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RÉSUMÉ

Cette thèse comporte trois essais sur l’évaluation des obligations avec risque de défaut

et des obligations rachetables.

Le premier essai traite de l’impact de l’hétérogénéité d’un groupe de firmes sur

l’écart de crédit moyen du groupe. L’essai propose un modèle de groupe hétérogène de

firmes dans lequel les fondamentaux financiers des firmes présentent des distributions

transversales et des dynamiques temporelles. Le modèle est construit de façon à ce qu’à

chaque instant le prix de chaque obligation soit donné par le modèle de Merton. Utilisant

une approche par simulation, l’essai montre que la forme des distributions transversales

ainsi que les paramètres gouvernant les dynamiques temporelles des fondamentaux ont

un effet sur l’écart de crédit moyen du groupe et sur le biais auquel l’on expose si l’on

venait à ignorer l’hétérogénéité du groupe.

Le deuxième essai a pour but d’estimer la part de l’écart de défaut dans l’écart total

des obligations corporatives. Pour ce faire, l’essai propose une extension de l’approche

standard d’estimation du modèle de Merton à partir des prix d’actions pour y incorporer

l’information sur les taux de défaut historiques tout en prenant en compte l’hétérogénéité

des firmes. Il est démontré que l’approche proposée permet une estimation plus précise

de la part de l’écart de défaut dans l’écart total. L’approche est ensuite appliquée sur un

échantillon de près de 3 millions d’observations journalières de près de 1286 firmes nord-

américaines. L’un des principaux résultats est que l’écart de défaut moyen représente

40% de l’écart total moyen des obligations BBB de maturité 4 ans, soit près des deux

tiers de la part obtenue en ignorant l’information sur les taux de défaut historiques et

près de deux fois la part obtenue en ignorant l’hétérogénéité.

Le troisième essai propose une approche de tarification des obligations rachetables

dans un modèle de taux multi-facteurs. Le problème de tarification est posé sous la forme

d’un programme dynamique. Afin de solutionner le problème, l’essai propose un algo-

rithme récursif basé sur la distribution jointe des facteurs sous la mesure forward, sur les

séries de Chebyshev tronquées et sur la méthode d’intégration par Clenshaw-Curtis. Une

preuve de convergence de l’algorithme pour un nombre quelconque de facteurs gaussiens



est proposée. L’approche est illustrée à l’aide du modèle de Vasicek à deux facteurs, un

modèle choisi pour sa parcimonie. L’effet des différents paramètres du modèle tel que la

corrélation entre les deux facteurs de taux sur la valeur de l’option de rachat est analysé.

L’avantage de l’approche proposée par rapport aux méthodes alternatives est la stabilité

et la précision numérique qu’elle offre dans un temps de calcul raisonnable.

Mots clés: risque de crédit, taux de défaut historiques, estimation, hétérogénéité,

écart de défaut, écart des obligations corporatives, obligations rachetables, modèle

de taux multifacteur, tarification.
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ABSTRACT

This thesis contains three essays on the evaluation of credit risky bonds and callable

bonds.

The first essay deals with the effect of the heterogeneity of a group of firms on the

average credit spread of the group. The essay proposes a model of a heterogeneous group

of firms whose financial fundamentals have cross-sectional distributions and time-series

dynamics. The model is built in such a way that at each point in time, the spread of each

firm is given by the Merton model. Using a simulation approach, it is shown that the

shape of the cross-sectional distributions and the parameters governing the time-series

dynamics of the fundamentals have an effect on the average credit spread of the group

and on the bias to which one is exposed if heterogeneity is ignored.

The second essay aims at estimating the share of the default spread in the total corpo-

rate bond spread. The essay proposes an extension of the standard estimation approach

of the Merton model from equity prices in order to incorporate historical default rates in

the estimation while taking into account the heterogeneity of firms. It is shown that the

proposed approach yields a more accurate estimation of the share of the default spread in

the total spread than the standard approach does. The proposed approach is then applied

on a sample of nearly 3 millions daily observations of 1,286 North American companies.

One of the main results is that the average default spread represents 40% of the total av-

erage spread of BBB bonds with a maturity of 4 years. This share is about two-thirds of

the share obtained if historical default rates are not included in the estimation and twice

the share obtained if heterogeneity is ignored.

The third essay proposes a pricing approach for callable bonds in multifactor interest

rate models. The pricing problem is posed in the form of a dynamic program. To solve

the problem, the essay proposes a recursive algorithm based on the joint distribution of

the factors under the forward measure, on truncated Chebyshev series and on Clenshaw-

Curtis integration. A proof of convergence of the algorithm for any number of Gaussian

factors is proposed. The approach is illustrated under the two-factor Vasicek model

which is chosen for its parsimony. The impact of various parameters of the model such

v



as the correlation between the two interest rate factors on the embedded call price is

analyzed. The advantage of the proposed algorithm compared to alternative methods is

the stability and the numerical accuracy that it offers in a reasonable computing time.

Keywords: credit risk, historical default rates, estimation, heterogeneity, de-

fault spread, corporate bonds spreads, callable bond, multifactor interest model,

pricing.
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Φ(.) individual bond default rate function

Ψ(.) individual bond spread function
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W σ
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xt vector of interest rate factors at time t

xit value of interest rate factor i at time t

r (.) riskless rate as a function of the vector of risk factors xt

Bt (.) value function at time t of a zero coupon bond maturing at time T

Ct (.) callable bond value function
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CHAPTER 1

INTRODUCTION

A bond is a financial security which entitles its holder to: (a) an amount called face

value or principal to be paid at the expiry date of the security which is called maturity

and (b) intermediary payments called coupons due at regular time intervals with the last

payment due at maturity. If the coupons are all equal to zero then the bond is called

a zero coupon bond. Coupons are defined as the product of a coupon rate times the

principal. The coupon rate is usually fixed but can be variable.

Bonds often include several options such as call options, put options, currency op-

tions, convertibility options, caps and floors. A call option allows the issuer of the bond,

to buy back the bond before maturity at a predetermined price. A put option allows the

bondholder to sell back the bond to its issuer before maturity at a predetermined price.

A currency option gives the issuer the right, but not the obligation, to pay coupons and

principal in its currency of choice at predetermined exchange rates. A convertibility op-

tion allows the bond holder to convert the bond into equity thereby exchanging future

coupons and principal payments for dividends. A cap is an option to pay a predeter-

mined fixed rate instead of a floating rate whenever the floating rate exceeds the fixed

rate. A floor is an option to receive a predetermined fixed rate instead of a floating rate

whenever the floating rate drops below the fixed rate.

The value of a bond depends on several risk factors including interest rate risk, de-

fault risk, liquidity risk, macroeconomic risks and embedded options risks. Interest rate

risk is the risk that interest rates rise or fall in the markets. While rising rates reduce

the bond value, decreasing rates imply lower coupon rates on new fixed rate issues and

on floating rate notes. Default risk is the risk that the issuer of the bond misses the

promised payments. Liquidity risk is the risk that the demand for the bond is so weak

that one might have to offer a premium on the price in order to attract buyers. Macroe-

conomic risks include inflation risk which erodes the currency value and the risk of an

economic downturn that generates losses in financial markets and raises investors’ risk



aversion. Embedded options add additional risks in the bond such as the risk of an early

call or put, the risk of conversion to equity and currency risks.

Each risk source is so complex to analyze that there is a specialized literature for

each of them. This thesis deals separately with two risk factors: default risk and call

risk.

In default risk analysis, it is important to distinguish between corporate bonds and

sovereign bonds. Default risk for corporate bonds is mainly driven by the financial

health of the specific bond issuer. This financial health is generally measured by several

indicators including: leverage, interest coverage ratio, earnings stability, return on assets,

working capital to assets and reserves to assets among others. On the other hand, the

default risk of a sovereign entity is mainly driven by the economic shape of the country

and its political climate. In this thesis, our default risk analysis will focus on corporate

bonds.

Bonds are generally valued by discounting their future cash flows at the required rate

of return. This rate of return is determined as the rate of return on riskless securities

plus an appropriate spread that compensates the bondholder for the risks incurred. The

riskless rate is generally assumed to be the rate of return on the US government T-bills in

such a way that the difficulty in bonds valuation is to determine the appropriate spread.

In the case of default risk, the appropriate spread is generally called credit spread. It

is clear that the credit spread should compensate the bond holder at least for the expected

loss due to default. For instance, if the probability of default is 1%, and the loss given

default is 60% of the bond value then the appropriate spread should be at least equal

to 60 basis points (bps). Actually, the observed credit spreads on the market are much

higher than the expected default loss because investors require a risk premium on top of

the expected loss. This risk premium is the investor’s profit. In other words, investors

value bonds as if the probability of default risk were higher than what it actually is.

The default probability that justifies the observed spreads is commonly termed the risk

neutral default probability. The actual default probability is commonly termed physical

or objective default probability. Thus, finding the credit spread consists of finding the

risk neutral default probability and the loss given default. Alternatively, it consists of
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finding the physical default probability, the risk premium and the loss given default.

Several models have been developed in the literature for the valuation of corporate

bonds in the presence of default risk. They may be classified in five categories: re-

gression models, structural models, reduced form models, hybrid models and macro-

structural models. Regression models build and estimate the probability of default of a

firm or its credit spread as a function of the financial ratios of the firm, the characteristics

of the bond and the overall market conditions. Structural models build a mathematical

probabilistic model for the future evolution of the firm assets or cash flows, define the

boundary value of firm assets or cash flows at which default occurs, and solve the model

for the physical default probabilities, the risk neutral default probabilities and credit

spreads. Reduced form models assume that default is an exogenous event that occurs

randomly at a given rate and do not endogenize the link between this default rate and the

financial health of the firm. Hybrid models are regression models where the probability

of default predicted from a structural model is used as an additional explanatory vari-

able. Macro-structural models are structural models where asset values and risk premia

are endogenized and related to macro-economic fundamentals.

The first essay of this thesis studies a problem related to structural models. The

problem arises when one is not interested in an individual bond credit spread but rather

in the average credit spread of a group of bonds. While structural models have widely

been studied in the case of individual bonds, the rigorous study of their predictions at

a group level have not drawn the attention of researchers until recently. Paradoxically,

it is the average spread at a group level that is of interest in many situations. In fact,

it was generally assumed that the prediction of these models at a group level would

be similar to the models’ prediction for a typical firm of the group. This assumption

was generally justified by a homogeneity assumption of the groups considered. Recent

empirical evidence has shown however that the groups in question are actually highly

heterogeneous. The goal of the essay is to study how different forms of heterogeneity

affect average spreads at the group level.

In parallel with the default risk valuation literature, a literature that focuses on corpo-

rate bond spreads decomposition has been developed. This literature attempts to identify
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the different risk factors that are priced in corporate bond spreads and to quantify the pro-

portion of the total spread attributable to each risk factor. The literature has uncovered a

dilemma that is called the credit spread puzzle. The puzzle is that default risk does not

appear to be as important as expected in corporate bond spreads. Traditionally, it was

thought that the main difference between a US government bond and a corporate bond is

that the corporate bond embeds a higher default risk than the US government bond. So it

was thought that the corporate bond spreads were mainly related to default risk. For this

reason, corporate bond spreads were and are still called credit spreads in the literature.

However, some researchers have recently found that default risk may represent less than

20% of corporate bond spreads. This finding has raised two important questions. First

of all, is this figure of 20% accurate? Second, if it is accurate then what explains the rest

of the spreads?

The second essay of this thesis attempts to answer the above first question of the

credit spread puzzle literature. The essay proposes a simple approach based on structural

models which aims at accurately capturing the proportion of corporate bond spreads

attributable to default risk. The approach fully accounts for the heterogeneity problem

discussed in the first essay. The approach is then applied on a large sample of firms

and the share of default risk in the spreads is estimated. The implications of our finding

for the spread decomposition literature, for corporate bond pricing, for risk management

and firms capital structure are discussed.

Bonds with embedded call options are often named callable bonds. Callable bonds

differ from ordinary bonds in four ways. First, the maturity of a callable bond is uncer-

tain. The maturity is decided by the bond issuer when he calls the bond. It is therefore

difficult to assess the length of the period during which the bondholder is exposed to

the bond risks. Second, callable bonds cash flows are uncertain. If the bond is called

then future coupon payments are lost. Third, callable bonds are likely to be called when

interest rates are low in the market compared to the bond coupon rate. As a result, there

is a reinvestment risk in callable bonds. This reinvestment risk is the risk that when the

bond is called, the bondholder is not likely to find similar bonds with the same returns

in which to invest his money. Fourth, callable bonds offer limited capital appreciation
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opportunities. These bonds will always trade around their call price because there is the

permanent risk that the bond is bought back by its issuer at the call price. Fifth, callable

bonds have different sensitivities to market risk factors than ordinary bonds. This is be-

cause the embedded call options also have their own sensitivities to market risk factors.

Because of their complexity, no closed-form formula is available for the pricing of

callable bonds. The literature has therefore focused on developing efficient numeri-

cal algorithms for the pricing of these bonds. The questions studied in this literature

are the questions of numerical instability, convergence, computing speed, and computer

memory requirements. Numerical instability is the problem that a small change in an

input of the model may cause a large change in the computed price. The question of

convergence arises because numerical algorithms often involve a discretization of the

state space and/or the time space. Convergence is the desirable property that as the dis-

cretization becomes finer and finer the computed price becomes virtually constant. The

question of computing speed is natural in the sense that faster algorithms are always

preferable. Computing speed is especially relevant in the context of high frequency trad-

ing, where a millisecond is worth several millions. Finally, numerical algorithms often

requires the storage of large amounts of data in the RAM (Random Access Memory)

of the computer. The computer memory problem arises when the algorithm requires a

larger RAM than what is available.

Although there is a wide empirical evidence that interest rates are explained by at

least two stochastic factors, efficient pricing algorithms for callable bonds are built on

one-factor interest rate models. This is because it is not easy to design multifactor inter-

est rate algorithms that are numerically stable, convergent and have reasonable comput-

ing power requirements.

The third essay of this thesis overcomes this difficulty. It proposes a numerical val-

uation methods of callable bonds under a multifactor interest rate model. The essay

demonstrates that the algorithm has all the desirable properties of an efficient numer-

ical algorithm. The effect of the different model parameters including the correlation

between the factors on the prices are discussed.

The rest of this thesis is divided in 4 chapters. Chapter 2 presents our first essay on
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structural models and average credit spreads. Chapter 3 presents our second essay on the

share of default risk in corporate bond spreads. Chapter 4 presents our third essay on the

pricing of callable bonds. Finally, chapter 5 concludes.
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CHAPTER 2

STRUCTURAL MODELS AND AVERAGE SPREADS: THE ROLE OF

HETEROGENEITY

Structural models of default are models that predict corporate bond spreads from

firm fundamentals such as leverage, asset volatility, debt maturity, recovery rate, payout

rate, tax rate and riskless rate among other fundamentals. Famous structural models in-

clude the Merton [50] model with a zero coupon debt, the Black and Cox [5] model with

bond covenants and debt subordination, the Leland and Toft [43] model with taxes, en-

dogenous default and optimal capital structure, the Longstaff and Schwartz [45] model

with stochastic interest rate, the Collin-Dufresne and Goldstein [14] model with dynamic

leverage and more recently the He and Xiong [32] model with liquidity risk. These mod-

els have wide applications in several areas of finance including bonds valuation, bond

ratings, capital structure analysis, financial distress resolution, bond covenants analysis,

agency problems analysis and financial systems regulations [58].

On the empirical side however, these models have not had much success. Jones

et al. [38] have shown that the pricing error from their extension of the Merton [50]

model to callable bonds are comparable to those of a naive model which assumes that

debt is riskless. Eom et al. [26] tested several structural models including the Merton

[50] model, the Geske [31] model, the Longstaff and Schwartz [45] model, the Leland

and Toft [43] model and the Collin-Dufresne and Goldstein [14] model and they found

that they all underestimate short term spreads and high quality bonds spreads while they

overestimate long term spreads and junk bonds spreads.

The problem with the empirical studies of Jones et al. [38] and Eom et al. [26] is

that their implementations of the models are not calibrated to observed default losses

so that their findings may be due to under-estimations or over-estimations of expected

default loss. Huang and Huang [33] have fixed this problem. They implemented several

of the above models as well as models with jumps and time varying risk premia and they

found that once these models are forced to match historical default experience, they yield



similar spreads and they all underestimate bond spreads, especially at the short end of the

term structure and for high quality bonds. The findings of Huang and Huang [33] were

so striking that they gave rise to a new family of structural models with macroeconomic

risk where there exists some states of the world where default rates are very high and at

the same time Sharpe ratios are very high [3, 9, 11].

A common feature of empirical tests of credit risk models is that they use various

clusterings of the bonds in their samples in order to see whether the model performs

better for a given group of bonds than for another. Various authors such as Elton et al.

[25], Eom et al. [26], Jones et al. [38], Longstaff et al. [47] use clustering by rating cate-

gories as assigned by credit rating agencies to analyze how their models perform for safe

bonds versus junk bonds. Given the well known concerns about the reliability of ratings,

many authors use their own clustering of firms. For instance, Elkamhi et al. [24] grouped

bonds by a measure of distance to default implied by the Merton model. Longstaff et al.

[47] used a two-dimensional grouping by rating category and by economic sector. The

problem with this clustering approach is that it is often assumed that the obtained groups

are homogenous. Many works including the seminal paper of Huang and Huang [33]

and the papers of He and Xiong [32], Leland [41], Leland and Toft [43], Longstaff et al.

[47] make that homogeneity assumption. Yet there is an overwhelming empirical ev-

idence that these groups are highly heterogeneous both in the cross-section and in the

time-series [3, 11, 18, 20, 21, 24, 25, 55].

In this essay, we study how the heterogeneity of a group of bonds in either the cross-

section or the time-series affects the average credit spreads predicted by the Merton

model at the group level. In our model, cross-section heterogeneity arises because firms

in the same group at a given period in time do not necessarily have the same fundamen-

tals. Time-series heterogeneity arises from the fluctuation of these fundamentals over

time while the firms remain in the group. At each point in time, individual bonds are

valued using the Merton model, but the inputs of the Merton model model are revised

over time as the fundamentals of the issuing firm change. Thus, our methodology mimics

the common practice of valuing securities using a given model and frequently calibrating

the inputs of the model to the market.
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A key advantage of our modeling approach is that it allows us to detect the impact, if

any, of dynamic leverage strategies, stochastic volatility and stochastic interest rates on

average spreads, even though these time-series variations in firm fundamentals are not

priced in individual bond values. Our approach differs from that taken in dynamic lever-

age models such as that of Collin-Dufresne and Goldstein [14], in stochastic interest rate

models such as that of Longstaff and Schwartz [45] and in stochastic volatility models

such as that of Zhang et al. [62]. In these models, the time-series variation in the funda-

mentals are priced in individual securities while it is not case in our approach. Besides,

the goal of these models is to examine how much compensation bondholders require

ex-ante for the anticipated fluctuation of firm fundamentals whereas one of the goals of

this paper is to examine how future revisions of the inputs of the Merton model affect the

average spreads predicted by the model. The second advantage of our approach is that

we can detect the impact of the distributions of the heterogeneous fundamentals in the

cross-section on the measured average spreads. This allows us to study how the shape

of these distributions affects the average spreads.

We quantify the biases due to ignoring heterogeneity. Ignoring heterogeneity gen-

erally consists of choosing a representative firm for the group and of taking the average

spread of the group to be the spread of that representative firm as in Huang and Huang

[33]. We consider three choices of representative firms which are the average firm, the

median firm and the firm whose fundamentals are set to the average fundamentals except

asset volatility which is calibrated to average default rates of the group. We study the

biases due to each of these ways of ignoring heterogeneity and we study how the mo-

ments of the distributions in the case of cross-sectional heterogeneity and the parameters

governing the dynamics of the time-series heterogeneity affect the size and sign of these

biases. We also study the impact of the non-heterogeneous fundamentals on the sign and

size of the biases.

There are few other papers that discuss the role of heterogeneity in pricing corporate

bonds. These include Bhamra et al. [3], Chen et al. [11], Cremers et al. [16], David

[20], Feldhutter and Schaefer [29]. This paper distinguishes itself from all these other

contributions in that it is the sole to jointly: (a) use the Merton model for individual bond
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spreads, (b) study the impact of different distribution shapes in the cross-section on the

average spreads and on the heterogeneity biases, (c) model future revisions in the Merton

model inputs such as asset volatility, leverage and interest rate as stochastic processes

and study the impact of the characteristics of these processes on the credit spreads, (d)

simultaneously study several ways of ignoring heterogeneity and to compare the biases

due to each of them and (e) study the impact of non-heterogeneous parameters on the

heterogeneity biases.

The rest of this essay is organized as follows. Section 2.1 describes the framework

of the study. Section 2.2 studies cross-sectional heterogeneity. Section 2.3 studies time-

series heterogeneity. Finally section 2.5 summarizes the findings and concludes.

2.1 The setup

Consider a group of firms i = 1,2, ...,n followed over a discrete time period t =

0,1, ...,τ .

Assume that the market is frictionless i.e, there are no taxes, no indivisibility prob-

lem, no transaction costs, no restrictions on short-selling, securities are perfectly liquid

and there exists a market where one can lend and borrow at the same riskless rate. Fur-

ther assume that the Modigliani-Miller theorem holds in such a way that the firm value is

independent of the firm capital structure and that trading takes place in continuous time.

Assume that a time s, the future evolution of each firm asset value is governed by a

Gauss-Wiener process:

dVit = µisVitdt +σisVitdzit , for all t > s, (2.1)

where µis is the expected rate of return on firm i asset value at time s, σis is the expected

volatility of the return on firm i asset value at time s, dzit is a standard Gauss-Wiener

process under the physical probability measure, and dzit is independent of dz jt for j 6= i.

In the risk neutral world, at time s, future asset values are determined by:

dVit = rsVitdt +σisVitdzQ
it , for all t > s, (2.2)
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where rs is the expected level of the riskless rate of the horizon [s,τ] and dzQ
it is a standard

Gauss-Wiener process under the risk neutral probability measure, and dzQ
it is independent

of dzQ
jt for j 6= i.

The above asset value dynamics are myopic in the sense that at a given period in

time, asset values are projected as if the riskless rate, the expected asset returns and the

asset volatilities will remain constant at their current values in the future. However, it

is recognized ex-ante that at subsequent periods in time, if riskless rates, expected asset

returns or asset volatilities change, their new values will be used to project the asset

values.

Our choice of these myopic asset value dynamics is motivated by the fact that these

dynamics are consistent with how stochastic models are used in practice. An example is

the case of option pricing within the Black-Scholes model. In this model, stock volatil-

ity is assumed to be constant. At each point in time, investors perform the so-called

calibration to market by observing implied volatilities from the option market and use

them as the volatility in the Black-Scholes model. By using the implied volatility in the

Black-Scholes setup, investors are implicitly making the assumption that the volatility

will remain constant at the observed level. Yet, the next day when the market is updated,

it is the new implied volatilities that will be used as inputs to the model. Another ex-

ample is the case of interest rate models with deterministic shifts such as the extended

Vasicek model and the extended CIR models that are designed to be frequently cali-

brated to the market. As the market fluctuates, the models are re-calibrated and their

inputs are revised. However, ex-ante, the change in inputs is ignored in the projection

of interest rate dynamics. These myopic dynamics are often justified by the argument

that it suffices to frequently calibrate the model to market in order to obtain accurate

prices [34]. Asset dynamics in structural models are also frequently calibrated to market

as described in Bharath and Shumway [4], Crosbie and Bohn [17], Elkamhi et al. [24].

Thus our asset dynamics may be viewed as a faithful representation of the practice of

frequent calibration to market.

We further assume that each firm continuously issues new debt of maturity T and

uses the proceeds to retire the existing debt at no profit or loss in such a way that at date
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t, each firm has only two types of securities: equity and a zero-coupon debt of principal

Bit with a constant maturity T . A similar assumption of permanent refinancing is also

made by Leland and Toft [43]. This assumption of permanent refinancing is not bind-

ing for our study. It is made for simplicity reasons only. The role of this assumption is

to ensure that the group always contains bonds with the same maturity T . An alterna-

tive formulation which achieves the same goal and does not require the assumption of

permanent refinancing would be to assume that it is not the same group of firms that is

followed over time and that at each time a new group of firms with debt principal Bit

and debt maturity T is formed. The rest of our analysis would be still valid under this

alternative formulation.

The firms do not pay dividends nor do they do share repurchases. At maturity, in the

event of default by firm i, bondholders of firm i receive the minimum between the asset

value and a fraction ρi of the face value of the debt.

Let θit be the vector of fundamentals 1 of firm i at time t:

θit = (Bit ,Vit ,λit ,σit ,µit ,ρi,rt ,T ) , (2.3)

where:

λit =
Bit

Vit
is the leverage ratio.

Since at each point in time, firm fundamentals except asset value are expected to

remain constant at their current level, individual securities values at given point in time

are given by the Merton [49] model with the sole difference that one must account for

the recovery rate as in Eom et al. [26]. Thus, the equity price of firm i at time t is given

by:

1. By fundamentals, we mean all the parameters required to value the firm liabilities and to assess the
firm physical default rate. It is for this reason that, we include the riskless rate rt and the asset drift µit in
the vector of all firm fundamentals.
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E (θit) = e−rtTEQ
t
[
(Vit+T −Bit)×1{Vit+T>Bit}

]
,

= VitN (d1it (λit))−Bite−rtT N (d2it (λit)) ,

where:

d1it (x) =
− ln(x)+

(
rt +

σ2
it

2

)
(T )

σit
√

T
,

d2it (x) =
− ln(x)+

(
rt−

σ2
it

2

)
(T )

σit
√

T
,

(2.4)

N (.) is the cumulative normal distribution function,

the bond price of firm i at time t is given by:

F (θit) = e−rtTEQ
t
[
Bit×1{Vit+T>Bit}+min(ρiBit ,Vit+T )×1{Vit+T<Bit}

]
,

= Bite−rtT N (d2it (λit))+VitN (−d1it (ρiλit))

+ ρiBite−rtT (N (d2it (ρiλit))−N (d2it (λit))) , (2.5)

the physical default rate of firm i at time t is given by:

Φ(θit) = N (−d3it (λit)) , (2.6)

where:

d3it (x) =
− ln(x)+

(
µit−

σ2
it

2

)
(T )

σit
√

T
,

(2.7)

and the spread of firm i at time t is given by:

Ψ(θit) =−
1
T

ln
(

F (θit)

Bit

)
− rt . (2.8)

Our interest is to measure the average spread of the group of firms over the considered
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time horizon.

Let θ be the vector of the average fundamentals of the group over the considered

period and θmedian be the vector of the median fundamentals of the group over the con-

sidered period. For readability reasons, we will refer to the firm whose vector of funda-

mentals coincides with θ as the average firm and we will refer to the firm whose vector

of fundamentals coincides with θmedian as the median firm. The average firm and the

median firm need not be physical firms 2.

Define θHH as the vector of parameters where all parameters except asset volatil-

ity are equal to their average values in the group over the considered period, and asset

volatility is determined in such a way that the average default rate of the group of firms

over the period is equal to the default rate of the firm with parameter θHH , i.e.

Φ(θHH) =
1

n(τ +1)

n

∑
i=1

τ

∑
t=0

Φ(θit) . (2.9)

For readability reasons, we will often refer to the firm whose vector of fundamentals

coincides with θHH as the HH firm and we will refer to the volatility of the HH firm as

the HH volatility 3.

Now define the following four estimators of average spread: the ATA estimator, ATM

estimator, the HH estimator and the HBF estimator respectively.

Definition The ATA (read At-The-Average) estimator of the average spread is Ψ
(
θ
)
,

the spread of the average firm.

Definition The ATM (read At-The-Median) estimator of the average spread is Ψ(θmedian),

the spread of the median firm.

2. The notions of average firm and median firm are abstract statistical concepts. In practice, there may
be no firm in the group whose vector of fundamentals coincides with either θ or θmedian. However, it is
always possible to find statistically θ or θmedian.

3. The notion of HH firm is also an abstract mathematical concept. In practice, there may be no firm in
the group whose vector of fundamentals coincides with θHH . However, it is always possible to calculate
θHH . This is because the default rate function is strictly increasing in asset volatility, can be as close to 0
as one wishes for low enough asset volatility and can be as close to 1 as one wishes for high enough asset
volatility.
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Definition The HH (read Huang and Huang) estimator of the average spread is Ψ(θHH),

the spread of the median firm.

Definition The HBF (read Heterogeneity-Bias-Free) estimator of the average spread is

the average of the spreads of the individual firms in the group over the considered time

period. The HBF estimator is equal to:

ΨT =
1

n(τ +1)

n

∑
i=1

τ

∑
t=0

ΨT (θit) . (2.10)

.

These four estimators are conceptual abstractions of how one might attempt to mea-

sure the average spread of a group of firms. For instance, a very common grouping of

firms in the corporate bond pricing literature is the grouping by rating categories (see

for instance Crouhy et al. [18], Elkamhi et al. [24], Elton et al. [25], He and Xiong

[32], Huang and Huang [33], Jones et al. [38], Leland and Toft [43], Longstaff and

Schwartz [45]). He and Xiong [32], Leland and Toft [43] use the ATA estimator in their

models. Crouhy et al. [18] argued that the ATA estimator may lead to biased measures

because the distribution of fundamentals inside rating categories is skewed. They sug-

gested to use the ATM estimator instead. Huang and Huang [33] used the HH estimator

with the argument that it is essential to calibrate structural models to historical default

rates. Elton et al. [25], Jones et al. [38] used the HBF estimator in their studies.

If firms are observed at one period only, i.e. τ = 0 and the considered group is

homogeneous, i.e, θi0 = θ for i = 1, ...,n then all the four estimators are exactly the

same. Intuitively, this is simply because in this case, θ = θmedian = θHH = θ and the

average of individual spreads is the same as individual spreads.

In principle, none of the four estimators is better or more appropriate than others in

the absolute sense. The appropriateness of an estimator depends on its intended use.

If the goal is to get a measure of what the spread of a typical firm of the group would

be, then the ATM estimator would be appropriate because of potential asymmetries in

the distribution of parameters inside the groups [18].
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If the goal is to compare the model average spread to an historical average spread,

then the appropriate estimator is naturally the same as the one used for the computation

of the historical average spread. For instance, if the historical average has been calcu-

lated using the mean of observed individual spreads in the group, then the equivalent

model average should be calculated using the mean of model individual spreads, that is

using the HBF estimator. If the spread of the firm with the average fundamentals in the

group is observable and the historical average has been taken to be that spread, then the

equivalent model average should be calculated in a similar fashion, that is by using the

ATA estimator.

If calibration to default rates is an important consideration for the intended applica-

tion, for instance in an analysis of corporate bond risk premia, then the HH estimator

would be more appropriate than the ATA and the ATM estimators. In fact, Huang and

Huang [33] have shown that calibration to default rates is essential in order to avoid an

overestimation or underestimation of expected default loss component of the spreads.

A context where the HBF estimator is the appropriate estimator is the following.

Assume that all individual bonds in the group are held in equal weights by an investor.

In this case, the spread earned on the portfolio is given by the average spreads of the

individual spreads in the group, that is, the HBF estimator. This implies that investment

decisions in this portfolio of bonds would be based on the HBF estimator instead of ATA,

ATM or HH estimators.

In the rest of this paper we assume that the HBF estimator is the appropriate estima-

tor. This assumption is justified by two reasons. First, the most common intended use

of a model average spread in the literature of performance tests of structural models is

to compare it with an historical average spread calculated using the mean of observed

individual spreads in the group. Second, the HBF estimator has the intuitive interpreta-

tion of a portfolio average spread. Throughout the rest of this essay, the term average

spreads refer to the HBF average spreads unless otherwise mentioned.

In the rest of the paper we will also be interested in the consequences of using one

of the ATA, ATM or HH estimators instead of HBF estimator. This often happens in

the structural models testing literature, perhaps because it is much easier and simpler to
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use the ATA, ATM or HH estimators than the HBF estimator. Using the HBF estima-

tor entails estimating the fundamentals for all individual firms while average or median

fundamentals are generally available in the literature or could be estimated by economic

arguments. Also average historical default probabilities per such groups as rating cat-

egories or economic sectors are made available to the public by rating agencies. Thus,

using the ATA, ATM or HH estimators saves estimation time.

As explained earlier, using the ATA, ATM or HH estimators does not pose any prob-

lem if the group of firms is homogeneous and is observed at one period of time only.

However, commonly used grouping of firms such as rating categories or economic sec-

tors are highly heterogeneous and are observed over long time periods [3, 24, 25, 45].

This implies that using the ATA, ATM or HH estimators exposes the econometrician to

potential biases. We shall refer to these biases as heterogeneity biases. We shall also

interpret the ATA, ATM or HH estimators as estimators that assume homogeneity or that

ignore heterogeneity.

There are three possible biases: the ATA bias, the ATM bias and the HH bias. These

are the ratios over the HBF estimator of the difference between the HBF estimator and

the ATA estimator, the difference between the HBF estimator and the ATM estimator

and the difference between the HBF estimator and the HH estimator respectively.

In the next sections, we adopt a simulation approach to study the impact of het-

erogeneity on the HBF average spreads and on the heterogeneity biases. This approach

allows us to abstract from sample bias issues and make inferences at the population level.

Besides, it allows us to study the effect of heterogeneity in each fundamental separately

and to vary the distribution shape of one fundamental while keeping the other funda-

mentals constant. The ability to study different distribution shapes is important because

distribution shapes vary widely from groups to groups. For instance, the distribution

of leverage for AA firms is less dispersed than that for BBB firms [55]. Furthermore,

we can generate different asset value paths from Equation 2.1 and use them to evaluate

theoretically the effect of time-series heterogeneity.
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2.2 Cross-sectional heterogeneity bias

Here we assume that τ = 0 so that the group is made of different firms observed at

the initial time period. The firms in the group are heterogeneous in either leverage λi0 or

volatility σi0 but not both. All fundamentals except the heterogeneous one are the same.

To simplify notation, when a fundamental is non-heterogeneous we will not index it by

a subscript. So λ , σ , ρ , r, and µ refer to the non-heterogeneous values of leverage, asset

volatility, recovery rate, riskless rate, and expected asset return respectively.

2.2.1 The simulation procedure

For each heterogeneous fundamental (leverage or volatility), we consider various

distribution shapes and compute the HBF spread and the ATA, ATM and HH biases for

each shape. The simulation procedure is as follows.

For each heterogeneous fundamental, and for each distribution shape, we generate

an heterogeneous sample of n firms by randomly drawing n values of the fundamental

from the distribution. We then compute the ATA, ATM, HH and HBF estimators for this

sample of firms and take the relevant differences and ratios to compute the biases. Next,

we repeat this procedure M times in order to obtain the distributions of the biases of the

ATA, ATM and HH estimators. We then measure the average and the standard errors of

the biases of each estimator. For each estimator, the standard error is calculated as the

standard deviation of the sample of the M biases divided by the square root of M. The bi-

ases and their standard errors are expressed as a percentage of the HBF average spreads.

Along with the biases, we also report the average of the HBF average spreads and its cor-

responding standard error (calculated as the standard deviation of the sample of the M

HBF estimates divided by the square root of M). In the simulations, we choose n= 1000,

about the number of publicly traded and rated firms in the US and M = 10000, a number

large enough so that standard errors are small enough for statistical significance.
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2.2.2 Comparing the HBF average spread and the heterogeneity biases for differ-

ent distribution shapes

In all simulations, we fix µ = 0.13, which is at the midpoint between the values of

0.12 in [42] and of 14.66 in [33], r = 0.05, as in [29], ρ = 0.4, which is well inside

the range of recovery rates in [57] and T = 4, which is close to the average maturity of

BBB firms in [42]. When leverage is the heterogeneous parameter we fix σ = 0.3, which

is close to the median asset volatility in [24], and, when volatility is the heterogeneous

parameter, we fix λ = 0.4, which is close to the average leverage in [24].

We consider 8 distribution shapes of leverage and volatility, mimicking observed

features of these fundamentals inside rating categories or economic sectors, including

uniform distributions, normal distributions and skewed distributions. To calibrate the

distributions, we back out daily leverage ratios and asset volatilities from equity prices of

all North American firms except financial firms common to the databases COMPUSTAT

and CRSP over the period 1984-2013. The sample has about 2.8 Millions firm-days

observations. The characteristics of the distributions are chosen to fit observed ranges or

moments of the distributions of leverage and asset volatility in selected rating categories.

The negative skewness distributions have been observed in selected group of firms of

the economic sector and rating categories. Tables 2.I and 2.II summarize the selected

distributions for leverage and volatility respectively.

Results for the cross-sectional leverage heterogeneity study are shown in table 2.III

and those for the cross-sectional volatility heterogeneity study are shown in table 2.IV.

The tables show the HBF average spread in bps in column 5 and the ATA, ATM and HH

biases as a percentage of the HBF average spread in columns 2, 3 and 4 respectively.

The tables also report standard errors in parenthesis. On can see that the obtained stan-

dard errors are small enough to ensure statistical significance. The results show that the

characteristics of the cross-section distribution of leverage and volatility have an impact

on the measured average spread and on the sign an size of the heterogeneity biases.

First consider leverage heterogeneity.

The two highest average spreads are obtained with the Uniform-HighRange distribu-
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Table 2.I: Selected distribution for the study of cross-sectional leverage heterogeneity

Distribution Matched empirical feature Characteristics

Uniform-LowRange AAA range range=[0.1,0.6446]
Uniform-HighRange BBB range range=[0.13,10.4469]
Normal-LowStd BBB average mean=0.4, sd=0.05
Normal-HighStd BBB average mean=0.4, sd=0.1
Pearson-PosSkew1 AAA first 4 moments mean=0.0876, sd=0.0849,

skewness=1.8, kurto-
sis=6.81

Pearson-PosSkew2 BBB first 4 moments mean=0.4, sd=0.1, skew-
ness=4.88, kurtosis=95.13

Pearson-NegSkew1 Utility-BBB first 4 mo-
ments

mean=1.8011, sd=0.4727,
skewness=-0.4710, kurto-
sis= 2.9398

Pearson-NegSkew2 Communications-AA first
4 moments

mean=0.1175, sd=0.0394,
skewness=-0.6538, kurto-
sis=2.6743

This table describes the considered distributions for the study of cross-sectional
heterogeneity in leverage. To calibrate the distributions, we back out daily
leverage ratios from equity prices of all North American firms (except finan-
cial firms) common to the databases COMPUSTAT and CRSP over the period
1984-2013 . The sample has about 2.8 Millions firm-days observations. The
characteristics of the distributions are chosen to fit observed ranges or moments
of the distributions of leverages in selected groups.
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Table 2.II: Selected distribution for the study of cross-sectional volatility heterogeneity

Distribution Matched empirical feature Characteristics

Uniform-LowRange AAA range range=[0.1384,0.5852]
Uniform-HighRange B range range=[0.1182,4.1037]
Normal-LowStd AA average mean=0.2539, sd=0.03
Normal-HighStd AA first 2 moments mean=0.2539, sd=0.0698
Pearson-PosSkew1 AA first 4 moments mean=0.2539, sd=0.0698,

skewness=0.89, kurto-
sis=4.73

Pearson-PosSkew2 BBB first 4 moments mean=0.3132, sd=0.1943,
skewness=9.31, kurto-
sis=136.01

Pearson-NegSkew1 Technology-AAA first 4
moments

mean=0.2795, sd=0.0492,
skewness=-0.3566, kurto-
sis= 2.474

Pearson-NegSkew2 Capital goods-AAA first 4
moments

mean=0.2642, sd=0.0252,
skewness=-0.7708, kurto-
sis=1.7745

This table describes the considered distributions for the study of cross-sectional
heterogeneity in volatility. To calibrate the distributions, we back out daily
asset volatilities from equity prices of all North American firms (except finan-
cial firms) common to the databases COMPUSTAT and CRSP over the period
1984-2013. The sample has about 2.8 Millions firm-days observations. The
characteristics of the distributions are chosen to fit observed ranges or moments
of the distributions of asset volatility in selected groups.
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tion and the Pearson-NegSkew1 distribution. These two distributions have exceptionally

high average leverages of 528% and 180%, justifying their corresponding high aver-

age spreads of 3492.38 bps and 1819.77 bps respectively. For these two distributions,

the sign of the heterogeneity biases are negative indicating that ignoring heterogeneity

leads to an overestimation of the average spreads. This negative sign contrasts with the

convexity bias argument of David [20] and Feldhutter and Schaefer [29] that the hetero-

geneity bias is positive due to the convexity of the spread function. Actually, the spread

function is indeed convex for low leverage values but it becomes concave for high lever-

age values as shown in figure 2.1. It is this concavity that justifies the negative sign that

we obtain here.

Figure 2.1: The spread predicted by the Merton model as a function of leverage

This graph shows that for a realistic range of leverage as observed in our sample of BBB firms, the spread
function is convex for low leverage values but become concave for high leverage values. Parameter values
are µ = 0.13, σ = 0.3, ρ = 0.4, T = 4, r = 0.05.

The two lowest average spreads are obtained with the Pearson-NegSkew2 and Pearson-

PosSkew1 distributions. These two distributions have very low average leverages of

11.75% and 8.76% respectively justifying their corresponding low average spreads of
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0.62 bps and 3.73 bps respectively. Interestingly, the Pearson-NegSkew2 has a higher

average than the Pearson-PosSkew1 distribution but the first has a lower spread than the

second. This shows that the higher moments of the distributions play an important role in

explaining the obtained average spreads. Indeed, the Pearson-PosSkew1 distribution has

a positive third moment which means that it is asymmetric to the right and admits few

very high leverages that pull the average spread up. In contrast, the Pearson-NegSkew1

has a negative third moment which implies that it is asymmetric to the left and admits

few very low leverages that pull the average spread down. Regarding the heterogeneity

biases, we see that they exceed 40% of the HBF average spread. This strengthens the

point that it is important to account for heterogeneity.

The cases of the normal distributions are interesting in that the average is kept con-

stant while the standard deviation is doubled for the Normal-HighStd distribution versus

the Normal-LowStd distribution. This allows us to isolate the impact of higher disper-

sion on the measured average spread and on the size of the bias. We find that higher

dispersion leads to larger heterogeneity biases. This finding is expected as higher disper-

sion implies larger heterogeneity and, as a result, we expect the effect of heterogeneity to

be stronger. We all also find that higher dispersion leads to larger average spreads. This

finding is due to the fact that the spread function increases more rapidly for leverage

values above the average than for leverage values below the average.

We now turn to cross-sectional volatility heterogeneity.

The two largest average spreads are obtained for the Uniform-HighRange and Uniform-

LowRange distributions. These distributions have the highest average volatilities of

270% and 36% respectively. The exceptionally high average volatility of the Uniform-

HighRange distribution justifies its corresponding exceptionally high average spread of

8818.59 bps. Ignoring heterogeneity in these cases biases the measured average spreads

downward by more than 17% except for the HH bias in the Uniform-LowRange distri-

bution case, where the bias is negative (HH is higher than HBF).

Similarly to the case of leverage heterogeneity, we observe that for the case of the

two normal distributions, the distribution with the larger dispersion shows a higher av-

erage spread and larger heterogeneity biases. The justification is the same as the one for
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leverage heterogeneity.

We also observe that the ATA bias is positive for all the considered cases. This

is because the spread function is convex in volatility over the considered range of pa-

rameters (see Figure 2.2). The ATM bias is also positive for all cases but the for the

Pearson-NegSkew2 distribution. The negative sign of the ATM bias in this case cannot

be justified by a concavity argument since the spread function is convex. In this case,

the negative sign occurs because, for this particular distribution, the median volatility is

well above the average volatility and above the volatility that equalizes the individual

spread function to the average spread. This happens because of the negative skew of the

distribution. It is also because of this negative skew that the ATM bias is lower than the

ATA bias for the Pearson-NegSkew1 distribution. It is for a similar reason that the ATM

bias is higher than the ATA bias for the positive skew distributions since in this case the

median volatility is lower than the average volatility. Consistently with this argument,

the ATA and ATM biases are similar for the symmetric uniform and normal distributions.

Notice that this relation between the ATA bias and the ATM bias also holds in the case

of leverage heterogeneity.

Finally we observe that the HH bias is often negative. This negative sign is also

explained by the relative position of the average volatility and the HH-volatility, i.e. the

volatility such that default probability at this volatility is equal to the average default

probability. A negative sign of the HH bias implies that the HH-volatility is well above

the average volatility and above the volatility that equalizes individual spreads with the

average spread.

Overall, we find that ignoring cross-sectional heterogeneity in leverage or volatility

may severely bias the measured average spreads. The sign and the magnitude of this bias

depends on the characteristics of the distribution. Indeed our results illustrate that the

first three moments are important to understand the sign and size of the biases. These

moments are also important in understanding the variation in average spreads from one

distribution to the other. Another critical determinant of the sign and magnitude of the

bias is the shape of the spread function.
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Table 2.III: Cross-sectional leverage heterogeneity bias (std. err. in parenthesis)

Distribution Heterogeneity bias HBF aver-
age spreads
(bps)

ATA bias ATM bias HH bias

Uniform-LowRange 35.42% 35.36% -0.85% 109.64
(0.013%) (0.038%) (0.002%) (0.035)

Uniform-HighRange -9.91% -9.90% -1097.60% 3491.75
(0.006%) (0.011%) (0.226%) (0.464)

Normal-LowStd 4.33% 4.34% -0.59% 94.85
(0.002%) (0.01%) (0.001%) (0.013)

Normal-HighStd 14.83% 14.84% -1.40% 106.58
(0.007%) (0.019%) (0.001%) (0.025)

Pearson-PosSkew1 99.12% 99.96% 100.00% 3.73
(0.002%) (0.001%) (0.001%) (0.006)

Pearson-PosSkew2 11.48% 32.85% -3.32% 102.61
(0.009%) (0.021%) (0.005%) (0.035)

Pearson-NegSkew1 -3.34% -5.68% -7.27% 1819.92
(0.002%) (0.007%) (0.014%) (0.158)

Pearson-NegSkew2 61.33% 44.54% 100.00% 0.62
(0.017%) (0.037%) (0.001%) (0.001)

This table shows computed ATA, ATM and HH biases (columns 2 to 4) as
a percentage of the HBF average spread (column 5), in the case of cross-
sectional leverage heterogeneity. The ATA (At-The-Average) estimator is
the spread at the average firm. The ATM (At-The-Median) estimator is
the spread at the median firm. The HH (Huang and Huang) estimator is
the spread for the firm whose default probability equals the average default
probability of the heterogeneous group. The HBF (Heterogeneity-Bias-
Free) estimator is the average of the individual spreads. In each simula-
tion, 1000 leverages are randomly drawn from the selected distribution, the
average spread is estimated using the HBF, ATA, ATM and HH estima-
tors respectively and the biases are calculated. The simulation is repeated
10000 times to calculate the average biases and the standard errors of the
estimations. In the simulation the other firm parameters are held constant:
σ = 0.3, µ = 0.13, r = 0.05, ρ = 0.4, T = 4.
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Table 2.IV: Cross-sectional volatility heterogeneity bias (std. err. in parenthesis)

Distribution Heterogeneity bias HBF aver-
age spreads
(bps)

ATA bias ATM bias HH bias

Uniform-LowRange 20.32% 20.30% -9.49% 233.93
(0.01%) (0.036%) (0.006%) (0.066)

Uniform-HighRange 17.56% 17.52% 63.65% 8817.25
(0.007%) (0.028%) (0.009%) (2.266)

Normal-HighStd 10.67% 10.69% -9.20% 43.88
(0.005%) (0.016%) (0.004%) (0.009)

Normal-LowStd 36.18% 36.21% -23.26% 61.50
(0.015%) (0.029%) (0.009%) (0.022)

Pearson-PosSkew1 35.73% 47.74% -27.75% 61.06
(0.013%) (0.027%) (0.011%) (0.026)

Pearson-PosSkew2 35.32% 66.83% 13.43% 170.80
(0.051%) (0.049%) (0.089%) (0.263)

Pearson-NegSkew1 14.84% 8.43% -10.85% 76.67
(0.008%) (0.021%) (0.005%) (0.017)

Pearson-NegSkew2 6.39% -31.51% -5.07% 52.23
(0.003%) (0.012%) (0.003%) (0.007)

This table shows computed ATA, ATM and HH biases (columns 2 to 4) as
a proportion of the HBF average spread (column 5) in the case of cross-
sectional volatility heterogeneity. The ATA (At-The-Average) estimator is
the spread at the average firm. The ATM (At-The-Median) estimator is
the spread at the median firm. The HH (Huang and Huang) estimator is
the spread for the firm whose default probability equals the average default
probability of the heterogeneous group. The HBF (Heterogeneity-Bias-
Free) estimator is the average of the individual spreads. In each simulation,
1000 asset volatilities are randomly drawn from the selected distribution,
the average spread is estimated using the HBF, ATA, ATM and HH estima-
tors respectively and the biases are calculated. The simulation is repeated
10000 times to calculate the average biases and the standard errors of the
estimations. In the simulation the other firm parameters are held constant:
λ = 0.4, µ = 0.13, r = 0.05, ρ = 0.4, T = 4.

26



Figure 2.2: The spread predicted by the Merton model as a function of volatility

This graph shows that for a very wide range of volatility, the spread function is convex. The other model
parameters are as follows µ = 0.13, λ = 0.4, ρ = 0.4, T = 4, r = 0.05.

2.2.3 Effect of other fundamentals on average spreads and heterogeneity biases

In the previous subsection, apart from the heterogeneous fundamentals, the other

fundamentals were kept fixed. In this section, we study the impact of the level of these

other fundamentals on the average spreads and the heterogeneity biases. For space rea-

sons, we specialize on the case of the Pearson-SkewPos2 distributions for the two cases

of leverage and volatility heterogeneity. These distributions also have the advantage that

their first four moments have been calibrated to the observed moments of leverage and

volatility for BBB firms.

To evaluate the effect of the non-heterogeneous fundamentals, we repeat the simula-

tion procedure of the previous subsection for different levels of each non-heterogeneous

fundamentals. The default values of the non-heterogeneous fundamentals are as in the

previous subsection. Results for the cross-section heterogeneity in leverage are shown in

Figure 2.3 and those for the cross-section heterogeneity in volatility are shown in Figure

2.4.
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2.2.3.1 Effect of debt maturity

Figures 2.3 and 2.4 show that the term structure of average spreads has a hump shape.

Average spread is increasing for short maturities and declining for long maturities. As

explained by Merton [50], longer maturities represent longer investment periods and

pose greater risk to the investor in that sense, but, at the same time, they delay the

possibility of a default. For leverage values lower than 1, the first effect dominates in the

short run and the second effect dominates in the long run.

We observe on these figures that the ATA and ATM biases steadily decline with

maturity. Two effects are at play here. First, the average spread tends to increase with

maturity for short maturities so that the denominators of the biases increase. Second,

maturity affects the shape of the spread function. As shown in Figure 2.5, the concavity

of the spread function for high leverage values increases with maturity. This reduces the

convexity effect. Also, as shown in Figure 2.5, the convexity of the spread as a function

of volatility is stronger for shorter maturities than for longer maturities. Thus, the second

effect reduces the numerator of the biases. These two effects explain the decline in the

ATA and ATM biases.

In contrast with the other two, the HH bias tends to increases with maturity, although

there is a slight decline at very short maturities in the case of leverage heterogeneity. The

difference with the two other biases is that maturity also affects θHH through the average

default probabilities in such a way the overall effect is not easily predictable.

2.2.3.2 Effect of recovery rate

As one may have expected, average spreads decrease with recovery rates since the

consequences of default become less severe with higher recovery rates. This decline puts

an upward pressure on the magnitude of the heterogeneity biases. However, recovery

rates also affect the shape of the spread function, so that the effect of recovery rates on

the heterogeneity biases is non-trivial.

In the case of cross-sectional volatility heterogeneity, the convexity of the spread

function becomes more pronounced with higher recovery rates as shown in Figure 2.5.
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This reinforces the convexity effect and puts additional upward pressure on the volatility

heterogeneity biases. The resulting effect of these two upward pressures is an increase

in the biases.

In the case of cross-sectional leverage heterogeneity, for low recovery rates, the con-

cavity of the spread function becomes more pronounced as the recovery rate increases.

This reinforces the concavity effect, putting downward pressures on the biases, but the

opposite effect is observed for high recovery rates. The combination of these pressures

justifies the slight declining trend of the leverage heterogeneity biases for low recovery

rates and their upward trend for high recovery rates.

2.2.3.3 Effect of riskless rate

Higher riskless rates are associated with lower spreads, as the drift in the risk neutral

world is then higher. This first effect tends to increase the magnitude of the heterogeneity

biases. This implies a downward pressure for the HH bias, which is negative, and an

upward pressure for the other biases since they are positive. Additionally, the concavity

of the spread function for high leverages becomes less pronounced in the case of the

leverage heterogeneity, as shown in Figure 2.5, and the convexity of the spread function

becomes more pronounced in the case of the volatility heterogeneity, as shown in Figure

2.6. This second effect tends to increase the biases. Since the two effects operate in the

upward direction for the ATA and ATM biases, they both increase. In the case of HH

bias, the second effect appears to dominate the first and the HH bias also increases.

2.2.3.4 Effect of volatility

In the case of cross-sectional heterogeneity in leverage, average spreads increase

with the asset volatility as expected. This first effect puts a downward pressure on the

magnitude of the heterogeneity biases. This results in an upward pressure for the HH

bias, which is negative, and a downward pressure for the other biases, which are positive.

At the same time, the concavity of the spread function for high leverage values becomes

less pronounced, as shown in Figure 2.5. This second effect puts an upward pressure on
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the biases. The result of these two effects is an increase in the HH bias and a decrease in

the ATA and ATM biases. This suggests that for the ATA and ATM biases, the downward

pressure from the increase in spreads dominates the upward pressure from the shape of

the spread function.

2.2.3.5 Effect of leverage

In the case of cross-sectional heterogeneity in volatility, average spreads increase

with leverage, as expected. This first effect puts a downward pressure on the heterogene-

ity biases. Additionally, the convexity of the spread function becomes less pronounced,

as shown in Figure 2.6. This second effect puts an additional downward pressure on the

biases. As a result of these two downward effects, the biases decline.
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Figure 2.3: Cross-sectional heterogeneity in leverage: Effect of non-heterogeneous fundamentals on average spreads and
heterogeneity biases
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Figure 2.4: Cross-sectional heterogeneity in volatility: Effect of non-heterogeneous fundamentals on average spreads and
heterogeneity biases
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Figure 2.5: Spread as a function of leverage: Effect of other firm fundamentals
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Figure 2.6: Spread as a function of volatility: Effect of other firm fundamentals
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2.3 Time-series heterogeneity bias

In this section, we consider the case where n = 1, and we study the impact of future

variations in leverage, asset volatility and riskless rate on the average spread of the firm

over the horizon [0,τ]. We remind the reader that even though leverage, asset volatility

and riskless rate vary over time, our model of average spread is different from exis-

tent dynamic leverage models, stochastic volatility models and stochastic interest rate

models. In these models, future variations in debt principal, volatility or interest rates

are explicitly priced in individual bond values at each point in time. In contrast, in our

model, individual bond values at each point in time assume, in a myopic way, that debt

principal, volatility and riskless rate will remain constant at their current values. But

then at a subsequent point in time, when debt principal, volatility or riskless rate change,

the bond value is updated. Therefore, in our model, at no point in time is stochastic

debt principal, volatility or riskless rate priced in an individual bond value, but the fluc-

tuations in these fundamentals in time will materialize in the average spread over the

considered time period.

The procedure to calculate average spreads and heterogeneity biases is as follows.

We simulate M paths of monthly asset values from the dynamics of the heterogeneous

fundamentals. For each path, we calculate the HBF average spread, and the correspond-

ing ATA, ATM and HH biases as a proportion of the HBF average spread. We then

calculate the overall HBF average spread and the average ATA, ATM and HH biases

over the M paths. We also calculate the standard error of the estimations as the standard

deviation of each path result divided by
√

M.

In this section, to simplify notation, a fundamental that is non-heterogeneous is not

indexed by a subscript. So λ , σ , ρ , r, and µ refer to the non-heterogeneous values of

leverage, asset volatility, recovery rate, riskless rate, and expected asset return respec-

tively.

The default value of the firm fundamentals are: expected asset return µ = 0.13, asset

volatility σ = 0.3, debt maturity T = 4, recovery rate ρ = 0.4, debt principal B = 40,

initial asset value V0 = 100, riskless rate r = 0.05, horizon τ = 10. We choose M =
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20000.

2.3.1 Time-series heterogeneity in leverage with constant debt principal

In this subsection, we consider the case where debt principal is constant; accord-

ingly, the time-series variation in leverage comes from the time-series variation in asset

value, as described by Equation 2.1. Figure 2.7 plots the computed average spreads and

heterogeneity biases as a function of expected asset return, asset volatility, maturity and

recovery rate. Figure 2.8 plots the computed average spreads and heterogeneity biases

as a function of the horizon τ . 95% confidence bands are provided when standard errors

of the estimations are large. The findings are as follows.

Average spreads decrease with expected asset returns. This is because, higher ex-

pected asset returns imply lower expected future leverages which in turn imply lower ex-

pected future spreads. The lower expected future spreads pull down the average spreads.

Regarding the heterogeneity biases, for expected asset returns lower than 15%, the HH

bias is less than 3% of the average spreads while the ATA and ATM biases may be as

large as 40%. The ATA and ATM biases increase monotonically with expected asset

return simply reflecting the decrease in average spreads. For low expected asset returns,

the HH bias declines with the expected asset return and for high expected asset returns,

the HH bias increases with the expected asset return. The different behavior of the HH

bias compared to the other biases is due to the fact that the expected asset return matters

for default probabilities.

Average spreads increase with asset volatility. Here, in addition to the traditional

channel of higher default risk, there is also an heterogeneity channel. Indeed, higher

asset volatility implies more variability in future leverages, so that the convexity effect

is amplified and average spreads are higher. Regarding the heterogeneity biases, they

decrease with the asset volatility despite the stronger convexity effect because of the

additional increase in average spreads from the higher default risk channel. The biases

are larger than 50% for asset volatilities around 20%.

The observed term structure of average spreads is declining. This contrasts with the

hump shaped term structure of the Merton model without heterogeneity. The declining
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effect is explained by the effect of maturity on the shape of the spread function. For low

leverages, higher maturity weakens the convexity of the function so that the effect of

heterogeneity is less important and average spreads are lower. Of course, the traditional

effects of maturity on spreads in absence of heterogeneity are present but the convexity

effect appears to be dominate these traditional effects. Regarding the heterogeneity bi-

ases, they are more severe at the short end of the term structure than at the long term.

This is also explained by the effect of maturity on the spread function convexity.

Average spreads decline with recovery rates, as expected. The time-series hetero-

geneity biases are not very sensitive to recovery rates for low recovery rates. In fact,

for low recovery rates, the decline in average spreads appears to be compensated by

the weaker convexity effect. For high recovery rates, the decline in average spreads is

amplified by the the stronger convexity effect and the heterogeneity biases increase.

Average spreads decline with the horizon τ over which the firm is followed . This

effect is explained by the fact that leverage is expected to decline over time. As the hori-

zon gets further, leverage is expected to decline further and future spreads are expected

to be lower. This pulls down the average spreads. The heterogeneity biases increase, as

expected, with the horizon. Indeed, the longer the horizon, the larger future variation

and the stronger the convexity effects.
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Figure 2.7: Log normal leverage process: Effect of other firm fundamentals on average spreads and heterogeneity biases (1)
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Figure 2.8: Log normal leverage process: Effect of other firm fundamentals on average
spreads and heterogeneity biases (2)

2.3.2 Time-series heterogeneity in leverage: Mean reverting leverage policy

The lognormal leverage model of the previous subsection implies that leverage is

expected to decline steadily over time. However, it is known that firms have a leverage

level that optimizes the combined effect of tax advantages and financial distress costs

of debt [24, 43]. It is therefore reasonable to assume that when leverage exceeds the

optimal level, firms would tend to reduce it in order to reduce the financial distress costs

of debt, while when leverage is below the optimal level, firms would tend to increase it in

order to increase the tax benefits of debt. As a result, leverage would be mean reverting

as in the dynamic leverage model of Collin-Dufresne and Goldstein [14]. To study the

impact of such a leverage policy on average spreads, we model debt principal as the

product of asset value, given by Equation 2.1, and leverage, which is assumed to follow

a square-root-type process according to the following equation:

dλt = κλ (θλ −λt)+σλ

√
λtdW λ

t , (2.11)
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where κλ is the parameter governing the speed of mean reversion of leverage, θλ is the

target leverage, and σλ is the parameter governing the volatility of leverage.

The default values for the parameters of the leverage dynamics are: κλ = 0.4, θλ =

0.4, σλ = 0.3 and λ0 = 0.4.

Figure 2.9 plots the computed average spreads and heterogeneity biases in function

of κλ , θλ , σλ , and maturity T . Figure 2.10 plots the computed average spreads and

heterogeneity biases in function of the recovery rate ρ and the horizon τ . When standard

errors of the simulations are large, we also plot the corresponding 95% confidence bands.

The findings are as follows.

Average spreads decrease with the speed of mean reversion of the leverage to its

target level. In fact, as the speed of mean reversion increases, leverage can drift less

freely away from its target level so that time-series variability in leverage is reduced.

This in turns reduces the heterogeneity effect on the average spreads and average spreads

go down. This heterogeneity effect is measured by the heterogeneity biases, which all

decline with the speed of mean reversion.

As the target leverage increases, the average spread also increases, reflecting the

higher credit risk associated with higher leverage. However, the heterogeneity biases

decline with the target leverage. This decline is the result of two effects. First, the

target leverage has no effect on the variability of leverage so that in absolute terms the

heterogeneity biases are constant; however, as a proportion of average spreads, which

are increasing in the target leverage, they tend to decline. Second, the concavity of the

spread function is more pronounced for higher leverages. This second effect also reduces

the heterogeneity biases.

Average spreads increase with the volatility of leverage since the risk of being in-

solvent at maturity increases. This first effect tends to reduce the heterogeneity biases.

At the same time, higher leverage volatility imply greater variability in leverage, so that

the convexity effect is stronger. This second effect tends to increase the heterogeneity

biases. We observe that the ATA and the ATM biases increase with the volatility of

leverage. This implies that the second effect dominates the first for these biases. The

two effects appear to neutralize each other for the HH bias which remains quasi-constant
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and close to 0%.

The term structure of average spreads in this model is the same as with the log-normal

leverage model for the same reasons. The impact of recovery rates on the average spreads

is also similar to the case of the log-normal leverage model.

The impact of time horizon τ on the average in this model is the opposite of that

in the log-normal leverage model. In this model, as the time horizon increases, there

are more episodes where leverage drifts away from the target level and is then pulled

back to this target level. As a result there is more heterogeneity in the time-series and

average spreads are increased. Consistently with this explanation, the ATA and ATM

biases increase with the time horizon.
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Figure 2.9: Mean reverting leverage: Effect of other firm fundamentals on spreads and heterogeneity biases (1)
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Figure 2.10: Mean reverting leverage: Effect of other firm fundamentals on spreads and
heterogeneity biases (2)

2.3.3 Time-series heterogeneity in volatility

In this subsection, we assume that asset volatility follows a square-root-type process

given by the following equation:

dσt = κσ (θσ −σt)+σσ

√
σtdW σ

t , (2.12)

where κσ is the parameter governing the speed of mean reversion of volatility, θσ is

the long run average volatility and σσ is the parameter governing the volatility of the

volatility. The correlation between asset value and asset volatility is ησv.

The default values for the parameters of the volatility dynamics are: κσ = 0.4, θσ =

0.3, σσ = 0.1, ησv = 0, σ0 = 0.3.
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Figure 2.11 plots the computed average spreads and heterogeneity biases in function

of the volatility dynamics parameters κσ , θσ , σσ and ησv. Figure 2.12 plots the com-

puted average spreads and heterogeneity biases in function of maturity T , recovery rate

ρ , and horizon τ . When standard errors of the simulations are large, we also plot the

corresponding 95% confidence bands. The findings are as follows.

The speed of mean reversion of volatility to its long term average value is negatively

related to average spreads. An increase in speed of mean reversion reduces the variability

of volatility around its average, so that there is less heterogeneity in volatility in the time

series. The reduced heterogeneity pulls down the average spreads. The heterogeneity

biases do not appear to be very sensitive to the speed of mean reversion but they also

decline with speed of mean reversion.

Average spreads increase with the long term average volatility, as expected. Since

the long term average volatility does not affect the variability of volatility, the ATM and

ATA heterogeneity biases are constant in absolute terms and decline as a proportion of

average spreads. The HH bias declines for low levels of the long term average volatility

and then increases. In fact, recall that the HH bias is different from the other biases in

that it depends on the long term average volatility. Higher long term average volatility

increases the average default probability and this implies a higher HH volatility, which

increase the HH average spread. An increase in the HH bias reflects a higher increase in

the HBF average spread than in the HH average spread.

As the volatility of volatility increases, average spreads increase. This is justified

by the greater variability in volatility. For the same reason, the heterogeneity biases

increase, except for the HH bias, which remains close to 0%.

Average spreads decrease with the correlation between asset value and asset volatil-

ity. To understand this effect, recall that higher volatility has a positive effect on default

risk, while higher asset value has a negative effect on default risk. With high negative

correlation, volatility is high when asset value is low in such a way that the asset value

effect exacerbates the volatility effect. As a result, default risk is very high and spreads

are also very high. With high positive correlation, volatility is high when asset value is

high in such a way that the asset value effect dilutes the volatility effect. As a result,
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default risk is lower and spreads are also lower. Between these two extremes, as the cor-

relation increases, the asset value effect has more dilution power on the volatility effect

and spreads decrease. For similar reasons, the heterogeneity biases also decline with the

correlation.

The model predicts a declining term structure of average spreads. The reason is that

higher maturity yields weakens the convexity of the spread as a function of volatility.

For the same reason, the heterogeneity biases decline with maturity.

Average spreads decline with recovery rates, as expected. The heterogeneity biases

are almost insensitive to the recovery rate for the same reason as in the case of time-series

heterogeneity in leverage.

As the time horizon τ increases, the average spread first increases, then reaches a

peak and declines. This effect results from two opposing forces. The first is due to asset

value, which on average drifts upward, reduces leverage and pulls down the average

spread. The second is due to the variability in volatility that increases with the horizon,

and that generates higher average spreads through a stronger convexity effect. In the

short run, the volatility effect appears to be stronger than the asset value effect thereby

increasing the average spreads. In the long run, the asset value effect appears to be

dominant. Regarding the heterogeneity biases, they all increase, reflecting the higher

variability in volatility.
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Figure 2.11: Time-series heterogeneity in volatility: Effect of other firm fundamentals on spreads and heterogeneity biases (1)
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Figure 2.12: Time-series heterogeneity in volatility: Effect of other firm fundamentals on spreads and heterogeneity biases (2)
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2.3.4 Time-series variation in riskless rate

In this subsection, we assume that the riskless rate follows a square-root-type process

given by the following equation:

drt = κr(θr− rt)+σr
√

rtdW r
t , (2.13)

where κr is the parameter governing the speed of mean reversion of the riskless rate, θr

is the long run average of the riskless rate and σr is the parameter governing the volatility

of the riskless rate. The correlation between asset value and riskless rate is ηrv.

The default values for the parameters of the interest rate dynamics are: κr = 0.4,

θr = 0.05, σr = 0.1, ηrv = 0, r0 = 0.05.

Figure 2.13 plots the computed average spreads and heterogeneity biases in function

of the interest rate dynamics parameters κr, θr, σr and ηrv. Figure 2.14 plots the com-

puted average spreads and heterogeneity biases in function of maturity T , recovery rate

ρ , and horizon τ . When standard errors of the simulations are large, we also plot the

corresponding 95% confidence bands. The findings are as follows.

For M = 20000, the effect of the speed of mean reversion on the average spreads

is somewhat noisy, as shown by the corresponding confidence bands. Overall, we can

detect a weak downward trend for low speeds and no trend for high speeds. This would

be consistent with the argument that higher mean reversion reduces time-series hetero-

geneity and therefore the convexity effect on the average spreads. This effect is weak

however, as shown by the heterogeneity biases which are almost insensitive to the speed

of mean reversion of the interest rate.

Average spreads decline with the long term average riskless rate, as expected. In fact,

a long term average risk free rate implies higher expected asset returns in the risk neu-

tral world and reduces default risk. This first effect tends to increase the heterogeneity

biases. Additionally, the convexity of the spread function is stronger for higher riskless

rates. This second effect also tends to increase the heterogeneity effects. As a result, the

heterogeneity biases increase.

The effect of interest rate volatility is also noisy, although there is an upward trend.
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This trend is explained by the higher variability in interest rates associated with higher

volatility. This higher volatility commands stronger heterogeneity effect which tends to

increase the spreads.

Average spreads increase with the correlation between riskless rate and asset value.

To understand this, recall that the riskiness of bonds in the risk neutral world increases

with lower asset value and lower riskless rate. A higher correlation between asset value

and riskless rate implies that asset value is more likely to be low when the riskless rate

is low, so that the riskiness of the bond is greater. This commands higher spreads. The

same correlation effect has been found by Longstaff and Schwartz [45] in their model of

stochastic interest rate. It is interesting that we detect the same effect using the Merton

model simply by allowing for the possibility of future revisions of the riskless rate used

as input in the Merton model. For similar reasons, heterogeneity biases increase with the

correlation.

Average spreads decline with maturity, reflecting the fact that the convexity of the

spread function is less pronounced for higher maturities than it is for shorter maturities.

For the same reason, the heterogeneity biases also decline with maturity.

Here again, we observe that average spreads decline with recovery rates, as expected,

and that recovery rates do not have a sizable impact on the heterogeneity biases.

Finally, we observe that average spreads increase with the time horizon for short

time horizons and decrease with time horizon for long time horizons. As in the case of

time-series heterogeneity in volatility, this happens because a longer horizon implies a

greater room for variability in short rates and asset value but, at the same time, it implies

lower average leverages. The first effect appears to dominate in the short run while the

second takes the lead in the long run.
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Figure 2.13: Time-series heterogeneity in riskless rate: Effect of other firm fundamentals (1)
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Figure 2.14: Time-series heterogeneity in riskless rate: Effect of other firm fundamentals (2)
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2.4 Regression analysis

In this section, we often use the abbreviations TS for (time-series) and CS for (cross-

sectional), to indicate the dimension of heterogeneity that is being considered.

The theoretical findings of the previous sections give rise to the following testable

hypotheses:

– H1: The cross-sectional variations in the TS-average spread of firms, as predicted

by the Merton model, is partly explained by the cross-sectional variation in the

higher order moments (than the mean) of the TS-distributions of firm fundamen-

tals.

– H2: The time-series variations in the CS-average spread of a group of firms, as

predicted by the Merton model, is partly explained by the change in the higher

order moments (than the mean) of the CS-distributions of firm fundamentals.

2.4.1 Data

These hypotheses can be tested using our panel data on asset volatilities and lever-

ages. This dataset can be used to measure the moments of cross-sectional and time-series

distributions of asset volatilities and leverages and test the effect of these moments on

average spreads. As stated earlier, the calibration of our theoretical distributions of sec-

tion 2.2 was based on a large dataset of asset volatilities and leverages. In summary,

this dataset has been constructed by backing out daily asset volatilities and asset values

from equity prices and equity volatilities using data from CRSP and COMPUSTAT 4.

The estimation methodology is the same rolling horizon approach as in Bharath and

Shumway [4] except that we use a rolling window of 4 years of observations. Leverage

is measured as the total debt principal divided by the estimated asset value. The sample

consists of daily data on 1286 firms for a total of 2735873 firm-days from December 26,

1984 to December 31, 2013. The sample also include information on rating categories

and economic sectors.

Using this dataset, we computed the predicted spread by the Merton model for each

4. Detailed information on the construction of this database will be given in section 3.4
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firm, at each day. We used a horizon T = 4, a recovery rate ρ = 0.4 and a riskless

rate r = 0.05. Based on the same dataset, we also measured for each firm, the first 4

moments of the distributions of the time-series of its leverage and asset volatility. Firms

with less than 300 observations were dropped in this estimation. We then selected three

groups of firms: the group of all firms, the group of BBB firms and the group of firms

in the technology sector. We measured for each group of firm, for each month, the first

4 moments of the distributions of leverage and asset volatility of firms in this group.

Months with less than 30 observations were dropped.

2.4.2 Summary statistics

Summary statistics of the average spreads and the moments of the distributions of

asset volatility and leverage are displayed in Table 2.V.

Consider first the cross-sectional variation in TS heterogeneity. First, as Table 2.V

shows, there is considerable cross-sectional variation in the TS-average spread of firms.

In fact, the standard deviation of the TS-average spread is more than 5 times the median

of 244 bps. This means that while some firms have enjoyed a low TS-average spread

over our sample period, others have paid extremely high spreads on average. Second, we

observe that the first moments of the TS-distributions of leverage and asset volatility are

also widely variable across firms. The standard deviation of the TS-average leverage and

of the TS-average asset volatility are 65% and 25% respectively while their medians are

43% and 34% respectively. Third, there is also substantial variations in the higher order

moments of the TS-distribution of leverage and asset volatility. For instance, while many

firms had a very stable leverage, others had a highly variable leverage. This variability

is measured by the standard deviation of the TS-standard-deviation of leverages which

is 39%. The median of the TS-standard-deviation of leverage is 14%.

Consider now the time-series variation in CS heterogeneity. CS-average spreads have

fluctuated considerably over our sample period. CS-Average spreads were high in some

months and low in some other months. For instance, for the group of BBB firms, the

median of the CS-average spread was 180 bps. However, the predicted BBB average

spread reached 532 bps in March 2001, date at which the US officially entered into re-
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cession following the burst of the dot-com bubble and 409 bps in March 2009 following

the recent financial crisis. CS-average leverages and CS-average asset volatilities have

also been very variable. For instance, in the technology sector, the median of the CS-

average asset volatility was 41% with a standard deviation of 11%. Finally, the higher

order moments of the CS-distributions of leverage and asset volatility have also widely

fluctuated. For instance for the group of all firms, the CS-skewness of asset volatility

had a median of about 5.79 and a standard deviation of 1.98.

2.4.3 Regressions

In order to test the hypothesis H1, we run the following cross-sectionnal and firm-

level regression:

mean_spreadi = β0 +β1×mean_leveragei +β2×mean_asset_voli (2.14)

+ β3× std_leveragei +β4× std_asset_voli +β5× skew_leveragei

+ β6× skew_asset_voli +β7× kurt_leveragei

+ β8× kurt_asset_voli +Zi,

where Zi is the error term.

In order to test the hypothesis H2, we run the following time-series regression for the

selected groups of firms:

mean_spreadt = β0 +β1×mean_leveraget +β2×mean_asset_volt (2.15)

+ β3× std_leveraget +β4× std_asset_volt +β5× skew_leveraget

+ β6× skew_asset_volt +β7× kurt_leveraget

+ β8× kurt_asset_volt +Zt ,

where Zt is the error term.

The results of the regressions are displayed in Table 2.VI. The table shows that many

of the coefficients associated with higher order moments (than the mean) are significant.
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This is clear evidence that the variation in average spreads is partly related to the vari-

ation in higher order moments (than the mean) of the distributions of heterogeneous

parameters.

To get a measure of how much explanatory power the higher order moments have,

Table 2.VI also displays the percentage of the R2 that is attributable to each moment.

For H1 (time-series heterogeneity) we can see that as much as a quarter of the overall

R2 is attributable to the higher order moments. For H2 (cross-section heterogeneity), the

higher order moments claim an even larger portion of the R2. Indeed, the portion of the

R2 attributable to the higher order moments in the H2 regressions are 35%, 43% and

50.3% for the group of all firms, the group of BBB firms, and the group of technology

firms respectively. Finally, we can see that it is mainly the second order moments that

claim most of the explanatory power of the higher order moments although the impor-

tance of skewness and kurtosis is not negligible.
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Table 2.V: Summary statistics

Variable TS CS: All firms CS: BBB firms CS: Tech firms

median std median std median std median std

mean_spread (bps) 244 1367 419 139 180 137 322 251
mean_leverage 0.43 0.65 0.51 0.10 0.42 0.11 0.29 0.09
std_leverage 0.14 0.39 0.57 0.16 0.25 0.12 0.24 0.11
skew_leverage 0.65 1.37 3.51 4.03 1.13 1.64 1.29 0.68
kurt_leverage 2.90 38.33 23.53 109.41 4.34 34.12 4.39 3.33
mean_asset_vol 0.34 0.25 0.32 0.05 0.29 0.04 0.41 0.11
std_asset_vol 0.05 0.10 0.20 0.04 0.14 0.08 0.19 0.11
skew_asset_vol 0.12 0.93 5.79 1.98 3.62 3.40 1.74 1.16
kurt_asset_vol 2.06 3.65 54.28 32.51 22.65 43.71 7.45 5.31

This table gives summary statistics of cross-sectional variation of time-series (TS) heterogeneity (columns 2
and 3) and the time-series variation of cross-sectional (CS) heterogeneity for the group of all firms (columns
4 and 5), for the group of BBB firms (columns 6 and 7) and for the group of Technology firms (columns 8
and 9). Heterogeneity is measured by the first four moments of the distributions (TS or CS) and leverage
and asset volatility as shown in column 1. The table also display the predicted average spread (TS or CS)
from the Merton model.
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Table 2.VI: Regression results

Dependent variable: mean_spread

H1 H2: All firms H2: BBB firms H2: Technology sector

mean_leverage 0.1186*** 0.0975*** 0.0906*** 0.1588***
(0.0038, 21.22) (0.0021, 36.35) (0.0022, 38.17) (0.0081, 13.38)

mean_asset_vol 0.4327*** 0.1115*** 0.0924*** 0.1181***
(0.0074, 53.02) (0.0024, 28.71) (0.0042, 19.28) (0.0045, 36.33)

std_leverage -0.0771*** 0.0003 0.0037 -0.0317***
(0.0068, 12.23) (0.0016, 15.11) (0.0041, 13.79) (0.0066, 13.36)

std_asset_vol -0.0493*** 0.0837*** 0.0713*** 0.1162***
(0.018, 11.93) (0.0041, 8.14) (0.0046, 15.15) (0.0062, 27.29)

skew_leverage -0.0006 -0.0008*** -0.0015*** 0.0068***
(0.0018, 0.19) (0.0001, 3.68) (0.0004, 3.71) (0.0014, 0.55)

skew_asset_vol 0.0086*** -0.0011*** -0.0004 -0.0041***
(0.0019, 1.08) (0.0002, 3.13) (0.0003, 5.08) (0.0012, 5.1)

kurt_leverage 0.0001 0.0001*** 0.0001*** -0.0013***
(0.0001, 0.08) (0, 2.18) (0, 1.56) (0.0003, 0.62)

kurt_asset_vol -0.0005 0.0001*** 0.0001 0.0006**
(0.0005, 0.25) (0, 2.69) (0, 3.25) (0.0002, 3.38)

observations 1124 290 290 290
Total R2 0.89801 0.99528 0.97239 0.9785

This table tests the hypothesis that higher order moments (than the mean) of the distribution of heterogeneous
fundamentals impact predicted average spreads by the Merton Model. H1 considers time-series heterogeneity
(column 2), while H2 considers cross-sectional heterogeneity for either all firms (Column 3), BBB firms (Column
4) or technology firms (Column 5). Standard errors and Shapleys’ percentage of R2 are in parenthesis in this order.
(*** Significant at 1% level, ** significant at 5% level, and *Significant at 10% level)
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2.5 Summary and concluding remarks

In this essay, we have introduced a model of a heterogeneous group of bonds whose

individual values are given by the Merton model. We have shown that the average spread

of the group depends on the cross-sectional and time-series heterogeneity in the group.

We have also shown that the characteristics of the heterogeneity, i.e., the fundamen-

tals that are heterogeneous, the distributions of these heterogeneous fundamentals in the

cross-section and their dynamics in the time-series, are key determinants of the average

spreads. We have also established that the biases arising from ignoring heterogeneity

depend on the level of the non-heterogeneous fundamentals through their impacts on the

shape of the spread function.

The most striking findings are the following. Higher order moments (than the mean)

of the distribution of the heterogeneous fundamentals are important in explaining the

variation in the size of the average spreads. Expected asset returns matter for average

spreads, even though they do no matter for individual spreads. The correlation between

changes in riskless rate and asset returns has a positive impact on average spreads, even

though the stochastic nature of interest rates is not priced in individual bond spreads.

The correlation between asset returns and changes in volatility has a negative impact on

average spreads, even though the Merton model ignores stochastic volatility.

These findings imply that stochastic volatility, stochastic interest rates and dynamic

leverages must be accounted for in empirical tests of the Merton model at a time-series

average level and that cross-sectional heterogeneity must be accounted for in empirical

tests of the Merton model at a group level.

We have studied the consequences of ignoring heterogeneity on the value of various

estimators for the average spread. We have found that these various estimators may be

severely biased, with biases that can reach 100% of the average spreads. The biases may

be negative or positive, depending on the moments of the distributions and on the shape

of the spread function.

Finally, we have found that, in general, the heterogeneity biases are larger when

spreads are low than when they are high. Also, these biases are larger at the short end
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of the term structure than for the long term. These findings suggest that, by account-

ing for cross-sectional heterogeneity and for revisions in structural models inputs in the

measurement of model-generated average spreads, one may be able to elucidate, at least

partly, the credit spread puzzle which is the finding that structural models predict spreads

that are too low compared to observed average spreads. Indeed, the heterogeneity biases

are more important exactly where it has been found, while ignoring heterogeneity, that

the gap between observed and predicted spreads is larger.
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CHAPTER 3

CAPTURING THE DEFAULT COMPONENT OF CORPORATE BOND

SPREADS: A STRUCTURAL MODEL APPROACH

How much spread do bond investors charge for the default risk that they incur? Is the

observed level of average spreads entirely due to expected default losses and default risk

premia? These question, crucial for any fixed income market participant, do not have

a simple answer. Many papers have attempted to answer them from different angles,

often arriving to different answers [3, 11, 15, 20, 25, 29, 33, 47]. Some of these papers

use a regression approach in order to measure the portion of spreads variability that is

explained by default variables. Others use reduced form models or structural models to

measure the default component of observed spreads.

In this essay, we attempt to capture the default component of the spreads using the

structural modeling framework. This framework has the advantage to avoid endogeneity

issues that affect regressions. In addition, unlike the other approaches, the structural ap-

proach derives endogenously the functional form of the relation that links default spreads

and default probabilities to firm fundamentals.

Three main issues must be dealt with when using the structural modeling approach

to measure the default component of corporate bond spreads.

The first and most obvious issue is the selection of a structural model. Several

structural models are available, involving different assumptions and different levels of

complexity. A non-exhaustive list includes the Merton [50] zero-coupon-bond model,

the Leland and Toft [43] model with endogenous default, the Longstaff and Schwartz

[45] model with stochastic interest rate, the Mella-Barral and Perraudin [48] model with

strategic debt service, the Collin-Dufresne and Goldstein [14] with dynamic leverage,

the Zhou [63] model with asset value jumps, and, more recently, the He and Xiong [32]

model with rollover risk. Clearly, a trade-off between realistic assumptions and com-

plexity must be made in the choice of a structural model.

The second issue is the estimation of the model inputs, the main constraint being



data availability. Key model inputs, such as asset value and asset volatility, are not

observable. In addition, while equity is traded frequently, not all debt is traded, so that

the market value of total debt is not observable. Moreover, the model must be calibrated

to historical default and recovery rates in order to ensure that it does not overstate, or

understate, expected default losses [33]. This poses additional difficulties, as historical

default and recovery rates are not observable for individual bonds. Clearly, the more

complex is the model, the more difficult is its estimation.

The third issue, which is the most recent and perhaps the least well understood, is the

heterogeneity of rating categories. The traditional way of assessing the performance of

a structural model is to compare the model average spread to observed average spreads,

rating-wise. It is generally assumed in this exercise that rating categories are homoge-

nous in such a way that the model average spread for a given rating category is assumed

to be the model spread for the typical firm in that rating category. However, the rating-

through-the-cycle policy of rating agencies and the small number of rating categories

make rating categories heterogeneous [3, 20, 24, 43]. Recent empirical studies have

argued that ignoring this heterogeneity may lead to important biases in the measured

default spread [3, 20, 29], while others found the opposite result [11, 33]. One fact

is certain, heterogeneity makes the calibration to historical default and recovery rates

more difficult because parameters must be estimated for individual bonds, but historical

default and recovery data are only available at the categorical level.

In this essay, we propose a simple two-stage approach to capture the size of default

risk in the spreads. Our approach uses a calibrated version of the Merton model with a

simple extension to introduce loss given default, and also fully accounts for heterogene-

ity.

We choose the Merton model because of its simplicity and parsimony. In fact, we

have no reason to believe that more complicated structural models, where the sole source

of risk is the asset value diffusion, would generate significantly different default spreads

than our calibrated version of the Merton model. It is well recognized that the main

reason why more complicated structural models perform better than the Merton model

is that they are able to better replicate the observed term structure of default rates [14,
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42, 43] and to adequately model bankruptcy costs [1, 48].

In this essay, we calibrate the Merton model to the observed term structure of default

rates and we extend the Merton model by introducing an exogenous recovery rate param-

eter that we calibrate to observed recovery rates by rating category and economic sector.

Our calibrated Merton model is therefore likely to yield similar default spreads as the

more complicated asset diffusion structural models. In addition, models with additional

sources of risk, such as jump models, stochastic volatility models and macroeconomic

models, may certainly lead to more accurate measures of the default spread. However,

adequate estimation and calibration of a structural model in a way that accounts for

heterogeneity but does not overestimate or underestimate expected default losses is a

prickly issue. Using a more complex model might unnecessarily divert our efforts and

the attention of the reader from the more important issues of heterogeneity and calibra-

tion to observed expected losses. In this context, we believe that the Merton model is

a good starting point that provides a useful benchmark for future works based on more

complex models.

The first stage of our approach is the same as the standard estimation approach for

the Merton model, which consists of inverting the model in order to estimate the firm

fundamentals from equity prices and equity volatility. This standard approach is used

by several authors, such as Bharath and Shumway [4], Crosbie and Bohn [17], Elkamhi

et al. [24]. The second stage consists of adjusting individual first-stage leverages in

order to ensure that the model default rate corresponds to the historical default rate. The

adjustment may be done at the individual bond level if one has access to proxy data for

historical individual default rates. Otherwise, it can be done at the rating category level,

as historical default rate data by category is made public by rating agencies. What we

call “implied leverages” are the adjusted leverages, implied from historical default data.

We show that the second stage equations have unique solutions and that numerical

solutions to these equations can be easily found. We then compare the robustness our

two-stage approach to that of the standard approach by performing two simulation ex-

periments. In the first experiment, it is assumed that the assumptions of the Merton

model hold, but the actual capital structure is not perfectly known to the econometrician.
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In the second experiment, it is assumed that the world is perfectly described by the He

and Xiong [32] model, which may be the most recent and elaborate among structural

models. In this model, there are market liquidity frictions, taxes, endogenous default

decision, coupons and debt rollover, while all of these assumptions are ignored in the

Merton model. In these two situations, we find that our two-stage approach based on

the Merton model gives a more accurate estimation of the actual default spread than the

standard estimation approach. The second experiment is of high importance as it shows

that, despite the imperfections of the Merton model, our two-stage estimation approach

can capture the default component of the spreads. On the other hand, the standard esti-

mation approach leads in that case to the biased conclusion that the entire spread is due

to default risk, while, in reality, part of the spread is explained by liquidity.

We then conduct an empirical study that applies our two-stage estimation approach

to measure the share of default risk in the spreads. Our empirical analysis is based on a

sample of daily data on 1286 firms for a total of 2735873 firm-days from December 26,

1984 to December 31, 2013. To our knowledge, this is the longest data-set (in terms of

period covered) ever used for this type of study. Contrarily to Feldhutter and Schaefer

[29], we use a 32 year long historical default rate data because it reflects the normal

level of default rates over the last 90 years 1. We also perform several robustness checks

regarding the key constants of our study, such as the level of historical default rates,

the heterogeneity of recovery rates, the calibration procedure, the period of study and

the considered structural model. Our findings confirm that rating categories are highly

heterogeneous and that heterogeneity plays an important role in adequately measuring

the default spread. We find that the heterogeneity bias free default sizes are about 1%,

8%, 11% and 40% of AAA, AA, A, BBB bond spreads.

These measures of the size of the default spread have important implications for the

understanding of bond markets. They imply that investment grade bond investors are

more than compensated for the default risk due to asset diffusion that they incur. This

does not exclude the possibility that investment grade bond investors require compen-

1. In fact when one excludes the World War II period and its aftermath from the 90 years default data,
one arrives at similar default rates to the default rates based on the 32 year default data [40]
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sation for other sources of default risk, such as jumps or stochastic volatility or time-

varying macro-economic conditions, or that they require compensation for other sources

of risk, such as liquidity risk. Our findings therefore support the development of struc-

tural models that generate higher default risk premia, such as models with jump risk,

stochastic volatility risk, or counter-cyclical default risk premia [3, 11, 13, 20, 62, 63].

Our results are also consistent with empirical studies establishing the presence of

tax premia, market liquidity premia and individual bond liquidity premia in the spreads

[10, 15, 25, 47]. They support the development of structural models where non-default

factors such as liquidity risk and macroeconomic risks are explicitly considered. From

a capital structure perspective, our findings support the argument of He and Xiong [32]

that the low leverage puzzle may be explained by liquidity risk, a non-default factor.

The rest of this essay is organized as follows. Section 3.1 briefly reviews existing

estimation methods. Section 3.2 presents our approach. Section 3.3 presents the perfor-

mance tests of our approach. Section 3.4 presents the data that we use for our empirical

analysis. Section 3.5 presents the results. Section 3.6 presents the robustness checks.

Section 3.7 discuss the results and section 3.8 concludes.

3.1 An overview of existing estimation approaches

In order to estimate the share of default risk in the spreads with the structural mod-

eling approach, one has first to predict the default spread using the selected structural

model, and second to divide the predicted default spread by the observed spread. The

second step is straightforward once the first is completed and the first step is also straight-

forward if one knows the inputs of the selected model. Therefore, the main challenge

is how to estimate these inputs. The key inputs to estimate are asset volatility and asset

value. The literature on the estimation of these two inputs is the object of this section.
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Recall that in the Merton model, the equity price is given by:

E = V N (d1 (λ ))−Be−rT N (d2 (λ )) . (3.1)

where :

d1 (x) =
− ln(x)+

(
r+ σ2

2

)
T

σ
√

T
,

d2 (x) =
− ln(x)+

(
r− σ2

2

)
T

σ
√

T
,

and λ =
B
V

is the initial leverage ratio,

B is debt principal, T is the debt maturity, r is the riskless rate, V is the asset value and

σ is the asset volatility.

The bond price if one introduces a recovery rate ρ in the Merton model as in Eom

et al. [26] is given by:

F = Be−rT N (d2 (λ ))+V0N (−d1 (ρλ ))+ρBe−rT (N (d2 (ρλ ))−N (d2 (λ ))) . (3.2)

The objective default rate at the horizon T is given by:

ΦT (λ ,σ ,µ) = N

−− ln(λ )+
(

µ− σ2

2

)
T

σ
√

T

 . (3.3)

The spread at the horizon T is given by:

ΨT (λ ,σ ,ρ,r) =− 1
T

ln
(

F
B

)
− r (3.4)

Regarding asset value, the simplest and common approach is to proxy asset value by

the book value of debt plus market value of equity. The first drawback to this solution is

that market value of equity is observed daily, while book value of debt is at best observed

quarterly. The second drawback is the assumption that market value of debt is equal

to book value of debt. A variant of this approach, suggested by Jones et al. [38], is to
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assume that asset value is equal to market value of equity plus market value of traded debt

plus book value of non-traded debt scaled by the ratio of book to market of traded debt.

Implicit to this solution is the assumption that the book to market ratio of traded debt and

non-traded debt are similar. However, there is no reason to believe that this assumption

holds. Moreover, to implement this solution, one must be able to disentangle book value

of traded debt from book value of non traded debt. Such disentangled data is not readily

available. A quite complex variant of this approach has been suggested by Davydenko

[21]. It includes tax benefit of debt and bankruptcy costs in the estimation of asset value

and uses estimates of the market price of every type of liability to calculate market value

of debt. This approach is difficult to use in practice because of data limitations.

Regarding asset volatility, it is possible to estimate it from asset values as the volatil-

ity of daily asset returns. However, if asset value is calculated using one of the above

approaches, the assumptions made about the market value of debt also affect the esti-

mated asset volatility, mainly because book value of debt is less volatile than market

value of debt. Alternatively, one may estimate equity return volatility using time-series

of equity returns, and debt return volatility using available data on publicly traded debt.

Then asset volatility may be estimated as a weighted average of the equity return volatil-

ity and the debt return volatility. The drawback of this approach is that the weights are

often chosen arbitrarily. Schaefer and Strebulaev [55] propose an extended version of the

weighted average approach where it is possible to take into consideration the correlation

between bond returns and equity returns. Schaefer and Strebulaev [55] assume that asset

volatility is given by:

σ
2 = (1−λ )2

σ
2
E +λ

2
σ

2
D +2λ (1−λ )σED, (3.5)

where σ is the asset volatility, σE is equity return volatility, σD is bond return volatility

and σED is the correlation between bond returns and equity returns. Schaefer and Stre-

bulaev [55] assume that λ is book leverage. The main drawback of this approach is that

it implicitly assumes that leverage is constant. However, there is an overwhelming evi-
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dence that leverage varies over time 2. The other drawback is that it is subject to frequent

bond price data availability.

There is another estimation approach, described by Crosbie and Bohn [17], which

allows to estimate directly both asset value and asset volatility. According to Duan et al.

[23], the approach has the advantage of being equivalent to a maximum likelihood esti-

mation of asset volatility and asset value. In addition, the approach is simple and based

only on equity prices, which are observable. As a result, this approach has established

itself as the standard estimation approach of asset value and volatility. It is based on the

Merton [50] model, and consists of solving a system of two equations: one equation for

the equity value E given by

E =V N (d1)−Be−rT N (d2) , (3.6)

and the other equation for the volatility of equity returns σE given by

σE = σEV
V
E

= σN (d1)
V
E
, (3.7)

where V is the asset value, T is the debt maturity, B is the debt principal and r is the

riskless rate.

If the equity value E, the equity volatility σE , the horizon T , the debt principal B

and the riskless rate r are known, then one can solve simultaneously and numerically

equations (3.6) and (3.7) for the asset volatility σ and the asset value V .

According to Crosbie and Bohn [17], the asset volatility obtained from the simulta-

neous solution of equations (3.6) and (3.7) fluctuates too much with leverage. For that

reason, they suggest an alternative iterative procedure that is better described by Bharath

and Shumway [4]. The procedure is the following: One first guesses a value of σ . Equa-

tion (3.6) is then used to find the corresponding V for every day of the previous four

years. The resulting asset returns are used to estimate a new asset volatility σ which

becomes the input of the next iteration. Bharath and Shumway [4] suggest to use σE
E

E+B

2. Even if debt principal is constant, asset value fluctuates over time.
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as a starting value for σ .

The problem with the above approaches is that they completely ignore the informa-

tion on the level of physical default probabilities. As a result, they do not guarantee that

the level of default rate implied by the estimated parameters be equal to the observed

level of default rates. However, having such a guarantee is crucial for the goal of this

study, which is to measure the share of default risk in the spreads. Indeed, default spreads

are composed of two parts: the expected loss 3 from default and the risk premia. Since

the expected loss component is the physical probability of default times the loss given

default, this component could be made arbitrarily as large as one wishes by increasing

the probability of default. This implies that it is possible to generate arbitrarily large de-

fault spreads by counter-factually using high physical probability of default. To ensure

that the measured spreads are not driven by counter-factually large default probabilities

arising from the estimation procedure, it is important to control the level of physical

default probability implied by the estimation procedure.

Feldhutter and Schaefer [29] suggest an extension of the Schaefer and Strebulaev

[55] procedure that incorporates historical default probabilities. Leverage is calculated

as the ratio of book value of debt over book value of debt plus equity value. Asset

volatility is obtained by first calculating the quantity (1−λ )σE , which is interpreted

as a lower boundary for the asset volatility. This lower boundary is then multiplied by

an adjustment ratio estimated by Schaefer and Strebulaev [55]. The adjustment ratio

is the ratio of the asset volatility calculated using equation 3.5 to the lower boundary

(1−λ )σE . Finally, Feldhutter and Schaefer [29] use a variant of the Merton model

where the default boundary is different from the debt principal. They estimate the default

boundary as the default boundary that minimizes a measure of the distance between the

model default rates and historical default rates simultaneously across all maturities and

ratings.

There are several problems with the estimation procedure of Feldhutter and Schaefer

[29]. First, their computation of leverage assumes that market value of debt is equal to

book value of debt, an assumption which does not hold empirically. Second, it shares the

3. Expectation here is taken under the physical measure.
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problem of constant leverage assumption of Schaefer and Strebulaev [55] in the calcu-

lation of asset volatilities. Third, the approach assumes that the default boundary is the

same for all the firms. However, there is strong evidence that there is huge heterogeneity

in default boundaries across firms, even if one focuses solely on firms with the same

rating (see Davydenko [21]). Fourth, very surprisingly, Feldhutter and Schaefer [29]

find that the default boundary that minimizes the distance between the model default

rates and historical default rates is exactly the debt principal. This implies that including

historical default rates in the estimations do not change their estimates, and is therefore

redundant in their approach. Finally, it is known that the Merton model, when calibrated

to one particular maturity, cannot fit the whole term structure. This implies that the fit-

ting error in the minimization problem of Feldhutter and Schaefer [29] is very likely

large because they use only one variable (the default boundary) to fit simultaneously the

term structures of all rating categories.

3.2 Our estimation approach

Here, we propose a new approach for the estimation of the share of default risk

in corporate bond spreads. Our approach builds on the standard estimation approach

described above but incorporates historical default rates in the estimation.

The approach consists of two stages. The first stage is identical to the standard

estimation procedure, which consists of inverting the Merton model from equity prices

and equity volatility as described in the previous section. The second stage consists of a

maturity-specific adjustment of the leverage obtained in the first stage so that the model

default rate is equal to the observed default rate at each horizon. The adjustment can be

done at the individual firm level or at a group level depending on default data availability.

Definition (Individual level adjustment) Suppose that the default rate for firm i at time t,

which we denote φitT , is observable. Then the individual adjustment consists of solving

the following equation for yitT

ΦT
(
λite−yitT ,σit ,µit

)
= φitT , (3.8)
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where ΦT (.) is the Merton model default rate function at the maturity T and λit , σit and

µit are respectively the estimated leverage, asset volatility and asset drift from the first

stage for firm i at time t.

Definition (Categorical level adjustment) Suppose that the average default rate of a

group l of n firms over a certain period τ , which we denote φ G
lT , is observable. Then the

categorical adjustment consists of solving the following equation for yG
lT ,

1
nτ

τ

∑
t=1

n

∑
i=1

ΦT

(
λite−yG

lT ,σit ,µit

)
= φ

G
lT , (3.9)

where λit , σit and µit are the estimated fundamentals from the first stage for firm i at time

t.

Proposition 3.2.1. There exists a unique solution to the individual adjustment equation

3.8.

Proof. The default rate function ΦT (λ ,σ ,µ) is continuous, strictly increasing in lever-

age λ over the interval ]0,+∞[. The function e−y is continuous and strictly decreasing

in y over ℜ. This implies that the function g(y) = ΦT (λe−y,σ ,µ) is continuous and

strictly decreasing in y over ℜ.

Furthermore, ∀λ > 0,ΦT (λ ,σ ,µ) ∈ ]0,1[ and has a limit of 0 for λ = 0 and a limit

of 1 as λ goes to +∞. This implies that ∀y ∈ ℜ,g(y) ∈ ]0,1[ and has a limit of 0 as y

goes to −∞ and a limit of 1 as y goes to +∞.

As a result, g(y) is a bijection from ℜ to ]0,1[. As a consequence for any φ ∈ ]0,1[,

there exists a unique y ∈ℜ such that g(y) = φ .

Proposition 3.2.2. There exists a unique solution to the categorical adjustment equation

3.9.

Proof. Following the proof of 3.2.1, it is clear that the function

h(y) =
1

nτ

τ

∑
t=1

n

∑
i=1

ΦT
(
λite−y,σit ,µit

)
, (3.10)
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is continuous and strictly decreasing in y over ℜ as the sum of functions that are con-

tinuous and strictly decreasing in y over ℜ. Furthermore, ∀ y ∈ℜ, the function git (y) =

ΦT (λite−y,σit ,µit) takes values in ]0,1[, has a limit of 0 as y goes to −∞ and a limit of

1 as y goes to +∞. It follows that the same holds for the function h(y).

As a result, h(y) is a bijection from ℜ to ]0,1[. As a consequence, for any φ ∈ ]0,1[,

there exists a unique y ∈ℜ such that h(y) = φ .

Definition (Implied leverage) The default probability implied leverage or simply the im-

plied leverage is the leverage that makes the model default probability consistent with the

observed default probability. For an individual adjustment by Equation 3.8, the leverage

adjustment is firm-specific, time-specific and maturity-specific and the implied leverage

for firm i at time t is equal to λite−yitT . For a categorical adjustment by Equation 3.9, the

leverage adjustment is category-specific and maturity-specific, and the implied leverage

for firm i at time t in the category l is equal to λite−yG
lT .

The implied leverage defined above is a fictitious leverage value that has nothing to

do with actual leverage or book leverage. It is an artifice that is designed to mitigate the

impact of the potential imperfections of the Merton model and the estimation procedure

on the measured default spread. Because of that, the implied leverage figure taken alone

does not have any economic interpretation. However, comparing the first-stage leverage

with the implied leverage is interesting from an economics perspective. If the implied

leverage is lower (resp. higher) than the first-stage leverage then it means that the esti-

mated parameters of the first stage imply higher (resp. lower) default rates than observed

default rates.

The implied leverage is opaque to the cause of the potential overestimation or under-

estimation of the default rate at the first stage. Whether the cause is biased estimates of

asset volatility, leverage and/or asset drift in the first stage or incorrect assumptions of

the model about for instance, the capital structure, the absence of tax, the perfect market

assumptions or the Miller-Modigliani theorem, the use of the implied leverage instead

of the first stage leverage ensures that any estimation bias or incorrect assumption has

a relatively weak impact on the predicted default rate by the model. In short, implied
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leverages are a tool to mitigate not the causes, but the consequences of biased estimators

or wrong model assumptions.

The first advantage of our two-stage procedure is that, thanks to Propositions 3.2.1

and 3.2.2, it ensures that our estimated parameters fit exactly the observed term structure

of default rates. Second, solving Equations 3.8 or 3.9 poses no numerical difficulty

because they consist of finding the unique root of a very smooth and strictly increasing

function 4. Third, it can be operationalized at the rating category or economic sector

levels where historical default rate data are publicly available. Fourth, asset value and

volatility are estimated exactly as in the estimation procedure of Bharath and Shumway

[4], Crosbie and Bohn [17] which is the standard. So our approach retains some of

the advantages of the standard procedure: It is easy to operationalize; There is no need

of observing market value of book debt; It is based on a structural model 5 that links

firm fundamentals to equity prices in such a way that the estimated asset value and

volatility capture very well the observed dynamics of equity prices. Fifth, and most

importantly, it ensures that the default spread is not severely over or under estimated.

This last advantage is demonstrated in the next subsection.

However, these advantages come at a cost. The estimated leverage and volatilities no

more satisfy the system of two equations derived from the Merton model. The perfect fit

of observed equity values is lost and it is no more possible to back the estimations by a

maximum likelihood argument. This cost is discussed further in the empirical section.

3.3 Performance tests

The main problem in estimating structural models is that there are often frictions

between some of the model assumptions and the reality.

One such friction, in the case of the Merton model, is the assumption that the firm has

a unique outstanding zero coupon debt. In reality, firms have several outstanding bonds

4. Under weaker conditions, the Newton-Raphson method guarantees a quadratic convergence for a
suitable choice of initial point.

5. The fact that it is based on the simple Merton model does not seem to be a limitation. Elkamhi et al.
[24] find that the estimated parameters from the Merton model are consistent with the more advanced
structural model of Leland and Toft [43].
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with different maturities. Simplifying assumptions on the actual capital structure must

therefore be made in order to use the Merton model. These simplifying assumptions may

severely bias the results of the model inversion. In this section, we consider the most

common capital structure simplifying assumption and we compare the biases resulting

from using the standard inversion approach to ours.

Another friction is the assumption of perfect liquidity of securities in the Merton

model. In reality, as demonstrated by the recent financial crisis, the liquidity component

of corporate bonds spreads can be substantial. To our knowledge, potential biases re-

sulting from inverting the Merton model in a world with liquidity frictions have not yet

been studied. In this section, we fill this gap in the literature. We consider a world in

which there is liquidity risk and we compare the biases resulting from using the standard

inversion approach to ours.

3.3.1 Estimation accuracy in presence of capital structure frictions

Firms generally have much more complex capital structures than postulated in the

Merton model. In order to use the Merton model, a common simplifying assumption

about the capital structure is that the total debt principal B of the Merton model is equal

to the short term debt plus half the long term debt [4, 17, 24, 61]. Assumptions about

debt maturity T vary widely. Elkamhi et al. [24] use an average maturity of about 4

years, Bharath and Shumway [4], Crosbie and Bohn [17] use a maturity of one year.

Here we study how accurate the measured spread resulting from the standard estimation

procedure and our estimation procedure are with respect to these simplifying capital

structure assumptions.

In order to keep things simple, we assume that all the assumptions of the Merton

model hold, so that the actual spread, default rate, equity value and equity volatility are

given by Equations 3.4, 3.3, 3.6 and 3.7 respectively, but the econometrician does not

have this information.

The actual firm fundamentals are σ = 0.28, r = 0.06, µ = 0.12, T = 10, V = 100,

B = 50, ρ = 0.4. This implies that the actual spread at the 10 year horizon, the default

rate at the 10 year horizon, the equity value and the equity volatility are respectively 99

74



basis points, 4.5%, 73.9454 and 0.3679.

The econometrician does not know the asset volatility, the asset value and the debt

maturity but he knows that the debt is long term 6. He knows the riskless rate r, the

expected asset return µ , the recovery rate ρ and the debt principal B. He also observes

the equity value, the equity volatility, the default probability and the spread.

Assume that the econometrician makes the assumption that T = 4 and that it can be

reasonably assumed that half of the debt would be due in 4 years.

In the standard approach, he would then solve Equations 3.6 and 3.7 simultaneously

for σ , and V using T = 4 and a debt principal of 25. He would find that σ̂ = 0.2911

and that V̂ = 93.5838. This implies an estimated leverage of 26.71%. Based on these

estimates of leverage and asset volatility, his measured 10 year spread would be 32 basis

points only, which is 68% less than the actual spread.

In our two-stage approach, the first stage is identical to the standard approach, so he

would estimate that the asset volatility is σ̂ = 0.2911 and that the first stage leverage λ̂1 is

26.71%. He would then solve the individual adjustment equation 3.8 and find an implied

leverage λ̂2 of 45.64%, which is much closer to the actual leverage. His measured 10

year spread would now be 96 basis points which is only 4% less than the actual spread.

The improvement in the estimation accuracy is huge.

Notice that using the implied leverage guarantees a model default rate equal to the

actual default rate of 4.5%, while using the first stage leverage implies a model default

rate of 1.14%. Thus the standard approach drastically underestimates the default proba-

bility in this example. This justifies why using implied leverage leads to a more accurate

spread.

We now repeat the above example for several values of debt principal B = 10, 20,

..., 100, several debt maturities T = 2, 3, ..., 20, and several values of asset volatility

σ = 0.2, 0.22 ,..., 0.5. The risk free rate is kept at 6% (same as in Elkamhi et al. [24]),

asset drift is fixed at 12% (same as in Leland and Toft [43]), recovery rate is fixed at

0.4, and initial asset value is fixed at 100. The combinations of parameters for which no

6. Here we are referring to the accounting classification of debt maturities. Any debt due in more than
a year is classified as long term. This is the classification adopted in the COMPUSTAT database.
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numerical solution is found for the system of two equations in the standard approach or

for our calibration equation are discarded. In the end, we have a total of 1775 different

combination of parameters. Table 3.I displays a summary of the results. For interested

readers, Table 3.II displays detailed results for selected combination of parameters. The

results show that either on an absolute basis or a relative basis, despite the capital struc-

ture frictions, our two-stage estimation procedure gives a quite accurate estimation of

the actual spread compared to the standard estimation approach.

Next, we study the performance of our approach at the group level. In this case,

we relax the assumption that the individual default rates are observable and make the

weaker assumption that only the average default rate of a group of firms is observable.

Our two-stage approach is still applicable by using the group calibration equation 3.9.

We consider four distribution shapes for each heterogeneous parameter in the group: uni-

form, normal, positive skew and negative skew. The heterogeneous parameters are lever-

age and volatility. The shapes considered are the shapes Uniform-LowRange, Normal-

HighStd, Pearson-PosSkew2 and Pearson-NegSkew2 of Tables 2.I and 2.II . Each time,

we draw 1000 firms randomly from the distribution of interest. The other parameters are

as in the above example. We then calculate the actual default spread and the correspond-

ing estimates from the standard approach and our two-stage approach. The simulation is

then repeated 10000 times and overall averages and standard errors are computed. Table

3.III summarizes the results. The results show that even with the group level adjust-

ment, our two-stage approach still gives a more accurate estimation of the default spread

compared to the standard approach if there are capital structure frictions.
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Table 3.I: Performance of our two-stage approach and the standard approach in presence of capital structure frictions: Summary.

mean median max RMSE

Standard
approach

Two-stage
approach

Standard
approach

Two-stage
approach

Standard
approach

Two-stage
approach

Standard
approach

Two-stage
approach

Absolute error (bps) 131 11 121 7 435 103 151 17
Relative error 56% 5% 58% 3% 89% 27% 58% 7%

This table reports the summary statistics of the difference between the estimated and actual spreads using the standard approach and our approach
in presence of capital structure frictions. It is assumed that all the assumptions of the Merton model hold but the econometrician does not have this
information. Equity price, equity volatility, default rate and debt principal are assumed to be observable but debt maturity T , asset value and asset
volatility are unknown to the econometrician. It is known however that the debt is a long term debt. The econometrician assumes that debt maturity is 4
year and that the portion of debt principal due is half the total debt. The standard approach consists of inverting the equity price and volatility equations
for asset value and volatility. Our two-stage approach consists of a first stage identical to the standard approach and a second stage where leverage is
adjusted to fit the actual default rate. The obtained leverage and volatility from each approach are then used to predict spread at horizon T . The study
is repeated for several values of debt principal B = 10,20,30, ...,100, several debt maturities T = 2,3,4, ...,20, and several values of asset volatility
σ = 0.2,0.22,0.24, ...,0.5. The other parameters are µ = 0.12, r = 0.06, ρ = 0.4, V0 = 100.77



Table 3.II: Performance of our two-stage approach and the standard approach in presence of capital structure frictions: Selected
cases.

Actual parameters Spreads(basis points) % difference from actual spread Default rate Estimated parameters

σ B T Actual Standard
approach

Two-stage
approach

Standard
approach

Two-stage
approach

Actual Standard
approach

V σ Standard
approach
leverage

Implied
leverage

0.24 50 10 58 14 54 -75% -7% 0.0172 0.0032 92.90 0.25 0.27 0.44
0.24 70 2 336 417 267 24% -21% 0.0561 0.0906 64.47 0.38 0.54 0.48
0.24 70 4 249 162 206 -35% -17% 0.0664 0.0504 73.58 0.31 0.48 0.52
0.24 70 20 60 9 71 -86% 19% 0.0211 0.0008 107.90 0.22 0.32 0.96
0.28 30 4 16 3 15 -80% -10% 0.0032 0.0006 88.24 0.32 0.17 0.24
0.28 50 2 96 62 81 -36% -16% 0.0154 0.0116 75.11 0.37 0.33 0.35
0.28 50 4 128 63 111 -51% -13% 0.0348 0.0183 80.83 0.34 0.31 0.37
0.28 50 10 99 32 96 -68% -4% 0.0450 0.0114 93.58 0.29 0.27 0.46
0.28 70 2 496 620 416 25% -16% 0.0953 0.1446 64.10 0.44 0.55 0.47
0.28 70 4 349 241 306 -31% -12% 0.1124 0.0863 74.27 0.36 0.47 0.52
0.28 70 10 177 62 174 -65% -2% 0.0942 0.0251 92.62 0.29 0.38 0.67
0.28 70 20 96 19 111 -80% 15% 0.0576 0.0045 109.01 0.25 0.32 1.02
0.36 30 4 76 28 71 -63% -7% 0.0239 0.0086 88.43 0.40 0.17 0.24
0.36 30 10 102 40 101 -61% -2% 0.0615 0.0204 96.31 0.37 0.16 0.28
0.36 30 20 91 34 95 -63% 5% 0.0759 0.0196 103.90 0.34 0.14 0.38
0.36 50 2 277 226 249 -18% -10% 0.0572 0.0519 74.82 0.48 0.33 0.35
0.36 50 4 280 169 260 -40% -7% 0.1022 0.0640 81.68 0.43 0.31 0.38
0.36 50 10 203 86 202 -58% 0% 0.1370 0.0501 95.50 0.36 0.26 0.49
0.36 50 20 142 47 153 -67% 8% 0.1322 0.0285 107.53 0.33 0.23 0.74
0.36 70 2 807 1010 731 25% -9% 0.1795 0.2465 63.69 0.55 0.55 0.46
0.36 70 4 544 404 512 -26% -6% 0.2113 0.1655 75.96 0.44 0.46 0.54
0.36 70 10 298 126 301 -58% 1% 0.2124 0.0771 95.75 0.35 0.37 0.73

This table compares the spread measured by our two-stage approach and that measured by the standard approach to the actual spread. It is assumed that all the
assumptions of the Merton model hold but the econometrician does not have this information. Equity price, equity volatility, default rate and debt principal are
assumed to be observable but debt maturity T , asset value and asset volatility are unknown to the econometrician. It is known however that the debt is a long term
debt. The econometrician assumes that debt maturity is 4 year and that the portion of debt principal due is half the total debt. The standard approach consists of
inverting the equity price and volatility equations for asset value and volatility. Our two-stage approach consists of a first stage identical to the standard approach
and a second stage where leverage is adjusted to fit the actual default rate. The obtained leverage and volatility from each approach are then used to predict spread
at horizon T . The study is repeated for several values of debt principal B = 10,20,30, ...,100, several debt maturities T = 2,3,4, ...,20, and several values of asset
volatility σ = 0.2,0.22,0.24, ...,0.5. The other parameters are µ = 0.12, r = 0.06, ρ = 0.4, V0 = 100.
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Table 3.III: Performance of our two-stage approach and the standard approach in presence of capital structure frictions and
heterogeneity: Summary.

Heterogeneous parameter and distribution average spreads (bps) average DPs

Actual Standard Our approach Actual Standard Our approach

Leverage, Uniform-LowRange 76.95 39.91 65.83 2.15% 1.24% 2.15%
(2.6427) (1.6276) (2.2992) (0.0008) (0.0005) (0.0008)

Leverage, Normal-HighStd 71.29 32.32 60.87 1.88% 0.93% 1.88%
(1.877) (1.1596) (1.6159) (0.0006) (0.0004) (0.0006)

Leverage, Pearson-PosSkew2 63.37 27.69 53.77 1.64% 0.80% 1.64%
(2.057) (1.4935) (1.7501) (0.0007) (0.0005) (0.0007)

Leverage, Pearson-NegSkew2 0.18 0.01 0.20 0.00% 0.00% 0.00%
(0.0069) (0.0003) (0.0083) (0) (0) (0)

Volatility, Uniform-LowRange 218.48 132.82 211.58 8.72% 5.49% 8.72%
(6.2944) (4.3081) (6.2418) (0.0028) (0.0019) (0.0028)

Volatility, Normal-HighStd 54.04 23.13 48.75 1.58% 0.73% 1.58%
(1.9371) (1.0499) (1.8344) (0.0007) (0.0004) (0.0007)

Volatility, Pearson-PosSkew2 159.48 108.02 149.85 3.92% 2.69% 3.92%
(25.6518) (23.8246) (24.8525) (0.0037) (0.0034) (0.0037)

Volatility, Pearson-NegSkew2 44.37 14.95 38.26 1.02% 0.36% 1.02%
(0.6288) (0.2562) (0.562) (0.0002) (0.0001) (0.0002)

This table compares for selected heterogeneous groups of firms, the average spreads and default probabilities measured by the standard approach and by
our approach to the actual average spreads and default probabilities in the presence of capital structure frictions. Each group is heterogeneous in either
leverage or volatility and the distribution of the heterogeneous parameter is given in Column 1. The distributions are described in tables 2.I and 2.II. For
each selected distribution, we perform 10000 rounds of simulations, each round consisting of simulating 1000 firms from the distribution and calculating
the relevant quantities. The figures displayed are the overall averages and standard errors (in parenthesis) over the 10000 rounds. It is assumed that all
the assumptions of the Merton model hold but the econometrician does not have this information. Equity price, equity volatility, default rate and debt
principal are assumed to be observable but debt maturity T , asset value and asset volatility are unknown to the econometrician. It is known however that
the debt is a long term debt. The econometrician assumes that debt maturity is 4 year and that the portion of debt principal due is half the total debt.
The standard approach consists of inverting the equity price and volatility equations for asset value and volatility. Our two-stage approach consists of a
first stage identical to the standard approach and a second stage where leverage is adjusted to fit the actual average default rate of the group. The actual
values of the firm fundamentals are: riskless rate r = 0.06, asset drift µ = 0.12, horizon T = 10, recovery rate ρ = 0.4, asset volatility σ = 0.28 (for
leverage heterogeneity only) and leverage λ = 0.5 (for volatility heterogeneity only).
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3.3.2 Robustness to the presence of liquidity risk and other frictions

We now compare the performance of our two-stage approach to that of the standard

approach when there are other frictions, namely, liquidity risk, asset payout, coupons,

taxes and endogenous default decision.

In order to introduce these frictions, we assume that the world is perfectly described

by the He and Xiong [32] model. In this model, the asset value follows a log normal

diffusion process with a proportional asset payout rate of ζ . Default may happen at any

moment during the life of the debt contract. It is assumed that default happens when

the asset value falls bellow a given value called the default boundary and denoted by

VB. This default boundary is endogenously determined by equity holders as the asset

value at which equity becomes worthless. When default occurs, only a portion α of the

asset value is recovered. There is a tax rate π and there are liquidity frictions in the

market. Liquidity shocks occur as Poisson events with intensity ξ and, in the event of a

liquidity shock, a fraction ε of the bond value is lost. The firm has a stationary capital

structure with total debt principal P and total annual coupon payment C. At each instant

in the interval of time [t, t +dt], a portion 1
T dt of the total debt matures and is replaced

by new issues of maturity T , annual coupon C
T and principal P

T . He and Xiong [32]

derived closed form solutions for the spread on new issues and equity price. Because the

formulas are lengthy we do not report them here. The default component of the spreads

is defined as the total spread minus the liquidity spread ξ ε .

As an illustration, we consider the base case parameters suggested by He and Xiong

[32], ζ = 0.02, α = 0.6, ξ = 0.01, ε = 1, C = 6.39, P = 61.68, r = 0.08, π = 0.27,

V = 100. In addition, we assume that the asset volatility is σ = 0.28, the asset drift

is µ = 0.14 and the maturity of new issues is T = 4. Using the closed form solutions

of He and Xiong [32], we find that the actual spread on the new issues is 356 basis

points and that the equity price is E = 41.8781. With a liquidity spread of 100 basis

points, the actual share of default in the spreads is 72%. To find equity volatility we first

numerically compute the first derivative of equity value with respect to asset value EV .

We find that EV = 1.0834. Using the following relationship between equity volatility

80



and asset volatility,

σE = σEV
V
E
, (3.11)

we find that equity volatility is equal to 0.7244. The formula for the physical default

probability of Leland [42], Leland and Toft [43] remains valid in this context except that

one must use the default boundary of He and Xiong [32]. We find that the He and Xiong

[32] default boundary VB is equal to 51.6769. This implies a 4 year default probability

of 0.1097.

Consider now an econometrician who ignores that the world is described by the He

and Xiong [32] model and uses the Merton model to measure the spreads. We assume

that he observes the equity value, the equity volatility, the default rate, the debt principal

and its maturity, the coupon, the default boundary and the asset drift but he does not

observe the asset volatility and the asset value. Since there is no coupon in the Merton

model, it must be accounted for in the debt principal of the Merton model: B = (P/T +

C) = 21.81. The recovery rate as a fraction of debt principal is equal to αVB
P = 0.3351.

Suppose that the econometrician estimates asset volatility and asset value by the

standard approach. He would invert Equations 3.6 and 3.7 and find that V̂ = 55.6032

and σ̂ = 0.5728. This implies a leverage of 39.22%. The estimated parameters imply a

default spread of 582 basis points which is 226 basis points more than the actual total

spread, and 326 basis points more than the actual default spread.

Now suppose instead that the econometrician uses our two-stage approach. Because

the first stage is identical to the standard approach, he would estimate a first stage lever-

age λ̂1 of 39.22% and an asset volatility of σ̂ = 0.5728. In the second stage, he would

calculate the implied leverage by solving Equation 3.8. He would find an implied lever-

age of 22.25%. The corresponding default spread is 277 basis points which is only 21

basis points more than the actual default spread.

In summary, our two stage approach gives an estimated share of default risk in the

spread of 78%, which is very close to the actual default share of 72%, while the standard

approach puts the estimated default share at 163%. Interestingly, the estimate from the

standard approach gives the inaccurate impression that there is no liquidity spread.
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To ensure that this good performance of our two-stage approach is not specific to

the above particular parametrization of the He-Xiong Model, we repeat the study for

several maturities T = 1,2,3, ...,20, asset volatilities σ = 0.2,0.22,0.24, ...,0.5, total

debt principal P = 10,20,30, ...,100, coupon rates C
P = 0.1,0.15 and liquidity spread

ε = 25,50,100 basis points. The other parameters of the model are as in the illustration.

We discard the combinations of parameters for which there were numerical difficulties

either in our approach or the standard approach or for which the actual size of default

spread was less than 1 basis points. In total we are left we 7460 different combinations

of parameters. Table 3.IV summarizes the results. The table shows that in both absolute

and relative terms, our approach gives much lower estimation errors than the standard

approach. For interested readers, Table 3.V provides detailed results for selected combi-

nations of parameters.

We next study the performance of our approach at the group level. We relax the

assumption that the individual default rates are observable and make the weaker as-

sumption that only the average default rate of a group of firms is observable. In this

case, our two-stage approach is still applicable by using the group calibration equation

3.9. It is assumed that only leverage is heterogeneous. We consider four distribution

shapes for leverage heterogeneity: uniform, normal, positive skew and negative skew.

The shapes considered are the shapes Uniform-LowRange, Normal-HighStd, Pearson-

PosSkew2 and Pearson-NegSkew2 of Tables 2.I and 2.II . Each time we draw 1000

leverages randomly from the distribution of interest. The other parameters are as in the

above example. We then calculate the actual default spread and the corresponding esti-

mates from the standard approach and our two-stage approach. The simulation is then

repeated 10000 times and overall averages and standard errors are computed. Table 3.VI

summarizes the results. These results show that even with the group level adjustment,

our two-stage approach still gives a more accurate estimation of the default spread com-

pared to the standard approach if there are liquidity and other frictions.
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Table 3.IV: Performance of our two-stage approach and the standard approach in presence of liquidity and other frictions:
Summary.

mean median max RMSE

Standard
approach

Two-stage
approach

Standard
approach

Two-stage
approach

Standard
approach

Two-stage
approach

Standard
approach

Two-stage
approach

Absolute error (bps) 147 36 40 26 2724 372 287 53
Relative error 41% 14% 28% 13% 286% 50% 57% 17%

This table reports the summary statistics of the difference between the estimated and actual shares of default risk using the standard approach and
our approach in presence of liquidity and other frictions. In this exercise, we use the He-Xiong model to simulate a world with liquidity risk, taxes,
endogenous default, payout rates and complex capital structure. We then attempt to capture the share of default risk in the spreads by the Merton model
using the standard approach and our two-stage approach as described in the text. In the He-Xiong model σ is the asset volatility, ε is the liquidity cost
as a fraction of bond price, T is the maturity of new issues, C is the total annual coupon payment and P is the total debt principal. The exercise in
performed for several maturities T = 1,2,3, ...,20, asset volatilities σ = 0.2,0.22,0.24, ...,0.5, total debt principal P = 10,20,30, ...,100, coupon rates
C
P = 0.1,0.15 and liquidity spread ε = 25,50,100 basis points. The other parameter choices are: asset drift µ = 0.14, initial asset value V0 = 100, tax
rate π = 0.27, asset payout rate ζ = 0.02, liquidity shock intensity ξ = 1 and risk free rate r = 0.08.83



Table 3.V: Performances of our two-stage approach and the standard approach in presence of liquidity and other frictions:
Selected cases

He-Xiong model parameters Share of default risk in the spreads Default rates

σ ε T C P Actual total spread Actual Standard Our approach Actual Standard to actual

0.24 0.005 4 6 60 177 72% 113% 73% 0.0433 1.62
0.24 0.005 4 9 60 195 74% 111% 74% 0.0494 1.54
0.24 0.005 10 6 60 147 66% 105% 57% 0.0504 2.00
0.24 0.005 10 9 60 196 75% 142% 57% 0.0797 2.64
0.24 0.01 4 6 60 238 58% 106% 59% 0.0497 1.87
0.24 0.01 4 9 60 260 61% 106% 62% 0.0571 1.80
0.24 0.01 10 4 40 126 21% 10% 21% 0.0101 0.40
0.24 0.01 10 6 60 201 50% 90% 44% 0.0555 2.25
0.24 0.01 10 9 60 255 61% 130% 47% 0.0880 2.90
0.32 0.005 4 4 40 131 62% 50% 74% 0.0313 0.65
0.32 0.005 4 6 60 366 86% 185% 97% 0.1408 1.88
0.32 0.005 4 9 60 413 88% 186% 95% 0.1593 1.91
0.32 0.005 10 4 40 146 66% 56% 74% 0.0667 0.73
0.32 0.005 10 6 60 277 82% 154% 82% 0.1723 1.85
0.32 0.005 10 6 40 176 72% 75% 76% 0.0915 0.98
0.32 0.01 4 4 40 185 46% 41% 55% 0.0338 0.73
0.32 0.01 4 6 60 426 77% 177% 87% 0.1497 1.98
0.32 0.01 4 9 60 477 79% 181% 87% 0.1698 2.00
0.32 0.01 10 4 40 197 49% 46% 56% 0.0698 0.79
0.32 0.01 10 6 40 229 56% 63% 60% 0.0959 1.06

This table reports for selected cases, the difference between the estimated and actual shares of default risk using the standard approach and the actual
approach in presence of liquidity and other frictions. In this exercise, we use the He-Xiong model to simulate a world with liquidity risk, taxes,
endogenous default, payout rates and complex capital structure. We then attempt to capture the share of default risk in the spreads by the Merton model
using the standard approach and our two-stage approach as described in the text. In the He-Xiong model σ is the asset volatility, ε is the liquidity cost
as a fraction of bond price, T is the maturity of new issues, C is the total annual coupon payment and P is the total debt principal. The values of these
parameters are indicated in the first 5 columns of the table. The other parameter choices are: asset drift µ = 0.14, initial asset value V0 = 100, tax rate
π = 0.27, asset payout rate ζ = 0.02, liquidity shock intensity ξ = 1 and risk free rate r = 0.08.
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Table 3.VI: Performance of our two-stage approach and the standard approach in presence of liquidity and other frictions and
heterogeneity in leverage: Summary.

Distribution Average spreads, actual Default component average DPs

Actual Standard Our approach Actual Standard Our approach

Uniform-LowRange 170.98 41% 70% 43.87% 2.83% 4.52% 2.83%
(2.6923) (0.0092) (0.0247) (0.0101) (0.0012) (0.0024) (0.0012)

Normal-HighStd 161.03 37.89% 48.59% 40.40% 2.29% 2.77% 2.29%
(1.8852) (0.0073) (0.0212) (0.0077) (0.0008) (0.0017) (0.0008)

Pearson-PosSkew2 154.28 35.18% 46.54% 37.01% 2.02% 2.53% 2.03%
(0) (0) (0) (0) (0) (0) (0)

Pearson-NegSkew2 100.08 0.08% 0.00% 0.03% 0.00% 0.00% 0.00%
(0.0154) (0.0002) (0) (0) (0) (0) (0)

This table compares, for selected heterogeneous groups of firms, the average spreads and default probabilities measured by the standard approach and by our approach
to the actual average spreads in the presence of liquidity and other frictions. Each group is heterogeneous in leverage and the distribution of leverage in the group
is given in Column 1. The distributions are described in tables 2.I and 2.II. For each selection distribution, we perform 10000 rounds of simulations, each round
consisting of simulating 1000 firms from the distribution and calculating the relevant quantities. The figures displayed are the overall averages and standard errors
(in parenthesis) over the 10000 rounds. In this exercise, we use the He-Xiong model to simulate a world with liquidity risk, taxes, endogenous default, payout rates
and complex capital structure. We then attempt to capture the share of default risk in the spreads by the Merton model using the standard approach and our two-stage
approach as described in the text. Our two-stage approach consists of a first stage identical to the standard approach and a second stage where leverage is adjusted
to fit the average default rate of the group using equation 3.9. The parameters of the He-Xiong model are: asset volatility σ = 0.28, liquidity cost ε = 1, maturity of
new issues T = 4, total annual coupon payment C = 6.39, total debt principal P = 61.68, asset drift µ = 0.14, initial asset value V0 = 100, tax rate π = 0.27, asset
payout rate ζ = 0.02, liquidity shock intensity ξ = 1, risk free rate r = 0.08.
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3.4 Data

3.4.1 Firm raw data and risk free rate

Our sample covers all North American firms common to the databases COMPUSTAT

and CRSP for which we have available data, excluding financial firms. To construct the

database, we retrieve from COMPUSTAT quarterly data on debt in current liabilities

(COMPUSTAT variable name: dlcq), long term debt (COMPUSTAT variable name:

dlttq) and economic sector (COMPUSTAT variable name: spcseccd). Regarding credit

ratings, we used S&P credit rating on domestic long term debt issuer (COMPUSTAT

label: splticrm). The rating data is available at monthly frequency. We also retrieve from

CRSP daily data on share closing price (CRSP variable name PRC), daily number of

outstanding shares (CRSP variable name: SHROUT), share code (CRSP variable name:

SHRCD), and ex-dividend daily returns (CRSP variable name: RETX). For the risk-free

rate r, we use the monthly data on one year Treasury Constant Maturity Rate obtained

from the Board of Governors of the Federal Reserve system 7. After first round cleaning

(keeping common shares only, merging the data-set and keeping observations with no

missing data and strictly positive debt principal), the data-set consists of 1536 firms from

January 2, 1981 to December 31, 2013 for a total of 4794915 firm-days.

3.4.2 Historical default rates

We use historical default rate data over the period 1981 to 2013 (32 years) from

the table 24 of Standard and Poors [57]. This data is reprinted in Table 3.VII of this

essay. Feldhutter and Schaefer [29] argued that there is too much statistical uncertainty

on default rates based on 28 years default data, and that a longer default data (90 years)

should be used in order to reduce that uncertainty. However, caution must be made in

using 90 year historical data because this means going back to the 1920s up until the

current decade. This also means including in the data, the special spells of the great

depression period going from mid-1929 through mid-1939, the World War II period and

the post-World War II period up until 1970. As the exhibits 9 and 10 of Keenan et al.

7. Available at http://research.stlouisfed.org/fred/data/irates/gs1 (H.15 Release).
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[40] show, the default rates in these special spells were abnormally high and when these

abnormal periods are discarded, default rates from the 1920s to the 1980s are similar to

those from the 1980s to the 2010s. This implies that the default rates data that we use

reflects very well the normal level of default rates over the last 90 years.

Table 3.VII: Historical default rates (%)

Rating Maturity in years

1 2 4 10

AAA 0 0.03 0.24 0.74
AA 0.02 0.07 0.24 0.84
A 0.07 0.17 0.43 1.59
BBB 0.21 0.6 1.53 4.33
BB 0.8 2.46 6.29 14.39
B 4.11 9.27 16.99 26.97
Below B 26.87 36.05 44.27 51.35

Source: Standard and Poors [57]

3.4.3 Recovery rates

Average recovery rates by rating categories for senior unsecured bonds over the pe-

riod 1982-2010 are retrieved from Exhibit 22 of Moody’s [51]. Average recovery rates

by economic sector are retrieved from Table 4 of Standard and Poors [56]. Tables 3.VIII

and 3.IX show the recovery rates by rating and by economic sector respectively. In

this study, we would like to have some heterogeneity in recovery rates, at least across

economic sectors. Unfortunately, we do not have data on average recovery rates by

economic sectors inside a given rating category, and for that reason we suggest the fol-

lowing procedure to generate them. Moody’s annual reports provide average recovery

rates by economic sector ρ
p, p ∈ Π and average recovery rates by rating ρ

l, l ∈ L. Π

and L are the sets of economic sectors and rating categories respectively. Based on this

information, we generate average recovery rates stratified by rating and economic sector

simultaneously ρpl .

We assume that the recovery rate of a firm with a given rating in a given economic
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sector is equal to the average recovery rate inside that economic sector scaled by an

adjustment factor that depends of the firm rating, that is, ρpl has the following form:

ρpl = αlρ
p.

Accordingly, two firms with the same rating but belonging to different economic sectors

will have different recovery rates.

To identify αl , we require that the average recovery rate inside a given rating category

in our sample matches the historical average reported by the rating agencies.

Let Ωp be the set of all observations in our sample falling in sector p, p ∈ Π, and

let Ωl be the set of all observations in our sample falling in rating category l, l ∈ L. The

identification condition is:

∑
p∈Π

card
(
Ωp∩Ωl)

card
(
Ωl
) αlρ

p = ρ
l, l ∈ L.

This implies that:

αl =
ρ

l

∑p∈Π

card(Ωp∩Ωl)
card(Ωl)

ρ
p
, l ∈ L.

This procedure allows us to assign different recovery rates to firms inside a given

rating category based on their economic sector, while ensuring that the average recov-

ery rate for the rating category exactly matches its historical counterpart. The obtained

recovery rates are shown in Table 3.X. The procedure appears to do a good job at gener-

ating heterogeneity inside rating categories.
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Table 3.VIII: Average recovery rates by rating categories and maturity

Rating number of years prior to default

1 2 4 10

AAA 0.3724 0.4015 0.5043 0.3880
AA 0.3724 0.4015 0.5043 0.3880
A 0.3177 0.4756 0.3990 0.4182
BBB 0.4147 0.4302 0.4457 0.4269
BB 0.4711 0.4461 0.4081 0.4080
B 0.3790 0.3606 0.3806 0.4135
Below B 0.3550 0.3481 0.3533 0.3496

Note: Due to extremely small sam-
ple sizes in the AAA category, we as-
sume the same recovery rates as AA
firms. Due to data unavailability at the
10 year horizon, we use the 5 year hori-
zon recovery rate as a proxy. Source:
Moody’s [51]

Table 3.IX: Average recovery rates by economic sectors

Sector recovery rate

Basic Materials 0.353
Capital goods 0.353
Communication services 0.391
Consumer Staples 0.336
Consumer Cyclicals 0.336
Energy 0.461
Health Care 0.347
Technology 0.328
Transportation 0.379
Utilities 0.641

Source: Standard and Poors [56]
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Table 3.X: Heterogeneous recovery rates across economic sectors

sector AAA AA A BBB BB B Below B AAA AA A BBB BB B Below B

T=1 T=2

Transportation 39.45% 36.63% 30.62% 38.66% 48.79% 39.89% 38.02% 42.53% 39.49% 45.83% 40.11% 46.20% 37.96% 37.29%
Utilities 61.95% 51.78% 65.39% 82.52% 67.47% 64.31% 66.79% 77.52% 67.83% 78.14% 64.19% 63.06%
Health care 36.12% 33.53% 28.03% 35.40% 44.67% 36.52% 34.81% 38.94% 36.15% 41.96% 36.72% 42.30% 34.75% 34.14%
Capital Goods 36.74% 34.11% 28.52% 36.01% 45.44% 37.16% 35.42% 39.61% 36.78% 42.69% 37.36% 43.03% 35.35% 34.73%
Energy 47.98% 44.55% 37.24% 47.03% 59.35% 48.52% 46.25% 51.73% 48.03% 55.75% 48.79% 56.20% 46.17% 45.35%
Technology 34.14% 31.70% 26.50% 33.46% 42.22% 34.52% 32.91% 36.81% 34.17% 39.67% 34.71% 39.98% 32.85% 32.27%
Basic Materials 34.11% 28.52% 36.01% 45.44% 37.16% 35.42% 36.78% 42.69% 37.36% 43.03% 35.35% 34.73%
Communication services 40.69% 37.79% 31.59% 39.89% 50.33% 41.16% 39.23% 43.87% 40.74% 47.28% 41.38% 47.66% 39.16% 38.47%
Consumer cyclicals 34.97% 32.47% 27.14% 34.28% 43.25% 35.37% 33.71% 37.70% 35.01% 40.63% 35.56% 40.96% 33.65% 33.06%
Consumer Staples 34.97% 32.47% 27.14% 34.28% 43.25% 35.37% 33.71% 37.70% 35.01% 40.63% 35.56% 40.96% 33.65% 33.06%

T=4 T=10

Transportation 53.42% 49.60% 38.45% 41.55% 42.26% 40.06% 37.84% 41.10% 38.16% 40.30% 39.80% 42.25% 43.52% 37.45%
Utilities 83.89% 65.03% 70.28% 71.48% 67.75% 64.00% 64.54% 68.16% 67.31% 71.46% 73.61% 63.33%
Health care 48.91% 45.41% 35.20% 38.04% 38.70% 36.68% 34.65% 37.63% 34.94% 36.90% 36.44% 38.69% 39.85% 34.28%
Capital Goods 49.75% 46.20% 35.81% 38.70% 39.37% 37.31% 35.25% 38.28% 35.54% 37.54% 37.07% 39.36% 40.54% 34.88%
Energy 64.97% 60.33% 46.77% 50.54% 51.41% 48.73% 46.03% 49.99% 46.42% 49.02% 48.41% 51.40% 52.94% 45.55%
Technology 46.23% 42.92% 33.28% 35.96% 36.58% 34.67% 32.75% 35.57% 33.03% 34.88% 34.44% 36.57% 37.67% 32.41%
Basic Materials 46.20% 35.81% 38.70% 39.37% 37.31% 35.25% 35.54% 37.54% 37.07% 39.36% 40.54% 34.88%
Communication services 55.11% 51.17% 39.67% 42.87% 43.60% 41.33% 39.04% 42.40% 39.37% 41.58% 41.06% 43.59% 44.90% 38.63%
Consumer cyclicals 47.36% 43.97% 34.09% 36.84% 37.47% 35.52% 33.55% 36.44% 33.83% 35.73% 35.28% 37.46% 38.59% 33.20%
Consumer Staples 47.36% 43.97% 34.09% 36.84% 37.47% 35.52% 33.55% 36.44% 33.83% 35.73% 35.28% 37.46% 38.59% 33.20%

90



3.4.4 Historical spreads

For historical spreads, we rely on the estimates of Huang and Huang [33]. These

historical estimates are based on the period 1973-1993 for 10 year investment grade

bonds and on the period 1985-1998 for 4 year investment grade bonds. There are many

reasons for using these estimates. First, we could have used data on actual transaction

prices from Trace database but these prices are available only from 2002. Using TRACE

would mean throwing away almost two thirds of the period that we cover. Second, his-

torical average spreads in our study serve only as benchmark for comparison purposes.

Since many studies rely on the Huang and Huang [33] estimates, they seem to be a good

choice of benchmark. Third, there is little disagreement between different measures of

historical average spreads over different time periods (see Table 4 of Bhamra et al. [3]).

3.5 Results and discussions

3.5.1 Standard approach estimates

Using the raw data-set, we exclude financial firms and observations for which the

standard estimation procedure of Crosbie and Bohn [17] and Bharath and Shumway [4]

do not converge. Finally, to ensure that our analysis is not driven by extreme values and

outliers, we winsorize the data by eliminating the first 0.5% quantile and the last 99.5%

quantile. The final sample includes daily data on 1286 firms for a total of 2735873 firm-

days from December 26, 1984 to December 31, 2013. Table 3.XI shows the number of

firms and observations in the final sample by rating and economic sector.
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Table 3.XI: Number of firms and observations by rating category and economic sector

Sector AAA AA A BBB BB B Below B Total

Panel A: Number of firms by rating category and economic sector

Transportation 1 2 6 20 22 25 13 48
Utilities 0 14 62 81 27 13 4 120
Health care 5 10 23 29 43 31 2 94
Capital Goods 1 10 39 75 100 46 14 180
Energy 1 3 15 41 45 30 4 96
Technology 2 9 23 41 53 45 11 101
Basic Materials 0 6 39 69 63 54 20 148
Communication services 1 5 12 7 16 21 9 43
Consumer cyclicals 1 11 53 113 169 159 55 290
Consumer Staples 2 17 50 63 66 60 27 166
Total 14 87 322 539 604 484 159 1286

Panel B: Number of firms and observations by economic sector

Transportation 1037 1771 10401 41343 25708 23531 4797 108588
Utilities 0 19219 87189 153839 22403 8959 475 292084
Health care 15180 17432 44691 39793 35817 20733 95 173741
Capital Goods 720 21014 90153 133967 121065 42107 2449 411475
Energy 2236 5361 35049 67866 60227 22651 384 193774
Technology 3561 15598 47182 48530 48090 30866 1961 195788
Basic Materials 0 14663 88234 134157 75762 51307 3772 367895
Communication services 2193 1650 15957 9722 6798 18722 2336 57378
Consumer cyclicals 436 16891 104274 154378 180342 105702 11927 573950
Consumer Staples 1945 35792 95620 100187 64604 56560 6492 361200
Total 27308 149391 618750 883782 640816 381138 34688 2735873

Note about the last column of Panel A: The total exclude duplicates due to changing firm ratings.
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Table 3.XII provides summary statistics of asset volatilities, asset drifts and lever-

age ratios estimated by the standard approach by rating category. As one can see, there

is substantial heterogeneity inside rating categories. Consider the BBB category for

instance. Asset volatilities vary from 11.47% to 363% with an interquartile range of

22.64% to 36.16%. Asset drifts vary from -28.19% to 220.93% with an interquartile

range of 3.41% to 19.50%. Leverage ranges from 0.07% to 581.87% with an interquar-

tile range of 11.03% to 30.67%. Coefficients of variations are large, suggesting that

there is a sizable variation around the means. The interquartile ranges are important,

indicating that the observed large dispersions are not driven by extreme values. We

also observe substantial positive skewness and kurtosis in leverage, asset drift and asset

volatility. This shows that required risk premia can be substantially large for some firms

at some times, and that leverage ratios and asset volatilities can be extremely high rel-

ative to the average. The largest skewnesses and kurtoses are observed for BBB rated

firms. Globally, heterogeneity is less important in high quality rating categories than in

low quality rating categories.
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Table 3.XII: Summary statistics of estimated firm parameters from the standard approach

Rating mean sd CV range p99-p1 skewness kurtosis min p1 p25 p50 p75 p99 max

Panel A: Asset Volatility σV (in percent per annum)

AAA 25.08 6.67 0.27 45.31 35.42 1.56 7.93 13.22 13.84 20.61 24.19 28.32 49.26 58.52
AA 25.39 6.98 0.27 57.41 34.87 0.89 4.73 11.47 12.13 20.39 24.42 29.53 47.00 68.88
A 27.73 10.92 0.39 111.10 54.16 3.15 22.17 11.47 12.51 21.08 26.00 31.69 66.67 122.58
BBB 31.32 19.43 0.62 351.73 73.38 9.31 136.01 11.47 12.47 22.64 28.68 36.16 85.84 363.21
BB 40.31 19.21 0.48 313.75 101.05 4.26 39.05 11.48 15.76 29.36 36.83 46.37 116.81 325.23
B 49.71 28.87 0.58 398.54 196.34 4.69 38.33 11.82 16.67 34.63 44.18 56.23 213.01 410.37
Below B 65.34 53.99 0.83 391.93 286.66 3.60 17.63 18.49 19.43 40.00 52.33 67.70 306.09 410.43

Panel B: Asset drift µV (in percent per annum)

AAA 14.24 12.62 0.89 77.35 60.79 0.46 3.21 -17.59 -12.00 5.16 13.11 21.92 48.78 59.77
AA 12.51 11.30 0.90 101.28 54.41 0.79 4.09 -20.63 -9.17 5.04 10.67 18.56 45.24 80.65
A 12.61 12.87 1.02 137.66 66.96 1.60 9.29 -28.16 -11.23 4.75 10.90 18.42 55.73 109.50
BBB 13.03 17.10 1.31 249.11 83.83 3.03 25.65 -28.19 -15.74 3.41 10.48 19.50 68.09 220.93
BB 17.54 20.97 1.20 249.07 105.98 1.43 9.40 -28.19 -20.95 3.65 15.05 28.07 85.03 220.88
B 13.95 24.44 1.75 246.23 115.82 1.82 10.52 -28.19 -24.56 -2.25 9.61 25.40 91.26 218.04
Below B 8.10 34.56 4.27 221.78 184.43 2.48 10.13 -28.19 -27.18 -12.09 -1.29 14.03 157.25 193.58

Panel C: Leverage (in percent per annum)

AAA 6.07 5.67 93.26 50.26 29.14 2.05 9.75 0.07 0.09 2.05 4.64 8.35 29.23 50.33
AA 10.54 8.87 84.17 82.58 40.62 1.82 7.57 0.20 0.68 4.49 7.95 13.63 41.29 82.78
A 15.81 12.00 75.92 156.24 53.57 1.43 5.77 0.05 0.62 7.11 12.31 21.71 54.20 156.29
BBB 22.60 17.33 76.67 581.80 73.02 5.19 98.42 0.07 1.81 11.03 18.91 30.67 74.82 581.87
BB 32.07 26.72 83.33 589.93 127.10 2.88 24.48 0.10 2.21 14.38 24.62 42.38 129.31 590.02
B 57.81 46.56 80.53 1302.29 217.76 3.09 25.34 0.89 4.40 26.73 46.65 76.30 222.16 1303.18

This table shows summary statistics and quantiles of firm fundamentals across S&P credit ratings. CV stands for Coefficient of Variation
and is defined as the ratio of the standard deviation to the mean. Range is the maximum minus the minimum. Panels A, B and B display
statistics for asset volatility, asset drift and leverage respectively. The first column presents the rating categories considered. µV , the drift
of asset returns (in percent per annum), is calculated for each firm and year as the mean of daily asset returns multiplied by 252. σV , the
instantaneous volatility of asset returns (in percent per annum), is calculated for each firm as the standard deviation of the daily asset return
multiplied by the square root of 252. Leverage is short term debt plus half long term debt divided by asset value.
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Table 3.XII also shows that distributions are highly overlapping. We often think of

the median asset volatility of a given rating category to be exclusively typical to firms

inside that category. However, the overlapping distributions contradict this common

assertion. For instance, the median asset volatility for BBB rating category is 28.68% in

our sample. It is true that this asset volatility is typical to BBB firms but it is not typical

to BBB firms only. This value of 28.68% is close to the center of the distribution of AA

and A rating categories also. In other words, a significant proportion of AA firms operate

“riskier” businesses than typical BBB firms. And a significant proportion of BBB rated

businesses are “safer” than AA rated firms.

The large dispersions, skewnesses, kurtoses and the highly overlapping distributions

suggest that the assumption of homogeneity can hardly be justified.

Panel A of Table 3.XIII shows the share of default spread in the yield spreads using

estimated parameters from the standard approach and the HBF estimator. Thanks to

our large sample size, standard errors are very small so that they can be ignored. The

table indicates that credit spreads estimated from the standard approach represent only

a tiny fraction of AAA, AA and A bond spreads. For instance for AA bonds, of the 65

basis points observed spreads at the 4 year horizon, only 4 basis points are attributable to

credit risk. The measured share of default spread increases when bond quality decreases.

For BBB bonds, which form the bulk of investment grade bonds, the estimated share of

default risk in the spreads is 58% at the 4 year horizon and 55% at the 10 year horizon.

For junk bonds, the standard approach estimates of the default spreads come very close

to the total observed average spreads. For BB bonds, the estimated share of default risk

in the spreads is 85% at the 4 year horizon and 77% at the 10 year horizon. For B bonds,

it seems that investors are not charging enough spreads for the default risk that they incur.

The estimated default spread for B bonds from the standard approach is 81% and 28%

higher than observed average B spreads at the 4 year and 10 year horizons respectively.

The problem with the estimated shares of default spreads from the standard approach

is the risk that the low shares for very high quality bonds may be due to an underesti-

mation of expected default losses by the model. Similarly there is a risk that the higher

shares for BBB bonds and junk bonds be due to an overestimation of the expected de-
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fault losses by the model. To check this, we calculate the average physical probability

of default implied by the estimated parameters of the first stage. Table 3.XIV compares

this average default rate to the historical average. We can see that the standard approach

estimates of default rates are quite different from historical estimates. The default rates

implied by the standard approach estimates represent only 20% and 60% of historical

average default rates of AAA and AA bonds at the 4 year horizon. This implies that the

standard approach understates the share of default risk in the spreads for AAA, and AA

bonds at the 4 year horizon. Apart from the AAA and AA bonds at the 4 year horizon,

the default rates estimated from the standard approach are much higher than their his-

torical counterpart. For instance, for BBB bonds, the default rates estimated from the

standard approach are more than double the corresponding historical default rates. This

implies that the standard approach overstates the share of default risk in the spreads for

A rated bonds and lower quality bonds.
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Table 3.XIII: Estimated share of default risk in the spreads

Rating Spread (ba-
sis points)

Historical
spread (basis
points)

Default size Default sizes
of Huang
and Huang
[33]

T=4 T= 10 T=4 T= 10 T=4 T= 10 T=4 T= 10

Panel A: Spreads estimated from the standard approach

AAA 0 1 55 63 0% 2% 2% 16%
AA 4 7 65 91 5% 8% 9% 16%
A 16 27 96 123 17% 22% 10% 19%
BBB 92 106 158 194 58% 55% 20% 29%
BB 272 247 320 320 85% 77% 54% 60%
B 849 607 470 470 181% 129% 95% 83%

Panel B: Spreads from our two-stage approach

AAA 1 1 55 63 1% 2% 2% 16%
AA 5 5 65 91 8% 5% 9% 16%
A 11 14 96 123 11% 11% 10% 19%
BBB 62 66 158 194 39% 34% 20% 29%
BB 159 185 320 320 50% 58% 54% 60%
B 447 376 470 470 95% 80% 95% 83%
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Table 3.XIV: Comparison of physical default rates estimated from the standard approach
and historical default rates

Rating Model DP from stan-
dard approach

Historical
DP

Ratio

T=4 T= 10 T=4 T= 10 T=4 T= 10

AAA 0.05% 0.83% 0.24% 0.74% 0.2 1.1
AA 0.14% 1.19% 0.24% 0.84% 0.6 1.4
A 0.75% 3.33% 0.43% 1.59% 1.7 2.1
BBB 3.46% 9.21% 1.53% 4.33% 2.3 2.1
BB 11.10% 18.47% 6.29% 14.39% 1.8 1.3
B 31.12% 40.11% 16.99% 26.97% 1.8 1.5

3.5.2 Our two-stage approach estimates

As shown in section 3.2, with our two-stage estimation approach, the risk of default

spread underestimation or overestimation is minimized by the requirement in the second

stage that at each maturity and for every rating category, the model average default rate

exactly matches its historical counterpart.

3.5.2.1 Implied leverages

Recall that the first stage of our approach is the same as the standard approach. Here,

since our historical default data is at the rating category level, the second stage consists

of solving Equation 3.9 for each maturity and rating category. This second stage gives

us the implied leverages from historical default rates.

We emphasize that the obtained implied leverages should not be interpreted as be-

ing more accurate estimations of actual leverages than the leverages of the first stage.

They should be regarded simply as an econometric artifice to stem the repercussions of

potential biases in the estimation on the obtained share of default risk and should be

interpreted relatively to the first stage leverages. If implied leverages are greater (resp.

lower) than first stage leverages, it means that the standard estimation approach under-

estimates (resp. overestimates) historical default rates.

98



We therefore expect the implied leverages to be higher than the estimated leverages

from the standard approach for all rating categories and maturities except for the AAA

and AA categories at the 4 year horizon where we have found that the standard approach

underestimates the historical default rates. Implied leverages are shown in Table 3.XV.

As expected, the table shows that the implied leverages are smaller than the standard

approach leverages except for the AAA category at the 4 year horizon. For instance, for

the BBB category, the estimated leverage from the standard approach is 22.6% and the

implied leverages are 14.14% and 10.43% at the 4 and 10 year horizons respectively.
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Table 3.XV: Summary statistics of implied leverages from historical default rates and our two-stage estimation approach

Rating mean sd CV range p99-p1 skewness kurtosis min p1 p25 p50 p75 p99 max

Panel A: Leverage at 4 year maturity

AAA 8.99 8.39 0.93 74.40 43.13 2.05 9.75 0.11 0.13 3.04 6.87 12.36 43.27 74.51
AA 12.36 10.40 0.84 96.80 47.61 1.82 7.57 0.24 0.79 5.26 9.32 15.98 48.40 97.04
A 12.95 9.83 0.76 128.03 43.90 1.43 5.77 0.04 0.51 5.83 10.09 17.79 44.41 128.08
BBB 14.14 10.84 0.77 364.04 45.69 5.19 98.42 0.04 1.13 6.90 11.83 19.19 46.82 364.08
BB 20.75 17.29 0.83 381.69 82.24 2.88 24.48 0.06 1.43 9.30 15.93 27.42 83.67 381.75
B 28.69 23.10 0.81 646.25 108.06 3.09 25.34 0.44 2.18 13.26 23.15 37.86 110.24 646.70
Below B 59.80 71.60 1.20 1030.90 382.33 4.56 35.52 1.16 3.11 22.28 38.99 71.49 385.45 1032.00

Panel B: Leverage at 10 year maturity

AAA 5.69 5.30 0.93 47.06 27.28 2.05 9.75 0.07 0.08 1.92 4.35 7.81 27.37 47.13
AA 8.45 7.11 0.84 66.17 32.55 1.82 7.57 0.16 0.54 3.59 6.37 10.92 33.09 66.34
A 9.27 7.04 0.76 91.62 31.41 1.43 5.77 0.03 0.37 4.17 7.22 12.73 31.78 91.65
BBB 10.43 7.99 0.77 268.40 33.68 5.19 98.42 0.03 0.83 5.09 8.72 14.15 34.52 268.44
BB 21.65 18.04 0.83 398.23 85.80 2.88 24.48 0.07 1.49 9.71 16.62 28.61 87.29 398.29
B 22.63 18.22 0.81 509.65 85.22 3.09 25.34 0.35 1.72 10.46 18.26 29.86 86.94 510.00
Below B 31.43 37.63 1.20 541.75 200.92 4.56 35.52 0.61 1.64 11.71 20.49 37.57 202.56 542.36

This table shows summary statistics and quantiles of implied leverage ratios across S&P credit ratings at different maturities.
CV stands for Coefficient of Variation and is defined as the ratio of the standard deviation to the mean. Range is the maximum
minus the minimum.
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3.5.2.2 Equity fit

The standard estimation approach ensures that equity prices are exactly matched, at

the cost of an imprecision on predicted default rates. On the other hand, by requiring

that estimated default rates match observed default rates, we loose the ability to match

equity prices exactly. Clearly a choice has to be made on whether fitting equity prices is

more important than matching default probabilities.

There are two reasons why we choose to match default probabilities at the cost of

loosing the perfect fit of equity prices. First, our goal is to measure the share of default

risk in the spreads. To achieve this goal, it is necessary to ensure that expected default

losses are not overestimated or underestimated, as argued by Bhamra et al. [3], Chen

et al. [11], Huang and Huang [33]. The other reason is that the same factors that affect

bond prices, such as default risk, macroeconomic risk, liquidity risk and taxes, are also

present in equity prices [32, 61]. This indicates that if a model is calibrated to capture

only the default component of spreads, it would very likely also capture only the default

component of equity prices. This implies that it is normal that the estimated parameters

do not fit exactly equity prices, if the goal is to capture default components of the spread,

which is the case here.

Nevertheless, it is important to look at the implications of our estimation approach for

the fitting of equity prices. We therefore attempt to answer the following two questions:

How close are the equity prices, estimated from our two-stage approach, to actual equity

prices? How much of the variation in actual equity prices is explained by the variation

in the equity prices estimated from our two-stage approach?

We answer the first question by computing the ratio of the difference between indi-

vidual estimated equity prices and observed equity prices to observed equity prices and

taking the squared root of the average squared ratio of the obtained relative differences.

This is equivalent to using a RMSE measure on a relative basis instead of an absolute

basis, in order to avoid that large companies bias the RMSE measure. The further this

measure is from 0, the worst the estimation fit. We find that the deviation of estimated

equity prices from observed equity prices is about 3% for the standard estimation ap-
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proach, while it is and about 108% for our two-stage approach. This finding clearly

demonstrates that the requirement to fit historical default rates has a negative impact on

our ability to match equity price levels. As we argued earlier, an alternative reading of

these results is that there are other risk factors than default risk that are important in

explaining the level of equity prices.

To answer the second question, we compute the overall correlation between observed

equity prices and estimated equity prices. This is equivalent to regressing observed eq-

uity prices on estimated equity prices. We find a correlation of 99.97% for the standard

estimation approach and a correlation of 95.37% for our two-stage approach. This find-

ing shows that the estimated equity prices from both the standard approach and our two-

stage approach mimic very well the dynamics of observed equity prices. This implies

that our two-stage approach is able to capture the observed variation in equity prices,

even if it cannot capture their level.

3.5.2.3 Default spread size

Panel B of Table 3.XIII shows estimated default spreads using our two-stage ap-

proach. A general observation is that estimated default spreads from the two-stage ap-

proach are smaller than those from the standard approach, except for the AAA and AA

categories where an economically insignificant increase of 1 basis point is observed.

The difference between our two-stage estimated approach and the standard approach is

striking for BBB and junk bonds. For BBB bonds for instance, the estimated default

spread from the two-stage approach is 62 basis points at the 4 year horizon and 66 basis

points at the 10 year horizon. This represents 39% and 34% of observed BBB spreads at

the 4 year and 10 year horizons respectively. The reduction from the standard approach

estimates is 30 and 40 basis points at the 4 year and 10 year horizons respectively. For

B rated bonds the estimated default spread is reduced by 402 basis points and 231 basis

points at the 4 year and 10 year horizons respectively. This brings the estimated share of

default risk in the spreads for B rated bonds from 181% (129%) down to 95% (80%) at

the 4 (10) year horizon.
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3.6 Robustness checks

We now study the robustness of the estimated shares of default risk in the spreads by

our two-stage approach with respect to some key assumptions of our work. We consider

the following cases:

– Case 1: Average historical default probability is increased by 50%.

– Case 2: Heterogeneity in recovery rates is increased by attributing truncated nor-

mally distributed random recovery rates to firms inside rating categories while still

matching average historical recovery rates.

– Case 3: The model default rate for each individual bond is calibrated to match the

historical default rate for the corresponding rating category and horizon.

– Case 4: Leverages are fixed to our sample average and asset volatilities are ad-

justed to match historical default rates.

– Case 5: Leverages are fixed to the same average as Huang and Huang [33] and

asset volatilities are adjusted to match historical default rates.

– Case 6: The sample period is restricted to 1985-1998, the same as Huang and

Huang [33].

– Case 7: An advanced structural model: Leland and Toft [43] model instead of the

Merton model

For clarity and space parsimony, we only present for each case the estimated share

of default risk in the spreads by our two-stage approach. The results are shown in Table

3.XVI. The base case scenario is the one used in the earlier part of our study.

3.6.1 Sensitivity to historical default rates

A key parameter of our analysis is the average historical default rate. This parameter

is not measured with certainty. Keenan et al. [40] provide some estimates of the volatility

of one year default rates and ten year default rates by rating categories. At the one year

horizon, the volatility of default rates ranges from 0% for AAA bonds to 0.28% for BBB

bonds and 4.99% for B rated bonds. At the 10 year horizon, the volatility of default rates

ranges from 1.93% for AAA bonds to 10.23% for BBB bonds and 15.94% for B rated
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Table 3.XVI: Robustness checks

rating base case case 1 case 2 case 3 case 4 case 5 case 6 case 7
Maturity = 4 years

AAA 1% 2% 1% 0% 4% 4% 0% 1%
AA 8% 11% 9% 5% 8% 6% 3% 7%
A 11% 15% 11% 11% 9% 3% 11% 8%
BBB 39% 47% 39% 38% 22% 3% 56% 22%
BB 50% 72% 51% 109% 34% 16% 120% 39%
B 95% 143% 98% 140% 55% 55% 164% 73%

Maturity = 10 years
AAA 2% 3% 2% 7% 2% 0% 0% 1%
AA 5% 8% 6% 19% 5% 1% 3% 5%
A 12% 16% 12% 37% 6% 0% 11% 9%
BBB 34% 43% 34% 74% 12% 0% 42% 14%
BB 58% 95% 59% 151% 48% 30% 94% 44%
B 80% 131% 82% 136% 50% 43% 114% 53%

This table shows results of our robustness checks. The base case default size is
the ratio of the default spread as predicted by our Merton model with bankruptcy
costs to the observed spreads. The data and estimation approaches are as de-
scribed in the corresponding sections of this work. Case 1: Average default
probability is increased by 50%. Case 2: Heterogeneity in recovery rates is in-
creased by attributing truncated normally distributed random recovery rates to
firms inside rating category while matching average historical recovery rates.
Case 3: The model default rate for each bond is calibrated to match the his-
torical default rate for the corresponding rating category and horizon. Case 4:
Leverages are fixed to the sample average and asset volatilities are adjusted to
match historical default rates. Case 5: Leverages are fixed to the same average
as Huang and Huang [33] and asset volatilities are adjusted to match historical
default rates. Case 6: The sample period is restricted to 1985-1998, the same
as Huang and Huang [33]. Case 7: Default sizes based on the Leland and Toft
[43] model.
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bonds. Overall, the volatility of default rates tends to decrease with credit quality and

to increase with time to maturity. The authors examined cohorts of bonds from 1920

to 1998, excluding the 1950-1965 period, which makes roughly 63 cohorts. Assuming

independence of the cohorts, the volatility of each sample average default rate could be

taken to the volatility of the sample divided by the square root of the sample size. This

yields an estimate of coefficients of variation of average default rates no greater than

17% for each rating category. These estimates show that the uncertainty about average

default rates can be substantial. The true coefficient of variation could be even larger

than 17% due to correlation between the cohorts. It is therefore possible that the gap

between observed spreads and our estimated default spread be due to true default rates

that are larger than their historical averages. To control for this possibility, we consider

a worst scenario case, increasing the average historical default probabilities by 50%, and

measure the bias-free default sizes. The results are shown in the column labeled “Case

1” of Table 3.XVI. As expected, the obtained default sizes are larger, but the increase is

not substantial.

3.6.2 Recovery rates

We used a highly stylized approach to assign different recovery rates to firms inside

the same rating category according to their economic sectors, while ensuring that at each

maturity the average recovery rate matches empirical observations. One might argue

that this approach does not generate enough heterogeneity of recovery rates inside rating

categories, so that the effect of heterogeneity in recovery rates is underestimated.

As an attempt to deal with this issue, we consider an approach that generates larger

heterogeneity in recovery rates than in our base case. We assume that for each rating

category and maturity, recovery rates follow a normal distribution with mean equal to

the historical average for that rating category and maturity. We arbitrarily consider a

coefficient of variation of 50%. Recovery rates for individual firms are drawn from

this distribution but are truncated at a maximum of 99% and a minimum of 1%. This

procedure leads to much more heterogeneity in recovery rates than in our base case.

Indeed, even inside the same economic sector, for the same rating and horizon, firms
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have different recovery rates. In addition, the assumed range of dispersion of recovery

rates inside rating categories is now 98% while it was roughly 30% in our base case.

The new default sizes are displayed in the column labeled “Case 2” of Table 3.XVI.

One can observe that there is no marked difference from our base case findings.

3.6.3 Alternative calibration approaches

The second stage of our estimation procedure consists of adjusting the leverage ratios

in our analysis so that the model average default rates for each rating category match their

corresponding historical counterpart. There may be three concerns with this approach.

First we impose a uniform adjustment to leverage ratios for all firms with a given rating,

while one may have preferred firm-specific adjustments. Second, we adjust leverage

ratios, while one could have chosen to adjust asset volatilities. Third, the physical total

leverage ratios in our model are lower than those of Huang and Huang [33], which may

bias our estimates downward.

To address these concerns, we consider three alternative calibration procedures. The

first alternative is to force the model default rate of each individual firms to match the

historical average default rate of the rating category to which the firm belongs, thereby al-

lowing firm-specific adjustments. The second alternative is to calibrate the asset volatil-

ity instead of leverage, in such a way that leverage is kept at our sample average. The

third alternative is to consider the same average leverage ratios as Huang and Huang [33]

and calibrate asset volatilities to match historical default rates. The results are shown re-

spectively in columns labeled “Case 3”, “Case 4” and “Case 5” of Table 3.XVI. The

results speak for themselves. None of these alternative procedures have substantially in-

creased the explained default size for investment grade bonds. In most cases, the model

default size is even lower than in the base case.

3.6.4 Period of study

Our model estimates of default spreads are based on the period 1984 to 2013. How-

ever, we compare these models spreads with historical spreads estimated by Huang and
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Huang [33]. These historical estimates are based on the period 1973-1993 for 10 year

investment grade bonds and on the period 1985-1998 for 4 year investment grade bonds.

Despite the fact that there is little disagreement between different measures of historical

average spreads (see Table 4 of Bhamra et al. [3]) over different time periods, it could be

the case that this difference in time frames bias our measured default sizes downward.

To account for this possibility, we reconducted our study over the period 1985-1998,

to be consistent for the time frame for 4 year investment grade bonds. The results are

shown in the column labeled “Case 6” of Table 3.XVI. The new default sizes are smaller

for high quality bonds and are larger for lower quality bonds than in the base case, but

there is no marked change for investment grade bonds in general.

3.6.5 Is it specific to the Merton Model?

To investigate whether our findings would change if we would consider more elab-

orated structural models, we consider here the Leland and Toft [43] model, which is

one of the most successful extensions of the Merton Model. Some particularities of this

model relatively to the Merton Model are the following. Default occurs endogenously

once the firm value falls below an optimally determined level. There are corporate taxes.

The firm continuously pays a coupon and replaces maturing debt with new debt at par.

The model also accounts for payout rates and tax benefits of debt, and generates hetero-

geneity in recovery rates. Following Elkamhi et al. [24], we choose the coupon rate to

be equal to the risk free rate times the debt principal. Following Leland [42] we choose

the tax rate π = 15%, the asset payout rate ζ = 6%, and the bankruptcy recovery param-

eter α = 70%. Asset value and volatility are the same as in the Merton model, so the

first stage of the estimation does not change. The second stage of the estimation is also

very similar, with the difference that the model-implied physical default probabilities are

from the Leland and Toft [43]. Average spreads based on this advanced structural model

are given in the column labeled “Case 7” of Table 3.XVI. We can see that the share of

default risk in the spreads is lower than in our base case, but that the difference is not

substantial.
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3.7 Further discussions

3.7.1 Importance of heterogeneity in understanding the spreads

An advantage of the approach proposed in this essay is that it allows to account for

firms heterogeneity when aggregating at the group level. In fact, the rating level average

spreads in the above results are obtained by averaging individual spreads in both the

cross-section and the time series. As a consequence, our results reported above are free

of any heterogeneity bias.

Now assume that each rating level average spread is measured as the model spread

for the firm whose fundamentals are the average fundamentals observed in the rating

category of interest, which would produce an heterogeneity bias. This specific bias was

called the ATA bias in Chapter 2. Table 3.XVII reports the ATA bias in absolute terms.

Consistently with our results of Chapter 2, we expect this bias to be positive. This is

because the distributions of firm parameters in rating categories are positively skewed, so

that the convexity region of the spread function outweighs its concavity region. In Panel

A of Table 3.XVII, we assume that recovery rates are homogeneous, while we relax this

assumption in Panel B by introducing heterogeneity in recovery rates across economic

sectors. These two panels allow us to study separately the impact of heterogeneity in

recovery rates.

As expected, in both panels, the bias is positive. In Panel A, it ranges from 0 basis

points for one-year and 2-year AAA-rated bonds to 362 basis points for 1-year B-rated

bonds. The bias is larger for junk bonds than for investment grade bonds. The bias

is typically around 5 basis points for high quality bonds and typically above 100 basis

points for junk bonds. For investment grade bonds, the bias is larger at long maturities

than at short maturities. For low quality bonds, the bias is larger at short maturities

than at long maturities. For BBB-rated bonds the bias is no larger than 59 basis points.

Comparing the results of Panel A with those of Panel B, we find that heterogeneity in

recovery rates has no impact on the size of the bias. Indeed we see that the difference

between the results reported in Panels A and B is at most 1 basis point.

Now assume that the rating level average spread is measured as the model spread for
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the firm whose parameters are fixed at the categorical average except the asset volatility

which is calibrated to match historical default rates. This would produce a different

heterogeneity bias that we called the HH bias in Chapter 2. Panels A and B of Table

3.XVIII display the HH bias in absolute terms without and with heterogeneous recovery

rates respectively.

Based on our results of Chapter 2, we expect that these biases could be positive or

negative, and this is what we observe in Table 3.XVIII. The biases range from -154

to 33 basis points. As we argued in Chapter 2, the reason of the negative bias is that

the calibrated asset volatilities in the HH estimator may be so large that it causes an

overestimation of the average model spread. This intuition is confirmed empirically here

in Table 3.XIX. Also, consistently with our theoretical findings in Chapter 2, the HH

biases are much smaller in absolute value than the ATA biases. By comparing Panels

A and B, we see that in this case also heterogeneity in recovery rates does not have an

important role.

Another way of gauging the role of heterogeneity is to compare our measured shares

of default spread in the total spread to the measures of Huang and Huang [33]. Indeed

the main difference in our study is that we account for heterogeneity while they do not.

This comparison is done in Panel B of Table 3.XIII. The default spread sizes of Huang

and Huang [33] are reported in the last column. At the 4 year horizons, our default

spread sizes are pretty much similar except for the BBB rating category 8. In fact, our

measured default spread sizes are twice as large as those of Huang and Huang [33] for

BBB bonds. At the 10 year horizon, our measured default sizes are lower than those

of Huang and Huang [33] for high quality AAA, AA and A bonds, but are higher for

BBB bonds. These results are important because they show that heterogeneity can have

a significant impact on the perceived importance of default risk in the spreads.

8. This may be because the BBB category is the most heterogeneous one in our sample.
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Table 3.XVII: Convexity bias

Maturity (Years)

Rating 1 2 4 10

Panel A: Homogeneous recovery

AAA 0 0 1 1
AA 4 6 5 5
A 6 7 10 12
BBB 34 52 59 56
BB 75 109 93 46
B 362 266 132 98

Panel B: Heterogeneous recovery

AAA 0 0 1 1
AA 4 6 5 5
A 7 7 11 12
BBB 34 52 60 57
BB 77 110 94 47
B 359 265 132 99

Table 3.XVIII: Heterogeneity bias

Maturity (Years)

Rating 1 2 4 10

Panel A: Homogeneous recovery

AAA 0 -2 -9 -24
AA 2 1 -4 -19
A -2 -3 -9 -28
BBB 16 19 5 -29
BB 5 -30 -94 -154
B 33 -22 -55 -61

Panel B: Heterogeneous recovery

AAA 0 -2 -9 -24
AA 2 1 -4 -19
A -1 -2 -9 -28
BBB 16 19 6 -29
BB 6 -28 -93 -154
B 30 -23 -55 -61
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Table 3.XIX: Typical firm: Calibrated and uncalibrated asset volatilities

Calibrated asset volatil-
ity to historical default
rates(%)

Maturity (years)

Rating 1 2 4 10 Average
asset volatil-
ity(%)

AAA 25.08 51.35 45.47 43.43 25.08
AA 59.05 46.55 40.21 39.11 25.39
A 56.88 46.87 41.83 41.14 27.73
BBB 79.48 55.23 47.05 46.13 31.32
BB 74.51 60.52 54.72 54.12 40.31
B 74.59 62.96 58.63 58.95 49.71
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3.7.2 Is the credit spread puzzle a myth?

Our findings contrast with those of Feldhutter and Schaefer [29], who find that the

default spread explains all the spread after correcting for the heterogeneity bias. Their

finding implies that the credit spread puzzle is due to a statistical error, while our findings

imply the opposite. Although we use the same model to capture the default spread, our

estimation methodologies and the data that we use are different, as explained in Sections

3.1 and 3.4.2. This explains the difference in our findings.

First, while our calibration approach consists of solving an equation that we demon-

strate to have a unique solution, their calibration approach is a minimization problem

and their obtained minimal error may still be large. In fact, since it is known that the

Merton model when calibrated to one particular maturity cannot fit the whole term struc-

ture, their calibration approach is likely to result in large fitting errors. In contrast, our

approach ensures that the term structure of default rate for every rating category is ex-

actly fitted. In other other words, our approach ensures that expected default losses are

not over- or underestimated, contrarily to their approach. Their larger spreads might

therefore reflect overestimated default losses.

Second, while we use 32 years of default rate data, they use 90 years of default data.

Because the 90 years default rates are higher than the 32 years default rates, they estimate

higher default losses than we do. This may justify their higher spreads. However, their

90 years default data does not reflect the normal levels of average default rates, as they

include the abnormally high default rate periods of the great depression and World War

II periods. Thus the higher spreads of Feldhutter and Schaefer [29] may not reflect usual

market expectations about default losses.

It is worth mentioning that it is hard to reconcile the findings of Feldhutter and Schae-

fer [29] with the extensive literature providing empirical evidence that jump risk, volatil-

ity risk and liquidity risk are priced in the spreads [10, 15, 16, 25, 47, 62] and that risk

premia is time-varying and counter-cyclical [3, 11, 13, 20]. In contrast, our findings are

well aligned with this literature. This point is discussed further in the next subsection.
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3.7.3 Implications for pricing

Our finding that the default spread, as measured by the Merton model with bankruptcy

costs, is low relatively to the observed level of spreads has important pricing implica-

tions. On one hand, it may imply that spreads are actually explained by default risk

but the model that we use to capture default risk underestimates the price of default

risk. This is plausible because in the Merton model, default risk premia arise solely

from asset risk augmented with the option-like nature of default. The model ignores

that volatility is time-varying and that investors want to be compensated for volatility

risk. The model also ignores jumps and the price of jump risk. Moreover, the model ig-

nores that risk premia is time-varying and counter-cyclical. Clearly, incorporating these

additional prices of risk in the price of default risk or making the price of default risk

counter-cyclical may be helpful in finding out whether default risk solely justifies cor-

porate bond spreads. There exist models with one or several of these features, such as

those of Zhou [63], Zhang et al. [62], Cremers et al. [16], Bhamra et al. [3], Chen et al.

[11, 13], David [20]. To the best of our knowledge, though the default spreads based on

these models are higher than those based on the Merton model, none of these models is

able to entirely explain the spreads.

The other possibility is that spreads are explained by additional factors to default

risk, such as individual bond liquidity, market liquidity, tax differentials and asymmetric

information. This possibility is consistent with the empirical findings of Collin-Dufresne

et al. [15], Elton et al. [25], Longstaff et al. [47] and CHEN et al. [10]. There could also

be interaction effects between default risk and liquidity as the works of Ericsson and

Renault [27], He and Xiong [32] have shown.

Whether spreads are entirely explained by default risk or not, our study makes it

clear that there is more in the spreads than just expected default losses and the default

risk premia arising from asset risk. This is important for corporate finance because it

implies that firms must pay attention to more than expected default losses and asset

diffusion risk premia when issuing new debt. By doing so, they may be able to better

anticipate their financing costs or obtain lower financing rates by adequately timing their
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issues. This is also important for bond market investors because it provides guidance on

bond valuation models. Bond values predicted from models of default losses and asset

risk premia only are likely to be wrong ex-post as they ignore other sources of default

risk and the additional factors to default risk that the market cares about.

3.7.4 Implications for capital structure

One puzzling fact in corporate finance is the low leverage of firms [24]. The puz-

zle is that, if one balances tax benefits of debt with bankruptcy costs, most firms would

seem to have an advantage in using more leverage than they do. According to He and

Xiong [32], one possible answer to the low leverage puzzle is liquidity risk. By using

more debt, firms expose themselves to more liquidity shocks, higher spreads, and higher

rollover losses when the time comes to refinance the debt. This possibility increases

bankruptcy risk and costs. With high enough expected liquidity risk and losses, the ap-

parent advantage of higher leverage may disappear, thereby explaining the low leverage

puzzle. Our findings suggest that this low-leverage puzzle may indeed be explained by

the non-default components of the spreads.

3.8 Conclusion

In this study, we have attempted to capture the share of default risk in corporate bond

spreads. Towards this end, we have proposed a new calibration approach of the Merton

model. The approach builds on the standard calibration approach, which consists of

inverting the Merton model in order to estimate asset volatility and asset value from

equity volatility and equity price. The novelty in the approach is that it incorporates

information on observed default probabilities in the estimation.

The proposed approach has the advantages of jointly offering the possibility of: (a)

accounting for the heterogeneity of firms in the estimation of average spreads, (b) cali-

brating firm fundamentals to historical default rates while preserving their heterogene-

ity, (c) using individual firm historical default rates or group level historical default rates

depending on data availability, (d) using equity prices and equity volatilities in the esti-
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mation, (e) using the Merton model which is parsimonious and very tractable.

Using simulation studies, we have shown that the proposed approach leads to much

smaller estimation errors on the share of default risk in the spreads than the standard

approach does.

We have applied the approach on a large sample of about 3 Millions firm days obser-

vations from 1984 to 2013. We have estimated the share of default risk in the spreads for

BBB firms to be about 40% at the 4 year horizon. This share is lower for higher qual-

ity bonds and higher for lower quality bonds. The estimated shares were subjected to a

battery of robustness checks regarding the period of study, the uncertainty on historical

default rates, the use of more elaborated structural models than the Merton model and

other assumptions in the calibration approach.

Our findings imply that heterogeneity plays an important role in the estimated shares

of default risk. Indeed, our share of default risk in BBB spreads is twice as large as that

obtained when heterogeneity is ignored.

Our findings also suggest that the non-default component of the spreads is large. This

has important implications for bonds valuation and capital structure analysis.

We have shown that using the Leland-Toft model instead of the Merton model does

not change significantly our findings. Future research may try to answer the question of

whether using models with jump risk, stochastic volatility or time-varying risk premia

instead of the Merton model would lead to significantly larger share of default risk in the

spreads.

Another possible research avenue consists of using Moody’s EDF default data as a

proxy for historical individual default rates in order to perform the calibration to histori-

cal default rates at the individual level instead of at the rating category level.

Finally, our empirical analysis focused on the share of default risk in the first mo-

ments of spreads. In future works, one may also be interested in studying how much of

the second moment of default spreads is explained by default risk, using our two-stage

approach.

115



CHAPTER 4

PRICING CALLABLE BONDS UNDER THE TWO-FACTOR VASICEK

MODEL

4.1 Introduction

Many corporate and government debt instruments include call or put provisions. The

call provision allows the bond issuer to buy back the bond at a pre-determined price if

she wishes to. The put provision gives the bond holder the right but not the obligation to

sell back the bond to its issuer at a pre-determined price. Callable and putable bonds are

very popular as they can be used as an effective way to manage interest rate risk [53],

they can help mitigate credit risk problems [13], they offer attractable yields and they

provide an easy way of trading interest rate options [28].

Just like a plain vanilla bond, a callable or putable bond is characterized by its ma-

turity tq and its coupon rate c that is due every ∆ fraction of year (for instance ∆ is equal

to 0.5 for a semi-annual coupon). The coupon dates are denoted by tk,k = 1,2, ...,q,

and the pricing date is denoted by t0. The face value of the bond can be normalized

to 1$ without loss of generality. There is an initial protection period during which the

embedded option cannot be exercised. After that protection period, the call or put option

can be exercised at any coupon date. We denote by tq∗ , the first coupon date on which

the embedded option is exercisable. The option strike varies with time to maturity: It

is generally above the face value for earlier exercise dates, and declines over time to

reach compulsorily the face value at maturity. We denote by Kk the strike price at the

coupon date tk, k = 1,2, ...,q. The bond holder (issuer) must announce in advance her

intention to put (call) in order to exercise the option at the coming exercise date. Thus,

the decision to exercise at date t must be taken at date t−δ , where δ is the notification

period.

From a pricing perspective, callable and putable bonds may be viewed as the combi-

nation of two securities. In fact, a long position in a callable bond is equivalent to a long



position in a plain vanilla bond plus a short position in the embedded call option, while

a long position in a putable bond is equivalent to a long position in a plain vanilla bond

plus a long position in the embedded put option. Since the valuation of a plain vanilla

bond is straightforward, the most difficult component to value in a callable or a putable

bond is the embedded option. This embedded option can be viewed as a Bermudan op-

tion where the underlying asset is the plain vanilla coupon bond. In the rest of the paper,

we focus on callable bonds without loss of generality.

No closed-form solution exists for the valuation of callable bonds. Traditional ap-

proaches for the valuation of callable bonds are binomial trees [39], trinomial trees [35–

37] and finite differences [6]. These approaches are very popular, probably because they

were the firsts to be developed, however they have several drawbacks. They generally

give numerically unstable prices and they may yield negative prices [8, 22]. Numerical

instability is a serious problem for users of these methods, as a slight change in some

parameters of the valuation problem may lead to substantial changes in the price. This

poses difficulties for the computation of Greeks. It also raises questions about the va-

lidity of the computed price because numerical instability implies too much uncertainty

on the calculated price. In fact, parameters are generally estimated with some degree

of error and it is common practice to consider a price range over the range of plausible

values of the parameters instead of a single price. With numerical instability, a slight

error of estimation would translate into an undesirably wide price range.

Developing stable numerical algorithms for the computation of callable bond values

has attracted the attention of many researchers including Ben-Ameur et al. [2], Buttler

and Waldvogel [8], D’Halluin et al. [22]. Buttler and Waldvogel [8] propose a stable

dynamic program algorithm based on Green’s function, but they acknowledged that their

approach is limited to special one-factor interest rate models with constant parameters,

namely, the Vasicek and the CIR models, for which analytical expressions of the Green

functions are available. Also for the Vasicek and CIR models, D’Halluin et al. [22]

propose a stable finite difference algorithm using advanced methods, such as the Crank-

Nicholson scheme and flux limiters. Ben-Ameur et al. [2] develop a stable dynamic

program algorithm using piecewise linear interpolation, which they apply to the Vasicek
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model, the CIR model, the extended Vasicek model and the extended CIR model.

It is well established in the literature that the term structure of interest rates is driven

by several factors [19, 44]. However, developing stable pricing algorithms for the pricing

of Bermudan type interest rate derivatives in general and callable bonds in particular

under multiple factor interest rate models has been a largely unexplored field. Under

multiple factor models, Bermudan options, including the embedded option in callable

bonds, may be valued using simulation techniques but simulations have the disadvantage

of yielding estimation error relatively too large for statistical inference, for reasonable

number of paths [59].

This essay proposes a dynamic programming algorithm for the valuation of callable

bonds under the two-factor Vasicek model. This model has the advantage to have multi-

ple factors, to be analytically tractable and to allow correlation between the factors. Dai

and Singleton [19] find that factor correlations play a very important role in explaining

interest rate dynamics. The proposed method is based on the Clenshaw-Curtis integra-

tion scheme and Chebyshev series expansion. Although the method is applied to the

two-factor Vasicek model in this essay, it is applicable to any multi-factor model, as long

as the distribution of factors under the forward measure is known in closed form or may

be efficiently calculated using numerical methods.

The rest of this essay is organized as follows. Section 4.2 presents the valuation

model and derives the distribution of the factors under the forward measure. Section 4.3

presents our numerical solution method for the valuation problem. Section 4.4 presents

numerical illustrations of our approach and section 4.5 concludes.

4.2 Valuation Model

4.2.1 The dynamic program

Let,

Xt be the vector of the underlying interest rate factors process under the risk-

neutral measure,

x denote a vector of the underlying interest rate factors values,
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r (x) be the risk-free short rate when the values of the underlying factors are

given by x,

Bt (x,T ) be the value at x and time t of a zero coupon bond maturing at time T ,

Ct (x) be the callable bond value at time t when the values of the underlying

factors are given by x,

Ht (x) be the holding value (ex-coupon) of the callable bond i.e the value at x

and t of the callable bond if its not called until the next call date, excluding the upcoming

coupon.

At maturity, the callable bond is worth its face value plus the coupon:

Ctq (x) = 1+ c.

It immediately follows that the value of the callable bond at the last decision date

tq−δ is given by:

Ctq−δ (x) = (1+ c)Btq−δ

(
x, tq
)
. (4.1)

Now, assume that for a given value of k = q∗+1, ...,q the callable bond value at time

tk−δ is known.

One period earlier, at time tk−1−δ , the callable bond value is the minimum between

its holding value and the discounted call strike,

Ctk−1−δ (x) = min
(
Htk−1−δ (x) ,Kk−1Btk−1−δ (x, tk−1)

)
+ cBtk−1−δ (x, tk−1) . (4.2)

The holding value is the conditional expected value under the risk neutral measure

of the discounted callable bond value at the next call date,

Htk−1−δ (x) = EQ
tk−1−δ ,x

[
exp
(
−
∫ tk−δ

tk−1−δ

r (Xs)ds
)

Ctk−δ (Xtk−δ )

]
,

where EQ
t,x [.] denotes the expectation operator under the risk neutral measure Q, condi-

tional on the information that the values of the underlying factors at time t are given by
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the vector x.

The holding value can also be evaluated under the forward measure Q∆. Under this

measure, Btk−1−δ (x, tk−δ ) is used as a numeraire. This implies using the change of

numeraire results of Geman et al. [30], that is:

Htk−1−δ (x) = Btk−1−δ (x, tk−δ )EQ∆

tk−1−δ ,x

[
Ctk−δ (Xtk−δ )

]
. (4.3)

At the initial pricing date, the value of the callable bond is simply the sum of the

discounted values of the coupon payments to be received during the protection period

and the expected discounted value of the callable bond at the first decision date,

Ct0 (x) = c
q∗−1

∑
k=1

Bt0 (x, tk)+EQ
t0,x

[
exp
(
−
∫ tq∗−δ

t0
r (Xs)ds

)
Ctq∗−δ (Xtq∗−δ )

]
,

Let d0 = tq∗ − δ − t0. Using Bt0
(
x, tq∗−δ

)
as a numeraire, the initial callable bond

price for is given by

Ct0 (x) = c
q∗−1

∑
k=1

Bt0 (x, tk)+Bt0
(
x, tq∗−δ

)
EQd0

t0,x

[
Ctq∗−δ (Xtq∗−δ )

]
. (4.4)

4.2.2 Interest rate model

4.2.2.1 The Vasicek (VAS) model

The Vasicek model was proposed by Vasicek [60]. In this model, it is assumed that

the short rate is governed by a single stochastic factor. The single factor follows a mean

reverting affine diffusion process given by:

dXt = a(x−Xt)dt +νdWt , (4.5)

r(x) = x,
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where a is the parameter controlling the speed of mean reversion, x is the long run

average and ν is the volatility parameter.

Bond prices under the Vasicek model are given by

BVAS
t (x, t + τ1)= exp

(
−xτ1−

1− e−aτ1

a
(x− x)− ν2

4a3

(
−3+2aτ1 +4e−aτ1− e−2aτ1

))
.

(4.6)

Advantages and drawbacks of the Vasicek model have been listed by Brigo and Mer-

curio [7]. One the positive side, the model is simple, analytically tractable and captures

the observed mean reversion of interest rates. On the negative side, short rates may be

negative, the volatility is constant and the model cannot generate term structures ob-

served on the market. There are many other one-factor interest rate models that improve

the Vasicek model in many respects, such as the CIR model, the Dothan model, the Ex-

tended Vasicek model, the Extended CIR model, the Black-Karasinski model and the

Exponential Vasicek model (see Brigo and Mercurio [7] for a review of these models).

However, all one factor models have the undesirable feature that rates of all maturities

are perfectly correlated and are constrained to move in the same direction as the short

rate [52]. Moreover, there is an imposing literature that shows that the term structure of

interest rates is driven by at least two factors [19, 44].

4.2.2.2 The two-factor Vasicek (2FV) Model

In this model, the interest rate is the sum of two factors X1t , X2t :

dXt = a(x−Xt)dt +νdWt , (4.7)

r (x) = 1′x,
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where

Xt =

 X1t

X2t

 ,a =

 a1 0

0 a2

 ,

x =

 x1

x2

 ,dWt =

 dW1t

dW2t


ν =

 ν1 0

ν2η ν2
√

1−η2

 ,1′ =
(

1 1
)
,

a1, a2 are the two mean reversion parameters, ν1,ν2 are the volatility parameters, x1,

x2 are the unconditional average of each factor, η is the correlation parameter between

the two factors, and W1t and W2t are two independent Brownian motions.

This two-factor model has the advantage of generating a wide variety of term struc-

tures including those observed on the market [7]. It is consistent with the empirical

evidence that multiple factors are required to explain the short rate dynamics. Impor-

tantly, it can capture the correlation between the two-factors. This correlation plays an

important role in explaining the short rate dynamics [19]. Moreover, the model is still an-

alytically tractable, contrarily to the two-factor CIR model where analytical tractability

is lost when there is correlation between the factors.

The two-factor Vasicek model may still generate negative rates, but some authors

have argued that negative rates are not a very important problem. For instance, Longstaff

and Schwartz [45] argue that this type of model impacts prices mainly through the ex-

pected value of the short rate, which is positive. In addition, even if the short rate may

be theoretically negative, the probability of this happening is very close to zero for rea-

sonable values of the parameters [7].

Bond prices under this model are given by:
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B2FV
t (x, t + τ1)= exp


−x1τ1− 1−e−a1τ1

a1
(x1− x1)−

ν2
1

4a3
1

(
−3+2a1τ1 +4e−a1τ1− e−2a1τ1

)
−x2τ1− 1−e−a2τ1

a2
(x2− x2)−

ν2
2

4a3
2

(
−3+2a2τ1 +4e−a2τ1− e−2a2τ1

)
−ην1ν2

a1a2

(
τ1− 1−e−a1τ1

a1
− 1−e−a2τ1

a2
+ 1−e−(a1+a2)τ1

a1+a2

)
 .

(4.8)

The distribution of the factors under the forward measure is given by the following

proposition.

Proposition 4.2.1. Under the forward measure QT , conditional on the value at time u of

the factors, the two factors of the 2FG model follow a bivariate normal distribution with

mean and covariance matrix given by:

ET
u,x1

[X1t ] = x1e−a1(t−u)+ x1

(
1− e−a1(t−u)

)
−

ν2
1

a2
1

((
1− e−a1(t−u)

)
− e−a1(T−t)

2

(
1− e−2a1(t−u)

))

−ην1ν2

a2

(
1
a1

(
1− e−a1(t−u)

)
− e−a2(T−t)

a1 +a2

(
1− e−(a1+a2)(t−u)

))
,

ET
u,x2

[X2t ] = x2e−a2(t−u)+ x2

(
1− e−a2(t−u)

)
−

ν2
2

a2
2

((
1− e−a2(t−u)

)
− e−a2(T−t)

2

(
1− e−2a2(t−u)

))

−ην1ν2

a1

(
1
a2

(
1− e−a2(t−u)

)
− e−a1(T−t)

a1 +a2

(
1− e−(a1+a2)(t−u)

))
,

VarT
u,x [Xt ] =

 ν2
1

2a1

(
1− e−2a1(t−u)

)
ην1ν2
a1+a2

(
1− e−(a1+a2)(t−u)

)
ην1ν2
a1+a2

(
1− e−(a1+a2)(t−u)

)
ν2

2
2a2

(
1− e−2a2(t−u)

)  .

Proof. It is well known that the change of measure from the risk neutral measure to the

forward measure involves a predictable process γt and a new multidimensional Brownian

motion W T
t such that :
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dWt = dW T
t + γtdt.

Chen and Huang [12] have shown that :

γt =−ν
′ 1
Bt (x,T )

∂Bt (x,T )
∂x

.

Applying this result of Chen and Huang [12] to the two-factor Vasicek case, it is

straightforward to find that :

γt = −

 ν1 ν2η

0 ν2
√

1−η2

 1−e−a1(T−t)

a1
1−e−a2(T−t)

a2


=

 −ν1
a1

(
1− e−a1(T−t)

)
−ν2η

1−e−a2(T−t)

a2

−ν2
√

1−η2

a2

(
1− e−a2(T−t)

)
 .

We now proceed to find the dynamics of the two-factors under the forward measure.

 dX1t

dX2t

 =

 a1 (x1−X1t)

a2 (x2−X2t)

dt

+

 ν1 0

ν2η ν2
√

1−η2

×
 dW T

1t −
ν1
a1

(
1− e−a1(T−t)

)
dt−ν2η

1−e−a2(T−t)

a2
dt

dW T
2t −

ν2
√

1−η2

a2

(
1− e−a2(T−t)

)
dt

 .

Focusing on the first factor, we find that :

dX1t = a1 (x1−X1t)dt−
ν2

1
a1

(
1− e−a1(T−t)

)
dt

−ν1ν2η

a2

(
1− e−a2(T−t)

)
dt +ν1dW T

1t .

124



It is useful to make the change of variable Z1t = ea1tX1t .

Taking the differential of Z1t we find that :

dZ1t = ea1tdX1t +a1ea1tX1tdt,

= eat
(

a1 (x1−X1t)dt−
ν2

1
a1

(
1− e−a1(T−t)

)
dt
)
+

eat
(
−ν1ν2η

a2

(
1− e−a2(T−t)

)
dt +ν1dW T

1t

)
+a1ea1tX1tdt,

= a1x1ea1tdt−
ν2

1
a1

(
ea1t− e−a1T e2a1t)dt

−ν1ν2η

a2

(
ea1t− e−a2T e(a1+a2)t

)
dt +ν1ea1tdW T

1t .

Integrating both sides of the above equation, we find that :

Z1t−Z1u = x1
(
ea1t− ea1u)− ν2

1
a2

1

((
ea1t− ea1u)− e−a1T

2
(
e2a1t− e2a1u))

−ν1ν2η

a2

(
1
a1

(
ea1t− ea1u)− e−a2T

a1 +a2

(
e(a1+a2)t− e(a1+a2)u

))
+ν1

∫ t

u
ea1sdW T

1s,

= x1ea1t
(

1− e−a1(t−u)
)
−

ν2
1 ea1t

a2
1

((
1− e−a1(t−u)

)
− e−a1(T−t)

2

(
1− e−2a1(t−u)

))

−ν1ν2ηea1t

a2

(
1
a1

(
1− e−a1(t−u)

)
− e−a2(T−t)ea2t

a1 +a2

(
1− e−(a1+a2)(t−u)

))
+ν1

∫ t

u
ea1sdW T

1s.

Multiplying both sides of the above equation by e−a1t , we find that the closed form

expression of X1t is

125



X1t = X1ue−a1(t−u)+ x1

(
1− e−a1(t−u)

)
(4.9)

−
ν2

1
a2

1

((
1− e−a1(t−u)

)
− e−a1(T−t)

2

(
1− e−2a1(t−u)

))

−ν1ν2η

a2

(
1
a1

(
1− e−a1(t−u)

)
− e−a2(T−t)

a1 +a2

(
1− e−(a1+a2)(t−u)

))
+ν1e−a1t

∫ t

u
ea1sdW T

1s.

Now consider the second factor. We have that :

dX2t = a2 (x2−X2t)dt +ν2η

(
dW T

1t −
ν1

a1

(
1− e−a1(T−t)

)
dt−ν2η

1− e−a2(T−t)

a2
dt

)

+ν2
√

1−η2

(
dW T

2t −
ν2
√

1−η2

a2

(
1− e−a2(T−t)

)
dt

)
,

=

(
a2 (x2−X2t)−

ν1ν2η

a1

(
1− e−a1(T−t)

)
−

ν2
2

a2

(
1− e−a2(T−t)

))
dt

+ν2ηdW T
1t +ν2

√
1−η2dW T

2t .

It is useful to make the change of variable Z2t = ea2tX2t .

Taking the differential of Z2t , we find that :
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dZ2t = ea2tdX2t +a2ea2tX2tdt

= ea2t
(

a2 (x2−X2t)dt− ν1ν2η

a1

(
1− e−a1(T−t)

)
dt
)

+ea2t
(
−

ν2
2

a2

(
1− e−a2(T−t)

)
dt +ν2ηdW T

1t +ν2
√

1−η2dW T
2t

)
+a2ea2tx2tdt,

=

(
a2x2ea2t− ν1ν2η

a1

(
ea2t− e−a1T e(a1+a2)t

)
−

ν2
2

a2

(
ea2t− e−a2T e2a2t))dt

+ν2ηea2tdW T
1t +ν2

√
1−η2ea2tdW T

2t .

Integrating both sides of the above equation, we find that :

Z2t−Z2u = a2x2
(
ea2t− ea2u)

−ν1ν2η

a1

(
1
a2

(
ea2t− ea2u)− e−a2T

a1 +a2

(
e(a1+a2)t− e(a1+a2)u

))
−

ν2
2

a2
2

((
ea2t− ea2u)− e−a2T

2
(
e2a2t− e2a2u))

+ν2η

∫ t

u
ea2sdW T

1s +ν2
√

1−η2
∫ t

u
ea2sdW T

2s

= a2x2ea2t
(

1− e−a2(t−u)
)

−ν1ν2ηea2t

a1

(
1
a2

(
1− e−a2(t−u)

)
− e−a1(T−t)

a1 +a2

(
1− e−(a1+a2)(t−u)

))

−
ν2

2 ea2t

a2
2

((
1− e−a2(t−u)

)
− e−a2(T−t)

2

(
1− e−2a2(t−u)

))
+ν2η

∫ t

u
ebsdW T

1s +ν2
√

1−η2
∫ t

u
ebsdW T

2s.

Multiplying both sides of the above equation by e−a2t , we find that the closed form

expression of X2t is
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X2t = X2ue−a2(t−u)+ x2

(
1− e−a2(t−u)

)
(4.10)

−ν1ν2η

a1

(
1
a2

(
1− e−a2(t−u)

)
− e−a1(T−t)

a1 +a2

(
1− e−(a1+a2)(t−u)

))

−
ν2

2
a2

2

((
1− e−a2(t−u)

)
− e−a2(T−t)

2

(
1− e−2a2(t−u)

))
+ν2ηe−a2t

∫ t

u
ea2sdW T

1s +ν2e−a2t
√

1−η2
∫ t

u
ea2sdW T

2s.

The first two moments of the joint distributions shown in Proposition 4.2.1 follow

immediately from equations 4.9 and 4.10.

4.3 Model solution

We solve the model by using a backward recursive algorithm based on Clenshaw-

Curtis integration. The Clenshaw-Curtis integration approach consists of approximating

the integrand by its truncated Chebyshev series of order m, and using the coefficients of

the series to evaluate the integral in closed form. The algorithm works for any number

of factors and is as follow:

1. Initialization

(a) For each factor i, i = 1, ...,N define the intervals [ximin,ximax] , such that the

probability of the factor getting out of this interval over the life of the bond

is very small.

(b) Choose the degree of truncation of the Chebyshev series m, and for each

factor i, i = 1, ...,N, define the Gauss-Lobatto coordinates

xi j = 0.5(ximax + ximin)+0.5(ximax− ximin)cos
(

π j
m

)
, j = 0,1, ...,m.
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(c) Denote by Yi the finite set of the Gauss-Lobatto coordinates for factor i, i =

1, ...,N. Define the set of interpolation points as

Y = ∏
N
i=1Yi.

(d) For t = tq− δ , calculate the callable bond value Ct (x) on every point of Y

using Formula 4.1.

2. Recursion. Assume that for a given k = q∗, ...,q−1, the value of the callable bond

Ctk+1−δ (x) is known on every point x ∈ Y .

(a) Denote by fx,t (z,T ) , the transition density function, i.e. the density function

of the factors at time T under the forward measure evaluated at z, conditional

on the information that the value of the factors at time t < T is x.

(b) For every point (x,z) of Y ×Y, evaluate the function

gx,tk−δ (z, tk+1−δ ) = fx,tk−δ (z, tk+1−δ )×Ctk+1−δ (z) .

(c) Define the set of multidimensional indices

J = {0,1, ...,m}N .

(d) Using FFT, find the multidimensional truncated Chebyshev series of order m

of the function gx,tk−δ (u, tk+1−δ ) viewed as a function of u.

gx,tk−δ (u, tk+1−δ ) = ∑
l∈J

b(l) Il (w) ,

where w is defined by

w(i) =−ximax + ximin

ximax− ximin
+

2u(i)
ximax− ximin

,

b(l) is the coefficients of order l of the multidimensional Chebyshev series,
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and Il is the multidimensional Chebyshev polynomial of order l defined by

Il (w) = ∏
N
i=1 cos(l (i)arccos(w(i))) , for w(i) ∈ [−1,1] .

(e) Define the sets J1 and D as:

J1 =

 {0,2, ...,m}N , if m is even,

{0,2, ...,m−1}N , if m is odd,

D =
N

∏
i=1

[ximin,ximax] .

(f) For every point x ∈ Y, evaluate the holding value Htk−δ (x) using Formula

4.3 and the Clenshaw-Curtis integration for the forward expectation:

EQ∆

tk−1−δ ,x

[
Ctk+1−δ

]
'

∫
D

Ctk+1−δ (u) fx,tk−δ (u, tk+1−δ )du,

=
∫

D
gx,tk−δ (u, tk+1−δ )du,

' ∑
l∈J1

b(l)
N

∏
i=1

2

1− (l (i))2 ×
(ximax− ximin)

2
.

(g) For every point x ∈ Y, calculate the callable bond value at time t = tk− δ ,

Ctk−δ (x) using Formula 4.2.

3. Termination. Use steps 2.a to 2.f to calculate the forward expectation in Formula

4.4, and use Formula 4.4 to calculate the callable bond value at the initial date.

Proof. The above algorithm is a numerical approximation to the exact solution of the

valuation problem. The approximation occurs in the computation of the forward ex-

pectations. There are two levels of approximations, that are made explicit in Step 2.f.

The first level is the truncation of the integration domain from ℜN to the compact do-

main D. The second level is the computation of the integral over the domain D by the

Clenshaw-Curtis numerical integration scheme.

To prove that the algorithm converges to the exact value, it suffices to prove that the
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approximation error converges to zero as D gets closer to ℜN and the degree of truncation

of the Chebyshev series m goes to infinity.

We first show that, as m goes to infinity, the approximation error of the integral

over the domain D converges to zero. Actually, this result is a direct consequence of

the continuity of the value function Ctk (x) , for any k = 0, ...,q and of the fact that the

Chebyshev series of a function defined over a compact domain converges to the exact

function when the function is continuous [54]. It is easy to prove by recurrence that the

value function Ctk (x) is continuous for any k = 0, ...,q.

Second we prove that the approximation error due to the truncation of the integration

domain from ℜN to D converges to zero as D gets larger and larger. First recall that

D =
N

∏
i=1

[ximin,ximax] .

It suffices to prove that as ximin→−∞ and ximax→+∞, for all i= 1,2, ..N, the integrand

vanishes to zero. Notice that the multivariate Gaussian density function fx,tk−δ (u, tk+1−δ )

is the exponential of a negative quadratic term in u, while the ex-coupon callable bond

price is bounded below by 0 and bounded above by the strike times the discount factor,

which is the exponential of a linear function in u. So as u(i)→−∞ or u(i)→+∞ for all

i = 1,2, ..N, the quadratic term dominates and the integrand gx,tk−δ (u, tk+1−δ ) vanishes

to zero.

Note that the accumulation of errors due to the recursion is not a problem because

we control the error made at each step of the recursion. As a result, the overall error

can be made as small as required for m large enough and D large (in the senses of sets)

enough.

Notice that the above algorithm gives the callable bond price for factor values cor-

responding to the Chebyshev nodes. The callable bond value for arbitrary values of the

factors in the domain D can be recovered using the truncated Chebyshev series of the

callable bond price, which can be swiftly computed by FFT. Thus a single run of our

algorithm gives the callable bond price for all values of the factors in the domain D, at
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all decision dates and at the pricing date.

4.4 Numerical illustrations

For numerical illustrations, we consider a 4.25% callable bond issued by the Swiss

Confederation, over the period 1987-2012. At the pricing date t0 = 0, December 23,1991,

the time to maturity was tq = 20.172 years, with q = 21, a principal scaled to 1, a coupon

c = 0.0425 paid once a year with the first coupon paid at time t1 = 0.172, a notice period

of 2 months which means δ = 0.1666, and a protection period of tq∗ = 10.172 years,

with q∗ = 11. The call prices are K11 = 1.025, K12 = 1.020, K13 = 1.015, K14 = 1.010,

K15 = 1.005, K16 = K17 = ...= K21 = 1.

The prices of this bond with and without the embedded option have been calculated

under the one-factor Vasicek model by several authors using different numerical tech-

niques [2, 8, 22]. The considered risk-neutral parameters for the one factor Vasicek

model are

xVAS = 0.098397028 (4.11)

aVAS = 0.44178462

ν
VAS = 0.13264223.

Although we consider the 2FV model for the interest rate dynamics, it is possible to

replicate the prices obtained under the Vasicek model under a given parametrization of

the 2FV model. The insight behind this replication is that the 2FV model is equivalent

to the Vasicek model if the two factors are perfectly correlated. For bond prices to be the
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same under the 2FV and the Vasicek model, it suffices to choose:

a1 = a2 = aVAS, (4.12)

x1 = x2 = xVAS/2, (4.13)

ν1 = ν2 =
νVAS

2
,

η = 1,

X1 = X2 =
XVAS

2
.

This correspondence between the 2FV and the Vasicek model may be verified by using

Equations 4.6, 4.8 and 4.12. For our numerical exercises, however, we cannot set η

to 1 because this would imply a determinant of zero for the covariance matrix, and

the bivariate gaussian distribution would not be defined. As a result, when we seek to

compare our 2FV prices with the Vasicek prices, we set η to 0.98. We therefore expect

to have a slight difference between the Vasicek prices and the corresponding 2FV prices.

We define the range of variation of each factor i by its long term average times a

multiple κ of its standard deviation over the bond life:

ximin = xi−κ

√
ν2

i
2ai

(
1− e−2aitq

)
. (4.14)

ximax = xi +κ

√
ν2

i
2ai

(
1− e−2aitq

)
.

The default value of κ is 6.

4.4.1 Plain vanilla

We first consider the bond without its call option. In this case, the bond price is

known in closed form. This allows us to compare the prices obtained by our solution

method to the closed form price.

We first set the parameters of the 2FV model using equations 4.11 and 4.12 except

that η is set to 0.98. For increasing values of m, we calculate our bond prices and the
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closed form price for r = 0.01,0.02, ...,0.1. Table 4.I shows the results. This table shows

that a 5 digit precision on the price is reached with m = 100. The values for m = 200 are

virtually the same as those for m = 100, indicating that convergence has occurred.

Second, using this value of m = 100, we study the accuracy of our vanilla prices for

different combination of parameters of the 2FV model. For the various combination of

parameters considered, Table 4.II shows that the pricing error is of the order of 1E−07.
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Table 4.I: Convergence of our solution method for plain vanilla bonds for different values of r

r m = 30 m = 40 m = 50 m = 60 m = 70 m = 80 m = 90 m = 100 m = 200 Closed form

0.01 56.665139 3.433102 1.161971 0.952217 0.926411 0.923556 0.923312 0.923296 0.923296 0.923296
0.02 55.401610 3.358660 1.138262 0.933194 0.907964 0.905173 0.904934 0.904919 0.904918 0.904919
0.03 54.166284 3.285859 1.115063 0.914575 0.889909 0.887181 0.886947 0.886932 0.886932 0.886932
0.04 52.958531 3.214665 1.092361 0.896353 0.872238 0.869570 0.869342 0.869327 0.869327 0.869327
0.05 51.777734 3.145042 1.070148 0.878518 0.854941 0.852333 0.852110 0.852096 0.852095 0.852095
0.06 50.623293 3.076955 1.048411 0.861062 0.838012 0.835462 0.835244 0.835230 0.835229 0.835229
0.07 49.494619 3.010369 1.027140 0.843976 0.821442 0.818949 0.818735 0.818722 0.818721 0.818721
0.08 48.391137 2.945252 1.006326 0.827254 0.805223 0.802785 0.802576 0.802563 0.802563 0.802563
0.09 47.312284 2.881571 0.985958 0.810887 0.789347 0.786964 0.786760 0.786747 0.786747 0.786747
0.1 46.257511 2.819294 0.966027 0.794866 0.773808 0.771479 0.771279 0.771266 0.771266 0.771266
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Table 4.II: Accuracy of our solution method for plain vanilla bonds for different parametrizations of the 2FV model

Case Solution method r = 0.01 r = 0.02 r = 0.03 r = 0.04 r = 0.05 r = 0.06 r = 0.07 r = 0.08 r = 0.09 r = 0.1

Default Closed form 1.7231860 1.6897869 1.6570573 1.6249836 1.5935526 1.5627514 1.5325670 1.5029872 1.4739997 1.4455924
Default Our approach 1.7231857 1.6897866 1.6570570 1.6249833 1.5935523 1.5627511 1.5325668 1.5029869 1.4739994 1.4455921
x1 down 50 bps Closed form 1.8394515 1.8036650 1.7685972 1.7342333 1.7005591 1.6675608 1.6352245 1.6035370 1.5724850 1.5420557
x1 down 50 bps Our approach 1.8394511 1.8036647 1.7685968 1.7342329 1.7005588 1.6675605 1.6352242 1.6035367 1.5724847 1.5420554
x2 down 50 bps Closed form 1.8463516 1.8104249 1.7752197 1.7407212 1.7069153 1.6737878 1.6413250 1.6095135 1.5783401 1.5477919
x2 down 50 bps Our approach 1.8463512 1.8104246 1.7752193 1.7407209 1.7069149 1.6737874 1.6413247 1.6095132 1.5783398 1.5477917
a1 down 0.1 Closed form 1.9627434 1.9174896 1.8733161 1.8301968 1.7881063 1.7470198 1.7069131 1.6677626 1.6295452 1.5922386
a1 down 0.1 Our approach 1.9627427 1.9174889 1.8733154 1.8301961 1.7881056 1.7470191 1.7069124 1.6677620 1.6295446 1.5922380
a2 down 0.1 Closed form 1.9176385 1.8773861 1.8380059 1.7994788 1.7617862 1.7249099 1.6888320 1.6535351 1.6190020 1.5852163
a2 down 0.1 Our approach 1.9176380 1.8773856 1.8380054 1.7994783 1.7617858 1.7249094 1.6888315 1.6535346 1.6190016 1.5852158
ν1 up 200 bps Closed form 2.0181132 1.9786511 1.9399832 1.9020933 1.8649658 1.8285850 1.7929360 1.7580038 1.7237740 1.6902323
ν1 up 200 bps Our approach 2.0181126 1.9786505 1.9399826 1.9020927 1.8649652 1.8285845 1.7929354 1.7580033 1.7237735 1.6902317
ν2 up 200 bps Closed form 1.9260592 1.8884918 1.8516796 1.8156072 1.7802598 1.7456225 1.7116811 1.6784213 1.6458295 1.6138921
ν2 up 200 bps Our approach 1.9260587 1.8884913 1.8516791 1.8156068 1.7802593 1.7456221 1.7116807 1.6784209 1.6458291 1.6138917
η -0.5 Closed form 1.2815320 1.2572037 1.2333585 1.2099867 1.1870788 1.1646255 1.1426177 1.1210463 1.0999026 1.0791781
η -0.5 Our approach 1.2815319 1.2572036 1.2333585 1.2099867 1.1870788 1.1646255 1.1426176 1.1210462 1.0999026 1.0791781

The default case corresponds to x1 = 0.01, x2 = 0.03, a1 = 0.4, a2 = 0.6, ν1 = 0.06, ν2 = 0.1, η = 0.5
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4.4.2 Callable bond

Now we consider the bond with its call option.

We first set the 2FV parameters using Equations 4.11 and 4.12. We know that with

these parameters, our prices should be very close to those obtained by Ben-Ameur et al.

[2], Buttler and Waldvogel [8], D’Halluin et al. [22] in the one-factor case. We calculate

the callable bond prices using our approach for r = 0.01,0.02, ...,0.1 and for increasing

values of m. Table 4.III shows that our prices are indeed very close to those obtained

by Ben-Ameur et al. [2] and D’Halluin et al. [22]. The slight difference between our

prices and the one-factor prices are attributable to our approximation of the one factor

world by a two-factor world with a quasi-perfect correlation of 0.98. In order to quantify

the magnitude of the error due to this approximation, we also display in Table 4.III the

difference between the plain vanilla prices under the 2FV model and the Vasicek model

using their respective closed form solution. We find a difference in the order of 0.001,

similar to the difference between our callable bond prices and those obtained using the

Vasicek model.

Next, we ensure that the observed convergence is not specific to the above set of

parameters. We therefore consider several different combinations of parameters and for

each combination, we compute the callable bond price for increasing values of m. The

results are report in Table 4.IV. These results show that, for all combination parameters,

a 4 digits precision on the price is reached for m = 100.
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Table 4.III: Convergence of our solution method for different values of r, comparison with other approaches

r m = 80 m = 90 m = 100 m = 200 DFVL BBKL (m = 200)-BBKL Closed form
Vanilla 2FV,
η = 0.98

Closed form
Vanilla, Va-
sicek

Closed form
Error on
Vanilla

0.01 0.84069 0.84058 0.84056 0.84056 0.84282 0.84285 0.00226 0.92330 0.92742 0.00412
0.02 0.82418 0.82407 0.82406 0.82406 0.82627 0.82630 0.00221 0.90492 0.90895 0.00403
0.03 0.80803 0.80792 0.80791 0.80790 0.81010 0.81009 0.00219 0.88693 0.89088 0.00395
0.04 0.79221 0.79211 0.79210 0.79209 0.79420 0.79423 0.00210 0.86933 0.87318 0.00385
0.05 0.77673 0.77663 0.77661 0.77661 0.77868 0.77871 0.00207 0.85210 0.85587 0.00377
0.06 0.76157 0.76147 0.76146 0.76146 0.76348 0.76351 0.00202 0.83523 0.83892 0.00369
0.07 0.74673 0.74664 0.74662 0.74662 0.74860 0.74862 0.00198 0.81872 0.82233 0.00361
0.08 0.73221 0.73211 0.73210 0.73210 0.73403 0.73406 0.00193 0.80256 0.80609 0.00353
0.09 0.71799 0.71789 0.71788 0.71788 0.71977 0.71980 0.00189 0.78675 0.79019 0.00344
0.1 0.70406 0.70397 0.70396 0.70396 0.70578 0.70583 0.00182 0.77127 0.77464 0.00337138



Table 4.IV: Convergence of our solution method for general parametrizations of the 2FV model

Cases m = 50 m = 60 m = 70 m = 80 m = 90 m = 100 m = 200 (m = 200)− (m = 100)

Default 1.19788 1.19771 1.19783 1.19776 1.19778 1.19779 1.19778 -0.00001
x1 down 50 bps 1.24331 1.24355 1.24339 1.24349 1.24342 1.24346 1.24344 -0.00002
x2 down 50 bps 1.24767 1.24791 1.24775 1.24785 1.24778 1.24783 1.24781 -0.00002
a1 down 0.1 1.24047 1.24053 1.24051 1.24052 1.24051 1.24051 1.24051 0.00000
a2 down 0.1 1.24199 1.24199 1.24199 1.24198 1.24198 1.24198 1.24198 0.00000
ν1 up 200 bps 1.28029 1.28034 1.28032 1.28033 1.28032 1.28033 1.28032 0.00000
ν2 up 200 bps 1.26017 1.26019 1.26018 1.26018 1.26018 1.26019 1.26019 0.00000
η -0.5 1.05454 1.05423 1.05437 1.05431 1.05431 1.05433 1.05432 -0.00002

The default case corresponds to x1 = 0.01, x2 = 0.03, a1 = 0.4, a2 = 0.6, ν1 = 0.06, ν2 = 0.1, η = 0.5
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4.4.3 Numerical stability and effect of model parameter values on the callable

bond price

In this subsection, we study the effect of model parameters on the embedded call

option price. The default value of the model parameters are x1 = 0.01, x2 = 0.03, a1 =

0.4, a2 = 0.6, ν1 = 0.06, ν2 = 0.1, η = 0.5. We vary one parameter at the time while

fixing the other parameters at their default values and we compute the callable bond

price, the plain vanilla bond price and the call option price as the difference between the

first two. The results are reported in Figures 4.1 and 4.2.

As we can see, the callable and the plain vanilla bond prices always move in the

same direction. This implies that it is not obvious to anticipate the direction in which

the embedded option price will move; The graphs show that the embedded call price

also moves in the same direction as the bond prices, implying that the plain vanilla bond

price is more sensitive to the model parameter values than the callable bond price. This

intuition is confirmed by comparing the slopes of the plain vanilla and the callable bond

prices on the graphs.

Regarding the specific impacts of the parameters, we can see that the embedded call

option price declines monotonically with the long run means of the factors, and with

their mean reversion speeds. On the other hand, the call option price increases with each

factor volatility and with their correlation.

The long run mean effect is explained by the fact that higher factor values imply

higher short rates, which in turn imply lower plain vanilla bond prices. The lower plain

vanilla bond prices imply lower call option values because call option values decline

with the value of their underlying instrument.

The impacts of volatility and correlation are explained by two effects. The first effect

is that higher volatility or correlation of the factors increases the plain vanilla bond price

(see Formula 4.8) and therefore the call option price. The other effect is the traditional

underlying volatility effect. Higher volatility or correlation of the factors increases the

volatility of the short rate and the likelihood of the call option being exercised, so that

the option value increases.
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The effect of the speed of mean reversion is explained by the fact that lower speed

of mean reversion implies more freedom for the factors in their evolution, which in turn

implies higher interest rate volatility, higher plain vanilla value and higher call option

value.

Finally the graphs show that the computed callable bond prices are smooth functions

of the model parameters. This implies that our numerical method is stable.
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Figure 4.1: Effect of long run mean and speed of mean reversion on callable bond price
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Figure 4.2: Effect of volatility and correlation on the callable bond price
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4.4.4 Computing time and grid size

Our code is run using parallel programming in MatlabR2014a on a computer with

48Go RAM and 10 cores of 2GHz each. The computing time is around 60 seconds for

m = 100.

Regarding the grid size, we have recomputed all the prices reported in the tables of

results for κ = 7, thus increasing the truncation domain of the factors. We found virtually

the same prices. This indicates that the truncation domain associated with κ = 6 is large

enough.

4.5 Conclusion

In this essay, we proposed a new approach for the valuation of callable bonds under

the two-factor Vasicek model. The approach is based on the distribution of the two fac-

tors under the forward measure, on the Chebyshev series expansion of the option value

and on the Clenshaw-Curtis integration method. The advantage of our approach com-

pared to binomial trees, trinomial trees, and partial differential equation approaches is

its numerical stability. On the other hand, compared to simulation approaches, the ad-

vantage of our approach is that it can reach a high precision on the price in a reasonable

computing time. We illustrated the performance of the approach on a Swiss Confedera-

tion callable bond and we also studied the impact of model parameters such as long run

means, speeds of mean reversion, volatilities and correlation on the computed embedded

call price.

Although we focused on the two-factor Vasicek model in this essay, our algorithm

is very general and may accommodate more complicated models, such as the two-factor

CIR model, models with jumps or models with more factors. Future research may focus

on applying our algorithm on these models. In addition, callable bonds often include

other options, such as convertibility or credit risk. Extending our approach to accom-

modate these additional options may be another direction for further research. Finally,

our numerical solution method is inherently a solution to the valuation problem of any

multi-factor Bermudan option. As such it may find applications in the valuation of other

144



interest rate derivatives such as swaptions or equity options. As an example, our ap-

proach may be directly used to evaluate American type swaptions under the two-factor

Vasicek model, since it is well known that swaptions may be viewed as call or put options

embedded in a coupon bond [46].
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CHAPTER 5

CONCLUSION

In this thesis we have dealt with three issues in the valuation of bonds. The first issue

is the impact of heterogeneity on the average spreads predicted by structural models.

The second is the estimation of the share of default risk in corporate bond spreads. The

third issue is the valuation of callable bonds under multifactor interest rate models.

In the first essay, we have shown that heterogeneity affects average spreads. We dis-

tinguished between cross-sectional and time-series heterogeneity. In the case of cross-

sectional heterogeneity, we showed that, in addition to the first moment of the distribu-

tion of heterogeneous fundamentals, one has to consider higher order moments, such as

standard deviation and skewness, in order to explain to explain the difference in average

spreads between different groups of bonds. In the case of time-series heterogeneity, we

showed that dynamic leverage, stochastic volatility and stochastic interest rates are im-

portant determinants of the average spreads predicted by the Merton model. Even though

the model does not price either dynamic leverage, stochastic volatility or stochastic in-

terest rates, future revisions of the model inputs according to the observed changes in

leverage, volatility or interest rates affect the time-series average spread in non-trivial

ways. In both cases, we studied the biases caused by ignoring heterogeneity. We showed

that these biases may be positive or negative, large or small, depending on what pa-

rameters are heterogeneous, on the distribution of the heterogeneous parameters, and

on the levels of the parameters. Our findings show that calibration to average default

rates generally reduces the heterogeneity biases, especially in the case of time-series

heterogeneity.

In the second essay, after reviewing existing estimation methods of structural models,

we proposed a new estimation method that aims at accurately capturing the share of de-

fault risk in the spreads. The main difference between our approach and other approaches

proposed in the literature is that we estimate and calibrate the model to historical default

rates in a way that recognizes the heterogeneity of bonds. We compared the performance



of our approach to that of the standard in the literature. We showed, using simulation

experiments, that in comparison to the standard approach, which may lead to large errors

on the estimated share of default risk in the spreads, our approach is very accurate. We

then applied our approach on a sample of about 3 millions firm-days observations and

found that the share of default risk in BBB bonds is around 40%. The figure is smaller

for high quality bonds and larger for lower quality bonds. We performed several ro-

bustness checks on these findings, regarding several assumptions, including uncertainty

on historical default rates, period of study and the choice of a structural model. We

computed the heterogeneity biases due to ignoring heterogeneity and we found that they

may be large or small, negative or positive, depending on the rating category and on the

maturity. These findings provide some empirical validation for our theoretical study of

heterogeneity in the first essay.

In the third essay, we presented and justified our choice of the two-factor Vasicek

model and derived in closed forms the joint distributions of the two-factors under the

forward measure. We then described our numerical pricing algorithm and showed its

convergence mathematically. The algorithm is a dynamic program that discretizes the

state space and uses Clenshaw-Curtis integration, combined with Chebyshev series ex-

pansion by FFT, to compute the continuation value of a callable bond. We considered a

benchmark callable bond that has been priced by other approaches in the literature in the

case of the one-factor Vasicek model, and showed that we are able to replicate the prices

reported in the literature when the two factors in our model are perfectly correlated. We

also used numerical illustrations to show that our approach converges to the exact price,

which is known in closed form for plain vanilla bonds. Finally, we studied the impact of

changes in the model inputs, such as the correlation between the two factors, the speeds

of mean reversion, the factors’ volatilities and their long term averages, on the computed

prices. Our results show that the algorithm is numerically stable and computationally

efficient.

Future research arising from the first essay could consist of examining how well the

Merton model with heterogeneity fits observed average spreads. The empirical anal-

ysis may consider different groupings than the grouping by rating categories, such as
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grouping by economic sectors or multidimensional clustering by firm fundamentals. The

analysis may also aim at demonstrating empirically that the variation in average spreads

across groups is related to higher order moments than the first moments of the distri-

butions of firm fundamentals. Another research direction could consists in studying the

impact of heterogeneity on the average spreads predicted by more elaborated models

than the Merton model. For instance in a stochastic volatility model, considering het-

erogeneity may imply that one studies the volatility of the volatility of the volatility. A

third research direction could be the analysis of the impact of heterogeneity on other

aggregate measures, such as the average optimal leverage of a group of firms. Such a

study may have implications for the low leverage puzzle. A fourth research avenue is to

examine the linkage between heterogeneity and default correlations. Default correlation

poses significant risks to the bond market and one may find that heterogeneity plays a

role in reducing the risk of simultaneous defaults.

Regarding the second essay, future research could examine whether replacing our

two-stage approach by a one stage approach where the default boundary is added as an

additional variable in the estimation, in such a way that we have three equations for three

unknowns, would improve our results. Future work may also use TRACE data in order

to conduct the empirical study at the bond level rather than at the firm level. This would

allow an estimation of the share of default risk in the spreads at the individual bond level

and at each point in time and would allow a richer empirical analysis of the determi-

nants of this default share. Another direction is to include jumps, stochastic volatility

and time-varying risk premia in the estimations. Another direction is to relate the non-

default share by our approach to the other potential factors such as taxes, individual bond

liquidity, market liquidity and macro-economic risk.

Finally, future research stemming from the third essay could use our pricing algo-

rithm for an empirical study of the number of factors relevant for pricing and hedging

callable bonds. Such a study may compare the two-factor Vasicek model and its de-

terministic shift version to the one-factor Vasicek model and its deterministic version.

Another direction may consist of extending the approach to other interest rate models,

such as the two-factor CIR model or models with jumps. A third direction could consist
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of illustrating the versatility of our numerical algorithm by showing how it may be used

to value several other multifactor derivatives.
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