 The fractional relaxation of problem (1.4) is equivalent to the affinely ad-

justed approximation of problem (1.3) applied to the lifted set of perturbation ζ = ζ+ − ζ−,

where ζ+ and ζ− are the positive and negative parts of ζ. Specifically, it achieves the same

optimal value as the problem:

minimize
λ+,λ−,γ

max
(ζ+,ζ−)∈Z′

N∑
i=1

λ+
i
T
ζ+ + λ−i

T
ζ− + γi

subject to λ+
i
T
ζ+ + λ−i

T
ζ− + γi ≥ cTi,k(ζ+ − ζ−) + di,k , ∀ i, k, ∀ (ζ+, ζ−) ∈ Z ′ ,

where

Z ′ =


(ζ+, ζ−)

∣∣∣∣∣∣∣∣∣∣∣∣∣

ζ+ ≥ 0 , ζ− ≥ 0

ζ+
j + ζ−j ≤ 1 ∀ j∑
j ζ

+
j + ζ−j = Γ

A(ζ+ − ζ−) ≤ b


.

While there is a lot of empirical evidence supporting the strength of affinely adjusted

approximation schemes (see for instance Ben-Tal et al. (2005)), very little is actually known

theoretically about the quality of the approximations that are obtained with these methods,

either in terms of optimal value or optimal solution. To the best of our knowledge, the

authors of Iancu et al. (2013) are the ones that have identified to this date the most general

class of problems for which the approximation was exact. We refer the readers in particular

to Theorem 3 in their article which could potentially provide an alternative method for

deriving our Proposition 1.4.3 given the connection established in Corollary 1.4.8. Note

however that while Iancu et al. do identify problem instances where conditions (P1) and
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(P2) of Theorem 3 in their paper are satisfied under box uncertainty or the simplex (given

the implicit sublattice structure of these uncertainty sets), they left open the question of

identifying such instances for a general budgeted uncertainty set with integer budget.

Overall, our new interpretation of AARC methods is particularly interesting as it states

that asking whether AARC methods are exact is equivalent to asking whether an associated

MILP (problem (1.4) for example) has an integrality gap or not. Given the extensive efforts

that have been dedicated in the last few decades both to developing approximation methods

for MILP that are based on fractional relaxation schemes and to measuring the quality of

these bounds, we have good hope to find innovative ways of improving the performance of

these AARC models.

We conclude this section with a result that establishes the connection between the semi-

definite programming based conservative approximation presented in Section 1.4.2 and the

theory of AARCs. The proof of this final connection can be found in Appendix 1.9.5.

Proposition 1.4.9 The optimal value of the fractional relaxation of problem (1.7) is equal

to the optimal value of the affinely adjustable robust counterpart of

minimize
{vi}Ni=1,w

+,w−,

{Q+
i ,V

+
i ,S

+
i }

N
i=1

{q+
i ,p

+
i ,r

+
i }

N
i=1

{Q−i ,V
−
i ,S

−
i }

N
i=1

{q−i ,p
−
i ,r
−
i }

N
i=1

max(ζ+,ζ−)∈Z′ (w+)T ζ+ + (w−)T ζ− +
∑N

i=1 2p+
i
T
ζ+ + 2p−i

T
ζ−

+maxk{cTi,k(ζ+ − ζ−) + di,k + 2(V +
i )k,:ζ

+ + 2(V −i )k,:ζ
− + (vi)k}

(1.14a)

subject to (vi)k = (Q+
i +Q−i )k,k + 2(q+

i + q−i )k + r+
i + r−i , ∀ i, k (1.14b)

Q+
i V +

i q+
i

V +
i
T

S+
i p+

i

q+
i
T

p+
i
T

r+
i

 � 0,


Q−i V −i q−i

V −i
T

S−i p−i

q−i
T

p−i
T

r−i

 � 0 , ∀ i (1.14c)

N∑
i=1

S+
i ≤ diag(w+) ,

N∑
i=1

S−i ≤ diag(w−) , ∀ i (1.14d)

w+ ≥ 0 w− ≥ 0 , (1.14e)
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where w+ ∈ Rm, w− ∈ Rm, while for each i, vi ∈ RK, Q+
i ∈ RK×K, Q−i ∈ RK×K,

V +
i ∈ RK×m, V −i ∈ RK×m, q+

i ∈ RK, q−i ∈ RK, S+
i ∈ Rm×m, S−i ∈ Rm×m, p+

i ∈ Rm,

p−i ∈ Rm, r+
i ∈ R, r−i ∈ R, and finally where

Z ′ =


(ζ+, ζ−)

∣∣∣∣∣∣∣∣∣∣∣∣∣

ζ+ ≥ 0 , ζ− ≥ 0

ζ+
j + ζ−j ≤ 1 ∀ j∑
j ζ

+
j + ζ−j = Γ

A(ζ+ − ζ−) ≤ b


.

One might actually notice that in problem (1.14), when all the variables that are min-

imized over are set to zero, which is a feasible assignment, the problem reduces to prob-

lem (1.3) with the lifted set of perturbation ζ = ζ+ − ζ−. Intuitively, the SDP model is

able to obtain a tighter bound by adding some affine perturbations that have a positive net

effect on the evaluation of the objective function yet might allow to reach a lower amount

when affine decision rules are introduced. In particular, in the case where ζ− := 0, which

we assume for simplicity of exposure, and 0 ≤ ζ+ ≤ 1, when constraints (1.14b) to (1.14e)

are satisfied, then the objective function can be shown to satisfy

(w+)T ζ+ +
N∑
i=1

2p+
i

T
ζ+ + max

k
{cTi,kζ+ + di,k + 2(V +

i )k,:ζ
+ + (Q+

i )kk + 2(q+
i )k + r+

i }

≥ (w+)T (ζ+)2 +
N∑
i=1

2p+
i

T
ζ+ + max

k
{cTi,kζ+ + di,k + 2(V +

i )k,:ζ
+ + (Q+

i )kk + 2(q+
i )k + r+

i }

= (w+)T (ζ+)2 +
N∑
i=1

2p+
i

T
ζ+ + max

zk∈{0,1}∑K
k=1 zk=1

K∑
k=1

zk{cTi,kζ+ + di,k + 2(V +
i )k,:ζ

+ + (Q+
i )kk + 2(q+

i )k + r+
i }

≥
N∑
i=1

max
zk∈{0,1}∑K
k=1 zk=1

ζ+TSiζ
+ + 2p+

i

T
ζ+ +

K∑
k=1

zk(cTi,kζ
+ + di,k + 2(V +

i )k,:ζ
+ + (Q+

i )kk + 2(q+
i )k + r+

i )

≥
N∑
i=1

max
zk∈{0,1}∑K
k=1 zk=1

K∑
k=1

zk(cTi,kζ
+ + di,k) =

N∑
i=1

max
k
{cTi,kζ+ + di,k} ,

where we used the fact that ζ+ ∈ [0, 1]m to get the first inequality, and constraint (1.14d) to

get the second. We finally used the fact that (Q+
i )kkzk =

∑
k′(Q

+
i )kkzkzk′ over the feasible

region that is considered, and used constraint (1.14c) which implies that

ζ+TSiζ
+ + 2p+

i
T
ζ+ + 2zT (V +

i )k,:ζ
+ + zTQ+

i z
T + 2zTq+

i + r+
i ≥ 0 .
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A similar argument can be made when we involve the ζ− > 0. Hence, problem (1.14)

necessarily provides a tight upper bound to problem (1.3).

Overall, the connection established in Proposition 1.4.9 indicates that the scheme we

adopt in this paper allows to identify tractable conservative approximations that provide

tighter bounds than the well known applications of affine decision rules. Indeed, while

schemes that are based on quadratic decision rules can in some cases lead to SDP approx-

imation models, such adjustment functions lead in general to optimization problems that

are computationally intractable when the uncertainty set is polyhedral (see Ben-Tal et al.

(2009a) p. 372). While one might be able to further approximate those models by applying

Sum-Of-Squares techniques as were proposed in Bertsimas et al. (2011b), such an approach

leads to SDP models of much larger size than the model presented here.

1.4.4 Empirical Evaluation of Integrality Gap

We briefly present a set of empirical experiments that illustrates the trade-off that

need to be made between computational effort and quality of the upper bound obtained for

problem (1.3) with A := 0 and b := 0 using three different fractional relaxation schemes.

The first bound is obtained by applying affine decision rules directly on ζ; this method will be

referred as AARC. We also compare the two improved bounds based on linear program (1.4),

and semi-definite program (1.7). These methods compete on a set of 100 randomly generated

instances of problem (1.3) which we solved exactly using CPLEX. Each problem instance is

generated by sampling each parameters of the objective function uniformly between -1 and

1, and then ensuring that the optimal value is positive by adding a constant term that makes∑
i maxk c

T
i,k0 + di,k = 0; furthermore, a random integer budget of Γ is generated uniformly

between 1 to N . Based on the results presented in Table 1–1, we see that the quality of

each bound degrades as N increases yet an approach based on semi-definite programming

will achieve significant improvement in tightness. On the other hand, there is a heavier

computational price to pay for the semi-definite programming model. It is also observed

that LP (1.4) provides better results than AARC. Note that all linear programming models
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Table 1–1: Empirical evaluation of integrality gap and resolution time for a set of randomly
generated convex maximization problems of form (1.3). All problems have size N = m = n
and K = 2. Note that in the case of N = 64, it took longer than a full day to solve the
MILP with CPLEX. We therefore choose to report the minimum, maximum and average
relative improvement (over 100 instances) of the bounds obtained by each model compared
to the bound obtained with AARC. Note that an integrality gap of one is optimal.

Size AARC LP (1.4) SDP (1.7)

N = 8

CPU time 0.062 sec 0.064 sec 1.564 sec
Gap = 1 instances 14% 29% 59%
Largest gap 1.70 1.58 1.09
Average gap 1.26 1.14 1.01

N = 16

CPU time 0.17 sec 0.18 sec 27.89 sec
Gap = 1 instances 3% 6% 11%
Largest gap 2.32 2.12 1.14
Average gap 1.82 1.49 1.05

N = 32

CPU time 10 sec 10 sec 28.9 min
Gap = 1 instances 0% 0% 0%
Largest gap 2.94 2.80 1.22
Average gap 2.61 1.96 1.10

N = 64

CPU time 34 sec 70 sec 19 h
Min improvement - 0% 43%
Max improvement - 54% 72%
Avg. improvement - 26% 68%

were solved using CPLEX 12.4 while the SDP was solved using DSDP 5.8 (Benson et al.

2000).

1.5 Robust Multi-Item Newsvendor Problem

We now pay closer attention to the multi-item newsvendor problem as described in a

general form through the following model:

maximize
x∈X ,0≤y≤min(x,w)

m∑
i=1

viyi − cixi + gi(xi − yi)− bi(wi − yi) ,

where xi represents the amount of item i ordered, wi the demand for this item while X

captures the set of feasible orders and yi is the (second-stage) amount sold once the demand

is known. We also denote the following terms: ci ∈ Rn and vi ∈ Rn are respectively the per

unit ordering cost and retail prices, bi(·) is a piecewise linear convex increasing stock-out

cost, and gi(·) is a piecewise linear decreasing concave salvage prices. We assume that for
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each item ∂gi(z)/∂z < ci < vi whenever the derivative exists, i.e., that the unit ordering

cost is always larger than the marginal salvage price and always lower than the retail price.

One can therefore not make profits out of salvaging his products. Since y∗i = min(xi, wi),

the two-stage model is equivalent to:

minimize
x∈X

m∑
i=1

cixi − vi min(xi, wi)− gi(xi −min(xi, wi)) + bi(wi −min(xi, wi)) ,

which is presented in terms of minimizing negative profits to be coherent with problem (1.1).

Further manipulations of the model will lead to a form that makes the connection with

problem (1.1) explicit:

(cixi − vi min(xi, wi))− gi(xi −min(xi, wi)) + bi(wi −min(xi, wi))

= (ci − vi)wi + ci(xi − wi)+ − (ci − vi)(wi − xi)+ − gi((xi − wi)+) + bi((wi − xi)+)

= (ci − vi)wi + (ci(xi − wi)− gi(xi − wi))+ + ((vi − ci)(wi − xi) + bi(wi − xi))+

= max (cixi − viwi − gi(xi − wi) , (ci − vi)xi + bi(wi − xi))

= max

(
max

k∈{1,2,...,Kg}
cixi − viwi − αgi,k(xi − wi)− βgi,k , max

k∈{1,2,...,Kb}
(ci − vi)xi + αbi,k(wi − xi) + βbi,k

)
= max

k
αxi,kxi + αwi,kwi + βi,k ,

where we exploited the piecewise linear concave and convex structures of

gi(y) = min
k∈{1,2,...,Kg}

αgi,ky + βgi,k

and

bi(y) = max
k∈{1,2,...,Kb}

αbi,ky + βbi,k

respectively, and later combined the indexes of the two layers of maximum operators so that

αxi,k =

 ci − αgi,k if k ≤ Kg

ci − vi − αbi,k−Kg if k > Kg

αwi,k =

 αgi,k − vi if k ≤ Kg

αbi,k−Kg if k > Kg
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βi,k =

 −β
g
i,k if k ≤ Kg

βbi,k−Kg if k > Kg
.

When considering robustness in the multi-item newsvendor problem, we introduce a

budgeted uncertainty set for the demand vector. Specifically, we assume that the nominal

demand vector takes the form w̄, that each term is known to lie in the interval wi ∈ [w̄i −

ŵi, w̄i+ŵi] and that we do not expect the total perturbation to exceed a budget of Γ. Hence,

the robust model takes the form:

minimize
x∈X

max
ζ∈Z(Γ)

m∑
i=1

max
k
αxi,kxi + αwi,k(w̄i + ŵiζi) + βi,k , (1.15)

where Z(Γ) := {ζ ∈ Rm|‖ζ‖∞ ≤ 1, ‖ζ‖1 ≤ Γ}. One might easily recognize in this form that

each term of the objective function depends on a different component of ζ. It is therefore

clear based on Corollary 1.4.4 that using the robust counterpart presented in problem (1.5)

will provide an exact solution. The proof of the following corollary, presented in Appendix

1.9.6, serves to justify how to obtain a more compact robust counterpart.

Corollary 1.5.1 Given that Γ is a strictly positive integer, then the robust multi-item newsven-

dor problem (1.15) is equivalent to the following linear program:

minimize
x∈X ,ν,γ,ψ

Γν + 1Tγ

subject to γi ≥ ψi,k + αxi,kxi + αwi,kw̄i + βi,k ∀i, ∀k

ψi,k + ν ≥ αwi,kŵi ∀i, ∀k

ψi,k + ν ≥ −αwi,kŵi ∀i, ∀k

ψi,k ≥ 0 , ∀i, ∀k ,

where ν ∈ R, γ ∈ Rm, and ψi,k ∈ R.

Given that the distribution-free version of the newsvendor problem has received so much

attention over the last fifty years (see Scarf (1958), Gallego and Moon (1993), Moon and

Silver (2000), Wang et al. (2015), Hanasusanto et al. (2014), and Wiesemann et al. (2014)
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for some examples), we provide below an exact reformulation for a model that seeks the

distributionally robust newspaper quantities when the only information that is available

about the distribution includes that the support is Z(Γ), the mean vector is µ, and a list of

lower bounds on first order partial moments. To the best of our knowledge, this appears to

be the first tractable exact reformulation for such a problem when there exists information

about how the demand for different items behave jointly.

Proposition 1.5.2 The distributionally robust optimization model

minimize
x∈X

max
F∈D

EF

[
m∑
i=1

max
k
αxi,kxi + αwi,k(w̄i + ŵiζi) + βi,k

]
, (1.16)

where

D =


F ∈M

∣∣∣∣∣∣∣∣∣∣∣∣∣

PF (ζ ∈ Z(Γ)) = 1

EF [ζ] = µ

EF [(ζ − µ)+] ≥ r+

EF [(µ− ζ)+] ≥ r−


,

is equivalent to the following linear program

minimize
x∈X ,t,q,λ+,λ−,ν,γ,ψ+,ψ−

t+ µTq − (r+)Tλ+ − (r−)Tλ− (1.17a)

subject to t ≥ Γν + 1Tγ (1.17b)

γi ≥ ψ+
i,k + αxi,kxi + αwi,kw̄i + βi,k − λ+

i µi ∀i, ∀k (1.17c)

γi ≥ ψ−i,k + αxi,kxi + αwi,kw̄i + βi,k + λ−i µi ∀i, ∀k (1.17d)

ψ+
i,k + ν ≥ αwi,kŵi − qi + λ+

i ∀i, ∀k (1.17e)

ψ+
i,k + ν ≥ −αwi,kŵi + qi − λ+

i ∀i, ∀k (1.17f)

ψ−i,k + ν ≥ αwi,kŵi − qi − λ−i ∀i, ∀k (1.17g)

ψ−i,k + ν ≥ −αwi,kŵi + qi + λ+
i ∀i, ∀k (1.17h)

ψ+
i,k ≥ 0 , ψ−i,k ≥ 0 ∀i, ∀k (1.17i)

λ+ ≥ 0 , λ− ≥ 0 . (1.17j)
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Proof Applying duality theory for semi-infinite linear programs to the inner problem of the

distributionally robust problem (1.16), we obtain the following reformulation (see Delage

and Ye (2010) for derivation details):

minimize
x∈X ,t,q,λ+,λ−

t+ µTq − (r+)Tλ+ − (r−)Tλ−

subject to t ≥
m∑
i=1

max
k
αxi,kxi + αwi,k(w̄i + ŵiζi) + βi,k − qiζi

+λ+
i max(0, ζi − µi) + λ−i max(0, µi − ζi) ∀ζ ∈ Z(Γ)

λ+ ≥ 0 , λ− ≥ 0.

One might realize that the right-hand side equation of the infinite set of constraint indexed

by ζ is the sum of piecewise linear convex functions in ζ with 2K pieces; for each i, each

affine piece gives the highest value over k between either of the two following functions

αxi,kxi + αwi,k(w̄i + ŵiζi) + βi,k − qiζi + λ+
i (ζi − µi)

or

αxi,kxi + αwi,k(w̄i + ŵiζi) + βi,k − qiζi + λ−i (µi − ζi) .

Applying similar steps as provided in the proof of Corollary 1.5.1, we obtain a conservative

approximation of the right-hand side equation

t ≥ min
ν,γ,ψ+,ψ−

Γν + 1Tγ

subject to γi ≥ ψ+
i,k + αxi,kxi + αwi,kw̄i + βi,k − λ+

i µi ∀i, ∀k

γi ≥ ψ−i,k + αxi,kxi + αwi,kw̄i + βi,k + λ−i µi ∀i, ∀k

ψ+
i,k + ν ≥ αwi,kŵi − qi + λ+

i ∀i, ∀k

ψ+
i,k + ν ≥ −αwi,kŵi + qi − λ+

i ∀i, ∀k

ψ−i,k + ν ≥ αwi,kŵi − qi − λ−i ∀i, ∀k

ψ−i,k + ν ≥ −αwi,kŵi + qi + λ+
i ∀i, ∀k

ψ+
i,k ≥ 0 , ψ−i,k ≥ 0 ∀i, ∀k .
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This constraint can then easily be re-inserted in the main problem to obtain the model

presented in (1.17). Furthermore, since for each i, each affine pieces only depend on ζi, we

conclude that this approximation is exact based on Condition 3 of Corollary 1.4.4 being

satisfied.

We refer the reader to Appendix 1.9.7 for an additional exact reformulation of a distri-

butionally robust multi-item newsvendor problem in which one instead imposes lower bounds

on the probability that the realization occurs in each of a set of nested budgeted uncertainty

regions: Z(1), Z(2), Z(3), etc.

1.6 Robust Multi-Period Inventory Problem

In robust multi-period inventory problem (RMIP), the inventory manager’s objective is

to minimize the long term cost of inventory over a horizon of T periods. This long term cost

might be composed for each period t of an ordering cost of ct per unit, a fixed cost of Kt if

an order is delivered at time t, a shortage cost of pt per units of unsatisfied demand, and a

holding cost ht per unit held in storage. In each period, the ordered stocks are first used to

satisfy the back-orders and then the current demand if possible. Any extra inventory is held

until the next period after paying the associated holding cost. Unfortunately, since future

demand is usually not fully determined at the time of making orders, one might require that

orders are made such that the worst-case long term cost is as low as possible. This gives rise

to the following robust optimization model

minimize
u,v

max
ζ∈Z

T∑
t=1

ctut +Ktvt + max(htxt+1(u, ζ),−ptxt+1(u, ζ)) (1.18a)

subject to 0 ≤ ut ≤Mvt, vt ∈ {0, 1} ∀t, (1.18b)

where v ∈ {0, 1}T and u ∈ RT represent respectively for each t the decision of making an

order or not that will be delivered at time t, and the amount to be delivered, and where

xt+1(u, ζ) = x1 +
t∑

j=1

(uj − (w̄j + ŵjζj)) ∀t.
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Problem (1.18) can be considered as a special case of problem (1.1) where ct,kζ (u,v) =

αt,k
∑

j≤t ejŵj and dt,kζ (u,v) = ctut +Ktvt − αt,k(x1 +
∑

j≤t(uj − w̄j)) where αt,1 = −ht and

αt,2 = pt. We can therefore easily obtain a conservative approximation based on Proposi-

tion 1.4.1:

(LP-RC) minimize
u,v,γ,∆, ν

θ,λ+,λ−,ψ

T∑
t=1

(ctut +Ktvt + γt + ∆t) + Γν (1.19a)

subject to 0 ≤ ut ≤Mvt, vt ∈ {0, 1} ∀t (1.19b)

ν + ∆ ≥
T∑
t=1

λ+
t (1.19c)

ν + ∆ ≥
T∑
t=1

λ−t (1.19d)

γt ≥ 1Tψt,k + Γθt,k − αt,k(x1 +
t∑

j=1

(uj − w̄j)) ∀t, ∀k (1.19e)

(ψt,k)j + θt,k ≥ −(λ+
t )j + αt,kŵj ∀t,∀j ≤ t, ∀k (1.19f)

(ψt,k)j + θt,k ≥ −(λ−t )j − αt,kŵj ∀t,∀j ≤ t, ∀k (1.19g)

(ψt,k)j + θt,k ≥ −(λ+
t )j ∀t, ∀j > t, ∀k = 1, 2 (1.19h)

(ψt,k)j + θt,k ≥ −(λ−t )j ∀t, ∀j > t, ∀k = 1, 2 (1.19i)

ψt,k ≥ 0,∀t,∀j ≤ t, ∀k = 1, 2 , (1.19j)

where γ ∈ RT , ∆ ∈ RT , ν ∈ R, θ ∈ RK×T , λ+
t ∈ RT , λ−t ∈ RT , and ψt,k ∈ RT . Note that

the expression ctut+Ktvt would initially appear in the fourth constraint based on model (1.5)

but was carried to the objective function given that it is independent of k. Interestingly,

based on Corollary 1.4.4, we have conditions under which this approximation scheme returns

an optimal robust solution.

Corollary 1.6.1 The conservative approximation model (1.19) is equivalent to problem (1.18)

when Γ = 1 or Γ = T .
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Following the spirit of Theorem 3.2 in Bertsimas and Thiele (2006), one can also relate

the solution of this approximation model to a solution that would be obtained for a specific

sequence of deterministic orders.

Proposition 1.6.2 (Optimal robust policy) Let ψ∗ and θ∗ be optimal assignments in an

optimal solution of problem (1.19). The optimal robust policy of the problem (1.19) is equiv-

alent to the optimal policy of the deterministic version of problem (1.18) with demand set to

w′t = w̄t + Υt−Υt−1 where Υ0 = 0 and Υt := (Bt,2−Bt,1)/(ht +pt) for Bt,k = 1Tψ∗t,k + Γθ∗t,k.

Proof Proposition 1.6.2. Given an optimal solution tuple (u∗.v∗,γ∗,∆∗, ν∗,θ∗,λ+∗,λ−
∗
,ψ∗)

for problem (1.19), it is clear that u∗, v∗, and γ∗ would also be the optimal solution of prob-

lem (1.19) if the remaining variable were fixed to ∆∗, ν∗, θ∗, λ+∗, λ−
∗
, and ψ∗. Problem

(1.19) is therefore equivalent to

minimize
u

T∑
t=1

(ctut +Kt1{ut>0} + max(htx̄t+1 +Bt,1,−ptx̄t+1 +Bt,2) + ∆∗t ) + Γν∗, (1.20)

where x̄t+1 = x1 +
∑

j≤t(uj − w̄j), Bt,k = 1Tψ∗t,k + Γθ∗t,k, and where we use 1ut>0 as the

indicator function that returns one if ut is strictly positive and zero otherwise. Let us define

variable x′t according to the linear equation x′t+1 = x̄t+1 + Bt,1−Bt,2
ht+pt

. This way we have that

max(htx̄t+1 +Bt,1,−ptx̄t+1 +Bt2) = max(htx
′
t+1,−ptx′t+1) +

htBt,2 + ptBt,1

ht + pt
,

therefore, the problem (1.20) can be shown equivalent to

minimize
u

T∑
t=1

(ctut +Kt1ut>0 + max(htx
′
t+1,−ptx′t+1) +

htBt,2 + ptBt,1

ht + pt
+ ∆∗t ) + Γν∗ .

Based on the equation x′t+1 = x′t+ut−(w̄t+Υt−Υt−1) where Υt := (Bt,2−Bt,1)/(ht+pt), we

can conclude that the optimal robust policy of problem (1.20) is equivalent to the optimal

policy of nominal problem with demand w′t = w̄t + Υt −Υt−1.

Remark The optimal cost of the problem (1.19) is equal to the optimal cost for the nominal

problem with the modified demand, w′t, added to
∑T

t=1(htB2,t+ptBt,1
ht+pt

+ ∆∗t ) + Γν.
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Remark This robust inventory problem was first addressed in Bertsimas and Thiele (2006),

where the authors proposed a conservative approximation that relies on reversing the order

of the maximization over ζ and summation over t. The resulting model, which we will later

refer to as BT-RC can be reformulated as

(BT-RC) minimize
u,v,y,q,r

T∑
t=1

(ctut +Ktvt + yt)

subject to yt ≥ ht(x1 +
t∑

j=1

(uj − w̄j) + qtΓ +
t∑

j=1

rj,t) ∀t

yt ≥ pt(−x1 −
t∑

j=1

(uj − w̄j) + qtΓ +
t∑

j=1

rj,t) ∀t

qt + rj,t ≥ ŵj ∀t, ∀j ≤ t

qt ≥ 0, rj,t ≥ 0 ∀t ∀j ≤ t

0 ≤ ut ≤Mvt, vt ∈ {0, 1} ∀t ,

where y ∈ RT , q ∈ RT , and r ∈ RT×T . Note that to reduce the conservativeness of their

approach, the authors use a different budget for each time period which we choose to omit

doing for the sake of comparing similar models.

This model can actually be interpreted as an AARC of problem (1.18) where the affine

decision rule is constrained to be constant over ζ. As was already recognized in Gorissen

and den Hertog (2013), this indicates that their approximation can already be tightened by

using affine decision rules, and, based on the results of Section 1.4.3, tightened even further

by using problem (1.19) since the later is equivalent to applying AARC on a lifting involving

ζ+ and ζ−. For completeness, we present AARC applied directly on ζ for this inventory

problem:

(AARC) minimize
u,v,γ,∆,ν,θ,λ,ψ

T∑
t=1

(ctut +Ktvt + γt + ∆t) + Γν

subject to 0 ≤ ut ≤Mvt, vt ∈ {0, 1} ∀t

ν + ∆j ≥

∣∣∣∣∣
T∑
t=1

λj,t

∣∣∣∣∣ , ∀j
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γt ≥
T∑
j=1

ψj,t,k + Γθt,k − αt,k(x1 +
t∑

j=1

(uj − w̄j)) ∀t, ∀k = 1, 2

ψj,t,k + θt,k ≥ |λj,t − αt,kŵj| ∀t,∀j ≤ t, ∀k = 1, 2

ψj,t,k + θt,k ≥ |λj,t| ∀t,∀j > t, ∀k = 1, 2

v ≥ 0, ψj,t,k ≥ 0, θt,k ≥ 0 ∀t,∀j ≤ t, ∀k = 1, 2,

where γ ∈ RT , ∆ ∈ RT , ν ∈ R, θ ∈ RT×2, λ ∈ RT×T , ψ ∈ RT×T×2, and αt,1 = −ht ∀t and

αt,2 = pt ∀t.

Remark One might notice that in this section we focused on an inventory problem where

all ordering decisions must be made at time zero and there is no room for adjustment as

time unfolds. While this might appear a bit limiting, our reasons for doing so are two folds.

First, we believe this static version of the robust inventory problem is interesting in its own

right based on the fact that in some contexts delivery contracts give no freedom to make

adjustments to the orders as time evolves; even if there is some freedom, then the formulation

studied in this section still gives a meaningful initial ordering plan that can later be improved

on by solving an updated version of the model. Secondly, beside the special cases described

in Bertsimas et al. (2010), very little is actually known about how to get exact solutions

to the static or dynamic version of this robust model. Our hope is that by focusing on the

static version of the problem we might understand what are the tools that can provide better

near-optimal solutions.

1.7 Numerical Experiments

In this section, we present numerical experiments for the robust multi-period inventory

problem discussed in Section 1.6. We initially present the performance of four different

approximation methods for the instance that was studied in Bertsimas and Thiele (2006).

This will illustrate how the worst-case bound can be gradually improved by using more

computationally demanding models. In order from most tractable to most precise, we have

the following list of formulation: the BT-RC model, the AARC model, the LP-RC model,

a conservative approximate robust counterpart based on the SDP bound presented in (1.7)
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and referred as SDP-RC, and the exact robust model solved using a cutting-plane method6 .

In order to study to which extent these conclusions can be generalized, we later extend the

numerical analysis to a set of randomly generated instances of the multi-period inventory

problem where every parameters (e.g., ordering cost, holding cost, amount of uncertainty,

etc.) are non-stationary. In doing so, we also explore what is the “price of robustness” (as

coined in Bertsimas and Sim (2004)) in this class of problems.

1.7.1 Instance Studied by Bertsimas and Thiele

The instance studied in Section 5.2 of Bertsimas and Thiele (2006) is an inventory

problem with T = 20, ct = 1, Kt = 0, ht = 4, pt = 6, w̄t = 100 and ŵt = 40. Note

that this problem is stationary in the sense that the above parameters do not depend on

t. Under this context, Table 1–2 presents the optimal worst-case bound obtained with each

method, the true worst-case cost achieved by their respective approximate solution, and

their respective suboptimality gap. As expected, when Γ = 0 all four methods give the

same optimal bound and solution, which is the optimal solution of the nominal problem.

The performance start to differ as Γ is increased. We can first confirm that, for any value

of Γ, suboptimality gap is always reduced as we move away from the BT-RC model and

use more sophisticated versions of our mixed-integer linear programming based approach.

We can also confirm that, when Γ equals 1 or 20, the LP-RC and SDP-RC approach are

exact, which was guaranteed by Theorem 1.6.1. This is also the case for AARC for this

instance but will not be the case in general (see Table 1–3 for some evidence). In the case of

Γ = 10, we see that using the SDP formulation allows us to reduce the suboptimality to a

negligible amount, while it is slightly insufficient for Γ = 15. Although the suboptimality gap

of all approximations methods are somewhat small in this example and the improvements

obtained are rather limited, these results already illustrate the key differences between the

6 The exact robust model is solved using an analytic center cutting-plane method up to a precision of

10−6 where cuts are generated by using CPLEX to solve the inner mixed-integer linear program.
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four different approximation schemes. We expect these differences to be magnified in a richer

experimental context.

Finally, it is worth noting that, although some of the solutions obtained are suboptimal,

the worst-case cost achieved by a suboptimal solution often indicates exactly the approximate

bound returned by the approximation model. For instance, one can observe in Table 2 that

for the solutions provided by BT-RC, the worst-case bound approximations that BT-RC

provides for Γ ∈ {0, 1, 10, 15, 20} are exact. Yet, BT-RC does not return truly optimal

solutions except when Γ = 0. One should therefore treat with care the fact that worst-

case cost is equal to the worst-case bound for a solution that is returned by a conservative

approximation scheme as there might actually exist other solutions that achieve better worst-

case cost but for which the worst-case bound is very inaccurate.

Remark It is worth mentioning that Bertsimas and Thiele (2006) considered an uncertainty

set that imposes multiple budgets on ζ, i.e., where
∑t

k=1 |ζk| is limited to a budget Γt , ∀ t =

1, . . . , T . They proposed a method for calibrating the values for [Γ1, . . . ,ΓT ] in a way that

makes the BT-RC model achieve its full potential. In particular, for the instance that is

considered here, they established that these should be set as [Γ1,Γ2, . . . ,Γ20] = [ 0.51, 0.72,

0.88, 1.02, 1.14, 1.25, 1.35, 1.44, 1.53, 1.61, 1.69, 1.77, 1.79, . . . , 1.79 ]. When we replicate

the same experiments as described above using such an uncertainty set, we reach similar

conclusions as before, namely that the quality of the bound is improved by employing the

AARC model, and further improved using LRC. Specifically, the worst-case bound of BT-

RC, AARC, and LP-RC are respectively of 7626, 7394, and 4244, while the worst-case cost of

approximate solutions are respectively of 4582, 6434, and 4244 (with a loss in performance

when going from BT-RC to AARC which is corrected for by the LP-RC solution). In

comparison, the true optimal worst-case cost is of 3938.

1.7.2 Robust Performances on Randomly Generated Instances

In this second set of experiments, we consider a family of randomly generated instances of

the robust multi-period inventory problem for a horizon of T = 10 and T = 100. Specifically,
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Table 1–2: Comparison of the optimal worst-case bound, true worst-case cost, and subopti-
mality gap for different solution methods to the inventory problem presented in Bertsimas
and Thiele (2006).

Method
Budget of uncertainty

0 1 10 15 20

Worst-
case

bound

BT-RC 2000 5848 31840 39560 42480
AARC 2000 5800 31457 39306 41818
LP-RC 2000 5800 31360 38976 41818

SDP-RC 2000 5800 31360 38940 41818

Worst-
case
cost

BT-RC 2000 5848 31840 39560 42480
AARC 2000 5800 31457 39306 41818
LP-RC 2000 5800 31360 38976 41818

SDP-RC 2000 5800 31360 38940 41818
Exact 2000 5800 31360 38933 41818

Sub-
optim.

gap

BT-RC 0 0.83% 1.53% 1.61% 1.58%
AARC 0 0.00% 0.31% 1.10% 0
LP-RC 0 0 0.00% 0.11% 0

SDP-RC 0 0 0.00% 0.02% 0

each problem instance is created by randomly generating for each period the values for ct,

ht, pt based on a uniform distribution between 0 and 10, and the values for w̄t and ŵt from

a uniform distribution over the interval [0, 100] and [0, w̄t] respectively. Note that the choice

of using a uniform distribution can be motivated by the fact that it is known to be the

distribution that maximizes entropy among all distributions supported on a given interval

(see page 124 of Stone (2015) for additional details). Finally, fixed ordering cost Kt are again

considered to be null.

Similarly as was done in the previous analysis, we compare in Table 1–3 the optimal

worst-case bound, true worst-case cost, and suboptimality gap for different solution models,

yet this time the table presents the average of each indicator over a set of 1000 randomly

generated problem instances. A quick glance at the table should convince the reader that

there are obvious gains in terms of worst-case cost for employing either the LP-RC or SDP-

RC method instead of BT-RC or AARC. Note for instance that when Γ = 6, in these

experiments the average worst-case cost was 2.2% larger with the AARC method compared

to the LP-RC and the SDP-RC methods. More importantly, two valuable insights can be
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Table 1–3: Comparison of the optimal worst-case bound, true worst-case cost, and subop-
timality gap for different solution methods averaged over a set of 1000 randomly generated
instances of multi-period inventory problems with 10 periods.

Method
Budget of uncertainty

1 2 3 4 5 6 10

Average
worst-case
bound

BT-RC 4455 6050 7135 7871 8355 8657 8976
AARC 3620 4861 5725 6321 6720 6972 7252
LP-RC 3477 4597 5420 6031 6481 6798 7252

SDP-RC 3477 4592 5412 6024 6476 6794 7252

Average
worst-case
cost

BT-RC 4049 5400 6363 7071 7581 7936 8438
AARC 3619 4832 5677 6272 6681 6946 7252
LP-RC 3477 4597 5420 6031 6481 6798 7252

SDP-RC 3477 4591 5411 6023 6475 6794 7252
True 3477 4585 5407 6020 6474 6794 7252

Average
sub-
optimality
gap

BT-RC 16.6% 18.0% 18.0% 17.8% 17.5% 17.2% 16.8%
AARC 4.4% 5.7% 5.2% 4.3% 3.3% 2.3% 0
LP-RC 0 0.3% 0.3% 0.2% 0.1% 0.1% 0

SDP-RC 0 0.1% 0.1% 0.1% 0.0% 0.0% 0

obtained from this table. First, we can estimate from this table that suboptimality of the

approximate solution is reduced by a factor of about 4 when replacing the BT-RC method

with AARC, by an additional factor of about 10 when replacing the AARC method with

LP-RC, and by a final factor of at least 2 when replacing LP-RC with SDP-RC. Secondly,

for general inventory problems it is uncommon for the worst-case bound obtained by any of

these methods to be exactly equal to the true worst-case cost for the retrieved approximate

solution. This can be observed by comparing the average worst-case bound to the average

actual worst-case cost. The only exception is for LP-RC and SDP-RC when Γ = 1 and

Γ = 10 as our theory previously established. Perhaps surprisingly, in the case of LP-RC, it

also appears that for other integer Γ’s it is quite rare that the worst-case bound is inexact

at the proposed approximate solution, even when this solution is suboptimal.

Table 1–4 presents further statistics regarding the suboptimality of each method. Specif-

ically, for each value of Γ studied, the table indicates for what proportion of random instances

was each method able to recover a solution that was below either 0.0001%, 1%, and 10% of

optimality. One can easily see that optimality is significantly improved by using the LP-RC
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Table 1–4: Proportion of random instances (in 1000 trials) where methods achieved a set of
target levels with respect to suboptimality for different values of Γ. The worst suboptimality
gap attained by each method is also reported.

Method
Γ Interval BT-RC AARC LP-RC SDP-RC

1

≤0.0001 0.0% 14.1% 100% 100%
≤1 0.0% 26.1% 100% 100%
≤10 19.9% 88.7% 100% 100%

Maximum gap 56.7% 24.9% 0% 0%

3

≤0.0001 0.0% 0.4% 52.6% 56.6%
≤1 0.2% 6.2% 90.4% 98.1%
≤10 15.7% 91.1% 100.0% 100.0%

Maximum gap 54.6% 23.0% 4.6% 2.0%

5

≤0.0001 0.0% 0.2% 57.3% 63.5%
≤1 0.0% 9.3% 96.6% 99.70%
≤10 16.5% 98.6% 100.0% 100.0%

Maximum gap 52.2% 14.9% 2.6% 1.3%

or SDP-RC methods. In terms of worst suboptimality gap obtained over these instances,

one can remark an improvement of a factor of 4, 6, and 2 for migrating from the BT-RC

approximation to the AARC, and to the LP-RC and SDP-RC respectively when the budget

is set to 5.

In practice, it is often the case that robust optimization, and especially with the bud-

geted uncertainty set, is used in a context where uncertain parameters are considered to be

drawn from a distribution. e.g., the distribution of historical values. For this reason, we

next attempt to measure the inherent trade-off that can be observed between expected cost

and value at risk when using different levels of budgets for uncertainty. Namely, given a

problem instance, taking the shape of a set of parameters {ct, ht, pt, w̄t, ŵt}Tt=1, we assume

that each interval [w̄t − ŵt, w̄t + ŵt] describes the support of a uniform distribution for the

random demand at time period t and that demand is independent between each period. We

then compare the performance of the different robust solutions in terms of expected value

and the 90th percentile of the total cost achieved when different values of Γ are used.
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Figure 1–1 presents the average expected cost and average 90th percentile7 achieved over

1000 problem instances by the five types of approximately robust solutions given different

level of conservativeness expressed through Γ. We also present these same results in Figure 1–

2 where the averaged (expected cost, value at risk) pair is plotted for each level of the

budget, thus allowing us to identify the general structure of the Pareto frontier identified

using each approximate models. These figures clearly present how the solution obtained

from the nominal problem, when Γ = 0, can be improved both with respect to expected cost

and to value at risk by considering a robust alternative. Although this behavior might seem

surprising, it is in agreement with remark 3.2 of Delage et al. (2014) that claims that the mean

value problem, where one replaces every random variables with its expected value, actually

provides an optimistic solution (i.e., solution based on best-case distribution) to stochastic

programs when the objective function is convex with respect to uncertain parameters.

7 Specifically, each statistic is estimated using 100 samples of random demand vector and averaged over

1000 problem instances.
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Figure 1–1: Average expected cost and average 90th percentile cost (over 1000 problem

instances) achieved by robust solutions given different level of conservativeness. While Figure

(a) presents average expected cost and Figure (b) presents average 90th percentile for a

horizon of 10 periods, Figures (c) and (d) present the same statistics for a horizon of 100

periods.
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For this family of problems, it also appears that there is a threshold above which the

budget Γ leads to solutions that cannot be statistically motivated (i.e., dominated in terms

of both expected value and 90th percentile). This threshold appears to be respectively 1.5

and 3 in the case of problems with 10 periods and 100 periods. Based on Figures 1–1 (a)

and (b), it also appears that although there is a lot to gain from using a more sophisticated

model than BT-RC, the statistical performances of models that obtain the robust solution

with greater precision than AARC are highly comparable for a short horizon. The difference

between AARC and LP-RC is a bit more noticeable when the horizon is larger as portrayed

in Figure 1–1 (c) and (d) where we see that the LP-RC dominates AARC for nearly all values

of Γ. Note that in our experiments with T = 100, we omitted to include the performance

of SDP-RC since it was too computationally demanding and since the performance seemed

highly comparable to LP-RC.
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Figure 1–2: Average expected cost versus average 90th percentile achieved by the different

robust methods when adjusting the level of conservativeness Γ. Figure (a) presents the

achieved risk-return trade-offs for a 10 days horizon while (b) presents it for a 100 days

horizon. Note that the two figures focus their attention on a region of the plane where the

robust optimization methods are able to achieve their respective best risk-return trade-off.

All methods (and especially AARC, LP-RC, and SDP-RC) propose robust solutions that are

dominated by the deterministic solution when Γ becomes large.

1.8 Conclusion

In this article, we proposed a new scheme that can be used to generate conservative

approximations of robust optimization problems involving the sum of piecewise linear func-

tions and a polyhedral uncertainty set. This scheme exploits the fractional relaxation of a

MILP known to be equivalent to the adversarial problem and can be used to identify two

specific approximation models that respectively take the shape of a linear program and a

SDP. While the linear programming model is shown to be equivalent to an application of

AARC on a lifting of the parameter space, the SDP model clearly departs from previously

known approximation techniques. Our approximation scheme also allows us to exploit the
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concept of total unimodularity to establish new conditions under which our LP-RC (and im-

plicitly the AARC approach) model provides exact solutions. In particular, we identified the

first exact reformulations for a robust (and distributionally robust) multi-item newsvendor

problem with budgeted uncertainty set and a reformulation for robust multi-period inventory

problems that is exact whether the uncertainty region reduces to a L1-norm ball or to a box.

An extensive set of empirical results finally illustrates the quality of the solutions obtained

from different approximation schemes on randomly generated instances of the latter field of

application.

Although very relevant to the discussion of this paper, we leave open the question of

how to extend our approximation scheme to uncertainty set that are not polyhedral. In this

regard, it appears that one might be able to reach interesting conclusions in contexts where

the uncertainty set takes the shape of Z := {ζ | gj(ζ) ≤ bj ∀ j = 1, 2, . . . , J} using a set of

convex positive homogeneous gj(·) functions, i.e., functions for which gj(αζ) = αgj(ζ) for all

α ≥ 0. This is for example the case when using an ellipsoidal set where gj(ζ) := ‖ζ‖2. Under

these conditions, the MILP representation of the adversarial problem studied in Section 1.4

will reduce to problem (1.4) with (1.4b) and (1.4g) replaced with

gj(ζ
+ − ζ−) ≤ bj , ∀ j

gj(∆
+
i,k −∆−i,k) ≤ bjzi,k , ∀ i, j, k ,

This is because we can now exploit that for all i, j, and k, we have that

gj(∆
+
i,k −∆−i,k) = gj(zi,k(ζ

+ − ζ−)) = zi,kgj(ζ
+ − ζ−) ≤ bjzi,k .

Hence, the second constraint is necessarily redundant in the mixed integer program but will

lead to a tighter conservative approximation after applying fractional relaxation.
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1.9 Appendix

1.9.1 Proof of Proposition 1.4.3

We present this proof in four steps. We first introduce in Section 1.9.1.1 the notion of

integral polytope and total unimodularity as these concepts are fundamental components of

our proof. We then go through each of the three sets of conditions and present arguments

for our conclusions in Sections 1.9.1.2, 1.9.1.3, and 1.9.1.4.

1.9.1.1 Integral Property of Polytope

Let the matrix A ∈ Rm×n and vector b ∈ Rm define the convex polytope {z ∈ Rn|z ≥

0,Az = b}.

Definition A matrix A is called totally unimodular if the determinant of every submatrix

of A is equal to +1 or −1.

Lemma 1.9.1 (See Truemper (1978) as cited in Grady and Polimeni (2010), page 313) Let

the matrix A ∈ Rm×n and vector b ∈ Rm define the convex polytope {z ∈ Rn|z ≥ 0,Az = b},

all the vertices of this convex polytope are integered valued if A is totally unimodular and b

is integer valued.

Hoffman and Kruskal (1956) proposed the following sufficient conditions for a matrix to

be totally unimodular.

Lemma 1.9.2 Let A be an m × n matrix containing only elements in the set {−1, 0, 1},

then A is a totally unimodular matrix if both of the following conditions are satisfied:

1. Each column of A contains at most two nonzero elements.

2. The rows of A can be partitioned into two sets A1 and A2 such that two nonzero entries

in a column are in the same set of rows if they have different signs and in different

sets of rows if they have the same sign.

In what follows we will use the following result which we present right away as an

example of application of Lemma 1.9.2.
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Lemma 1.9.3 The polytope defined by

ζ+ ≥ 0 & ζ− ≥ 0 & ζ+
j + ζ−j ≤ 1 , ∀ j (1.21a)

1T (ζ+ + ζ−) = Γ (1.21b)

K∑
k=1

zi,k = 1 , ∀ i (1.21c)

K∑
k=1

∆+
i,k = ζ+

i &
K∑
k=1

∆−i,k = ζ−i , ∀ i (1.21d)

∆+
i,k ≥ 0 & ∆−i,k ≥ 0 & ∆+

i,k + ∆−i,k ≤ zi,k , ∀ i, k , (1.21e)

where ζ+ ∈ Rm, ζ− ∈ Rm, z ∈ Rm×K, ∆+ ∈ Rm×K and ∆− ∈ Rm×K, has integer vertices.

Proof First, let us realize that constraints (1.21c)-(1.21e) make constraint (1.21a) redun-

dant. Hence, constraints (1.21a) to (1.21e) are reduced to:

1T (ζ+ + ζ−) = Γ (1.22a)

K∑
k=1

zi,k = 1 , ∀ i (1.22b)

K∑
k=1

∆+
i,k − ζ

+
i = 0 &

K∑
k=1

∆−i,k − ζ
−
i = 0 , ∀ i (1.22c)

∆+
i,k + ∆−i,k + si,k − zi,k = 0 ∀i, k, (1.22d)

∆+
i,k ≥ 0 & ∆−i,k ≥ 0 & si,k ≥ 0 , zik ≥ 0 ∀ i, k , (1.22e)

where constraint (1.22d) is presented in standard form with some additional decision vari-

ables si,k ∈ R for all (i, k) pair.

In constraints (1.22a) to (1.22d), matrix of coefficients A, contains only elements in

the set {-1,0,1}. The columns of matrix A contains two nonzero elements, except for the

columns associated with si,k which only have one. In the columns associated to ∆+
ik and ∆−ik,

these coefficients are equal to 1 because of constraints (1.22c) and (1.22d) while in columns

associated with zik, each column hold a +1 and -1 coefficient based on constraints (1.22b)

and (1.22d). Moreover, in columns associated with ζ+
i and ζ−i , each column hold a +1 and
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-1 coefficient based on constraints (1.22a) and (1.22c). Condition 1 of Lemma 1.9.2 is easily

satisfied. As of satisfying Condition 2, it is satisfied if matrix A is partitioned so that A1

contains the coefficients associated with constraints (1.22a) and (1.22c), and A2 contains

entries of the other rows.

1.9.1.2 Condition 1

We start with the case of Γ = 1. First, one can show that constraints (1.4b) to (1.4i)

reduce to the following:

ζ+ ≥ 0 & ζ− ≥ 0

1T (ζ+ + ζ−) = 1

K∑
k=1

zi,k = 1 , ∀ i

K∑
k=1

∆+
i,k − ζ

+ = 0 &
K∑
k=1

∆−i,k − ζ
− = 0 , ∀ i

∆+
i,k ≥ 0 & ∆−i,k ≥ 0 , ∀ i, k

zik −
m∑
j=1

(∆+
i,k)j − (∆−i,k)j ≥ 0 , ∀ i, k .

Together, these constraints further imply that zi,k =
∑m

j=1(∆+
i,k)j + (∆−i,k)j since if it was

any larger, say by a positive amount ∆i,k > 0 then the sum of zi,k would lead to

K∑
k=1

zi,k =
K∑
k=1

(∑
j

(∆+
i,k)j + (∆−i,k)j

)
+ ∆i,k

=
m∑
j=1

(ζ+
j + ζ−j ) +

K∑
k=1

∆i,k = 1 +
K∑
k=1

∆i,k > 1 ,

which contradicts the fact that they should sum to one.

This allows us to say that there is always an optimal solution of the fractional relaxation

of problem (1.4) that lies at one of the vertices of the polytope described by

m∑
j=1

ζ+
j + ζ−j = 1

54



K∑
k=1

∆+
1,k − ζ

+ = 0

K∑
k=1

∆+
i,k −

K∑
k=1

∆+
i−1,k = 0 , ∀ 2 ≤ i ≤ N

K∑
k=1

∆−1,k − ζ
− = 0

K∑
k=1

∆−i,k −
K∑
k=1

∆−i−1,k = 0 , ∀ 2 ≤ i ≤ N

zi,k −
m∑
j=1

(∆+
i,k)j + (∆−i,k)j = 0, ∀i, k,

ζ+ ≥ 0 & ζ− ≥ 0

∆+
i,k ≥ 0 & ∆−i,k ≥ 0 , ∀ i, k .

One can easily show that the polytope defined by the first five constraints has integral vertices

by confirming that, in the representation Ay = b, where y stands for the vector formed by

appending all ζ+, ζ−, ∆+
i,k ∆+

i,k variables, the A matrix is totally unimodular. Indeed, total

unimodularity is directly verified on the A matrix capturing the first five constraints. For

each of these integer vertices, the projection zi,k :=
∑m

j=1(∆+
i,k)j + (∆−i,k)j makes zi,k also

an integer. This completes the proof that there always exists an optimal solution of the

fractional relaxation of problem (1.4) that is integer thus the optimal value of this relaxation

is exact.

1.9.1.3 Condition 2

For the second case, we will assume without loss of generality that m = N , i.e., that

there is one perturbation variable per convex sub-function in the objective function. We

then observe that the description of the polytope reduces to the following set of constraints.

ζ+ ≥ 0 & ζ− ≥ 0 & ζ+
j + ζ−j ≤ 1 , ∀ j

K∑
k=1

zi,k = 1 , ∀ i
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K∑
k=1

∆+
i,k = ζ+ &

K∑
k=1

∆−i,k = ζ− , ∀ i

∆+
i,k ≥ 0 & ∆−i,k ≥ 0 & ∆+

i,k + ∆−i,k ≤ zi,k , ∀ i, k .

Since an integer solution is feasible with respect to these constraints, we know that the

fractional relaxation must necessarily achieve a higher value than problem (1.3). Yet, we

now show that this relaxed problem is also upper bounded by problem (1.3) when ci,k has

the given structure.

We get the upper bounding problem by first relaxing the feasible set to the following:

ζ+ ≥ 0 & ζ− ≥ 0 & ζ+
j + ζ−j ≤ 1 , ∀ j

K∑
k=1

zi,k = 1 , ∀ i

K∑
k=1

∆i,k = (ζ+ − ζ−) , ∀ i

‖∆i,k‖∞ ≤ zi,k , ∀ i, k .

For any fixed ζ+ and ζ−, the maximum over ∆ and z is upper bounded by its dual problem.

Specifically, the optimal value of the problem

maximize
∆,z

N∑
i=1

K∑
k=1

cTi,k∆i,k + di,kzi,k (1.23a)

subject to
K∑
k=1

zi,k = 1 , ∀ i (1.23b)

K∑
k=1

∆i,k = ζ+ − ζ− , ∀ i (1.23c)

‖∆i,k‖∞ ≤ zi,k , ∀ i, k (1.23d)

is upper bounded by the optimal value of

minimize
γ,λ

N∑
i=1

γi + λTi (ζ+ − ζ−)

subject to γi ≥ di,k + ‖ci,k − λi‖1 , ∀ i, k ,
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where γ ∈ RN and λ ∈ RN×m are the dual variables for constraint (1.23b) and (1.23c)

respectively.

Based on the observation that reversing the order of maxζ and minγ,λ can only lead to

a further upper bound, we are left with

minimize
γ,λ

max
ζ:‖ζ‖∞≤1

N∑
i=1

γi + λTi ζ (1.24a)

subject to γi + λTi ζ ≥ di,k + cTi,kζ , ∀ ‖ζ‖∞ ≤ 1 , ∀ i, k . (1.24b)

Following some recent results presented in Bertsimas et al. (2010), this last optimization

model can be shown to be equivalent to problem (1.3) when ci,k has the given structure.

Specifically, given the structure of ci,k, problem (1.3) can be seen as evaluating the worst-case

cost of linear dynamic system with bounded independent perturbations under a fixed policy

maximize
ζ1,...,ζN ,x1,...,xN

N∑
t=1

max
k
αt,kxt + dt,k

subject to x1 = β1ζ1

xt = xt−1 + βtζt , ∀ 2 ≤ t ≤ N

−1 ≤ ζt ≤ 1 , ∀ t .

In Theorem 3.1 of Bertsimas et al. (2010), the authors proved that an optimized affine

running cost can be used instead of a convex one to measure exactly the total cost incurred

by such a policy. Since problem (1.24) optimizes over all upper bounding affine running cost,

it will necessarily achieve as optimal value the optimal value of problem (1.3). Hence, the

fractional relaxation of problem (1.4) is tight.

1.9.1.4 Condition 3

For the third case, we can first realize that the objective function reduces to

N∑
i=1

K∑
k=1

αi,k((∆
+
i,k)i − (∆−i,k)i) + di,kzi,k .
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Hence, it is invariant to our choice for the variables (∆+
i,k)j and (∆+

i,k)j for all j 6= i. We

are therefore interested in studying the vertices of the projection of the polytope defined by

constraints (1.4b) to (1.4i) over the space spanned by the variables (∆+
i,k)i and (∆+

i,k)i, zi,k,

ζ+, and ζ−.

When we remove from constraints (1.4b) to (1.4i), any constraint that involves (∆+
i,k)j

with j 6= i, we get the following set of constraints.

ζ+ ≥ 0 & ζ− ≥ 0 & ζ+
j + ζ−j ≤ 1 , ∀ j

1T (ζ+ + ζ−) = Γ

K∑
k=1

zi,k = 1 , ∀ i

K∑
k=1

(∆+
i,k)i = ζ+

i &
K∑
k=1

(∆−i,k)i = ζ−i , ∀ i

(∆+
i,k)i ≥ 0 & (∆−i,k)i ≥ 0 & (∆+

i,k)i + (∆−i,k)i ≤ zi,k , ∀ i, k .

By construction, the polytope defined by these constraints must include the projection that

we seek to define. An important property of this polytope is that it has integer vertices

when Γ is an integer (see Lemma 1.9.3 above). Yet, when Γ is integer, it is also a subset

of the projection that we are interested in. This can be confirmed by verifying that for any

feasible solution of these constraints (ζ+, ζ−, (∆+
i,k)i, (∆

−
i,k)i, zi,k) one can create a solution

(ζ+, ζ−,∆+
i,k,∆

−
i,k, zi,k) with (∆+

i,k)j := zi,k(
∑K

k′=1(∆+
j,k′)j) and (∆−i,k)j := zi,k(

∑K
k′=1(∆−j,k′)j)

that is feasible according to constraints (1.4b) to (1.4i). Specifically, we have for all i =

1, . . . , N and j = 1, . . . ,m:

K∑
k=1

(∆+
i,k)j =

K∑
k=1

zi,k

(
K∑
k′=1

(∆+
j,k′)j

)
=

K∑
k′=1

(∆+
j,k′)j = ζ+

j

(∆+
i,k)j + (∆−i,k)j = zi,k

(
K∑
k′=1

(∆+
j,k′)j + (∆−j,k′)j

)
≤ zi,k .
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For constraints (1.4i), we verify the two cases. If for some (i′, k′), zi′,k′ = 0, then

m∑
j=1

(∆+
i′,k′)j + (∆−i′,k′)j = 0 ≤ 0 .

Otherwise xi′,k′ = 1 and, since the sum of zi′,k over the k’s is equal to one, it must be that∑K
k=1(∆+

i′,k)i′ = (∆+
i′,k′)i′ = ζ+

i′ and similarly for (∆−i′,k′)i′ = ζ−i′ . Hence, we have that

m∑
j=1

(∆+
i′,k′)j + (∆−i′,k′)j = zi′,k′

m∑
j=1

ζ+
j + ζ−j = Γzi′,k′ .

We are left to conclude that since the projected polytope has integer vertices, it must be

that an optimal solution of problem (1.4) has integer vertices at least for the variables

(ζ+, ζ−, (∆+
i,k)i, (∆

−
i,k)i, zi,k). Completing this part of the solution with the suggestion above

will give an optimal solution of the problem that is completely integer.

1.9.2 Examples of Sums of Piecewise Linear Functions

We briefly summarize two additional examples of problems where sums of piecewise

linear functions play an important role and for which robust optimization has the potential

of identifying solutions that are immunized against model misspecification.

Example Multi-attribute utility theory: Consider a multi-objective linear program

min
x∈X

{
cTi x+ di

}N
i=1

,

where x ∈ Rn, and for each i the affine mapping cTi x + di computes an attribute that

should be minimized: e.g., total cost, delivery time, amount of carbon emitted, etc. Multi-

attribute utility theory suggests that if the decision maker’s preference relation satisfies

additive independence then it can be represented by an additive utility function: i.e that he

should solve a model of the type

max
x∈X

N∑
i=1

ui(c
T
i x+ di) ,

where ui(·) is a decreasing function, typically concave, and possibly piecewise linear. One

might additionally consider that the value achieved for each objective is linearly influenced
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by a set of parameters ζ and wonder what would be a decision that maximizes the worst-case

multi-attribute utility. Given that each ui(·) is piecewise linear concave, this question reduces

to solving problem (1.1) where hi(x, ζ) := −ui(ci(ζ)Tx + di(ζ)) = −mink αi,k(ci(ζ)Tx +

di(ζ)) + βi,k, with ci and di defined as affine mappings of ζ.

Example Support vector machine: One of the most popular method for classification is

known as the support vector machine, whereas one seeks a hyperplane that can separate

as well as possible a set of instances {(φi, κi)}Ni=1, where each φi is a vector of features in

Rn and κi ∈ {−1, 1} is a label. In the soft margin method, this hyperplane is obtained by

solving the following model:

min
x,x0

‖x‖2 + x2
0 + α

N∑
i=1

max{ 0 , 1− κi(φTi x− x0) } ,

where x ∈ Rn and x0 ∈ R. Considering that the data points φi that are obtained could

be the result of noisy measurements, it might be more appropriate to search for a robust

hyperplane in the sense that it is optimal with respect to

min
x,x0

‖x‖2 + x2
0 + max

ζ∈Z
α

N∑
i=1

max{ 0 , 1− κi(φi(ζ)Tx− x0) } ,

where the second term of the objective is a robust optimization term of the same form as in

problem (1.1).

1.9.3 NP-hardness of Problem (1.2)

Proposition 1.9.4 Evaluating the optimal value of problem (1.2) is NP-hard even when Z

is polyhedral.

Proof This result is obtained by showing that the NP-complete 3-SAT problem can be

reduced to verifying whether

max
ζ∈Z

N∑
i=1

max
k
cTi,kζ + di,k ≥ γ ,

is true or not.
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3-SAT problem: Let W be a collection of disjunctive clauses W = {w1, w2, ..., wN} on

a finite set of variables V = {v1, v2, ..., vm} such that |wi| = 3 ∀i ∈ {1, ..., N}. Let each clause

be of the form w = vi ∨ vj ∨ v̄k, where v̄ is the negation of v. Is there a truth assignment for

V that satisfies all the clauses in W?

Given an instance of the 3-SAT problem, we can attempt to verify whether the optimal

value of the following problem is larger or equal to N

max
ζ

N∑
i=1

hi(ζ) (1.25a)

subject to 0 ≤ ζ ≤ 1 , (1.25b)

where ζ ∈ Rn, and where hi(ζ) := max{ζj1 ; ζj2 ; 1−ζj3} if the i-th clause is wi = vj1∨vj2∨ v̄j3 .

It is straightforward to confirm that {ζ ∈ Rn | 0 ≤ ζ ≤ 1} is a polyhedron and that each

hi(ζ) can be expressed as hi(ζ) := maxk c
T
i,kζ + di,k. More importantly, we have that the

answer to the 3-SAT problem is positive if and only if the optimal value of problem (1.25)

achieves an optimal value greater or equal to N .

1.9.4 Proof of Proposition 1.4.5

[Proposition 1.4.5.] Given a robust optimization problem of the form

minimize
x∈X

max
ζ∈U∩I

h(x, ζ) ,

where X ⊂ Rn and U ⊂ Rm are both bounded convex sets, I = {ζ ∈ Rm | ζi is integer ∀i ≤ q}

for some q ≤ m, hence imposing that a set of terms of ζ be integer valued, and h(x, ζ) is real

valued, convex in x and linear in ζ. Let x̂ be the solution of the conservative approximation

minimize
x∈X

max
ζ∈U

h(x, ζ) .

If there exists a ζ̂ ∈ arg maxζ∈U minx∈X h(x, ζ) that is a member of the convex hull of U ∩I,

denoted as P(U ∩I), then x̂ is optimal according to the original robust optimization problem.
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Proof Given that the stated conditions on X , U , and h(x, ζ) are satisfied, by Sion’s minimax

theorem we have that

min
x∈X

max
ζ∈U

h(x, ζ) = max
ζ∈U

min
x∈X

h(x, ζ) .

and thus that

max
ζ∈U

h(x̂, ζ) = min
x∈X

h(x, ζ̂) .

In fact, Sion’s minimax theorem further implies that

min
x∈X

h(x, ζ̂) ≤ h(x̂, ζ̂) ≤ max
ζ∈U

h(x̂, ζ) = min
x∈X

h(x, ζ̂)

so that the saddle point property is satisfied:

min
x∈X

h(x, ζ̂) = h(x̂, ζ̂) = max
ζ∈U

h(x̂, ζ) .

Now considering that ζ̂ is in the convex hull of U ∩ I, which we refer to as P(U ∩ I),

we can show that x̂ achieves the optimal value in the original robust optimization problem:

min
x∈X

max
ζ∈U∩I

h(x, ζ) = min
x∈X

max
ζ∈P(U∩I)

h(x, ζ) ≥ min
x∈X

h(x, ζ̂)

= h(x̂, ζ̂) = max
ζ∈U

h(x̂, ζ)

≥ max
ζ∈U∩I

h(x̂, ζ) ,

where the first equality comes from the fact that the maximum of a linear function over a

set of points is achieved on the convex hull of those points.

1.9.5 Proof of Proposition 1.4.9

[Proposition 1.4.9.] The optimal value of the fractional relaxation of problem (1.7) is equal

to the optimal value of the affinely adjustable robust counterpart of

minimize
{vi}Ni=1,w

+,w−,

{Q+
i ,V

+
i ,q

+
i ,S

+
i ,p

+
i ,r

+
i }

N
i=1

{Q−i ,V
−
i ,q
−
i ,S

−
i ,p
−
i ,r
−
i }

N
i=1

max(ζ+,ζ−)∈Z′ (w+)T ζ+ + (w−)T ζ− +
∑N
i=1 2p+

i

T
ζ+ + 2p−i

T
ζ−

+ maxk{cTi,k(ζ+ − ζ−) + di,k + 2(V +
i )k,:ζ

+ + 2(V −i )k,:ζ
− + (vi)k}

(1.26a)

subject to (vi)k = (Q+
i +Q−i )k,k + 2(q+

i + q−i )k + r+
i + r−i , ∀ i, k (1.26b)
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
Q+
i V +

i q+
i

V +
i

T
S+
i p+

i

q+
i

T
p+
i

T
r+
i

 � 0,


Q−i V −i q−i

V −i
T

S−i p−i

q−i
T

p−i
T

r−i

 � 0 , ∀ i (1.26c)

N∑
i=1

S+
i ≤ diag(w+) ,

N∑
i=1

S−i ≤ diag(w−) , ∀ i (1.26d)

w+ ≥ 0 w− ≥ 0 , (1.26e)

where w+ ∈ Rm, w− ∈ Rm, while for each i, vi ∈ RK, Q+
i ∈ RK×K, Q−i ∈ RK×K,

V +
i ∈ RK×m, V −i ∈ RK×m, q+

i ∈ RK, q−i ∈ RK, S+
i ∈ Rm×m, S−i ∈ Rm×m, p+

i ∈ Rm,

p−i ∈ Rm, r+
i ∈ R, r−i ∈ R, and finally where

Z ′ =


(ζ+, ζ−)

∣∣∣∣∣∣∣∣∣∣∣∣∣

ζ+ ≥ 0 , ζ− ≥ 0

ζ+
j + ζ−j ≤ 1 ∀ j∑
j ζ

+
j + ζ−j = Γ

A(ζ+ − ζ−) ≤ b


.

Proof We start by employing affine decision rules to produce a conservative approximation

of problem (1.26). This leads to the following model.

minimize
{vi,γi,λ

+
i ,λ
−
i }

N
i=1,w

+,w−,

{Q+
i ,V

+
i ,q

+
i ,S

+
i ,p

+
i ,r

+
i }

N
i=1

{Q−i ,V
−
i ,q
−
i ,S

−
i ,p
−
i ,r
−
i }

N
i=1

max(ζ+,ζ−)∈Z′ (w+)T ζ+ + (w−)T ζ−

+
∑N
i=1 2p+

i

T
ζ+ + 2p−i

T
ζ− + γi + λ+

i

T
ζ+ + λ−i

T
ζ−

(1.27a)

subject to γi + λ+
i

T
ζ+ + λ−i

T
ζ− ≥ cTi,k(ζ+ − ζ−) + di,k

+2(V +
i )k,:ζ

+ + 2(V −i )k,:ζ
− + (vi)k ∀ i, k, (ζ+, ζ−) ∈ Z ′ (1.27b)

(vi)k = (Q+
i +Q−i )k,k + 2(q+

i + q−i )k + r+
i + r−i , ∀ i, k (1.27c)

Q+
i V +

i q+
i

V +
i

T
S+
i p+

i

q+
i

T
p+
i

T
r+
i

 � 0,


Q−i V −i q−i

V −i
T

S−i p−i

q−i
T

p−i
T

r−i

 � 0 , ∀ i (1.27d)

N∑
i=1

S+
i ≤ diag(w+) ,

N∑
i=1

S−i ≤ diag(w−) , ∀ i (1.27e)

w+ ≥ 0 w− ≥ 0 . (1.27f)
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Next, the variables γi can be replaced with γi := γ′i + r+
i + r−i , while vi can be replaced

according to constraint (1.27c), in order to bring the terms r+
i and r−i in the objective

function to obtain

minimize
{γ′i,λ

+
i ,λ
−
i }

N
i=1,w

+,w−,

{Q+
i ,V

+
i ,q

+
i ,S

+
i ,p

+
i ,r

+
i }

N
i=1

{Q−i ,V
−
i ,q
−
i ,S

−
i ,p
−
i ,r
−
i }

N
i=1

max(ζ+,ζ−)∈Z′ (w+)T ζ+ + (w−)T ζ− +
∑N
i=1 r

+
i + r−i

+
∑N
i=1 2p+

i

T
ζ+ + 2p−i

T
ζ− + γ′i + λ+

i

T
ζ+ + λ−i

T
ζ−

subject to γ′i + λ+
i

T
ζ+ + λ−i

T
ζ− ≥ cTi,k(ζ+ − ζ−) + di,k + 2(V +

i )k,:ζ
+ + 2(V −i )k,:ζ

−

+(Q+
i +Q−i )k,k + 2(q+

i + q−i )k ∀ i, k, (ζ+, ζ−) ∈ Z ′
Q+
i V +

i q+
i

V +
i

T
S+
i p+

i

q+
i

T
p+
i

T
r+
i

 � 0,


Q−i V −i q−i

V −i
T

S−i p−i

q−i
T

p−i
T

r−i

 � 0 , ∀ i

N∑
i=1

S+
i ≤ diag(w+) ,

N∑
i=1

S−i ≤ diag(w−) , ∀ i

w+ ≥ 0 w− ≥ 0 .

We follow the derivation by applying Sion’s minimax theorem to invert the order of the

minimization and the maximization. Furthermore, since Z ′ is bounded and non-empty,

constraint (1.27b) can be replaced using duality theory. This finally leads to the following

model

max
(ζ+,ζ−)∈Z′

min
{γ′i,λ

+
i ,λ
−
i ,ψi}

N
i=1,w

+,w−,

{Q+
i ,V

+
i ,q

+
i ,S

+
i ,p

+
i ,r

+
i }

N
i=1

{Q−i ,V
−
i ,q
−
i ,S

−
i ,p
−
i ,r
−
i }

N
i=1

(w+)T ζ+ + (w−)T ζ− +
∑N
i=1 r

+
i + r−i

+
∑N
i=1 2p+

i

T
ζ+ + 2p−i

T
ζ− + γ′i + λ+

i

T
ζ+ + λ−i

T
ζ−

(1.28a)

subject to di,k − γ′i + b̄
T
ψik + (Q+

i +Q−i )k,k + 2(q+
i + q−i )k ≥ 0,∀ i, k (1.28b)

ci,k − λ+
i − A+Tψik + 2(V +

i )k,:
T

= 0∀ i, k (1.28c)

−ci,k − λ−i − A−Tψik + 2(V −i )k,:
T

= 0∀ i, k (1.28d)
Q+
i V +

i q+
i

V +
i

T
S+
i p+

i

q+
i

T
p+
i

T
r+
i

 � 0,


Q−i V −i q−i

V −i
T

S−i p−i

q−i
T

p−i
T

r−i

 � 0 , ∀ i(1.28e)

N∑
i=1

S+
i ≤ diag(w+) , ∀ i (1.28f)

N∑
i=1

S−i ≤ diag(w−) , ∀ i (1.28g)
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w+ ≥ 0 w− ≥ 0 , ψik ≥ 0 , ∀ i, k , (1.28h)

where ψik ∈ R(p+2+3m) is the dual variable associated to the constraint A+ζ+ + A−ζ− ≤ b̄

with

A+ :=



A

1T

−1T

I

−I

0


A− :=



−A

1T

−1T

I

0

−I


b̄ :=



b

Γ

−Γ

1

0

0


.

By applying duality theory one final time to replace the inner minimization problem we

obtain the fractional relaxation of problem (1.7). In particular we have zi,k, ∆+
i , ∆−i ,

Λ+, and Λ−, as dual variable respectively for constraints (1.28b), (1.28c), (1.28d), (1.28f),

and (1.28g). This completes the proof.

1.9.6 Proof of Corollary 1.5.1

[Corollary 1.5.1.] Given that Γ is a strictly positive integer, then the robust multi-item

newsvendor problem (1.15) is equivalent to the following linear program:

minimize
x∈X ,ν,γ,ψ

Γν + 1Tγ (1.29a)

subject to γi ≥ ψi,k + (αxi,kxi + αwi,kw̄i + βi,k) ∀i, ∀k (1.29b)

ψi,k + ν ≥ αwi,kŵi ∀i, ∀k (1.29c)

ψi,k + ν ≥ −αwi,kŵi ∀i, ∀k (1.29d)

ψi,k ≥ 0 , ∀i, ∀k , (1.29e)

where ν ∈ R, γ ∈ Rm, and ψi,k ∈ R.
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Proof In the case of the robust newsvendor problem, the fractional relaxation of the adver-

sarial problem (1.4) takes the form

maximize
z,ζ+,ζ−,∆+,∆−

m∑
i=1

K∑
k=1

αwi,kŵi((∆
+
i,k)i − (∆−i,k)i) + (αxi,kxi + αwi,kw̄i + βi,k)zi,k

subject to ζ+ ≥ 0 & ζ− ≥ 0 & ζ+
j + ζ−j ≤ 1 , ∀ j

1T (ζ+ + ζ−) = Γ
K∑
k=1

zi,k = 1 , ∀ i

K∑
k=1

∆+
i,k = ζ+ &

K∑
k=1

∆−i,k = ζ− , ∀ i

∆+
i,k ≥ 0 & ∆−i,k ≥ 0 & ∆+

i,k + ∆−i,k ≤ zi,k ∀i, ∀k∑
j

(∆+
i,k)j + (∆−i,k)j = Γzi,k ∀i, ∀k .

Since for i 6= j, the variables (∆+
i,k)j and (∆−i,k)j do not affect the objective value of the prob-

lem, we can use the argument presented in Section 1.9.1.4 to justify the following equivalent

reformulation for this optimization problem.

maximize
z,ζ+,ζ−,∆+,∆−

m∑
i=1

K∑
k=1

αwi,kŵi(∆
+
i,k −∆−i,k) + (αxi,kxi + αwi,kw̄i + βi,k)zi,k

subject to ζ+ ≥ 0 & ζ− ≥ 0 & ζ+
j + ζ−j ≤ 1 , ∀ j

1T (ζ+ + ζ−) = Γ
K∑
k=1

zi,k = 1 , ∀ i

K∑
k=1

∆+
i,k = ζ+

i &
K∑
k=1

∆−i,k = ζ−i , ∀ i

∆+
i,k ≥ 0 & ∆−i,k ≥ 0 & ∆+

i,k + ∆−i,k ≤ zi,k ∀i, ∀k ,

where ∆+
i,k ∈ R is now short for (∆+

i,k)i and similarly for ∆−i,k.

After replacing ζ+
i and ζ−i using the third equality constraint and dropping ζ+

i + ζ−i ≤ 1

which is redundant since
∑K

k=1 ∆+
i,k + ∆−i,k ≤

∑K
k=1 zi,k ≤ 1, we get the following reduced
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form:

maximize
z,ζ+,ζ−,∆+,∆−

m∑
i=1

K∑
k=1

αwi,kŵi(∆
+
i,k −∆−i,k) + (αxi,kxi + αwi,kw̄i + βi,k)zi,k

m∑
i=1

K∑
k=1

∆+
i,k + ∆−i,k = Γ

K∑
k=1

zi,k = 1 , ∀ i

∆+
i,k ≥ 0 & ∆−i,k ≥ 0 & ∆+

i,k + ∆−i,k ≤ zi,k ∀i, ∀k .

We are left with deriving the dual of this reduced form for the relaxed adversarial

problem and re-introducing it back in the outer problem. Hence, we obtain

minimize
x∈X ,ν,γ,ψ

Γν + 1Tγ

subject to γi ≥ ψi,k + (αxi,kxi + αwi,kw̄i + βi,k) ∀i, ∀k

ψi,k + ν ≥ αwi,kŵi ∀i, ∀k

ψi,k + ν ≥ −αwi,kŵi ∀i, ∀k

ψi,k ≥ 0 , ∀i, ∀k .

This optimization model can be simplified to problem (1.29). Furthermore, since the

robust multi-item newsvendor problem presented in (1.15) satisfies Condition 3, we are

guaranteed that this robust counterpart is exact by Corollary 1.4.4.

1.9.7 Yet Another Exact Reformulation for a Distributionally Robust Multi-
item Newsvendor Problem

Proposition 1.9.5 Given a vector p ∈ Rm such that 0 ≤ p1 ≤ p2 ≤ · · · ≤ pm = 1, the

distributionally robust optimization model

minimize
x∈X

max
F∈D(p)

EF

[
m∑
i=1

max
k
αxi,kxi + αwi,k(w̄i + ŵiζi) + βi,k

]
, (1.30)

where

D(p) = {F ∈M|PF (ζ ∈ Z(i)) ≥ pi ∀i = 1, . . . ,m} ,
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is equivalent to the following linear program

minimize
x∈X ,t,λ,ν,γ,ψ

t−
m∑
i=1

piλi (1.31a)

subject to t−
m∑
i=j

λi ≥ jνj +
m∑
i=1

γi,j ∀j = 1, . . . ,m (1.31b)

γi,j ≥ ψi,k,j + αxi,kxi + αwi,kw̄i + βi,k ∀i, ∀k, ∀j = 1, . . . ,m (1.31c)

ψi,k,j + νj ≥ αwi,kŵi ∀i, ∀k, ∀j = 1, . . . ,m (1.31d)

ψi,k,j + νj ≥ −αwi,kŵi ∀i, ∀k, ∀j = 1, . . . ,m (1.31e)

ψi,k,j ≥ 0 , ∀i, ∀k, ∀j = 1, . . . ,m (1.31f)

λ ≥ 0 . (1.31g)

where λ ∈ Rm, νj ∈ R, γi,j ∈ R, and ψi,k,j ∈ R.

Proof Following similar steps as in the proof of Theorem 1 in Wiesemann et al. (2014),

one can apply duality theory for semi-infinite linear programs to the inner problem of the

distributionally robust problem (1.30) and obtain the following reformulation:

minimize
x∈X ,λ

t−
m−1∑
i=1

piλi (1.32a)

subject to λ ≥ 0 (1.32b)

t ≥

(
m∑
i=1

max
k
αxi,kxi + αwi,k(w̄i + ŵiζi) + βi,k

)
+

m−1∑
i=1

λi1[ζ∈Z(i)] ∀ζ ∈ Z(m) ,(1.32c)

where 1[ζ∈Z(i)] is the support function for the set Z(i), i.e.

1[ζ∈Z(i)] :=

 1 if ζ ∈ Z(i)

0 otherwise.

Yet, since the sets in {Z(i)}mi=1 are nested such that Z(i) ⊂ Z(i+ 1) for all i, one can argue

that constraint (1.32c) is equivalent to

t ≥

(
m∑
i=1

max
k

αxi,kxi + αwi,k(w̄i + ŵiζi) + βi,k

)
+
m−1∑
i=j

λi ∀ζ ∈ Z(j) \ Z(j − 1), ∀j = 1, . . . ,m , (1.33)
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where for simplicity of exposure it is assumed that Z(1) \ Z(0) stands for Z(1). Now since

for each j, it is clear that satisfying the two conditions

t ≥

(
m∑
i=1

max
k
αxi,kxi + αwi,k(w̄i + ŵiζi) + βi,k

)
+

m−1∑
i=j

λi ∀ζ ∈ Z(j)

t ≥

(
m∑
i=1

max
k
αxi,kxi + αwi,k(w̄i + ŵiζi) + βi,k

)
+

m−1∑
i=j+1

λi ∀ζ ∈ Z(j + 1) \ Z(j)

implies that

t ≥

(
m∑
i=1

max
k
αxi,kxi + αwi,k(w̄i + ŵiζi) + βi,k

)
+

m−1∑
i=j+1

λi ∀ζ ∈ Z(j + 1)

is also satisfied due to the fact that λj ≥ 0, we can therefore by induction starting from

j = 1 to j = m − 1 demonstrate that any ζ that is feasible according to constraint (1.32c)

is also feasible according to

t ≥

(
m∑
i=1

max
k

αxi,kxi + αwi,k(w̄i + ŵiζi) + βi,k

)
+

m−1∑
i=j

λi ∀ζ ∈ Z(j), ∀j = 1, . . . ,m . (1.34)

Furthermore, the reverse is also true given that the list of constraints in (1.34) includes the

list in (1.33) as a subset. Hence, constraint (1.34) is equivalent to constraint (1.32c). Finally,

after observing that each of the robust constraints indexed by j in (1.34) is an instance of

the robust objective presented in Corollary 1.5.1, one can employ the reformulation that is

proposed in the corollary to obtain problem (1.31).
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Chapter 2
The Value of Flexibility in Robust Location-Transportation

Problems1

Amir Ardestani-Jaafari, Erick Delage

Department of Decision Sciences, HEC Montréal, Montréal, Quebec, H3T 2A7, Canada
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Abstract

This article studies a capacitated fixed-charge multi-period location-transportation problem

in which, while the location and capacity of each facility must be determined immediately, the

determination of the final production and distribution of products can be delayed until actual

orders are received in each period. In contexts where little is known about future demand, robust

optimization, namely using a budgeted uncertainty set, becomes a natural method for identifying

meaningful decisions. Unfortunately, it is well known that these types of multi-period robust

decision problems are computationally intractable. To overcome this difficulty, we propose a set of

tractable conservative approximations for the problem that each exploits to a different extent the

idea of reducing the flexibility of the delayed decisions. While all of these approximation models

outperform previous approximation models that have been proposed for this problem, each also has

the potential to reach a different level of compromise between efficiency of resolution and quality of

the solution. A row generation algorithm is also presented in order to address problem instances of

realistic size. We also demonstrate that full flexibility is often unnecessary to reach nearly, or even

exact, optimal robust locations and capacities for the facilities. Finally, we illustrate our findings

1 This article is accepted for publication by “Transportation Science”.



with an extensive numerical study where we evaluate the effect of the amount of uncertainty on

the performance and structure of each approximate solution that can be obtained.

Keywords

transportation, facility location, robust optimization, flexibility, conservative approximation,

demand uncertainty.

2.1 Introduction

Transportation planning can be decomposed into three different levels (Crainic and La-

porte 1997): strategic transportation planning, tactical transportation planning, and opera-

tional transportation planning. At the highest level of management, an important decision

is determining the geographical locations of factories, suppliers and warehouses. Determina-

tion of facility location, such as hub locations, supplier locations, air freight hub locations,

railway station locations, etc., can significantly impact the design of the strategic networks.

Recognizing this fact, researchers (e.g., Christensen et al. (2013) and Abouee-Mehrizi et al.

(2014)) have been developing integrated models in order to have better control on the inter-

actions between facility location decisions and transportation strategies.

The traditional way of describing the location-transportation problem (LTP) has been

to assume a deterministic environment. In a deterministic setting, i.e., when there is no

uncertainty about problem data, a multi-period capacitated fixed-charge LTP, with L facility

locations, N customer locations, and T periods, can take the form of the following mixed-

integer linear program (MILP):

(Deterministic) maximize
I,Z,Y ,P

T∑
t=1

L∑
i=1

N∑
j=1

(η − dij)Y t
ij − cTP t − (c0

TZ + fTI) (2.1a)

subject to
∑
i

Y t
ij ≤ ζtj , ∀ j ∈ {1, 2, . . . , N} , ∀ t ∈ {1, 2, . . . , T} (2.1b)∑

j

Y t
ij ≤ P t

i , ∀ i ∈ {1, 2, . . . , L} , ∀ t ∈ {1, 2, . . . , T} (2.1c)

P t ≤ Z , ∀ t ∈ {1, 2, . . . , T} (2.1d)

Y t ≥ 0 , ∀ t ∈ {1, 2, . . . , T} (2.1e)
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Z ≤MI , I ∈ {0, 1}L , (2.1f)

where Z ∈ RL, Y ∈ RL×N×T ,P ∈ RL×T , and with M as a constant chosen large enough.

This MILP integrates the optimization of both “strategic” and “operational” decisions. At

the strategic level, it includes for each candidate location i = 1, 2, . . . , L, the binary decision

Ii denoting whether a facility should be opened or not, and the continuous decision Zi

denoting the production capacity of the facility. Once these are decided upon, operational

decisions over a horizon of t = 1, 2, . . . , T include for each period t, P t
i denoting how many

goods are produced at each i-th facility and Y t
ij denoting how many goods are shipped from

facility i to customers at location j. The demand during period t for location j = 1, 2, . . . , N

is characterized by ζtj . The total profit generated by the company is computed on the basis

of the following: sales revenue (with η > 0 for the unit price of goods); construction costs

(calculated for a given facility i, with a size Zi, a fixed cost Ki, and variable costs CiZi);

production costs ci for each facility i; and, finally, transportation costs, with dij being the

unit cost for any shipment from location i to j. Note that each parameter η, dij, and ci

could alternatively be considered time dependant.2 3

In model (2.1), all parameters are considered to be known exactly at the time of making

the strategic decision. In practice, however, some parameters, such as the exact size of

each demand ζtj ,
4 are unknown at the time the facilities are built. In recent years, studies

made in a number of field of applications (Bertsimas et al. (2011a), Gabrel et al. (2014b))

2 Note that in this chapter we follow the notation of Baron et al. (2011). In particular we denote decision
variables with upper case letters and parameters with lower case letters. We also distinguish vectors and
matrices from scalar values by using a bold font. The distinction between vectors and matrices should be
clear based on the context.

3 It is worth noting that the location-transportation problem that is studied in this article does not
consider the possibility of holding inventory from one period to the other. Although it can be considered as
a limitation of the model, as mentioned in Baron et al. (2011) this model is perfectly adequate in contexts
that involve a make-to order firm as well as in a high volume just-in-time production environment.

4 While sources of uncertainty other than demand might affect the performance of facility location deci-

sions and it might be interesting to account for them, in this paper, we focus on demand uncertainty as we
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have demonstrated the effectiveness of robust optimization (RO) for handling uncertainty,

especially in cases where there is no valid argument to justify the choice of a distribution

model. A näıve application of robust optimization to LTP under demand uncertainty might

lead to the following robust counterpart (RC):

(RC) maximize
I,Z,Y ,P

∑
t

∑
i

∑
j

(η − dij)Y t
ij − cTP t − (c0

TZ + fTI) (2.2a)

subject to
∑
i

Y t
ij ≤ ζtj , ∀ ζ ∈ D, ∀ j , ∀ t (2.2b)

(2.1c)− (2.1f) ,

where D is the uncertainty set for the vector composed of all the demands (ζ1, ζ2, . . . , ζT ).

Although it can be shown that the RC model can be reformulated as a MILP if D

is polyhedral, the solution it provides will often appear overly conservative,i.e., it might

suggest opening only a few facilities (if any at all) with very limited capacity. This is actually

due to the fact that the RC model completely disregards how operational decisions, namely,

the size of production and deliveries, are delayed and can exploit information that becomes

available about the demand. This motivates the use of the following multi-period robust

location-transportation problem (MRLTP) model:

(MRLTP) maximize
I,Z

min
ζ∈D

∑
t

ht(I,Z, ζ
t)− (c0

TZ + fTI) (2.3a)

subject to Z ≤MI , I ∈ {0, 1}L , (2.3b)

expect it to have the most impact on the quality of the decision that needs to be made. See for instance De-

lage et al. (2014), where the authors argue that simply using the expected values of parameters that appear

in the objective function already generates solutions that can be considered robust for such multi-period

problems.
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where ht(I,Z, ζ
t) is the profit generated during period t, once the demand is revealed for

this period, and is defined as

ht(I,Z, ζ
t) = max

Y t,P t

∑
i

∑
j

(η − dij)Y t
ij − cTP t (2.4a)

subject to
∑
i

Y t
ij ≤ ζtj , ∀ j (2.4b)∑

j

Y t
ij ≤ P t

i , ∀ i (2.4c)

P t ≤ Z (2.4d)

Y t ≥ 0 , (2.4e)

which, in particular, captures the fact that, since it is assumed that goods cannot be stored

(or demand backlogged) from one period to the other, neither at the facility nor at the

demand locations, it is always possible to design an optimal transportation and production

plan that depends only on the currently realized demand.

Finally, we make the common assumption that the demand vector ζ is known to lie

in a budgeted uncertainty set (see Bertsimas and Sim (2004)), i.e., that each ζi lies in an

interval, and that, at most, Γ of the terms across all locations and time periods can take

extreme values.

While it appears that the MRLTP does implement as much flexibility as is needed

in this problem, Atamtürk and Zhang (2007) established that evaluating the objective is

already computationally intractable when T = 1. In this paper, we present a set of six

conservative approximation models to the problem that each exploits to a different extent

the idea of reducing the flexibility of the delayed decisions. These models will allow us to

empirically explore the compromises that need to be made between flexibility/conservatism

and “tractability”.5 Overall, we consider this article to make the following contributions:

5 Note that, in this paper, we will consider a model to be tractable if it can be reformulated as a mixed-

integer linear program of finite dimension.
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1. We present a set of tractable conservative approximations of the MRLTP that each

employ different form of the application of affine adjustments proposed in Ben-Tal et al.

(2004) and Chen and Zhang (2009). While we do demonstrate empirically for the first

time how significant the improvements can be in terms of the quality of the approximate

solutions for the MRLTP, especially as compared to the robust model of Baron et al.

(2011), we also establish conditions under which some of the simplest approximation

schemes already provide optimal solutions. These theoretical results rely on carefully

adapting the arguments presented in Ben-Tal et al. (2004) and Bertsimas and Goyal

(2012) to our multi-period setting.

2. Two of our formulations, namely, those that will be referred to ELAARC and HD-

ELAARC, also provide valuable insights about how better conservative approximation

models can be obtained in robust multi-stage optimization problems. With ELAARC,

this is done by creating the affine adjustments only after the recourse problem has been

replaced by an equivalent penalized formulation. With HD-ELAARC, this is done by

letting the affine adjustments depend on the whole history, even though an optimal

recourse policy is known to be independent of the history. These two ideas might serve

many other instances of robust multi-stage decision problems.

3. We propose a row generation algorithm that employs a parsimonious choice of valid

inequalities in order to accelerate the resolution of one of our most complex approx-

imation models, while being easily adaptable to any of our other formulations. Our

implementation of this algorithm allows us to reduce the solution time of larger in-

stances by a factor of 16 to 260, and to solve instances with 20 periods, 15 facility

locations, and 30 demand locations in less than 3 hours, while an exact method could

not converge after running for more than 48 hours.

4. We perform an extensive numerical study in order to analyse the value of flexibility

and the robustness-performance trade-off that can be achieved by each approximation

model. Furthermore, we provide some insights about the general structure of the
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decisions that are proposed by each approximation model on a large set of problem

instances.

The remainder of the paper is organized as follows. In Section 2.2, we review prior work

about the robust location-transportation problem under demand uncertainty. In Section

2.3, we present six new tractable approximation models for the MRLTP. In Section 2.4, we

establish the relation between the bounds that are obtained using each approximation model

and identify conditions under which some of the models return exact solutions. Next, we

present in Section 2.5, the details of a decomposition scheme that can be used to accelerate

the resolution of larger-sized models. In Section 2.6, we provide numerical results; and finally,

the conclusions and possible future research directions are presented in Section 2.7.

2.2 Prior Work

To the best of our knowledge, Atamtürk and Zhang (2007) were the first to study a

model related to the two-stage robust location-transportation problem (TRLTP), a special

case of MRLTP with a single-period T = 1, for an application of network flow and design

problem where their objective was to minimize worst-case cost over a budgeted uncertainty

set. They compared a two-stage robust optimization model with a stochastic program where

the objective of the stochastic program, was to minimize the sum of the first-stage cost

and the expected value of the second-stage cost. When distribution was captured by 200

demand scenarios, they showed that, while the solution of the two-stage robust optimization

model increased the expected cost by 1.1%, it actually decreased by 29.1% the cost incurred

under the worst-case scenario. They identified the TRLTP as a special case of the modelling

framework, and after recognizing that their problem was NP-hard, proposed to use a cutting-

plane algorithm to reach a global optimum.

Recently Gabrel et al. (2014a) and Zeng and Zhao (2013) proposed two cutting-plane

methods to solve a TRLTP exactly under the budgeted uncertainty set with an integer

budget. Gabrel et al. (2014a) showed that the adversarial problem in the TRLTP could be

reformulated as a MILP. The master problem of the TRLTP could then be tackled using
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Kelley’s cutting-plane algorithm, given that optimality cuts are provided using a MILP

solver. Zeng and Zhao (2013) seem to have improved on the solution time by employing

a column-and-constraint generation (C&CG) algorithm instead of Kelley’s cutting plane

algorithm. Finally, in a similar transportation problem, Lei et al. (2015) proposed a two-

level cutting plane method for a two-stage mobile-facility fleet sizing and routing problem

wherein the fleet sizing and routing plan are determined in the first stage and the allocation

of demands to the mobile facilities are determined in the second stage. Although there is

empirical evidence that these exact resolution methods are efficient, the adversarial problem

that is solved in each case takes the form of a MILP that is inherently NP-hard. There is

therefore always a risk of having to endure unbearable computation times before obtaining

solutions to any specific problem instance.

In Baron et al. (2011), the authors can be considered to have proposed the first tractable

conservative approximation of the MRLTP model. In their paper, the authors proposed a

robust optimization model in which static (i.e., inflexible) production and fractional trans-

portation policies are optimized. Indeed, they replaced the Y t
ij variables with X t

ijζ
t
j , which

reflects the notion that X t
ij is the proportion of demand at location j and time t that is

satisfied by the facility at location i. Specifically, their proposed fractional variable-based

(FVB) model takes the following form:

(FVB) maximize
I,Z,X,P

min
ζ∈D

∑
t

∑
i

∑
j

(η − dij)X t
ijζ

t
j − cTP t − (c0

TZ + fTI) (2.5a)

subject to
∑
j

X t
ijζ

t
j ≤ P t

i , ∀ζ ∈ D , ∀ i , ∀ t (2.5b)

P t ≤ Z , ∀ t (2.5c)∑
i

X t
ij ≤ 1 , ∀ j , ∀ t (2.5d)

X t ≥ 0 , ∀ t (2.5e)

Z ≤MI , I ∈ {0, 1}L. (2.5f)
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They next studied the impact of two types of uncertainty sets–box and ellipsoidal–on on the

structure of the robust solution and compared it to the nominal one. In particular, they

paid special attention to the number of opened facilities, the total capacity of facilities, and

the number of deliveries made from each facility to the customer locations under different

scenarios. Surprisingly, the following example highlights the fact that the solution of the

FVB model might drop opportunities of making profits that are arbitrarily large even with

respect to the worst-case scenario. In contrast, the simpler RC model actually does not

suggest such a conservative solution for the same instances. On the other hand, some might

argue that the FVB model provides a transportation policy that can easily be interpreted.

Example Consider an example of MRLTP with T = 1 and two customers, such that ζ ∈

[ζ̄ ± ζ̂] where ζ̄ = 10000 and ζ̂ = 5000. The locations of customers is considered as the

candidate location of facilities L = 2. The open facility will cover demand, if possible,

with η = 1, ci = 0.1, c0i = 0.1 and fi = 3000 for all i, and the transportation cost between

locations is equal to 1. We assume that the budget is Γ = 2, which leads to a box uncertainty

set. As is shown in Appendix 2.8.1, the optimal value of RC model (2.2) is equal to 1000,

but the optimal value of the FVB model is zero in this example. This indicates that, while

the RC model suggests opening the two facilities, which leads to a worst-case profit of 1000,

the FVB model closes everything down. When scaling every parameter in the objective

function by some α > 0, FVB will let go of an arbitrarily large opportunity to make a profit.

Intuitively, the over-conservatism of the FVB model is due to the fact that any feasible

candidate for production must satisfy the largest possible demand, because of (2.5b), while

the worst-case profits that end up being measured in (2.5a) actually account for the lowest

demand. This necessarily leads the FVB model to imply that a lot of the production will be

wasted once one attempts to satisfy even a small amount of demand.

Recently, Bertsimas and de Ruiter (2015) proposed applying affine adjustments on a

dual reformulation of the TRLTP and showed improved computation time as compared to

applying the same type of adjustment on the original TRLTP. Given that the two types of
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applications of these adjustments are shown to be equivalent, it is likely that their methods

could be used to improve the resolution time of the models proposed in this work if one

wishes to avoid using dedicated decomposition schemes. Yet, we are still convinced at the

time of writing this article that it is necessary to employ row generation algorithms of the

type presented here to obtain solutions to the larger instances of the MRLTP problem in a

reasonable amount of time.

2.3 Six Conservative Tractable Approximations

In what follows, we provide six progressive ways of improving the quality of the solution

obtained from the RC and FVB models. Each will employ the idea of affine adjustments from

Ben-Tal et al. (2004) and a version of the splitting-based uncertainty set extensions from

Chen and Zhang (2009) to exploit to a different extent the fact that the operational decisions

P and Y can be adjusted to the realization of the demand. The type of flexibility added by

our models can be divided into three classes. Similarly to what is done in the FVB model, the

first class of approximation models, called “customer-driven”, will adjust the size of a delivery

to a customer simply based on information about that customer’s demand, i.e., that Y t
ij :=

πtij(ζj) with πtij : R → R. In opposition, the second class of approximation models, called

“market-driven,” will be more flexible and attempt to optimize delivery policies that take

into account the state of the market as a whole, i.e., that Y t
ij := πtij(ζ

t) with πtij : RN → R.

This second class will necessarily lead to models that are more computationally demanding

yet have the potential to identify better-performing strategies. We will finally introduce

a final class of approximation models, referred as “history-driven,” that will attempt to

exploit the full history of demand, even though we have not yet identified an improvement

there that motivates the added computational burden. Note that, in presenting each of

the approximation models, we omit to derive and spell out the finite dimensional MILP

reformulation that would be obtained by applying duality theory to each robust constraint

and objective function, for the sake of keeping the presentation compact.
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2.3.1 Customer-driven Affine Adjustments

Our first approximation model will stem from the realization that, in the recourse prob-

lem of the MRLTP, namely, problem (2.4), the inequality constraint (2.4c) will be active at

optimum and can therefore be replaced with an equality constraint. This argument motivates

replacing P t
i with

∑
j X

t
ijζ

t
j for all i and t in the FVB model (2.5). Using this replacement,

our model effectively fully adapts variable P t
i to the revealed demand, which was an impor-

tant issue with the FVB model. In order to ensure that we obtain a tighter approximation

than with the RC model, we also propose replacing the fractional adjustment, Y t
ij := X t

ijζ
t
j

with Y t
ij := X t

ijζ
t
j +W t

ij for all i, j, and t. The motivation for using W t
ij is that there are some

cases, as shown in Example 1, wherein RC provides a tighter solution than FVB. Introducing

the variable W t
ij, namely, the “static” component of the transportation policy, enables us to

guarantee that this revised model always provides a solution that is at most as conservative

as the solution of the RC model (see Proposition 2.4.1 for more details). Overall, these

modifications lead to our revised fractional variable-based (RFVB1) model:

(RFVB1) maximize
I,Z,X,W

min
ζ∈D

∑
t

∑
i

∑
j

(η − dij − ci)(X t
ijζ

t
j +W t

ij) (2.6a)

−(c0
TZ + fTI)

subject to
∑
i

X t
ijζ

t
j +W t

ij ≤ ζtj , ∀ ζ ∈ D , ∀ j , ∀ t (2.6b)∑
j

X t
ijζ

t
j +W t

ij ≤ Zi , ∀ ζ ∈ D , ∀ i , ∀ t (2.6c)

X t
ijζ

t
j +W t

ij ≥ 0 , ∀ ζ ∈ D , ∀ i , ∀ j , ∀ t (2.6d)

Z ≤MI , I ∈ {0, 1}L . (2.6e)

We next exploit an extended description of the budgeted uncertainty set proposed in

Chen and Zhang (2009) in order to optimize customer-driven transportation policies that

have a piecewise-linear structure, (We also refer the reader to Georghiou et al. (2015) for

details about techniques involving non-linear decision structures.) Specifically, we employ a
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lifting of the demand uncertainty space

D =

{
ζ ∈ RN×T

∣∣∣∣∃(ζ+, ζ−) ∈ D2, ζ = ζ̄ + ζ+ − ζ−
}

where

D2 =

(ζ+, ζ−) ∈ RN×T × RN×T
∣∣∣∣ ∃(δ+, δ−) ∈ RN×T × RN×T , δ+ ≥ 0, δ− ≥ 0, ‖δ+ + δ−‖∞ ≤ 1,

‖δ+ + δ−‖1 ≤ Γ, ζt+j = ζ̂t+j δt+j , ζt−j = ζ̂t−j δt−j ∀ j ∀ t

 .

As illustrated in Figure 2–1, this lifting allows one to define different affine policies for

positive perturbations, than those defined for negative perturbations thus giving rise to the

possibility of a non-linear adjustment with better performance. For example, by letting

Wij = αζ̄tj , X
t+
ij = 0 and X t+

ij = −α for some 0 ≤ α ≤ 1, the lifting implements the policy

Y t
ij := αmin(ζtj ; ζ̄

t
j) (see Figure 2–1(c)), which can make better use of the capacity Zi that is

made available.

Figure 2–1: Illustrative comparison of an affine adjustment in (a) and an affine adjustment
on the lifted space (ζt+j , ζt−j ) in (b). Finally, (c) presents an example of lifted adjustment

that implements Y t
ij := αmin(ζtj ; ζ̄

t
j) in order to make better use of available capacity.
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This manipulation of the model leads to our second revision of the fractional variable-

based (RFVB2) model:

(RFVB2) maximize
I,Z,X+,X−,W

min
(ζ+,ζ−)∈D2

∑
t

∑
i

∑
j

(η − dij − ci)(Xt+
ij ζ

t+
j +Xt−

ij ζ
t−
j +W t

ij)

−(c0
TZ + fT I) (2.7a)

subject to
∑
i

Xt+
ij ζ

t+
j +Xt−

ij ζ
t−
j +W t

ij ≤ ζtj , ∀ (ζ+, ζ−) ∈ D2 , ∀ j , ∀ t (2.7b)∑
j

Xt+
ij ζ

t+
j +Xt−

ij ζ
t−
j +W t

ij ≤ Zi , ∀ (ζ+, ζ−) ∈ D2 , ∀ i , ∀ t (2.7c)

Xt+
ij ζ

t+
j +Xt−

ij ζ
t−
j +W t

ij ≥ 0 , ∀ (ζ+, ζ−) ∈ D2 ∀ i ,∀ j , ∀t (2.7d)

Z ≤MI , I ∈ {0, 1}L . (2.7e)

2.3.2 Market-driven Affine Adjustments

We now provide three approximation models that will attempt to exploit full market

information in making deliveries. The first of these attempts can be considered a direct

application of the AARC framework for the MRLTP, as it was initially introduced by Ben-

Tal et al. (2004). In such a framework, the adaptive policies for later-stage decisions are

considered to be restricted to the set of affine functions of the uncertain parameters. In the

context of this problem, this means that each adaptive policy of the MRLTP model (2.3)

should take the form Y t
ij := (X t

ij)
Tζt+W t

ij withX t
ij ∈ RN and W t

ij ∈ R. In other words, this

means that the delivery for a customer j can depend on all the orders that are made in this

market. Intuitively, this added flexibility might be beneficial, considering that the amount

of production is constrained by the capacity of each facility, Zi; therefore, an increase in

demand from a nearby customer might justify reducing the number of goods to transport

to a more distant customer in order to improve profitability. We note that, similarly as

before, the variable P t
i of the MRLTP model (2.3) will be replaced by

∑
j Y

t
ij in all of our

proposed approximations. When restricting our search to affine policies of the ζt vector, the

approximation model takes the following form:

(AARC) maximize
I,Z,X,W

min
ζ∈D

∑
t

∑
i

∑
j

(η − dij − ci)
(
(Xt

ij)
T ζt +W t

ij

)
− (c0

TZ + fT I)(2.8a)
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subject to
∑
i

(Xt
ij)

T ζt +W t
ij ≤ ζtj , ∀ ζ ∈ D , ∀ j , ∀ t (2.8b)∑

j

(Xt
ij)

T ζt +W t
ij ≤ Zi , ∀ ζ ∈ D , ∀ i , ∀ t (2.8c)

(Xt
ij)

T ζt +W t
ij ≥ 0 , ∀ ζ ∈ D , ∀ i ,∀ j , ∀ t (2.8d)

Z ≤MI, I ∈ {0, 1}L . (2.8e)

Similarly to what was done to obtain the RFVB2 model, AARC can be improved by

lifting the uncertainty set. LAARC of MRLTP (2.3) can be obtained by considering policies

that are affine in the pair of perturbations (ζ+, ζ−) ∈ D2, namely, Y t
ij := (X t+

ij )Tζt+ +

(X t−
ij )Tζt− + W t

ij with X t+
ij ∈ RN , X t−

ij ∈ RN , and W t
ij ∈ R . This new approximation

model takes the following more sophisticated form:

(LAARC)

maximize
I,Z,X+,X−,W

min
(ζ+,ζ−)∈D2

∑
t

∑
i

∑
j

(η − dij − ci)
(

(Xt+
ij )T ζt+ + (Xt−

ij )T ζt− +W t
ij

)
−(c0

TZ + fT I)(2.9a)

subject to
∑
i

(Xt+
ij )T ζt+ + (Xt−

ij )T ζt− +W t
ij ≤ ζtj , ∀ (ζ+, ζ−) ∈ D2, ∀ j, ∀t (2.9b)∑

j

(Xt+
ij )T ζt+ + (Xt−

ij )T ζt− +W t
ij ≤ Zi , ∀ (ζ+, ζ−) ∈ D2, ∀ i, ∀t (2.9c)

(Xt+
ij )T ζt+ + (Xt−

ij )T ζt− +W t
ij ≥ 0 ,∀ (ζ+, ζ−) ∈ D2, ∀ i,∀ j, ∀t (2.9d)

Z ≤MI, I ∈ {0, 1}L . (2.9e)

Now, we propose an extension to the LAARC, referred as the ELAARC model, which

will benefit from a manipulation of a multi-period robust optimization model. To the best of

our knowledge, this is being presented for the first time. The key idea is to reformulate the

recourse problem (2.4) in a way that relaxes the constraint that is plagued by uncertainty,

without compromising the authenticity of the model. Namely, let us consider the following
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equivalent reformulation:

ht(I,Z, ζ
t) = max

Y t,P t,θt

∑
i

∑
j

(η − dij − ci)Y t
ij −

∑
j

ujθ
t
j (2.10a)

subject to
∑
i

Y t
ij ≤ ζtj + θtj , ∀ j (2.10b)∑

j

Y t
ij ≤ Zi , ∀ i (2.10c)

Y t ≥ 0 , θt ≥ 0 , (2.10d)

where Y t ∈ RL×N , θt ∈ RN and where each uj is a marginal penalty for violating constraint

(2.4b), which is chosen large enough for the optimal value of the optimization problem to

remain the same. We refer the reader to Appendix 2.8.2 for a proof that the assignment

uj = maxi(η − ci − dij) ∀ j meets this criterion.

As for the LAARC model, we adjust the deliveries based on the lifted uncertainty space,

Y t
ij := (X t+

ij )Tζt+ + (X t−
ij )Tζt−+W t

ij; furthermore, we adjust each new auxiliary variable θj

according to θtj := St+j ζ
t+
j + St−j ζ

t−
j in order to obtain the ELAARC approximation model

(ELAARC) maximize
I,Z,X+,X−,
W ,S+,S−

min
(ζ+,ζ−)∈D2

∑
t

∑
i

∑
j

(
(Xt+

ij )T ζt+ + (Xt−
ij )T ζt− +W t

ij

)
−(c0

TZ + fT I)−
∑
t

∑
j

uj(S
+
j ζ

t+
j + S−j ζ

t−
j ) (2.11a)

subject to
∑
i

(Xt+
ij )T ζt+ + (Xt−

ij )T ζt− +W t
ij ≤ ζtj

+St+j ζt+j + St−j ζt−j , ∀ (ζ+, ζ−) ∈ D2 , ∀ j , ∀ t (2.11b)

St+j ζt+j + St−j ζt−j ≥ 0 , ∀ (ζ+, ζ−) ∈ D2 , ∀ j , ∀ t (2.11c)

(2.9c)− (2.9e) , (2.11d)

where S+ ∈ RN×T and S− ∈ RN×T . Finally, one might realize that, when using

this lifted uncertainty space, the worst-case analysis of this optimization model really only

depends on negative adversarial perturbations. This will be an interesting feature to exploit

when the time comes to implement and solve the model.
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Proposition 2.3.1 The LAARC and ELAARC approximation models can respectively be

reduced to the following two optimization problems:

(LAARC2) maximize
I,Z,X−,W

min
ζ−∈D3

∑
t

∑
i

∑
j

(η − dij − ci)
(

(Xt−
ij )T ζt− +W t

ij

)
− (c0

TZ + fT I)

subject to
∑
i

(Xt−
ij )T ζt− +W t

ij ≤ ζ̄tj − ζt−j , ∀ ζ− ∈ D3 ,∀ j , ∀ t∑
j

(Xt−
ij )T ζt− +W t

ij ≤ Zi , ∀ ζ− ∈ D3 ,∀ i , ∀ t

(Xt−
ij )T ζt− +W t

ij ≥ 0 , ∀ ζ− ∈ D3 , ∀ i ,∀ j , ∀ t

Z ≤MI, I ∈ {0, 1}L ,

and

(ELAARC2)

maximize
I,Z,X−,W ,S−

min
ζ−∈D3

∑
t

∑
i

∑
j

(η − dij − ci)
(

(Xt−
ij )T ζ− +Wij

)
−(c0

TZ + fT I)−
∑
t

∑
j

uj(S
t−
j ζt−j ) (2.12a)

subject to
∑
i

(Xt−
ij )T ζ− +Wij ≤ ζ̄tj − ζt−j + St−j ζt−j , ∀ ζ− ∈ D3 , ∀ j , ∀ t (2.12b)∑

j

(Xt−
ij )T ζ− +Wij ≤ Zi , ∀ ζ− ∈ D3 ,∀ i , ∀ t (2.12c)

(Xt−
ij )T ζ− +Wij ≥ 0 , ∀ ζ− ∈ D3 , ∀ i ,∀ j , ∀ t (2.12d)

St−j ζt−j ≥ 0 , ∀ ζ− ∈ D3 , ∀j , ∀ t (2.12e)

Z ≤MI , I ∈ {0, 1}L , (2.12f)

where

D3 =

ζ− ∈ RN×T
∣∣∣∣∃δ− ∈ RN×T , 0 ≤ δ− ≤ 1,

T∑
t=1

N∑
j=1

δt−j ≤ Γ, ζt−j = ζ̂tjδ
t−
j ∀ j ∀ t

 .

Proof First, one can easily confirm that both LAARC and ELAARC respectively reduce

to LAARC2 and ELAARC2 when the uncertainty set D is replaced with the following

uncertainty set:

D′2 := D2 ∩ {(ζ+, ζ−) ∈ RN×T × RN×T | ζ+ = 0} .
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Since D′2 ⊂ D2, it is clear that the optimal values of LAARC2 and ELAARC2 are respectively

at least as large as the optimal value of LAARC and ELAARC. Looking more specifically at

the LAARC2 model, given any optimal solution (I∗,Z∗,X−∗,W ∗), it is possible to recon-

struct a feasible solution for LAARC simply by considering X+∗ = X−∗, which achieves the

same objective value as the optimal value identified by LAARC2. Hence, this reconstructed

solution is optimal for LAARC. Note that, in confirming feasibility of this reconstructed so-

lution, the difficulty resides in establishing whether the robust demand constraint is satisfied,

namely, that for all j = 1, 2, . . . , N and for all t, one can confirm that

max
(ζ+,ζ−)∈D2

∑
i

((X t+∗
ij )Tζt+ + (X−∗tij )Tζt− +W t∗

ij )− ζ̄tj − ζt+j + ζt−j

= max
(ζ+,ζ−)∈D2

∑
i

((X t−∗
ij )T (ζt+ + ζt−) +W t∗

ij )− ζ̄tj − ζt+j + ζt−j

≤ max
(ζ+,ζ−)∈D2

∑
i

((X t−∗
ij )T (ζt+ + ζt−) +W t∗

ij )− ζ̄tj + (ζt+j + ζt−j )

= max
(0,ζ−)∈D2

∑
i

((X t−∗
ij )Tζt− +W t∗

ij )− ζ̄tj + ζt−j

= max
ζ−∈D3

∑
i

((X t−∗
ij )Tζt− +W t∗

ij )− ζ̄tj + ζt−j ≤ 0 ,

where we exploited the fact that, for all (ζ+, ζ−) ∈ D2, ζ+ is non-negative. Finally a similar

argument can be made to confirm that the optimal solution of ELAARC2 can be used to

obtain an optimal solution to ELAARC, simply by letting X+∗ = X−∗ and S+∗ = S−∗.

2.3.3 History-driven Affine Adjustments

For completeness, we finally highlight the fact that, in a multi-period setting, one can

suppose that an even more flexible transportation strategy can be obtained by employing

affine adjustments that depend jointly on all previous realizations of the demand until the

implementation of the transportation decision. Mathematically speaking, the injection of

such additional flexibility leads to the following structures. For all t and j, in the case of

the direct AARC approach, one gets Y t
ij :=

∑t
t′=1(X tt′

ij )Tζt
′
+ W t

ij, while the history-driven

version of LAARC would employ Y t
ij :=

∑t
t′=1(X tt′+

ij )Tζt
′+ +(X tt′−

ij )Tζt
′−+W t

ij. Finally, the
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ELAARC model could additionally employ θtj :=
∑t

t′=1 S
tt′
j ζ

t+
j + Stt

′
j ζ

t+
j . We present below

the history-driven version of ELAARC in its reduced form.

(HD-ELAARC) maximize
I,Z,X−,W ,S−

min
ζ−∈D3

∑
t

∑
i

∑
j

(η − dij − ci)(
t∑

t′=1

(Xtt′−
ij )T ζt

′− +W t
ij)− (c0

TZ + fT I)

−
∑
t

∑
j

uj(
t∑

t′=1

Stt
′−

j ζt
′−
j )(2.13a)

subject to
∑
i

t∑
t′=1

(Xtt′−
ij )T ζt

′− +W t
ij ≤ ζ̄tj − ζt−j (2.13b)

+
t∑

t′=1

Stt
′−

j ζt
′−
j , ∀ ζ− ∈ D3 , ∀ j , ∀ t

∑
j

t∑
t′=1

(Xtt′−
ij )T ζt

′− +W t
ij ≤ Zi , ∀ ζ

− ∈ D3 , ∀ i , ∀ t (2.13c)

t∑
t′=1

(Xtt′−
ij )T ζt

′− +W t
ij ≥ 0 , ∀ ζ− ∈ D3 , ∀ i ,∀ j , ∀ t (2.13d)

t∑
t′=1

Stt
′−

j ζt
′−
j ≥ 0 , ∀ ζ− ∈ D3 ,∀ j , ∀ t (2.13e)

Z ≤MI , I ∈ {0, 1}L , (2.13f)

where for each i, j, t, and t′ ≤ t, we have that X tt′−
ij ∈ RN and Stt

′−
j ∈ R.

While we will show in our numerical experiments that such history-driven models can

be used to obtain even tighter bounds than their non-history-driven versions, we note two

important drawbacks. First, from a computational perspective, the number of parameters

that need to be optimized using this type of adjustment scales the order of O(LN2T 2).

Perhaps as importantly, the decision rules that are obtained with this model will suggest

strategies whose structures are incoherent with the most natural structure that would be

used by optimal, fully flexible strategies, namely, the fact that the transportation policy for

time t only depends on the realized demand for time t. For these two reasons, we will later

omit to present a complete numerical analysis of this model.

2.4 Theoretical Analysis of Robust Approximation Models

In this section, we are interested in demonstrating theoretically how better-quality so-

lutions can be obtained by using an approximation model that offers more flexibility for the

delayed decisions. In particular, we start by establishing what the respective qualities are
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of the bounds that obtained from each model regarding the worst-case profit of a candidate

solution for facility locations and capacities.

Proposition 2.4.1 Given some fixed values for the strategic decision vectors I ∈ {0, 1}L

and Z ∈ RL, let fRC(I,Z), fMRLTP(I,Z), fFVB(I,Z), fRFVB1(I,Z), fRFVB2(I,Z), fAARC(I,Z),

fLAARC(I,Z), fELAARC(I,Z) and fHD-ELAARC(I,Z) respectively be the value of the objective

functions of approximation models (2.2), (2.3), (2.5), (2.6), (2.7), (2.8), (2.9), (2.11), and

(2.13) when the rest their respective decision variables are optimized. The following partial

ordering is satisfied for any values of I and Z:

fRC(I,Z) ≤ fRFVB1(I,Z) ≤ fRFVB2(I,Z) ≤ fLAARC(I,Z) ≤ fELAARC(I,Z) ≤ fMRLTP(I,Z),

fFVB(I,Z) ≤ fRFVB1(I,Z) ≤ fAARC(I,Z) ≤ fLAARC(I,Z) ,

fELAARC(I,Z) ≤ fHD-ELAARC(I,Z) ≤ fMRLTP(I,Z) .

Proof The function fELAARC(I,Z) provides a lower bound on true worst-case profit fMRLTP(I,Z)

since the adjustable variables that appear in problem (2.10) are limited to affine functions of

uncertain parameter. The ELAARC model reduces to the LAARC model when the value of

variables St+j and St−j are forced to take a zero value for all j and t. One can also show that

the LAARC model reduces to the AARC model when the constraint X t+
ij = −X t−

ij ∀ i, j, t, is

added, thus leading to a lower evaluation of the worst-case multi-period profit. The LAARC

model also reduces to the RFVB2 model when adding the constraints that each term of

X t
ij ∈ RN equals zero except for the j-th term. A similar set of constraints make the AARC

model reduce to the RFVB1 model. The RFVB2 model reduces to the RFVB1 model under

similar conditions to those that make LAARC reduce to AARC. Lastly, one can show that

RFVB1 upper bounds RC since the optimization model becomes equivalent to RC when we

force X = 0.

Next, assuming that W is fixed to zero, one can show that the evaluation of the worst-

case profit obtained from the RFVB1 model is larger than the evaluation from the FVB
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model since one can replace constraint (2.6c) with

∑
j

ζtjX
t
ij ≤ P t

i , ∀ ζ ∈ D , ∀ i , ∀ t & P t
i ≤ Zi , ∀ i , ∀ t ,

after letting P ∈ RL×T be a set of additional decision variables of the model and since the

objective function of the RFVB1 model has the following property:

min
ζ∈D

∑
t

∑
i

∑
j

(η − dij − ci)ζtjX t
ij − (c0

TZ + fTI)

= min
ζ∈D

∑
t

∑
i

∑
j

(η − dij − ci)ζtjX t
ij − (c0

TZ + fTI) +
∑
t

cTP t − cTP t

= min
ζ∈D

∑
t

∑
i

∑
j

(η − dij)ζtjX t
ij − (c0

TZ + fTI) +
∑
t

∑
i

ci(P
t
i −
∑
j

ζtjX
t
ij)− cTP t

≥ min
ζ∈D

∑
t

∑
i

∑
j

(η − dij)ζtjX t
ij − (c0

TZ + fTI)−
∑
t

cTP t .

In this derivation, the last inequality comes from the robust constraint
∑

j ζ
t
jX

t
ij ≤ P t

i ∀ζ ∈ D

for all i and t. Since this last expression is the objective function of the FVB model, it is

clear that the optimal value of this problem will be lower than the value of the RFVB1

model. Now, given that, in fact, the RFVB1 optimizes the objective function over all W

instead of forcing this decision variable to zero, as assumed earlier, it will necessarily even

further increase the difference between the two bounds.

Finally, while it is clear that fELAARC(I,Z) ≤ fHD-ELAARC(I,Z) since the ELAARC model

is equivalent to the HD-ELAARC after we introduce the constraint that X tt′
ij = 0 for all t 6= t′,

the case for fHD-ELAARC(I,Z) ≤ fMRLTP(I,Z) needs a little more explanation. To clarify this

relation, one needs to remember that, for all ζ ∈ RN×T ,

∑
t

ht(I,Z, ζ
t) = max

{Y t,P t}Tt=1

∑
t

∑
i

∑
j

(η − dij)Y t
ij − cTP t (2.14a)

subject to
∑
i

Y t
ij ≤ ζtj , ∀ j , ∀ t (2.14b)∑

j

Y t
ij ≤ P t

i , ∀ i , ∀ t (2.14c)

P t ≤ Z , ∀ t (2.14d)
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Y t ≥ 0 , ∀ t , (2.14e)

where all temporal decision variables are optimized jointly in a way that can exploit the full

information about ζ, although it is unnecessary to do so, because the problem decomposes.

Yet, from this perspective, if we replace each Y t with a history-driven affine function Y t
ij :=∑t

t′=1(X tt′

ij )T ζt
′
+ W t

ij, we necessarily obtain an under evaluation of
∑

t ht(I,Z, ζ
t). Note

that this argument further indicates that the affine adjustment for each Y t does not need

to be non-anticipative in order to generate a valid lower bound on worst-case profits.

The result presented in proposition (2.4.1) can easily be used to establish guarantees

with respect to the optimized bound on worst-case profit that are evaluated by each model.

Corollary 2.4.2 Let f ∗RC, f ∗MRLTP, f
∗
FVB, f

∗
RFVB1, f

∗
RFVB1, f

∗
AARC, f

∗
LAARC, f

∗
ELAARC and f ∗HD-ELAARC re-

spectively be the optimal value of (2.2), (2.3), (2.5), (2.6), (2.7), (2.8), (2.9), (2.11), and

(2.13). The following partial ordering is always satisfied:

f ∗FVB ≤ f ∗RFVB1 ≤ f ∗RFVB2 ≤ f ∗LAARC ≤ f ∗ELAARC ≤ f ∗HD-ELAARC ≤ f ∗MRLTP

f ∗RC ≤ f ∗RFVB1 ≤ f ∗AARC ≤ f ∗LAARC .

Together, these results show that more sophisticated models of this list always provide

better conservative approximation of the optimal value of the MRLTP model (See Figure

2–2). In fact, any time one approximation model in this list exactly returns the optimal

value of the MRLTP, all models that are higher or equal to it in this ordering are guaranteed

to return an exact optimal solution and an exact optimal worst-case bound.

Figure 2–2: Partial ordering of the quality of bounds obtained from the different approxima-
tion models. Each arrow connects an approximation model to an approximation model that
returns a tighter optimized bound for the optimal worst-case profit of the MRLTP model.
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In the following theorem, we present conditions under which some of the proposed ap-

proximation models are exact and refer the reader to Appendix 2.8.3 for a detailed proof.

Theorem 2.4.3 The MRLTP model (2.3) is equivalent to:

• RFVB1, RFVB2, AARC, LAARC, ELAARC, and HD-ELAARC when c0 = 0,

• RC, RFVB1, RFVB2, AARC, LAARC, ELAARC, and HD-ELAARC when Γ = NT ,

• LAARC, ELAARC, and HD-ELAARC when Γ = 1.

Intuitively, for the cases of c0 = 0 and Γ = NT , the proof relies on exploiting the

fact that the optimization model used to evaluate fMRLTP(Z, I) can be shown to reduce to

a problem in which the uncertainty decomposes over a number of constraints so that an

equivalence between static and adjustable decisions identified in Ben-Tal et al. (2004) can be

exploited. Otherwise, in the case of Γ = 1, our proof follows in the spirit of the arguments

used to support Theorem 1 of Bertsimas and Goyal (2012), however, they must address

differently the fact that none of the delayed decision variables are a mapping of the whole

multi-temporal demand vector. We believe this proof contains elements that might pave the

way for a possible extension of the result in Bertsimas and Goyal (2012).

Overall, Corollary 2.4.2 and Theorem 2.4.3 imply that LAARC, ELAARC, and HD-

ELAARC not only provide tighter bounds than all other proposed approximation models

but are also optimal for MRLTP for a number of interesting situations.

2.5 Improving Numerical Efficiency Using A Row Generation Algorithm

In this section, we propose a row generation algorithm as a solution method for ELAARC2

that we expect will be more computationally efficient than feeding the MILP reformulation

of the model directly to an off-the-shelf MILP solver. Therefore, we reformulated ELAARC

based on the following theorem, the proof of which can be found in Appendix 2.8.4.

Theorem 2.5.1 The reduced ELAARC model is equivalent to

maximize
I,Z,ρ

ρ− (c0
TZ + fTI) (2.15a)
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subject to ρ ≤ g(Z) (2.15b)

Z ≤MI , I ∈ {0, 1}L , (2.15c)

where g(Z) is defined as

min
δ−,θ,λ,ψ
Θ,Λ,Ψ

−(c0
TZ + fT I) +

∑
t

∑
i

Ziθ
t
i +

∑
t

∑
j

λtj ζ̄
t
j −

∑
t

∑
j

Λtjj ζ̂
t
j (2.16a)

subject to θti + λtj ≥ η − ci − dij , ∀ i ,∀ j ,∀ t (2.16b)

Θt
ik + Λtjk ≥ (η − ci − dij)δt−k , ∀ i , ∀ j ,∀k , ∀ t (2.16c)∑
k

Θt
ik ≤ Γθti ,Θ

t
ik ≤ θti , ∀i,∀k, ∀t (2.16d)∑

k

Λtjk ≤ Γλtj ,Λ
t
jk ≤ λtj , Λtjk ≤ Bjδt−j , ∀ j , ∀ k , ∀ t (2.16e)∑

k

Θt
ik + λtjk − (η − ci − dij)δt−k ≤ Γ

(
θti + λtj − ψtij − (η − ci − dij)

)
, ∀ i ,∀ j ∀ t(2.16f)

Θt
ik + λtjk − (η − ci − dij)δt−k ≤ θ

t
i + λtj − ψtij − (η − ci − dij) , ∀ i , ∀ j , ∀ k , ∀ t (2.16g)

0 ≤ δ− ≤ 1 ,
∑
t

∑
j

δt−j ≤ Γ (2.16h)

λ ≥ 0 , Λ ≥ 0 , θ ≥ 0 , Θ ≥ 0 , ψ ≥ 0 , Ψ ≥ 0 , (2.16i)

with δ− ∈ RN×T , θ ∈ RL×T , λ ∈ RN×T , ψ ∈ RL×N×T , Θ ∈ RL×N×T , Λ ∈ RN×N×T , and

Ψ ∈ RL×N×N×T .

Based on Theorem 2.5.1, we propose the use of a row generation algorithm to solve

ELAARC2, wherein one goes through the following steps:
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Row generation algorithm

Step #1: Set UB = ∞ and LB = −∞. Solve the deterministic model with ζ = ζ̄ to

obtain an initial set of facility location İ(1) and capacities Ż(1). Let κ = 1.

Step #2: Solve the following subproblem

(SP) minimize
δ−,θ,λ,ψ,Θ,Λ,Ψ

∑
t

∑
i

Ż
(κ)
i θti +

∑
t

∑
j

λtj ζ̄
t
j −

∑
t

∑
j

Λt
jj ζ̂

t
j

subject to (2.16b)− (2.16i).

Set θ̇(κ), λ̇(κ), Λ̇(κ), and (δ̇−)(κ) to their respective values based on the optimal solution of

the above SP model. Let ρ∗ be the optimal value of the above SP model. Set LB =

max(LB, ρ∗ − (cT0 Ż
(κ) +KT İ(κ))).

Step #3: Let κ := κ+ 1 and solve the following master problem:

(MP) maximize
I,Z,ρ

ρ− (c0
TZ + fTI) (2.17a)

subject to ρ ≤
∑
t

∑
i

(θ̇ti)
(l)Zi +

∑
t

∑
j

(λ̇tj)
(l)ζ̄jt −

∑
t

∑
j

(Λ̇t
jj)

(l)ζ̂jt

∀ l ∈ {1, 2, . . . , κ− 1} (2.17b)

Z ≤MI, I ∈ {0, 1}L. (2.17c)

Let İ(κ), Ż(κ), and ρ(κ) take on the values of any optimal solution of the master problem

(MP). Let UB = ρ(κ) − (cT0 Ż
(κ) + fT İ(κ)).

Step #4: If UB−LB ≤ ε then terminate and return Ż(κ), İ(κ) and ρ(κ) as the optimal

solution; otherwise, repeat from Step #2. (Note that the termination condition can also be

verified at the end of Step #2.)

One can actually improve the convergence speed of the algorithm by exploiting a specific

type of valid inequalities for the ELAARC problem. Consider that, in order for a triplet

(I,Z, ρ) to be feasible in problem (2.15), for any {(ζ−)(l)}l∈Ω ⊂ D3, there must exist an
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assignment for X−, W , and S− such that the following constraint is satisfied:

ρ ≤
∑
t

∑
i

∑
j

(η − dij − ci)
(
(X t−

ij )T (ζt−)(l) +W t
ij

)
−
∑
t

∑
j

uj(S
t−
j (ζt−j )(l)) , ∀l ∈ Ω∑

i

(X t−
ij )T (ζt−)(l) +W t

ij ≤ (ζt−j )(l) , ∀l ∈ Ω , ∀ j ,∀ t∑
j

(X t−
ij )T (ζt−)(l) +W t

ij ≤ Zi , ∀l ∈ Ω , ∀ i ,∀ t

(X t−
ij )T (ζt−)(l) +W t

ij ≥ 0 , ∀l ∈ Ω , ∀ i , ∀ j ,∀ t .

This gives rise to the idea of replacing the master problem with

(MP’) maximize
I,Z,ρ,X−,W ,S−

ρ− (c0
TZ + fTI)

subject to ρ ≤
∑
t

∑
i

∑
j

(η − dij − ci)
(
(X t−

ij )Tζt− +W t
ij

)
−
∑
t

∑
j

ujS
t−
j ζ

t−
j , ∀ζ− ∈ Dκ4∑

i

(X t−
ij )Tζt− +W t

ij ≤ ζt−j , ∀ζ− ∈ Dκ4 , ∀ j ,∀ t∑
j

(X t−
ij )Tζt− +W t

ij ≤ Zi , ∀ζ− ∈ Dκ4 , ∀ i ,∀ t

(X t−
ij )Tζt− +W t

ij ≥ 0 , ∀ζ− ∈ Dκ4 , ∀ i , ∀ j ,∀ t

(2.17b)− (2.17c) ,

for some well-chosen finite set of feasible demand realizations Dκ4 . In particular, our imple-

mentation uses Dκ4 as the set that simply contains the most recently identified worst-case

demand ζ−j := ζ̄j − ζ̂j(δ−j )(κ).

One can observe in Table 2–1 the effect of including such valid inequalities in the de-

composition scheme on a set of four problem instances of different sizes. In particular, it

might come as a surprise to realize how much the number of iterations is reduced with this

simple improvement.
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Table 2–1: Impact of valid inequalities on row generation algorithm.

T L N Γ%
# of iteration Time (sec)

Without VI With VI Imp. % Without VI With VI Imp. %

1 10 20

10 34 16 53 6 3 50
30 46 37 20 11 8 27
50 30 27 10 7 6 14
70 27 18 33 5 2 60
90 23 4 83 5 <1 >80
100 24 2 92 4 <1 >75
Avg. 31 17 48 6 <3.5 >42

1 20 40

10 257 163 37 88 46 48
30 193 177 8 65 52 20
50 164 135 18 70 49 30
70 141 93 34 72 57 21
90 105 20 81 60 22 63
100 95 2 98 26 <1 >96
Avg. 159 93 46 64 <37.8 >41

10 10 10

10 162 58 64 25 6 76
30 174 89 49 28 15 46
50 181 91 50 29 18 38
70 159 34 79 25 5 80
90 159 3 98 26 <1 >96
100 147 2 99 23 <1 >96
Avg. 164 46 73 26 <7.6 >71

10 15 15

100 368 63 83 534 88 84
30 392 109 72 647 143 78
50 476 121 75 707 173 76
70 521 99 81 783 134 83
90 542 15 97 800 20 98
100 514 2 100 760 2 100
Avg. 469 68 85 705 93 86

Remark One might alternatively consider the following classical decomposition scheme for

robust optimization problems. Start by obtaining the solution of ELAARC for the nominal

demand. Then, identify the worst-case realization for the objective and for each constraint.

Finally, iterate until convergence, including in each new iteration, the worst-case demand

that was generated for each constraint in the previous rounds. Unfortunately, this procedure

is somewhat inefficient because of the large difference between the large size of the scenario-

based version of ELAARC, which also holds binary variables, and the small size of the linear

programming problems that provide the next worst-case demand.
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2.6 Numerical Results

In this section, we evaluate the proposed approximation models on a set of randomly

generated problem instances. The questions we seek to address are:

• What are the computational requirements of each approximation model and of the

proposed row generation algorithm? (Section 2.6.1);

• What is the impact of varying the amount of uncertainty on the quality of the robust

strategy and of the optimized bound proposed by each approximation model? (Section

2.6.2);

• What is the potential of each model with respect to trading-off average performance

and robustness? (Section 2.6.3);

• Are any interesting insights about the structure of the robust decisions suggested by

each approximation model, namely, in terms of number of the open facilities and the

total capacity of open facilities, and of statistics about the amount of demand that is

covered and the amount of unused capacity under different scenarios? (Section 2.6.4).

Each of these experiments will employ different sets of problem instances generated

randomly according to the following procedure. We randomly generate N nodes on a unit

square representing the demand points, and randomly choose L nodes of these N nodes

as candidate facility locations. The respective unit transportation cost between a facility

and a customer location dij is simply considered equal to the Euclidean distance between

the two. For each facility i, we draw a value for each parameter η, c0i, and fi at random,

uniformly and independently from the intervals [1.5, 2], [0.5, 0.1], [0, 50000] respectively, while

the production cost parameter is simply set as ci = 0.5. The specific characterization of

demand uncertainty is also randomly generated as follows: For each demand location j and

period of time t, the nominal demand ζ̄tj is generated uniformly from the interval [0, 20000],

and the maximum demand perturbation is set to ζ̂tj = εtj ζ̄
t
j where εtj is drawn randomly

between 0.15 and 1.
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2.6.1 Computational Analysis

In this subsection, we compare the computational time to solve each approximation

model when implemented directly using Optimization Programming Language (OPL) within

IBM ILOG CPLEX Optimization Studio 12.6.1. For ELAARC, we also evaluated the per-

formance of our novel row generation algorithm. We are especially interested in comparing

these computational times to the computational requirements associated with the exact col-

umn and constraint (C&CG) algorithm6 presented in Zeng and Zhao (2013) for varying

sizes of problem instances and a budget of uncertainty Γ.

Table 2–2 focuses on single-period problems and presents the computation time for three

problem instances of different sizes: the “small” size instance had 10 facilities and 10 demand

locations, the medium-sized instance had 10 facility and 20 demand locations, and finally,

the large-sized instance had 50 facility and 100 demand locations. For each instance, we

measured the impact of varying the budget of uncertainty between different proportions of

the total number of locations. A second set of computational experiments involved three

multi-period instances of different sizes: the “small” instance had 10 periods, and 10 facility

and 10 demand locations, while the largest instance had 20 periods, and 15 facility and 30

demand locations. Again, we attempted to measure the impact of varying the budget of

uncertainty, but this time, between different proportions of T × N , which is the size of the

uncertain vector D in each problem instance.

Our first observation is that the customer-driven models (i.e., FVB, RFVB1 and RFVB2)

benefit from a strong computational efficiency and can actually be solved, even in the case of

large problem instances, in a few seconds at most. While the market-driven models are more

computationally demanding, we observe a significant reduction in the computational efforts

6 The column-and-constraint generation algorithm proposed in Zeng and Zhao (2013) was implemented

using the two-stage representation of our multi-period problem where the recourse problem takes the form

presented in (2.14) and exploits a reduction that relies on the one-sided uncertainty set presented in D3.
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for the LAARC2 and ELAARC2 models as compared to AARC, due to the use of the reduced

form identified in Proposition 2.3.1. It also appears that, for medium-sized instances, the

ELAARC2 model becomes slightly easier to solve than LAARC2, even though it involves a

larger set of decision variables and constraints. Otherwise, although these two market-driven

models can be solved in less than an hour for the medium single-period and multi-period

instances, it becomes impossible to obtain a solution during our 48 hours time frame for the

largest single-period and multi-period instances. One can obviously explain the difficulty

of resolving market-driven models by the fact that the number of degrees of freedom for

the affine adjustment grow at the rate of O(LN2T ) instead of O(LNT ) for customer-driven

models. Comparatively, we observe perhaps with surprise that the C&CG algorithm requires

much less effort than any of these direct implementations. This seems to indicate that the

efficiency of the decomposition scheme used by C&CG compensates for the fact that C&CG

requires the solution of a number of outer and inner mixed-integer linear programs. This

leaves us with the question of whether our conservative approximation models could also

benefit from a well-designed decomposition scheme.

Indeed, looking at the “Row gen.” column in both tables, we notice that the time

needed to solve the ELAARC2 model can be significantly improved using our proposed

row generation algorithm. More precisely, we estimate that this algorithm is responsible

for reducing the computation requirements by a factor at least 16 to 260 (see multi-period

instance with Γ = 90% where we have 48 × 3600/663 = 260) depending on the size of Γ.

Practically speaking, we see that this algorithm allows us to identify robust approximate

solutions for the largest single-period and multi-period instances in less than three hours

(with an average of less than an hour and a half). In comparison, there is also evidence

that the C&CG algorithm is unable to converge in less than 48 hours for the single-period

instance when Γ equals 30% and 50% of the number of locations, while it is unable to do

so for the large multi-period instance when Γ is greater than 30% of the total number of

uncertain parameters (except for the trivial case of box uncertainty). One might finally
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observe that except for AARC the computational time of all models initially increased as

the budget was increased, but then later decreased back down to a lower delay. The reason

for this trend might be related to the number of extreme points of uncertainty set D3, which

is known to contain the worst-case realizations for at least most of these models.

Regarding the resolution of HD-ELAARC, our experiments indicated that solving this

model directly with a MILP solver typically takes about 30 minutes (80× more difficult

than solving ELAARC2) for small-sized multi-period problem (i.e., T = 10, L = 15, and

N = 15)). Due to time limitations, we were unable to experiment with larger problem

instances.

Conclusions: While both RFVB1 and RFVB2 models can be solved almost as efficiently

as the FVB model, market-driven models should only be solved using standard optimization

software when the problem instance is of medium size. For larger-sized problems, the use of

a row generation algorithm is needed and is highly effective for these models. This allows

us to provide nearly exact robust solutions (as shown in the next subsection) for problems

where exact solutions are unobtainable. It appears however that much greater algorithmic

efforts are needed to provide solutions to HD-ELAARC for problems of such large size.

2.6.2 Optimality Gap Analysis

In this subsection, we attempt to empirically compare the increasing quality of the

approximate robust solutions obtained from the different conservative approximation models.

Our hope is to quantify, from the perspective of worst-case analysis, what is the actual

value in employing a more flexible model. The subsection’s development is threefold. We

first investigate, in single-period problem instances, the impact of changing the size of the

potential demand perturbations ε and of the uncertainty budget Γ on the quality of these

solutions. We then perform a similar analysis for the multi-period setting. Finally, we

confirm that there exists multi-period problem instances for which the history-driven model

HD-ELAARC can indeed be used to obtain a better approximate robust solution than the

non-history-driven alternatives.
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Table 2–2: Computational time (in seconds) needed for identifying approximate and exact
robust solutions for three single-period instances of increasing sizes and varying level of
budget (in % of total number of uncertain parameters). The dash “-” denotes situations
where the method did not converge in less than 48 hours.

L N Γ% FVB RFVB1 RFVB2 AARC LAARC2 ELAARC2 Row gen. C&CG

10 20

10 <1 <1 <1 4 3 9 3 <1
30 <1 <1 <1 2 6 10 8 1
50 <1 <1 <1 11 7 7 6 1
70 <1 <1 <1 6 13 13 2 1
90 <1 <1 <1 24 18 28 <1 <1
100 <1 <1 <1 219 2.6 9 <1 <1
Avg. <1 <1 <1 44 8 13 <3.7 <1

20 40

10 <1 <1 <1 521 415 303 46 8
30 <1 <1 <1 272 264 166 52 11
50 <1 <1 <1 283 275 191 49 50
70 <1 <1 <1 581 523 398 57 19
90 <1 <1 <1 1,747 1,308 1,287 22 3
100 <1 <1 <1 69,394 2,326 1,011 <1 <1
Avg. <1 <1 <1 12,050 852 559 <44 <15

50 100

10 <1 2 6 - - - 3,241 8,465
30 <1 4 11 - - - 4,563 -
50 <1 4 9 - - - 8,460 -
70 <1 5 4 - - - 3,781 7,682
90 <1 4 6 - - - 1,382 7
100 <1 2 2 - - - <1 2
Avg. <1 3.5 6.3 - - - <3,572 -

It is worth clarifying that, in what follows, every problem instance was generated using

the procedure presented earlier in the introduction of this section, with a single exception

concerning the size of the potential demand perturbations ε, which was fixed to specific values

in order to monitor the effect of this parameter. Furthermore, in discussing our finding, we

will refer to the following values, which are worth defining precisely.

• The “optimized worst-case bound” of a conservative approximation model refers to the

best lower bound on worst-case profit that can be achieved according to this model.

Mathematically, for some model M 6= MRLTP, this is measured using f ∗M
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Table 2–3: Computational time (in seconds) needed for identifying approximate and exact
robust solutions for three multi-period instances of increasing sizes and varying level of
budgets (in % of total number of uncertain parameters). The dash “-” denotes situations
where the method did not converge in less than 48 hours.

T L N Γ% FVB RFVB1 RFVB2 AARC LAARC2 ELAARC2 Row gen. C&CG

10 10 10

10 <1 <1 <1 25 11 10 6 3
30 <1 <1 <1 32 25 19 15 1
50 <1 <1 <1 41 38 21 18 1
70 <1 <1 <1 115 19 29 5 1
90 <1 <1 <1 103 23 31 <1 <1
100 <1 <1 <1 61 32 27 <1 <1
Avg. <1 <1 <1 63 25 23 <8.8 <1.5

10 15 15

10 <1 <1 <1 500 342 428 88 1
30 <1 <1 <1 3,497 1,813 1,916 143 12
50 <1 <1 <1 4,749 2,770 2,662 173 9
70 <1 <1 <1 4,815 3,360 3,048 134 36
90 <1 <1 <1 5,140 3,933 3,681 20 8
100 <1 <1 <1 6,316 4,431 4,120 2 2
Avg. <1 <1 <1 4,170 2,775 2,643 63 11

20 15 30

10 <1 <1 <1 - - - 3,781 184
30 <1 <1 <1 - - - 5,646 -
50 <1 <1 <1 - - - 10,567 -
70 <1 <1 <1 - - - 4,445 -
90 <1 <1 <1 - - - 663 -
100 <1 <1 <1 - - - 1 <1
Avg. <1 <1 <1 - - - 4184 -

• The “achieved worst-case profit” of a strategic decision refers to the actual worst-case

profit achieved if this strategic decision is applied. Mathematically, for a strategic

decision (I∗M,Z
∗
M) obtained using modelM, this is measured using fMRLTP(I∗M,Z

∗
M).

• The “optimal worst-case profit” of a problem instance refers to the best worst-case

profit that can be achieved for this instance. Mathematically, it is measured using

f ∗MRLTP and obtained in our experiments by solving the C&CG algorithm (see Footnote

6).

• The “relative optimized bound gap” of a conservative approximation model refers to

the relative difference between the optimal worst-case profit for this problem instance
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and the optimized worst-case bound of this model. Mathematically, for some model

M 6= MRLTP, it is measured using (f ∗MRLTP − f ∗M)/f ∗MRLTP.

• The “relative suboptimality” of a strategic decision refers to the relative difference

between the optimal worst-case profit for this problem instance and the achieved worst-

case profit of this decision. Mathematically, for a strategic decision (I∗M,Z
∗
M) obtained

using model M, it is measured using (f ∗MRLTP − fMRLTP(I∗M,Z
∗
M))/f ∗MRLTP.

2.6.2.1 Impact of Size of Potential Perturbation on Optimality Gap

We consider 100 randomly generated problem instances with L = 10, N = 10, and T = 1.

Table 2–4 presents the average (taken over the set of 100 instances) relative optimized bound

gap and the average relative suboptimality gap for the solutions (i.e., identified strategies for

I and Z) of both customer-driven and market-driven model types, under different budgets of

uncertainty Γ when the demand intervals are forced to a relatively small size, i.e., ε = 0.15.

Similarly, Tables 2–5 and 2–6 present the same statistics on the same set of instances but

with medium-sized ε = 0.30, and large-sized ε = 0.45 demand intervals.

Regarding the quality of the optimized worst-case bound, one might first observe in these

tables that, as indicated by Corollary 2.4.2, the optimized bounds always improve when one

uses a more flexible approximation model. One might further notice that the most significant

improvements appear to occur exactly when passing to models that implement the most

significant changes in terms of added flexibility and resulting computational needs, namely,

from the FVB model to the RFVB1 model, and later by passing to a market-driven model.

When we look at the results for the FVB model and other customer-driven models, we observe

that RFVB1 and RFVB2 models reduce by factors of 8 and 13 respectively the quality of the

optimized worst-case bound offered by the FVB model. In particular, one might notice that,

when ε = 0.30, the company always identifies profitability in servicing its customers under

the RFVB1 and RFVB2 models, while the FVB model suggests shutting down all facilities

at Γ = 4. This is serious evidence that the FVB model is overly conservative. Furthermore,

it appears that a significant gain is achieved with the introduction of market-driven policies,
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such that the proposed optimized worst-case bounds are on average always less than 0.59%

from being exact. Although the added value of using the LAARC and ELAARC models

is not very pronounced (refer to underlined and bold entries respectively), the difference

becomes more noticeable as the size of demand intervals is increased. Regarding sensitivity

to the size of Γ and ε, one might notice that the quality of the optimized worst-case bounds

for FVB decreases when the budget of uncertainty increases, unlike the other models. We

also estimate the quality of the other model’s optimized bound to be less affected by the

growth of the size of the demand intervals.

Regarding the quality of the approximate robust solution itself, we can confirm that

employing more flexible adjustments clearly improves the chances of identifying good strate-

gic decisions. For instance, in Table 2–6, where there are large demand intervals, for Γ = 5,

the FVB model always suggests that no facilities be built, thereby foregoing all chances of

making any profit (i.e., a 100% worst-case profit loss), while ELAARC provides strategic

decisions that on average achieve a worst-case profit that is only 0.28% from being the op-

timal worst-case profit achievable. ELAARC also provides a guaranteed lower bound on

worst-case profits that is on average only 0.50% lower than the optimal worst-case profit.

It can also be observed that all our proposed methods provide optimal robust solutions for

the case with Γ = N , as predicted by Theorem 2.4.3. Moreover the LAARC and ELAARC

models’ solutions are also optimal when Γ = 1.

Table 2–7 provides additional statistics about the relative suboptimality of the different

solutions proposed by each approximation model in the 3000 problem instances surveyed

in Tables 2–4, 2–5, and 2–6. Specifically, the table indicates, for a number of different

percentage gaps, the proportion of instances for which each model was able to identify an

approximate robust solution whose relative suboptimality was within that given gap. Each

proportion can be interpreted as the likelihood that the solution obtained from a model

achieves a worst-case profit that is within some percentage away from being optimal. The

table also presents the average and maximum relative suboptimality gap for each model.
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In particular, one can observe that the flexibility of ELAARC gives it the best chances

of providing a solution that achieves a certain level of relative suboptimality. Yet, one

can also note that, in terms of maximum relative suboptimality gap, LAARC was able to

perform slightly better. This serves as a reminder that optimizing a tighter lower bound

on an objective value does not guarantee that a solution of better quality will be obtained,

however; in most cases, one can certainly say that it serves as a great proxy. It is also worth

noting that the limited additional flexibility of RFVB1 and RFVB2, compared to FVB, has a

significant payoff in terms of relative suboptimality. For instance, the proportion of problem

instances where a guaranteed profit is wasted decreases from 75.0% to almost 1% with the

RFVB1 and RFVB2 models. Finally, LAARC and ELAARC never forego the potential to

make a positive profit in any of these instances.

Table 2–4: Average relative optimized bound gap (Bound gap) and average relative subop-
timality gap (Opt. gap) for the solutions obtained from each approximation model under
different values of budget when ε=0.15

Γ
FVB RFVB1 RFVB2 AARC LAARC ELAARC

Bound Opt. Bound Opt. Bound Opt. Bound Opt. Bound Opt. Bound Opt.
gap gap gap gap gap gap gap gap gap gap gap gap

1 31.0 11.9 11.3 4.88 5.47 2.78 0.00 0.00 0 0 0 0
2 52.7 25.5 11.4 4.3 7.32 3.49 0.04 0.03 0.02 0.01 0.02 0.01
3 66.5 36.2 8.55 4.44 7.02 2.39 0.08 0.07 0.04 0.04 0.03 0.03
4 76.4 42.7 5.84 3.38 5.61 2.48 0.11 0.09 0.05 0.04 0.04 0.04
5 83.2 47.2 3.75 2.34 3.75 2.35 0.11 0.08 0.04 0.03 0.04 0.03
6 87.5 49.9 2.15 1.49 2.15 1.49 0.08 0.06 0.01 0.01 0.01 0.01
7 90.0 54.1 1.08 0.83 1.08 0.83 0.06 0.05 0.01 0.01 0.01 0.01
8 91.2 53.9 0.41 0.35 0.41 0.35 0.03 0.03 0.01 0.01 0.01 0.01
9 91.5 55.5 0.09 0.08 0.09 0.08 0.01 0.01 0.00 0.00 0.00 0.00
10 91.5 55.2 0 0 0 0 0 0 0 0 0 0
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Table 2–5: Average relative optimized bound gap (Bound gap) and average relative subop-

timality gap (Opt. gap) for the solutions obtained from each approximation model under

different values of budget when ε=0.30

Γ
FVB RFVB1 RFVB2 AARC LAARC ELAARC

Bound Opt. Bound Opt. Bound Opt. Bound Opt. Bound Opt. Bound Opt.

gap gap gap gap gap gap gap gap gap gap gap gap

1 55.0 26.2 22.6 10.2 11.3 6.02 0.00 0.00 0 0 0 0

2 82.4 47.7 24.4 10.5 15.5 7.53 0.12 0.11 0.06 0.05 0.05 0.04

3 95.4 74.5 19.2 11.7 15.7 6.14 0.36 0.25 0.12 0.09 0.08 0.08

4 99.7 95.4 13.6 8.96 13.1 6.69 0.59 0.38 0.15 0.11 0.12 0.11

5 100 100 9.07 6.45 9.07 6.45 0.79 0.46 0.15 0.1 0.13 0.09

6 100 100 5.31 4.01 5.31 4.01 0.75 0.45 0.11 0.08 0.09 0.06

7 100 100 2.68 2.14 2.68 2.14 0.50 0.33 0.05 0.05 0.05 0.05

8 100 100 1.02 0.9 1.02 0.9 0.2 0.17 0.03 0.03 0.03 0.03

9 100 100 0.22 0.22 0.22 0.22 0.04 0.04 0.00 0.00 0.00 0.00

10 100 100 0 0 0 0 0 0 0 0 0 0

Table 2–6: Average relative optimized bound gap (Bound gap) and average relative subop-
timality gap (Opt. gap) for the solutions obtained from each approximation model under
different values of budget when ε=0.45

Γ
FVB RFVB1 RFVB2 AARC LAARC ELAARC

Bound Opt. Bound Opt. Bound Opt. Bound Opt. Bound Opt. Bound Opt.
gap gap gap gap gap gap gap gap gap gap gap gap

1 70.7 34.7 34.8 16.5 17.6 9.34 0.00 0.00 0 0 0 0
2 95.5 75.0 39.7 20.4 25.5 14.3 0.20 0.14 0.20 0.14 0.11 0.09
3 100.0 98.9 32.6 22.22 26.87 10.74 1.67 0.90 0.40 0.30 0.26 0.21
4 100 100 23.9 17.6 23.2 14.0 3.08 1.54 0.57 0.41 0.44 0.37
5 100 100 16.2 12.3 16.2 12.3 3.57 1.82 0.56 0.34 0.50 0.28
6 100 100 9.67 7.65 9.67 7.65 2.89 1.61 0.46 0.25o 0.40 0.22
7 100 100 4.84 4.03 4.84 4.03 1.70 1.15 0.31 0.27 0.29 0.25
8 100 100 1.80 1.57 1.80 1.57 0.61 0.52 0.11 0.06 0.11 0.06
9 100 100 0.36 0.36 0.36 0.36 0.11 0.07 0.01 0.01 0.01 0.01
10 100 100 0 0 0 0 0 0 0 0 0 0
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Table 2–7: Proportion of the 3000 problem instances analysed in Tables 2–4, 2–5, and 2–
6 where the relative suboptimality gap of each approximation model was within a certain
range. Average gap and maximum gap are also reported.

Gap range FVB RFVB1 RFVB2 AARC LAARC ELAARC
= 0% 0.0 32.7 32.7 68.2 83.7 85.7
≤ 0.1% 0.0 35.7 36.4 77.0 90.7 92.6
≤ 1% 1.3 47.5 50.6 92.8 98.8 99.2
≤ 10% 7.4 83.4 88.5 99.9 100.0 100.0
= 100% 75.0 1.1 1.0 0.0 0.0 0.0

Avg. gap 79.81 5.91 4.7 0.26 0.05 0.04
Max gap 100 100 100 34.67 3.32 4.82

2.6.2.2 Optimality Gap Analysis in Multi-period Problems

We consider 100 randomly generated problem instances with L = 10, N = 10, and either

three or five periods. Table 2–8 presents the same statistics as Table 2–4 but for a set of 100

problem instances with three periods T = 3, while the demand perturbation size is forced to

ε = 0.3. Alternatively, Table 2–9 presents the same statistics for T = 5. In these tables, we

observe a similar trend as before except for the perhaps unexpected fact that the RFVB2

model seems to provide better-quality solutions and bounds, on average, than AARC. In

particular, as underlined in both tables, the average relative optimized bound gap is always

very close to 1% or 2% (see the underlined entries), while this same statistic rises to values

that are close to 4% or 7% with AARC. This seems to indicate that the flexibility provided by

AARC, namely, of adapting to market information, is less useful than the flexibility provided

by RFVB2, namely reacting differently to positive and negative perturbations. The same

observation can be made when comparing the two models’ average relative suboptimality

gap. One can additionally confirm that LAARC and ELAARC both provide the best-

quality solutions and optimized worst-case bound. Furthermore, ELAARC is able to slightly

tighten its optimized bound (as shown in bold) and obtain solutions that are slightly less

sub-optimal when Γ equals 30% of the total number of uncertain parameters. It finally

106



appears, based on this experiment that, when one uses models other than the FVB, the

quality of the approximate robust solutions improve, for any fixed percentage of uncertainty

budget, as the number of time periods increases. This appears a little counterintuitive, but

one might conjecture from this empirical evidence that, as the horizon becomes longer, it

becomes easier to hedge (or perhaps hide from) the risks related to demand perturbations

so that approximation models become more effective at identifying good strategies.

Table 2–10 repeats the analysis of Table 2–7 in presenting further statistics regarding the

relative suboptimality of the solutions obtained from the different conservative approximation

models. All statistics that are presented were assessed on the 1000 problem instances covered

in Tables 2–8 and 2–9. Again, we see significant improvement for passing from the FVB

model to RFVB1 (with the maximum gap being reduced from 100% to 8.37%), and very

good odds (i.e., 99.6%) of achieving less than a 1% relative suboptimality gap with LAARC

or ELAARC. Yet, one should realize that the odds of achieving an exact solution with both of

these models is significantly reduced in this set of multi-period problem instances, namely,

a reduction from above 84% when T = 1 to less than 13.2% in this set of multi-period

problems.

Table 2–8: Average relative optimized bound gap (Bound gap) and average relative subop-
timality gap (Opt. gap) for the solutions obtained from each approximation model under
different values of budget when T = 3 and ε=0.3

T L N Γ%
FVB RFVB1 RFVB2 AARC LAARC ELAARC

Bound Opt. Bound Opt. Bound Opt. Bound Opt. Bound Opt. Bound Opt.
gap gap gap gap gap gap gap gap gap gap gap gap

3 10 10

0.1 52.0 6.84 7.67 3.79 0.45 0.20 4.29 1.52 0.06 0.05 0.06 0.04
0.3 86.5 23.4 9.53 2.89 1.47 0.60 7.24 2.02 0.37 0.21 0.35 0.20
0.5 85.6 23.4 6.94 1.60 2.42 0.86 4.44 1.56 0.71 0.36 0.70 0.36
0.7 84.7 23.8 3.01 1.32 2.15 0.56 1.73 0.97 0.60 0.35 0.60 0.35
0.9 84.3 24.5 0.29 0.18 0.28 0.18 0.20 0.14 0.10 0.08 0.10 0.08
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Table 2–9: Average relative optimized bound gap (Bound gap) and average relative subop-
timality gap (Opt. gap) for the solutions obtained from each approximation model under
different values of budget when T = 5 and ε=0.3

T L N Γ%
FVB RFVB1 RFVB2 AARC LAARC ELAARC

Bound Opt. Bound Opt. Bound Opt. Bound Opt. Bound Opt. Bound Opt.
gap gap gap gap gap gap gap gap gap gap gap gap

5 10 10

0.1 60.4 3.76 5.30 3.00 0.26 0.10 4.22 2.18 0.03 0.02 0.03 0.02
0.3 73.1 5.11 5.51 2.82 0.68 0.32 4.65 2.12 0.17 0.10 0.16 0.10
0.5 70.4 6.43 4.56 1.65 1.09 0.55 3.33 1.03 0.31 0.15 0.30 0.14
0.7 68.5 8.25 2.61 0.60 1.19 0.50 1.53 0.52 0.33 0.16 0.33 0.16
0.9 67.5 9.59 0.36 0.15 0.31 0.11 0.18 0.09 0.06 0.04 0.06 0.04

Table 2–10: Proportion of the 1000 problem instances analysed in Tables 2–8 and 2–9 where
the relative suboptimality gap of each approximation model was within a certain range.
Average gap and maximum gap are also reported.

Gap range FVB RFVB1 RFVB2 AARC LAARC ELAARC
= 0% 0.0 1.1 2.7 1.0 12.6 13.2
≤ 0.1% 0.2 10.1 23.6 14.6 56.0 56.9
≤ 1% 2.0 43.8 92.2 56.2 99.6 99.6
≤ 10% 67.6 100.0 100.0 100.0 100.0 100.0
= 100% 5.7 0.0 0.0 0.0 0.0 0.0

Avg. 15.97 1.77 0.4 1.17 0.15 0.14
Max gap 100 8.37 3.54 6.18 1.07 1.05

2.6.2.3 Optimized Bound Gap Reduction Using HD-ELAARC

Table 2–11 presents the relative optimized bound gap and the relative suboptimality

gap for the solutions of the ELAARC and HD-ELAARC models in a specific multi-period

instance where T = 3, L = 10, and N = 10 drawn according to the procedure used previously

for different values of the uncertainty budget Γ. The relative gaps that are reported confirm

that HD-ELAARC has the potential to identify a tighter optimized worst-case bound for the

MRLTP problem, and consequently, provides an approximate robust solution that slightly

improves the relative suboptimality gap. Yet, we consider this improvement to be somewhat

small for passing from a model whose size grows with O(LN2T ) to O(LN2T 2).

Conclusions: It appears, based on this analysis, that RFVB2 and ELAARC2 are the two

models that have the most to offer compared to other models in their respective class in terms

of trading-off speed of resolution and robustness of the facility location strategy that they
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Table 2–11: Relative optimized bound gap (Bound gap) and relative suboptimality gap (Opt.
gap) for the solutions obtained from ELAARC and HD-ELAARC under different values of
budget with ε =0.30.

ELAARC HD-ELAARC
Γ % Bound gap Opt. gap Bound gap Opt. gap
10 0.32 0.32 0.11 0.11
20 0.60 0.45 0.40 0.29
30 0.77 0.48 0.38 0.21
40 0.74 0.34 0.25 0.09
50 0.93 0.14 0.40 0.07
60 0.83 0.40 0.38 0.17
70 0.44 0.21 0.22 0.13
80 0.42 0.19 0.17 0.07
90 0.17 0.17 0.04 0.04
100 0.00 0.00 0.00 0.00

are able to identify. Additionally, we observed that customer-driven approximation models,

in particular the FVB model, are sensitive to the size of potential perturbations, while the

performance of market-driven models appear to be a little more stable. It also appears that

the performance of solutions from conservative approximation schemes somehow benefit from

longer-horizon problems in which there might be more opportunities to hedge or hide from

the risk. On the other hand, it appears much more difficult to close the suboptimality gap

in larger problems with the type flexibility that is found in customer- and market-driven

adjustments. There might still however be some hope to close this gap with a history-driven

model like HD-ELAARC; however, one would be left with the challenge of designing an

efficient decomposition scheme for this model.

2.6.3 Robustness-performance Trade-off

In this subsection, we study the robustness and performance of the approximate robust

solutions obtained using our different approximation models in a pair of experiments. While

the first experiment involves a set of 100 medium-sized single-period problem instances, where

L = 10 and N = 20, the second one involves a set of 100 large-sized single-period problem

instances, where L = 50 and N = 100. Each problem instance is generated according to

the procedure described in the introduction of this section. Unlike what was done in the
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numerical studies of previous sections, we do not wish to evaluate the worst-case performance

of the solutions obtained but rather estimate what type of balance these solutions can achieve,

in terms of the compromise that must be made between potential protection against risk

(captured by a percentile) and potential expected profit. More specifically, for each problem

instance, we evaluate the statistical performance of each approximate robust solution on a

set of 100 demand scenarios. To obtain each of these scenarios, each customer’s demand is

independently generated from its respective demand interval, using a uniform distribution.

In the larger instances, due to the duration of the resolution process, we limit our study to

the FVB, RFVB1, and RFVB2 models.

In Figure 2–3, we report the average expected profit and the average 10th percentile

profit of each approximation model’s solution as the total budget for the uncertainty set is

varied. The same results are also presented in Figure 2–4 to highlight what type of compro-

mise can be achieved by adjusting the budget of uncertainty. Considering that a common

criticism of robust optimization approaches has been that it provides overly conservative so-

lutions, it might come as a surprise that our results show that a flexible robust optimization

approach with an appropriately calibrated uncertainty set (e.g., the LAARC model with

Γ = 1) will provide solutions that outperform the solutions of the deterministic model (2.1),

obtained by setting Γ = 0, in terms of both expected profit and risk exposure, as measured

through the 10th percentile. Another interesting observation is that overly conservative so-

lutions might often actually be the result of not injecting enough flexibility in the robust

optimization model, as is the case for the FVB and RFVB1 models. The figures clearly

show that, whether the instance is small or large, it is always worth employing the slightly

more sophisticated RFVB2 model to achieve a significantly better risk and return trade-off.

Figure 2–3(a) also demonstrates how performance is improved by employing market-driven

models.

110



Figure 2–3: Average expected and 10th percentile profit achieved by the different robust

methods on 100 problem instances while adjusting the level of conservativeness Γ. Figure

(a) and (c) present the average expected and average 10th percentile profit respectively for

medium-sized instances with L = 10 and N = 20, while (b) and (d) present the same

statistics for large-sized instances with L = 50 and N = 100. Note that in (a) and (b), the

curves for LAARC and ELAARC were combined since the performances indistinguishable.
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Conclusions: Our experiments clearly show that, whether the instance is large or small,

it is always worth employing the slightly more sophisticated RFVB2 model to achieve sig-

nificantly better risk and return trade-off. Figure 2–4 also demonstrates how performance is

improved by employing market-driven models. Note, however, that this was not confirmed

on large problem instances due to the heavier computational requirements of the resolution

methods for these models.

Figure 2–4: Average expected profit versus average 10th percentile profit achieved by the
different robust methods on 100 problem instances while adjusting the level of conservative-
ness Γ. Figure (a) presents the achieved risk-return trade-off for instances of a medium size
while (b) presents this for instances of a large size. Note that, in (a), the curves for LAARC
and ELAARC were combined since the performances indistinguishable.

2.6.4 Decision Structure

In this subsection, we study the strategies that are obtained from our approximation

models. In particular, we look at characteristics such as the number of facilities that are

opened and the total production capacities that are installed. To perform this analysis,

we replicate the experiments that were done in section 2.6.3 with L = 10 and N = 20.

Statistics of these experiments are reported in Table 2–12. In particular, the table’s first set

of rows indicates the proportion of problem instances where at least one facility location was
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proposed for different levels of uncertainty budgets. Once again, the over-conservatism of the

FVB model can be observed, as the model refuses to open any facilities in 43% of instances

for a relatively small value of Γ = 2. In contrast, the proportion of problem instances where

no facilities are selected is below 15% for all other approximation models. In the other two

sets of rows of Table 2–12, we report the number of open facilities and the total capacities

of the proposed solution averaged over the instances where at least one facility location was

selected. Regarding the strategies proposed by each model, one might notice that more

flexible models always propose opening a larger number of facilities. However, the same

cannot be said for the total capacity. In fact, it appears that, when Γ = 1, market-driven

models are a bit more cautious with respect to the capacity of its facilities. Increasing

the amount of uncertainty has the natural effect of encouraging a smaller number of smaller

facilities. It might also be worth emphasizing that, although the FVB model tends to propose

the smallest number of facilities, it is misled to promote much larger ones. We believe all

these results reaffirm the added value that is obtained by including more flexible policies in

the robust optimization model.

We conclude this numerical study with Table 2–13, which describes how much each

approximation model is able to cover the realized demand and make efficient use of its

capacity as the uncertainty budget Γ is increased. The first observation one can make is that

the percentage of covered demand and the percentage of unused capacity displays increased

caution, i.e., a decrease of both percentages, as the models account for increased uncertainty

through Γ. We also observe that market-driven models have less unused capacity and cover

a larger percentage of demand than other models. Among the customer-driven models, the

RFVB2 model appears to use a strategy that more closely resembles the strategies of the

market-driven models.

Conclusions: In sum, market-driven models propose strategies that open more facilities

of smaller size. This strategy seems to allow the decision maker to have more flexibility to

choose where goods will be shipped from to meet a given customer’s demand. Meanwhile
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smaller capacities also protect the company from suffering a high rate of unsold products.

We also observe that the strategies obtained from market-driven models make better use of

the available capacity and cover a larger percentage of the demand than do other models.

Table 2–12: Statistics describing the structure of approximate robust strategies in a set of
100 single-period problem instances with L = 10 and N = 20.

Γ FVB RFVB1 RFVB2 AARC LAARC ELAARC

# of instances
with open
facilities

1 75% 88% 93% 95% 95% 95%
2 57% 86% 90% 94% 94% 94%
5 10% 85% 85% 91% 91% 91%

Average 1 1.56 1.66 1.86 1.86 1.86 1.86
# of open 2 1.21 1.56 1.82 1.81 1.83 1.83

facility 5 1.20 1.49 1.61 1.62 1.70 1.71
Average 1 170227 167479 171089 164867 164797 164806

total 2 146404 135752 156456 153134 153582 153905
capacity 5 112252 78879 109826 119999 124363 125493

Table 2–13: Proportion of demand that is covered and total capacity that is unused, averaged
over the 100 demand scenarios from each problem instance and over a set of 100 problem
instances.

Γ Title FVB RFVB1 RFVB2 AARC LAARC ELAARC

1
Unused capacity (%) 1.18 2.06 1.52 0.74 0.74 0.74
Covered demand (%) 63.11 72.46 79.25 79.05 79.02 79.03

2
Unused capacity (%) 0.17 0.79 0.74 0.20 0.21 0.22
Covered demand (%) 41.93 58.15 70.85 73.02 73.21 73.36

5
Unused capacity (%) 0.00 0.00 0.02 0.00 0.00 0.00
Covered demand (%) 5.80 34.23 47.43 55.55 57.60 58.12

2.7 Conclusion

In this paper, we have studied a multi-period robust location-transportation problem

with demand uncertainty that was characterized using the budgeted uncertainty set. In order

to overcome the known computational difficulty of solving this model, we presented six new

conservative approximation models, each of which implements, to a different extent, the

flexibility in the delayed production and transportation decisions. We believe these models,

and in particular the RFVB2, ELAARC and HD-ELAARC models, are especially relevant to

the transportation literature, given that the only conservative approximation model that had
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been presented prior to this work was the FVB model, which as demonstrated in Example 2.2

and our empirical results, is overly conservative. While this conservativeness can be easily

corrected by adding a small amount of flexibility to the delayed decisions, as is done in the

customer-driven RFVB2 model, the solution quality is drastically improved using market-

driven models such as the ELAARC. The quality is even further improved using history

driven models, i.e., HD-ELAARC, although the number of decision variables in this model

quickly becomes prohibitive. As portrayed by Table 2–14, improving solution quality comes

at a price in terms of computational requirements. Therefore, we developed a row generation

algorithm that enables us to solve market-driven approximations for large instances.

Table 2–14: Summary of the trade-off between flexibility of the adjustments, complexity of
the model, and quality of the solution in a multi-period setting. Note that we lack significant
evidence about the magnitude of the improvement in quality for HD-ELAARC.

Model
Variables Total

number
Average

P ti Y t
ij θtj of variables opt. gap

HD-ELAARC
∑

i Y
t
ij

∑t
t′=1

∑
kX

tt′−
ijk ζ

t′−
k +W t

ij

∑t
t′=1 S

tt′−
j ζt

′−
j O(LN2T 2) N/A

ELAARC2
∑

i Y
t
ij

∑
kX

t−
ijkζ

t−
k +W t

ij St−j ζt−j O(LN2T ) ∼ 0.14%

LAARC2
∑

i Y
t
ij

∑
kX

t−
ijkζ

t−
k +W t

ij 0 O(LN2T ) ∼ 0.15%

AARC
∑

i Y
t
ij

∑
kX

t
ijkζ

t
k +W t

ij 0 O(LN2T ) ∼ 1.17%

RFVB2
∑

i Y
t
ij Xt+

ij ζ
t+
j +Xt−

ij ζ
t−
j +W t

ij 0 O(LNT ) ∼ 0.40%

RFVB1
∑

i Y
t
ij Xt

ijζ
t
j +W t

ij 0 O(LNT ) ∼ 1.77%

FVB P ti Xt
ijζ

t
j 0 O(LNT ) ∼ 15.97%

A side product of our analysis is to have identified conditions under which full flexibility

is not necessary in order to obtain a solution of the best possible quality. This is summarized

in Table 2–15. Finally, our numerical study compares the performances of the proposed ap-

proximation models in terms of suboptimality of the approximate robust solution, resolution

time, achievable risk-return trade-off, and structure of optimal robust decisions.

Although our work focuses on a location-transportation problem, we expect our methods

to be applicable to many other multi-stage robust optimization problems with right-hand side

uncertainty occurs in the field of transportation, such as network transportation problems,
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Table 2–15: Conditions for approximation models to identify optimal robust strategic deci-
sions.

Condition RC FVB RFVB1 RFVB2 AARC LAARC ELAARC HD-ELAARC
c0 = 0 # # ! ! ! ! ! !

Γ = 1 # # # # # ! ! !

Γ = N ! # ! ! ! ! ! !

(e.g., Atamtürk and Zhang (2007)), supply chain network design problems (e.g., Tsiakis

et al. (2001)), and hub location-transportation problems (e.g., Oktal and Ozger (2013)).

As a closing remark, one extension of our models that is worth mentioning arises in

situations where some facilities may be shut down due to a disruption, such as natural

disasters. While we refer the reader to An et al. (2014) and references therein for more details

on location-reliability problems, a simple approach consists of considering a set of binary

parameters γtj that indicate whether facility j is shut down at time t. One can then replace

the maximum production constraint in problem (2.4) with P t
i ≤ (1−γti)Zi , ∀ i, and consider

the profit for each period to be a function of I, Z, ζt, and γt. If one assumes that the vector

of disruption γ lies in a budgeted uncertainty set that is independent from the budgeted

uncertainty set used for ζ, then, since ht(I,Z, ζ
t,γt) is concave in γt for any fixed values of

I, Z, and ζt, one can actually relax γ to be a vector of fractional value without affecting

the model and then employ any version of our different forms of adjustment. For instance,

an AARC model would employ the transportation policy Y t
ij := (X t

ij)
Tζt + (Ot

ij)
Tγt +W t

ij.

Alternatively, an ELAARC approach might also employ affine adjustments for penalized

excess variables that are used to relax the production constraints. It remains unclear however

what might be sufficient conditions for any of these conservative approximations to return

exact solutions in this context.
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2.8 Appendix

2.8.1 Analytical Solutions to RC and FVB Models in Example 2.2

For the box uncertainty set, the RC model (2.2) takes the following form:

maximize
I,Z,Y ,P

∑
i

∑
j

(η − dij)Yij − cTP − (c0
TZ + fTI) (2.19a)

subject to
∑
i

Yij ≤ ζ̄j − ζ̂j , ∀ j (2.19b)∑
j

Yij ≤ Pi , ∀ i (2.19c)

P ≤ Z , Z ≤MI (2.19d)

Y ≥ 0 , , I ∈ {0, 1}L . (2.19e)

In the optimal solution of RC model (2.19), the value of Yij is equal to zero, since η − ci −

c0i − dij < 0, for all i and j where i 6= j, and is equal to ζ̄j − ζ̂j = 10000− 5000 = 5000 for

all i and j when i = j. In sequence, the optimal value of variables Pi, Zi, and Ii are equal

to 5000, 5000, and 1 for all i respectively. Therefore, the optimal value of problem (2.19) is

equal to 1000. On the other hand, the FVB model (2.5) with box uncertainty set takes the

following form

maximize
I,Z,X,P

∑
i

∑
j

(η − dij)(ζ̄j − ζ̂j)Xij − cTP − (c0
TZ + fTI) (2.20a)

subject to
∑
i

Xij ≤ 1 , ∀ j (2.20b)∑
j

(ζ̄j + ζ̂j)Xij ≤ Pi , ∀ i (2.20c)

Pi ≤ Zi , ∀ i (2.20d)

Xij ≥ 0 , ∀ i, ∀ j (2.20e)

Z ≤MI, I ∈ {0, 1} . (2.20f)

Similarly to what we concluded above, the optimal solution has Xij = 0 for all i and j when

i 6= j. The optimal value of variable Pi is equal to (ζ̄i + ζ̂i)Xii for all i, and the optimal

value of variable Zi is equal to that of variable Pi for all i. Therefore, the objective function
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(2.20a) can be reformulated as

∑
i

η(ζ̄i − ζ̂i)Xii − (ci + c0i)(ζ̄i + ζ̂i)Xii − fi1{Xii>0} =
∑
i

(2000Xii − 3000× 1{Xii>0}) ≤ 0 ,

where the last inequality comes from
∑

iXij ≤ 1. Therefore, the optimal value of problem

(2.20) is equal to zero in this example.

2.8.2 Selecting Large Enough u for Problem (2.10)

Lemma 2.8.1 For any I, Z ≥ 0, ζt ≥ 0, the optimal value of problem (2.10) is equal to

the optimal value of problem (2.4) when uj = maxi(η − ci − dij) , ∀ j.

Proof First, as was argued earlier, in problem (2.4), there is always an optimal solution for

which constraint (2.4c) is tight. This implies that the optimal value of problem (2.4) is the

same as in

ht(I,Z, ζ
t) = max

Y t

∑
i

∑
j

(η − dij − ci)Y t
ij (2.21a)

subject to
∑
i

Y t
ij ≤ ζtj , ∀ j (2.21b)∑

j

Y t
ij ≤ Z , ∀ i (2.21c)

Y t ≥ 0 . (2.21d)

Now, given that this problem is feasible, strict duality applies, so that its optimal value is

equal to the optimal value of the following problem:

ht(I,Z, ζ
t) = min

λt,θt

∑
i

Ziθ
t
i +
∑
j

ζtjλ
t
j (2.22a)

subject to θti + λtj ≥ η − dij − ci , ∀ i , ∀ j (2.22b)

λt ≥ 0, θt ≥ 0. (2.22c)

where λt ∈ RN and θt ∈ RL are dual variables for (2.21b) and (2.21c) respectively. It is

implied from problem (2.22) that there is an optimal solution for which λtj is smaller or

equal to maxi(η − ci − dij) for all j and t; therefore, one can add to problem (2.22) the

constraint that λtj ≤ maxi(η − ci − dij) without affecting its optimal value. By applying
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duality theory a second time, one can easily confirm that he obtains exactly problem (2.10)

with maxi(η − ci − dij) in place of every uj. Hence, this completes the proof.

2.8.3 Proof of Theorem 2.4.3

2.8.3.1 Proof of Case c0 = 0

First, if all c0i = 0, then it is necessarily the case that all Zi’s can be as large as MIi.

Next, we replace variables Y t
ij with X t

ijζ
t
j and P t

i with
∑

j ζ
t
jX

t
ij in the recourse problem (2.4),

which makes the recourse problem equivalent to

ht(I,MI, ζ
t) := max

Xt

∑
i

∑
j

(η − dij − ci)X t
ijζ

t
j (2.23a)

subject to
∑
i

X t
ij ≤ 1 , ∀ j (2.23b)∑

j

X t
ijζ

t
j ≤MIi , ∀ i (2.23c)

X t ≥ 0 , (2.23d)

where X t ∈ RL×N are the new decision variables for the t-th period. Constraint (2.23c) can

be replaced by

X t
ij ≤ Ii , ∀ i , ∀j , (2.24)

since (2.23c) implies that there can be no shipment when binary variable Ii is equal to 0,

and otherwise, the shipment can be as large as M . Therefore, the objective function of the

MRLTP can be reformulated as

min
ζ∈D

max
X

∑
t

∑
i

∑
j

(η − dij − ci)X t
ijζ

t
j (2.25a)

subject to
∑
i

X t
ij ≤ 1 , ∀ j , ∀ t (2.25b)

X t ≤ Ii , ∀ i , ∀j, ∀ t (2.25c)

X t ≥ 0 , ∀ t . (2.25d)
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Since both feasible sets for ζ and X are compact, based on Sion’s minimax theorem, we can

reverse the order of minimization over D and maximization over X, and therefore, problem

(2.3) with c0 = 0 can be reduced to

maximize
I,X

−fTI + min
ζ∈D

∑
t

∑
i

∑
j

(η − dij − ci)X t
ijζ

t
j (2.26a)

subject to
∑
i

X t
ij ≤ 1 , ∀ j , ∀ t (2.26b)

X t
ij ≤ Ii , ∀ i , ∀ j , ∀ t (2.26c)

X t ≥ 0 , ∀ t (2.26d)

I ∈ {0, 1}L . (2.26e)

where X t ∈ RL×N . Note that problem (2.26) is equivalent to the RFVB1 model when W

is fixed to zero in the later one; hence, RFVB1 necessarily achieves an optimal value that is

larger since it optimizes over W . Given that Proposition 2.4.1 states that RFVB1 optimizes

a lower bound on worst-case profit, it is clear that the two models are therefore equivalent.

Finally, following Corollary 2.4.2, all tighter approximation models are also equivalent to

MRLTP.

2.8.3.2 Proof of Case Γ = NT

We recall the following theorem from (Ben-Tal et al. 2004).

Theorem 2.8.2 (Ben-Tal et al. 2004) The adjustable robust counterpart of two-stage robust

optimization problem is equivalent to its RC approximation when the uncertainty affecting

every one of the constraints is independent of the uncertainty affecting all other constraints

(constraint-wise uncertainty).

For any fixed I and Z, the optimal value of the RC model (2.2) can be obtained by

solving the following problem:

fRC(I,Z) := max
Y ,P

∑
t

∑
i

∑
j

(η − dij)Y t
ij − cTP t − (c0

TZ + fTI)

subject to
∑
i

Y t
ij ≤ ζtj , ∀ ζ ∈ D, ∀ j , ∀ t
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∑
j

Y t
ij ≤ P t

i , ∀ i , ∀ t

P t ≤ Z , ∀ t

Y t ≥ 0 , ∀ t .

Noting that, in this problem, when D is a box uncertainty set, the uncertainty does

decompose constraint-wise. Hence, according to Theorem 2.8.2, the optimal value of this

problem is equal to the optimal value of the following “wait-and-see” problem:

min
ζ∈D

g(I,Z, ζ)

where

g(I,Z, ζ) := max
Y ,P

∑
t

∑
i

∑
j

(η − dij)Y t
ij − cTP t − (c0

TZ + fTI)

subject to
∑
i

Y t
ij ≤ ζtj , ∀ j , ∀ t∑

j

Y t
ij ≤ P t

i , ∀ i , ∀ t

P t ≤ Z , ∀ t

Y t ≥ 0 , ∀ t .

In this problem, all decisions are made once all the information about ζ is obtained. This

necessarily leads to an optimal value that is larger than if each (Y t,P t) was adjusted only

based on the realized ζt. We thus conclude that

fRC(I,Z) ≤ fMRLTP(I,Z) ≤ max
ζ∈D

g(I,Z, ζ) = fRC(I,Z) .

Furthermore, based on Corollary 2.4.2, RFVB1, RFVB2, AARC, LAARC, ELAARC

are optimal in this case and equivalent to the following formulation:

maximize
I,Z,Y ,P

∑
t

∑
i

∑
j

(η − dij − ci)Y t
ij − (c0

TZ + fTI)

subject to
∑
i

Y t
ij ≤ ζ̄tj − ζ̂tj , ∀ j, ∀ t

121



∑
j

Y t
ij ≤ Zi , ∀ i, ∀t

Y ≥ 0 , I ∈ {0, 1}L .

2.8.3.3 Proof of Case Γ = 1

We start by demonstrating that each ht(I,Z, ζ
t) is a concave function of ζt.

Lemma 2.8.3 Let g : Rm → R be a function defined as

g(x) := max
y∈Rn

cTy

subject to Ay ≤ x

y ∈ Y ,

where y ∈ Rn, for some c ∈ Rn, some A ∈ Rm×n, and some compact convex set Y ⊂ Rn,

and where infeasibility of the optimization problem is interpreted as returning the value −∞.

Then, g(·) is a concave function.

Proof Consider two assignments x1 and x2 for which g(x1) and g(x2) are finite valued,

we should show that g(θx1 + (1 − θ)x2) ≥ θg(x1) + (1 − θ)g(x2). To do so, first consider

that, since g(·) is finite valued at x1, and x2 and since Y is compact, there must exist some

assignments y1 and y2 that respectively achieve the optimum of the optimization problems

associated to g(x1) and g(x2). Now consider the following:

g(θx1 + (1− θ)x2) = sup{cTy : y ∈ Y , Ay ≤ θx1 + (1− θ)x2}

≥ cT (θy1 + (1− θ)y2) = θcTy1 + (1− θ)cTy2

= θ sup{cTy : y ∈ Y , Ay ≤ x1}+ (1− θ) sup{cTy : y ∈ Y , Ay ≤ x2}

= θg(x1) + (1− θ)g(x2) ,

where we used the fact that y := θy1 + (1− θ)y2 is a valid assignment in the first supremum

operation since Y is convex and A(θy1 + (1 − θ)y2) = θ(Ay1) + (1 − θ)Ay2 ≤ θx1 + (1 −

θ)x2.
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Since the function
∑

t ht(I,Z, ζ
t) is jointly concave in ζ and the budgeted uncertainty

set is polyhedral, a worst-case demand necessarily occurs at one of the extreme points of D.

There are 2NT + 1 extreme points in D when Γ = 1: i.e., . The nominal demand takes on

the role of the first extreme point. In other extreme points, all customers’ demand get their

nominal value for all periods except for a single customer at a single time period where the

demand can be either equal to its largest amount or lowest amount. Let us identify each of

these extreme points as {(ζt)(l,τ)}(l,τ)∈Ω with Ω := {0, 1, . . . , 2N} × {1, . . . , T} and where

(ζt)(l,τ) :=


ζ̄t l = 0 or τ 6= t

ζ̄t + elζ̂
t
l l = 1, . . . , N

ζ̄t − el−N ζ̂tl−N l = N + 1, . . . , 2N

,

with el as the vector of size N with all elements equal to 0 except for the l-th element, which

is equal to 1.

Therefore, for some fixed I and Z, and when the budget is equal to one, the optimal

value of the MRLTP model is equivalent to

fMRLTP(I,Z) = max
ζ∈{ζ(l,τ)}(l,τ)∈Ω

∑
t

ht(I,Z, ζ
t) .

Following this argument, we have that

fMRLTP(I,Z) = max
Y ,ρ

ρ−
∑
i

(c0iZi + fiIi) (2.27a)

subject to ρ ≤
∑
t

∑
i

∑
j

(η − dij − ci)(Y t
ij)

(l,τ) ∀ (l, τ) ∈ Ω (2.27b)∑
j

(Y t
ij)

(l,τ) ≤ Zi , ∀ i, ∀ (l, τ) ∈ Ω (2.27c)∑
i

(Y t
ij)

(l,τ) ≤ (ζtj)
(l,τ) , ∀ j, ∀ (l, τ) ∈ Ω (2.27d)

(Y t
ij)

(l,τ) ≥ 0 , ∀ i, ∀ j, ∀ (l, τ) ∈ Ω (2.27e)

(Y t
ij)

(l,τ) = (Y t
ij)

(0,t) , ∀ i, ∀ j, ∀ (l, τ) ∈ Ω , ∀ t 6= τ , (2.27f)
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where (Y t
ij)

(l,τ) ∈ R is the recourse decision when scenario (l, τ) occurs, and where the last

constraint captures the fact that, in the MRLTP model, the decisions for each Y t only

depend on ζt, so that the transportation decision should be the same for all vertices where

ζt = 0. After replacing the variables (Y t
ij)

(l) := (Y t
ij)

(l,τ) = (Y t
ij)

(0,t) , ∀ t 6= τ , we alternatively

obtain

fMRLTP(I,Z) = max
Y ,ρ

ρ−
∑
i

(c0iZi + fiIi) (2.28a)

subject to ρ ≤
∑
t6=τ

∑
i

∑
j

(η − dij − ci)(Y t
ij)

(0) (2.28b)

+
∑
i

∑
j

(η − dij − ci)(Y τ
ij )

(l) , ∀ (l, τ) ∈ Ω

∑
j

(Y t
ij)

(l) ≤ Zi , ∀ i, ∀ t, ∀ l = 0, . . . , 2N (2.28c)

∑
i

(Y t
ij)

(l) ≤ (ζtj)
(l,t) , ∀ j, ∀ t, ∀ l = 0, . . . , 2N (2.28d)

(Y t
ij)

(l) ≥ 0 , ∀ i, ∀ j, ∀ t, ∀ l = 0, . . . , 2N . (2.28e)

Given that, in the LAARC model, the objective function and each robust constraint

involve expressions that are linear in ζ, a similar argument as the above can be used to also

reformulate this model in terms of vertices of the budgeted uncertainty set. This leads to

the following problem:

fLAARC(I,Z) =

max
X+,X−,W ,ρ

ρ−
∑
i

(c0iZi + fiIi)

subject to ρ ≤
∑
t

∑
i

∑
j

(η − dij − ci)((Xt+
ij )T (ζt+)(l,τ) + (Xt−

ij )T (ζt−)(l,τ) +W t
ij) , ∀ (l, τ) ∈ Ω

∑
j

((Xt+
ij )T (ζt+)(l,τ) + (Xt−

ij )T (ζt−)(l,τ) +W t
ij) ≤ Zi , ∀ i , ∀ t, ∀ (l, τ) ∈ Ω

∑
i

((Xt+
ij )T (ζt+)(l,τ) + (Xt−

ij )T (ζt−)(l,τ) +W t
ij) ≤ (ζtj)

(l,τ) , ∀ j , ∀ t, ∀ (l, τ) ∈ Ω

(Xt+
ij )T (ζt+)(l,τ) + (Xt−

ij )T (ζt−)(l,τ) +W t
ij ≥ 0 , ∀ i,∀ j, ∀ (l, τ) ∈ Ω ,
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where we characterized the extreme points of D2 as

((ζt+)(l,τ), (ζt−)(l,τ)) =


(0, 0) if t 6= τ or l = 0

(elζ̂
t
l , 0) if t = τ and l = 1, . . . , N

(0, el−N ζ̂
t
l ) if t = τ and l = N + 1, . . . , 2N

,

and with (ζtj)
(l,τ) := ζ̄j + (ζt+j )(l,τ) − (ζt−j )(l,τ).

By exploiting the definition of each (ζt)(l,τ), one can show that the above equation

reduces to

fLAARC(I,Z) =

max
X+,X−,W ,ρ

ρ−
∑
i

(c0iZi + fiIi)

subject to

ρ ≤
∑
t

∑
i

∑
j

(η − dij − ci)((Xτ+
ij )T (ζτ+)(l,τ) + (Xt−

ij )T (ζτ−)(l,τ))

+(η − dij − ci)W t
ij , ∀ (l, τ) ∈ Ω∑

j

(Xt+
ij )T (ζt+)(l,t) + (Xt−

ij )T (ζt−)(l,t) +W t
ij ≤ Zi , ∀ i , ∀ t , ∀ l = 0, . . . , 2N

∑
i

(Xt+
ij )T (ζt+)(l,t) + (Xt−

ij )T (ζt−)(l,t) +W t
ij ≤ (ζtj)

(l,t) , ∀ j , ∀ t , ∀ l = 0, . . . , 2N

(Xt+
ij )T (ζt+)(l,t) + (Xt−

ij )T (ζt−)(l,t) +W t
ij ≥ 0 , ∀ i,∀ j, ∀ l = 0, . . . , 2N .

and further manipulations lead to

fLAARC(I,Z) = (2.30a)

max
X+,X−,W ,ρ

ρ−
∑
i

(c0iZi + fiIi) (2.30b)

subject to ρ ≤
∑
t

∑
i

∑
j

(η − dij − ci)W t
ij (2.30c)

ρ ≤
∑
t

∑
i

∑
j

(η − dij − ci)W t
ij + (η − dij − ci)Xτ+

ijk ζ̂
τ
k ,

 ∀ k = 1, . . . , N

∀ τ = 1, . . . , T
(2.30d)

ρ ≤
∑
t

∑
i

∑
j

(η − dij − ci)W t
ij + (η − dij − ci)Xτ−

ijk ζ̂
τ
k ,

 ∀ k = 1, . . . , N

∀ τ = 1, . . . , T
(2.30e)
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∑
j

W t
ij ≤ Zi , ∀ i , ∀ t (2.30f)

∑
j

Xt+
ijkζ̂k +W t

ij ≤ Zi , ∀ i , ∀ t, ∀ k = 1, . . . , N (2.30g)

∑
j

Xt−
ijkζ̂k +W t

ij ≤ Zi , ∀ i , ∀ t, ∀ k = 1, . . . , N (2.30h)

∑
i

W t
ij ≤ ζ̄j , ∀ j , ∀ t (2.30i)∑

i

Xt+
ijkζ̂k +W t

ij ≤ ζ̄j + ζ̂k1{j=k} , ∀ j , ∀ t, ∀ k = 1, . . . , N (2.30j)∑
i

Xt−
ijkζ̂k +W t

ij ≤ ζ̄j − ζ̂k1{j=k} , ∀ j , ∀ t, ∀ k = 1, . . . , N (2.30k)

W t
ij ≥ 0 , ∀ i , ∀ j , ∀ t (2.30l)

Xt+
ijkζ̂k +W t

ij ≥ 0 , ∀ i , ∀ j , ∀ t, ∀ k = 1, . . . , N (2.30m)

Xt−
ijkζ̂k +W t

ij ≥ 0 , ∀ i , ∀ j , ∀ t, ∀ k = 1, . . . , N , (2.30n)

where we made use of the fact that

(Xt+
ij )T (ζ+)(l,τ) + (Xt−

ij )T (ζ−)(l,τ) +W t
ij =


Wij if t 6= τ or l = 0

Xt+
ijl ζ̂l +Wij if t = τ and l = 1, . . . , N

Xt−
ij(l−N)ζ̂l−N +Wij if t = τ and l = N + 1, . . . , 2N

.

In problem (2.30), we next reformulate the decision variables Wij, X
+
ijl, and X−i,j,l−N as

follows:

W t
ij → Ẏ t

ij0, ∀i, ∀j, ∀t ,

X t+
ijk →

Ẏ t
ijk − Ẏ t

ij0

ζ̂k
, ∀i, ∀j, ∀t, ∀k = 1, . . . , N ,

X t−
ijk →

Ẏ t
ij(N+k) − Ẏ t

ij0

ζ̂k
, ∀i, ∀j, ∀k = 1, . . . , N .

Therefore, problem (2.30) can be reformulated as

fLAARC(I,Z) = (2.31a)

max
Ẏ ,ρ

ρ−
∑
i

(c0iZi + fiIi) (2.31b)

subject to ρ ≤
∑
t6=τ

∑
i

∑
j

(η − dij − ci)Ẏ tij0 +
∑
i

∑
j

(η − dij − ci)Ẏ τijl , ∀ (l, τ) ∈ Ω (2.31c)
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∑
j

Ẏ tijl ≤ Zi , ∀ i , ∀ t , ∀ l = 0, . . . , 2N (2.31d)

∑
i

Ẏ tijl ≤ ζ̄j , ∀ j , ∀ t (2.31e)∑
i

Ẏ tijl ≤ ζ̄j + ζ̂j1{j=l} , ∀ j , ∀ t , ∀ l = 1, . . . , 2N (2.31f)∑
i

Ẏ tijl ≤ ζ̄j − ζ̂j1{j=l−N} , ∀ j , ∀ t , ∀ l = N + 1, . . . , 2N (2.31g)

Ẏ tijl ≥ 0 , ∀ i , ∀ j , ∀ t , ∀ l = 0, . . . , 2N . (2.31h)

A careful comparison of problems (2.28) and (2.31) can confirm that these are the same,

so they will return the same optimal value and identify the same set of optimal solutions for

Z and I.

2.8.4 Proof of Theorem 2.5.1

We first derive the robust counterpart of constraint (2.12b) as

∃O ∈ RN×T ,Q ∈ RN×N×T , ∑
i

W t
ij + ΓOt

j +
∑
k

Qt
jk ≤ ζ̄jt , ∀j , ∀ t (2.32a)

Ot
j +Qt

jj ≥ ζ̂jt(1− St−j +
∑
i

X t
ijj) , ∀ j , ∀ t (2.32b)

Ot
j +Qt

jk ≥ ζ̂kt
∑
i

X t
ijk, ∀j,∀k 6= j , ∀ t (2.32c)

O ≥ 0 , Q ≥ 0 , (2.32d)

where ∀ k refers to ∀ k = 1, . . . , N , as will continue to be the case below. The condition

described in (2.32a)-(2.32d) can be considered equivalent to the original constraint, given

that strict duality applies, since D3 is non-empty when Γ ≥ 0.

Similarly, we can derive the robust counterpart of constraint (2.12c) as

∃E ∈ RL×T ,F ∈ RL×N×T , ∑
j

W t
ij + ΓEt

i +
∑
k

F t
ik ≤ Zi , ∀ i ,∀ t (2.33a)

Et
i + F t

ik ≥ ζ̂tk
∑
j

X t−
ijk , ∀ i , ∀k , ∀t (2.33b)

E ≥ 0 , F ≥ 0 , (2.33c)
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and the robust counterpart of constraint (2.12d) as

∃G ∈ RL×N×T ,H ∈ RL×N×N×T ,

−W t
ij + ΓGt

ij +
∑
k

H t
ijk ≤ 0 , ∀ i , ∀ j ,∀ t (2.34a)

Gt
ij +H t

ijk ≥ −ζ̂tkX t−
ijk , ∀ i , ∀ j , ∀ k,∀t (2.34b)

G ≥ 0 , H ≥ 0 , (2.34c)

and finally, the robust counterpart of constraint (2.12e) as

S−tj ≥ 0,∀j , ∀ t . (2.35a)

Therefore the reduced ELAARC can be reformulated as

maximize
I,Z,X−,W ,S−

O,Q,E,F ,G,H

min
ζ−∈D3

∑
t

∑
i

∑
j

(η − dij − ci)(
∑
k

X t−
ijkζ

t−
k +W t

ij)

−(c0
TZ + fTI)−

∑
t

∑
j

ujS
t−
j ζ

t−
j (2.36a)

(2.32a)− (2.32d) , (2.33a)− (2.33c) , (2.34a)− (2.34c) , (2.35a)(2.36b)

Z ≤MI, I ∈ {0, 1}L. (2.36c)

SinceD3 is compact and convex, one can apply Sion’s minimax theorem to reverse the order of

maximization over {X−,W ,S−,O,Q,E,F ,G,H} with the minimization over ζ− and then

replace the inner maximization by its dual minimization problem. The dual minimization

problem joined with the minimization with respect to ζ− leads to the following optimization

model:

min
δ−,θ,λ,ψ
Θ,Λ,Ψ

−(c0
TZ + fTI) +

∑
t

∑
i

Ziθit +
∑
t

∑
j

λjtζ̄jt −
∑
t

∑
j

Λjjtζ̂jt

subject to θti + λtj − ψtij = η − ci − dij , ∀ i , ∀ j , ∀ t

Θt
ik + Λt

jk −Ψt
ijk = (η − ci − dij)δt−k , ∀ i , ∀ j , ∀ k , ∀ t∑

k

Θt
ik ≤ Γθti ,Θ

t
ik ≤ θti , ∀ i , ∀ k , ∀ t
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∑
k

Λt
jk ≤ Γλtj,Λ

t
jk ≤ λtj, Λt

jk ≤ Bjδ
t−
j , ∀ j , ∀ k , ∀ t∑

k

Ψt
ijk ≤ Γψtij,Ψ

t
ijk ≤ ψtij , ∀ i , ∀ j , ∀ k , ∀ t

0 ≤ δ− ≤ 1 ,
∑
t

∑
j

δt−j = Γ

λ ≥ 0 , Λ ≥ 0 , θ ≥ 0 , Θ ≥ 0 , ψ ≥ 0 , Ψ ≥ 0 ,

where λ ∈ RN×T , Λ ∈ RN×N×T , θ ∈ RL×T , Θ ∈ RL×N×T , ψ ∈ RL×N×T , and Ψ ∈ RL×N×N×T

are the dual variables associated with constraints (2.32a), (2.32c)-(2.32d), (2.33a), (2.33b),

(2.34a), and (2.34b) respectively.

Next, one can further reduce this optimization problem by replacing ψtij = θti + λtj −

(η − ci − dij) and Ψt
ijk = Θt

ik + λtjk − (η − ci − dij)δ
t−
k everywhere and obtain the model

presented in the theorem. It is worth emphasizing that this replacement of variables reduces

the rate of growth of the total number of decision variables of the model to O(LNT ) instead

of O(LN2T ).
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Abstract

In this short article, we discuss an alternative method for deriving conservative approxima-

tion models for two-stage robust optimization problems. The method extends in a natural way a

linearization scheme that was recently proposed to construct tractable reformulations for robust

static problems involving functions that decompose as a sum of piecewise linear convex expressions.

Given that this generalized method mainly relies on a linearization scheme employed in bi-linear

optimization problems, we will say that it gives rise to the “linearized robust counterpart” model.

We identify a close relation between this linearized robust counterpart model and the more popular

affinely adjustable robust counterpart model. We also describe a very simple way of modifying

both types of models in order to make these approximations less conservative. We finally demon-

strate how to employ this new scheme in a set logistic application problems in order to improve

the performance and guarantees of robust optimization.

Keywords

Two-stage adjustable robust optimization, linear programming relaxation, affinely adjustable

robust counterpart, bilinear optimization.

3.1 Introduction

Classical robust optimization (RO) assumes that all decisions are here-and-now, i.e.,

they must be made before the realization of uncertainty. However this assumption is not



realistic in many real-world problems. In many location-transportation problems, for ex-

ample, transportation decisions can be delayed until the uncertain demand of customers is

revealed. To address the uncertainty in such problems, Ben-Tal et al. (2004) introduced an

adjustable robust optimization (ARO) problem that takes the following form on a two-stage

setting when the uncertainty can be captured in the right-hand side of the constraint set:

(ARO) maximize
x∈X ,y(ζ)

min
ζ∈U

cTx+ dTy(ζ) (3.1a)

subject to Ax+By(ζ) ≤ Ψ(x)ζ , ∀ ζ ∈ U , (3.1b)

where A ∈ Rm×nx , B ∈ Rm×ny , c ∈ Rnx , d ∈ Rny , Ψ(x) : Rnx → Rm×nζ such that Ψ(x) is an

affine mapping of variable x, where U is an uncertainty set for ζ, and where y : Rnζ → Rny is

an adjustable decision. Since problem (3.1) is shown to be computationally intractable, Ben-

Tal et al. suggested instead solving the affinely adjustable robust counterpart (AARC) of

the problem, wherein adjustable decisions are forced to be affine adjustments of the observed

uncertain vector ζ, i.e., y(ζ) := Y ζ+y, for some Y ∈ Rny×nζ and y ∈ Rny ; therefore, problem

(3.1) is conservatively approximated with

(AARC) maximize
x∈X ,y,Y

min
ζ∈U

cTx+ dT (Y ζ + y) (3.2a)

subject to Ax+B(Y ζ + y) ≤ Ψ(x)ζ, ∀ ζ ∈ U . (3.2b)

In a seemingly unrelated article, Ardestani-Jaafari and Delage (2016a) recently proposed

a scheme for creating conservative approximation models for static robust optimization prob-

lems that involve a sum of piecewise linear concave functions. Specifically, they study the

problem of

maximize
x∈X

g(x) := min
ζ∈U

N∑
i=1

min
k=1,...,K

ci,kζ (x)T ζ + di,kζ (x) , (3.3)

where ci,kζ : Rnx → Rnζ and di,kζ : Rnx → R are affine mappings of variable x. Broadly

speaking, this scheme consists in linearizing the objective function of a mixed-integer pro-

gramming representation of the worst-case analysis problem before relaxing the integrality
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constraints as shown below:

g(x) = min
ζ∈U,{λk}Kk=1

∑
ik

ci,kζ (x)T ζλik + di,kζ (x)λik ≥ min
ζ∈U,{λk}Kk=1,{∆ik}ik

∑
ik

ci,kζ (x)T∆ik + di,kζ (x)λik

subject to
∑
k

λik = 1 , ∀ i = 1, . . . , N subject to
∑
k

λik = 1 , ∀ i = 1, . . . , N

λk ∈ {0, 1}N , ∀ k λk ∈ [0, 1]N , ∀ k∑
k

∆ik = ζi , ∀ i ,

where each ∆ik ∈ Rnζ is introduced to capture the relation ∆ik = ζλki . Note that the right-

hand side model is a linear program that will lead to a compact conservative approximation

of problem (3.3) when the dual maximization model associated with this linear program is

reintroduced into problem (3.3). The authors show that, for a specific choice of a mixed-

integer programming formulation, the resulting “linearized robust counterpart” (LRC) model

is equivalent to employing affine adjustments in the following two-stage representation of

(3.3):

maximize
x∈X ,y(ζ)

min
ζ∈U

N∑
i=1

yi(ζ) (3.4a)

subject to yi(ζ) ≤ ci,kζ (x)T ζ + di,kζ (x) , ∀ i , ∀ k , ∀ ζ ∈ U . (3.4b)

They also show that, under some conditions on the structure of the uncertainty set and

of the mappings ci,kζ (·) and di,kζ (·), this conservative approximation is exact. Furthermore,

they propose a way of improving this approximation using a semi-definite programming

formulation.

In this paper, we extend the scope of the linearization scheme proposed in Ardestani-

Jaafari and Delage (2016a) to the set of two-stage ARO problems that take the form described

in (3.1). In doing so, we offer the following contributions:

• We introduce a new scheme for constructing conservative approximation models (called

linearized robust counterpart models) of two-stage ARO problems with right-hand side

uncertainty.
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• We establish a new interpretation for the conservative approximation models obtained

by employing AARC on a two-stage ARO problem. This interpretation will be based

on popular relaxation methods that are used (e.g., in Sherali and Alameddine (1992))

for approximating bilinear optimization problems.

• We provide a methodology to improve LRC, using linear and conic valid inequalities.

This will lead to a simple procedure that can be used to improve the approximation

obtained using AARC.

• Finally, we discuss the application of the LRC and AARC models in three types of lo-

gistics problems wherein it is possible either to demonstrate exactness of these methods

or improve the quality of their solution using valid inequalities.

The remainder of the paper is organized as follows. In Section 3.2, we introduce the

linearized robust counterpart model associated to an ARO problem with a polyhedral un-

certainty set and we define the notion of a relaxation gap that can be used to bound the

suboptimality of solutions. Next in in Section 3.3, we establish the equivalence between LRC

and AARC models. We follow in Section 3.4 with the description of two methods that can

be used to tighten the approximation obtained through LRC or AARC. These methods are

heavily inspired from the use of linear and conic valid inequality in the process of lineariza-

tion of bilinear problems. Section 3.5 briefly describes how one might extend our results to

general convex sets. Finally, we present three applications to practical logistics problems in

Section 3.6, and we conclude in Section 3.7.

3.2 The linearized robust counterpart model

In order to present the LRC model, we need to make the following three assumptions.

Assumption 1 Let U be a bounded and non-empty polyhedral set defined as U := {ζ|Pζ ≤

q} where P ∈ RnU×nζ , q ∈ RnU .

Assumption 2 Let the ARO model possess relatively complete recourse, namely, that

∀x ∈ X , ∃ y(ζ) : Ax+By(ζ) ≤ Ψ(x)ζ ∀ ζ ∈ U .
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Assumption 3 For all x ∈ X , there exists a feasible ζ, such that the recourse problem is

bounded. In other words, let problem (3.1) be bounded.

The three assumptions described above should not be considered limiting. Considering

Assumption 1, it is typically the case that U includes, at very least, a nominal, or most-

likely, scenario, or most likely, scenario, and that all possible scenarios reside in a bounded

set. Satisfying Assumption 2 is mostly a matter of formulating X so that it does not include

any solutions for which there might be no feasible second-stage solutions, a situation that

is typically associated with an infinite loss. Finally, it is reasonable to assume that problem

(3.1) is bounded in realistic practical problems.

Let us now consider the fact that the ARO model can be formulated as

maximize
x∈X

g(x) (3.5a)

where g(x) is defined as

g(x) := min
ζ∈U

max
y

cTx+ dTy (3.6a)

subject to Ax+By ≤ Ψ(x)ζ . (3.6b)

Based on Assumption 2, one can apply duality theory on the inner maximization problem

to show that g(x) is exactly equal to

g(x) = min
ζ,λ

cTx+ (Ψ(x)ζ)Tλ− (Ax)Tλ (3.7a)

subject to BTλ = d (3.7b)

Pζ ≤ q (3.7c)

λ ≥ 0 , (3.7d)

where λ ∈ Rm is the dual variable associated with constraint (3.6b).

Lemma 3.2.1 Problem (3.7) possesses a feasible solution.

Proof Assumption 3 guarantees that, for all x ∈ X , there exists a feasible ζ̄ for which the

maximization problem in y has a finite optimal value. By the strong duality property, this
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indicates that, for this same ζ̄, the minimization problem in λ also has a finite optimal value

and must therefore have a feasible solution λ̄. Together, the pair (ζ̄ , λ̄) constitutes a feasible

solution for problem (3.7).

In Sherali and Alameddine (1992), the authors employ a linearization scheme that ex-

ploits a set of valid inequalities for a bilinear optimization problem similar to problem (3.7).

In the context that we study here, this scheme leads us to consider that

g(x) = min
ζ,λ

cTx+ tr(Ψ(x)ζλT )− (Ax)Tλ (3.8a)

subject to BTλ = d (3.8b)

Pζ ≤ q (3.8c)

λ ≥ 0 (3.8d)

ζλTB = ζdT (3.8e)

PζλT ≤ qλT (3.8f)

BTλλT = dλT (3.8g)

λλT ≥ 0 , (3.8h)

where tr(·) stands for the trace operator, and where, for any two matrices A and B of the

same dimension n × m, a constraint A ≤ B stands for Aij ≤ Bij for all i = 1, . . . , n and

j = 1, . . . ,m, and similarly for the constraint A = B. Note that, in this model, constraints

(3.8e) to (3.8h) are a set of redundant constraints that were added to problem (3.7). In

particular, constraint (3.8e) is implied from

(3.7b)⇒ BTλζT = dζT ⇒ ζλTB = ζdT .

Moreover, constraints (3.8g)-(3.8h) can be similarly derived:

(3.7c)&(3.7d)⇒ PζλT ≤ qλT ,

(3.7b)⇒ BTλλT = dλT ,
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(3.7d)⇒ λλT ≥ 0 .

We next linearize problem (3.8) by introducing the variables ∆ ∈ Rnζ×m and Λ ∈ Rm×m,

respectively defined as ∆ := ζλT and Λ := λλT , such that

g(x) = min
ζ,λ,∆,Λ

cTx+ tr(Ψ(x)∆)− (Ax)Tλ (3.9a)

subject to BTλ = d (3.9b)

Pζ ≤ q (3.9c)

λ ≥ 0 (3.9d)

∆B = ζdT (3.9e)

P∆ ≤ qλT (3.9f)

BTΛ = dλT (3.9g)

Λ ≥ 0 (3.9h)

Λ = λλT (3.9i)

∆ = ζλT . (3.9j)

A simple relaxation of problem (3.9) will lead to the linearized robust counterpart model for

problem (3.1).

Proposition 3.2.2 The following linearized robust counterpart model is a conservative ap-

proximation of problem (3.1):

(LRC) maximize
x∈X ,Y,y,S,s

cTx+ dTy − qT s (3.10a)

subject to P TS = Y TBT −Ψ(x)T (3.10b)

Ax+By + ST q ≤ 0 (3.10c)

P T s = −Y Td (3.10d)

s ≥ 0 , S ≥ 0 , (3.10e)

where Y ∈ Rny×nζ , y ∈ Rny , S ∈ RnU×m, and s ∈ RnU .
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Proof We start that relaxing problem (3.9) by removing constraint (3.9j) to get a lower

bound for g(x). Next, we consider that since, when constraints (3.9b) to (3.9f) are satisfied,

one can simply let Λ̂ := λ̂λ̂T in order to satisfy constraints (3.9g)-(3.9i), the problem stays

the same when disregarding Λ and the three constraints (3.9g)-(3.9i). Hence, we obtain a

lower bound for g(x) in the form

g(x) ≥ gLRC(x) := min
ζ,λ,∆

cTx+ tr(Ψ(x)∆)− (Ax)Tλ (3.11a)

subject to BTλ = d (3.11b)

Pζ ≤ q (3.11c)

∆B = ζdT (3.11d)

P∆ ≤ qλT (3.11e)

λ ≥ 0 . (3.11f)

Since, based on Lemma 3.2.1, there exists a solution (ζ̂ , λ̂) that satisfies constraints (3.11b),

(3.11c), and (3.11f), one can confirm that the triplet (ζ̂ , λ̂, ∆̂), with ∆̂ := ζ̂ λ̂T , is a feasible

solution to problem (3.11). Hence, strong duality applies for problem (3.11) so that it can

be equivalently represented as

gLRC(x) = max
Y,y,S,s

cTx+ dTy − qT s (3.12a)

subject to P TS = Y TBT −Ψ(x)T (3.12b)

Ax+By + ST q ≤ 0 (3.12c)

−P T s = Y Td (3.12d)

s ≥ 0 , S ≥ 0 , (3.12e)

where the variables y ∈ Rny , s ∈ RnU , Y ∈ Rny×nζ , and S ∈ RnU×m are the dual variables

associated with constraints (3.11b), (3.11c), (3.11d), and (3.11e) respectively. We next

combine problem (3.12) with the maximization over variable x ∈ X , which leads to LRC

(3.10).
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In order to provide a relation between the optimal solution of ARO and the optimal solution

of LRC, we first introduce the notion of a relaxation gap.

Definition Assuming that, for all x ∈ X , gLRC(x) is positive definite, i.e., gLRC(x) ≥ 0, the

relaxation gap γ of gLRC(x) is defined as the bound on the largest achievable ratio between

the value obtained by gLRC(x) and the one obtained by g(x) for any feasible solution x, i.e.,

gLRC(x) ≤ g(x) ≤ γgLRC(x) , ∀x ∈ X . (3.13)

Next, we establish that, if one can identify a bound on the relaxation gap of gLRC(x),

then this automatically provides a bound on the suboptimality of the solution returned by

this model.

Proposition 3.2.3 Let x̂ and gLRC(x̂) respectively be the optimal solution and optimal value

of LRC (3.10); then, both the actual worst-case value of x̂, i.e., g(x̂), and the estimated worst-

case value gLRC(x̂) are less than a factor of γ away from the optimal value of problem (3.1),

where γ is the relaxation gap of gLRC(x).

Proof Given that x∗ is the optimal solution of problem (3.1) and x̂ is the optimal solution

of problem (3.10), this indicates that

gLRC(x∗) ≤ gLRC(x̂) ≤ g(x̂) ≤ g(x∗) , (3.14)

where the second inequality is implied from the fact that gLRC(x) is a conservative approxi-

mation of g(x) for all x ∈ X . Combining (3.13) and (3.14) results in

gLRC(x∗) ≤ gLRC(x̂) ≤ g(x̂) ≤ g(x∗) ≤ γgLRC(x∗) ≤ γgLRC(x̂) ,

and consequently, it results in

gLRC(x̂) ≤ g(x̂) ≤ g(x∗) ≤ γgLRC(x̂) .
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Furthermore, while it is known that evaluating the worst-case value of a given first-stage

solution, i.e., evaluating g(x), is computationally intractable, we can show that it is possible

to efficiently evaluate a bound on the worst-case value of the solution of the LRC model.

Lemma 3.2.4 Given that x̂ is the optimal solution of LRC (3.10) and (λ̂, ζ̂, ∆̂) is the

optimal solution of problem (3.11), when x is fixed to x̂, we have that

0 ≤ g(x̂)− gLRC(x̂) ≤ λ̂TΨ(x)ζ̂ − tr(Ψ(x)∆̂)

Proof Given that (λ̂, ζ̂) is a feasible solution of problem (3.6) when x is fixed to x̂, and

since gLRC(x̂) = cT x̂+
∑

ij Ψ(x)ij∆̂ji − (Ax̂)T λ̂, this indicates that

0 ≤ g(x̂)− gLRC(x̂) ≤ (Ψ(x)ζ̂)T λ̂− tr(Ψ(x)∆̂) .

3.3 Relation to AARC

In this section, we explain how the LRC model can be considered equivalent to the

conservative approximation model obtained with AARC.

Proposition 3.3.1 LRC (3.10) is equivalent to AARC (3.2).

Proof Proof. As a first step, we reformulate problem (3.11) in terms of an inner and an

outer minimization operation:

gLRC(x) = min
ζ∈U

min
λ,∆

cTx+ tr(Ψ(x)∆)− (Ax)Tλ (3.15a)

subject to BTλ = d (3.15b)

∆B = ζdT (3.15c)

P∆ ≤ qλT (3.15d)

λ ≥ 0 . (3.15e)

We next derive the dual formulation of the inner minimization over λ and ∆ as

max
y,Y,S

cTx+ dT (y + Y ζ) (3.16a)

subject to Ax+By + ST q ≤ 0 (3.16b)
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P TS = Y TBT −Ψ(x)T (3.16c)

S ≥ 0 , (3.16d)

where y ∈ Rny , Y ∈ Rny×nζ and S ∈ RnU×m are the dual variables associated with constraints

(3.15b), (3.15c), and (3.15d) respectively. Based on Sion’s minimax theorem, since U is

bounded, the same value for gLRC(x) can be obtained by reversing the order of minimization

over ζ and maximization over y, Y , and S. Equivalently, we have that

gLRC(x) = max
y,Y,S

min
ζ∈U

cTx+ dT (Y ζ + y) (3.17a)

subject to Ax+By + ST q ≤ 0 (3.17b)

P TS = Y TBT −Ψ(x)T (3.17c)

S ≥ 0 . (3.17d)

We next consider the ith row of constraint (3.17b) and the ith column of constraint (3.17c):

Ai:x+Bi:w + (S:i)
T q ≤ 0, (3.18a)

P TS:i = Y T (Bi:)
T − (Ψ(x)i:)

T (3.18b)

where Ai:, Bi:, and Ψ(x)i: denote the ith row of matrices A, B, and Ψ(x) respectively, and

S:i denotes the ith column of matrix S. We show that constraints (3.18a) and (3.18b) are

equivalent to

Ai:x+Bi:(Y ζ + y) ≤ Ψ(x)i:ζ, ∀ ζ ∈ U . (3.19)

We do so by considering that S is not in the objective function so that we can remove S

from the set of decision variables and instead replace constraints (3.18a) and (3.18b) with

min
S:i

Ai:x+Bi:w + (S:i)
T q ≤ 0 , (3.20a)

subject to P TS:i = XT (Bi:)
T − (Ψ(x)i:)

T , (3.20b)
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where the embedded minimization problem can be replaced by a maximization problem using

duality theory. This leads us to considering constraint (3.20) as equivalent to

max
ζ

Ai:x+Bi:w + (XT (Bi:)
T − (Ψ(x)i:)

T )T ζ ≤ 0 ,

subject to Pζ ≤ q

with ζ as the dual variable of (3.20b). We have thus confirmed that constraints (3.18a)

and (3.18b) are equivalent to (3.19), and likewise that constraints (3.17b) and (3.17c) are

equivalent to constraint (3.2b). Therefore, the LRC model (3.10) is equivalent to the AARC

model (3.2).

3.4 Improving LRC and AARC Using Valid Inequalities

In this section, we identify two types of valid inequalities that can be employed to

formulate improved versions of LRC that provide tighter conservative approximations. First,

we will make use of valid linear inequalities that can be derived from an implicit upper bound

on the optimal solution for λ in problem (3.7). This process will lead to a modified LRC

model that preserves the computational complexity of LRC. Secondly, we will identify a set

of conic valid inequalities that will lead to a semi-definite programming formulation for LRC.

We start with a simple assumption that can be used to generate helpful valid inequalities

for problem (3.7) and obtain our Modified LRC (MLRC) model.

Assumption 4 There exists a bounding vector u ∈ Rm such that, for all x ∈ X and for all

ζ ∈ U , there exists an optimal solution λ∗ ≤ u for the problem

minimize
λ

(Ψ(x)ζ − Ax)Tλ (3.21a)

subject to BTλ = d (3.21b)

λ ≥ 0 . (3.21c)
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Proposition 3.4.1 Given Assumption 4, the following modified linearized robust counter-

part model is a conservative approximation to problem (3.1):

(MLRC) maximize
x∈X ,Y,y,S,s,W,w

cTx+ dTy − qT s− uTw − uTWq (3.22a)

subject to Y TBT − P T (S −W ) = Ψ(x)T (3.22b)

Ax+By + (S −W )T q − w ≤ 0 (3.22c)

−P T (s+Wu) = Y Td (3.22d)

s ≥ 0 , S ≥ 0 , w ≥ 0 , W ≥ 0 , (3.22e)

where Y ∈ Rny×nζ , y ∈ Rny , S ∈ RnU×m, s ∈ RnU , W ∈ RnU×m, and w ∈ Rm. Furthermore,

the optimal value of problem (3.22) is necessarily larger than or equal to the optimal value

of LRC (3.10).

Proof Given that Assumption 4 is satisfied, the following constraints are valid inequalities

for problem (3.7) in the sense that they can be added to this problem without affecting its

optimal value:

λ ≤ u (3.23a)

(q − Pζ)(u− λ)T ≥ 0 (3.23b)

where constraint (3.23b) can be linearized by replacing ∆ := ζλT as

P∆ ≥ qλT − (q − Pζ)uT . (3.24)

Adding constraints (3.23a) and (3.24) to problem (3.11) leads to MLRC after applying duality

theory.

One might consider that Assumption 4 is difficult to exploit in practice since λ is a

variable that does not have a clear physical meaning. For this reason, we propose a numerical

procedure that can be used, in a specific problem instance, to identify a u that satisfies this
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useful assumption. We will later show in two practical examples presented in Section 3.6

that a good value for u can also often be obtained analytically.

Proposition 3.4.2 For any fixed k = 1, 2, . . . ,m, one can identify an upper bound uk that

satisfies Assumption 4 by solving the following mixed-integer program

max
x∈X ,ζ∈U ,y,λ,v

λk (3.25a)

subject to Ax+By ≤ Ψ(x)ζ (3.25b)

ATλ = d (3.25c)

λi ≤Mvi , ∀ i (3.25d)

−aTi x− bTi y + ψTi ζ ≤M(1− vi) , ∀ i (3.25e)

λ ≥ 0 , v ∈ {0, 1}m , (3.25f)

where M is a large enough constant. Furthermore, this optimization problem reduces to a

mixed-integer linear program when Ψ(x) = Ψ, i.e., it is independent of x, and the feasible

set X can be represented using linear constraints.

Proof For any fixed x ∈ X and ζ ∈ U , it is well known that a certain λ∗ is optimal in

problem (3.21) if and only if it can be paired to some y∗ so that together they satisfy the

following KKT conditions:

Ax+By∗ ≤ Ψ(x)ζ (3.26a)

ATλ∗ = d (3.26b)

λ∗ ≥ 0 (3.26c)

λ∗i (−aTi x− bTi y∗ + Ψ(x)Ti ζ) = 0 , ∀ i . (3.26d)

It is therefore clear that, by solving the following optimization problem, one gets a valid

candidate for uk:

maximize
x∈X ,ζ∈U ,y,λ

λk
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subject to Ax+By ≤ Ψ(x)ζ

ATλ = d

λ ≥ 0

λi(−aTi x− bTi y + Ψ(x)Ti ζ) = 0 , ∀ i .

One can finally linearize the complementary slackness conditions by introducing binary vari-

ables into this problem, i.e., vi ∈ {0, 1} stating whether λi is equal to zero or not. This leads

to problem (3.25).

As for the original LRC model, one can uncover an intimate connection between MLRC

and conservative approximations that are obtained using AARC. This connection is made

explicit in the following proposition.

Proposition 3.4.3 The MLRC (3.22) is equivalent to applying affine adjustments to the

following two-stage problem:

maximize
x∈X ,y(ζ),z(ζ)

min
ζ∈U

cTx+ dTy(ζ) + uT z(ζ) (3.27a)

subject to Ax+By(ζ) ≤ Ψ(x)ζ + z(ζ), ∀ ζ ∈ U (3.27b)

z(ζ) ≥ 0 , ∀ ζ ∈ U . (3.27c)

Note that the optimal affine adjustments obtained from solving model (3.27) might not

be implementable practically, as their only purpose is to identify good first-stage decisions.

This means that once x∗ is implemented and ζ̄ is observed, it is important to solve the specific

recourse problem that is being experienced, i.e., maximizey d
Ty, subject to Ax∗ + By ≤

Ψ(x∗)ζ̄.

Proof Adding constraints (3.23a) and (3.24) to problem (3.11) leads to the following for-

mulation:

gMLRC(x) := min
ζ,λ,∆

cTx+ tr(Ψ(x)∆)− (Ax)Tλ (3.28a)
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subject to BTλ = d (3.28b)

Pζ ≤ q (3.28c)

∆B = ζdT (3.28d)

P∆ ≤ qλT (3.28e)

0 ≤ λ ≤ u (3.28f)

P∆ ≥ qλT − (q − Pζ)uT . (3.28g)

Similarly to what was described in the proof of Proposition 3.3.1, the function gMLRC(x) can

be reformulated as

gMLRC(x) = max
Y,y,W,w,S

min
ζ∈U

cTx+ dT (Y ζ + y) + uT (w +W T (q − Pζ)) (3.29a)

subject to P TS = Y TBT −Ψ(x)T + P TW (3.29b)

Ax+Bw + ST q ≤ W T q + w (3.29c)

S ≥ 0 (3.29d)

w ≥ 0 , W ≥ 0 , (3.29e)

where w ∈ Rm andW ∈ RnU×m are respectively the dual variables associated with constraints

(3.28f) and (3.28g). Again, the constraints (3.29b)-(3.29d) can be replaced with

Ax+B(Y ζ + y) ≤ Ψ(x)ζ + w +W T (q − Pζ), ∀ ζ ∈ U ,

and decision variable S removed from the optimization problem. In this way, we obtain

gMLRC(x) = max
Y,y,W,w

min
ζ∈U

cTx+ dT (Y ζ + y) + uT (w +W T (q − Pζ)) (3.30a)

subject to Ax+B(Y ζ + y) ≤ Ψ(x)ζ + w +W T (q − Pζ), ∀ ζ ∈ U(3.30b)

w ≥ 0 , W ≥ 0 . (3.30c)

We next introduce new variables z and Z as

z := w +W T q , Z := −W TP ,
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where z ∈ Rm and Z ∈ Rm×nζ . Therefore, problem (3.29) can be reformulated as

gMLRC(x) = max
Y,y,W,Z,z

min
ζ∈U

cTx+ dT (Y ζ + y) + uT (z + Zζ) (3.31a)

subject to Ax+B(Y ζ + y) ≤ Ψ(x)ζ + z + Zζ, ∀ ζ ∈ U (3.31b)

Z = −W TP (3.31c)

z −W T q ≥ 0 (3.31d)

W ≥ 0 . (3.31e)

We finally show that constraints (3.31c)-(3.31e) are equivalent to the following constraint:

z + Zζ ≥ 0 , ∀ ζ ∈ U (3.32)

This is done by considering that, for some fixed j, duality can once again be used to refor-

mulate the constraint that

max
w:j

zj −W T
:j q ≥ 0 (3.33a)

subject to ZT
j: = −P TW:j (3.33b)

W:j ≥ 0 (3.33c)

as the constraint that

min
ζ

zj + Zj:ζ ≥ 0 . (3.34a)

subject to Pζ ≤ q (3.34b)

This completes our proof.

Our second source of improvement for the LRC model comes from considering the

following set of quadratic equalities: Λ ∆T

∆ Ξ

 =

 λ

ζ


[
λT ζT

]
, (3.35)
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where Λ ∈ Rm×m and Ξ ∈ Rnζ×nζ such that, Λ := λλT and Ξ := ζζT . It is well known that

this system of equations can be relaxed using the following matrix inequality Λ ∆T

∆ Ξ

 �
 λ

ζ


[
λT ζT

]
,

where A � B indicates that A − B is in the cone of positive semi-definite matrices. This

non-linear matrix inequality reduces to a linear matrix inequality after applying Schur’s

complement 
Λ ∆T λ

∆ Ξ ζ

λT ζT 1

 � 0 .

This constraint can be added to problem (3.11) with additional valid inequalities involving

Λ and Ξ to obtain the tighter SDP-LRC model.

Proposition 3.4.4 Given Assumption 4, the following semi-definite programming linearized

robust counterpart is a conservative approximation of problem (3.1):

gSDP-LRC(x) = min
ζ,λ,∆,Λ,Ξ

cTx+ tr(Ψ(x)∆)− (Ax)Tλ (3.36a)

subject to BTλ = d (3.36b)

Pζ ≤ q (3.36c)

0 ≤ λ ≤ u (3.36d)

∆B = ζdT (3.36e)

P∆ ≤ qλT (3.36f)

P∆ ≥ qλT − (q − Pζ)uT (3.36g)
Λ ∆T λ

∆ Ξ ζ

λT ζT 1

 � 0 (3.36h)

ΛB = λdT (3.36i)
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PΞP T + qqT ≥ PζqT + qζTP T (3.36j)

0 ≤ Λ ≤ uλT . (3.36k)

Moreover, the optimal value of maxx∈X gSDP-LRC(x) is necessarily larger than or equal to the

optimal value of MLRC (3.22) and LRC (3.10).

Proof We simply start by including the new variables Λ and Ξ and constraint (3.36) in

problem (3.11). One can then realize that constraints (3.9g) and (3.9h) can now help tighten

the feasible region. Finally, a final tightening step can be achieved by exploiting the fact

that Pζ ≤ q implies the following:

q − Pζ ≥ 0⇒ (q − Pζ)(q − Pζ)T ≥ 0⇒ PζζTP T + qqT ≥ PζqT + qζTP T

and that λ ≤ u implies that λλT ≤ uλT , which together lead to constraint (3.36j) after

replacing Ξ := ζζT and Λ := λλT .

Note that, although we presented gSDP-LRC(x) as a minimization problem, a semi-definite

programming duality can be employed to obtain a maximization representation of this func-

tion that can be integrated with the maximization in x as was done with other LRC models.

We however omit the details of this reformulation for aesthetics reasons. Given the con-

nections to AARC that were established regarding the LRC and MLRC models, we suspect

that a similar connection could be obtained for the SDP-LRC model. In fact, the authors of

Ardestani-Jaafari and Delage (2016a) were able to establish such a connection for a special

case of the SDP-LRC model. A quick look at their result suggests that the connection that

could be established here is highly technical and would provide rather limited new insights.

3.5 LRC with A General Uncertainty Set

In this section, we extend our LRC model so that it can accomodate general convex

uncertainty sets, i.e., U is not polyhedral. In this regard, we will instead consider uncertainty

sets that can be represented as

Ugeneral := {ζ ∈ Rnζ | fl(ζ) ≤ ql, ∀ l = 1, . . . , L} (3.37)
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using a set of convex fl(·) functions. To establish an extension of LRC, we will need to make

use of perspective functions which are defined next.

Definition The perspective of a convex function f : Rnζ → R is the function h : Rnζ ×R→

R defined as h(ζ, t) := tf(ζ/t). It is well known that the function h(ζ, t) is jointly convex in

ζ and t if f(ζ) is a convex function.

Under the uncertainty set Ugeneral, when Assumption 4 is satisfied, the value of g(x)

becomes

g(x) = min
ζ,λ

cTx+ (Ψ(x)ζ)Tλ− (Ax)Tλ (3.38a)

subject to BTλ = d (3.38b)

fl(ζ) ≤ ql, ∀ l (3.38c)

0 ≤ λ ≤ u (3.38d)

ζλTB = ζdT (3.38e)

λifl(ζ) ≤ λiql , ∀ i , ∀ l (3.38f)

(ql − fl(ζ))(ui − λi) ≥ 0 , ∀ i , ∀ l . (3.38g)

Similarly as before, this model can be linearized as

gGLRC(x) = min
ζ,λ,∆

tr(Ψ(x)∆)− (Ax)Tλ (3.39a)

subject to BTλ = d (3.39b)

fl(ζ) ≤ ql, ∀ l (3.39c)

0 ≤ λ ≤ u (3.39d)

∆B = ζdT (3.39e)

hl(∆:i, λi) ≤ ql , ∀ i , ∀ l (3.39f)

hl(ζui −∆:i, ui − λi) ≤ ql(ui − λi) , (3.39g)
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where constraint (3.39f) is derived from

fl(ζ) ≤ ql ⇒ λifl(ζ) ≤ qlλi ⇒ h(∆:i, λi) = λifl

(
ζλi
λi

)
≤ qlλi

and constraint (3.39g) is derived from

(
ql−fl(ζ)

)
(ui−λi) ≥ 0⇒ (ui−λi)fl

(
ζ(ui − λi)
(ui − λi)

)
≤ ql(ui−λi)⇒ hl(ζui−∆:i, ui−λi) ≤ ql(ui−λi)

for all i and for all l, and where the term ζλi is linearized through ∆:i. One might apply

duality theory to problem (3.39) to derive an LRC model for problem (3.1) under general

convex uncertainty set. Regarding the relation between this more general LRC model and

AARC, our conjecture is that the problem maximizex∈X gGLRC(x) is exactly equivalent to

employing affine adjustments in problem (3.27) with Ugeneral.

3.6 Examples

In this section, we provide some examples to show how to apply LRC in practice. The

first example is a robust multi-item newsvendor problem that is an instance of problem (3.3)

for which it is possible to identify conditions under which the LRC is an exact model, i.e.,

the relaxation gap γ that is described in Proposition 3.2.3 is equal to one. Moreover, we

describe two logistics applications of ARO wherein LRC can be improved by using the linear

valid inequalities presented in Proposition 3.4.1.

We note that, in this section, in order to be more concise in our descriptions, we let I

and J represent the sets {1, . . . ,m} and {1, . . . , n} respectively, and consider that i ∈ I and

j ∈ J when the membership for i and j is left unspecified.

Example (Multi-item newsvendor problem) Consider the following robust multi-item newsven-

dor problem:

max
x∈X

min
ζ∈U

∑
j

rj min(xj, ζj)− cjxj + sj max
j

(xj − ζj, 0)− pj max(ζj − xj, 0) , (3.40)

where rj, cj, sj, and pj denote price, ordering cost, salvage price, and shortage cost of a

unit of the j-th item, j ∈ J , respectively, and ζj denotes the demand for item j for each j.
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Problem (3.40) is a special case of ARO, as

max
x∈X ,y(ζ)

min
ζ∈U

∑
j

yj(ζ)

subject to yj(ζ) ≤ rjζj − cjxj + sj(xj − ζj) , ∀ j ∈ J , ∀ ζ ∈ U

yj(ζ) ≤ (rj − cj)xj + lj(xj − ζj) , ∀ j ∈ J ,∀ ζ ∈ U .

In Ardestani-Jaafari and Delage (2016a), the authors show that gLRC(x) is tight in this

problem when U is defined as the following uncertainty set:

U = {ζ|ζj = ζ̄j + (δ+
j − δ−j )ζ̂j , δ

−
j ≥ 0, δ+

j ≥ 0 , δ+
j + δ−j ≤ 1 , ∀ j ,

∑
j

δ+
j + δ−j = Γ} ,

and when Γ is an integer value. Furthermore, one could explore for other uncertainty set

whether it is possible to get a tighter conservative approximation by employing Proposition

3.4.1. Yet, one can show that the dual variables of the recourse problem are implicitly

bounded in this multi-item newsvendor problem. Specifically, the dual problem takes the

shape of

min
λ1,λ2

∑
j

λ1
j(rjζj − cjxj + sj(xj − ζj)) +

∑
j

λ2
j((rj − cj)xj + lj(xj − ζj))

subject to λ1
j + λ2

j = 1 , ∀ j ∈ J ,

λ1 ≥ 0 , λ2 ≥ 0 ,

which already implies that λ1 ≤ 1 and λ2 ≤ 1 at optimum. Hence, MLRC model (3.22) with

u = 1 becomes trivially equivalent to LRC model (3.10) in this case. In order to obtain a

tighter conservative approximation, one should instead employ the SDP-LRC approximation

model.

Example (Location-transportation problem) The robust location-transportation problem

can be formulated as

maximize
x,y(ζ),v

min
ζ∈U

−
∑
i

cixi − kivi +
∑
i

∑
j

ηijyij(ζ) (3.41a)
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subject to
∑
i

yij(ζ) ≤ ζj , ∀ j ∈ J , ∀ ζ ∈ U (3.41b)∑
j

yij(ζ) ≤ xi , ∀ i ∈ I , ∀ ζ ∈ U (3.41c)

y(ζ) ≥ 0 , ∀ ζ ∈ U (3.41d)

0 ≤ xi ≤Mvi , ∀ i ∈ I (3.41e)

vi ∈ {0, 1} , ∀ i ∈ I . (3.41f)

In this problem, variable vi indicates that, if there is an open facility in location i for each

i ∈ I, variable xi denotes the production capacity of the facility i, and variable yij denotes

how many goods are shipped from facility i to customers at location j, with j ∈ J . The

demand for location j is characterized by ζj. Parameter ηij > 0 denotes the unit revenue

of goods shipped from facility i to customer j, while ci and ki denote variable and fixed

capacity cost for facility i respectively.

Here, the dual formulation of the recourse function takes the form

minimize
λ1,λ2,λ3

∑
j

ζjλ
1
j +

∑
i

xiλ
2
i (3.42a)

subject to λ1
j + λ2

i − λ3
ij = ηij , ∀ i ∈ I , ∀ j ∈ J (3.42b)

λ1 ≥ 0 , λ2 ≥ 0 , λ3 ≥ 0 , (3.42c)

where λ1, λ2, and λ3 ∈ Rm×n are dual variables associated with constraints (3.41b)-(3.41d)

respectively. Since the objective function of problem (3.42) is non-decreasing in λ1 and λ2,

one can conclude that, at optimum, each term of λ1∗ and λ2∗ will be such that it will be

involved in at least one active constraint among the set of constraints

λ1
j + λ2

i ≥ ηij , ∀ i ∈ I , ∀ j ∈ J .

It must therefore be that

λ1∗
j ≤ max

i
ηij − λ2∗

i ≤ max
i
ηij = u1

j , ∀ j ∈ J ,
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and that

λ2
i ≤ max

j
ηij − λ1∗

j ≤ max
j
ηij = u2

j , ∀ i ∈ I .

Finally, since λ3∗
ij = λ1∗

j +λ2∗
i −ηij, one could conclude that λ3

ij ≤ u3
ij := maxi ηij+maxj ηij−ηij

but this constraint would be redundant in problem (3.42) after imposing the upper bounds

on λ1 and λ2, so that one can leave u3 = ∞. Based on Propositions 3.4.1 and 3.4.3, we

know that it is possible to obtain a tighter conservative approximation to problem (3.41) by

employing affine adjustments in the following augmented model:

maximize
x,y(ζ),z1(ζ),z2(ζ),z3(ζ),v

min
ζ∈U

−
∑
i

cixi −KiIi +
∑
i

∑
j

ηijyij(ζ) + u1T z1(ζ) + u2T z2(ζ)

subject to
∑
i

yij(ζ) ≤ ζj + z1
j (ζ) , ∀ j ∈ J , ∀ ζ ∈ U∑

j

yij(ζ) ≤ xi + z2
i (ζ) , ∀ i ∈ I , ∀ ζ ∈ U

y(ζ) ≥ 0 , ∀ ζ ∈ U

z1(ζ) ≥ 0 , z2(ζ) ≥ 0 , ∀ ζ ∈ U

0 ≤ xi ≤Mvi , ∀ i ∈ I

vi ∈ {0, 1} , ∀ i ∈ I .

where z1 : Rn → Rn and z2 : Rn → Rm can be interpreted as violation adjustments

for constraints (3.41b) and (3.41c). In Ardestani-Jaafari and Delage (2016b), the authors

employed a special case of such a conservative approximation where z2 = 0, and showed

that there exist instances of the location-transportation problem for which this conservative

approximation is strictly tighter than employing affine adjustments directly on model (3.41).

Example (Multi-product assembly problem (Shapiro et al. 2014) Page. 9) In this problem, a

manufacturer produces n products using m different types of parts. It is a two-stage problem

wherein the manufacturer pre-orders xi units for part i ∈ I with a cost of ci per unit in the

first stage; and when demand is realized, it must be determined how many products to make,

yj for each product j ∈ J . The robust multi-product assembly problem can be formulated
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as follows:

maximize
x,y(ζ)

min
ζ∈U

−cTx+ (q − l)Ty(ζ) + sT (x− Ay(ζ)) (3.43a)

subject to y(ζ) ≤ ζ , ∀ ζ ∈ U (3.43b)

Ay(ζ) ≤ x ,∀ ζ ∈ U (3.43c)

y(ζ) ≥ 0 ,∀ ζ ∈ U (3.43d)

0 ≤ x ≤M , (3.43e)

where ζ ∈ Rn is the uncertain demand for each product and where parameters q and l

denote, respectively, the selling price and the production cost per unit of the products, while

s denotes the salvage unit value of unused parts. Finally Aij denotes the number of units of

part i that is required to assemble product j.

As was done for the previous example, one can hope to identify a tighter conservative

approximation by applying an affine adjustment on the following augmented model:

maximize
x,y(ζ),z1(ζ),z2(ζ)

min
ζ∈U

−cTx+ (q − l)Ty(ζ) + sT (x− Ay(ζ)) + u1T z1(ζ) + u2T z2(ζ)(3.44a)

subject to y(ζ) ≤ ζ + z1(ζ) ,∀ ζ ∈ U (3.44b)

Ay(ζ) ≤ x+ z2(ζ) ,∀ ζ ∈ U (3.44c)

y(ζ) ≥ 0 , ∀ ζ ∈ U (3.44d)

0 ≤ x ≤M , (3.44e)

where z1 : Rn → Rn and z2 : Rn → Rm can be interpreted as violation adjustments for

constraints (3.43b) and (3.43c). Yet, in this case, the u bounds are obtained from the dual

problem:

minimize
λ1,λ2

ζTλ1 + xTλ2 (3.45a)

subject to λ1
j +

∑
i

Aijλ
2
i ≥ qj − lj + AT:js , ∀ j ∈ J (3.45b)

λ1 ≥ 0 , λ2 ≥ 0 , (3.45c)
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where λ1 ∈ Rn and λ2 ∈ Rn are the dual variables associated to constraints (3.43b) and

(3.43c). Here again, the objective function is non-decreasing in λ1 and λ2 so that, at op-

timum, each term of these two vectors must be involved in at least one active constraint

among the following set:

λ1
j +

∑
i

Aijλ
2
i ≥ qj − lj + AT:js , ∀ j ∈ J .

This indicates to us that

λ1∗
j ≤ qj − lj + AT:js−

∑
i

Aijλ
2∗
i ≤ qj − lj + AT:js = u1

j ,

and that

λ2∗
i ≤ max

j∈Ji

1

Aij
(qj − lj + AT:js− λ1

j −
∑
i′ 6=i

Aijλ
2∗
i ) ≤ max

j∈Ji

1

Aij
(qj − lj + AT:js) = u2

i ,

where the set of indices Ji := {j |Aij 6= 0}.

We conclude this example with a description of the specific context in which exploiting

the information about the bound u on λ∗ leads to a strictly tighter conservative approxi-

mation. In particular, consider a multi-product assembly problem with three products and

two different types of parts. The cost of parts A and B are respectively $25 per unit and

$5 per unit, while the salvage value is $4 per unit and $1 per unit. Furthermore, the differ-

ence between the selling price and the unit production cost of each product is: $380/unit,

$800/unit, and $1200/unit respectively for products #1 to #3. Next, we have that product

#1 requires 9 units of both parts, product #2 requires 5 units of part B, and #3 requires

9 units of A and 4 units of B. Finally, for products #1 to #3, the nominal demand is re-

spectively of 9000, 10,000, and 8000 units while the worst-case demand for each is 1000,

2000, and 0 units respectively. In this specific context, one can set the bound vectors as

u1 := [ 425 805 1240 ]T and u2 := [ 140 310 ]T . When the budget of uncertainty is set

to Γ = 2, a direct application of affine adjustments on problem (3.43) will lead to the acquisi-

tion of 92,793 parts of type A and 91,000 parts of type B, with a worst-case profit estimated
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at 2.474 million dollars; meanwhile applying affine adjustments on the equivalent formulation

that allows penalized violations, i.e., problem (3.44), results in an order of 81,,000 parts of

type A and 91,000 parts of type B to achieve a worst-case profit estimated at 2.722 million

dollars (namely a 10% increase in profit). This confirms that the MLRC model can provide

a strictly tighter conservative approximation.

3.7 Conclusions

In this paper, we extended the linearization scheme presented in Ardestani-Jaafari and

Delage (2016a) so that it can be used to construct tractable conservative approximation

models for two-stage adjustable robust optimization problems with right-hand side uncer-

tainty. We showed that, as in Ardestani-Jaafari and Delage (2016a), this scheme provides an

alternate interpretation of models obtained through the use of AARC. Yet, by considering

the adversarial problem as a bilinear optimization problem that needs to be linearized, it

becomes very natural to identify modifications based on linear and conic valid inequalities

that will improve LRC and consequently provide tightening procedures for AARC. Based on

these results, it is clear that the LRC model can help clarify the quality of solutions obtained

from AARC and offers a perspective that might help design better approximation methods

for two-stage adjustable robust optimization models. We finally surveyed the types of im-

provement that the models we suggest might offer in three different applications of logistics

problems.
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Conclusion

The main contribution of this thesis is to propose a new scheme, named as the linearized

robust counterpart (LRC) framework, for constructing tractable conservative approximation

models for two-stage robust optimization problem and problems where sums of piecewise lin-

ear functions needs to be robustified. In the context of a profit maximization problem, this

scheme relies on four steps: 1) exploiting duality to represent the recourse problem as a mini-

mization problem; 2) introducing valid inequalities that involve the problematic bilinearities;

3) linearizing the problem by introducing new decision variables; 4) applying duality to get

a compact reformulation in terms of the first-stage decisions. This scheme has many natural

applications including multi-period location-transportation problems, multi-product assem-

bly problems, but also applications that involve sums of piecewise linear function such as

inventory management problems, newsvendor problems, classification problems, brachyther-

apy, etc.

While some might consider that this new scheme lacks in originality given that in many

occasion we showed that it leads to models that can be obtained by using AARC in a clever

way, we argue that this connection instead enriches the LRC framework. Indeed, AARC is a

method that has been abundantly used in the past ten years in the context of many important

applications, therefore all the results contained in this thesis about conditions for exactness

and ways of getting better approximation from LRC can have a direct impact on any of these

applications. From a conceptual perspective, we also believe an important contribution to

have connected AARC to topics such as relaxation gap of a MILP and bilinear programming

which uncovers new possibilities of collaborations between researchers in the fields of robust

optimization and integer programming.

Some interesting future directions of research might be worth exploring based on ideas

presented in this thesis. The first direction of research could involve applying the LRC

framework to multi-stage robust optimization problem, for which the multi-period problem
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discussed in Chapter 2 might constitute a good starting point. Another interesting extension

could be to consider employing the LRC framework in problems where uncertainty affects the

left-hand side of the constraints (a.k.a. uncertainty about the technology matrix) which can

also be used to capture problems with uncertainty about the objective coefficient. This might

actually not be too difficulty given that it simply means that bilinear terms would appear

in problem 3.9 which could be themselves linearized. One might also attempt to identify

additional valid inequalities that might help improve the LRC model or even establish new

conditions that would imply exactness of the LRC model. Last but not least, one should

consider whether the LRC framework can offer additional insights about distributionally

robust optimization, in the spirit of what was established for the distributionally robust

multi-item newsvendor problem in Chapter 1.
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