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Résumé

Cette thèse propose trois articles traitant de l’évaluation des produits dérivés en

finance. Pour ce faire, nous avons trois articles différents et complémentaires.

Le premier article s’intéresse à une méthode numérique permettant d’évaluer les

options américaines; la méthode de Longstaff et Schwartz (2001). Plus partic-

ulièrement, nous ajoutons une technique simple afin d’imposer une structure dans

notre estimation de la valeur de détention. Dans cet article, nous démontrons que

l’ajout de contraintes au niveau des dérivés partielles permet de réduire de manière

significative le biais d’estimation. De plus, les performances de notre technique se

comparent avantageusement à celle de la technique originale.

Le deuxième chapitre s’intéresse aux facteurs de risque affectant les prix des

options sur taux d’intérêt. La théorie nous indique qu’un modèle de taux d’intérêt

sous la mesure risque neutre peut évaluer tous produits dérivés. Cependant, la

présence de facteurs affectant uniquement un type de produit affectera l’efficacité

de la couverture de ce produit. Dans cet article, nous démontrons que même

après avoir contrôlé pour les effets non-linéaires de la structure par terme des taux

d’intérêt, des facteurs externes sont nécessaires pour bien expliquer les variations

des prix de caps. De plus, un de ces facteurs apparait indépendant.

Le troisième chapitre traite de l’utilisation des options réelles dans l’évaluation
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d’un projet d’investissement permettant plusieurs alternative et soumis à un risque

politique. Une firme à l’option de construire une centrale électrique. La présence

d’une politique "verte" sur l’émission de dioxyde de carbone (CO2) et un risque que

cette politique soit assouplie rend l’évaluation d’un tel projet complexe. Une version

simplifiée du problème nous confirme qu’un risque d’assouplissement de la politique

sur l’émission de CO2 encourage les firmes à délaisser les alternatives "vertes". Un

modèle plus sophistiqué est analysé à l’aide de la méthode de Least Squares Monte

Carlo. Lorsque le prix des matières premières est sujet à une grande volatilité, les

firmes investissement plus tôt dans le projet. Le risque d’assouplissement de la poli-

tique "verte" n’affecte pas le moment de l’investissement, mais affecte positivement

les profits espérées.

Mots clés: Option Réelle, Option américaine, taux d’intérêt, risque, méthode

numérique.
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Summary

This thesis proposes three articles about the evaluation of financial derivatives. To

do so, we have three different and complementary articles.

The first chapter aims at improving a numerical method used to price American

type options; the Longstaff & Schwartz (2001) Least-Square Monte Carlo method.

More specifically, we impose structure in the estimation of the holding value func-

tion. In this article, we show that adding constraints on partial derivatives in the

estimation of the holding value function does reduce the pricing bias. Our tech-

nique is even more beneficial as the number of states variables is raised and the

complexity of the pay-off function increases.

The second chapter address a very interesting question about unspanned risk

factors in the interest rate derivative market. Interest rate derivatives have many

flavors: bonds, swap, forwards, options, etc. All those derivatives share the same

underlying. Theory suggests that once a model is calibrated on the dynamic of the

interest rate under the risk neutral measure, all those derivatives can be priced.

However, the presence of factors affecting only some derivatives, because of market

particularities for instance, will affect the hedging process for those derivatives. In

this article, we show that even after controlling for non-linear effects, external fac-

tors still help explain the variations in the implied volatility surface of interest rate
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options. Furthermore, one factor appears to be unspanned by the term structure

of interest rate.

The third chapter focus on the use of real options in evaluating investment

projects with multiple alternatives, under political risk. A firm has the option

to build a power plant using coal or natural gas. The presence of carbon dioxide

(CO2) emission policy and a risk that it could be relaxed makes the evaluation of the

value of the project complex. A simplified version of the problem confirms that the

political risk reduces the effectiveness of the "green" policy. A more sophisticated

model is evaluated using the Least Squares Monte Carlo method and shows that

high volatility of commodity prices makes the firms invest sooner in the projects.

The policy risk doesn’t change the timing, but increases the expected profits.

Keywords: Real option, American option, interest rate, risk, numerical method.
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Chapter 1

Refining the Least Squares Monte

Carlo method by Imposing Structure

Pascal Létourneau1 and Lars Stentoft2

ABSTRACT

The least squares Monte Carlo method of Longstaff and Schwartz (2001) has be-

come a standard numerical method for option pricing with many potential risk

factors. An important choice in the method is the number of regressors to use and

using too few or too many regressors leads to biased results. This is so particu-

larly when considering multiple risk factors or when simulation is computationally

expensive and hence relatively few paths can be used. In this paper we show that

by imposing structure in the regression problem we can improve the method by

reducing the bias.
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JEL classification: C15, G12, G13

Keywords: American options, bias reduction, constrained regression, simulation

1.1 Introduction

Financial derivatives markets have grown rapidly in size since the Chicago Board of

Options Exchanges (CBOE) started its activities in 1973. The 1987 crash and par-

ticularly the 2007-2012 global financial crisis has changed the landscape of deriva-

tives pricing, and market participants now realize that models should take into

account more risk factors. However, when considering many risk factors, analytical

solutions might not be available and if, on top of that, the option is of the American

type, a numerical approach has to be considered. The numerical methods can be

classified into three categories: trees, lattices, and simulation methods. The trees

are very popular due to their simplicity and because they are able to incorporate

the early exercise feature of American options. Lattices have also grown in popu-

larity in the last decade and are still a subject of academic research. However, the

main problem when using these two numerical methods is the exponential growth
1Department of Finance at HEC Montréal, 3000 Côte-Sainte-Catherine, H3T 2A7 Montréal

(QC), Canada. Email: pascal.letourneau@hec.ca.
2Department of Finance at HEC Montréal, 3000 Côte-Sainte-Catherine, H3T 2A7 Montréal

(QC), Canada, CIRANO, CIRPÉE and CREATES. Email: lars.stentoft@hec.ca.

We wish to thank Michel Denault and Pascale Valéry for constructive comments and partici-

pants of IFM2 Mathematical Finance Days 2010 Conference for useful discussions. We also thank

the jury at the Sprott 7th annual PhD Symposium for relevant comments. Lars Stentoft grate-

fully appreciates financial support from CREATES (Center for Research in Econometric Analysis

of Time Series, funded by the Danish National Research Foundation).All remaining errors are

ours.
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in computational complexity. In fact, because of this both trees and lattices are

said to be plagued by the curse of dimensionality. Simulation methods do generally

not suffer from the curse of dimensionality as the computational complexity only

grows linearly in the number of stochastic factors. Thus, when the number of risk

factors, i.e. the dimension of the problem, grows beyond a certain point, simulation

based numerical methods are essentially the only available alternative.

At first, simulation based methods were used to price European type options

and it was thought that the early exercise feature of American options could not

be incorporated. Early attempts were made by Tilley (1993) and Barraquand

and Martineau (1995) who used simulation to mimic the standard lattice method

of determining the holding value function of the option. Carriere (1996) intro-

duced the idea of using the information contained in all paths to approximate the

holding value function by using regression techniques and a similar approach was

used by Tsitsiklis and Van Roy (2001). However, it is probably fair to say that

it was only with the method of Longstaff and Schwartz (2001) that the possibil-

ity of using simulation and regression methods for American option pricing became

widely accepted.1 Since then, their least squares Monte Carlo, or LSM, method has

been analyzed in quite some detail and the method has proven to be very flexible

when applied in various different settings. Moreover, Stentoft (2012b) showed that

among the various proposed numerical methods based on simulation and regression

the LSM method should be the one considered. In particular, the LSM method

will have less accumulated errors and thus be less biased. Finally, as discussed

in Stentoft (2012a) the regression based methods have clear advantages over sev-

1Other methods that use simulation are proposed in, e.g., Broadie and Glasserman (1997) and
Broadie and Glasserman (2004). However, these methods either require additional subsampling
or information about the transition densities to be implementable.
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eral other simulation methods in terms of computational efficiency and asymptotic

properties.

The LSM algorithm is of the optimal stopping time iteration kind. It uses

the cross sectional information from simulated paths to approximate the holding

value function by simple least squares regressions and from that deduce the optimal

early exercise strategy. The quality of the estimation depends on the number of

regressors, M , used in the cross sectional regression and the number of paths, N ,

used in the simulation (see, e.g., Moreno and Navas (2003) and Stentoft (2004a)).

Only in the limit when both tend to infinity will the price estimate converge (see

Stentoft (2004b)) whereas for finite choices the estimate is likely biased. The choice

of the number of regressors is particularly important, and for a given number of

simulated paths using too few regressors leads to low biased estimates whereas using

too many regressors could lead to high biased results or even numerical problems.

In this paper we propose an innovative method for reducing the bias given the

number of regressors and simulated paths. Our solution is to impose judicious

constraints in the estimation of the holding value function. We show that by

imposing such constraints the bias is reduced in the approximation of the holding

value function. Therefore, the exercise policy will be less biased and that will reduce

the low bias. Furthermore, imposing constraints also reduce the overfitting problem

and thus the high bias. To illustrate our approach suppose that we want to price a

put option. For this type of option, it is known that the holding value function is

convex with respect to the underlying price and that the slope will be bounded by

−1 and 0. Our approach takes this into account when performing the cross sectional

regression in order to determine the holding value function. In order to accomplish

this we need a way to impose constraints in the regression framework. Though



Introduction 5

non-parametric techniques exist, these are very costly in terms of computational

burden. One of our contributions is to derive a simple linear inequality constrained

least-squares estimator that is computationally much more efficient.

We compare the results from our inequality constrained least squares, or ICLS,

method to the unconstrained ordinary least squares, or OLS, method originally

proposed in Longstaff and Schwartz (2001) and show that the ICLS method in

general has smaller bias than the OLS method. This holds across different maturi-

ties, for different categories of moneyness and for different types of option payoffs.

The bias is also reduced when using the out-of-sample pricing approach of Longstaff

and Schwartz (2001) which ensures low biased estimates. We also generalize our

method to the multidimensional setting. Again the results show that our ICLS

method generally leads to less biased estimates for a reasonable number of regres-

sors. Moreover, whereas increasing the number of regressors in the simple OLS

approach may lead to numerical problems and divergences in the price estimate,

by imposing constraints in the ICLS method this is largely avoided.2 Finally, we

show that the ICLS method is often significantly more efficient than the regular

OLS method.

It should be noted that several papers have proposed alternative refinements to

this type of simulation methods. In particular, it has been suggested to use well

known variance reduction techniques like antithetic simulation, control variates,

importance sampling, as well as initial dispersion together with the LSM method

(see among others Areal et al. (2008), Juneja and Kalra (2009), Lemieux and La

(2005), Rasmussen (2005), and Wang and Caflisch (2010)). However, there are only

2As an added benefit the ICLS method generally produces estimates with smaller variance
compared to the OLS method.
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few alternative suggestions for how to reduce the bias of the simulated estimates

of American option prices in general and of the LSM method in particular. One

potentially interesting method, which could be combined with our method, is that

of Kan et al. (2009), although this application is to the value function iteration

method of, e.g., Carriere (1996) and Tsitsiklis and Van Roy (2001).

The remainder of the paper is structured as follows: Section 1.2 briefly describes

the least squares Monte Carlo algorithm of Longstaff and Schwartz (2001) and

motivates our approach. Section 1.3 provides the foundation for the constrained

estimator and discusses the properties of the constrained LSM algorithm. Section

1.4 presents an extensive numerical analysis of the new constrained LSM algorithm

in various contexts. Section 1.5 concludes.

1.2 American option price as an optimal stopping

time problem

The problem of pricing American options involves the search for the optimal stop-

ping time. In particular, the value of the option is given by

v (S0, K) = sup
τ
E [ρ0,τ × ve (Sτ , K)] , (1.1)

where τ is a stopping time, S0 and Sτ represent the asset price at time 0 and time

τ respectively, ρ0,τ represent the discount factor between 0 and τ , and ve (·) is the

exercise value of the option.3

3For an excellent introduction to this topic see Duffie (1996).
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In this section, we first explain how the LSM method can be used to solve

this problem. Next, we review some existing theoretical evidence on the method’s

convergence properties. Finally, we discuss some relevant issues related to the

actual implementation of the method. These results are used to motivate our

approach.

1.2.1 The Longstaff & Schwartz algorithm

In Longstaff and Schwartz (2001), the exercise strategy is determined by first ap-

proximating the holding value function and then comparing the holding value to

the exercise value. Once the exercise strategy has been determined, it is then ap-

plied to the original set of simulated paths. Essentially, the LSM method proceeds

according to the following three steps.

The first step in the algorithm is to simulate paths for the underlying asset using

the appropriate stochastic model and to initialize the recursion. For this, one first

of all needs to use as many time steps as exercise possibilities. In other words, the

American option with continuous exercise must be approximated by a Bermudan

option with sufficiently many exercise possibilities. Secondly, the payoff at maturity

is determined. This is known with certainty and depends on the contractual terms

of the option. As an example, the value of a vanilla put option on a stock with

final price ST and strike K is v (ST , K) = ve (ST , K) = max [K − ST ; 0].

Next, the algorithm moves back one time step and computes the expected cash

flow for each path. This is simply done by discounting the cash flows. The hold-

ing value of the option could be approximated by this discounted cash flow, but

it would be a very poor (and noisy) approximation based only on one simulated
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path. The idea suggested by Carriere (1996) and implemented in Longstaff and

Schwartz (2001) is to use the information contained in the cross section of paths to

improve the approximation. This is done by a simple ordinary least squares regres-

sion where the discounted cash flows are projected on, for example, a polynomial

transformation of the state variables and the following problem is solved

min
β

(
Yt − PL (Xt)× β

)′
×
(
Yt − PL (Xt)× β

)
, (1.2)

where Yt is the vector of the discounted cash flows, PL (·) is the polynomial operator

of order L, and Xt is a matrix with the state variables.4 The holding value can

then be approximated by

v̂h (St, K) = PL (Xt)× β̂, (1.3)

where β̂ is the vector of estimated coefficients of the regression in (1.2). The exercise

strategy can be deduced by comparing the holding value with the exercise value. If

the expected value from keeping the option alive is lower than the exercise value,

it is better to exercise. The exercise strategy is determined pathwise and that is

the only information kept. Proceeding one time step further backward, the cash

flows are discounted for each path taking the exercise strategy into account.

The algorithm then continues with the regression and proceeds backwards until

t = 1, the first time step. Finally, at the initial time, t = 0, the estimated option

value is calculated as the average of the discounted pathwise payoffs from following

the optimal stopping time.

4In fact, Longstaff and Schwartz (2001) suggest to use only in the money paths for increased
efficiency and we follow this procedure in our implementations.
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1.2.2 Theoretical results

One of the major benefits of the LSM method is its simplicity and the ease with

which it can be adapted to price various financial products. For example, the

original paper contains several examples and applications can be found in the lit-

erature to price life insurance contracts (e.g., in Bacinello et al. (2010)), real-estate

derivatives (e.g., in Longstaff (2005)), real options (e.g., in Gamba (2002)), which

has several applications such as gas storage, mine expansion decisions, and timber

harvest contracts, and executive stock options (e.g., in León and Vaello-Sebastià

(2009)). The LSM method also has clear advantages over other methods that use

simulation and regression for American option pricing like, e.g., those of Carriere

(1996) and Tsitsiklis and Van Roy (2001) which use the value function directly for

iteration. In particular, as shown in Stentoft (2012b) the LSM method, which iter-

ates on the stopping time, is affected only by the errors in the exercise strategy and

not the holding value functions. Because of this the LSM method can be expected

to be less biased than these other methods.

More importantly though, the LSM method has nice convergence properties.

For example, Stentoft (2004b) showed that the LSM algorithm converges to the

true price when the number of paths, N , and the number of regressors, M , tend

to infinity. The convergence has to first come from the approximation of the hold-

ing value function. The polynomial regression can by viewed as a series estimator

and this estimator is shown to converge under certain assumptions. One of which,

assumption 9 of Newey (1997), states that the smoothness of the function is impor-

tant. This is reflected in Theorem 1 of Stentoft (2004b) which essentially states that

ifM →∞ andM3/N → 0, the rate of convergence is of order O
(
M/N +M−2s/r

)
,
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where s is the number of continuous derivatives of the holding value function and

r is the number of state variables. Convergence requires M3/N → 0, or M/N → 0

as N → ∞ (since M ≥ 1). It also requires M → ∞ to have M−2s/r → 0. In

other words, increasing N alone will not guarantee convergence and instead it will

translate into a biased estimate, though with very low variance.

As discussed in Stentoft (2004b) the term M−2s/r is essentially related to the

bias of the approximation and as s increases, the function gets smoother and con-

vergence is obtained more easily. However, for low values of s and as r increases,

this term becomes more important and M needs to be increased faster to ensure

convergence. In the worst case scenario with s = 0 convergence is not obtained.

More generally, this means that when the volatility of the asset is low or when

estimating the holding value function close to maturity, more regressors are needed

because the function to approximate is less smooth.

1.2.3 Implementation

Although theory states that a function from a separable Hilbert space can be

represented as a linear combination of a countable number of basis functions, in

any actual application of the LSM method one uses a finite (and often relatively

limited) number of regressors and a finite number of simulated paths and this leads

to biased estimates. First of all, since the holding value function is approximated

with a low order polynomial two cases may occur that bias the results: the option is

exercised for trajectories where it should have been held, or it is held for trajectories

where it should have been exercised. Both cases result in a sub-optimal exercise

strategy and a low bias on the price estimate. Secondly, since the same trajectories
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are used to estimate the exercise strategy and to price the option, the exercise

strategy will be optimal for that particular sample of trajectories. This in-sample

overfitting introduces a high bias in the price estimate. To reduce the low bias

one would need to increase the number of regressors used relative to the number of

simulated paths and to reduce the high bias one would need to increase the number

of simulated paths relative to the number of regressors used.

Based on the above discussion one approach is to increase the number of re-

gressors to obtain convergence. In fact, Longstaff and Schwartz (2001) argue that

one should increase the number of regressors until the price estimate starts to de-

crease. However, this may in fact provide a very poor estimate of the true price

for two reasons. First of all, a large M can lead to numerical problems and the

decrease in price could be caused by these problems. Secondly, though increasing

M will increase the flexibility of the estimator, this will increase the in-sample

overfitting and thus increase the high bias. The resulting effect of increasing M

is hence in general unknown.5 More generally, it might not always be possible to

reduce both biases to a satisfactory level as this may lead to numerical problems as

well as problems with memory management. This is particularly important when

the dimension of the problem increases and if the smoothness of the holding value

function is low so that many regressors are needed.

In Figure 1.1 we illustrate the potential issues with a very simple example: a put

option with one early exercise and one year maturity in a Black-Scholes-Merton,

or BSM, world. The figure shows first of all the intrinsic value, the solid black

line, and the theoretical holding value, the solid green line, which in this setting
5The argument in Longstaff and Schwartz (2001) is based on their Proposition 1. However, as

pointed out in Stentoft (2004b) this proposition does not hold when the coefficients are estimated
and hence it is of little practical value.
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Figure 1.1: Holding value function approximations for L = 3 and L = 8
regressors.
Approximate holding value function with polynomial of order 2, left hand panel, and of order 7, right hand panel.
The option matures in one year and has one early exercise in six months. The option characteristics are S0 = 40,
K = 40, r = 6%, σ = 40% and S follows a GBM. Results are based on 1000 simulated paths.

equals the BSM European price of an option with half a year to maturity. The

figure also shows the approximated holding value function obtained with different

number of polynomials. In the left hand plot we use a polynomial of order 2 and

in the right hand plot we use a polynomial of order 7. The results are shown with

dotted lines labeled OLS. The left hand plot shows that with very few regressors

the fit is poor in the tails because of the very constrained polynomial specification.

In fact, because of this poor fit deep in the money paths do not lead to early

exercise though this is clearly optimal. The right hand plot shows that with many

regressors the fit is again poor, though this time due to overfitting.

The dashed lines labeled ICLS shows the approximate holding value function,

again obtained with a polynomial of order 2 and 7, respectively, when imposing

some simple constraints.6 The figure shows that adding structure to the regression

problem increases the fit in both cases. In particular, the left hand plot shows that

once constraints are imposed the approximate holding value function no longer

6The actual constraints we impose are discussed in the next section.
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leads to erroneous decisions for the deep in the money paths. The right hand

plot shows that once constraints are imposed the poor fit is much improved as the

function is now convex over the domain of interest.

1.3 Imposing structure

In Section 1.2 we explained how the LSM method can be used to price American

options. We also discussed how the choice of regressors influences the performance

of this method in real applications. In particular, when relatively few regressors are

used this leads to underfitting of the approximate holding value function and when

using relatively many regressors it leads to overfitting. Finally, we provided some

evidence that these issues can be mitigated by imposing structure on the problem.

In this section we first discuss how constraints can be imposed based on partial

derivatives. We then explain how this can be combined with series estimators in

a simple linear regression framework and we discuss how to build the regression

under constraints using a practical example. Finally, we discuss how the framework

can be generalized to the multivariate case.

1.3.1 Imposing constraints on partial derivatives

Let us first introduce some notation and explain how to impose constraints on

partial derivatives. Since we can impose convexity or monotonicity of a function

by imposing constraints on partial derivatives, this method is a natural fit. To

illustrate the method, suppose that an estimated function, f̂ (X), exist and this

is the function on which restrictions are to be imposed. The method used to
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imposed constraints on partial derivatives is related to Beresteanu (2007) who

proposes a non-parametric estimator to which constraints can be imposed on partial

derivatives over a grid of values. In this subsection, we use a multi-step procedure

only to illustrate the method. In the next subsection we will present our simple

one-step estimator.

The first step consists in estimating the function f̂ (X). Then, we need to define

a grid over which the regression function f̂ (X) will be evaluated.

Definition 1. We define Γg = (γ1, γ2, ..., γg)
′
to be a univariate grid on {γ1 : γg},

containing g elements. The grid will be equidistant if γi − γi−1 = γj − γj−1,

∀i, j ∈ [2, g].

Definition 2. We define a grid on {γ1 : γg} in multiple dimensions by

Γg×r =



γ11 γ12 . . . γ1g

γ21 . . . γ21

...
...

...

γr1 . . . γr1



′

,

The grid is defined on {γ11 : γ1g} for the fixed values γ21 to γr1 in the dimensions 2

to r. Equivalent grids can be built in other dimensions. The grid will be equidistant

if γ1i − γ1(i−1) = γ1j − γ1(j−1), ∀i, j ∈ [2, g].

The second step consist in evaluating the regression function over a grid, f̂ (Γg).

A third step is required to impose constraints on discrete partial derivatives.

Definition 3. We define the first difference over a grid as

[
f̂ (γi+1)− f̂ (γi)

]
,



Imposing structure 15

where f̂ (·) is the estimated function over the points of the grid.

The slope can be computed from the first difference by dividing it with the distance

between the points in the grid.

Definition 4. We define the second difference over a grid as

[(
f̂ (γi+2)− f̂ (γi+1)

)
−
(
f̂ (γi+1)− f̂ (γi)

)]
=
[
f̂ (γi+2)− 2f̂ (γi+1) + f̂ (γi)

]
,

where f̂ (·) is again the estimated function over the points of the grid.

One can verify if the function is discretely convex over three points of the grid by

checking if the second difference is positive. The convexity can be computed from

the second difference by dividing it with the square of the distance between the

points in the grid.

The use of a grid enables us to use a differentiation matrix.

Definition 5. We define the differentiation matrix Dk as a k×(k+1) matrix given

by

Dk =



−1 1 0 0 · · · 0

0 −1 1

0 0
. . . . . .

...

0 0 0 · · · −1 1


.

To get the first differences of a function evaluated over a grid, one simply applies the

matrix multiplication: Dg−1 × f̂ (Γg), where the differentiation matrix is adapted
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to the size of the grid. The second difference is obtained by successively applying

two differentiation matrices: Dg−2 ×Dg−1 × f̂ (Γg).

Now, to apply the constraints to the estimated function in the univariate case,

the problem is posed as

min
G

∥∥∥f̂ (Γg)−G
∥∥∥

s.t.A×G ≥ 0,

where f̂ (Γg) is a vector of the estimated function evaluated over the grid, G is

a vector of the size g, A is a matrix with the finite difference constraints, and

hence A × G is a vector with as many elements as constraints. Constraints are

applied element by element. Without the constraints, the solution is trivial and

G∗ = f̂ (Γg). Now, suppose we want to impose strict monotonicity over a grid of g

elements, we let A = Dg−1. The solution of this minimization, provided it exists,

is a new estimator G∗ that respects the constraints.

1.3.2 Inequality constrained least squares

The estimator in the previous section has two particularities. First, it can be com-

bined to a non-parametric estimator. Second, it proceeds in multiple steps. Using

a non-parametric and non-linear regression could be implemented in a LSM algo-

rithm, but it would be inoperable in terms of the required computer time since a

regression has to be performed at every time step and it would be very slow. This

is even more a problem in a multivariate context where non-parametric methods,

which suffer from the curse of dimensionality, are problematic to implement. In-
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stead, we propose an improved method based on series estimator using a linear

regression which is much faster. Furthermore, here, we show how we can impose

the constraints on the regression function in one simple step.

When using a series estimator with a polynomial transformation, the estima-

tion problem can be represented as in (1.2). The estimated polynomial is easily

evaluated over a grid Γg by PL (Γg)× β̂ and the constraints can be verified using a

constraint matrix A; A× PL (Γg)× β̂. We can estimate β and impose constraints

simultaneously by defining the problem as

min
β

(
Yt − PL (Xt)× β

)′
×
(
Yt − PL (Xt)× β

)
(1.4)

s.t. R× β ≥ b,

where R = A × PL (Γg) and b represent the boundaries on the constraints. The

minimization problem in (1.4) is simply an inequality constrained least square, or

ICLS, problem. If the constraints are not binding, the ICLS estimator reduces to

an OLS estimator. If the constraints are binding, the ICLS estimator is the best

linear unbiased estimator and has a truncated variance-covariance matrix.7

The constrained estimator in (1.4) can be estimated in a simple one step pro-

cedure and can be easily implemented using built-in functions available in modern

software.8 Alternatively, the problem can be expressed as a quadratic programming

problem as

7See the discussion in Liew (1976)
8For example, in Matlab this can be done using lsqlin().
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min
β

1

2
β
′ ×H × β + f

′ × β (1.5)

s.t. R× β ≥ b,

where H =
(
PL (Xt)

)′ (
PL (Xt)

)
and f = −

(
PL (Xt)

)′
Yt. This quadratic pro-

gramming problem can be solved using more efficient algorithms like the primal-

dual interior-point.9

In (1.4) and (1.5) the regression is performed using all data available, but the

constraints are imposed discretely over the grid. Note that this does not guarantee

that the estimator will respect the constraints globally over the whole support. It

is nevertheless a trade off we are willing to make to obtain an estimator that will

converge in a reasonable time. Moreover, it is always possible to construct a finer

grid such that it limits the possibility of breaking the constraints locally.10

Consider the pricing of a put option using the LSM method in a simple BSM

model with only one state variable, that is the underlying asset price. We know

that the holding value function we want to approximate is convex with a slope

bounded by −1 and 0. A grid of g points, would generate g − 1 slope constraints

and g−2 convexity constraints. However, the convexity constraints insure the slope

is monotonically increasing, thus all the slope constraints can be dropped, except

at both ends. Consequently, it suffices to use g−2 convexity constraints and 2 slope

constraints in the problem. The discrete convexity constraints are constructed over

9For example, one could use the collection of routines callable from Matlab provided at
http://sigpromu.org/quadprog (see also Wills and Heath (2002)).

10More details on the choice of the grid is provided in Section 1.4.1
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a grid Γg as

Rc = Dg−2 ×Dg−1 × PL (Γg) ,

and those constraints are compared to a vector Bc of size g − 2 filled with zeros.

Then, the constraints on the slopes can be constructed as

Rs =


(γ2 − γ1)×D1 × PL

 γ1

γ2


(γg−1 − γg)×D1 × PL

 γg−1

γg




,

for which we use Bs = [−1 0]′. Finally, the constraints matrix used in (1.4) is

defined by the juxtaposition of Rc and Rs to be compared with the juxtaposition

of Bc and Bs.

1.3.3 Applying constraints in a multivariate setup

As explained above, imposing constraints in the univariate case is straightforward

when using the differentiation matrices. In the multidimensional case, applying

convexity constraints is not as simple though. The problem comes from the fact

that it is not possible to verify if a discretely multivariate function is globally convex

(see, e.g., Yüceer (2002)).

As a practical solution, we propose to apply the convexity constraints with

respect to one dimension at a time while keeping the other dimensions fixed.11 That

is, we do not verify the global convexity, but rather the convexity with respect to
11This not only makes the problem computationally feasible it also avoids the problem of an

exponential growth in the number of constraints, the so-called curse of dimensionality.
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Figure 1.2: Intrinsic value of an option on the arithmetic average of two
assets.
Intrinsic value for an option on the arithmetic average of two assets with a strike price K = 1. The dark area
shows the regions over which constraints are imposed. The points of the grid are shown with the squares and
circles, while the arrows show the directions in which the constraints are imposed.

each dimension only. This simplification enables us to impose different constraints

on different dimensions. For example, it would be possible to impose convexity in

one dimension and monotonicity in the other. That would be useful in the case of

a vanilla put option with a stochastic volatility process.

As an example, we consider an option on the arithmetic average on two assets.

This options has a payoff function that is convex with respect to both assets.

Figure 1.2 shows the intrinsic value of this option. From this figure, we can observe

that the in the money region is triangular. In particular, a choice has to be made

in terms of the region where the constraints are to be imposed.

Figure 1.2 also shows two grids. The grid with circle (square) points consists

of 2 sets of 3 points to impose convexity in the asset #1’s (#2’s) dimension. For
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each grid, we impose convexity and slope constraints in the direction of the black

arrows. Consider imposing convexity constraints with respect to asset #1 for a

single fixed value (γ21 = 0.5) of asset #2 using the following grid

G =

 γ11 γ12 γ13

γ21 γ21 γ21


′

,

convexity could be imposed using a simple constraints matrix as in

Rc = Dg−2 ×Dg−1 × PL (G) .

Now, by defining a bivariate grid over both sets of circle points

Γ{c1} =

 γ11 γ12 γ13 γ14 γ15 γ16

γ21 γ21 γ21 γ22 γ22 γ22


′

,

the constraints are imposed with respect to asset #1 for each value of asset #2 by

combining multiple constraints matrices using the Kronecker product (⊗) as in

Rc1 = I2 ⊗ (D1 ×D2)× PL
(
Γ{c1}

)
. (1.6)

In a similar way the convexity constraints can be build in the second, or for that

sake any, dimension by using an appropriately defined grid. Again this would lead

to a formulation of constraints similar to that in (1.6).

The constraints on the slopes are build as in the univariate case by keeping the

coordinates fixed in one dimension to impose the constraints in the other dimension.
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For example, by defining the grid as

Γ{s1} =

 γ11 γ12 γ11 γ12

γ21 γ21 γ22 γ22


′

,

one can impose the constraints of the lower bound on the slopes by using

Rsl = (I2 ⊗D1)× PL
(
Γ{s1}

)
. (1.7)

The procedure is then repeated for the upper bound of the same dimension and for

the upper and lower bound of the second dimension. The final constraints matrix

will be composed of all constraints matrices with the corresponding limit values.

1.4 Results

In Section 1.3 we explained how to impose structure in the cross sectional regres-

sion in the LSM method. Imposing such structure should reduce the bias in the

approximation, and a better approximation of the holding value function will im-

prove the estimation of the stopping time process (or the exercise strategy). In the

end, the algorithm should yield more precise price estimates.

In this section we present the results of imposing constraints in the LSM method

and compare these to the unconstrained original method. First of all, we provide

results in the univariate case when the number of regressors is increased. Next, we

generalize these results to the multivariate setting and finally we report results in

this case when the number of paths is increased.
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1.4.1 Experimental setup

In order to analyze the performance of our proposed method we price a set of 9

different artificial put options in the univariate and 3 dimensional multivariate case

with various moneyness and maturities. In particular, our sample includes in the

money, at the money and out of the money (ITM, ATM, and OTM, respectively)

options with 1, 3 and 6 months to maturity. The underlying asset follows a ge-

ometric Brownian motion with a risk free rate of 6% and volatility of 40%. The

strike price is 40$ and the ITM, ATM and OTM options have an initial asset price

of 36$, 40$, and 44$, respectively. In the multivariate case a correlation of zero

is assumed. In all cases, we approximate the American option using a Bermudan

option with one exercise possibility per trading day. We use the binomial method

as the benchmark model.

The reason for considering different maturities is that we know that the holding

value function is less smooth close to maturity, which in turn means that the first

few regressions would need more regressors to reduce the bias. If we are approxi-

mating American options with Bermudan options with one exercise possibility per

day in the estimation of a long maturity option, it is possible that the effect of the

first few regressions is washed out over time. It is also possible that the errors made

are amplified over time. By pricing options with maturities of 1, 3 and 6 months,

we are able to test this. The reason for choosing different moneyness categories is

that we know that this can have a numerical effect when pricing option using the

LSM method. If the option is in the money, more simulated paths will be in the

money and thus used in the cross sectional regression. The opposite is true if the

option is out of the money at t = 0. Intuitively imposing structure is expected to be
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more important when fewer paths are available for regression. Thus, we should see

a greater impact for the OTM options. By pricing options with different moneyness

we are able to test this.

For the pricing we use 1,000 simulated paths in each simulation and we report

the mean prices of 100 independent simulations. For the vanilla put option, we

use polynomials of order 2 to 7.12 For the option on the arithmetic average on

three assets, we use polynomials of maximum order 2 to 5.13 It is possible to

experience numerical problems by adding more regressors, but we hope that by

imposing structure, we will prevent that problem from happening. In each case,

we compare the standard LSM method, denoted OLS, with the constrained LSM

method, denoted ICLS for inequality constrained least square.14

To implement the constrained method, one needs to define the grid, select the

constraints, and build the constraints matrix. In Section 1.3 we explained in details

how convexity and slope constraints can be imposed for a given grid. Thus, all that

is needed is to define the size of the grid and to choose the number of grid points.

With respect to the size of the grid we opt for an adaptive approach which at

each time step fixes the grid range from the lowest simulated path value, the path

furthest in the money, to the limit of the ITM region. Though this range is adjusted

at each time step before each regression the grid is kept constant when solving the
12Several authors have tried various basis in the LSM method (see, e.g., Moreno and Navas

(2003) and Stentoft (2004a)). In general they come to the conclusion that the LSM method
is robust to the choice of basis. Nevertheless, the choice of basis might have an effect on the
approximation, but it is negligible compare to the choice of the number of regressors or the
number of simulated paths. Note that our proposed regression method is independent of the
choice of basis so it can be implemented with any preferred basis.

13The total number of regressors with a maximum order of at most m in r dimensions is given
by (m+ r)!/ (m!r!) (see also Feinerman and Newman (1973)).

14The experiment is implemented in Matlab. OLS regressions are executed using mldivide or
Backslash operator "\", while the ICLS regressions are solved using the qpip function provided
at http://sigpromu.org/quadprog.
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optimization problem. Secondly, with respect to the number of grid points we

choose to report results with a grid of 6 points.15

1.4.2 Results in one dimension

In Figure 1.3 we show the estimated prices for the ordinary least squares (OLS)

method as well as our proposed inequality constrained least squares (ICLS) method

for the 9 different options in the univariate American plain vanilla put option case.

In this figure and the following ones, the red line with circles represent the LSM

method using the OLS regressions, while the constrained method is represented by

the blue line with squares. Each plot shows the prices obtained with polynomials

of order 2 to 7. In the ICLS method we impose convexity and slope constraints on

a grid of 6 points.

The figure shows that the OLS prices are always biased high compared to the

true price, and this bias increases with the order of the polynomial used for approx-

imation. This bias is a mix of the low bias from approximating the continuation

value with a low dimensional polynomial and the high bias which stems from using

the same paths to estimated the optimal stopping time and for pricing. When

using only 1,000 simulated paths the latter of these dominates. The figure also

shows that the ICLS prices are always lower than the OLS prices irrespectively of

the moneyness and the maturity. In fact, when a low order polynomial is used

the price obtained with the ICLS method may be low biased compared to the true

price. The fact that the ICLS prices are always lower could be caused by two

factors. First of all, the constrained estimator is less flexible and for a low number

15Similar results are, however, obtained with a grid of only 3 points.
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Figure 1.3: American vanilla put option pricing using in-sample LSM
method.
ITM, ATM and OTM options are priced for maturities of 1, 3 and 6 months with daily exercise. The underlying
asset follows a geometric Brownian motion with a risk free rate of 6% and volatility of 40%. The strike price is
40$ and the ITM, ATM and OTM options have an initial asset price of 36$, 40$ and 44$ respectively. All options
are priced using polynomials of order 2 to 7, and the regressions are done using the paths that are ITM at the
current time step. 1000 simulations are used and the mean prices of 100 repetitions are shown. The benchmark
prices are obtained with the binomial model.

of regressors that can cause an increase in the low bias. Secondly, imposing con-

straints when the number of regressors is high will decrease the high bias due to

overfitting.

The high bias stemming from overfitting can be eliminated by using a new

simulation for pricing. For example, this method was suggested by Longstaff and

Schwartz (2001) and referred to as “out-of-sample” pricing. In Figure 1.4 we show

the estimated prices obtained with this approach. The figure shows that in this
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Figure 1.4: American vanilla put option pricing using out-of-sample LSM
method.
ITM, ATM and OTM options are priced for maturities of 1, 3 and 6 months with daily exercise. The underlying
asset follows a geometric Brownian motion with a risk free rate of 6% and volatility of 40%. The strike price is
40$ and the ITM, ATM and OTM options have an initial asset price of 36$, 40$ and 44$ respectively. All options
are priced using polynomials of order 2 to 7, and the regressions are done using the paths that are ITM at the
current time step. 1000 simulations are used and the mean prices of 100 repetitions are shown. The benchmark
prices are obtained with the binomial model.

case the OLS prices are always biased low compared to the true price, and this

bias increases with the order of the polynomial used for approximation. This is

expected as it increases the overfitting to a particular sample. The ICLS method

on the other hand generally produces prices which are higher than those from the

OLS when using the out-of-sample approach.16 Thus, imposing structure generally

reduces the low bias resulting from approximating the conditional expectations.

16Only when the number of regressors is the lowest do we have a lower price for ICLS. This
comes from the estimator being too rigid to fit the holding value, which increases the lower bias.
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This is expected theoretically and illustrates the importance of adding structure

to the regressions. In particular, the results show that the issue of overfitting is

less important for the ICLS regression and that imposing constraints helps prevent

this divergence. We conjecture that imposing further constraints would help even

more.

1.4.3 Results in three dimensions

In Figure 1.5 we show the estimated prices for the ordinary least squares (OLS)

method as well as our proposed inequality constrained least squares (ICLS) method

for the 9 different options in the multivariate case with a put option on the arith-

metic average of three underlying assets. The options have the same properties

as in the univariate case and we assume a correlation of zero between the three

assets. Each plot shows the prices obtained with polynomials of order 2 to 5 and we

report both in-sample and out-of-sample results. In the ICLS method we impose

convexity and slope constraints on a grid of 6 points.

Figure 1.5 first of all shows that in the multidimensional case the OLS method

again has a high bias when the in-sample approach is used and a low bias when

the out-of-sample method is used, and in both cases the bias increases with the

order of the polynomial used for approximation. Secondly, the figure shows that in

most cases imposing constraints leads to less biased estimates. For example, the

in-sample estimates with ICLS are always lower than with the OLS method and

they are generally closer to the true value. The few exceptions, for which the ICLS

method produces estimates that are more biased than the OLS method are when

the out-of-sample approach is used with very few polynomials, an indication that a
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Figure 1.5: Put option on the arithmetic average of 3 assets using in-
sample and out-of-sample LSM pricing method.
ITM, ATM and OTM options are priced for maturities of 1, 3 and 6 months with daily exercise. The underlying
assets follow a geometric Brownian motion with a risk free rate of 6%, a volatility of 40% and no correlation. The
strike price is 40$ and the ITM, ATM and OTM options have initial assets prices of 36$, 40$ and 44$ respectively.
All options are priced using polynomials of order 2 to 5, and the regressions are done using the paths that are
ITM at the current time step. 1000 simulations are used and the mean prices of 100 repetitions are shown. The
benchmark prices are obtained with the binomial model. In-sample and out-of-sample pricing are represented
using solid and dotted lines respectively.

polynomial of order 2 or 3 is not flexible enough to approximate the holding value

properly.

Figure 1.5 also allow us to examine if the errors made in early regressions

are washed away when pricing long maturity options and whether there are any

differences in performance across moneyness. With respect to the maturity the
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figure shows that the bias for the 3 month options is about twice as large as the

bias for the 1 month options, regardless of the initial conditions. This suggests

that the errors made in early regressions might be amplified when pricing long

term options and that it is even more important to impose structure in this case.

With respect to moneyness the figure shows that there is indeed a tendency for

decreasing performance of the OLS method when moving from the ITM to the

OTM options. This is particularly clear for the out-of-sample results and for the

longest maturity options. This issue, however, is much less prevalent for the ICLS

method which does not deteriorate systematically when the option becomes out of

the money when using the out-of-sample approach.

The results above show that there are clear benefits to the ICLS method when

the order of the polynomial approximation and hence the number of regressors are

increased for a fixed choice of N , the number of simulated paths. We now consider

increasing the number of paths while holding the order of the polynomial fixed at

5. In Figure 1.6 we show the results when N is increased from 1, 000 to 10, 000,

for the three dimensional options. The figure shows that the superior performance

of the ICLS over the OLS which was observed with N = 1, 000 in Figure 1.5 holds

for other values of N also. In particular, irrespective of the value of N as this is

increased the price estimates obtained with the ICLS method is closer to the true

value, i.e. less biased, than that obtained with the OLS method. Moreover this

holds when using both the in-sample and the out-of-sample approaches.

In terms of computing time, the ICLS method suffers from the additional

overhead of building the constraints matrices and solving the quadratic program-

ming problem. However, using efficient algorithms, like the primal-dual predictor-

corrector, makes the ICLS method a strong competitor to the OLS method as the
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Figure 1.6: Put option on the arithmetic average of 3 assets using in-
sample and out-of-sample LSM pricing method.
ITM, ATM and OTM options are priced for maturities of 1, 3 and 6 months with daily exercise. The underlying
assets follow a geometric Brownian motion with a risk free rate of 6%, a volatility of 40% and no correlation. The
strike price is 40$ and the ITM, ATM and OTM options have initial assets prices of 36$, 40$ and 44$ respectively.
All options are priced using a polynomial of order 5 with increasing number of paths, N , and the regressions are
done using the paths that are ITM at the current time step. The mean prices of 100 repetitions are shown. The
benchmark prices are obtained with the binomial model. In-sample and out-of-sample pricing are represented
using solid and dotted lines respectively.

additional computational time required for the ICLS method is compensated by the

improved precision. Figure 1.7 shows the RMSE against the average time of both

OLS and ICLS methods for various moneyness and maturities. The figure shows

that the ICLS method, while being more time consuming, is in fact significantly

more efficient than the OLS method in some cases.
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Figure 1.7: Put option on the arithmetic average of 3 assets using in-
sample and out-of-sample LSM pricing method.
ITM, ATM and OTM options are priced for maturities of 1, 3 and 6 months with daily exercise. The underlying
assets follow a geometric Brownian motion with a risk free rate of 6%, a volatility of 40% and no correlation. The
strike price is 40$ and the ITM, ATM and OTM options have initial assets prices of 36$, 40$ and 44$ respectively.
All options are priced using a polynomial of order 5 with increasing number of paths, N , and the regressions are
done using the paths that are ITM at the current time step. The ICLS method is implemented using a grid of 3
points and constraints on slope. The RMSE error is computed using the average bias and standard deviation of
100 repetitions and the time is the average time over those 100 repetitions. In-sample and out-of-sample pricing
are represented using solid and dotted lines respectively. The benchmark prices are obtained with the binomial
model.

1.5 Conclusion

This paper refines the least squares Monte Carlo method of Longstaff and Schwartz

(2001) which has become a standard numerical method for option pricing with
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many potential risk factors. An important choice in the method is the number of

regressors to use and using too few or too many regressors leads to biased results.

This is so particularly when considering multiple risk factors or when simulation is

computationally expensive and hence relatively few paths can be used.

We propose to impose structure on the least squares problem and we show

that this reduces the bias. Our approach uses an improved regression method that

imposes constraints on partial derivatives in a simple linear setup. Specifically we

propose an inequality constrained linear regression with a series estimator. Using

our series estimator gives a flexible functional form, without the computational

burden of a fully non-parametric method.

We compare the results from our inequality constrained least squares, or ICLS,

method to the unconstrained ordinary least squares, or OLS, method originally

proposed in Longstaff and Schwartz (2001) and show that the ICLS method in

general has smaller bias than the OLS method. This holds across different ma-

turities and for different categories of moneyness. The bias is also reduced when

using the out-of-sample pricing approach of Longstaff and Schwartz (2001) which

ensures low biased estimates.

We also generalize our method to the multidimensional setting. Again the re-

sults show that our ICLS method generally leads to less biased estimates for a

reasonable number of regressors. Moreover, our results also show that, whereas

increasing the number of regressors in the simple OLS approach may lead to nu-

merical problems and divergences in the price estimate, by imposing constraints

in the ICLS method this is largely avoided. These conclusions hold true as the

number of simulated paths is increased. Finally, we show that the ICLS method is

often significantly more efficient than the regular OLS method.



34 Refining the Least Squares Monte Carlo method by Imposing Structure

The method developed in this paper does not depend on the choice of basis,

and examining the performance with other basis functions is an interesting area of

future research. Moreover, the method can be used to price other types of options

also, in particular in a multivariate context. Lastly, the ICLS method could be used

with the value function iteration method of, e.g., Carriere (1996) and Tsitsiklis and

Van Roy (2001) to reduce the bias of these methods.
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Unspanned risk factors in the Cap

volatility surface: a nonlinear

approach.

Pascal Létourneau1 and Pascale Valéry2

ABSTRACT

Classical models for fixed income derivatives pricing are based on the principle that

all derivatives of a same underlying share the same risk factors. Evidence in the

literature suggests that factors unspanned by the term structure of interest rates

might affect the prices of interest rate derivatives. In this paper, we contribute to

the existing literature by first accounting for nonlinear effects essential to deriva-

tives pricing. Second, we do not assume the additional factors are unspanned, but

provide a testing methodology, and third, we consider the market as a whole us-

ing a VARMA model. We find evidence for the presence of one unspanned factor.
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Thus, practitioners cannot identify the price of risk of one market by using a model

of another.

JEL classification: G12, G13

Keywords: Derivatives, Financial Risks, Interest rates, Unspanned volatility,

Volatility smile

2.1 Introduction

The fixed income option market is the most important in terms of nominal value,1

and can be divided in two: the sell-side and the buy-side. Both, however, require

different pricing models. Practitioners on the sell-side usually assume the market

data as given. They compute their hedge ratios using flexible models that fit the

observed option prices.2 As a result, they must constantly recalibrate their models.
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1source : Bank of International Settlement, nov.2011
2See, e.g., Hagan (2006), Rebonato (2007), Morini and Mercurio (2007) or Rebonato et al.

(2010)
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The bond portfolio managers and the primary lending banks on the buy-side esti-

mate their models on historical quotes of interest rates or cross-section of bonds.

They smooth the yield curve and can potentially exploit what their models iden-

tify as miss-pricing. Basic theory suggests that bond prices, interest rate option

prices, and other interest rate products should all be integrated. Ideally, a model

estimated on the historical yield curve should be able to price any interest rate

product.3 When using option prices to calibrate their model, the sell-side often-

times violates basic theory because they arbitrarily fit time dependencies without

any economic rationale.4 However, the presence of factors not spanning different

markets justifies such a procedure. The presence of an unspanned factor means

that, e.g., when a primary lending bank uses a cap to hedge interest rate risk,

it brings a new risk factor in its portfolio, affecting its risk measure and capital

requirement. Tougher rules in the banking industry require financial institution

to address such additional risk. A better understanding of the hedging market in

relation with its underlying is thus very important.

Various studies focused on the relation between the yield curve and interest rate

options. Litterman, Scheinkman, and Weiss (1991) show that the volatility of the

interest rates is linked to curvature of the term structure, suggesting a butterfly

spread be used to hedge volatility. Collin-Dufresne and Goldstein (2002) test this

hedge using swaption straddle portfolios,5 which are very sensitive to volatility,

and swap rates. They find that swap rates explain only a small proportion of

the variability of the portfolios. As a result, they conclude that swaps cannot

be used to easily hedge volatility, therefore suggesting the presence of unspanned

3See, e.g., how Vasicek (1977) completes his market using a second derivative contract.
4See, e.g., Nawalkha (2009) or Nawalkha and Rebonato (2011)
5Buy an option on a buyer swap and an option on a seller swap with the same strike
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factors. This is tested by Heidari and Wu (2003) using an approximate factor

model of the implied volatility surface (IVS). They find that the three factors of

Litterman and Scheinkman (1991) explain only about 60% of the variations of the

IVS. According to their analysis, three additional factors are needed to explain the

remaining variations. They thus conclude that the factors of the IVS are unspanned

by the factors of the yield curve.

While the aforementioned studies suggest bonds cannot be used to hedge volatil-

ity, Fan et al. (2003) manage to hedge swaptions using bond portfolios. To do so,

they model changes in the forward rates in a Heath, Jarrow, and Morton (1992)

framework (HJM) using a statistical 4-factor model calibrated on bonds and deriva-

tives. They specifically price options, and thus properly account for the strong

nonlinear nature of the options. Besides an HJM specification that accounts for

volatility explicitly, they use both markets, bonds and options, to calibrate their

model. As a result, derivatives can be hedged using portfolios of bonds in this

context.

Li and Zhao (2006), on the contrary, are not able to hedge cap/floor straddles

using bonds under a 3-factor quadratic term structure model (QTSM) estimated on

the historical yield curves (i.e. bond market). Their model can hedge bonds very

well, explaining 95% of the variations, but poorly works when attempting to hedge

cap/floor straddles. The difference between the methodologies of Fan et al. (2003)

and Li and Zhao (2006) is that the former uses information from the derivatives

market to estimate a HJM model, while the latter uses solely information from the

bond market. Thus, factors specific to different markets are considered through

the estimated parameters in Fan et al. (2003).

Collin-Dufresne, Goldstein, and Jones (2009) also address the presence of factors
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affecting volatility that are unspanned by the cross-section of bonds using a more

flexible 4-factor quadratic model, which includes a nonlinear pricing formula for

options. They show that some information necessary to hedge options can be

extracted from the bond market as long as the time series variations are used

and constraints are imposed to obtain an unspanned stochastic volatility model.

Variations in the level of the IVS can be explained, though, they cannot explain

the variations in skewness and kurtosis, which are crucial for derivatives pricing.

Other papers also address the presence of unspanned factors and the possibility to

hedge in the presence of such factors,6 but very few articles focus on identifying

those factors.

Among those are Deuskar, Gupta, and Subrahmanyam (2008) (DGS hereafter)

who explore what those factors could be and find evidence that liquidity and default

risks help explain the shape of the smile on the cap market. Li and Zhao (2009)

(LZ hereafter) address the same question by considering the implied risk neutral

distribution extracted from cap prices in conjunction with the mortgage market.

They also find that external factors significantly affect cap prices after controlling

for the yield curve.

Both of these articles limit the information contained in the yield curve to two

or three factors and account only for linear effects. As shown before, such models

fail when it comes to hedging. We revisit this question, and our contribution to the

literature is threefold. First, we examine the nonlinear relation between the yield

curve and the option prices by proposing a simple method to account for nonlinear

effects based on the argument used in Longstaff and Schwartz (2001)7. Second, we

6See, e.g., Casassus et al. (2005), Driessen et al. (2009) or Gupta and Subrahmanyam (2005)
7A function that belongs to an Hilbert space can be approximated using a polynomial trans-

form of the state variables
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study the implied volatility surface as a whole as opposed to looking only at the

smile for fixed maturities. Hence, unlike the articles aforementioned, we examine

the shape of the surface in the maturity and strike dimensions. Considering the

whole market at once is possible through the estimation of a vector model. The

study of the whole surface in both dimensions gives more insight on factors effects

and their dynamics. Third, our approach does not assume that the additional

factors are unspanned by the term structure of interest rates. In fact, we propose

an innovative methodology to test whether the factors are unspanned. Our findings

first suggest that even after controlling for nonlinear effects of the yield curve,

additional factors still help explain both the shape of the smile of implied volatilities

in the strike dimension and the shape of the backbone in the maturity dimension.

Second, we find that one additional factor is unspanned by the term structure

of interest rates. This implies that caps are carrying more risk factors than the

underlying interest rate, thus affecting the risk analysis of those using them as

hedging tools.

The remaining of the paper is organized as follows. Section 2.2 describes the

data and characteristics of the implied volatility surface, the yield curve and the

economic factors. In Section 2.3, we introduce the model and the methodology used

to estimate the effects of the different factors and test whether they are unspanned.

Section 2.4 presents the results. Finally, Section 2.5 concludes.

2.2 Data

The data for this study comes from two sources, Bloomberg and Datastream, and

is classified into three categories: the cap market, the term structure of interest
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rates, and the market factors. Once all series have been synchronized, the data

spans 2004-02-25 to 2013-01-11 for a total of 2063 days of observations.

2.2.1 Cap market

The cap market is an over the counter market that quotes implied volatilities and

not prices. Actual transactions are proprietary data. Bloomberg provides its users

a consensus made from contributing financial institutions’ quotes.8 Quotes are

available for at-the-money (ATM) caps with maturities of {0.5, 1, 1.5, 2, 3, 4, 5,

6, 7, 8, 9, 10} years. They are also available for the following range of strikes {1,

1.5, 2, 3, 3.5, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}%, and for the following range of

maturities {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 30} years, for a total of 204 implied

volatilities. There are missing quotes, especially at the beginning of the times series.

For instance, up to 2005, the fixed strikes ranged from 1% to 8%. The range was

gradually extended up to 14% only after 2008. Smoothing the surface is helpful to

keep the time series coherent. During the smoothing phase, it is important to have

information available on both sides of the ATM quotes. For some days of the time

series, the ATM quote for the 1 year cap is the lowest available. Thus, there is a

lack of information for the in the money (ITM) region for that maturity. For that

reason, we drop the 1 year maturity caps from our analysis. Caps with a maturity

of 15 or 30 years are also dropped in fear of a lack of liquidity. Measurement errors

may exist in the IVS quotes, but the smoothing of the surface can help mitigate

the unwanted effects.
8For the cap market, the historical data set contains only the mid quotes. So the information

about the individual ask and bid implied volatilities is not available. In this study, we are
interested in the general reaction of the market to economic factors and not the micro-market
structure. Having only the mid-quotes is not a problem.
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Let us now describe the implied volatility surface. Figure 2.1 shows the surface

on a typical day. The curve A designates a smile exhibiting a convex and asym-

metric shape. A flat line would indicate that the Black implied volatility is not a

function of the strike; thus the distribution would be log-normal. The asymmetry

of the smile relates to the skewness and the convexity to the kurtosis compared to

the log-normal distribution. On the cap market, the smile will typically change into

a smirk for longer maturities, as shown from curve B. Other patterns occur on the

cap market; in fact, the surface can take many different shapes. Finally, the curve

C identifies all the ATM quotes and is called the backbone. The backbone shows

the shape taken by the surface in the maturity dimension. It represents the term

structure of the expected volatility under the risk neutral measure for a continuum

of maturities.

Smoothing of the cap implied volatility

On the cap market, the quotes are offered for a fixed range of strikes plus the ATM

strikes. When we study the shape of the IVS, it is relevant to have information on

both sides of the ATM quote. For example, knowing the effect of an increase in

the term structure slope on ITM options is more informative than the effect on a

2% strike option. Information is available from the market, but the dispersion of

quotes on each side of the ATM is irregular. The log-moneyness ratio is log (K/F ),

where K is the strike and F is the equivalent swap rate with the same maturity

as the cap. This is standard for empirical studies of this nature.9 A range of -0.75

to 0.75 log-moneyness ratios with 0.25 increments is used in our analysis.10 This
9See for example : Pena et al. (1999), Cont and Da Fonseca (2002), Deuskar et al. (2008) or

Li and Zhao (2009)
10ln (K/F ) < 0 =⇒ ITM , ln (K/F ) = 0 =⇒ ATM and ln (K/F ) > 0 =⇒ OTM
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Figure 2.1: Typical Implied Volatility Surface.
This figure shows raw quotes of Black implied volatility on a typical day. Circles and squares represent quotes for
fixed strikes and ATM respectively. A identifies the curve made by the 1 year caps of different strikes and exhibits
a typical smile. The curve represented by B exhibits a smirk; usually observed at longer maturities. C identifies
the curve made by ATM quotes and is called the backbone.

even spreading of the information on both sides of the ATM quotes simplifies the

interpretation of the results.

Raw quotes sometime suggest the presence of arbitrage opportunities, but those

might be the result of staled quotes or frictions. Arbitrage-free smoothing can help

mitigate that problem. Ait-Sahalia and Duarte (2003) and Fengler (2009) propose

an approach for smoothing the implied volatility smile in an arbitrage-free way.

First, the options are priced using the implied volatilities, then constraints are

imposed on slope and convexity of the pricing function. We adapt this approach

in surface smoothing instead of curve smoothing of the smile. Effectively, we do

one smoothing for the whole surface instead of doing each maturity independently.

This has two advantages: first, it ensures the smoothed surface presents regularity
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in both dimensions. Second, smoothing in the maturity dimension permits the

extraction of the caplet volatilities. Practitioners need to extract caplet implied

volatilities from cap implied volatilities to calibrate their models. Basic methods

are described in details in Hagan and Konikov (2004). The principle consists on

smoothing in the maturity dimension for a selected strike, neglecting information

from the ATM quotes and quotes of other strikes. The smoothing of the whole

surface permits easy extraction of the caplet implied volatilities.11

The surface smoothing is executed using a bivariate kernel regression with poly-

nomials of order 2, including cross products (see, e.g., Hardle (1990) or Bowman

and Azzalini (1997)). In the kernel regression, the choice of the bandwidth is

important. Low bandwidths generate less smoothing and the resulting surface is

closer to raw quotes, but arbitrage opportunities are not eliminated. We select a

random set of days in the times series and optimize the bandwidths in order to re-

move arbitrage opportunities in the strike dimension. We preclude negative caplet

prices when they are extracted, while staying as close as possible to raw quotes.

Once bandwidths are found for the random set, they are applied to the whole time

series. This is an improvement on DGS who proceed directly to interpolation be-

tween available quotes for their log-moneyness range, because it provides better

data to the analysis and mitigates the problem of errors in variables.

After the cap quotes have been smoothed over a log-moneyness range, we do

not follow DGS who scale the quotes by the ATM quotes. Scaling the data removes

the information related to the level of the surface. In our analysis, we keep the

information on the level. As shown next, it is the principal dimension of the data.

Knowing how the level of the surface is affected by variations in economic variables
11See Appendix for details on extracting caplet volatilities from the smoothed surface.
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Figure 2.2: Surface of loadings on the 6 principal components of the IVS.
A Principal component analysis is applied on the time series of the IVS using a grid of 7 strikes in log-moneyness
ratios and 9 maturities. The six graphs show the loadings on the 6 principal components of the IVS. ln (K/F ) <
0 =⇒ ITM , ln (K/F ) = 0 =⇒ ATM and ln (K/F ) > 0 =⇒ OTM . We interpret the components as follows:
A-PC{1}-Level, B-PC{2}-Backbone slope, C-PC{3}-Smile slope, D-PC{4}-Backbone curvature, E-PC{5}-Smile
twisting and F-PC{6}-Smile curvature

is important. Furthermore, according to Rogers and Tehranchi (2010) movements

in the level have to be accompanied by movements in the shape also.

Describing the dynamics of the IVS

We want to understand the dynamics of the surface and visualize the principal

axes on which the surface moves. In order to achieve this, a principal component

analysis is performed over a whole range of points of the smoothed IVS. Then, for

each component, a 3D graph of the factor loadings is provided. Looking at the first

few components helps understand how the surface evolves and what are the major

axes of deformation.

To proceed with the analysis, we select 63 points evenly spaced on the surface

using the log-moneyness ratio scale (7 strikes and 9 maturities.)12 Furthermore,
12As a robustness test, 90, 45 and 9 points were selected with similar results.
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an ARMA(1,1) structure was applied to the implied volatilities to remove serial

autocorrelation. A principal component analysis executed on the residuals, gives

results similar to when the principal component analysis is executed directly on

the points of the surface. The 6 principal components of the implied volatility

surface explains 98% of the variations. Figure 2.2 show factor loadings on the first

6 components of the surface.

Intuitively, the factor loadings for different points of the surface appear to be

smooth, creating a surface of factor loadings. In Figure 2.2-A we see that the first

component has all positive and relatively flat factor loadings. That component

is interpreted as the level of the surface. In Figure 2.2-B short maturities have

positive loadings and long maturities have negative loadings. We thus relate the

second component to the slope of the backbone, even though the surface of loadings

is slightly convex. Figure 2.2-C shows positive loadings for out of the money caps

and negative loadings for in the money caps. The third component clearly drives

the slope or asymmetry of the smile for the whole surface. The fourth component

is shown in Figure 2.2-D and clearly represents the backbone curvature. It also

affects the skewness for the long maturities. In Figures 2.2-E, the fifth component

appears a driver of the surface twisting. Finally, Figure 2.2-F the sixth component

that drives the smile curvature.

We shall now select the number of components retained for the analysis. Differ-

ent criteria are available, such as the Kaiser’s stopping rule based on the eigenval-

ues, the Scree test or the cumulative explained variance. In this context, the Scree

test suggests selecting only the first component while the Kaiser’s stopping rule

retains 11 components. However, following Heidari and Wu (2003) and Connor

and Korajczyk (1993) we select the factors based on their economic significance.
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In an approximate factor model, we observe the residuals after adding factors one

by one. When six components are used, the residuals are generally smaller than

the average bid-ask spread and no longer form a smooth surface. We argue that

adding further components would only explain noise.

2.2.2 The term structure of interest rates

We need interest rates for two purposes: first, to price the caplets to check for

arbitrage opportunities during the smoothing phase and second, to extract factors

for the test model. Pricing caplets requires the forward rates curve. To build

the term structure of interest rates and forward rates, we use daily LIBOR rates

and swap rates from Bloomberg. We use all the available LIBOR rates ranging

from the overnight rate to 1 year rate. As for swaps, we use quotes from 1 year

to 15 years. Figure 2.3 shows the whole time series for LIBOR and swap rates.

Finally, the extended Nelson-Siegel model of Svensson (1995) is used to get the term

structure.This model is flexible and most importantly, does not produce negative

forward rates.

Non-linear factors from the Term Structure

Due to the strong nonlinear nature of options, taking care of non-linearity is essen-

tial. First, we present a mathematical argument that justifies our approach. Then,

we explain how we integrate non-linearity in the model. Finally, we explain how

we select the number of factors to add in the model. Let the price of a caplet be

expressed as a function of the level of the term structure, its distribution and the
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Figure 2.3: Time series of LIBOR and SWAP rates.
LIBOR rates have maturities ranging from overnight to 1 year and SWAP rates have maturities ranging from 1
year to 15 years. The rates shown are raw rates available from BLOOMBERG. The different quotes are joined by
surfaces to allow for easy visualisation.

proper change of measure.13 Then, consider the inverse of Black (1976)’s formula

to retrieve the implied volatility. As shown below, the pay-off function is nonlin-

ear, the distribution is nonlinear and the integration provides the price. Finally,

13For more details on option pricing and change of measure, see, e.g., Harrison and Kreps
(1979) and Harrison and Pliska (1981). For a complete treatment on cap pricing see, e.g., Brigo
and Mercurio (2006), Nawalkha et al. (2007) or Rebonato et al. (2010)
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Figure 2.4: Time series of 3 PC of the term structure of interest rates.
The 3 factors of Litterman and Scheinkman (1991) for our time series of interest rates compared to measures of
level, slope and curvature. The principal components are shown in dash red lines and the replicating time series
are shown using a solid black line.

we extract the implied volatility by inverting Black’s formula.
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Thus, the relation between the forward rate and the implied volatility is clearly

nonlinear. We want to approximate the relation using a flexible form. It can

be shown that the pricing function belongs to a Hilbert space, so is the implied

volatility. Thus, it can be approximated by a polynomial transformation of the

state variables.14 Consequently, we propose to use a polynomial transform of the

factors determining the distribution of the interest rates. The first step consists

in extracting principal components of the term structure of interest rates as in

Litterman and Scheinkman (1991). As expected, three components explain the
14Longstaff and Schwartz (2001) uses the same argument.
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majority of the variations in the interest rates. It is well known that the first

component is related to the level of the interest rates, the second component to

the slope and the third component to the curvature of the term structure. Figure

2.4 shows the times series of the three principal components and the replicating

factors. We replicate the first component using the level of the 3 months US LIBOR

rate, the second component using the difference between the 10 year and 1 year

swap rates, and, finally, the third component with a discrete convexity combining

the 10 year, 3 year and 1 year swap rates. Then, we build a polynomial of those

three principal components.15 We propose to keep the dimension of the problem

relatively low by using a polynomial of order 3 including cross-products for a total

of 19 factors.16 The dimension needs to be further reduced. Usual criteria are

irrelevant when selecting the number of factors to keep in the analysis because they

are directly dependent on the choice of polynomial. There are thus no legitimate

rule for selecting the number of factors in this context. Following Heidari and Wu

(2003), we keep a total of 6 factors: the three principal components of the term

structure and three principal components of the 16 remaining polynomial terms.17

Those principal components are different from the 6 principal components of the

IVS. To avoid confusion, we simply call them the factors from the term structure.

2.2.3 Market factors

Heidari and Wu (2003) suggest that factors outside the yield curve are necessary to

fully explain the variations of the IVS. Nevertheless, few articles examine factors

15A high order polynomial will better approximate the function, but will introduce too many
coefficients to estimate.

16Higher orders polynomials were tested, but the results were similar.
17The results presented in Section 2.4 are robust to other choices.
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affecting cap prices. In this section, we focus on market factors as in DGS. In light

of their findings, we argue that a friction and a risk factor are needed.

DGS explore potential economic determinants of the shape of the smile. The

economic factors they use are measures of liquidity and default risk. Their argu-

ment comes from the trader’s perspective – when a trader sells an option, he wants

to hedge his exposure. Liquidity problems in the market will affect his hedging

costs and therefore the price he will charge to sell the option. DGS test whether

there is a different effect for ITM, ATM and out of the money (OTM) options. If

the effect on prices depends on the degree of moneyness, then it affects the shape

of the smile. The same is true for default risk. If default risk is more present in the

market, hedging needs of financial institutions will increase. This will put more

pressure on the option market and again, it increases hedging costs for traders.

DGS find evidence that liquidity and default risks both affect the shape of the

smile (i.e. the slope and curvature of the smile at different maturities).

It is well known that factors related to market frictions will affect option prices.18

Friction problems will impact option prices by increasing the ask price and lowering

the bid price. However, we test whether it will change the shape of the IVS. Another

factor affecting option prices on the cap market is the risk of default. The caps

are traded over the counter and the buyer bears the counter-party risk. Again, we

test whether the effect varies with moneyness and maturity of implied volatilities.

For our analysis, we keep one friction factor and one default factor. The bid-ask

spread on the swaption market serves as our proxy for the friction factor (illiquidity

risk). The measure will be computed from the mean relative bid-ask spread for the

ATM, 1 to 5 years maturity swaptions. A general measure of risk of default in the
18See, e.g., Bollen and Whaley (2004), Chan et al. (2004) or Shiu et al. (2010) to name a few.
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Figure 2.5: Time series of external factors. Both time series are scaled to be shown in the
same graphic. Default is here modeled by the Fitch Index. The bid ask spread is the mean scaled bid-ask spread
for different ATM swaptions.

economy is also needed. In this analysis, various alternatives are tested as default

risk proxies, e.g., the Fitch probability of default index, the TED-spread and the

average CDS spread of 10 large US Banks. A Fitch Default Index is an aggregation

of the probability of default estimated for a large number of corporations across

typically very liquid equity markets. Figure 2.5 shows the time series of the two

proxies. Note that the relative bid-ask spread on the swaption market is rather

volatile, but follows strong trends. As for the default index, it is stable, except for

a sharp increase at the beginning of the financial crisis.

A priori, those proxies are external but not necessarily unspanned factors. This

is why their dynamics is modeled along that of the IVS and the term structure. The

results from the estimation of the model reveal whether the factors are unspanned.
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2.3 Modeling the surface

In this section, we describe the vector model used for the test. We first consider

the modeling of the IVS. Then, the factors explaining the variations of the IVS are

introduced. Next, a dynamic model is proposed that integrates the interactions

between all factors. Finally, we describe the specifications of the model and its

interpretation.

We model the whole surface of implied volatilities to better understand the

relation between the factors and the different deformation axes of the IVS. Previous

literature divides the surface by maturities. DGS model the smile using a measure

of the slope and a measure of convexity.19 LZ extract the implied risk neutral

densities and summarize the information using quantiles. In Section 2.2.1, we show

how the principal components of the IVS are easily interpreted and can represent

the surface. We explain most of the variations in the IVS and interpret the effects

using the dynamics of the 6 principal components of the IVS.

While the principal components of the IVS are orthogonal by construction, they

can share a joint dynamics. Since caps are options on interest rates, their dynamics

are modeled along the dynamics of the term structure of interest rates. We explain

in Subsection 2.2.2 how the cap implied volatilities are nonlinear functions of the

state variables, and how they can be approximated using a polynomial transform

of the 3 principal components of the term structure of interest rates. Thus, we will

use the transformed principal components described in Subsection 2.2.2. Finally,

external factors, are closely related to the interest rate markets and are also modeled

19We are able to replicate most of DGS results using their measures with our US data and mid
quotes - except when the result for the Bid quotes is different for the Ask quotes.
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jointly. To model the joint dynamics of all factors, we select a VARMA structure

whose general form is:

Yt =

p∑
i=1

ΦiYt−i + Ut −
q∑
j=1

ΘjUt−j. (2.1)

Yt contains the principal components of the IVS, the term structure factors and

the external factors, while Ut contains the innovations. The Φi’s and Θj’s capture

the interrelations between the variables and the lagged innovations respectively.

Equivalently, the model can be written in a more compact form

Φ (L)Yt = Θ (L)Ut,

where

Φ (L) = Ik − Φ1L− ...− ΦpL
p,

Θ (L) = Ik −Θ1L− ...−ΘqL
q.

Compared to DGS and LZ, this model exploits the interactions between the factors

of the IVS. Those play an important role in the dynamics of the system.

Filtering individual implied volatilities with an ARMA(1,1) structure removes

the serial auto-correlation. For this reason, we use a VARMA(1,1) structure for the

vector model. Combined with a diagonal moving average matrix, Θ1, this produces

a parsimonious model. Furthermore, it permits identification of the parameters.

Finally, the model is applied to the first difference of all factors to avoid post-test

inference errors. We follow the estimation technique of Dufour and Pelletier (2008)

using a diagonal MA representation; see also Lütkepohl (2005).
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To simplify the interpretation, the model is reformulated using a specific vector

for each constituent. Let the model be expressed as


YC

YI

YE


t

=


ΦCC ΦCI ΦCE

ΦIC ΦII ΦIE

ΦEC ΦEI ΦEE




YC

YI

YE


t−1

+


UC

UI

UE


t

+


ΘC 0 0

0 ΘI 0

0 0 ΘE




UC

UI

UE


t−1

, (2.2)

where YC denotes the vector of variations in the principal components of the IVS,

YI the vector of variations in the transformed factors of the term structure of

interest rates and YE the vector of variations in the external factors. Each Φij,

i, j ∈ {C, I, E} is a matrix that captures the interactions between two constituents

of the model. Each Θi, i ∈ {C, I, E} is a diagonal matrix that captures the lagged

effects of the innovations. This representation simplifies the interpretation of the

model since each Φij has a specific interpretation. For instance, ΦCC captures the

interactions between the principal components of the implied volatility surface. A

non-diagonal matrix implies that deformation in one dimension of the surface also

affects another one. Rogers and Tehranchi (2010) show that the implied volatility

surface does not move by parallel shifts, thus ΦCC should not be diagonal.20 Addi-

tionally, we can test whether variations in external factors help predict variations

in the principal components of the IVS by examining the individual φij in ΦCE.

Furthermore, this model allows testing for unspanned factors. So far, we claimed

that factors unspanned by the term structure of interest rates are needed to better

predict the variations in the IVS. However, proxy measures of those factors are

used in the test model, which is free from constraints. The model thus permits

interactions between external factors and factors from the term structure of interest

20Rogers and Tehranchi (2010) study the equity market, but the same statement should hold
for the cap market.
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rates. This interaction will show in ΦIE and ΦEI . Testing whether the coefficients

in both of those matrices are nil will reveals whether the factors in YE are unspanned

by the factors in YI .

Finally, the variations in principal components can be related to the variations

in the shape of the IVS as in the following equation.

σ
{κ,T}
t = Y

′

C,tB
{κ,T} + ε

{κ,T}
t , (2.3)

where σ{κ,T}t denotes the variations in the implied volatility for the cap of log-

moneyness κ and maturity T , YC,t the vector of variations in the principal com-

ponents of the IVS, B{κ,T} the vector of loadings on the principal components

for the cap of log-moneyness κ and maturity T , and ε
{κ,T}
t the error term. Now,

to characterize the effects on the slope of the IVS, a measure of the slope as in[
σ
{−0.5,2}
t − σ{0.5,2}t

]
, which is a proxy measure for the slope of the smile at a matu-

rity of 2 years, can be used. From Figure 2.2 we argue that the main driver of the

smile slope of the IVS is the third component. Neglecting the effects of the other

components and using (2.3), we get

[
σ
{−0.5,2}
t − σ{0.5,2}t

]
' YC3,t

(
β
{−0.5,2}
3 − β{0.5,2}3

)
+
(
ε
{−0.5,2}
t − ε{0.5,2}t

)
, (2.4)

where β{κ,T}3 is the loading on the third component, and YC3,t the variations in

the third component. From Figure 2.2, we observe that
(
β
{−0.5,2}
3 − β{0.5,2}3

)
< 0.

Therefore, an increase in the third component implies a decrease in the smile slope.
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2.4 Results

This section is dedicated to analyzing the drivers of the IVS to understand how the

surface reacts to variations of certain market factors. We provide estimation results

of two VARMA(1,1) models, and discuss the effects from the external factors.

Tables 2.I to 2.IV show the results of the estimation of the VARMA(1,1) model

specified in (2.2) using the variations in the six factors from the IVS, the six factors

from the term structure and 2 external factors. The results show that the external

factors do help predict variations in the IVS, but also show that the external factors

are not unspanned by the term structure. In an effort to disentangle the effect from

the external factors from the interaction with the factors from the term structure,

a VARMA(1,1) model is applied to the six factors from the term structure and the

two external factors. The residuals from the two external factors are extracted.

Then, the VARMA(1,1) model is estimated using the six factors of the IVS, the six

factors from the term structure and the residuals of the two external factors from

the previous step. Tables 2.V to 2.VIII show the results of that estimation with

the residuals of the external factors.

Table 2.I shows the estimation of ΦCI , which represents how variations of the

term structure factors at t − 1 affect the principal components of the IVS at t.

We observe that variations in all dimensions of the implied volatility surface are

driven in part by at least one factor from the term structure. Note, also, that all

6 factors from the term structure help explain variations in at least one principal

components of the IVS.

Table 2.II shows the estimation of ΦCE, which represents how the external

factors at t − 1 affect the variations of the principal components of the IVS at
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t. First, let us examine the liquidity effect on the IVS (from BAt−1). The bid-

ask spread is positively and significantly related to the third component. The third

component affects negatively the IVS smile slope. Hence, an increase in the bid-ask

spread leads to a decrease in the smile slope.21 Next, the bid-ask spread negatively

and significantly affects the sixth component, which affects positively the IVS smile

convexity. When the relative bid-ask spread increases, the convexity of the smile

of the IVS decreases.

Second, we can describe the effects of the default factor (from DFTt−1) on the

IVS. An increase in default risks can have two different effects on the derivative

market. First, it causes an increase in the overall level of risk, which should cause

option prices or implied volatilities to increase. Second, on the OTC market, the

buyer of the option bears the counter party risk. A discount is subtracted by

the buyer when the market is more prone to default, thus an increase in default

risks should produce lower implied volatilities. From Table 2.II, we observe that

the default factor has a negative and significant relation with the first component,

which positively affect the level of the IVS. Thus, an increase in default risks will

produce a decrease in the level of the IVS. However, the default factor affects

positively and significantly the fourth component, which impacts positively the

curvature of the backbone of the IVS. From those two relations, we conclude that

an increase in default risks will impact negatively the implied volatilities, except

for the short term options. Finally, the default risk factor impacts negatively and

significantly the fifth component which drives the surface twisting. This relation

is more difficult to interpret, but the surface twisting might come from the fact

that short term options react differently from the long term options to variations
21Remember that the analysis is applied to mid-quotes of cap implied volatilities, thus relatively

little can be said on the effects on the bid and ask individually.
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Table 2.I: Estimation of the lagged effect of the term structure factors on
the IVS (Φ̂CI)

IVS TS1t−1 TS2t−1 TS3t−1 TS4t−1 TS5t−1 TS6t−1

PC
{1}
t 0.2884*** (0.000) 0.0205*** (0.097) 0.0152*** (0.014) -0.0766*** (0.000) 0.0161*** (0.027) -0.1437*** (0.000)

PC
{2}
t 0.6622*** (0.000) 0.1409*** (0.000) 0.0052*** (0.548) -0.1688*** (0.003) 0.0353*** (0.111) -0.2458*** (0.007)

PC
{3}
t -0.6088*** (0.026) -0.0736*** (0.242) -0.0853*** (0.000) 0.2137*** (0.018) -0.0550*** (0.117) 0.3843*** (0.001)

PC
{4}
t 0.7685*** (0.010) 0.0199*** (0.737) 0.0201*** (0.140) 0.0016*** (0.984) -0.0362*** (0.277) -0.1333*** (0.298)

PC
{5}
t 1.7256*** (0.000) 0.4341*** (0.001) 0.1038*** (0.000) -0.1672*** (0.310) -0.0146*** (0.832) -0.1701*** (0.431)

PC
{6}
t 0.7937*** (0.075) 0.3133*** (0.002) 0.0426*** (0.361) -0.1321*** (0.432) 0.0575*** (0.354) -0.1784*** (0.277)

This table shows Φ̂CI from the VARMA(1,1) estimation of the model expressed in (2.2). We can observe the effect
of the variations in the factors from the term structure at t− 1 (TS1t−1, TS2t−1, etc) on the variations of the 6
dimensions of the IVS at time t. (***, **, *) represent 1%, 5% and 10% significance respectively and the p-values
are shown in parenthesis. The implied volatility surface is linked to the principal components by the following
relations: Level ∝ PC{1}, Backbone slope ∝ PC{2}, Smile slope ∝ −PC{3}, Backbone curvature ∝ PC{4},
Smile twisting ∝ PC{5}, Smile curvature ∝ PC{6}.

Table 2.II: Estimation of the lagged effect of the external factors on the
IVS (Φ̂CE)

IVS BAt−1 DFTt−1

PC
{1}
t -0.0025*** (0.253) -0.1200*** (0.075)

PC
{2}
t -0.0029*** (0.567) -0.0998*** (0.537)

PC
{3}
t 0.0230*** (0.002) -0.0465*** (0.821)

PC
{4}
t -0.0143*** (0.191) 0.3189*** (0.042)

PC
{5}
t 0.0202*** (0.282) -0.9104*** (0.059)

PC
{6}
t -0.0519*** (0.004) 0.2096*** (0.550)

This table shows Φ̂CE from the VARMA(1,1) estimation of the model expressed in (2.2). We can observe the effect
of the variations in the external factors at t− 1 (BAt−1, the liquidity factor and DFTt−1, the default risk factor)
on the variations of the 6 dimensions of the IVS at time t. (***, **, *) represent 1%, 5% and 10% significance
respectively and the p-values are shown in parenthesis. The implied volatility surface is linked to the principal
components by the following relations: Level ∝ PC{1}, Backbone slope ∝ PC{2}, Smile slope ∝ −PC{3},
Backbone curvature ∝ PC{4}, Smile twisting ∝ PC{5}, Smile curvature ∝ PC{6}.

in default risks.

The VARMA(1,1) specification in (2.2) permits a straightforward Granger causal-

ity analysis because of the diagonal moving average matrix. We already confirmed

that both our friction and default factors Granger cause some variations of the IVS

components (see Table 2.II).22

Next, we want to check whether factors affecting cap prices are unspanned

by factors of the interest rates term structure. Tables 2.III and 2.IV show how
22Based on the simplified conditions of Boudjellaba et al. (1994)
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variations in the external factors can help predict variations in the factors from the

term structure of interest rates and vice-versa. The friction factor, i.e. the bid-ask

spread on the swaption market does not help predict the term structure factors (See

Table 2.III), but is predicted by the fourth and fifth factors from the term structure

(See Table 2.IV). Hence, the friction factor does not appear to be unspanned by

the term structure factors. The default factor appears to help predict the term

structure factors, but not the other way around. Thus the default factor is not

unspanned either.

This raises an interesting question about the actual presence of unspanned

factors. Therefore, we want to verify whether the effects of the two external factors

come from the presence of unspanned factors or from spurious results. To do so, we

first apply a VARMA(1,1) to the six factors from the term structure and the two

external factors. From that estimation, the residuals of the two external factors are

kept and used in the estimation of the full VARMA(1,1) model with the six factors

of the IVS and the six factors from the term structure. Tables 2.V to 2.VIII show

the results of that estimation.

Table 2.V shows that the interaction between the factors from the term structure

at t−1 with the factors of the IVS at t are slightly different, but again, all six factors

from the term structure are helpful to predict variations in the IVS. Table 2.VI

shows that the residuals from the external factors still explain the variations in the

IVS, though slightly differently. The two dimensions of the IVS that are explained

by the external factors are the smile slope and the smile curvature. The third

component of the IVS loads positively on the bid-ask spread, and the smile slope

loads negatively on the third component. Thus when the bid-ask spread increases,

the smile slope gets less asymmetric. The current data includes only the mid-quotes
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Table 2.III: Estimation of the lagged effect of the external factors on the
term structure factors (Φ̂IE)

TS ... BAt−1 DFTt−1

TS1t ... -0.0001*** (0.919) 0.0436*** (0.009)
TS2t ... 0.0002*** (0.970) 0.2019*** (0.064)
TS3t ... -0.0053*** (0.561) -0.2734*** (0.081)
TS4t ... 0.0008*** (0.724) -0.0617*** (0.067)
TS5t ... 0.0020*** (0.759) -0.2976*** (0.031)
TS6t ... -0.0017*** (0.589) -0.1339*** (0.000)

This table shows Φ̂IE from the VARMA(1,1) estimation of the model expressed in (2.2). We can observe the
effect of the variations in the external factors at t − 1 (BAt−1 and DFTt−1) on the variations of the 6 principal
components from polynomial transformation of the term structure factors at time t. (***, **, *) represent 1%, 5%
and 10% significance respectively and the p-values are shown in parenthesis

of implied volatilities. The effect on the smile for the bid and the ask prices of the

caps is thus unknown. The same coefficient for the default factor is negative. An

increase in default risk thus results in an increase in the smile slope, or an increase

in negative implied skewness. The sixth component of the IVS loads negatively on

the bid-ask spread, and this suggests an increase in the bid-ask spread leads to a

flatter smile. The opposite is true for the default factor. An increase in default risk

thus accentuates the implied kurtosis on the cap market. Higher levels of implied

kurtosis on the option market reflects the aversion of investors for extreme events.

Finally, Tables 2.VII and 2.VIII show the interactions between the residuals

from the external factors and the factors from the term structure. The residuals of

the bid-ask spread, that still explain variations in the IVS, appear to be unrelated

to the factors of the term structure. This shows the presence of at least one factor

unspanned by the term structure of interest rate. In contrast, the residuals of the

default factor are still related to the factors of the term structure.
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Table 2.IV: Estimation of the lagged effect of the term structure factors
on external factors (Φ̂EI)

IVS TS1t−1 TS2t−1 TS3t−1 TS4t−1 TS5t−1 TS6t−1

BAt 0.0669*** (0.835) 0.0442*** (0.596) -0.0095*** (0.693) 0.3229*** (0.020) -0.0997*** (0.020) 0.1560*** (0.197)
DFTt -0.0108*** (0.768) 0.0005*** (0.928) 0.0023*** (0.390) 0.0007*** (0.940) -0.0009*** (0.737) 0.0083*** (0.441)

This table shows Φ̂EI from the VARMA(1,1) estimation of the model expressed in (2.2). We can observe the
effect of the variations of the 6 principal components from polynomial transformation of the term structure factors
at t − 1 (BAt−1 and DFTt−1) on the variations of the external factors at time t. (***, **, *) represent 1%, 5%
and 10% significance respectively and the p-values are shown in parenthesis

Table 2.V: Estimation of the lagged effect of the term structure factors
on the IVS (Φ̂CI)

IVS TS1t−1 TS2t−1 TS3t−1 TS4t−1 TS5t−1 TS6t−1

PC
{1}
t 0.1268*** (0.007) 0.0292*** (0.042) 0.0186*** (0.005) -0.0019*** (0.068) 0.0029*** (0.015) -0.0023*** (0.121)

PC
{2}
t 0.3903*** (0.005) 0.1601*** (0.000) 0.0055*** (0.608) -0.0066*** (0.003) 0.0052*** (0.041) -0.0019*** (0.533)

PC
{3}
t -0.3032*** (0.188) -0.0950*** (0.144) -0.1045*** (0.000) 0.0081*** (0.019) -0.0070*** (0.087) 0.0147*** (0.000)

PC
{4}
t 0.5186*** (0.025) 0.0319*** (0.614) 0.0134*** (0.444) 0.0006*** (0.860) -0.0038*** (0.325) 0.0033*** (0.530)

PC
{5}
t 1.5326*** (0.001) 0.4612*** (0.000) 0.0872*** (0.010) -0.0082*** (0.190) 0.0026*** (0.745) 0.0063*** (0.435)

PC
{6}
t 0.8799*** (0.050) 0.3755*** (0.000) 0.0487*** (0.238) -0.0144*** (0.032) 0.0091*** (0.243) -0.0120*** (0.061)

This table shows Φ̂CI from the VARMA(1,1) estimation of the model expressed in (2.2). We can observe the effect
of the variations in the factors from the term structure at t− 1 (TS1t−1, TS2t−1, etc) on the variations of the 6
dimensions of the IVS at time t. (***, **, *) represent 1%, 5% and 10% significance respectively and the p-values
are shown in parenthesis. The implied volatility surface is linked to the principal components by the following
relations: Level ∝ PC{1}, Backbone slope ∝ PC{2}, Smile slope ∝ −PC{3}, Backbone curvature ∝ PC{4},
Smile twisting ∝ PC{5}, Smile curvature ∝ PC{6}.

Table 2.VI: Estimation of the lagged effect of the residuals of the external
factors on the IVS (Φ̂CE)

IVS BAt−1 DFTt−1

PC
{1}
t -0.0009*** (0.154) 0.0007*** (0.419)

PC
{2}
t -0.0014*** (0.398) -0.0027*** (0.266)

PC
{3}
t 0.0072*** (0.001) -0.0081*** (0.000)

PC
{4}
t -0.0054*** (0.104) 0.0015*** (0.738)

PC
{5}
t 0.0032*** (0.583) -0.0092*** (0.192)

PC
{6}
t -0.0179*** (0.001) 0.0121*** (0.000)

This table shows Φ̂CE from the VARMA(1,1) estimation of the model expressed in (2.2) with the residuals from
the external factors. We can observe the effect of the variations in the external factors at t − 1 (BAt−1, the
liquidity factor and DFTt−1, the default risk factor) on the variations of the 6 dimensions of the IVS at time
t. (***, **, *) represent 1%, 5% and 10% significance respectively and the p-values are shown in parenthesis.
The implied volatility surface is linked to the principal components by the following relations: Level ∝ PC{1},
Backbone slope ∝ PC{2}, Smile slope ∝ −PC{3}, Backbone curvature ∝ PC{4}, Smile twisting ∝ PC{5},
Smile curvature ∝ PC{6}.



Concluding remarks 63

Table 2.VII: Estimation of the lagged effect of the residuals of the external
factors on the term structure factors (Φ̂IE)

TS ... BAt−1 DFTt−1

TS1t ... -0.0001*** (0.844) 0.0007*** (0.065)
TS2t ... 0.0005*** (0.752) 0.0014*** (0.316)
TS3t ... -0.0021*** (0.479) 0.0075*** (0.004)
TS4t ... 0.0112*** (0.376) 0.0013*** (0.890)
TS5t ... -0.0041*** (0.728) -0.0135*** (0.288)
TS6t ... -0.0060*** (0.693) 0.0194*** (0.021)

This table shows Φ̂IE from the VARMA(1,1) estimation of the model expressed in (2.2) with the residuals from the
external factors. We can observe the effect of the variations in the external factors at t− 1 (BAt−1 and DFTt−1)
on the variations of the 6 principal components from polynomial transformation of the term structure factors at
time t. (***, **, *) represent 1%, 5% and 10% significance respectively and the p-values are shown in parenthesis

Table 2.VIII: Estimation of the lagged effect of the term structure factors
on residuals of the external factors (Φ̂EI)

IVS TS1t−1 TS2t−1 TS3t−1 TS4t−1 TS5t−1 TS6t−1

BAt -0.1732*** (0.870) -0.3238*** (0.189) -0.0071*** (0.940) 0.0263*** (0.206) -0.0310*** (0.122) -0.0079*** (0.658)
DFTt 0.1178*** (0.901) 0.3464*** (0.096) 0.0323*** (0.799) -0.0156*** (0.209) 0.0426*** (0.013) -0.0142*** (0.312)

This table shows Φ̂EI from the VARMA(1,1) estimation of the model expressed in (2.2) with the residuals from
the external factors. We can observe the effect of the variations of the 6 principal components from polynomial
transformation of the term structure factors at t − 1 (BAt−1 and DFTt−1) on the variations of the external
factors at time t. (***, **, *) represent 1%, 5% and 10% significance respectively and the p-values are shown in
parenthesis

2.5 Concluding remarks

In this research, we have examined the relation between the interest rates and the

implied volatility surface of the cap market. We build upon previous literature

by incorporating the nonlinear effects from the term structure in the modeling of

the whole implied volatility surface. The dynamics of all factors is modeled jointly

in a VARMA model and tests can be carried out on the external factors. We

provide a simple way of constructing linear factors that can take into account the

nonlinear information contained in the term structure of interest rates. We show

that the nonlinear factors are in fact useful in explaining cap implied volatilities.

Nonetheless, even after controlling for nonlinear effects and interactions between

caps themselves, external factors are still needed to explain variations in cap implied
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volatilities. Finally, our model shows that there exists at least one factor that is

unspanned by the term structure of interest rates. That unspanned factor mainly

affects the smile slope and curvature, i.e., the implied volatilities of options ITM

and OTM.

The presence of such a factor affects how market makers hedge their open

positions on the market. It justifies the use of models specific for the option market.

It also raises questions about the additional risk that is introduced in the portfolio

of financial institutions using those options to hedge their interest rate risks. The

unspanned factor will affect the price of the options and the value of the portfolio

will vary differently from what is predicted by classical term structure models. If

the options are not kept until maturity, this can have a financial impact on the

value of the portfolio of those institutions.

A by-product of our research is a simple method to extract caplet implied

volatilities from cap quotes. We extend arbitrage free smoothing of the implied

volatility smile to the whole surface and show how the caplets implied volatilities

can then be extracted.
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Appendix

In this appendix we show how to extract the caplet volatilities by smoothing the

whole implied volatility surface.

Extraction of the caplet volatilities

Let i ∈ I = {4, 8, 12, ...} be the indices for cap quotes from the market;23 σTiK be

the implied volatility quote for a cap of strike K and maturity Ti, then the price

for a cap of strike K and maturity Ti can be expressed as the sum of the caplets

evaluated with the cap implied volatility as in:

CTi
K

(
σTiK
)

=

Ti∑
j=2

Cl
Tj
K (σTiK ), (2.5)

where Cτ
K (στK) and ClτK(στK) are the cap and caplet prices respectively with strike

K and maturity τ .24 Now suppose we have the individual caplet implied volatilities,

noted γ. We can then price caps using a sum of individual caplets with their own

implied volatilities as in:

CTi
K

(
σTiK
)

=

Ti∑
j=2

Cl
Tj
K (γ

Tj
K ),

where γTjK is the caplet volatility of strike K and maturity Tj.

23We use indices representing quarters because the US cap market uses the 3M US Libor as
basis rate.

24Note that a 1 year cap contains only 3 caplets and the first one is noted CT2

K and that is why
we start at j = 2.
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Now suppose we have the cap implied volatilities for all intermediate maturities,

i.e. i ∈ I = {1, 2, 3, ...}. We price a cap of maturity Ti using a cap of maturity

Ti−1 plus one caplet as in,

CTi
K

(
σTiK
)

= C
Ti−1

K

(
σ
Ti−1

K

)
+ ClTiK (γTiK ),

CTi
K

(
σTiK
)

=

Ti−1∑
j=2

Cl
Tj
K (σ

Ti−1

K ) + ClTiK (γTiK ). (2.6)

Since we have quotes for all intermediate maturities, we are able to price each

cap, so the only unknown in (2.6) is the caplet price. By smoothing the IVS and

interpolating cap quotes for all intermediate maturities, we are able to extract

caplet prices and invert Black’s formula to get the caplet implied volatility.
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How "Animal Spirits" React to the

Government Credibility Problem: A

Real Option Analysis of Emission

Permits Policy Risk

Sang Baum Kang1 and Pascal Létourneau2

ABSTRACT

This paper demonstrates how to use the real option approach to make a phys-

ical capital investment decision under the presence of the government credibility

problem. Specifically, we study a rational firm’s optimal decision to build an elec-

tric power plant when the firm believes that there is a carbon dioxide (CO2) pol-

icy risk. A simplified real option approach with analytic solutions finds that the



68
How "Animal Spirits" React to the Government Credibility Problem: A

Real Option Analysis of Emission Permits Policy Risk

time-inconsistency problem will decrease the degree that emission permits market

encourages firms to invest in a green resource. A more sophisticated Least Squares

Monte Carlo framework improves the analysis with the following predictions. First,

considering the compound option nature of power plant investment decision, a ra-

tional firm invests in power plants early and the government credibility problem

does not substantially increase such short investment timing. Second, the time-

inconsistency problem does increase the expected profit of a rational firm. The

approaches in this paper are applicable to other areas in finance.

JEL classification: D81, G13, Q50

Keywords: real option, government credibility, compound option, emission permit

3.1 Introduction

A carbon dioxide (hereafter, CO2) emission permit is a policy instrument to re-

duce the amount of CO2 pollution.1 According to Helm et al. (2003), the ex-ante

commitment of a government to keep the initial quantity of emission permits is

important to achieve the target reduction. Otherwise, private firms, which can

1Stuart School of Business, Illinois Institute of Technology, 565 W. Adams St., #448, Chicago,

IL, U.S.A. Email: sangbaum@gmail.com.
2HEC Montréal, 3000 Côte-Sainte-Catherine, H3T 2A7, Montréal, QC, Canada. Email: pas-

cal.letourneau@hec.ca.

We are grateful to Robert Cairns, Stylianos Perrakis and participants of 2011 Administrative

Science Association of Canada (ASAC) annual meeting and 2013 Midwest Finance Association

(MFA) annual meeting for the valuable comments and advice. All errors are strictly ours.
1For the details, see, e.g., Ayres and Walter (1991), Nordhaus (2007) and Paolella and Taschini

(2008).
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make a choice between different carbon-emitting technologies, may expect credi-

bility problems in the carbon policy, and they are less likely to invest in a resource

emitting less amount of CO2. It is a natural question to ask how "animal spirits",

who can delay an investment, react to such policy uncertainty.

In the presence of the government credibility problem, three predictions can

be made from the standard real option theory. First, a firm will make relatively

fewer investments in a facility with relatively "greener" technology. Second, a

firm will defer such a "green" investment in a facility with relatively "greener"

technology because the less credible a government is, the more volatile an emission

permit price will be. Third, a firm will make more (expected) profit as a result of

the greater uncertainty. (For background, see, e.g., Majd and Pindyck (1987) and

Pindyck (1991).) This article demonstrates how to extend the real option approach

to analyze the optimal decisions of a rational firm under the time-inconsistency of

government policy and the option to change the amount of electricity generation

over time. Specifically, we propose two real option analyses.

First, motivated by Paxson (2007) who studies real options of property rights,

we study the value of an investment opportunity for a power plant using a com-

pound exchange option (Carr (1988)) (hereafter, CEO). A firm generating electric

power makes a sequence of two separate but related decisions. The first one is

whether the firm invests in a physical capital and the second one is whether the

firm dispatches the electric power plant. Because an exchange option (Margrabe

(1978)) can model the second decision, a compound option on an exchange option

(CEO), can model the first decision. Calculating CEO premia2, we find that the

2One can quantify not only the intrinsic value of such an investment opportunity but also the
extrinsic value; the probability of an increase in electricity prices relative to the generation cost
creates this additional value.
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government credibility problem will decrease the degree that emission permits mar-

ket encourages firms to invest in a green resource. However, this simple framework

does not account for the time series nature of the decision to dispatch and cannot

formally model the government policy uncertainty.

Second, because of the aforementioned two limitations of the simple CEO frame-

work, we implement a Least Squares Monte Carlo simulation of Longstaff and

Schwartz (2001) (hereafter, LSM) and investigate the investment decisions of an

electricity company that faces government credibility risk and provide intuition

with regards to the investment timing, the investment choice and the profitability.3

To analyze the effect of government policy uncertainty on the real option, this

paper proposes adding two ingredients to the standard real option framework.

First, political pressure on a government is modeled as a Brownian motion and the

submission of government to such pressure as a first passage time.4 Pawlina and

Kort (2005) use the first passage time of the value of the entire investment project

to study investment under uncertainty and policy change. We contribute to the

literature by proposing to use a separate latent stochastic process for which the

threshold of the first passage time can be easily calibrated.

Second, we model a firm’s option to build an electric power plant as an American

compound option, because a plant is a time-series of options representing a choice

between producing a positive amount of output and not producing any output.

Yang et al. (2008) study the plant investment options under the uncertainty of

climate policy change, but they ignore one of the most important features within

our methodology, which is that a power plant itself is a time-series of spread options.
3Our analysis is partly motivated by Schwartz and Trolle (2007) who study the real option

under expropriation risk.
4For the details of a Brownian motion first passage time, see, e.g., Shreve (2004).
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Yang et al. (2008) conclude that a firm should wait if it expects the climate policy

uncertainty. However, considering the compound option nature of an investment

opportunity, we find that such a conclusion is not always true. This constitutes

another contribution of our research.

The complexity of this compound option raises an interesting question. What is

the implication of the current high volatilities of energy commodities on a rational

producer’s choice of investment timing? On the one hand, the higher the energy

commodities volatilities are, the more valuable a physical plant in place will be

(larger intrinsic value). A rational firm thus has incentives to invest in a power plant

earlier rather than later. On the other hand, the higher the energy commodities’

volatilities, the higher the volatility of a plant value will be. Hence, the extrinsic

value of a real option increases and a rational firm has incentives to postpone

investments. What is the trade-off between these two opposite effects? To our

knowledge, the LSM is the only way to assess such a trade-off.

The numerical results of LSM show that the effect of higher plant value (larger

intrinsic value) dominates the effect of higher plant value volatility (larger ex-

trinsic value), leading to a relatively small extrinsic value. Such dominance is

too strong for the incremental uncertainty, as a result of the government time-

inconsistency problem, to delay the investment timing substantially. In addition,

the time-inconsistency problem does increase the investment into less-green plants

and the expected profit of a rational firm.

The remainder of this paper is structured as follows. Section 3.2 documents

the real option of an investment opportunity for a power plant. Section 3.3 and

3.4 discusses data and a preliminary numerical analysis, respectively. Section 3.5



72
How "Animal Spirits" React to the Government Credibility Problem: A

Real Option Analysis of Emission Permits Policy Risk

reports a simplified real option analysis using CEOs and section 3.6 documents our

real option analyses using LSM simulations. Section 3.7 concludes.

3.2 The real option

The methodology in this paper is relevant for unregulated wholesale electricity

markets, such as the United States and the United Kingdom, where forward mar-

kets of electricity and natural gas are available for trading. It does not necessarily

require electricity prices to be unregulated at the retail market level. An electricity

company, which is a price taker of a wholesale market electricity and fuel prices, has

an option to dispatch a plant or to purchase electricity from a wholesale market.

Consider the following simple numerical example. Assume that the wholesale

electricity price is $50 per megawatt-hour (hereafter, MWh), the wholesale fuel

price is $4.00 per million British Thermal Units (hereafter, mmbtu), and the heat

rate of a generator that the company owns is 10 mmbtu/MWh. Dispatching the

generator costs $40/MWh (=$4.00/mmbtu * 10 mmbtu/MWh). On the other

hand, purchasing electricity from the wholesale market costs $50/MWh. As dis-

patching the generator ($40/MWh) costs less than purchasing electricity from the

wholesale market, a rational firm chooses to dispatch its generator. For another ex-

ample, assume that the wholesale electricity price is $40/MWh, the wholesale fuel

price is $5.00/mmbtu, and the heat rate of the generator is the same as before. Dis-

patching the generator then costs $50/MWh (=$5.00/mmbtu * 10 mmbtu/MWh).

On the other hand, purchasing electricity from the wholesale market costs only

$40/MWh. Therefore, a rational firm chooses to stop running the plant and pur-

chases electricity from the wholesale market.
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Let us describe a market where there is a price associated with the emission of

CO2. Let E denote the wholesale electricity price in $/MWh, F the wholesale fuel

price in $/mmbtu, H the heat rate in mmbtu/MWh, M the emission amount of

CO2 (llb/mmbtu), and P the emission cost ($/llb) of a generator that a firm owns.

The electricity cost for the firm is then:

Electricity Costt = min (Et, H × (Ft +M × Pt)) . (3.1)

Suppose that the firm does not have any electric generator. The electricity cost

is then E, which is greater than or equal to (3.1). Hence, the payoff of owning an

electric generation plant is as follows:

Payofft = E −min (Et, H × Ft) = max (0, Et −H × (Ft +M × Pt)) . (3.2)

As H is constant5, and Et, Ft and Pt are random variables in the wholesale market,

(3.2) is the same as the payoff function of a spread option (a.k.a. exchange option).

The parameters of the spread option model are wholesale electricity and fuel prices,

their forward volatilities and correlation and an interest rate. The value of the

electricity generation plant is given as the expectation of a time series of exchange

options:

Plant V aluet = Ẽt

[
t+T∑
i=t+1

exp (−ri (i− t))× Payoffi

]
. (3.3)

where T is the operating life of the plant; rt is the forward interest rate at time t;

Ẽ is a risk neutral expectation.6

5In reality, H is not a constant because the physical heat rate depends on the age of a generator,
temperature, air pressure and many other variables.

6Section 3.5 proposes a simplified version where the decisions to dispatch are grouped at the
half-life of the plant.
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As discussed in the introduction, the company has an option to choose the

timing of an irreversible investment to the best of its economic payoff. The time-

0 value of an investment opportunity for a power plant is given as an American

compound option on a time series of exchange options.

(The value of a single plant investment opportunity)t=0

= sup
τ
Ẽt=0 [exp (−rττ)×max [0, P lant V alueτ −Kτ ]] (3.4)

where τ is the optimal investment time and Kτ is capital investment at time τ .

Finally, the value of an investment opportunity of a firm which can make a choice

between a (less green) coal plant and a (more green) natural gas plant is given as

an exotic American compound exchange option:

(The value of a two− plants investment opportunity)t=0

= sup
τ
Ẽt=0

max


0∑τ+T

i=τ+1

[
exp (−rii) Ẽ

[
max

[
0, Ei −H

(
FCi +MCPi

)]]]
−KC

τ∑τ+T
i=τ+1

[
exp (−rii) Ẽ

[
max

[
0, Ei −H

(
FGi +MGPi

)]]]
−KG

τ




(3.5)

where τ is the optimal investment time; FC
t and FG

t are forward prices ($/mmbtu)

with delivery time t of coal and natural gas, respectively; MC and MG are plant

emission amounts (llb/mmbtu) for coal and natural gas; Pt is emission cost ($/llb);

KC
t and KG

t are the capital investments at time t for a coal plant and a natural

gas plant, respectively.
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Table 3.I: Physical characteristics and capital costs
Plant Coal plant Natural gas plant
Detail An integrated gasification

combined turbine with minimum
carbon preparation and level II

control

A water-cooled combined cycle
combustion turbine

Heat rate 8.732 mmbtu/MWh 7.223 mmbtu/MWh
CO2 emission 205.35 pound/mmbtu 118.00 pound/mmbtu
Capital cost $2,479 per kilowatt $895 per kilowatt

3.3 The data

To study how the government time-inconsistency affects investment choice, invest-

ment timing, and profitability of a firm, we consider a relatively "greener" natu-

ral gas electric generation plant versus a relatively "less-green" coal plant. The

physical and economic data of each plant are from the Integrated Resource Plan

(hereafter, PacifiCorp (2007)) that PacifiCorp, a multi-billion dollar electric power

utility serving six western states in the United States, filed to the Oregon Public

Utility Commission.

An integrated gasification combined turbine (hereafter, IGCC) with minimum

carbon preparation and level II control has been chosen as the example coal plant

because, given the current public awareness of air pollution, the choice of other

"traditional" coal plants may lead to deterioration in public relations. A water-

cooled combined cycle combustion turbine (hereafter, CCCT) is selected as the

natural gas plant because of its flexibility and popularity. Table 3.I summarizes

the physical characteristics and cost information of the coal plant and the natural

gas plant. The physical heat rate of the selected coal plant (8.732 mmbtu/MWh) is

less favorable than that of the selected natural gas plant (7.223 mmbtu/MWh). The

CO2 emission of the coal (205.35 pound/mmbtu) is also less favorable than that of
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the natural gas plant (118.00 pound/mmbtu). Finally, the capital cost of the coal

plant ($2,479 per kilowatt) is less favorable than that of the natural gas plant ($895

per kilowatt). A typical range of coal prices is from $0.20/mmbtu to $1.20/mmbtu,

and natural gas prices typically range from $2.00/mmbtu to $20.00/mmbtu. In the

present simulation, the initial coal price is assumed to be $0.50/mmbtu and the

initial natural gas price is assumed to be $8.50/mmbtu.

A typical electricity price ranges from $10 to $150. In the simulations in this

study, the electricity price is assumed to be $70. To compute the forward prices,

we assume an interest rate of 4%. Electricity and natural gas forward volatilities

are modeled as a weakly decreasing function in tenor starting from 0.6. (For the

detail of decreasing term-structure of volatility, see, e.g., Kang and Klein (2005).)

As the commoditization of coal is very limited7 relative to that of natural gas,

coal volatility is assumed to be zero. The forward correlations between electricity

prices and natural gas prices are modeled as a weakly increasing function of tenor

starting from 0.6. Finally, from Ayres and Walter (1991) and PacifiCorp (2007),

we use $35 per ton or $0.0175 per pound as an estimate for an emission permit

price and index it with the interest rate. Price discovery from emissions futures

markets8 is neglected because it is dubious that the additional volatility from the

emissions market will change the main conclusion of this paper.

7Coal in the Powder River Basin and the Appalachian area is somewhat commoditized, but the
levels of standardization and liquidity are much lower than those of the natural gas commodity.
Furthermore, long-term (e.g., 30 years) fixed-price coal purchase contracts are very common.

8See, e.g., Carmona and Hinz (2011).
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3.4 A Net Present Value analysis

Consider the example of an electric power utility that evaluates three alternatives:

purchasing power from a wholesale market, building a natural gas plant, and build-

ing a coal plant. The natural gas plant is "greener" than the coal plant because

the natural gas plant emits 118.00 pounds of CO2 per mmbtu , whereas the coal

plant emits 205.35 pounds of CO2 per mmbtu; about twice as much as the natural

gas plant. Furthermore, the natural gas plant is about 17% more fuel efficient than

the coal plant. To generate 1 MWh of electric power, a natural gas plant burns

7.223 mmbtu of fossil fuel, whereas a coal plant burns 8.732 mmbtu.9

Finally, capital costs are higher when building a coal plant than a natural gas

plant. PacifiCorp (2007) calculates that building a coal plant costs $2,479 per

kilowatt, whereas building a natural gas plant costs only $895 per kilowatt; a coal

plant is about three times as expensive as a natural gas plant with regards to the

amount of capital spending.

Table 3.II summarizes the simple economics of each plant, "not assuming" and

"assuming" a CO2 permit cost. Observe in Panel A, which does not assume a

CO2 permit cost, that the natural gas plant is twice as expensive as the coal plant,

notwithstanding the superior "greenness" and fuel-efficiency. In Panel B, which

does assume a CO2 permit cost, observe that the relative economics favorable to

the coal plant deteriorates. According to the preliminary analysis in the previous

section, building and dispatching the coal plant ($76.41/MWh) or the natural gas

plant ($95.49/MWh) is more expensive than purchasing electricity from the whole-

sale market ($70/MWh). A Net Present Value analysis would reject both projects.

9The data was taken from PacifiCorp (2007).
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Table 3.II: Simple economics without the real option approach
Panel A: Assuming no emission permits cost

Plant Coal plant Natural gas plant
Fuel price $0.50/mmbtu $8.50/mmbtu
Fuel cost $4.37/MWh

(=8.732mmbtu/MWh *
$0.50/mmbtu)

$61.40/MWh (=7.223
mmbtu/MWh * 8.50/mmbtu)

Capital cost* $36.06/MWh $19.18/MWh
Cost per MWh $40.43/MWh (=$4.37/MWh

+36.06/MWh)
$80.58/MWh (=$61.40/MWh *

8.50/MWh)
* Contains capital costs and fixed operation and management costs per calculation in PacifiCorp (2007).

Panel B: Assuming $35/ton emission permits cost
Plant Coal plant Natural gas plant
Emission
amount

2,056 pound/MWh (=8.732
mmbtu/MWh *205.35

pound/mmbtu)

852 pound/MWh (=7.223
mmbtu/MWh *118.00

pound/mmbtu)
Emission price $0.0175/pound (=$35/ton

divided by 2000 pound/ton)
$0.0175/pound (=$35/ton
divided by 2000 pound/ton)

Emission cost $35.98/MWh (=2,056
pound/MWh * $0.0175/pound)

$14.92/MWh (=852
pound/MWh * $0.0175/pound)

Cost per MWh $76.41/MWh (=$40.43/MWh+
$35.98/MWh)

$95.49/MWh (=$80.58/MWh+
$14.92/MWh)
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This, however, would neglect the value of delaying the investment (see McDonald

and Siegel (1986)).

3.5 A simplified real option analysis using com-

pound exchange options

To improve on the net present value analysis, we use real options to evaluate the

value of the investment opportunity. Starting with a simplified model, we use a

CEO to model the investment alternatives. As we will discuss more in this section,

the CEO premia of these two investment opportunities reflects the expected positive

future payoff and suggest that both real options are economically valuable.

Consider a single dispatch decision made at time τS and a simple exchange

option (hereafter, SEO) with a payoff of S(τS) ≡ max[0, EτS−H·FτS ]. Furthermore,

an investment decision is made at time τC ≤ τS modeled by a CEO with a payoff of

max[0, S(τS)−K] expiring at time τC where K, a per-MWh physical capital cost

for building a plant, is the strike price of the CEO. Using a bivariate geometric

Brownian motion, Carr (1988) proposes a closed-form solution for a CEO price.

Adapting his solution, we calculate a CEO price as

CEO0 = E0N2

(
d1

(
P

P ∗
, τC

)
, d1 (P, τS)

)
−HF0N

(
d2

(
P

P ∗
, τC

)
d2 (P, τS)

)
−KN1

(
d2

(
P

P ∗
, τC

))
(3.6)

where P ≡ E0/(HF0) is the ratio between the electricity price and the generation

cost; σE is the electricity price volatility; σF is the generation cost volatility; ρ is the
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Figure 3.1: The value of investment opportunities as a compound ex-
change option.
This figure reports the CEO premia of the coal plant and the natural gas plant. From table 1, the heat rate
for coal (natural gas) plant is 8.732 (7.233) mmbtu/MWh. From table 3, the electricity price=$70/MWh, the
coal price=$0.50/mmbtu, the natural gas price=$8.50/mmbtu, the electricity volatility=0.60, the natural gas
volatility=0.60, the coal volatility=0 and the correlation between the natural gas and electricity=0.6. Finally,
from table 2, the capital cost for coal (natural gas) plant is $36.06/MWh ($19.18/MWh). The X-axis (Y-axis)
represents the fuel plus emission cost (the value of investment opportunities). The red (blue) curve is for the coal
(natural gas) plant. The right (left) end of each curve assumes the full $35/ton (zero) emissions cost.

correlation between these two; the volatility of P , σ̄ ≡
√
σ2
E +H2σ2

F − 2HρσEσF ;

d1(y, τ) ≡ (ln(y) + 0.5σ2τ)/(σ
√
τ); d2(y, τ) ≡ (ln(y)− 0.5σ2τ)/(σ

√
τ); N1(·) is the

standard normal c.d.f.; N2(·) is the standard bivariate normal c.d.f. with correlation√
τC/τS; P ∗ is implicitly determined by solving P ∗N1(d1(P ∗)) − N1(d2(P ∗)) =

K/(HF0). Calculating the simplified real option values of the coal plant and the

natural gas plant, we consider a decision that will be made one year from now.

That is, τC = 1. Because a typical plant life is 30 years, we set τS − τC to be 15

years.

Figure 3.1 depicts the values of two investment opportunities with and without



A simplified real option analysis using compound exchange options 81

assuming emissions costs. Without assuming the emission cost, the value of a coal

plant investment opportunity ($36.68) is greater than that of a natural gas plant in-

vestment opportunity ($32.87). In contrast, assuming full emission cost of $35/ton,

the value of a natural gas plant investment opportunity ($30.85/MWh) is greater

than that of a coal plant investment opportunity ($26.21/MWh). It is known that

the intrinsic value of option is zero because the all-in cost ($76.41/MWh) including

both the physical capital and generation costs is greater than the electricity price

($70.00/MWh). Hence, all of $26.21/MWh is the extrinsic value. According to

the same logic, the extrinsic value of natural gas plant investment opportunity is

$30.85/MWh, which is more valuable than that of coal plant. Therefore, a rational

firm may change its resource choice depending on the emission cost.

Under the presence of government credibility problem, the relative economics

will be between the right and left ends. Therefore, the government credibility

problem will decrease the degree that emission permits market encourages firms

to invest in a green resource. Specifically, if the emission price is less than the

break-even emission price $2.61/ton, the natural gas plant investment opportunity

is less valuable than the coal plant investment opportunity.10

The government credibility problem may also increase the time variation of

generation cost. Furthermore, it may change σ̄ in (3.6). Because

σ̄ =
√

((σE −HσF )2 + 2H(1− ρ)σEσF ),

σ̄ increases (decreases) in σF for a sufficiently large (small) σF . Hence, both the

mean and standard deviation of SEOs increase (decrease) in σF for a sufficiently

10The break-even point is dependent on the initial parameter of the problem.
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Figure 3.2: Statistics of the CEO and SEO options as a function of volatil-
ity of generation cost.
This figure depicts the mean and standard deviation of SEOs, the exercise probability of CEO and the CEO
premium as a function of the volatility of generation cost. From table 1, the heat rate for coal (natural gas) plant
is 8.732 (7.233) mmbtu/MWh. From table 3, the electricity price=$70/MWh, the coal price=$0.50/mmbtu, the
natural gas price=$8.50/mmbtu, the electricity volatility=0.60, the natural gas volatility=0.60, the coal volatil-
ity=0 and the correlation between the natural gas and electricity=0.6. Finally, from table 2, the capital cost for
coal (natural gas) plant is $36.06/MWh ($19.18/MWh). To calculate the exercise frequency and CEO premium of
ATM CEO, we set K to be the same as the mean of SEOs. To calculate the exercise frequency and CEO premium
of ITM (OTM) CEO, we set K to be the mean of SEO divided (multiplied) by three.

large (small) σF as the upper panels of Figure 3.2 depicts. Furthermore, as the lower

right panel depicts, a CEO premium increases (decreases) in σF for a sufficiently

large (small) σF because a CEO premium increases in σ̄.11

Observe, from the lower left panel, that in the case of out-of-the-money (here-

after, OTM) and at-the-money (hereafter, ATM) CEOs, the exercise probability

exhibits a U-shape pattern. The interpretation is that as σ̄ increases, there will

11Adapting Carr (1988), we removed his technical condition that strike K is proportional to
the second asset price, namely, K=qD where D is the fuel and emission costs. The value of the
option with a fixed strike is solved by simulation.
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be a higher probability that an OTM or ATM CEO expires in the money.12 The

inverse of such an exercise probability of CEO may serve as a proxy for investment

timing. Specifically, the increase in the generation cost volatility may encourage

rational firms to invest in an ATM and OTM CEOs earlier.

Carr (1988) has several limitations in our study of the effect of the government

credibility problem on the power plant investment decision:

• Because the dispatch decision is made only once during the life of the plant,

it fails to address the "time series" nature of a power plant as (3.3) suggests.

• Strictly speaking, this simple CEO model does not directly address the in-

vestment timing of three choices: (a) building a coal plant, (b) building a

natural gas plant and (c) do nothing and wait.13

• Finally it is difficult to formally introduce variables to model the government

credibility problem.

Because of these limitations, the next section proposes a more sophisticated

model using the LSM. Furthermore, we will analyze rich information that the

LSM provides including the investment timing, the investment choice, the emission

amount and the profitability.

12In contrast, observe that in the case of deeply in-the-money CEOs, the exercise frequency is
of a "reversed" U-shape pattern. The interpretation is that as σ̄ increases, there will be a lower
probability that a deeply in-the-money CEO expires in the money.

13The early exercise of Carr (1988)’s CEO may be optimal if the convenience yield of electricity
is greater than that of fuel. However, the convenience yield is not defined for electricity.
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3.6 LSM analyses

To evaluate the dispatch and investment timing optionality, we evaluate the ex-

otic compound exchange option expressed in (3.5) using the LSM method. Working

backward from the terminal nodes14, the algorithm compares non-zero exercise val-

ues with discounted continuation values of the next exercise payoffs, estimated from

ordinary least squares (OLS) with a set of basis functions. Following Schwartz and

Trolle (2007), we choose a constant, an electricity price, a fuel price, the emission

permit prices, a latent variable that will be introduced in the next subsection, their

square terms, and their cross terms as the basis functions. The complete set of

polynomials up to order two are used. Various combinations of higher-order terms

are also tested, but the results do not change substantially. The LSM algorithm

calculates not only the option value but also a series of auxiliary quantities. It

calculates the exercise time of (3.5) and the exercise (dispatch) profile of "plant

value" options.

3.6.1 The credibility of government

We take a reduced-form approach to model political pressure to lower the emissions

permit prices and the credibility of government as

(PRES)t ≡ W (t) and τ ≡ min {t > 0|(PRES)t ≥ (CRED)} (3.7)

where W (t) is a Brownian motion, (PRES)t represents political pressure to a

government, (CRED) > 0 represents resistance of a government to the pressure, τ
14Considering a typical operating life of electric power plant and a career length of manager,

we assume a thirty years investment horizon.
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is the first passage of time representing the time required to change the emission

policy and (PRES)t is reset to zero after time τ because the government can

change the policy multiple times. A "good" (credible; time-consistent) government

is modeled as one with high (CRED) in (3.7), whereas a "bad" (not credible;

time-inconsistent) government is modeled as one with low (CRED). If (CRED) =

∞, this extremely credible government never gives in to any political pressure to

increase the amount of permits. (CRED) can be easily calibrated from a rational

firm’s belief on how credible its government is, for example, "with 80% probability,

the government will not increase the amount of permits for the next 5 years."

Upon the first passage time, (PRES)t is reset to zero. The rationale is that

once a government increases the amount of permits, the pressure on the government

disappears. (PRES)t then evolves toward the next first passage time. In other

words, several submissions of a government are possible during a finite time horizon.

The correlation between an electricity (natural gas) forward price and political

pressure on a government is modeled as a positive number. The rationale is that

if both electricity forward prices and natural gas forward prices are high, more

demand for a coal plant is naturally created, and a government will receive more

pressure to increase the amount of permits.

3.6.2 Simulation cases

The following three cases of belief are evaluated by the LSM:

• Case A: A firm does not pay for any CO2 emission permits.
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• Case B: A firm pays $35/ton for CO2 emission permits, and a government

is time-consistent (good; credible). (CRED) in (3.7) is set to 10,000, our

proxy for positive infinity. The quantity of emissions permits practically

never increases.

• Case C: A firm pays $35/ton for CO2 emission permits, and a government is

time-inconsistent (bad; not credible). In (3.7), (CRED) is set to 1. The prob-

ability that the amount of emission permits will increase in the next year is

about 16% (= 1−φ(1), where φ(·) is the cumulative distribution of a standard

normal distribution). It is assumed that whenever (PRES) hits (CRED), in

other words, whenever a government gives in the political pressure, the price

of an emission permit decreases by 50%, and (PRES) is reset to zero. This is

represented by Pτk = 1
2
Pτk−, where τ k = min {t > 0|(PRES)t ≥ (CRED)}

and k = 1, 2, 3, ...

Table 3.III summarizes the parameters of LSM simulations. Each column rep-

resents Cases A, B, and C, respectively. The parameters are categorized into three

areas: Emission permits price and their evolution, Commodity forward prices and

Second moments of commodities. The second and third categories are identical

across all cases. In other words, electricity forward prices, coal price forecasts, nat-

ural gas forward prices, and the associated volatilities and correlations are identical

across Cases A, B, and C. The only difference lies in how emission permits prices

evolve over time.
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Table 3.III: Inputs to LSM simulations
Category Parameter Case A Case B Case C
Emission
permits

prices and
their

evolution

Emission price
($/pound)

$0.0000 $0.0175/pound
indexed by
interest rate

$0.0175/pound
indexed by
interest rate

CRED N/A 10000 1
The decrease % of
emission permit
price when PRES

hits CRED

N/A N/A 50%

Electricity-PRES
correlation

Increasing
shape from 0.60

to 0.90

Increasing
shape from 0.60

to 0.90

Increasing
shape from 0.60

to 0.90
Natural gas-PRES

correlation
Increasing

shape from 0.60
to 0.90

Increasing
shape from 0.60

to 0.90

Increasing
shape from 0.60

to 0.90
Commodity
forward
prices

Electricity forward
curve ($/MWh)

$70/MWh
indexed by
interest rate

$70/MWh
indexed by
interest rate

$70/MWh
indexed by
interest rate

Coal price forward
curve ($/mmbtu)

$0.50/mmbtu
indexed by
interest rate

$0.50/mmbtu
indexed by
interest rate

$0.50/mmbtu
indexed by
interest rate

Natural gas forward
curve ($/mmbtu)

$8.50/mmbtu
indexed by
interest rate

$8.50/mmbtu
indexed by
interest rate

$8.50/mmbtu
indexed by
interest rate

Interest rate 4% flat 4% flat 4% flat
Second

moments of
commodi-

ties

Electricity forward
volatility

Decreasing
shape from 0.60

to 0.30

Decreasing
shape from 0.60

to 0.30

Decreasing
shape from 0.60

to 0.30

Natural gas forward
volatility

Decreasing
shape from 0.60

to 0.30

Decreasing
shape from 0.60

to 0.30

Decreasing
shape from 0.60

to 0.30
Electricity-Natural
gas correlation

Increasing
shape from 0.60

to 0.90

Increasing
shape from 0.60

to 0.90

Increasing
shape from 0.60

to 0.90
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3.6.3 Numerical results and discussion

Table 3.III reports the outcomes of 10,000 path simulations, with the parameters

summarized in Table 3.I and the forward curves evolution documented in Appendix

A. Each column represents Cases A, B, and C, respectively. Different rows rep-

resent different output variables. These variables are categorized into three areas:

Resource choice, Investment timing and Economics.

From the Resource Choice category, observe that in Case A, in which a firm does

not pay any emission permit price, a coal plant is chosen with 99.33% probability,

but in Case B where a firm pays $0.0175/pound emission permit price, a coal

plant is chosen with only 6.74% probability. As discussed in a previous section,

in Case A without emission cost, a coal plant is the obvious choice (99.33%), but

in Case B with emission cost, a natural gas plant is the obvious choice (93.20%).

The interpretation is that the introduction of CO2 permits discourages investment

in a relatively less "green" coal plant and encourages investment in a relatively

"greener" natural gas plant.

Recall from the net present value analysis section that without considering the

dispatch and investment timing optionality, the coal plant ($76.41/MWh cost) is

more economical than the natural gas plant ($95.49/MWh cost). In Case B, which

considers both emission cost and "optionality", rational firms chose the natural gas

plant (93.20%) more frequently than the coal plant (6.74%). Observe that in Case

B, a natural gas plant is chosen with 93.20% probability, but in Case C where a

government is time-inconsistent (bad; not credible), a natural gas plant is chosen

with 87.00% probability. This 6.2% reduction in the investment choice probability

of a natural gas plant is consistent with the first theoretical predictions discussed
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in the introduction.

Observe that the percentages of not investing in any plant for the next 30 years

are relatively small (0.00%, 0.06%, and 0.31% in Cases A, B, and C, respectively).

Under the parameters discussed in an earlier section, investing in a plant is a more

rational alternative than purchasing all electricity from the wholesale market. From

the Investment Timing category, observe that the average years to build a plant are

1.31, 1.40, and 1.54 years in Cases A, B, and C, respectively. These relatively short

investment timings reassert the interpretation in the previous paragraph. Moreover,

observe that in Case B, the average years to build a plant is 1.40 years, but in

Case C, it is 1.54 years. This outcome is consistent with the second theoretical

predictions discussed in the introduction.

Higher uncertainty delays the investment, but not substantially. What explains

such short investment timing is the optionality of the firm to dispatch the power

plant when conditions are favorable or shut down production when they are not.

When the option to shut down the power plant is removed (as in Yang et al. (2008))

the average year to invest increases up to 15 years.

From the Economics category, observe that the expected profit of a firm de-

creases from $1,965.97 in Case A to $698.30 in Case B. The interpretation is that

the introduction of carbon emission permits takes away the firm’s profit from used-

to-be profitable coal plants. Moreover, observe that the expected profit of a firm

increases from $698.30 in Case B to $891.60 in Case C. The reasons for this out-

come are twofold. First, because of the time-inconsistency of a government, the

expected emission permit price decreases. Second, due to the increased income vari-

ation caused by policy uncertainty, the extrinsic value of an option increases. The
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second reason for this outcome is consistent with the third theoretical prediction

discussed in the Introduction section.

Still from the Economics category, observe that CO2 emission decreases from

47,910 pounds in Case A to 8,697 pounds in Case B. The interpretation is that the

introduction of CO2 emission permits reduces CO2 emission by 82%. In addition,

observe that CO2 emission increases from 8,698 pounds in Case B to 12,847 pounds

in Case C. The interpretation is that the time-inconsistency of a government may

increase the amount of CO2 emission by 48%, everything else being equal. Even

though the (belief in a) government time-inconsistency problem may not increase

the investment timing, it provides incentive for rational private companies to emit

a significantly larger amount of CO2 emission, by 48%; in other words, the system

fails to efficiently internalize pollution.

From Case B to Case C, the coal consumption increases from 10.8 mmbtu to

25.8 mmbtu by 138%, whereas the CO2 emission increases from 8,697 pounds to

12,847 pounds, a 47% increase. It should be noted that the relative magnitude

of the change in coal consumption is not necessarily the same as that of CO2

emissions because CO2 emissions are from both coal and natural gas. In addition,

the investment in coal plants increases from 6.80% (=100%-93.20%) to 13.00%

(=100%-87.00%), which is translated to a 91% increase. A reader may be puzzled

by the difference between the 91% increase in a coal plant investment choice and

the 138% increase in coal consumption. However, this difference is reasonable

because of a non-linearity in the sense that the submission of a government to

strong political pressure tends to occur when both electricity and natural gas prices

are skyrocketing and coal plants are very much needed by private firms.
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Table 3.IV: Outputs of LSM simulations
Category Variables Case A Case B Case C
Resource
choice

% choose a coal
plant

99.33% 6.74% 12.69%

% chose a natural
gas plant

0.67% 93.20% 87.00%

% do not choose
any plant for the
next 30 years

0.00% 0.00% 0.31%

Investment
timing

Expected years to
exercise

“built-or-no-build”
option in the case
that any plant is

built

1.31 1.40 1.54

Economics CO2 emission
(pound)

47,910 8,697 12,847

Coal consumption
(mmbtu)

232.7 10.8 25.8

Natural gas
Consumption
(mmbtu)

1.0 54.9 64.0

Fuel coast (Present
value)

$121.59 $649.23 $585.85

Power cost (Present
value)

$152.08 $1,419.74 $1,226.45

Expected profit of a
firm (Present value)

$1,965.97 $698.30 $891.60
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3.6.4 Sensitivity test

To assess the robustness of our explanations, we report two cases of robustness

tests among numerous tests we have performed:

• Cases A1, B1 and C1: These cases are identical to Cases A, B and C except

that both capital costs are multiplied by three. Table 3.V reports numerical

outputs. The goal of these cases is to reduce the extrinsic value and increase

the volatility of the "build-or-no-build" option. As expected, the invest tim-

ing of Case B1 (2.24) is greater than that in Case B (1.40). Similarly, that

of Case C1 (2.68) is greater than that of Case C (1.54). As the standard real

option theory suggests, the more volatile the investment project is, the more

likely a rational firm will defer the investment project.

• Cases A2, B2 and C2: These cases are identical to Cases A, B and C except

that the emission price is multiplied by three. TableTable 3.VI reports nu-

merical output. The goal of these cases is to see the sensitivity of a "green"

resource choice in the emission cost. As expected, more rational firms choose

the natural gas plant in Case C2 (96.69%) than in Case C (87.00%).

3.7 Conclusion

This paper proposes a couple of real option approaches to address an optimal real

option decision of a physical capital investment under policy uncertainty or the

time-inconsistency problem. The first one is to use a simple CEO and the second

is a more advanced LSM method combining a first passage time to a compound
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Table 3.V: Sensitivity test (high capital cost)
Category Variables Case A Case B Case C
Resource
choice

% choose a coal
plant

9.90% 2.45% 5.71%

% chose a natural
gas plant

84.56% 86.97% 82.31%

% do not choose
any plant for the
next 30 years

5.54% 10.58% 11.98%

Investment
timing

Expected years to
exercise

“built-or-no-build”
option in the case
that any plant is

built

1.99 2.24 2.68

Economics CO2 emission
(pound)

16,906 6,934 9,70

Coal consumption
(mmbtu)

21.9 3.2 9.7

Natural gas
Consumption
(mmbtu)

105.1 53.2 63.4

Fuel coast (Present
value)

$611.00 $626.32 $582.75

Power cost (Present
value)

$1,159.69 $1,501.00 $1,501.00

Expected profit of a
firm (Present value)

$958.36 $617.04 $755.17
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Table 3.VI: Sensitivity test (high emission cost)
Category Variables Case A Case B Case C
Resource
choice

% choose a coal
plant

99.33% 0.05% 3.05%

% chose a natural
gas plant

0.67% 99.95% 96.69%

% do not choose
any plant for the
next 30 years

0.00% 0.00% 0.26%

Investment
timing

Expected years to
exercise

“built-or-no-build”
option in the case
that any plant is

built

1.31 1.29 1.51

Economics CO2 emission
(pound)

47,910 3,327 6,690

Coal consumption
(mmbtu)

232.7 0.0 5.4

Natural gas
Consumption
(mmbtu)

1.0 28.1 47.3

Fuel coast (Present
value)

$121.59 $570.96 $605.04

Power cost (Present
value)

$152.59 $1,698.56 $1,497.20

Expected profit of a
firm (Present value)

$1,965.97 $419.48 $620.84
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option. These approaches may be applicable to various areas, such as banking,

R&D management and international finance, as the belief of rational firms about a

policy risk or time-consistency problem may prevent a government from achieving

its policy goal. A practitioner may use our approaches to assist with real-world

capital investment decisions by comparing several government credibility scenarios.

Studying the real option of capital investment decision under the government

credibility problem, we found that the increase in volatility of commodities and

government uncertainty has two opposite effects on the investment timing. First,

the higher volatility leads to higher volatility of SEOs, the underlying of the CEO,

which delays the optimal time to invest; this view would be in line with the con-

ventional wisdom. Second, the higher volatility leads to a higher expected value of

SEOs, which decreases the time to invest. To our surprise, we find that the second

effect is dominant over the first effect. This apparent paradox is easily attributed

to the nature of compound exchange options.

The current research opens several opportunities for future research. First,

an empiricist may investigate a testable prediction: the lower the (belief in the)

credibility of a government, the less investment there will be in "green" end-user

technology. For example, someone may add to the literature by analyzing European

Union countries, which may be heterogeneous in government credibility and the

investment in "green" physical capital.

Second, this paper focuses on the optimal decision of a private firm and the

effect of heterogeneous (CRED)s on investment timing and the pollution amount

given a advanced American compound real option. However, an equally interesting

question would be to ask what the determinants of this heterogeneity in (CRED)s

are. We leave this question to future research.
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Appendix

Forward curves evolution

The evolution of whole forward curves, as opposed to a spot price, of electricity

prices and fuel prices over time should be modeled because a rational firm makes an

irreversible investment decision by evaluating (5). Motivated by Schwartz (1997),

we model continuous time stochastic processes of electricity forward prices, fuel

forward prices, and a latent variable for political pressure at time t as:

d logE (t, T ) = −
[
σ2
E (T − t) /2

]
dt+ σE (T − t) dZE

(
t, T

′
)
for T ≥ t

d logF (t, T ) = −
[
σ2
F (T − t) /2

]
dt+ σF (T − t) dZF

(
t, T

′
)
for T ≥ t

d (PRES)t = dZPRES

(
t, T

′
)


dZE

(
t, T

′)
dZF

(
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′)
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(
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′)
 =


1 ρE,F

(
T
′ − t

)
ρE,PRES

(
T
′ − t

)
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(
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′ − t

)
1 ρF,PRES

(
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′ − t

)
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(
T
′ − t

)
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(
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′ − t

)
1


1/2 

dW1 (t)

dW2 (t)

dW3 (t)

 (3.8)

where t represents a trading time; T ′ represents a delivery time of a commod-

ity; σE
(
τ
′) and σF

(
τ
′) is a forward instantaneous volatility with a tenor τ ′ of

electricity and fuel, respectively; ρE,F
(
τ
′), ρE,PRES (τ ′), and ρF,PRES (τ ′) is a for-

ward instantaneous correlation with a tenor τ ′ between an electricity price and a

fuel price, between an electricity price and the latent variable, and between a fuel

price and the latent variable, respectively; W1 (t), W2 (t) and W3 (t) are indepen-

dent Brownian motions. In (3.8), whole forward curves of electricity prices move
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upward or downward together and so do whole forward curves of fuel prices. The

greater a ρE,F
(
τ
′), the more likely that electricity forward prices move in the same

direction as fuel prices. As σE
(
τ
′) and σF (τ ′) are a function of τ ′ , the term struc-

ture of volatility can be incorporated into the model. A typical pattern of σE
(
τ
′)

and σF
(
τ
′) is decreasing in τ ′ . Specifically, if σE

(
τ
′) and σF

(
τ
′) is a decreasing

exponential function, it is identical to Schwartz (1997)’s model. As ρE,F
(
τ
′) is

also a function of τ ′ , the term structure of correlation can be explicitly modeled.

A typical pattern of ρE,F
(
τ
′) is increasing in τ

′ . Figure 3.3 depicts the positive

and negative one standard deviation of perturbation in the forward curve. Observe

that with these volatility and correlation functions, successive upward (downward)

movements lead to backwardation (contango).

The correlation between an electricity price (a fuel price) and political pressure

on a government is explicitly incorporated into ρE,PRES
(
τ
′) and ρF,PRES (τ ′). This

is an important feature because it is plausible that the higher the electricity forward

price is, the higher the political pressure (PRES) is on a government. In this paper,

(PRES)t is the single determinant for an emission price. Additional sources of

emissions price uncertainty as well as the price discovery from the emissions futures

market (e.g., Carmona and Hinz (2011)) are ignored because such an incremental

production cost variation may not change the main conclusion of this paper.



98
How "Animal Spirits" React to the Government Credibility Problem: A

Real Option Analysis of Emission Permits Policy Risk

Figure 3.3: Electricity forward curve movement.
This figure depicts plus/minus one standard deviation movement of electricity forward curve. First, observe that
the whole forward curve is moved in the same direction because of the 1-factor nature of our approach. Second,
because of the Samuelson’s effect, the movement of relatively near future years is greater than that of relatively
far future years. Third, observe that a contango (backwardated) curve may change to a backwardated (contango)
curve. The movement of natural gas forward curve also exhibits the same pattern.
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