


Affiliée à l’Université de Montréal

Variable Neighborhood Search Methods for the
Dispersion Graph Problems, With Application to

Franchise Location Problems

par

Behnaz Saboonchi

HEC Montréal, Méthodes Quantitatives de Gestion

Thèse présentée à la faculté des études supérieures et postdoctorales
en vue de l’obtention du grade de Ph.D. en méthodes quantitatives

Mai 2013
c©Behnaz Saboonchi, 2013



HEC Montréal
Affiliée à l’Université de Montréal

Cette thèse intitulée :

Variable Neighborhood Search Methods for
the Dispersion Graph Problems, With

Application to Franchise Location Problems

présentée par
Behnaz Saboonchi

a été évaluée par un jury composé des personnes suivantes :

Professeur Patrick Soriano
Président-rapporteur

Professeur Pierre Hansen
Directeur de recherche

Professeur Sylvain Perron
Codirecteur de recherche

Professeur Gilles Caporossi
Membre du jury

Professeur H.A. Eiselt
Examinateur externe

Professeur James Loveland
Représentant du doyen de la FES



Résumé

Cette thèse porte sur le développement et l’analyse de diverses méthodes heuristiques basées

sur la métaheuristique de recherche à voisinage variable (VNS) pour la résolution du pro-

blème de dispersion dans les graphes. La prise en compte de la dispersion dans les problèmes

de localisation est sans conteste très pertinente pour modéliser les effets d’empiètement et

de cannibalisation des revenus, deux préoccupations majeures des chaines de franchises. Les

effets indésirables d’empiètement peuvent être pris en compte à travers les modèles de locali-

sation en cherchant non seulement à maximiser la dispersion entre les nouvelles installations

mais également la dispersion entre les nouvelles installations et les anciennes installations

déjà présentes.

Le premier chapitre porte sur le problème MaxMinSum (p-dispersion-sum) qui consiste

à choisir p installations parmi un ensemble d’installations possibles de manière à maximiser

la plus petite somme de distances entre les installations choisies. Il s’agit de la première

application d’une méthode heuristique pour cette variante du problème de dispersion. Des

expériences numériques détaillées permettent de comparer les approches proposées pour

prendre en compte l’intensification et la diversification des solutions explorées à l’intérieur

de nos méthodes heuristiques inspirées de VNS.

Le deuxième chapitre est consacré au problème MaxSumSum (maximum diversity) dans

lequel on choisit p installations de manière à maximiser la somme des distances entre toutes

les paires d’installations choisies. Plusieurs méthodes heuristiques ont déjà été proposées

pour ce problème et nous proposons une méthode de type VNS gloutonne. L’utilisation de

nouvelles approches de recherche locale et de nouvelles fonctions de perturbation nous a

permis d’améliorer plusieurs des meilleurs résultats connus.

iii



Le troisième chapitre traite du problème MaxMinMin (p-dispersion) qui consiste à choisir

p installations de manière à maximiser la plus petite distance entre toutes les paires d’ins-

tallations choisies. La méthode proposée combine de nouvelles techniques de recherche et de

perturbation pour contourner les effets de plateaux inhérents à ce type de problème. Il s’agit

de la première application de VNS à ce problème.

Le quatrième chapitre propose un nouveau modèle multi-critères prenant en compte si-

multanément la dispersion entre les installations et la proximité des clients desservis, deux

préoccupations majeures dans la localisation de franchises. Dans le modèle proposé, la dis-

persion entre les franchises est mesurée par le critère MaxMinMin alors que la proximité des

clients est modélisée par un objectif de type gravité p-médiane où les clients ne sont pas né-

cessairement affectés à l’installation la plus proche mais plutôt affectés proportionnellement

à une fonction d’utilité combinant l’effet attractif de l’installation et la distance.

Enfin, un survol des différentes méthodes est présenté dans la conclusion. Cette analyse

confirme que le choix d’une méthode de perturbation astucieuse influence la qualité des

solutions pour toutes les variantes du problème de dispersion. Par ailleurs, on montre que

les méthodes exactes sont incapables de trouver des solutions à l’intérieur d’un niveau de

tolérance acceptable sur l’optimalité dans un d’élai raisonnable, ce qui confirme la nécessité

d’utiliser des méthodes heuristiques pour la résolution de problèmes de dispersion de taille

raisonnable.

Mots clés : Optimisation combinatoire, Métaheuristiques, Recherche à voisinage va-

riable, Localisation de franchises, Problèmes de dispersion, Modèles de gravité, Modèles

multi-objectifs, Frontière de Pareto

iv



Summary

This work explores various heuristics based on the Variable Neighborhood Search (VNS)

metaheuristic framework for the dispersion graph problems. The first three chapters study

the classical dispersion location models, whereas the fourth chapter focuses on a new mul-

tiobjective problem including a dispersion and a gravity p-median objective.

The idea to study the dispersion location problems was inspired from the encroachment

and revenue cannibalization issues that are one of the main concerns of today’s franchised

chains. The undesirable effects of encroachment can also be captured from a different view-

point in the sense that one can create multiple facility location models which are basically

aimed at creating dispersed solutions by maximizing the dispersion among either the newly

added units, or among the existing units and the new ones. To the best of our knowledge

this work is the first application of various dispersion location problems within the franchise

location context.

The first chapter addresses the MaxMinSum (p-dispersion-sum) problem that consists

of the selection of p facilities among n candidate locations in a way that the smallest sum

of the distances among the selected facilities is maximized. This is the first application

of any heuristic to this variant of the dispersion problems and the extensive experiments

present various intensification and diversification possibilities within the VNS framework.

Comparisons with exact methods confirm the high quality of the proposed methods.

The second chapter studies the MaxSumSum (maximum diversity) problem that is rela-

tively well explored by several heuristics in the literature. This problem maximizes the total

sum of the distances between each pair of the located facilities. The proposed Greedy VNS

heuristics including innovative local search and shake functions improve several results for

the known benchmark test problems.

v



The third chapter addresses the MaxMinMin (p-dispersion) problem, which maximizes

the smallest distance among all the selected facilities. The proposed elaborate VNS frame-

work coupled with new plateau search and shake modules, is the first application of VNS

to this problem. This method compares favorably with the existing state-of-the-art heuris-

tics in terms of the quality and robustness of the obtained solutions, lower running times

and computational complexity. Besides, several optimal solutions of the largest benchmark

instances are found for the first time in the literature.

The fourth chapter presents an innovative bi-objective model which addresses the disper-

sion concept among the franchised units as well as the proximity to the customer zones. This

is a new model that encompasses the most important factors in real life franchise location

practices. The selected dispersion metric is the MaxMinMin criteria and the proximity to

the clients is modeled by a gravity p-median objective.

Finally, an integrated overview of the proposed methods within the General Conclusion

section confirms that the use of intelligent shake functions would significantly improve the

quality of the solutions for all the dispersion problems. Besides, the exact methods are not

capable of finding results within a reasonable percentage of the best known solutions that

confirms the need for heuristic solution procedures to tackle challenging dispersion problem

instances.

KeyWords : Combinatorial optimization, Metaheuristics, Variable Neighborhood

Search, Franchise location, Dispersion problems, Gravity models, Multiobjective models,

Pareto front

vi



Table of Contents

Résumé iii

Summary v

Aknowledgements xii

General Introduction 1

1 Variable Neighborhood Search Heuristic Methods for the MaxMinSum

(p-Dispersion-Sum) Problem 8

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 VNS for The p-Dispersion-Sum Problem . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.2 Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.2.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.2.2 Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.3 Shake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.1 Experiments Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.2 Post-Hoc Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.3 Comparison With Exact Methods . . . . . . . . . . . . . . . . . . . . 28

1.4 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 A Greedy Variable Neighborhood Search Heuristic for the MaxSumSum

p-Dispersion Problem 31

vii



Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Problem Statement and Mathematical Formulation . . . . . . . . . . . . . . . 34

2.3 VNS for the p-Dispersion-Sum Problem . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.2 Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.2.1 Contribution and Update . . . . . . . . . . . . . . . . . . . . 39

2.3.3 Refined Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.4 Shake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.1 Preliminary Experiments Setup . . . . . . . . . . . . . . . . . . . . . . 43

2.4.2 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Franchise Location Models and Cannibalization Effects: A Variable Neigh-

borhood Search Approach 50

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Problem Statement and Mathematical Formulation . . . . . . . . . . . . . . . 54

3.3 VNS for the MaxMinMin Problem . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.2 Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.2.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.2.2 Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.3 Refined Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.4 Shake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.1 Experiments Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.2 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.3 Comparison With Exact Methods . . . . . . . . . . . . . . . . . . . . 69

3.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

viii



4 Bi-Objective Variable Neighborhood Search for the p-Diversity-Proximity

Problem 77

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Problem Statement and Mathematical Formulation . . . . . . . . . . . . . . . 80

4.3 Bi-Objective Variable Neighborhood Search . . . . . . . . . . . . . . . . . . . 82

4.3.1 Pareto Front Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.2 Shake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.3 Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.3.1 Contribution and Update . . . . . . . . . . . . . . . . . . . . 87

4.4 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.1 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.2 Gravity p-Median Problem . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

General Conclusion 95

ix



List of Tables

1.I Average Deviation % for Individual Methods . . . . . . . . . . . . . . . . . . 22

1.II Average % Deviation for All Combinations and Frameworks . . . . . . . . . 23

1.III Number of Best Solutions Obtained for All Combinations and Frameworks . . 23

1.IV Best Known Solutions for All the Datasets . . . . . . . . . . . . . . . . . . . . 25

1.IV Best Known Solutions for All the Datasets (Continued) . . . . . . . . . . . . 26

1.IV Best Known Solutions for All the Datasets (Continued) . . . . . . . . . . . . 27

1.V Comparison With Exact Methods . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.I Average % Deviation for Individual Methods . . . . . . . . . . . . . . . . . . 44

2.II Comparison of the Best Known Results for the MDG-a Instances . . . . . . . 46

2.III Comparison of the Best Known Results for the MDG-c Instances . . . . . . . 47

2.IV Comparison of the Best Known Results for the p3000 and p5000 Instances . . 48

3.I Summary of Results for Shorter Running Times . . . . . . . . . . . . . . . . . 68

3.II Summary of Results for Longer Running Times . . . . . . . . . . . . . . . . . 69

3.III Comparison of the Best Known Results for the Geo Instances . . . . . . . . . 70

3.IV Comparison of the Best Known Results for the Ran Instances . . . . . . . . . 71

3.V Optimality Check for the Geo Instances . . . . . . . . . . . . . . . . . . . . . 72

3.VI Optimality Check for the Ran Instances . . . . . . . . . . . . . . . . . . . . . 74

4.I Comparison of the BOVNS Methods . . . . . . . . . . . . . . . . . . . . . . . 89

4.II Individual Objective Function Best Known Values . . . . . . . . . . . . . . . 92

x



List of Figures

1.1 Pseudo Code for the VNS Framework . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Pseudo Code for the Local Search Procedure . . . . . . . . . . . . . . . . . . 15

1.3 Pseudo Code for Determining the First Improving Swap and its Contribution

(First Improvement Strategy) . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Pseudo Code for the VNS Framework . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Pseudo Code for the Local Search Procedure . . . . . . . . . . . . . . . . . . 39

2.3 Pseudo Code for the Refined Local Search Procedure . . . . . . . . . . . . . . 41

3.1 Pseudo Code for the VNS Framework . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Pseudo Code for the Local Search Procedure . . . . . . . . . . . . . . . . . . 58

3.3 Pseudo Code for Determining the First Improving Swap and its Contribution

(First Improvement Strategy) . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Pseudo Code for the Update Procedure . . . . . . . . . . . . . . . . . . . . . 62

3.5 Pseudo Code for the Refined Local Search Procedure . . . . . . . . . . . . . . 64

4.1 Pseudo Code for the BOVNS Framework . . . . . . . . . . . . . . . . . . . . 84

4.2 Pseudo Code for the Local Search Procedure . . . . . . . . . . . . . . . . . . 87

4.3 Comparison of the Six Methods for pmed1 . . . . . . . . . . . . . . . . . . . . 90

4.4 Comparison of the Six Methods for pmed21 . . . . . . . . . . . . . . . . . . . 91

4.5 Comparison of the Six Methods for pmed40 . . . . . . . . . . . . . . . . . . . 91

C1 Comparison of the Three VNS Methods for MaxMinSum Problem . . . . . . 98

C2 Comparison of the Three VNS Methods for MaxSumSum Problem . . . . . . 98

C3 Comparison of the Three VNS Methods for MaxMinMin Problem . . . . . . . 99

xi



Aknowledgements

This thesis would have been impossible without the guidance of my thesis supervisor Pro-

fessor Pierre Hansen. I could not have asked for more inspirational, supportive and knowl-

edgeable role model. You made this dream come true!

Professor Sylvain Perron, my dear co-supervisor! I made it to the end just in time, mostly

because of your dedication and support. I have always admired your great personality, energy

and work ethics and feel very privileged to have worked with you.

I would like to thank my colleagues and friends, specially Anthony Guillou who constantly

helped me and shared his technical expertise during the five years we’ve been working

together. I wish you the best of luck and am very thankful of all your help. I’d also like to

thank the great people at GERAD and HEC Montréal specially Carole Dufour and Marie

Perreault for having welcomed me and supported me when I first arrived in Montréal and

was lost and could not speak French. I’m also very grateful of the support that Pierre Girard

and François Guertin provided me during the tough moments of my thesis.

I would also like to thank my examiners, Professor Patrick Soriano, Professor Gilles

Caporossi and Professor H.A. Eiselt for their constructive feedback and for turning my PhD

defense into a memorable moment. Besides, I’m very thankful of Professor Gerard Cliquet

and Professor Jean-Charles Chebat for helping me shape my thesis during its early stages

and for their feedback.

Finally, I am dedicating this thesis to my lovely parents, my sister and husband for their

unconditional love and support throughout my life!

xii



General Introduction

Managing and locating retail and service networks have been widely addressed in different

empirical and mathematical studies. The location decision process becomes more complex

when it comes to franchise chains where the objective is not locating a single independent

store, but a group of stores over time within a network. This location decision should be

made without cannibalizing the existing same-brand units’ revenues while maximizing the

revenue and market share of the whole chain.

The undesirable effects of encroachment could be captured from a different viewpoint, in

the sense that one can try to create models which are basically aimed at creating dispersed

solutions. These are called the family of dispersion problems. The classical dispersion models

try to maximize dispersion as a function of the distance/dissimilarity among the entities in

the network.

The class of dispersion problems is useful when some measure of distance or diversity

in the solutions is desirable. For instance in the logistics context it can be used in the

location of missile silos where dispersion can reduce the chances of being all attacked or for

locating obnoxious facilities to be far from population zones [32]. The dispersion can also be

a desirable factor when it comes to franchise location problems where one intends to avoid

the cannibalization effects within the chain [76]. The difference is not always translated

into the physical distance. For instance, dispersion models can also be used in order to

design a portfolio of new products where it is desirable to enter the market with a group

of products which are as dissimilar as possible in terms of the quality, price, shape, etc.

Another example would be in multiobjective problems where the decision maker might be

interested in selecting a collection of solutions as diverse as possible for each objective [72].

1



Erkut and Neuman [33] propose four different types of the dispersion models based on

different dispersion metrics. The first one is called MaxMinSum (Chapter 1) which takes

the sum of the distances from each facility to all its neighbors and maximizes the minimum

sum of the distances. The second formulation corresponds to the MaxSumSum (Chapter 2)

which aims at maximizing the sum of all the hub distances for all located facilities. This

model tries to locate p facilities far from a given set of n nodes and far from each other. The

third model is the MaxMinMin problem (Chapters 3 and 4) which maximizes the minimum

distance between each pair of facilities. And finally the fourth one is the MaxSumMin

which seeks to maximize the sum of the minimum distances from each facility to its closest

neighbor.

Let V be the set of n vertices, S as any subset of p vertices such that S ⊆ V, |S| = p and

d(i, j) the distance between points i, j ∈ V . The four discrete models are formalized as the

following general models [33]:

MaxMinSum : max Z s.t. Z ≤
∑

j∈S d(i, j) ∀i ∈ S.

MaxSumSum : max Z s.t. Z =
∑

i∈S

∑
j∈S d(i, j).

MaxMinMin : max Z s.t. Z ≤ d(i, j) ∀i, j ∈ S, i 6= j.

MaxSumMin : max
∑

i∈S Zi s.t. Zi ≤ d(i, j) ∀i, j ∈ S, i 6= j.

The p-dispersion problem is known to be NP -complete by reduction to the clique problem

[32]. Ravi et. al [72] also demonstrate that no polynomial time algorithm can guarantee a

solution better than twice the optimum for this problem. As the result, the use of heuristics

in order to find fast and high quality solutions for large instances or to generate upper

bounds seem important [35]. Hansen and Moon [47] also prove that the discrete version

of the maximum diversity problem is strongly NP -complete by reduction to the stable set

problem.

Exact methods have been developed to solve smaller instances of dispersion problems.

Erkut [32] proposed a branch and bound algorithm for the p-dispersion problem. He then

proposed a heuristic method to produce better bounds coupled with exact methods in order

to solve problems of up to n = 40. Agca et al. [2] develop a Lagrangian approach to find

optimal solutions for the p-dispersion and maximum diversity problems of size n = 25. They

2



also generate tighter lower and upper bounds for larger instances. More recent combinatorial

branch-and-bound methods solve instances of up to n = 50 for the maximum diversity

problem [3, 62]. Furthermore, the computational experiments in Chapters 1 and 3 of this

thesis demonstrate how exact methods are incapable of solving large instances, or even

providing tighter bounds for the already obtained solutions by the heuristic methods [76, 78].

Dispersion problems impose a challenge on exact solution procedures and the size of

the tackled problems are relatively small for practical implications. Therefore, several

metaheuristics and heuristics have been designed to solve much larger instances of var-

ious dispersion problems [4, 59, 68]. The state-of-the-art heuristics include variants of

VNS, hybrid heuristics coupled with other graph theory concepts (maximum clique), It-

erated greedy metaheuristic, Iterated tabu search, Learnable tabu search and GRASP

[11, 20, 59, 63, 67, 70, 74, 80]. As a matter fact, solving realistically-sized problems that

cannot be solved by exact algorithms at all or within a reasonable time, has been one of our

motivations to develop elaborate heuristics within the Variable Neighborhood Search (VNS)

metaheuristic framework.

Variable Neighborhood Search (VNS) is a metaheuristic or framework for building heuris-

tics which is based on the idea of a systematic change of the neighborhood in order to escape

from the valleys surrounding local optima, followed by a local search to find improved so-

lutions. This general method has been proposed by Mladenović and Hansen [64] and has

proven to lead to very successful heuristics for solving large combinatorial programs with

applications in location theory, cluster analysis and several other fields. For a recent survey

of the theoretical developments and applications including several hundred references see

[45, 48].

The main purpose of the proposed methods is to tackle the cannibalization issue in

the franchise location literature based on various dispersion criteria which is an innovative

approach. The first three chapters study the classical dispersion location models, whereas

the fourth chapter focuses on a bi-objective problem including a dispersion and a gravity

p-median objective.

The first chapter addresses the MaxMinSum (p-dispersion-sum) problem that consists

of the selection of p facilities among n candidate locations in a way that the smallest sum

3



of the distances among the selected facilities is maximized. This is the first application

of any heuristic to this variant of the dispersion problems and the extensive experiments

represent various intensification and diversification possibilities within the VNS framework.

Comparison with exact methods confirms the high quality of the proposed methods.

The second chapter studies the MaxSumSum (maximum diversity) problem that is rela-

tively well explored by several heuristics in the literature. This problem maximizes the total

sum of the distances between each pair of the located facilities. The proposed Greedy VNS

heuristics including innovative local search and shake functions improve several results for

the known benchmark test problems.

The third chapter addresses the MaxMinMin (p-dispersion) problem, which maximizes

the smallest distance among all the selected facilities. The proposed elaborate VNS framework

coupled with new plateau search and shake modules, is the first application of VNS to this

problem. This method compares favorably to the state-of-the-art heuristics in terms of the

quality and robustness of the obtained solutions, lower running times and computational

complexity. Besides, several optimal solutions of the largest benchmark instances are found

for the first time in the literature.

Finally, the fourth chapter presents an innovative bi-objective model which addresses

the dispersion concept among the franchised units as well as the proximity to the customer

zones. This is a new model that encompasses the most important factors in real life franchise

location practices. In classical operational research facility location models such as the

p-center and p-median it is assumed that the clients always prefer to choose the closest

facilities in order to receive their desired services. This assumption might be the most

appropriate for locating fire stations or hospitals for instance, but is not always the case

for locating retail or commercial centers. One of the models trying to explain the clients

store patronage behavior is called the gravity rule [1, 15, 25, 53]. Thus, it is important to

do modifications in the mathematical formulations in order to create more realistic location

models which are consistent with consumer patronage behavior and social sciences studies

[5, 10, 13, 21, 54, 55, 56, 60, 75].

Therefore, the last model incorporates the gravity concept in order to do the customer

allocation. This is done by the gravity p-median objective proposed by Drezner and Drezner

4



[24, 25] coupled with the dispersion objective presented by the MaxMinMin criterion. The

proposed VNS for this bi-objective problem is also its first application to the gravity p-median

problem. In the gravity p-median problem customers are not necessarily allocated to the

closest facility, and that are allocated proportional to the attractiveness of that facility and to

a decreasing utility function of the distance to the facility. Experiments on known p-median

datasets explore the best VNS setting in order to approximate the Pareto front. Besides, the

proposed method finds the best known solutions for the gravity p-median problem in a very

short computational time.

In the following we intend to present a more integrated view of the proposed VNS-based

heuristics for the above three dispersion problems, i.e., MaxMinSum (Chapter 1), MaxSum-

Sum (Chapter 2) and MaxMinMin (Chapters 3 and 4). Therefore, we designed a series of

complementary tests in the General Conclusion section in order to highlight the similari-

ties and the differences among the suggested methods in terms of both their technical VNS

configurations and obtained results for the large datasets.

In order to better understand the technical similarity of the proposed methods for the

above dispersion problems, we first refer to the classical structure of VNS. The general VNS

framework includes three main modules: 1) Initialization method, 2) Shake function and

3) Local Search procedure. The initialization and Shake methods could be done in ran-

dom or various greedy manners and the Local Search function incorporates a Contribution

calculation function and a parameters Update procedure. The main idea regarding the Con-

tribution and Update procedures is to store intelligently some problem specific parameters

that would allow for efficient calculations with low computational complexity. All the pro-

posed methods use the above main modules and ideas, of course with different calculation

methods and algorithmic procedures based on the very characteristics of each dispersion

problem. An important concept shaping the general VNS framework is the diversification

versus intensification factor. At each iteration of VNS either an improvement is made or not.

In case of no improvement a decision on how to start the next iteration should be made.

The next iteration is either started form the already best solution obtained, or from the

current solution just obtained. The former will lead to more intensification in the search,

whereas the latter favors diversification. Besides, the Local Search procedure can pursue a

first improvement strategy favoring more diversification, versus best improvement strategy

5



leading to more intensification. Another technical similarity of all the methods (supported

by empirical and preliminary test results) is that they pursue the from current VNS strategy

and the first contribution Local Search.

One major technical difference of the proposed methods is caused by the objective function

structure of the dispersion problems. Due to the first “Min” operator of the MaxMinSum

and MaxMinMin problems, only one binding value would define the objective function value.

This would complicate the Contribution and Update solution procedure, and thus more

detailed and elaborate methods should be designed in this respect.

Next, the same comparisons are done in terms of the obtained results. For all the three

dispersion problems it is concluded that the Random initialization method should be used

in order to find new improved solutions in repeated runs of the tests, while Greedy starting

methods should be used if longer running times are allowed. The final tests explained later in

the General Conclusion section confirm that the use of intelligent shake functions would also

significantly improve the quality of the obtained solutions for all the dispersion problems.

This is due to the fact that the purely random modules cannot find high quality results

(within a close percentage of the best known solutions) for the larger instances. Another

observation is that apart from the instance sizes, the data structure of the instances plays

also an important role in terms of the difficulty of the solution procedure. Although we

have not found any consistent empirical rule between the p/n ratio and the number of

obtained best known solutions, the results demonstrate that smaller p/n ratios might be

more challenging to solve.

The main difference of the results for various dispersion problems lies in the minor tuning

of the parameters such as the maximum shake size, etc. Besides, the MaxMinSum and

MaxMinMin problems obtain better results with the SemiGreedy shake function, whereas

the MaxSumSum problem performs better with the Greedy Shake function. Another factor

tested in order to improve the quality of the solutions is allowing longer running times. The

results show that this would improve the quality of the solutions, yet not within the small

0.5% distance of the best known solutions. It should be noted that the exact methods are

not capable of finding results within a reasonable percentage of the best known solutions

6



which confirms one more time the need for heuristic solution procedures to tackle large and

challenging dispersion problem instances.

The contribution and novelty of each method is explained in details in the following

chapters followed by the General Conclusion of the thesis. The following four chapters are

designed as independent research papers and can be read individually. As the result, there

may be some repetitions in the content or slight differences in the notation from one chapter

to another.

7



Chapter 1

Variable Neighborhood Search Heuristic Methods

for the MaxMinSum (p-Dispersion-Sum) Problem

Behnaz Saboonchi

Pierre Hansen

Sylvain Perron

Department of Management Sciences

GERAD and HEC Montréal

3000, chemin de la Côte-Sainte-Catherine

Montréal, Québec, H3T 2A7, Canada



Abstract

Dispersion problems consist of the selection of a fixed number of vertices from a given

set so that some function of the distances among the vertices is maximized. Such problems

impose a challenge on heuristic and metaheuristic solution procedures. Among different

variations of the dispersion models, the MaxMinMin (p-dispersion) and the MaxSumSum

(maximum diversity) problems have been the subject of much research, yet the MaxMinSum

problem has not been well explored in the literature. In this paper we have developed several

heuristics based on the Variable Neighborhood Search metaheuristic framework, including

various greedy constructive procedures and different shaking strategies. Finally we discuss

the tradeoffs among different solution strategies and compare our results with those of exact

methods for smaller-sized instances which confirm the high quality of our solutions. To

the best of our knowledge this is the first application of any heuristic for the MaxMinSum

dispersion problem and the results of our extensive computational experiments on large

datasets would set a new benchmark for future comparison purposes.

1.1 Introduction

In the family of dispersion problems, given a set of n vertices we intend to select a subset

of size p in a way that some function among the selected vertices is maximized. This is

useful when some measure of distance or diversity in the solutions is desirable. For instance

in the logistics context it can be used in the location of missile silos where dispersion can

reduce the chances of being all attacked or for locating obnoxious facilities to be far from

population zones [32]. The dispersion can also be a desirable factor when it comes to franchise

location problems where one intends to avoid the cannibalization effects within the chain.

The difference is not always translated into the physical distance. For instance, dispersion

models can also be used in order to design a portfolio of new products where it is desirable

to enter the market with a group of products which are as dissimilar as possible in terms of

the quality, price, shape, etc. Another example would be in multi-objective problems where

the decision maker may be interested in selecting a collection of solutions as far as possible

for each objective [72].

9



Erkut and Neuman [33] propose four different types of the dispersion models based on

different dispersion metrics. The first one is the MaxMinMin problem which maximizes

the minimum distance between each pair of facilities. The second one is the MaxSumMin

which seeks to maximize the sum of the minimum distances from each facility to its closest

neighbor. The third formulation is called MaxMinSum which takes the sum of the distances

from each facility to all its neighbors and maximizes the smallest sum of the distances.

Finally, the fourth formulation corresponds to the MaxSumSum which aims at maximizing

the sum of all the hub distances for all the located facilities. This model tries to locate p

facilities far from a given set of nodes and far from each other.

The idea of permuting the operators sum and max in order to create new location prob-

lems has also been used for other well known problems such as the p-median and p-center

[65, 43]. The classical p-median problem has a p-sum-sum objective function (i.e., the sum

over p facilities of the sum of the distances to the clients assigned to it), and the classical

p-center problems has a p-max-max objective function (i.e., the maximum over p facilities

of the maximum distance to each client assigned to it). Hansen et al. [43] introduce two

new variants of such problems and discuss their real life applications.

As mentioned by Curtin and Church [18, 19], the MaxMinSum dispersion problem was

first introduced in the location literature with the review of the dispersion objective metrics

by Erkut and Neuman [33]. They use this problem as part of their family of multiple-type

dispersion formulations [18]. They consider the distances included in the objective function

as a hub distance where each facility located at location i is at the hub of a wheel, and the

spokes of the wheel radiate out from i to all other located facilities at locations j.

The MaxMinSum problem is similar to the MaxSumSum (maximum diversity) problem

in the sense that they both share the concept of the sum measure for the distances, yet in

the latter the sum of the distances for all the selected locations is considered in the objective

function. On the other hand it is also similar to the MaxMinMin (p-dispersion) problem

which aims at maximizing the smallest closest distance between any selected location and

the other selected ones. Both objectives try to optimize the worst-case performance, yet in

the former the sum of the distances from each selected location to all others is used in the

objective function.

10



The MaxMinSum and MaxSumSum problems are known to be good replacements for

each other for smaller-sized instances [33]. Therefore, the developed heuristics in this work

could also be used as reasonable substitute methods for large and challenging MaxSumSum

instances.

Due to this similarity, throughout this paper we call the MaxMinSum problem as the

“p-dispersion-sum problem”. This problem was first modeled by Erkut and Neuman [33] as

the following mixed 0-1 linear program:

max Z

s. t Z ≤
n∑

i=1
d(vi, vj)xi +M(1− xj) 1 ≤ j ≤ n

n∑
i=1

xi = p

xi = {0, 1} 1 ≤ i ≤ n,

where xi is a binary decision variable defining if vertex vi is selected and d(vi, vj) is the

distance between any pair of the located facilities at locations i and j. The distances between

all the vertices are taken as an input and stored in an n × n upper-triangular matrix with

d(vi, vi) = 0. It should be noted that M is a sufficiently large value which could be set as

p× dmax, where dmax is the largest distance between any pair of locations. In Section 1.3.3

an upper bounding technique in order to obtain tighter bounds is discussed.

In Section 1.2 we present a detailed explanation of our proposed VNS heuristic solution pro-

cedure for the p-dispersion-sum problem. Then we discuss our computational experiments

on benchmark test problems coupled with comparison with exact methods in Section 1.3.

Finally we conclude our paper by highlighting our contributions and suggestions for future

research.

1.2 VNS for The p-Dispersion-Sum Problem

Variable Neighborhood Search (VNS) is a metaheuristic or framework for building heuris-

tics which is based on the idea of a systematic change of the neighborhood in order to escape

from the valleys surrounding local optima, followed by a local search to find improved so-

lutions. This general method has been proposed by Mladenović and Hansen [64] and has

11



proven to lead to very successful heuristics for solving large combinatorial programs with

applications in location theory, cluster analysis and several other fields. For recent surveys

see e.g. [45, 48].

Within the family of dispersion problems the VNS method has been applied to the max-

imum diversity and p-dispersion problems and have beeb proven to be among the most

efficient methods compared to other heuristics [11, 63, 76, 77]. Therefore, we have de-

cided to develop a heuristic method within the VNS framework that is well-suited to the

p-dispersion-sum problem.

We first express the p-dispersion-sum problem in graph theoretical terms. Let V =

{vi, ∀i = 1, . . . , n}, be a set of n vertices (potential locations) and vi representing each

member of this set. Let E be the set of
(n

2
)
edges of an undirected fully-connected graph

G(V,E), with de > 0 representing the distance over each edge e ∈ E. The value p is

an integer such that 3 ≤ p ≤ |V |. We define S as any subset of p vertices such that

S ⊆ V, |S| = p. The subset of the vertices not present in the current solution is defined as

S̄ such that S̄ = V \ S, |S̄| = n− p.

The objective function value f(S) at each step is defined as the smallest sum of the

distances between each selected vertex and the rest of the selected vertices induced by the

subset S:

f(S) = min
vi∈S

∑
vj∈S

d(vi, vj)

.
The p-dispersion-sum problem intends to find the optimal subgraph

G(S∗, E(S∗)), where:

S∗ = arg maxS f(S).

The solution space U is represented by the
(n

p

)
subsets of V with cardinality p. In order

to apply VNS, a metric function is defined to evaluate the distance between any two solutions

S and S′:

δ(S, S′) = δ(S′, S) = |S \ S′|.

12



Based on the metric distance function defined above, the neighborhood of size k of a

solution S is defined as:

Nk(S) = {S′ ∈ U |δ(S, S′) = k}; k = 1, 2, . . . ,min{p, n− p}.

In order to represent the solution at each step of the heuristic we use the data structure

suggested by Brimberg et al. [11]. The solution is represented by an array of the n indices

corresponding to each vertex or candidate location, where the first p elements correspond

to the subset of the current solution S.

Throughout this paper the following notations are used:

• f(Sbest/cur): the best/current objective function value that corresponds to the smallest

sum of the distances for each vertex in the best/current solution set S;

• W (vi): the sum of the distances from any vertex vi (i = 1, . . . , n) to all the vertices in

the solution set S;

• vexit: the vertex inside the solution set that is a candidate to leave the solution set

(vexit ∈ S);

• venter: the vertex outside the solution set that is a candidate to enter the solution set

(venter ∈ S̄).

The above values are first computed at the construction of the initial solution and are

updated each time a new solution is found.

Algorithm 1.1 presents the VNS function and then in the following sections we explain

in details the functions embedded in the general framework. The stopping criterion is the

total execution time tmax and the already elapsed cumulative time in the overall procedure

is noted by telapsed. The kmin and kstep (shake step size) parameters are set by default to 1,

and the kmax (maximum shake size) is set to min{p, n− p}.

13



function VNS (kmin, kstep, kmax)
Scur ← Initialize();
Sbest ← Scur;
telapsed = 0;
kmax = min{p, n− p};
while telapsed ≤ tmax do

kcur ← kmin;
while kcur ≤ kmax and telapsed ≤ tmax do

Scur ← Shake(Scur);
Scur ← LocalSearch(Scur);
if f(Scur) > f(Sbest) then

Sbest ← Scur;
kcur ← kmin;

else
kcur ← kcur + kstep;

end
end

end

Figure 1.1: Pseudo Code for the VNS Framework

1.2.1 Initialization

The initial solution could be created at random or in a greedy manner. Based on the random

method the initial solution is simply created by choosing p indices at random.

Two Greedy construction heuristics have been widely used in the literature in order to

create initial solutions for the dispersion problems [35]. The Greedy deletion heuristic starts

with all the n vertices and eliminates one vertex at each iteration. The deletion candidate is

the one with the smallest sum of the distances to the rest of the remaining vertices at each

iteration, and the ties are broken arbitrarily. Of course this procedure is repeated (n − p)

times until exactly p vertices remain in the solution set.

The Greedy add heuristic selects a starting vertex at random and creates the complete

solution set in (p−1) iterations by adding the vertex with the largest increase in the objective

value [4, 11, 59]. As the result the size of the under construction solution set is smaller than

p and will gradually reach the complete size as the construction phase is terminated. The

under construction solution set could be represented as C, and the set of the vertices outside

this set as C̄. After the addition of the entering vertex venter ∈ C̄, the existing sum of the

14



distances values will be updated as: W (vi)+d(vi, venter) for all the vi ∈ C. As the result the

objective function value after the addition of each venter will be the minimum value among

the updated W (vi) (for all the vi ∈ C), plus the newly added W (venter) value.

This heuristic could be repeated n times based on different starting vertices and then

the best one leading to the highest objective value could be selected. Based on preliminary

results we observed that this heuristic is very time consuming (much more than the Greedy

deletion heuristic), and for large datasets it is not worthwhile to take this procedure just

to further improve the initial solution. In order to overcome this drawback the Greedy

add heuristic is initialized by choosing the two furthest vertices as the initial vertices and

by repeating the above-mentioned procedure (p − 2) times. We know empirically that the

results obtained by this method is among the highest possibilities for the Greedy add without

spending too much computational time on the initial solution.

1.2.2 Local Search

After having created the initial solution, the LocalSearch procedure is implemented per-

forming 1-interchange swaps on the current solution as shown in Algorithm 1.2. This means

that at each iteration only one vertex is swapped at a time. The swap could be done

whenever the first (first improvement strategy) or the best (best improvement strategy)

contribution is made to the current objective value.

In order to start the LocalSearch procedure the gain obtained from swapping the selected

entering candidate with the selected leaving candidate should be evaluated. The two main

Contribution and Update functions will be explained in details in the following.

function LocalSearch(S)
repeat

(vexit, venter, gain)← Contribution(S);
if gain > 0 then

Swap(vexit, venter);
Update(vexit, venter, S);

end
until gain > 0;

Figure 1.2: Pseudo Code for the Local Search Procedure

15



1.2.2.1 Contribution

Algorithm 1.3 presents the Contribution function. In the proposed LocalSearch procedure

for each leaving vertex vexit ∈ S chosen randomly, the Contribution function can determine

the first or best entering candidate venter ∈ S̄, as well as its corresponding contribution to

the current objective function value.

function Contribution(S)
gain = 0;
choose a random vexit and venter;
i = 0; j = p;
while i ≤ p and gain = 0 do

while j ≤ n− p and gain = 0 do
f(Stemp) = f(Scur);
if W (venter)− d(vexit, venter) > f(Scur) then

forall the (vi ∈ S; i 6= exit) do
W (vi)←W (vi)− d(vi, vexit) + d(vi, venter);
remove W (vexit) from f(Stemp) ;
add W (venter)− d(vexit, venter) to f(Stemp);
f(Stemp)← min{W (vi)};

end
if f(Stemp) > f(Scur) then

gain ← f(Stemp)− f(Scur);
else

j + +;
end

else
j + +;

end
end
i+ +;

end
if gain > 0 then

return (vexit, venter, gain);
end

Figure 1.3: Pseudo Code for Determining the First Improving Swap and its Contribution
(First Improvement Strategy)

Unlike the MaxSumSum (maximum diversity) problem, the evaluation of the change in

the objective function value associated with each swap is not straightforward. The reason is

that in the MaxSumSum problem the overall sum of all the distances among the vertices in

the solution set should be evaluated, whereas in the p-dispersion-sum problem the smallest

16



sum of the distances (the worst case scenario) should be improved in each LocalSearch

iteration.

In order to initiate the Contribution function a random leaving candidate vexit ∈ S,

and a random entering candidate venter ∈ S̄ are chosen. Before evaluating the possible

gain derived from the swap, a preliminary check is done in order to verify if the selected

random entering candidate venter would definitely deteriorate the current solution. In order

to do so the updated W (venter) is calculated which corresponds to the sum of the distances

value for the entering candidate in case it enters the solution set. This value is updated

by: W (venter)− d(vexit, venter) and will be added to the objective function, so if it’s already

inferior than the current objective function value (the already smallest sum of the distances)

the new solution after the swap will definitely be worse. As the result such a swap will be

abandoned and the algorithm moves on to the next entering candidate.

In order to calculate the possible gain after the swap the updated sum of the distances

values for the vertices already in the solution set (for all the vi ∈ S) are required by calculat-

ingW (vi)−d(vi, vexit)+d(vi, venter). Then theW (vexit) is removed from, and theW (venter)

is added to the objective function. The smallest updated sum of the distances W (vi) for

all vi ∈ S after the possible swap will determine the new objective function value. This

value is calculated in O(p) time and if it’s better than the current solution the swap will be

accepted, if not the algorithm will proceed to the next entering candidate until it finds an

improvement.

With the first improvement strategy the Contribution function stops as soon as an

improving solution is found, as a result in the worst case it is implemented in O(p(n−p)p) =

O(np2) time per LocalSearch iteration.

1.2.2.2 Update

The Update procedure performs all the required updates before proceeding to the subsequent

iteration. It is implemented in two different phases in order to update all the W (vi) sum of

the distances, and then to update the f(Scur) which represents the objective function value

for the current solution.

17



The update for the W (vi) is straightforward and is performed in O(n) total time. As

already mentioned the chosen leaving candidate is represented by vexit and the entering

candidate by venter, thus the updated W (vi) would be:

W (vi) = W (vi) + d(vi, venter)− d(vi, vexit), i = 1, 2, . . . , n.

The update of the objective function is done in O(p) time at each iteration by finding

the minimum sum of the distances for the vertices in S after having updated the respective

W (vi) values.

1.2.3 Shake

The perturbation in most VNS-based heuristics is done in a simple manner by selecting a

random vertex from the kth neighborhood, i.e. Nk(S) from the current solution S and then

repeating k times the random swap move. The RandomShake function does so by choosing

one random leaving and entering candidate at each iteration with updates in between each

swap. However, in this paper we have developed two additional shake functions in order to

control the perturbation operation in a more intelligent manner.

The SemiGreedyShake function fixes a random leaving candidate from the current solu-

tion set S and then chooses an entering candidate that has the highest sum of the distances

value in case it replaces the exit candidate, i.e. the highest W (venter)−d(vexit, venter) value.

This method does not guarantee that the selected candidate is the best among all the inser-

tion candidates. This is due to the fact that in order to find the best swap (after having fixed

the exit candidate) leading to the lowest deterioration or maybe highest gain in the objective

function value, one needs to verify also the updated W (vi) values for all the vi ∈ S in case

the entering candidate is added to the solution set, and then to repeat the same procedure to

calculate the overall objective function value for all the possible entering candidates in order

to select the best one. This approach would be the same as the procedure already explained

in the Contribution function. Yet, we decide not do to so as the first method is performed

in O(n − p) time, whereas the second one is done in O((n − p)p). Therefore, this method

adds more randomness to the shake function rather than proceeding as the Contribution

18



function and choose the best swap. This procedure is repeated until the shake size of k

is attained. Each iteration is performed in O(n − p) time and after each swap the Update

function is called.

In order to have a more intensified shake operation we have developed the GreedyShake

function which for a shake of size k, selects the k vertices with the smallest W (vi) values

for all vi ∈ S, and swaps all of them with the k vertices with the largest W (vi) values for

all vi ∈ S̄. This greedy fashion of selecting the entering candidates could provide better

starting vertices for the subsequent LocalSearch procedure. The k leaving and entering

candidates are chosen all at once and are not changed while the updates are performed

between the swaps. The performance of the two shake functions will be compared in details

in Section 1.3 where it is demonstrated that the more intelligent shake functions dominate

the purely random ones.

1.3 Computational Experiments

In this section we have selected four of the largest benchmark instances in the maximum

diversity problem literature that were collected by Martí et al. [63], leading to 80 instances

in total. A brief description of the characteristics of the datasets is given below:

• SOM-b: this dataset consists of 20 matrices each with random numbers between 0 and

9 generated from an integer uniform distribution by Silva et al. [79]. The instance

sizes are such that for n = 100, p = 10, 20, 30 and 40; for n= 200, p = 20, 40, 60 and

80; for n = 300, p = 30, 60, 90 and 120; for n = 400, p = 40, 80, 120, and 160; and

for n = 500, p = 50, 100, 150 and 200.

• MDG-a, MDG-b: these datasets consist of 20 matrices each with real numbers ran-

domly selected between 0 and 10 from a uniform distribution by Duarte and Martí

[27] with n = 2000 and p = 200.

• MDG-c: this dataset consists of 20 matrices with n = 3000 and p = 300, 400, 500 and

600. The MDG instances have been used in [67].

First we describe our experiments that were designed to study the performance of different

settings within the VNS framework and then compare and analyze the tradeoffs and overall

19



results obtained by different methods over all the test problems. The results are finally

compared with that of exact methods for the relatively smaller instances.

All the heuristics were coded in C ++ and run on a linux machine with an intel processor

of 2.667 GHz and 3Gb of Ram. The best obtained results after two hours of running time

are reported as suggested in [63].

1.3.1 Experiments Setup

As mentioned in Section 1.2 the proposed VNS implementation allows various settings and

methods within its framework. In order to initialize the VNS three different methods have

been discussed: Random add (RA), Greedy add (GA) and Greedy deletion (GD). There

are also three different shaking possibilities: Random shake (RS), Semi-Greedy shake (SG)

and Greedy shake (GS). In the general framework presented in Section 1.2 the shake size at

each iteration increases systematically and will be reset to kmin whenever an improvement

is made or when the kmax value is reached. The kmax is a parameter whose value by default

is min{p, n− p}, which could be a large value depending on the problem size. Therefore, a

smaller value, i.e. (0.75 ∗min{p, n− p}) is used to verify if it helps improve the performance

of the heuristic. This will lead to 3× 3× 2 = 18 combinations of different VNS modules.

On the other hand at each iteration of VNS either an improvement is made or not. In

case of no improvement a decision on how to start the next iteration should be made. The

next iteration is either started form the already best solution obtained (from best or FB),

or from the current solution just obtained (from current or FC ). The former will lead to

more intensification in the search, whereas the latter favors diversification. Besides, the

LocalSearch procedure can pursue a first improvement strategy (FirstI ) favoring more

diversification, versus best improvement strategy (BestI ) leading to more intensification.

The above mentioned intensification and diversification strategies will lead to four general

VNS frameworks. As the result the datasets are run under the 18×4 = 72 total combinations.

We do not allow longer running times in order to get further improvements, as a result the

tests are run only once under two hours of running time. Throughout the paper we present

the average % deviation from the best known solutions obtained by the 72 combinations for

each group of dataset:

20



% deviation = best value - actual value
best value × 100.

The best known solutions for all the 80 data instances are presented in Table 1.IV . The

average deviations presented in Tables 1.I to 1.III are all calculated based on the results

presented in the fourth column (All methods) of Table 1.IV which refer to the best solutions

obtained by the 72 combinations.

Table 1.I represents the average deviation from the best solutions obtained for all the

80 data instances for each of the four VNS general frameworks, three initialization methods,

three shaking strategies and the two possible kmax sizes. The smallest average deviation

values for each group are shown in bold under the Average column. Same representation has

also been done to highlight the smallest average deviation values for each dataset separately.

The first part of the table which refers to the four general VNS frameworks reveals that

the current iteration strategy and first contribution local search (FC-FirstI) leads to the

lowest average deviation. This is also true for each individual dataset except for the SOM-

b instances where the (FB-FirstI) strategy leads to the lowest average deviation. In the

second part which refers to the problem initialization methods, the Greedy deletion strategy

(GD) consistently leads to the lowest average deviation for all datasets. In the third group

which addresses the shaking strategy it is clearly observed that the Semi-Greedy shake

(SG) strategy has a significantly lower average deviation across all the datasets.The only

parameter in the experiments is the maximum shake size which is presented in the last

comparison group. As it is seen the smaller maximum shake size is slightly better for

smaller-sized instances, and the bigger maximum shake size leads to slightly lower average

deviations for the largest dataset. The maximum shake size is a parameter that can be

tuned in order to obtain better results. Here we are more interested in the main modules

of VNS rather than tuning its parameters and since it is observed that the maximum shake

size does not make a large difference on the average deviations, we decide not to further

experiment on this factor.

The above mentioned results for individual factors and settings do not necessarily lead

to overall better combinations. As the result in Table 1.II we present the same results as in

Table 1.I in a different manner by calculating the average deviations of the 18 combinations

21



Table 1.I : Average Deviation % for Individual Methods
SOM-b MDG-a MDG-b MDG-c Average

General framework
FC-FirstI 2.58 2.55 2.25 1.45 2.21
FC-BestI 3.02 2.9 2.55 1.72 2.55
FB-FirstI 2.02 2.83 2.38 1.77 2.25
FB-BestI 3.6 3.52 2.98 2.13 3.06
Initialization
RA 4.58 5.73 5.5 3.72 4.88
GA 2.4 1.96 2.01 1.11 1.87
GD 1.44 1.16 0.99 0.47 1.02
Shake method
RS 5.58 6.02 5.28 3.72 5.15
SG 0.59 0.72 0.85 0.38 0.64
GS 2.25 2.1 2.37 1.21 1.98
Shake max
0.75p 2.75 2.94 2.82 1.77 2.57
p 2.86 2.96 2.85 1.76 2.61

based on the four different frameworks for all the test problems. On the last row the

overall average deviation for the four VNS frameworks has been calculated and on the last

column the same has been done for the 18 settings. It is clearly observed that the current

iteration strategy and first contribution local search (FC-FirstI) leads to the lowest average

deviation over all the datasets and settings followed by the (FB-FirstI). This shows the

superior performance of the first improvement strategy which has already been observed in

the literature [11, 44]. Finally the three lowest average deviations belong to (GD-SG-p),

(GD-SG-0.75p) and (RA-SG-p) settings in increasing order.

So far all the comparisons made were based on the average deviation from the best ever

solutions which refer to the average quality of the solutions derived from each method. Yet,

another important indicator of a good VNS setting is the number of times it obtains the best

known solutions. As the result we prepared Table 1.III which represents the number of best

known solutions obtained over all the 80 data instances, for each of the combinations.

From Tables 1.II and 1.III three important observations can be highlighted:

• The current iteration strategy and first contribution local search (FC-FirstI) leads

to the lowest average deviations and higher number of found best known solutions

compared to other VNS frameworks.

22



Table 1.II : Average % Deviation for All Combinations and Frameworks
Method FC-FirstI FC-BestI FB-FirstI FB-BestI Average
RA-GS-0.75p 1.32 1.1 2.55 4.72 2.42
RA-GS-p 1.57 1.31 2.56 4.95 2.6
RA-SG-0.75p 0.13 0.36 0.85 1.13 0.62
RA-SG-p 0.13 0.41 0.77 0.99 0.57
RA-RS-0.75p 10.75 13.73 8.49 11.26 11.06
RA-RS-p 10.85 13.75 8.65 11.61 11.21
GA-GS-0.75p 1.32 1.03 1.99 2.89 1.81
GA-GS-p 1.63 1.3 2.04 2.89 1.96
GA-SG-0.75p 0.13 0.42 1.23 1.24 0.76
GA-SG-p 0.12 0.44 0.98 1.11 0.66
GA-RS-0.75p 2.93 3 2.53 2.69 2.79
GA-RS-p 2.95 3 2.5 2.73 2.79
GD-GS-0.75p 1.13 0.96 0.93 1.45 1.12
GD-GS-p 1.22 1.02 0.93 1.45 1.15
GD-SG-0.75p 0.1 0.27 0.55 0.6 0.38
GD-SG-p 0.12 0.26 0.48 0.51 0.34
GD-RS-0.75p 1.67 1.74 1.21 1.39 1.5
GD-RS-p 1.71 1.74 1.28 1.4 1.53
Average 2.21 2.55 2.25 3.06

Table 1.III : Number of Best Solutions Obtained for All Combinations and Frameworks
Method FC-FirstI FC-BestI FB-FirstI FB-BestI Average
RA-GS-0.75p 3 4 0 0 7
RA-GS-p 0 3 1 0 4
RA-SG-0.75p 24 7 0 1 32
RA-SG-p 28 5 1 1 35
RA-RS-0.75p 1 0 1 0 2
RA-RS-p 0 0 0 0 0
GA-GS-0.75p 4 4 1 0 9
GA-GS-p 2 2 1 0 5
GA-SG-0.75p 21 6 1 1 29
GA-SG-p 23 5 1 1 30
GA-RS-0.75p 1 0 0 0 1
GA-RS-p 0 0 0 0 0
GD-GS-0.75p 2 5 2 1 10
GD-GS-p 2 4 1 1 8
GD-SG-0.75p 27 11 2 2 42
GD-SG-p 20 10 2 2 34
GD-RS-0.75p 1 0 1 0 2
GD-RS-p 0 0 0 0 0
Sum 159 66 15 10

• The three best methods averaged over all the four VNS frameworks are (RA-SG-p),(GD-

SG-0.75p) and (GD-SG-p).

23



1.3.2 Post-Hoc Analysis

The above mentioned (GD-SG-0.75p), (RA-SG-p) and (GD-SG-p) methods under the cur-

rent iteration strategy and first contribution local search (FC-FirstI) VNS framework are

the most promising methods based on both the average deviation and also number of best

solutions obtained criteria. As mentioned before we did not allow longer running times and

the heuristics were run only once. As the result two questions seem interesting: 1) Do mul-

tiple runs of the heuristics lead to new improved solutions? and 2) Do longer running times

improve the quality of the solutions substantially? In real life applications the answer to

these questions become more important when computational resources are of great concern

for the decision makers or if faster solutions with relatively higher qualities are preferred

rather than taking chances in hope of new improved solutions.

It should be noted that all the three above-mentioned heuristics use the Semi-Greedy

shake (SG) method, yet two of them start from a Greedy deletion (GD) initialization and

the other one from a Random start (RA) initial solution. Here we would like to answer

the above two questions taking the initialization and shaking methods into account, and as

already discussed the maximum shake size is a parameter that could be further improved

empirically which is not of our interest in this work.

The first question addresses the robustness of the heuristics. We expect that the methods

with the greedy starts to be more robust than the random start methods due to their more

intensified approach, whereas for the random start method we expect higher chances of new

improved solutions in repeated runs. In order to verify this idea the three (GD-SG-0.75p),

(RA-SG-p) and (GD-SG-p) heuristics are run under the current iteration strategy and first

contribution local search (FC-FirstI) VNS framework, 30 times with the same two hours of

running time, only for the MDG-c group as it’s the largest dataset. As expected, the (GD-

SG-0.75p) and (GD-SG-p) methods obtain the same results as before for all the 30 runs,

whereas the (RA-SG-p) heuristic results in different solutions in different runs. What’s

more interesting is that the random start method leads to several new improvements. Based

on the results obtained on the MDG-c largest dataset we conclude that more chances of

improved solutions can be expected only by multiple runs of the random start heuristic. As

24



the result for the other datasets only the (RA-SG-p) heuristic is used for the multiple run

experiment and the greedy start ones are no longer tested.

The best results over the 30 runs of the (RA-SG-p) heuristic are presented for each

dataset in the fifth column (Multiple runs) of Table 1.IV . Comparison of the fourth and

the fifth columns of Table 1.IV reveals that the multiple (30) runs experiment has led to

10, 15 and 6 new improvements for the MDG-a, MDG-b and MDG-c datasets respectively.

The reported values are the best among 30 runs, yet in order to have a better idea of the

overall quality of all the 30 solutions, the coefficient of variation (CV) is presented for each

dataset within parentheses in the fifth column of Table 1.IV :

CV = standard deviation
mean × 100.

As it is seen for all the 80 instances this value is very small, much less than 1%, which

shows that our random methods are also very robust.

Table 1.IV : Best Known Solutions for All the Datasets

Instance n p All methods Multiple runs Long run

SOM-b-1 100 10 62 62 (0) 62

SOM-b-2 100 20 111 111 (0) 111

SOM-b-3 100 30 151 151 (0) 151

SOM-b-4 100 40 195 194 (0) 194

SOM-b-5 200 20 117 117 (0) 117

SOM-b-6 200 40 212 212 (0) 212

SOM-b-7 200 60 298 298 (0) 298

SOM-b-8 200 80 386 386 (0.13) 386

SOM-b-9 300 30 170 170 (0.29) 169

SOM-b-10 300 60 309 309 (0.11) 308

SOM-b-11 300 90 440 440 (0.09) 440

SOM-b-12 300 120 572 572 (0) 572

SOM-b-13 400 40 222 222 (0) 222

SOM-b-14 400 80 405 405 (0) 405

SOM-b-15 400 120 580 579 (0.07) 579

SOM-b-16 400 160 752 752 (0) 752

SOM-b-17 500 50 272 272 (0.19) 272

SOM-b-18 500 100 503 503 (0.09) 503

SOM-b-19 500 150 726 724 (0.04) 724

25



Table 1.IV : Best Known Solutions for All the Datasets (Continued)

Instance n p All methods Multiple runs Long run

SOM-b-20 500 200 937 937 (0.05) 937

Average 371 370.8 370.7

MDG-a-21 2000 200 1100 1101 (0.1) 1099

MDG-a-22 2000 200 1101 1101 (0.11) 1101

MDG-a-23 2000 200 1102 1102 (0.13) 1102

MDG-a-24 2000 200 1100 1099 (0.08) 1101

MDG-a-25 2000 200 1100 1101 (0.15) 1099

MDG-a-26 2000 200 1103 1101 (0.07) 1099

MDG-a-27 2000 200 1103 1104 (0.29) 1105

MDG-a-28 2000 200 1101 1101 (0.12) 1101

MDG-a-29 2000 200 1100 1101 (0.12) 1101

MDG-a-30 2000 200 1101 1101 (0.1) 1101

MDG-a-31 2000 200 1100 1102 (0.14) 1098

MDG-a-32 2000 200 1101 1099 (0.05) 1099

MDG-a-33 2000 200 1101 1101 (0.11) 1099

MDG-a-34 2000 200 1102 1100 (0.09) 1101

MDG-a-35 2000 200 1101 1102 (0.13) 1100

MDG-a-36 2000 200 1101 1103 (0.12) 1101

MDG-a-37 2000 200 1101 1102 (0.12) 1100

MDG-a-38 2000 200 1104 1104 (0.11) 1104

MDG-a-39 2000 200 1100 1101 (0.12) 1101

MDG-a-40 2000 200 1102 1103 (0.09) 1102

Average 1101.2 1101.45 1100.7

MDG-b-21 2000 200 109187.6 109300.15 (0.09) 109187.6

MDG-b-22 2000 200 108941.82 109021.67 (0.05) 108925.07

MDG-b-23 2000 200 109017.82 109437.88 (0.09) 109075.22

MDG-b-24 2000 200 108989.58 108990.9 (0.06) 109131.75

MDG-b-25 2000 200 109191.14 109188.59 (0.09) 109023.6

MDG-b-26 2000 200 109077.85 109190.19 (0.07) 109131.75

MDG-b-27 2000 200 109116.41 109135.82 (0.06) 109154.95

MDG-b-28 2000 200 108951.47 109063.15 (0.07) 109015.79

MDG-b-29 2000 200 109173.85 109137.43 (0.06) 109185.2

MDG-b-30 2000 200 109218.05 109172.89 (0.07) 109059.48

MDG-b-31 2000 200 109061.67 109111.08 (0.07) 109028.62

MDG-b-32 2000 200 109121.63 109034.18 (0.06) 109237.88

MDG-b-33 2000 200 109131.86 109246.83 (0.08) 109116.12

26



Table 1.IV : Best Known Solutions for All the Datasets (Continued)

Instance n p All methods Multiple runs Long run

MDG-b-34 2000 200 109055.53 109088.63 (0.06) 109044.15

MDG-b-35 2000 200 109198.53 109169.59 (0.06) 109078.56

MDG-b-36 2000 200 109146.42 109263.37 (0.08) 109211.59

MDG-b-37 2000 200 109190.1 109269.27 (0.1) 109166.56

MDG-b-38 2000 200 109201.61 109203.94 (0.07) 109061.18

MDG-b-39 2000 200 109133.48 109151.91 (0.07) 109161.22

MDG-b-40 2000 200 109069.51 109225.36 (0.06) 109273.17

Average 109108.8 109170.14 109113.47

MDG-c-1 3000 300 161227 161046 (0.05) 161227

MDG-c-2 3000 300 161065 160957 (0.06) 161014

MDG-c-3 3000 300 160868 160943 (0.05) 160949

MDG-c-4 3000 300 161092 161466 (0.14) 160982

MDG-c-5 3000 300 160883 160950 (0.08) 160883

MDG-c-6 3000 400 211407 211378 (0.05) 211530

MDG-c-7 3000 400 211344 211467 (0.05) 211612

MDG-c-8 3000 400 211391 211391 (0.06) 211475

MDG-c-9 3000 400 211308 211474 (0.06) 211278

MDG-c-10 3000 400 211359 211533 (0.07) 211365

MDG-c-11 3000 500 261292 261243 (0.05) 261486

MDG-c-12 3000 500 261242 261232 (0.06) 261412

MDG-c-13 3000 500 261393 261288 (0.03) 261481

MDG-c-14 3000 500 261563 261326 (0.04) 261450

MDG-c-15 3000 500 261599 261337 (0.04) 261748

MDG-c-16 3000 600 311381 311042 (0.1) 311678

MDG-c-17 3000 600 311283 311031 (0.12) 311256

MDG-c-18 3000 600 311264 310895 (0.09) 311152

MDG-c-19 3000 600 311310 310972 (0.16) 311613

MDG-c-20 3000 600 311384 311023 (0.12) 311350

Average 236282.75 236199.7 236347.05

The second question addresses longer running times for the heuristics in hope of finding

higher quality solutions. Here we take the same approach and run the preliminary exper-

iments only on the MDG-c largest dataset. The above-mentioned three heuristics are run

only once but this time with 10 hours of running time. If we compare the average of the

solutions over the 20 instances of the MDG-c dataset, the long run (GD-SG-p) heuristic

27



makes a 0.9% improvement compared to its short run version. This improvement is 0.5%

and 0.3% for the (GD-SG-0.75p) and (RA-SG-p) methods respectively. Of course the cal-

culation of the difference between the short run and long run of the greedy start heuristics

makes more sense since they are more robust, and it is harder to do so for the random start

versions as they could lead to a different solution right from the start regardless of their

running time. Yet, for the rest of the three datasets the (GD-SG-p) heuristic is chosen for

the long run experiments as it is more likely to lead to higher quality solutions. The results

of the long run of the (GD-SG-p) are presented in the last column (Long run) of Table 1.IV

for each dataset. Comparison of the fourth and the sixth columns of Table 1.IV reveals

that the long run experiment has led to 4, 10 and 11 new improvements for the MDG-a,

MDG-b and MDG-c datasets respectively. It should be noted that for some data instances

in Table 1.IV , the best value obtained in the fourth column (All methods) is higher than

the best solutions in the fifth and the sixth columns. The reason is that the values reported

in the fourth column correspond to the best values under a single run of all the previously

discussed 72 combinations for two hours of running time, whereas the fifth column reports

the best values after 30 runs of only the (RA-SG-p) heuristic for two hours of running time,

and the sixth column represents the values of a single run of only the (GD-SG-p) heuristic

for 10 hours of running time.

1.3.3 Comparison With Exact Methods

This is the first application of any heuristic method on large p-dispersion-sum problem

instances. In order to verify the quality of the solutions obtained by our heuristics we use

the Ilog cplex 12.4 for exact solutions. Yet, even the smallest instances seem impossible

for exact methods to solve in a reasonable time. As the result we provided Ilog cplex with

the best solutions ever obtained from our heuristics in Section 1.3 as an initial solution and

then calculated an upper bound in order to facilitate the problem resolution.

The upper bound is calculated as follows: for each of the n vertices their distances to all

other vertices is sorted in decreasing order, then the sum of the distances to their furthest

(p − 1) vertices is calculated. As the result for each vertex there is a value that represents

the sum of the distances to its most distant (p− 1) vertices. Now if these values are sorted

28



in decreasing order, it is assured that the optimal solution can never exceed the value in the

pth rank in this sorted list.

After having provided the initial solution and the upper bound for Ilog cplex, we ran

it only on the smallest SOM-b dataset and let it run as long as Ilog cplex is capable up

to a maximum of two weeks running time. In the fourth column of Table 1.V the best

solution ever obtained from all heuristics are given as lower bound, in the fifth column the

above-mentioned upper bound is given for each instance, in the sixth column the best bound

by Ilog cplex is presented and finally in the last column the best obtained Gap is given.

As it is seen even after having provided a lower and upper bound and such a long running

time, Ilog cplex is never capable of improving our solution. This confirms the quality of

our solutions obtained and the complexity of such problems for exact methods.

Table 1.V : Comparison With Exact Methods
Instance n p Lower bound Upper bound Best bound Gap
SOM-b-1 100 10 62 81 62 (7sec) optimal
SOM-b-2 100 20 111 164 111 (3hr) optimal
SOM-b-3 100 30 151 234 151 (52.16hr) optimal
SOM-b-4 100 40 195 293 195 (12.87hr) optimal
SOM-b-5 200 20 117 171 122 (336hr) 4.27%
SOM-b-6 200 40 212 335 235 (336hr) 10.85%
SOM-b-7 200 60 298 475 331 (336hr) 11.07%
SOM-b-8 200 80 386 596 423 (336hr) 9.58%
SOM-b-9 300 30 170 261 195 (336hr) 14.7%
SOM-b-10 300 60 309 506 365 (336hr) 18.12%
SOM-b-11 300 90 440 716 516 (336hr) 17.27%
SOM-b-12 300 120 572 898 657 (336hr) 14.86%
SOM-b-13 400 40 222 351 263 (336hr) 18.46%
SOM-b-14 400 80 405 677 493 (336hr) 21.72%
SOM-b-15 400 120 580 958 698 (336hr) 20.34%
SOM-b-16 400 160 752 1195 882 (336hr) 17.28%
SOM-b-17 500 50 272 441 334 (336hr) 22.79%
SOM-b-18 500 100 503 847 625 (336hr) 24.25%
SOM-b-19 500 150 726 1199 892 (336hr) 22.87%
SOM-b-20 500 200 937 1497 1115 (336hr) 19.00%

1.4 Conclusions and Future Work

In this work we presented a general VNS framework for the p-dispersion-sum problem,

which to the best of our knowledge is the first application of any heuristic for this variation

of dispersion problems. We then presented a detailed experimental setting which captured

a vast number of possibilities within the VNS framework. In the results and analysis sec-

29



tion we addressed the tradeoffs between the greedy intensification modules versus the more

random diversification techniques embedded in VNS. We believe that the more intensified

modules lead to overall higher quality solutions, whereas the more diversified modules in-

crease the chances of obtaining new improvements only if several repetitions of the heuristics

are allowed. The greedy approaches are more robust and their repeated runs do not seem

a promising approach, on the contrary one can expect further improvements by allowing

longer running times for such heuristics.

One of the most interesting advantages of the Variable Neighborhood Search metaheuris-

tic is its flexibility and how it allows the decision maker to define and adapt the framework

to its own problem specifications. The choice of the best setting is always a matter of time

and available computational resources and also the fact that if one is interested in a heuristic

that provides more robust and higher quality solutions on average, or a method that gives

the opportunity of obtaining new improved solutions over repeated runs.

We were specifically interested in studying the behavior of main VNS components and tried

to avoid tuning of its parameters. Of course it is plausible to expect new improvements in the

best solutions obtained in this work by further tuning the maximum shake size parameter

which could serve as an idea to be investigated in the future VNS-based or other suitable

heuristic methods for dispersion problems.

Acknowledgements

This research was funded by NSERC (Natural Sciences and Engineering Research Council

of Canada) grant PGSD2-392404-2010, and FQRNT (Fonds de recherche du Québec - Nature

et technologies) grant 134582. Pierre Hansen has been partially supported by NSERC grant

105574-2007, Sylvain Perron has been partially supported by NSERC grant 327435-06, and

they were both partially supported by FQRNT team grant PR-131365.

30



Chapter 2

A Greedy Variable Neighborhood Search Heuristic

for the MaxSumSum p-Dispersion Problem

Behnaz Saboonchi

Pierre Hansen

Sylvain Perron

Department of Management Sciences

GERAD and HEC Montréal

3000, chemin de la Côte-Sainte-Catherine

Montréal, Québec, H3T 2A7, Canada



Abstract

The MaxSumSum (maximum diversity) problem consists of the selection of p facilities

among n candidate locations in a way that the total sum of the distances between each pair of

the located facilities is maximized. The Basic Variable Neighborhood Search heuristic (BVNS)

has already been applied to solve this problem with success. In this work we have developed

a Greedy Variable Neighborhood Search heuristic which adds a new type of plateau search

mechanism to its general framework. This newly incorporated local search technique helps

the exploration of the solution space and facilitates finding higher quality solutions. The

proposed solution procedure further improves the already high performance of the BVNS and

finds new improved solutions for several of the largest benchmark datasets in the literature.

2.1 Introduction

In the family of the dispersion problems, given a set of n vertices one intends to select

a subset of size p in a way that a function of the distance among the selected vertices is

maximized. This is useful when some measure of diversity in the solutions is desirable. For

instance in the logistics context it can be used in the location of missile silos where dispersion

can reduce the chances of all of them being attacked or for locating obnoxious facilities to be

far from population zones [32]. The dispersion can also be a desirable factor when it comes

to franchise location problems where managers intend to avoid the cannibalization effects

within the chain. The difference is not always translated into the physical distance. For

instance dispersion models can also be used in order to design a portfolio of new products

where it is desirable to enter the market with a group of products which are as dissimilar

as possible in terms of the quality, price, shape, etc. Another example would be in multi-

objective problems where the decision maker may be interested in selecting a collection of

solutions as far as possible for each objective [72].

Erkut and Neuman [33] propose four different types of the dispersion models based on

different dispersion metrics. The first one is the MaxMinMin problem which maximizes

the minimum distance between each pair of facilities. The second one is the MaxSumMin

which seeks to maximize the sum of the minimum distances from each facility to its closest

neighbor. The third formulation is called MaxMinSum which takes the sum of the distances

32



from each facility to all its neighbors and maximizes the smallest sum of the distances.

Finally the fourth formulation corresponds to the MaxSumSum which aims at maximizing

the sum of all the hub distances for all located facilities. This model tries to locate p facilities

far from a given set of nodes and far from each other and is the one studied in this paper.

Prokopyev et al. [71] introduce three equity-based measures for the dispersion problems

and propose a solution procedure based on the Greedy Randomized Adaptive Search Pro-

cedure (GRASP) metaheuristic. Its main components are the construction phase where a

complete solution is created by a greedy addition of the components of a solution, and an

improvement phase which performs local perturbations to get a local optimal solution.

Hansen and Moon prove that the discrete version of the maximum diversity (MaxSumSum

p-dispersion) problem on general networks is strongly NP-complete, by reduction to the

stable set problem [11, 33, 59, 63, 80]. Yet, metaheuristics have shown to be very successful in

finding high quality solutions to this problem and have been widely discussed and compared

in the literature [4, 59, 63]. An extensive comparison is done by Martí et al. [63] where

they compare 10 heuristics and 20 applications of metaheuristics for this problem. They

conclude that the Basic Variable Neighborhood Search (BVNS) method by Brimberg et al.

[11] and the Iterated Tabu Search (ITS) method by Palubeckis [67] are the most powerful

applications of metaheuristics for this problem.

The ITS [67] applies a tabu search step followed by a local search in case a better in-

cumbent solution has been found. Then a perturbation procedure is applied by swapping a

random number of selected and unselected points which is similar to the shake procedure in

VNS except that the shake size is random at each iteration.

The VNS method applied by Brimberg et al. [11] to the heaviest k-subgraph problem

(HSP) can also be adapted to solve the MaxSumSum problem. In fact HSP is more general

than the MaxSumSum problem as the edge weights do not need to represent distances and

the graph is not necessarily fully connected. They compare the basic VNS (BVNS), skewed

VNS (SVNS) and the greedy add and greedy drop construction procedures followed by VNS,

and finally conclude that the BVNS is the overall best method. The BVNS consists of a

random shaking perturbation strategy followed by a local search construction phase. Their

data structure allows an efficient update of the values and thus has also been applied in

33



this paper. The BVNS is among the most successful methods to address the MaxSumSum

problem and in this work we further improve the capabilities of the VNS by developing more

elaborate modules.

Another recent successful method is the Iterated Greedy metaheuristic (IG) and its fine-

tuned version (TIG) by Lozano et al. [59] which generates a sequence of solutions by iterating

over greedy construction and destruction phases. This method has not been considered in

the comprehensive literature review of Martí et al. [63].

Finally, Wang et al. [80] compare the most successful candidate methods for the MaxSum-

Sum problem with their Learnable Tabu Search method guided by Estimation of Distribution

Algorithm (LTS-EDA). Their method can extract knowledge during the tabu search proce-

dure and adapts the search structure. The clustered EDA is a learnable constructive method

in order to create new starting solutions, coupled with the TS as an improvement method.

They use either some of the executable codes provided by various authors or code the sug-

gested algorithms in the literature themselves, and compare all the metaheuristics including

the ITS, VNS, TIG and LTS-EDA under the same conditions. Their final comparison shows

that the LTS-EDA obtains the best improvements over the existing large benchmark test

problems. The best results are obtained in the long run version of the experiments, that

will be considered as the best known solutions in the literature in Section 2.4.

In Section 2.2 we describe the problem in graph theoretical terms followed by its mixed

integer formulation. Section 2.3 presents a detailed explanation of our proposed greedy VNS

heuristic solution procedure for the MaxSumSum p-dispersion problem. Then we discuss

our computational experiments on the largest known benchmark test problems and finally

conclude the paper by highlighting our contributions and suggestions for future research.

2.2 Problem Statement and Mathematical Formulation

This section expresses the MaxSumSum p-dispersion problem in graph theoretical terms

and then presents its respective mathematical formulation. Let V = {vi, ∀i = 1, . . . , n},

be a set of n vertices (potential locations) and vi representing each member of this set.

Let E be the set of
(n

2
)
edges of an undirected and fully connected graph G(V,E), with

de > 0 representing the distance over each edge e ∈ E. The value p is an integer such that

34



3 ≤ p ≤ |V |. We define S as any subset of p vertices such that S ⊆ V, |S| = p. The subset of

the vertices not present in the current solution is defined as S̄ such that S̄ = V \S, |S̄| = n−p.

The objective function value f(S) is defined as the total sum of the distances among all

the p selected vertices induced by the subset S:

f(S) =
∑

e∈E(S)
de.

The MaxSumSum problem intends to find the optimal subgraph G(S∗, E(S∗)), where:

S∗ = arg maxS f(S).

This problem could be modeled as the following 0-1 mixed integer program as suggested

in [33]:

max
n∑

i=1
Zi

s.t. Zi ≤Mxi 1 ≤ i ≤ n

Zi ≤
n∑

j=1
d(vi, vj)xj 1 ≤ i ≤ n

n∑
i=1

xi = p

xi ∈ {0, 1} 1 ≤ i ≤ n,

where xi is a binary decision variable defining if vertex vi is selected, d(vi, vj) is the

distance between any pair of the located facilities at locations i and j andM is a sufficiently

large number which could be set as the sum of the p largest distances among the n vertices.

The distances between all the vertices are taken as an input and stored in an n× n upper-

triangular matrix with d(vi, vi) = 0.

2.3 VNS for the p-Dispersion-Sum Problem

Variable Neighborhood Search (VNS) is a metaheuristic or framework for building heuris-

tics which is based on the idea of a systematic change of the neighborhood in order to escape

35



from the valleys surrounding local optima, followed by a local search to find improved so-

lutions. This general method has been proposed by Mladenović and Hansen [64] and has

proven to lead to very successful heuristics for solving large combinatorial programs with

applications in location theory, cluster analysis and several other fields. For a recent survey

of the theoretical developments and applications including several hundred references see

[45, 48].

The Basic Variable Neighborhood Search method (BVNS) has already been applied to

the heaviest k-subgraph problem and has shown to be among the most efficient methods

compared to other heuristics for the maximum diversity problem [11, 63]. Palubeckis et al.

[68] also apply the multistart simulated annealing, hybrid genetic and variable neighborhood

search algorithms to solve the MaxSumSum problem. Their computational experiments on

benchmark instances of size up to 2000 elements show that there is no clear winner in all

cases, however, the comparison of the heuristics on larger instances favors the VNS algorithm.

Brimberg et al. [11] suggest the examination of different VNS strategies and also extensive

experimental testings of VNS on different types of graphs as a future extension to their work.

Therefore, we have decided to develop a more elaborate heuristic method within the VNS

framework that is well-suited to the MaxSumSum p-dispersion problem.

In order to represent the solution at each step of the heuristic we use the data structure

suggested in [11]. The solution is represented by an array of the n indices corresponding to

each vertex or candidate location, where the first p elements correspond to the set of the

current solution S.

The solution space U is represented by the
(n

p

)
subsets of V with cardinality p. In order

to apply VNS a metric function is defined to evaluate the distance between any two solutions

S and S′:

δ(S, S′) = δ(S′, S) = |S \ S′|.

Based on the metric distance function defined above, the neighborhood of size k of a

solution S is defined as:

Nk(S) = {S′ ∈ U |δ(S, S′) = k}; k = 1, 2, . . . ,min{p, n− p}.

36



Throughout this paper the following notations are used:

• Sbest/cur: the best/current solution set corresponding to the best/current objective

function value;

• f(Sbest/cur): the best/current objective function value corresponding to the sum of the

distances among all the selected vertices in the best/current solution set Sbest/cur;

• W (vi): the sum of the distances from any vertex vi (i = 1, . . . , n) to all the vertices in

the solution set S;

• vexit: the vertex inside the solution set that is a candidate to leave the solution set

(vexit ∈ S);

• venter: the vertex outside the solution set that is a candidate to enter the solution set

(venter ∈ S̄).

These values are first computed at the construction of the initial solution and are updated

each time a new solution is found.

In Algorithm 2.1 we define our VNS function and then in the following sections we explain

in details the functions embedded in our general framework. The stopping criterion is the

total execution time tmax and the already elapsed cumulative time in the overall procedure

is denoted by telapsed. The kmin and kstep (step size) parameters are set by default to 1, and

the kmax (maximum shake size) is set to a coefficient of min{p, n− p}, as discussed later.

2.3.1 Initialization

The initial solution could be created at random or in a greedy manner. Based on the random

method the initial solution is simply created by choosing p vertices at random.

Two Greedy concepts have been widely used in the literature in order to create initial

solutions for the dispersion problems [35]. The Greedy deletion heuristic starts with all the n

vertices and eliminates one vertex at each iteration. For this problem the deletion candidate

is the one with the smallest sum of the distances value with the rest of the remaining vertices

at each iteration, and the ties are broken arbitrarily. Of course this procedure is repeated

(n− p) times until exactly p vertices remain in the solution set.

37



function VNS (kmin, kstep, kmax)
Scur ← Initialize();
Sbest ← Scur;
telapsed = 0;
kmax = min{p, n− p};
while telapsed ≤ tmax do

kcur ← kmin;
while kcur ≤ kmax and telapsed ≤ tmax do

Scur ← Shake(Scur);
Scur ← LocalSearch(Scur);
Scur ← RefinedLocalSearch(Scur);
if f(Scur) > f(Sbest) then

Sbest ← Scur;
kcur ← kmin;

else
kcur ← kcur + kstep;

end
end

end

Figure 2.1: Pseudo Code for the VNS Framework

The Greedy add heuristic selects a starting vertex at random and creates the complete

solution set in (p − 1) iterations. As the result, the size of the under construction solution

set is smaller than p and will gradually reach the complete size as the construction phase

is executed. If we represent the solution set under construction (i.e., the size of the set is

smaller than p) as C, and the set of the vertices outside this set as C̄, the entering candidate

vi ∈ C̄ would be the one with the largest W (vi) value (the sum of distances to the vertices

in the under construction solution C) [4, 59]. At each iteration the objective function value

is the total sum of the W (vi) values for all the vertices vi ∈ C. After the addition of the

entering vertex venter ∈ C̄, the existing sum of the distances values for the under construction

solution vertices will be updated as: W (vi) + d(vi, venter) for all the vi ∈ C. Therefore, the

objective function value after the addition of each venter will be: f(C) +
∑

vi∈C d(vi, venter).

This heuristic could be repeated n times based on different starting vertices and then

the best one leading to the highest objective value could be selected. Based on preliminary

results we know that this heuristic is very time consuming (much more than the Greedy

deletion heuristic), and for large datasets it is not worthwhile to take this procedure just

to further improve the initial solution. In order to overcome this drawback the Greedy

38



add heuristic is initialized by choosing the two furthest vertices as the initial vertices and

by repeating the above-mentioned procedure (p − 2) times. We observed empirically that

the results obtained by this method are among the highest possibilities for the Greedy add

heuristic without spending too much computational time on the initial solution.

2.3.2 Local Search

After having created the initial solution, the LocalSearch procedure is called performing

1-interchange swaps on the current solution as shown in Algorithm 2.2. This means that

at each iteration only one pair of vertices is swapped at a time. The swap could be done

whenever the first (first improvement strategy) or the best (best improvement strategy)

contribution is made to the current objective value. In order to avoid unterminated loops,

only positive contributions would induce a swap.

In order to execute the LocalSearch procedure the gain obtained from swapping the

selected entering candidate with the selected leaving candidate should be evaluated. The

two main Contribution and Update functions will be explained in details in the following

subsection.

function LocalSearch(S)
repeat

(vexit, venter, gain)← Contribution(S);
if gain > 0 then

Swap(vexit, venter);
Update(vexit, venter, S);

end
until gain > 0;

Figure 2.2: Pseudo Code for the Local Search Procedure

2.3.2.1 Contribution and Update

In the proposed LocalSearch procedure the Contribution function can determine the first

or the best swapping pair (vexit ∈ S and venter ∈ S̄), making a positive contribution to the

current objective function value.

39



In order to initiate the Contribution function a random leaving candidate vexit ∈ S, and

a random entering candidate venter ∈ S̄ are chosen and then the algorithm will move on to

the subsequent vertices until a positive contribution is found. The change in the objective

function value resulted from the swap will be calculated as :

change←W (venter)−W (vexit)− d(vexit, venter).

With the first improvement strategy the Contribution function stops as soon as an

improving solution is found, as the result in the worst case it is implemented in O(p(n−p)) =

O(np) time per LocalSearch iteration.

The Update procedure performs all the required updates before proceeding to the subse-

quent iteration. It is implemented in two different phases in order to update all the W (vi)

values, and then to update the objective function value f(Scur). The update for the W (vi)

(∀i = 1, . . . , n) is straightforward and is performed in O(n) total time, whereas the update

of the objective function is done in O(1) time at each iteration. Thus the updated values

would be:

W (vi) = W (vi) + d(vi, venter)− d(vi, vexit), i = 1, 2, . . . , n,

f(Scur) = f(Scur) + change.

2.3.3 Refined Local Search

The existence of plateaus or the flat landscapes of the MaxSumSum problem make it more

difficult for the ascent procedures to find an improvement in the objective function especially

as the size and the density of the graphs increase [11]. This has inspired us to develop a

plateau search mechanism within the VNS metaheuristic framework.

The RefinedLocalSearch procedure demonstrated in Algorithm 2.3 is efficient both in

the presence and the absence of plateaus. The reason is that it makes all the possible swaps

that will improve the quality of the solution set by exchanging the low quality vertices with

the ones of higher quality which will facilitate further improvements by the LocalSearch

40



procedure in the subsequent iterations. It should be noted that in Algorithm 2.3 the smallest

W (vexit) ∈ S is found in O(p) time and the largest W (venter) ∈ S̄ is determined in O(n− p)

time.

Of course the RefinedLocalSearch procedure never worsens the actual solution and

could even lead to improvements in the objective function value if the whole plateau is

removed. As demonstrated later in Section 2.4, the addition of this module improves signif-

icantly the quality of the obtained solutions.

function RefinedLocalSearch(S)
change = 0;
while change ≥ 0 do

Find vexit ∈ S with the smallest W (vexit);
Find venter ∈ S̄ with the largest W (venter);
change←W (venter)−W (vexit)− d(vexit, venter) ;
if change ≥ 0 then

Swap(vexit, venter);
Update(vexit, venter, S);

end
end

Figure 2.3: Pseudo Code for the Refined Local Search Procedure

2.3.4 Shake

The perturbation in most VNS-based heuristics is done in a simple manner by choosing a

random pair of vertices from S and S̄ and then repeating k times the random swap move.

The RandomShake function does so by choosing one random leaving and entering candidate

at each iteration with updates in between each swap. However, here we have developed

two additional shake functions in order to control the perturbation operation in a more

intelligent manner.

The SemiGreedyShake function fixes a random leaving candidate from the current solu-

tion set S and then chooses an entering candidate that has the highest sum of the distances

value in case it replaces the exit candidate, i.e., the highest W (venter)−d(vexit, venter) value.

As the result this shake method does not guarantee that a deterioration in the objective

function value would not occur, yet it simply chooses a reasonable entering candidate after

41



having fixed the leaving candidate. This procedure is repeated until the shake size of k is

attained. Each iteration is performed in O(n − p) time and after each swap the Update

function is called.

In order to have a more intensified shake operation the GreedyShake function has been

developed which for a shake of size k, selects the k vertices with the smallest W (vi) values

for all vi ∈ S, and swaps all of them with the k vertices with the largest W (vi) values for

all vi ∈ S̄. This greedy fashion of selecting the entering candidates could provide better

starting solutions for the subsequent LocalSearch procedure. The k leaving and entering

candidates are chosen all at once and are not changed while the updates are performed

between the swaps. The performance of the three shake functions will be compared in

details in Section 2.4 where it is demonstrated that the more intelligent shake functions

dominate the purely random ones.

2.4 Computational Experiments

In this section we have selected four sets of the largest benchmark instances that were used

for comparison purposes in the maximum diversity problem literature leading to 50 instances

in total [11, 59, 63, 67, 80]. A brief description of the characteristics of the datasets is given

below:

• MDG-a: this dataset consists of 20 matrices with real numbers randomly selected

between 0 and 10 from a uniform distribution by Duarte and Martí [27] with n = 2000

and p = 200.

• MDG-c: this dataset consists of 20 matrices with n = 3000 and p = 300 (MDG-c-1 to

5), 400 (MDG-c-6 to 10), 500 (MDG-c-11 to 15) and 600 (MDG-c-16 to 20) [27].

• p5000 and p3000: these datasets consist of 10 matrices each with integer numbers

generated from 0 to 100 from a uniform distribution [67]. There are five instances

with n = 3000 and p = 0.5n, and five instances with n =5000 and p = 0.5n with a

matrix density of 10, 30, 50, 80 and 100%.

First we describe our experiments that were designed to study the performance of dif-

ferent settings within the VNS framework and then compare and analyze the tradeoffs and

42



overall results obtained by different methods over all the test problems. Finally we tune

our framework based on the preliminary results and compare the results with those of the

state-of-the-art heuristics in the literature.

All the heuristics were coded in C ++ and run on a linux machine with an intel processor

of 2.667 GHz and 3Gb Ram. The best results obtained after two hours of running time are

reported as suggested in [63].

2.4.1 Preliminary Experiments Setup

As mentioned in Section 2.3 our VNS implementation allows various settings and methods

within its framework. In order to initialize the VNS three different methods have been

discussed: Random add (RA), Greedy add (GA) and Greedy deletion (GD). There are

also three different shaking possibilities: Random shake (RS), Semi-Greedy shake (SG) and

Greedy shake (GS). In the general framework presented in Section 2.3 the shake size at

each iteration increases systematically and will be reset to kmin whenever an improvement

is made or when the kmax value is reached. The kmax is a parameter whose value by default

is min{p, n− p}, which could be a large value depending on the problem size. As the result

two smaller values, i.e., 0.5 ∗ min{p, n − p} and 0.75 ∗ min{p, n − p} are tested as well to

verify if it helps improve the performance of the heuristic. Besides each experiment could be

done with or without the RefinedLocalSearch module. This will lead to 3× 3× 3× 2 = 54

different VNS configurations.

On the other hand at each iteration of VNS either an improvement is made or not. In

case of no improvement a decision on how to start the next iteration should be made. The

next iteration is either started form the already best solution obtained (from best or FB),

or from the current solution just obtained (from current or FC ). The former will lead to

more intensification in the search, whereas the latter favors diversification. Besides, the

LocalSearch procedure can pursue a first improvement strategy (FirstI ) favoring more

diversification, versus best improvement strategy (BestI ) leading to more intensification.

The above mentioned intensification and diversification strategies will lead to four general

VNS frameworks. As the result the datasets are used in the 54×4 = 216 total configurations.

43



We do not allow longer running times in order to get further improvements, as the result

the tests are executed only once under two hours of running time [63]. Throughout the paper

we present the average % deviation from the best solutions obtained by the 216 combinations

for each group of dataset:

% deviation = best obtained value - actual value
best obtained value × 100.

Table 2.I : Average % Deviation for Individual Methods
MDG-a MDG-c p3000 p5000 Average

General framework
FC-FirstI 0.72 0.45 0.24 0.19 0.4
FC-BestI 0.99 0.61 0.38 0.31 0.57
FB-FirstI 0.81 0.5 0.22 0.19 0.43
FB-BestI 1 0.64 0.32 0.27 0.56
Initialization
RA 5.57 0.96 0.66 0.56 1.94
GA 2.85 0.42 0.14 0.11 0.88
GD 2 0.29 0.07 0.05 0.6
Shake method
RS 6.34 1.07 0.74 0.62 2.19
SG 2.49 0.35 0.07 0.06 0.74
GS 1.73 0.24 0.06 0.04 0.52
Shake max size
0.5p 3.41 0.54 0.28 0.24 1.12
0.75p 3.51 0.56 0.29 0.24 1.15
p 3.63 0.57 0.3 0.24 1.19
Refined local search
Yes 1.25 0.19 0.03 0.03 0.38
No 5.79 0.92 0.55 0.45 1.93

Table 2.I represents the average deviation from the best solutions obtained for all the

50 data instances for each of the four VNS general frameworks, three initialization methods,

three shaking strategies, three possible kmax sizes, and all with either the presence or the

absence of the RefinedLocalSearch module. The average deviations are all calculated based

on the results presented under the G-VNS column of Tables 2.II to 2.IV which refer to

the best solutions obtained by a single run of the 216 combinations. The smallest average

deviation values for each group are shown in bold under the Average column of Table 2.I .

Same presentation has also been done to highlight the smallest average deviation values for

each of the four datasets.

The first part of Table 2.I which refers to the four general VNS frameworks reveals that

the current iteration strategy and first contribution local search strategy (FC-FirstI) leads

44



to the overall lowest average deviation. This is also true for each individual dataset except

for the p3000 instances where the (FB-FirstI) strategy leads to the lowest average deviation.

In the second part which refers to different initial solution generation methods, the Greedy

deletion strategy (GD) consistently leads to the lowest average deviation for all datasets. In

the third group which addresses the shaking strategies, the Greedy shake (GS) strategy has

the lowest average deviation value across all the datasets which emphasizes the importance

of more intelligent shaking strategies compared to pure random ones. The only parameter

that we changed in our experiments is the maximum shake size which is presented in the

last comparison group. As it is seen the smaller maximum shake size is slightly better for all

instances, yet the difference among the results (average deviation value) is not significant.

Finally in the last part it is clearly observed that the existence of the RefinedLocalSearch

module leads to significantly lower average deviations which highlights the importance of

the addition of this new local search mechanism to the classical body of VNS.

To summarize, four important observations can be highlighted:

• The first improvement Local Search strategies (FC-FirstI and FB-FirstI ) lead to the

lowest average deviations compared to other general frameworks.

• The Greedy deletion (GD) initialization method leads to the highest average quality.

• The Greedy Shake (GS) method leads to the lowest average deviation over all data

instances.

• The inclusion of the RefinedLocalSearch plateau search mechanism contributes sig-

nificantly to the creation of high quality solutions.

2.4.2 Results and Analysis

The best preliminary results obtained in Section 2.4.1 are presented under the Greedy VNS

(G-VNS) column in Tables 2.II to 2.IV . Based on the findings in the previous section,

the following VNS setting is selected in order to do the final tuned experiments, called the

Tuned-Greedy VNS (TG-VNS):

45



• Each iteration will start form the current solution just obtained (the current iteration

strategy), and the Local Search function will randomly choose between the first or

best improvement strategies.

• The Random add (RA) initialization method is selected in order to obtain more diver-

sified solutions in repeated runs. The Greedy deletion (GD) strategy leads to robust

high quality solutions, yet based on our preliminary experiments obtains the same

results in multiple runs.

• The Greedy shake (GS) method is used with the maximum shake size randomly se-

lected as 0.5 ∗min{p, n− p} or 0.75 ∗min{p, n− p}.

• The RefinedLocalSearch plateau search mechanism will be applied in all the exper-

iments.

Table 2.II : Comparison of the Best Known Results for the MDG-a Instances
Instance n p Best known G-VNS TG-VNS

Best Average CV
MDG-a-21 2000 200 114271 (ITS) 0 0 -3.33 0.00003
MDG-a-22 2000 200 114327 (ITS) 0 0 0 0
MDG-a-23 2000 200 114195 (ITS) 0 0 0 0
MDG-a-24 2000 200 114093 (ITS) 0 0 -5.2 0.00002
MDG-a-25 2000 200 114196 (ITS) 0 0 0 0
MDG-a-26 2000 200 114265 (ITS) 0 0 0 0
MDG-a-27 2000 200 114361 (ITS) 0 0 0 0
MDG-a-28 2000 200 114327 (ITS) 0 0 0 0
MDG-a-29 2000 200 114199 (ITS) 0 0 -1.87 0.000005
MDG-a-30 2000 200 114229 (ITS) 0 0 0 0
MDG-a-31 2000 200 114214 (ITS) 0 0 -6.6 0.00009
MDG-a-32 2000 200 114214 (ITS) 0 0 -7 0.00007
MDG-a-33 2000 200 114233 (ITS) 0 0 -3.73 0.00002
MDG-a-34 2000 200 114216 (ITS) 0 0 0 0
MDG-a-35 2000 200 114240 (ITS) 0 0 -0.87 0.000003
MDG-a-36 2000 200 114335 (ITS) 0 0 0 0
MDG-a-37 2000 200 114255 (ITS) 0 0 0 0
MDG-a-38 2000 200 114408 (ITS) 0 0 -1.73 0.00001
MDG-a-39 2000 200 114201 (ITS) 0 0 0 0
MDG-a-40 2000 200 114349 (ITS) 0 0 0 0

All the instances are run 15 times with the two hours of running time constraint under the

above selected settings and the obtained solutions for all the 50 data instances are presented

under the Tuned-Greedy VNS (TG-VNS) columns of Tables 2.II to 2.IV .

In the Best Known column of Tables 2.II to 2.IV the best known solutions for each of

the instances are presented which have been found by different powerful heuristic methods

46



from various references. It should be noted that the best results in the literature have been

obtained by longer running times of 5h for smaller instances and 10h for larger instances.

Despite the fact that our running time is only two hours, we still keep these best solutions

as a benchmark in order to verify the quality of our solutions.

Table 2.III : Comparison of the Best Known Results for the MDG-c Instances
Instance n p Best known G-VNS TG-VNS

Best Average CV
MDG-c-1 3000 300 24924685 (BVNS) 0 +1659 -270.33 0.003
MDG-c-2 3000 300 24909199 (BVNS) +3347 +3347 +2069.13 0.005
MDG-c-3 3000 300 24900820 (ITS) +4398 +4398 +2266.93 0.011
MDG-c-4 3000 300 24904964 (BVNS) +4746 +4746 +916.4 0.006
MDG-c-5 3000 300 24899703 (ITS) -3999 -3999 -5139.4 0.005
MDG-c-6 3000 400 43465087 (ITS) -20139 -20139 -24533.47 0.008
MDG-c-7 3000 400 43477267 (BVNS) 0 0 -737.13 0.002
MDG-c-8 3000 400 43458007 (BVNS) +7565 +7565 +2944.33 0.005
MDG-c-9 3000 400 43448137 (BVNS) 0 0 -394.87 0.001
MDG-c-10 3000 400 43476251 (ITS) -10690 -10690 -10782.73 0.001
MDG-c-11 3000 500 67009114 (BVNS) +12018 +12018 +6720.4 0.006
MDG-c-12 3000 500 67021888 (ITS) -7718 -7718 -9397.87 0.006
MDG-c-13 3000 500 67024373 (BVNS) 0 0 -392 0.001
MDG-c-14 3000 500 67024804 (BVNS) +5386 +5386 +3395.87 0.004
MDG-c-15 3000 500 67056334 (BVNS) -1624 0 -2448.2 0.004
MDG-c-16 3000 600 95637733 (BVNS) +1196 +1196 -174.53 0.001
MDG-c-17 3000 600 95645826 (ITS) -74713 -74713 -76052 0.002
MDG-c-18 3000 600 95629207 (ITS) -97066 -97100 -100356.2 0.005
MDG-c-19 3000 600 95633549 (ITS) -34385 -34385 -35069.8 0.001
MDG-c-20 3000 600 95643586 (ITS) -59104 -59104 -59509.07 0.001

The G-VNS column represents the proposed Greedy VNS results which show the difference

between the best solutions obtained in the preliminary experiments of 216 VNS module

combinations presented in Section 2.4.1 and the best known solutions in the literature. A

positive value represents an improvement over the best known solutions reported, a value

of zero means that we have equaled the best ever value and a negative value means that

our solution is inferior to the one reported in the literature. Here no average results are

presented as in the preliminary experiments each combination is run only once.

The following three columns (Best, Average, CV) under the TG-VNS, represent the

difference between the Best and Average results obtained by multiple runs of the Tuned

Greedy VNS with the best known results in the literature. The reported Best values are the

best among 15 runs of the TG-VNS, yet in order to have a better idea of the overall quality

of all the 15 runs, the coefficient of variation (CV) is presented for each dataset under the

CV column:

47



CV = standard deviation
mean × 100.

As seen for all the 50 instances in Tables 2.II to 2.IV , the coefficient of variation values

are generally very small, much inferior than 0.01%, which shows that our Random add (RA)

methods are also very robust.

As illustrated by the bold values in Table 2.II , our proposed method finds all of the

best ever solutions for the MDG-a instances by the G-VNS preliminary experiments and the

TG-VNS Best case, and also 12 out of 20 in the TG-VNS Average case. The best solutions

have been initially obtained by the Iterated Tabu Search (ITS) method in [67] and have also

been found in the long run experiments of Tuned Iterated Greedy method (TIG) in [59] and

the Learnable Tabu Search method (LTS-EDA) in [80]. Yet, none of these methods finds all

the best solutions at once even in longer running times.

Most of the best results for the MDG-c instances in the literature have been obtained

by the BVNS [11] and the ITS [67]. Our method finds equal or improved solutions for 11

instances by the G-VNS preliminary experiments, 12 instances by the TG-VNS Best case

and 6 instances by TG-VNS Average case which are represented in Table 2.III .

Table 2.IV : Comparison of the Best Known Results for the p3000 and p5000 Instances
Instance n p Best known G-VNS TG-VNS

Best Average CV
p3000-1 3000 1500 6502308 (LTS) -208 +22 -422.13 0.01
p3000-2 3000 1500 18272568 (LTS) -354 0 -362.93 0.001
p3000-3 3000 1500 29867138 (ITS) 0 0 -634.8 0.002
p3000-4 3000 1500 46915044 (LTS) -96 -86 -429.33 0.001
p3000-5 3000 1500 58095426 (LTS) -237 +41 -1101.4 0.002
p5000-1 5000 2500 17509215 (LTS) -966 +112 -419.93 0.005
p5000-2 5000 2500 50102729 (LTS) -1196 +156 -836.6 0.004
p5000-3 5000 2500 82039686 (LTS) -1482 -426 -2746.73 0.003
p5000-4 5000 2500 129413112 (LTS) -59 +112 -1878.13 0.001
p5000-5 5000 2500 160597781 (LTS) -430 +15 -843.67 0.001

The best results in the literature for the p3000 and p5000 instances represent the best ever

results obtained by state-of-the-art heuristics such as ITS, VNS, TIG and LTS-EDA under

5h and 10h running times. As shown in Table 2.IV , the G-VNS method finds one equal

solution, and the TG-VNS Best case finds 8 out of 10 equal or better solutions, representing

the best solutions in 15 runs of two hours of computation each.

48



2.5 Conclusions and Future Work

In this work we applied an elaborate greedy VNS framework over 50 of the largest data in-

stances for the MaxSumSum p-dispersion problem. We first explained a detailed preliminary

experimental setting which captured a vast number of possibilities within the VNS framework

and then selected the most promising setting in order to conduct the tuned experiments.

We also incorporated a new local search module within the VNS framework coupled with

elaborate shake functions. Our extensive computational experiments on the largest bench-

marks in the literature found new best solutions for several instances that proves the high

performance of our method.

Of course in order to have a more precise comparison of various heuristics, the same

executable codes of the different authors should be run under the same conditions. Yet,

we believe that the reported results represent a fair comparison with other state-of-the-art

heuristics, as we have considered the best ever solutions obtained by all the heuristic methods

ever studied in the literature under long running times as our benchmark.

One of the most interesting advantages of the Variable Neighborhood Search metaheuris-

tic is its flexibility and how it allows the decision maker to define and adapt the framework

to its own problem specifications. The choice of the best setting is always a matter of

time and available computational resources, and also the fact that if one is interested in a

heuristic that provides more robust and higher quality solutions on average, or a method

that gives the opportunity of obtaining new improved solutions over repeated runs. As the

future work we suggest developing decomposed VNS frameworks [46] in order to tackle large

problem instances in a more reasonable time and to possibly further improve the obtained

results.

Acknowledgements

This research was funded by NSERC (Natural Sciences and Engineering Research Council

of Canada) grant PGSD2-392404-2010, and FQRNT (Fonds de recherche du Québec - Nature

et technologies) grant 134582. Pierre Hansen has been partially supported by NSERC grant

105574-2007, Sylvain Perron has been partially supported by NSERC grant 327435-06, and

they were both partially supported by FQRNT team grant PR-131365.

49



Chapter 3

Franchise Location Models and Cannibalization

Effects: A Variable Neighborhood Search

Approach

Behnaz Saboonchi

Pierre Hansen

Sylvain Perron

Department of Management Sciences

GERAD and HEC Montréal

3000, chemin de la Côte-Sainte-Catherine

Montréal, Québec, H3T 2A7, Canada



Abstract

Application of the dispersion models in order to address the cannibalization phenomenon

within franchised chains is a new approach. In this work we have developed a Variable

Neighborhood Search (VNS) method in order to solve the MaxMinMin p-dispersion problem,

which adds a new type of plateau search mechanism to the classical VNS metaheuristic

framework. Besides, several other contributions have been made to the basic VNS heuristic

in terms of the ascent and perturbation procedures. To the best of our knowledge this is

the first application of the VNS to the MaxMinMin problem and our approach, compared to

previous methods, finds or improves a results for all of the large-sized benchmarks within a

shorter time and low computational efforts. Finding most of the proven optimal solutions in

a fraction of a second, the robustness and quality of the solutions and the low complexity of

the methods demonstrate the strength of the proposed heuristic solution procedures vis-à-vis

the state-of-the-art algorithms for the MaxMinMin problem.

3.1 Introduction

Managing and locating retail and service networks have been widely addressed in different

empirical and mathematical studies. The location decision process becomes more complex

when it comes to franchise chains where the objective is not locating a single independent

store, but a group of stores over time within a network. This location decision should be

made without cannibalizing the existing same-brand units revenues. Encroachment and

revenue cannibalization which are one of the main concerns of today’s franchised chains

occur when the franchiser adds the same-brand units in the proximity of the existing units.

The compromise between minimization of the chain cannibalization and the revenue

maximization has been addressed in the literature. Ghosh and Craig [39] develop a location

allocation model which evaluates the net impact of the new unit based on its cannibalization

effects and the positive impacts it has on the whole system. They conclude that the conflicts

will increase by more distance-sensitive customers or if we intend to locate multiple new

facilities.

This issue could also be modeled as the minimization of cannibalization as a function

of the difference of the market share of the existing units before and after the addition of

51



the new outlet. Fernandez et al. [36] take this approach in a multi-objective model which

minimizes cannibalization and maximizes the total profit at the same time. In a later work

they address the same problem for the 2-facility location problem with both simultaneous

and sequential approaches, and conclude that the simultaneous approach leads to better

results at an extremely high computational cost [37].

The undesirable effects of encroachment can also be captured from a different viewpoint

in the sense that one can create multiple facility location models which are basically aimed

at creating dispersed solutions by maximizing the dispersion among either the newly added

units, or among the existing units and the new ones, which was first discussed in [77, 78].

These models are called the family of dispersion problems. The classical dispersion models

try to maximize dispersion as a function of the distance/dissimilarity between the entities

in the network.

Erkut and Neuman [33] propose four different types of the dispersion models based on

different dispersion metrics. The first one is the MaxMinMin problem which maximizes

the minimum distance between each pair of the selected facilities. The second one is the

MaxSumMin which seeks to maximize the sum of the minimum distances from each facility

to its closest neighbor. The third formulation is called MaxMinSum which takes the sum of

the distances from each facility to all its neighbors and maximizes the smallest sum of the

distances [78]. Finally the fourth formulation corresponds to the MaxSumSum which aims

at maximizing the sum of all the hub distances for all the located facilities [77].

Saboonchi et al. [77, 78] address the franchise cannibalization issue for the first time

through MaxMinSum and MaxSumSum dispersion problems. They developed several heuris-

tics based on the Variable Neighborhood Search metaheuristic framework including various

greedy constructive procedures and different shaking strategies. They finally discuss the

tradeoffs among different solution strategies and the comparison of a results with that of the

state-of-the-art heuristics demonstrate the high performance of their approaches.

The MaxMinMin problem on a general network is NP-complete which can be shown by

reducing the original problem to a clique problem on a graph [32]. Several exact and heuris-

tic solution procedures have been discussed in terms of their relationships with known graph

theory problems. Erkut [32] demonstrate that this problem is also related to the maximum

52



clique (a set of mutually adjacent vertices) and the maximal independent set (a set of mutu-

ally nonadjacent vertices) problems. In a later work Erkut et al. [35] compare 10 heuristic

solution procedures classified in four categories of Construction algorithms, Neighborhood

algorithms, Projection algorithm and Interchange algorithms. Finally they show that the

neighborhood and interchange heuristics provide better results than the construction heuris-

tics.

Resende et al. [74] propose a heuristic method based on the GRASP and path relinking

methodologies. Their experiments on three different sets of test instances, Glover, Geo and

Ran (to be discussed later in Section 4.4) indicate that the proposed hybrid implementations

compare favorably to previous metaheuristics, such as tabu search and simulated annealing.

Della Croce et al. [20] discuss a heuristic approach which relies on the equivalence of

the MaxMinMin problem and the classical maximum clique graph problem. The heuristic

is based on a dichotomic search where at each iteration a clique decision problem has to be

solved. They conduct their experiments on the same data instances as in [74] and obtain

the previous best results or improve them with proof of optimality for some of the n = 250

(medium-sized) instances.

Most recently, Porumbel et al. [70] proposed a simple local search with add and drop

operations based on tabu rules. Their tabu rule offers low iteration complexity and strong di-

versification qualities leading to establishing a new lower bound for one of the data instances

already studied in [20, 74], yet even by allowing larger amounts of running time (higher num-

ber of iterations with no improvements) they do not reach all of the best bounds reported

in [20] (112 over 120 instances).

In this work we capture the cannibalization issue based on the MaxMinMin dispersion

criterion which is the first application of VNS to this variant of the dispersion family. Going

back to the franchise location literature, this heuristic method corresponds to the simul-

taneous approach for a multiple facility franchise location problem. Due to performance

comparison purposes with the known benchmark test problems in [20, 70, 74], we apply the

dispersion concept only among the newly added units. Of course in real-world applications

one can easily modify the proposed solution procedure in order to incorporate the dispersion

53



among the new units and the already existing units, by taking the location of the existing

units as a fixed parameter fed into the solution procedure.

In Section 4.2 we describe the problem in graph theoretical terms followed by its mixed

integer formulation. Section 4.3 presents a detailed explanation of the proposed VNS heuristic

solution procedure for the MaxMinMin p-dispersion problem and then the computational

experiments on the largest known benchmark problems are discussed with the proof of

optimality for most of the largest test instances that have never been solved to optimality

in the literature. Finally we conclude the paper by highlighting our contributions and

suggestions for future research.

3.2 Problem Statement and Mathematical Formulation

This section expresses the MaxMinMin p-dispersion problem in graph theoretical terms

and then presents its respective mathematical formulation. Let V = {vi, ∀i = 1, . . . , n},

be a set of n vertices (potential locations) and vi representing each member of this set.

Let E be the set of
(n

2
)
edges of an undirected and fully connected graph G(V,E), with

de > 0 representing the distance over each edge e ∈ E. The value p is an integer such

that 3 ≤ p ≤ |V |. We define S as any subset of p vertices such that S ⊆ V, |S| = p.

The subset of the vertices not present in the current solution is defined as S̄ such that

S̄ = V \ S, |S̄| = m = n− p. For easier presentation purposes throughout the paper the size

of the vertices outside the solution set is represented by m.

LetG(S,E(S)) be the subgraph induced by any subset S, as a result the objective function

value f(S) is defined as the smallest distance among all the p selected vertices in S:

f(S) = min
e∈E(S)

{de}.

The MaxMinMin problem intends to find the optimal subgraph G(S∗, E(S∗)), where:

S∗ = arg maxS f(S).

54



This problem could be modeled as the following 0-1 mixed integer program as suggested

in [32]:

max Z

s.t. Z ≤M(2− xi − xj) + d(vi, vj) 1 ≤ i < j ≤ n
n∑

i=1
xi = p

xi = {0, 1} 1 ≤ i ≤ n,

where xi is a binary decision variable defining if vertex vi is selected, d(vi, vj) is the

distance between any pair of the located facilities at locations i and j andM is a sufficiently

large number which could be set as Dmax, the largest distance among all the n vertices. In

Section 4.4.1 an upper bounding technique in order to obtain tighter bounds is discussed.

The distances between all the vertices are taken as an input and stored in an n× n upper-

triangular matrix with d(vi, vi) = 0.

3.3 VNS for the MaxMinMin Problem

Variable Neighborhood Search (VNS) is a metaheuristic or framework for building heuris-

tics which is based on the idea of a systematic change of the neighborhood in order to escape

from the valleys surrounding local optima, followed by a local search to find improved so-

lutions. This general method has been proposed by Mladenović and Hansen [64] and has

proven to lead to very successful heuristics for solving large combinatorial programs with

applications in location theory, cluster analysis and several other fields. For a recent survey

of the theoretical developments and applications including several hundred references see

[45, 48].

The Basic Variable Neighborhood Search method (BVNS) has already been applied to the

heaviest k-subgraph problem, MaxMinSum and MaxSumSum dispersion problems [11, 77,

78] and has shown to be among the most efficient methods compared to other heuristics for

diversity problems [11, 63].

In order to represent the solution at each step of the heuristic we use the data structure

suggested in [11]. The solution is represented by an array of n indices corresponding to

55



each vertex or candidate location, where the first p elements correspond to the subset of the

current solution S.

The solution space U is represented by the
(n

p

)
subsets of V with cardinality p. In order

to apply VNS a metric function is defined to evaluate the distance between any two solutions

S and S′:

δ(S, S′) = δ(S′, S) = |S \ S′|.

Based on the metric distance function defined above, the neighborhood of size k of a

solution S is defined as:

Nk(S) = {S′ ∈ U |δ(S, S′) = k}; k = 1, 2, . . . ,min{p,m}.

Throughout this paper the following notations are used:

• Sbest/cur: the best/current solution set corresponding to the best/current objective

function value;

• f(Sbest/cur): the best/current objective function value that corresponds to the smallest

distance among all the selected vertices in the best/current solution set Sbest/cur;

• α(vi): the first closest distance to each vi ∈ V from any vj ∈ S;

• v1
i : the closest vertex to each vi ∈ V from any vj ∈ S;

• β(vi): the second closest distance to each vi ∈ V from any vj ∈ S;

• v2
i : the second closest vertex to each vi ∈ V from any vj ∈ S;

• vexit: the vertex inside the solution set that is a candidate to leave the solution set

(vexit ∈ S);

• venter: the vertex outside the solution set that is a candidate to enter the solution set

(venter ∈ S̄);

• Stemp: the temporary solution set after removing the vexit, where |Stemp| = p− 1;

• f(Stemp): the smallest distance among the (p− 1) members of the temporary solution

set Stemp.

56



In Algorithm 3.1 we define the VNS function and then in the following sections we ex-

plain in details the functions embedded in our general framework. The stopping crite-

rion is the limit on the maximum number of iterations with no improvements itmax [70].

The already elapsed cumulative time and iteration in the overall procedure are noted by

telapsed and itelapsed. The kmin and kstep (shake step size) parameters are set by default to

1, and the kmax (maximum shake size) is set to a coefficient of min{p,m} as discussed later.

function VNS (kmin, kstep, kmax)
Scur ← Initialize();
Sbest ← Scur;
itelapsed = 0;
while itelapsed ≤ itmax do

kcur = kmin;
while kcur ≤ kmax and itelapsed ≤ itmax do

Scur ← Shake(Scur);
Scur ← LocalSearch(Scur);
Scur ← RefinedLocalSearch(Scur);
if f(Scur) > f(Sbest) then

Sbest ← Scur;
kcur = kmin;
itelapsed = 0;

else
kcur = kcur + kstep;
itelapsed + +;

end
end

end

Figure 3.1: Pseudo Code for the VNS Framework

3.3.1 Initialization

The initial solution could be created at random or in a greedy manner. Based on the

Random add method the initial solution is simply created by choosing p vertices at random.

The Greedy add and the Greedy drop construction heuristics could have been applied as

suggested in [77, 78]. The use of greedy methods in order to create the initial solution

is not necessary in our method, since based on a series of preliminary comparisons of the

various starting methods we observed that the random start method leads to high quality

and robust solutions. As a result we decided to use a simple random initialization to obtain

57



more diversified solutions in repeated runs and of course the efficientLocalSearch procedure

would soon find high quality solutions.

3.3.2 Local Search

After having created the initial solution, the LocalSearch procedure is implemented by

performing 1-interchange swaps on the current solution as shown in Algorithm 3.2. This

means that at each iteration only one vertex is swapped at a time. The swap could be done

whenever the first (first improvement strategy) or the best (best improvement strategy)

contribution is made to the current objective value. In this work the first improvement

strategy is implemented in order to create more diversification considering the flat landscape

of the objective function in the MaxMinMin problem. Besides the first improvement strategy

has much less iteration complexity in practice.

In order to start the LocalSearch procedure the gain obtained from swapping the selected

entering candidate with the selected leaving candidate should be evaluated as explained in

Section 4.3.3.1. The two main Contribution and Update functions will be explained in

details in the following subsections.

function LocalSearch(S)
repeat

(vexit, venter, gain)← Contribution(S);
if gain > 0 then

Swap(vexit, venter);
Update(vexit, venter, S);

end
until gain > 0;

Figure 3.2: Pseudo Code for the Local Search Procedure

3.3.2.1 Contribution

In the proposed LocalSearch procedure the Contribution function illustrated in Algorithm

3.3 can determine the first or best swap candidates vexit ∈ S and venter ∈ S̄, as well as its

corresponding contribution to the current objective function value.

58



For a more efficient illustration in Algorithm 3.3 we have defined the position(i,set) func-

tion which returns the vertex in the ith position of the subsets S or S̄. In order to initiate

the Contribution function a leaving candidate vexit = position(i, S) is chosen. A swap

with any entering candidate venter = position(j, S̄) will make an improvement only in the

following two cases:

• If the selected vexit ∈ S to be removed from the solution set corresponds to v1
enter for

the entering candidate venter ∈ S̄, the α(venter) value would be also removed. In this

case the gain would be positive only if the β(venter) value is greater than the current

solution f(Scur), and thus the gain would be:

gain← min{f(Stemp), β(venter)} − f(Scur).

• If the selected vexit ∈ S does NOT correspond to the v1
enter for the venter ∈ S̄, the

gain would be positive only if the α(venter) value is greater than the current solution

f(Scur), and thus the gain would be:

gain← min{f(Stemp), α(venter)} − f(Scur).

Apart from the above mentioned situations the swap will not make an improvement, and

thus the algorithm will move on to the next swap candidates. Calculating the f(Stemp) after

having removed the vexit requires O(p) time using the α and β values, and with the first

improvement strategy the Contribution function stops as soon as an improving solution is

found. As a result in the worst case it is implemented in O(pm) (the maximum of and O(p2)

and O(pm)) time per LocalSearch iteration. It should be noted that for all the datasets

studied in this work the following relationship exists: O(p) < O(m) < O(n) < O(p2) <

O(pm).

The O(pm) worst case complexity reaches its maximum value when p = n/2, as a result

the maximum complexity is O(n2/4) which is already inferior that O(n2) and of course

in our experiments such a situation would not happen since p < n/2. Besides, extensive

empirical results demonstrate that owing to the efficient use of the α and β values the average

complexity is much lower and the worst case complexity is almost never attained.

59



function Contribution(S)
gain = 0; i = 0;
while i ≤ p and gain = 0 do

vexit ← position(i, S);
remove vexit and find f(Stemp);
j = 0;
while j ≤ m and gain = 0 do

venter ← position(j, S̄);
if vexit = v1

enter then
if β(venter) > f(Scur) then

gain ← min{f(Stemp), β(venter)} − f(Scur);
end

else
if α(venter) > f(Scur) then

gain ← min{f(Stemp), α(venter)} − f(Scur);
end

end
j + + //move on to the next position in S̄//;

end
i+ + //move on to the next position in S//;

end
if gain > 0 then

return (vexit, venter, gain);
end

Figure 3.3: Pseudo Code for Determining the First Improving Swap and its Contribution
(First Improvement Strategy)

3.3.2.2 Update

The Update procedure demonstrated in Algorithm 3.4 performs all the required updates

before proceeding to the subsequent iteration. It is implemented in three different phases in

order to update the objective function value f(Scur), the α(vi) and β(vi) values for all the

vi ∈ V .

The update of the objective function value f(Scur) is straightforward and is computed in

O(p) total time by simply finding the smallest updated α(vi) value for all vi ∈ S. For the

update of the α(vi) and β(vi) values for all vi ∈ V three cases might occur:

• Case 1: If the selected leaving candidate vexit ∈ S is neither the first, nor the second

closest vertex to the vi ∈ V , then depending on the relative values of the α(vi), β(vi)

60



and its distance to the entering candidate which has just entered the solution set,

d(vi, venter), the update of the new α(vi) and β(vi) would be done in O(1) time:

– If the d(vi, venter) ≤ α(vi), the old α(vi) value would replace the β(vi), and the

d(vi, venter) would replace α(vi).

– If the α(vi) < d(vi, venter) ≤ β(vi), the old α(vi) value would not change and the

d(vi, venter) would replace β(vi).

– If the d(vi, venter) > β(vi), neither α(vi) nor β(vi) would change.

• Case 2: If the selected leaving candidate vexit ∈ S to be removed corresponds to the

first closest vertex v1
i for vi ∈ V , then the old α(vi) value should be removed. As a

result only the β(vi) and d(vi, venter) values need to be compared:

– If the d(vi, venter) ≤ β(vi), then the β(vi) would not change and the d(vi, venter)

would replace α(vi).

– If the d(vi, venter) > β(vi), the old β(vi) value would replace α(vi) and the new

updated β(vi) should be recomputed in O(p) time.

• Case 3: If the selected leaving candidate vexit ∈ S to be removed corresponds to the

second closest vertex v2
i for vi ∈ V then the old β(vi) value should be removed. As a

result the update would be:

– If the d(vi, venter) ≤ α(vi), the old α(vi) would replace as the new updated β(vi)

and the d(vi, venter) would replace α(vi).

– If the α(vi) < d(vi, venter) ≤ β(vi), the α(vi) value would not change and the

d(vi, venter) would replace β(vi).

– If the d(vi, venter) > β(vi), the old α(vi) value would not change and the new

updated β(vi) should be recomputed in O(p) time.

Hence, the proposed Update procedure is very efficient since the update of α(vi) and β(vi)

values is done in O(1) time, except for only two possible cases where the β(vi) should be

recomputed in O(p) time. This approach allows us carry forward the information gathered

in one iteration to the subsequent ones and to do the updates at a low linear complexity.

61



function Update(vexit, venter, S)
Find the updated f(Scur) (the smallest updated α(vi) for all the vi ∈ S);
forall the vi ∈ V do

if vexit 6= v1
i 6= v2

i //Case 1// then
if d(vi, venter) ≤ α(vi) then

β(vi)← α(vi);
α(vi)← d(vi, venter);

else
if α(vi) < d(vi, venter) ≤ β(vi) then

β(vi)← d(vi, venter);
end

end
else

if vexit = v1
i //Case 2// then

if d(vi, venter) ≤ β(vi) then
α(vi)← d(vi, venter);

else
α(vi)← β(vi);
β(vi)← recompute;

end
else

if vexit = v2
i //Case 3// then

if d(vi, venter) ≤ α(vi) then
β(vi)← α(vi);
α(vi)← d(vi, venter);

else
if α(vi) < d(vi, venter) ≤ β(vi) then

β(vi)← d(vi, venter);
else

β(vi)← recompute;
end

end
end

end
end

end

Figure 3.4: Pseudo Code for the Update Procedure

62



3.3.3 Refined Local Search

The RefinedLocalSearch is called right after the LocalSearch function in the general VNS

framework illustrated in Algorithm 3.1. The existence of plateaus or the flat landscapes

of the MaxMinMin problem makes it more difficult for the ascent procedures to find an

improvement in the objective function especially as the size and the density of the graphs

increase [11, 20, 74]. Resende et al. [74] present a new notion of improvement: a swap will

be accepted not only if it improves the solution value, but also if it creates a solution subset

S with a lower number of edges equal to the binding objective function value. This has

inspired us to develop the RefinedLocalSearch plateau search mechanism within the VNS

metaheuristic framework.

The RefinedLocalSearch procedure is efficient both in the presence, and the absence of

plateaus. The reason is that it makes all the possible swaps that will improve the quality of

the edges in the solution set that are not necessarily binding. As a result in the presence of

plateaus it will decrease the thickness of the plateau, and in the absence of plateaus it will

exchange the low quality edges with the ones of higher quality which will facilitate further

improvements by the LocalSearch procedure in the subsequent iterations. Of course this

procedure could even lead to improved objective values if the whole plateau is removed.

In order to choose the leaving candidate vexit, the RefinedLocalSearch procedure starts

by defining a smaller subset of the solution set which consists of only the vertices in the

solution set whose α values are inferior than a certain value. The tolerance is a parameter

that is tuned empirically. In order to do so the θ parameter is introduced and by changing

the its value one can increase or decrease the size of the above explained subset. Here Dmax

is the largest distance among all the vertices and of course we can include the whole solution

set by setting θ = 1.

The entering candidate would be any vertex whose second closest distance β(vk) is greater

than the current solution f(Scur) and whose closest vertex v1
k is a member of the subset that

has already been formed. Such a candidate vertex would be swapped with its closest vertex

v1
k which is already a member of the subset. This method ensures that after the swap the

63



current solution would never deteriorate and the swaps are done until eligible candidates are

found.

function RefinedLocalSearch(S)
repeat

tolerance = θ ∗ (Dmax − f(Scur));
Set = {vi ∈ S|α(vi) ≤ f(Scur) + tolerance};
k = 0;
bool = false;
while k ≤ m and bool = false do

venter ← position(k, S̄);
if β(venter) ≥ f(Scur) then

if v1
enter ∈ Set then
vexit ← v1

enter;
Swap(vexit, venter);
Update(vexit, venter, S);
bool = true;

end
else

k + + //move on to the next position in S̄//;
end

end
until bool=true;

Figure 3.5: Pseudo Code for the Refined Local Search Procedure

3.3.4 Shake

The perturbation in most VNS-based heuristics is done in a simple manner by choosing a

random vertex from the kth neighborhood, i.e. Nk(S) from the current solution S and then

repeating k times the random swap move. The RandomShake function does so by choosing

one random leaving and entering candidate at each iteration with updates in between each

swap. However, we have developed two additional shake functions in order to control the

perturbation operation in a more intelligent manner.

The SemiGreedyShake function fixes a random leaving candidate from the current solu-

tion set S and then chooses an entering candidate whose smallest distance to the remaining

solution vertices in the solution set, i.e. the α(vi) value (or the β(vi) value if the selected

leaving candidate corresponds to its v1
i ) is the largest. As a result this shake method does

not guarantee that a deterioration in the objective function value would not occur, yet it

64



simply chooses a reasonable entering candidate after having fixed the leaving candidate.

This procedure is repeated until the shake size of k is attained. Each iteration is performed

in O(m) time and after each swap the Update function is called.

In order to have a more intensified shake operation the GreedyShake function could

be used which works the same way as the SemiGreedyShake function in order to find the

entering candidates. Yet, the leaving candidates would be selected only among the vertices

that form the binding distances (the objective function value) within the solution set.

We have designed a series of preliminary experiments as suggested in [77, 78] and found

out empirically that the SemiGreedyShake function is superior than the other two shaking

options for the MaxMinMin problem. Therefore, only this shake function would be used in

the final experiments in Section 4.4 where it is demonstrated that the more intelligent shake

functions dominate the purely random ones.

3.4 Computational Experiments

In this section we have selected two of the largest Ran and Geo benchmark instances

that have been used for comparison purposes for the MaxMinMin problem leading to 80

instances in total [20, 70, 74]. Here we do not consider the smaller instances with n = 100

previously used in the literature as they have been already solved to optimality and do not

impose any challenge to our proposed method. A brief description of the characteristics of

the datasets is given below:

• Geo: this dataset consists of 40 matrices where the distances are generated by first

randomly forming n points with a random number of coordinates between 2 and 21

and then with random coordinates in the range [0, 100]. The size of the instances is

n = 250 and 500 with p = 0.1n and 0.3n respectively.

• Ran: this dataset consists of 40 matrices with integer numbers randomly generated

within the interval [50, 100] for all the instances except for the instances with n = 500

and p = 0.3n, where the distances are generated in the interval [1, 200].

First we describe our experiments that were designed to study the performance of different

settings within the VNS framework and then analyze the overall results obtained by different

65



methods over all the test problems. We then compare a results with that of the state-of-

the-art heuristics in the literature and finally find the optimal solution for most of the large

instances using exact methods.

3.4.1 Experiments Setup

The proposed VNS implementation allows various settings and methods within its framework.

In order to initialize the VNS three different methods have been discussed: Random add,

Greedy add and Greedy drop. There are also three different shaking possibilities: Random

shake, Semi-Greedy shake and Greedy shake. On the other hand at each iteration of VNS

either an improvement in the solution is made or not. In case of no improvement a decision

on how to start the next iteration should be made. The next iteration is either started

form the already best solution obtained, or from the current solution just obtained. The

former will lead to more intensification in the search, whereas the latter favors diversification.

Besides, the LocalSearch procedure can pursue a first improvement strategy favoring more

diversification, versus best improvement strategy leading to more intensification.

There also are two parameters to be tuned in the general framework: 1) the θ parameter

in Algorithm 3.5 which adjusts the size of the subset to choose the leaving candidates, and 2)

the kmax whose value by default is min{p,m} which might be a large value depending on the

instance size. In the experiments setup phase the tested values were θ = 0.03, 0.06 and 0.1

and also kmax = 0.5 ∗min{p,m}, 0.75 ∗min{p,m} and min{p,m}.

As mentioned in Section 4.3 we conducted preliminary experiments to choose the most

promising setting for the final experiments (for more details see e.g. [77, 78]). Empirically,

the following setting has been selected for the MaxMinMin problem:

• The current iteration and first improvement LocalSearch strategies lead to overall

better results and lower complexity compared to other general frameworks.

• The Greedy add and drop initialization methods do not have significant differences and

lead to the same results in repeated runs; as a result the heuristic is started randomly

for more diversification.

66



• The Semi-Greedy Shake method leads to a significantly higher quality over all data

instances.

• There is not a definitive winner among the different parameter combinations; yet

empirically θ = 0.1 and kmax = 0.75 ∗ min{p,m} seem to lead to relatively higher

quality solutions over all the 80 data instances.

The heuristics are coded in C++ and compiled with the −O2 optimization option, and

are run 30 times on a linux machine with an intel compiler of 2.667 GHz and 3Gb Ram.

The stopping criteria is the maximum number of iterations with no improvements which is

empirically set to itmax = k(n2/p). We have run two series of tests with different stopping

criteria with k = 1 and 2.5 for the smaller n = 250 instances, and k = 10 and 25 for the

n = 500 instances. The best obtained results for all the 80 data instances are presented

under the “Our best” columns of Tables 3.III and 3.IV , where the values in bold show that

best ever results have been obtained.

3.4.2 Results and Analysis

As mentioned earlier two series of tests are performed with different stopping criteria. Each

instance is run 30 rimes and in order to have a better idea of the quality and the robustness

of a results the “Coefficient of variation” is reported for each instance group calculated as

follows:

CV = standard deviation
mean × 100.

Tables 3.I and 3.II represent the summary of a results for the stopping criteria of

itmax = k(n2/p) with smaller and larger k values respectively. The first column shows the

name of the instances separating the instances based on type and size, the second column

represents the value of the k coefficient adjusting the stopping criteria and the third column

shows the number of instances for which the best ever solution has been found (20 instances

in each group). The last three columns demonstrate the quality of our solutions in terms

of the coefficient of variation (CV) averaged over all the 20 instances within each dataset,

the average time when the best solution (the best solution for each specific run and not

67



necessarily the best ever solution) was found (Time-best) and the average running time

(Time-ave) of the 30 runs for each group.

Both tests series (with shorter and longer stopping criteria) obtain all of the 80 best

known results in multiple runs. Comparison of the two tables shows that allowing larger

number of iterations with no improvements increases the total average running time (121.77

vs. 302.51), and decreases the CV or increases the quality of the solutions (0.08 vs. 0.07), i.e.

allowing approximately 59.75% longer running times on average have led to an improvement

of 12.5% in the average CV. Here examining longer running times (maximum number of

iterations with no improvements) would not make any sense, since even with the shorter

running times all the 80 best results have been obtained and the interpretation of the tradeoff

between running times and solution quality is a matter of the decision maker’s choice. Based

on the same logic trying even shorter running times is not necessary either, as the average

times are already very low and this would only increase the average CV values.

The comparison of a results with that of the state-of-the-art heuristics is demonstrated

in Tables 3.III and 3.IV where the first three columns represent the name of each instance

and its size. In the columns RMGD, DCGL and MMDP (names as suggested in [70]), the

best results obtained by Resende et al. [74], Della Croce et al. [20] and Porumbel et al.

[70] are reported respectively. These methods are among the most powerful heuristics ever

applied on the datasets. The last column summarizes our results where the “Our best”

column reports the best results obtained in 30 runs of our heuristic. The results highlighted

in bold show that our method finds all the best solutions ever obtained in the literature

including the new improvement reported in [70], among which 53 out of 80 are proven to

be optimal in Tables 3.V and 3.VI . It should be noted that none of the previous methods

have succeeded in finding all of the best benchmark results.

Table 3.I : Summary of Results for Shorter Running Times
Instance k # Best CV Time-best Time-ave
Geo 250 1 20 0.04 0.65 3.04
Ran 250 1 20 0.03 0.19 1.8
Geo 500 10 20 0.05 42.93 320.5
Ran 500 10 20 0.2 8.84 161.73
All 80 instances 80 0.08 13.15 121.77

68



Table 3.II : Summary of Results for Longer Running Times
Instance k # Best CV Time-best Time-ave
Geo 250 2.5 20 0.01 0.89 6.85
Ran 250 2.5 20 0.04 0.21 3.91
Geo 500 25 20 0.03 112.01 805.77
Ran 500 25 20 0.19 46.91 393.51
All 80 instances 80 0.07 40.01 302.51

The performance of our method is clearly superior than the several methods tested in [74]

(Simulated annealing, Tabu Search, GRASP and path-relinking etc) both in terms of the

solution quality (69 better solutions out of 80) and time (hundreds of seconds for RMGD).

The moderate and high execution times over the larger instances reported by MMDP in [70]

are obtained by a limit of 10000n unsuccessful iterations leading to 57 over 80 best solutions

(0.24% deviation and 40.6 average time), and also the limit of 2000000n iterations with no

improvements leading to 72 over 80 best results (0.06% deviation and 7840.75 average time).

As a result the superiority of our method in terms of the solution quality and computational

times is evident. Besides the algorithm proposed in [70] is launched from an initial solution

already created by a constructive heuristic which seems not to be included in the total

running times. Furthermore, the Time-best column in Table 3.I demonstrates that our best

solutions were obtained in an average of 13.15 seconds where the n = 250 optimal values

were obtained in an average of only 0.42 seconds. There are no detailed computational

times reported for each individual group of instances for DCGL [20]. The DCGL takes a

complex and refined internal max-clique heuristic already in literature in each iteration of

its dichotomic search and it is not clear if the stopping criterion of the fixed 250000 total

iterations corresponds to this internal heuristic or the overall MaxMinMin heuristic. Yet,

their computational times seem to be of tens of seconds [70].

3.4.3 Comparison With Exact Methods

In order to verify the quality of the solutions obtained by our heuristics we used the Ilog

cplex 12.4 for exact solutions. Yet, even the smallest instances seemd impossible for exact

methods to solve in a reasonable time. As a result we provided Ilog cplex with the best

solution we ever obtained from our heuristics in Section 4.4.1 as an initial solution and also

calculated an exact upper bound in order to facilitate the problem resolution.

69



Table 3.III : Comparison of the Best Known Results for the Geo Instances
Instance n p RMGD DCGL MMDP Our best
Geo 250 1 250 25 171.01 171.01 171.01 171.01
Geo 250 2 250 25 19.7 20.03 20 20.03
Geo 250 3 250 25 137.75 137.75 137.75 137.75
Geo 250 4 250 25 171.21 171.96 171.96 171.96
Geo 250 5 250 25 148.72 148.76 148.76 148.76
Geo 250 6 250 25 99.8 100.38 100.38 100.38
Geo 250 7 250 25 175.71 175.71 175.71 175.71
Geo 250 8 250 25 164.03 164.51 164.51 164.51
Geo 250 9 250 25 179.16 179.18 179.18 179.18
Geo 250 10 250 25 102.19 102.23 102.23 102.23
Geo 250 11 250 75 31.37 31.72 31.37 31.72
Geo 250 12 250 75 93.84 93.91 93.91 93.91
Geo 250 13 250 75 145.06 145.22 145.13 145.22
Geo 250 14 250 75 70.12 70.7 70.32 70.7
Geo 250 15 250 75 142.5 142.54 142.54 142.54
Geo 250 16 250 75 108.05 108.05 108.05 108.05
Geo 250 17 250 75 124.25 124.63 124.63 124.63
Geo 250 18 250 75 148.63 148.76 148.76 148.76
Geo 250 19 250 75 133.87 134.74 134.74 134.74
Geo 250 20 250 75 147.83 147.83 147.83 147.83
Geo 500 1 500 50 123.74 124.79 124.79 124.79
Geo 500 2 500 50 13.4 13.79 13.79 13.79
Geo 500 3 500 50 164.13 165.04 165.04 165.04
Geo 500 4 500 50 131.62 132.5 132.5 132.5
Geo 500 5 500 50 28.07 28.55 28.18 28.55
Geo 500 6 500 50 27.8 28.6 28.18 28.6
Geo 500 7 500 50 131.34 132.51 132.51 132.51
Geo 500 8 500 50 112.68 113.6 113.6 113.6
Geo 500 9 500 50 168.24 168.96 168.96 168.96
Geo 500 10 500 50 159.68 159.98 159.98 159.98
Geo 500 11 500 150 93.49 93.97 93.66 93.97
Geo 500 12 500 150 71.12 71.46 71.46 71.46
Geo 500 13 500 150 133.99 134.47 134.47 134.47
Geo 500 14 500 150 111.04 111.63 111.63 111.63
Geo 500 15 500 150 35.71 36.18 36.18 36.18
Geo 500 16 500 150 132.43 132.58 132.58 132.58
Geo 500 17 500 150 129.04 129.49 129.49 129.49
Geo 500 18 500 150 71.85 72.65 72.65 72.65
Geo 500 19 500 150 123.95 123.99 123.99 123.99
Geo 500 20 500 150 123.14 123.43 123.43 123.43

70



Table 3.IV : Comparison of the Best Known Results for the Ran Instances
Instance n p RMGD DCGL MMDP Our best
Ran 250 1 250 25 59 61 61 61
Ran 250 2 250 25 60 61 61 61
Ran 250 3 250 25 60 61 61 61
Ran 250 4 250 25 59 61 61 61
Ran 250 5 250 25 60 61 61 61
Ran 250 6 250 25 60 61 61 61
Ran 250 7 250 25 60 61 61 61
Ran 250 8 250 25 60 61 61 61
Ran 250 9 250 25 60 61 61 61
Ran 250 10 250 25 60 61 61 61
Ran 250 11 250 75 52 52 52 52
Ran 250 12 250 75 51 52 52 52
Ran 250 13 250 75 52 52 52 52
Ran 250 14 250 75 52 52 52 52
Ran 250 15 250 75 51 52 52 52
Ran 250 16 250 75 52 52 52 52
Ran 250 17 250 75 52 52 52 52
Ran 250 18 250 75 52 52 52 52
Ran 250 19 250 75 52 52 52 52
Ran 250 20 250 75 51 52 52 52
Ran 500 1 500 50 54 55 55 55
Ran 500 2 500 50 55 56 56 56
Ran 500 3 500 50 55 55 56 56
Ran 500 4 500 50 55 56 56 56
Ran 500 5 500 50 54 56 56 56
Ran 500 6 500 50 54 55 55 55
Ran 500 7 500 50 54 56 56 56
Ran 500 8 500 50 55 56 55 56
Ran 500 9 500 50 55 56 56 56
Ran 500 10 500 50 54 56 56 56
Ran 500 11 500 150 4 5 5 5
Ran 500 12 500 150 4 5 5 5
Ran 500 13 500 150 4 5 5 5
Ran 500 14 500 150 4 5 5 5
Ran 500 15 500 150 4 5 5 5
Ran 500 16 500 150 4 5 5 5
Ran 500 17 500 150 4 5 5 5
Ran 500 18 500 150 4 5 5 5
Ran 500 19 500 150 4 5 5 5
Ran 500 20 500 150 4 5 5 5

71



Table 3.V : Optimality Check for the Geo Instances
Instance n p LB UB Dmax Cplex Gap Time
Geo 250 1 250 25 171.01 220 267.19 171.01 optimal 1023
Geo 250 2 250 25 20.03 98 130.21 20.03 optimal 22
Geo 250 3 250 25 137.75 189 231.83 137.75 optimal 317
Geo 250 4 250 25 171.96 222 269.26 171.96 optimal 425
Geo 250 5 250 25 148.76 199 261.61 148.76 optimal 291
Geo 250 6 250 25 100.38 156 197.9 100.38 optimal 244
Geo 250 7 250 25 175.71 226 296.89 175.71 optimal 334
Geo 250 8 250 25 164.51 215 258.77 164.51 optimal 363
Geo 250 9 250 25 179.18 228 289.15 179.18 optimal 856
Geo 250 10 250 25 102.23 158 207.63 102.23 optimal 183
Geo 250 11 250 75 31.72 96 162.88 31.72 optimal 14
Geo 250 12 250 75 93.91 150 241.24 93.91 optimal 41
Geo 250 13 250 75 145.22 199 269.78 145.22 optimal 141
Geo 250 14 250 75 70.7 131 193.65 70.7 optimal 24
Geo 250 15 250 75 142.54 194 275.29 142.54 optimal 40
Geo 250 16 250 75 108.05 163 242.16 108.05 optimal 101
Geo 250 17 250 75 124.63 178 250.58 124.63 optimal 82
Geo 250 18 250 75 148.76 201 273.66 148.76 optimal 134
Geo 250 19 250 75 134.74 189 264.01 134.74 optimal 80
Geo 250 20 250 75 147.83 201 274.92 147.83 optimal 69
Geo 500 1 500 50 124.79 185 247.02 146.71 17.57% 1209600
Geo 500 2 500 50 13.79 97 135.29 13.79 optimal 684
Geo 500 3 500 50 165.04 223 280.72 189.31 14.71% 1209600
Geo 500 4 500 50 132.5 192 255.87 152.33 14.97% 1209600
Geo 500 5 500 50 28.55 111 158.58 28.55 optimal 4053
Geo 500 6 500 50 28.6 112 156.96 28.6 optimal 9111
Geo 500 7 500 50 132.51 193 247.82 152.02 14.72% 1209600
Geo 500 8 500 50 113.6 177 225.84 134.35 18.27% 1209600
Geo 500 9 500 50 168.96 226 278.94 202.07 19.60% 1209600
Geo 500 10 500 50 159.98 219 280.9 192.8 20.52% 1209600
Geo 500 11 500 150 93.97 157 236.76 93.97 optimal 4136
Geo 500 12 500 150 71.46 137 226.01 71.46 optimal 370
Geo 500 13 500 150 134.47 194 279.81 134.47 optimal 13804
Geo 500 14 500 150 111.63 173 247.57 111.63 optimal 3043
Geo 500 15 500 150 36.18 106 181.86 36.18 optimal 120
Geo 500 16 500 150 132.58 193 274.5 132.58 optimal 23440
Geo 500 17 500 150 129.49 190 274.14 129.49 optimal 3824
Geo 500 18 500 150 72.65 139 217.5 72.65 optimal 2859
Geo 500 19 500 150 123.99 184 259.67 123.99 optimal 5245
Geo 500 20 500 150 123.43 183 262.88 123.43 optimal 13871

72



The upper bound is calculated as follows: for each of the n vertices their distances to

their furthest (p−1) vertices are listed in decreasing order. As a result for each vertex there

is a value that represents its distance to its (p − 1)th furthest vertex. Now if the above n

values are sorted in decreasing order, it is assured that the optimal solution can never exceed

the value in the pth rank in this sorted list.

After having provided the initial lower bound and the upper bound, we ran Ilog cplex

for all the instances for as long as possible considering the available computational resources.

In Tables 3.V and 3.VI the “Lower bound (LB)” column represents our best results already

found, the “Upper Bound (UB)” column addresses the above explained exact upper bounds

and the Dmax is the maximum distance among all the n vertices for each instance. The last

three columns represent the best bound found by Ilog cplex, its optimality status and the

time in seconds for a single run of Ilog cplex to find the optimal solution or to terminate

in general due to limited computational resources. The results prove the optimality of

33 solutions and seven tighter upper bounds for the Geo instances. Here the maximum

running time is set to two weeks (336 hours). The Ran instances require more computational

resources due to the existence of thick plateaus in their data structure. As a result we proved

the optimality of all the n = 250 Ran instances and found tighter bounds for n = 500 ones.

The maximum running time for the Ran instances is three days (72 hours) due to the high

computational resources requirement of such instances and the fact that longer running

times lead to very negligible improvements in the Gap.

73



Table 3.VI : Optimality Check for the Ran Instances
Instance n p LB UB Dmax Cplex Gap Time
Ran 250 1 250 25 61 97 100 61 optimal 21226
Ran 250 2 250 25 61 97 100 61 optimal 19125
Ran 250 3 250 25 61 97 100 61 optimal 27730
Ran 250 4 250 25 61 97 100 61 optimal 24031
Ran 250 5 250 25 61 97 100 61 optimal 31043
Ran 250 6 250 25 61 97 100 61 optimal 22673
Ran 250 7 250 25 61 97 100 61 optimal 19190
Ran 250 8 250 25 61 97 100 61 optimal 25624
Ran 250 9 250 25 61 97 100 61 optimal 20037
Ran 250 10 250 25 61 97 100 61 optimal 17230
Ran 250 11 250 75 52 86 100 52 optimal 725
Ran 250 12 250 75 52 86 100 52 optimal 793
Ran 250 13 250 75 52 86 100 52 optimal 745
Ran 250 14 250 75 52 86 100 52 optimal 402
Ran 250 15 250 75 52 86 100 52 optimal 600
Ran 250 16 250 75 52 86 100 52 optimal 428
Ran 250 17 250 75 52 86 100 52 optimal 1414
Ran 250 18 250 75 52 86 100 52 optimal 392
Ran 250 19 250 75 52 86 100 52 optimal 1180
Ran 250 20 250 75 52 86 100 52 optimal 1767
Ran 500 1 500 50 55 96 100 91 65% 259200
Ran 500 2 500 50 56 96 100 91 62.5% 259200
Ran 500 3 500 50 56 96 100 92 64% 259200
Ran 500 4 500 50 56 96 100 92 64% 259200
Ran 500 5 500 50 56 96 100 91 62.5% 259200
Ran 500 6 500 50 55 96 100 91 65% 259200
Ran 500 7 500 50 56 96 100 91 62.5% 259200
Ran 500 8 500 50 56 96 100 91 62.5% 259200
Ran 500 9 500 50 56 96 100 91 62.5% 259200
Ran 500 10 500 50 56 96 100 91 62.5% 259200
Ran 500 11 500 150 5 143 200 104 1980% 259200
Ran 500 12 500 150 5 143 200 103 1960% 259200
Ran 500 13 500 150 5 143 200 104 1980% 259200
Ran 500 14 500 150 5 143 200 103 1960% 259200
Ran 500 15 500 150 5 143 200 103 1960% 259200
Ran 500 16 500 150 5 143 200 103 1960% 259200
Ran 500 17 500 150 5 143 200 103 1960% 259200
Ran 500 18 500 150 5 143 200 103 1960% 259200
Ran 500 19 500 150 5 144 200 103 1960% 259200
Ran 500 20 500 150 5 143 200 103 1960% 259200

74



3.5 Conclusions and Future Work

In this work we applied an elaborate VNS framework for the first time over 80 of the

largest data instances of the MaxMinMin p-dispersion problem. We first explained a de-

tailed preliminary experimental setting which captured a vast number of possibilities within

the VNS framework, and then selected empirically the most promising setting in order to con-

duct the final experiments. We also incorporated a new plateau search module within the

VNS framework coupled with elaborate shake functions. Unlike the previous methods, our

computational experiments on the largest benchmarks found all of the best known solutions

with the proof of optimality for 53 out of 80 instances for the first time in the literature.

Of course in order to have a more precise comparison of various heuristics the same

executable codes of the different authors should be run under the same conditions with the

same stopping criteria. Yet, we believe that the reported results represent a fair comparison

with other state-of-the-art heuristics, as we have considered the best ever solutions obtained

by all the heuristic methods ever studied in the literature regardless of their longer running

times or the use of other internal heuristics. Besides our results clearly demonstrate the high

performance of our solutions both in terms of quality and computational times. Owing to the

efficient use of information (α and β values) the complexity of our LocalSearch method is

very low (rarely quadratic in practice), besides a very efficient Update procedure with linear

complexity that is even implemented in constant time for most cases. Another important

point is that in the previous methods lower running times usually led to a decrease in the

number of best solutions found, whereas in our work fast results go hand in hand with high

quality solutions.

One of the most interesting advantages of the Variable Neighborhood Search metaheuris-

tic is its flexibility and how it allows the decision maker to define and adapt the framework

to its own problem specifications. For instance, in case of limited computational resources

one might be interested in doing single runs but allowing longer running times to secure the

chances of finding the best solutions. The choice of the best setting is always a matter of time

and available computational resources and one could further investigate finer tuning of the

parameters embedded in the proposed framework. As the future work we suggest developing

75



decomposed VNS frameworks in order to tackle large problem instances in a shorter time and

to possibly further improve or even prove the optimality of the few remaining instances.

Acknowledgements

This research was funded by NSERC (Natural Sciences and Engineering Research Council

of Canada) grant PGSD2-392404-2010, and FQRNT (Fonds de recherche du Québec - Nature

et technologies) grant 134582. Pierre Hansen has been partially supported by NSERC grant

105574-2007, Sylvain Perron has been partially supported by NSERC grant 327435-06, and

they were both partially supported by FQRNT team grant PR-131365.

76



Chapter 4

Bi-Objective Variable Neighborhood Search for the

p-Diversity-Proximity Problem

Behnaz Saboonchi

Pierre Hansen

Sylvain Perron

Department of Management Sciences

GERAD and HEC Montréal

3000, chemin de la Côte-Sainte-Catherine

Montréal, Québec, H3T 2A7, Canada



Abstract

Application of the dispersion models in order to address the cannibalization phenomenon

within franchised chains is a recent approach. These models focus on the maximization

of dispersion among the same-brand units without considering their proximity to the cus-

tomer zones. In this work we have designed a bi-objective location model which is aimed

at maximizing the minimum distance among the newly located units while minimizing their

gravity-based distance to the customer zones. This unique model captures simultaneously

two of the most important concerns within the franchise location domain, for the first time

in the literature. We finally develop a heuristic solution procedure based on the Bi-objective

Variable Neighborhood Search (BOVNS) framework in order to create high-quality solutions

for both objectives in the Pareto front. Extensive computational experiments are also pre-

sented.

4.1 Introduction

Dispersion models maximize dispersion as a function of the distance/dissimilarity among

the entities in a network and are traditionally used to locate undesirable and noxious or

obnoxious facilities [32, 34]. Erkut and Neuman [33] propose four different types of dispersion

models based on different dispersion metrics. The first one is the MaxMinMin problem which

maximizes the minimum distance between each pair of the selected facilities. The second

one is the MaxSumMin which seeks to maximize the sum of the minimum distances from

each facility to its closest neighbor. The third formulation is called MaxMinSum which takes

the sum of the distances from each facility to all its neighbors and maximizes the smallest

sum of the distances. Finally the fourth formulation corresponds to the MaxSumSum which

aims at maximizing the sum of all the hub distances for all the located facilities.

Saboonchi et al. [76, 77, 78] apply the MaxMinMin, MaxMinSum and MaxSumSum

dispersion problems for the first time to address the franchise cannibalization issue. They

developed several heuristics based on the Variable Neighborhood Search metaheuristic frame-

work including various greedy constructive procedures and different shaking strategies. They

discuss the tradeoffs among different solution strategies and the comparison of results with

those of the state-of-the-art heuristics demonstrate the high performance of their approaches.

78



To the best of our knowledge, the concept of the gravitational attraction functions for

the candidate locations has never been incorporated into dispersion problems. The general

dispersion concept is suitable for locating obnoxious and undesirable facilities, but not nec-

essarily for locating retail stores. This is because one cannot focus only on the dispersion of

the facilities without considering the relative distance to the customer zones. Therefore, the

franchise location models need to be adapted to embrace both important factors involved

in the retail networks: dispersion of the facilities and accessibility/utility perceived by the

customers.

In classical location-allocation models it is normally assumed that the clients always prefer

to choose the closest facilities in order to receive their desired services. This assumption is

appropriate for locating fire stations or hospitals for instance, but not for locating retail

or commercial centers, since clients behave according to a gravity-based formula to choose

among different competing facilities [12].

In 1933Walter Christaller [14], a German geographer, developed the Central Place Theory

in order to explain the distribution patterns, size and the number of towns and cities around

the world. The theory consists of two basic concepts: 1) the threshold of the demand in order

to make the market profitable, and 2) the average maximum distance that the customer is

willing to travel. Another location theory which has been widely used in order to locate

commercial centers is the gravity model. The law of retail gravitation of Reilly [17, 73] has

been derived from Newton’s law and has been used to explain various types of behavior that

occur between different entities or locations. A probabilistic view of the deterministic law

of gravitation led to the Huff model [50, 51] and later to a generalized version called the

Multiplicative Competition Interaction (MCI) model [66]. The MCI probabilistic version is

based on the Huff formulation and also the market share models. For more comprehensive

explanations please see [40].

Based on the gravity rule, instead of assigning customers to their closest facility, they

are allocated to the points in inverse proportion to some function of the distance or the

traveling time [53]. In other words each facility has a utility for each customer. The nature

of the utility varies based on the type of the facility such as the distance/traveling time,

physical store environment, closeness to other type of stores, variety, etc. [5, 10, 55, 56, 60].

79



Besides, the utility might depend on the socioeconomic and demographic factors such as

the per capita income, age, gender, household size, the local unemployment rate, consumer

mobility and population density, etc. [23, 41, 49, 52, 69].

The gravity-based formulation has been used in the p-median and equity problems [24, 25,

26], competitive location models [8, 9, 23, 28, 29, 30, 42] and airline p-hub location models

[22, 31]. In this work we capture the cannibalization issue based on the MaxMinMin p-

dispersion criterion as discussed in [76], and the proximity to the customer zones is modeled

with a gravity-based p-median problem as suggested in [24]. As the result, throughout the

paper the problem is called the p-diversity-proximity model. It should be noted that we

consider the classical formulation of the MaxMinMin p-dispersion model; however, other

dispersion metrics could also be considered based on the preferences of the decision maker.

In Section 4.2 we describe the problem and its mixed integer non-linear formulation. Sec-

tion 4.3 presents a detailed explanation of the proposed VNS heuristic solution procedure for

the p-diversity-proximity problem and then the computational experiments on the classical

datasets are discussed. Finally we conclude the paper by highlighting our contributions and

then propose suggestions for future research.

4.2 Problem Statement and Mathematical Formulation

This section presents the mathematical formulation for the p-diversity-proximity problem.

Let V = {vi,∀i = 1, . . . , n}, be a set of n vertices (potential locations/customer zones) and

vi representing each member of this set. It is assumed that the facilities and the (center of)

customer zones can only be located on the network nodes. We define S as any subset of

p vertices such that S ⊆ V, |S| = p. The subset of the vertices not present in the current

solution is defined as S̄ such that S̄ = V \ S, |S̄| = n − p = m. For easier presentation

purposes throughout the paper the size of the vertices outside the solution set is presented

by m.

The clients could be present at the same nodes as the facilities. As the result we define

d(vi, vj) as the distance between points i and j, i.e. between any pair of the located facilities,

or between the customer zone at node i and the facility located at node j. The utility that

each customer i receives from each facility j is presented by U(vi, vj) that could depend on

80



any of the factors discussed in Section 4.1. All the distances are measured based on the

center of the area representing the facility or the demand point [24], and the clients’ demand

at each point is presented by wi.

The first objective function f1(S) within the bi-objective model is defined as the smallest

distance among all the p selected vertices (facilities) in S:

f1(S) = min
vi,vj∈S

{d(vi, vj)}.

The portion of the demand at customer zone i that is served by the facility k is:

wi
U(vi, vk)∑n

j=1 U(vi, vj)xj
,

where xj is a binary decision variable defining if vertex vj (facility at location j) is

selected. Therefore, the second objective function f2(S) representing the total utility-based

distance traveled by all customers to the selected p facilities would be [24, 25]:

f2(S) =
n∑

i=1
wi

∑n
j=1 U(vi, vj)d(vi, vj)xj∑n

j=1 U(vi, vj)xj
.

The bi-objective problem can be modeled as the following 0-1 mixed integer non-linear

program as suggested in [25] and [32]:

max Z

min
n∑

i=1
wi

∑n
j=1 U(vi, vj)d(vi, vj)xj∑n

j=1 U(vi, vj)xj

s.t. Z ≤M(2− xi − xj) + d(vi, vj) 1 ≤ i < j ≤ n
n∑

j=1
xj = p

xj = {0, 1} 1 ≤ j ≤ n.

In the above formulationM is a sufficiently large number which could be set as Dmax, the

largest distance among all the n vertices. An upper bounding technique in order to obtain

tighter bounds is discussed in [76].

81



4.3 Bi-Objective Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a metaheuristic or framework for building heuris-

tics which is based on the idea of a systematic change of the neighborhood in order to escape

from the valleys surrounding local optima, followed by a local search to find improved so-

lutions. This general method has been proposed by Mladenović and Hansen [64] and has

proven to lead to very successful heuristics for solving large combinatorial programs with

applications in location theory, cluster analysis and several other fields. For a recent survey

of the theoretical developments and applications including several hundred references see

[45, 48].

The Variable Neighborhood Search method was first applied to the MaxMinMin p-

dispersion problem (objective 1) in [76], coupled with new plateau search and shake modules.

This method obtains high quality and robust solutions with low running times and compu-

tational complexity. As a result, we have used the same VNS modules in order to address the

first objective within the bi-objective framework. The gravity p-median problem (objective

2) has been solved with the Steepest Descent and Tabu Search methods in [25], yet the VNS

method has never been applied to this problem.

The Bi-objective Variable Neighborhood Search Method (BOVNS) represents a more gen-

eral framework compared to the single-objective VNS. It includes two objective functions at

a time, with different neighborhood structures and solution selection strategies [38, 57, 58].

This innovative framework is illustrated in Algorithm 4.1.

The solution is represented by an array of n indices corresponding to each vertex or

candidate location, where the first p elements correspond to the subset of the current solution

S. The solution space U is represented by the
(n

p

)
subsets of V with cardinality p. In order

to apply VNS, a metric function is defined to evaluate the distance between any two solutions

S and S′:

δ(S, S′) = δ(S′, S) = |S \ S′|.

82



Based on the metric distance function defined above, the neighborhood of size k of a

solution S is defined as:

Nk(S) = {S′ ∈ U |δ(S, S′) = k}; k = 1, 2, . . . ,min{p,m}.

Throughout this section the following notations are used:

• Scur: the current solution set where |Scur| = p;

• f1(S), f2(S): the first and second objective function values corresponding to the cur-

rent solution set S;

• vexit: the vertex inside the solution set that is a candidate to leave the solution set

(vexit ∈ S);

• venter: the vertex outside the solution set that is a candidate to enter the solution set

(venter ∈ S̄);

• α(vi): the sum of the product of the utility and the distance from any customer zone

(vi ∈ V ) to all the vertices in the solution set (vj ∈ S):

α(vi) =
p∑

j=1
U(vi, vj)d(vi, vj),∀i = 1, . . . , n;

• β(vi): the sum of the utilities from any customer zone (vi ∈ V ) to all the vertices in

the solution set (vj ∈ S):

β(vi) =
p∑

j=1
U(vi, vj),∀i = 1, . . . , n.

The BOVNS function is defined in Algorithm 4.1. The stopping criterion is the total

running time. The already elapsed cumulative time in the overall procedure is noted by

telapsed. The kmin and kstep (shake step size) parameters are set by default to 1, and the

kmax (maximum shake size) is set to a coefficient of min{p,m}, as discussed later.

The BOVNS framework starts by the Initialize function. The initial solution could be

created at random or in a greedy manner. Based on the Random add method the initial

83



function BOVNS (kmin, kstep, kmax)
Scur ← Initialize();
ParetoUpdate(S);
telapsed = 0;
while telapsed ≤ tmax do

kcur = kmin;
Scur ← Randomize();
while kcur ≤ kmax and telapsed ≤ tmax do

Scur ← Shake(Scur);
Scur ← LocalSearch(Scur);
ParetoUpdate(S);
if ParetoUpdate(S) then

kcur = kmin;
else

kcur = kcur + kstep;
end

end
end

Figure 4.1: Pseudo Code for the BOVNS Framework

solution is simply created by choosing p vertices at random. The Greedy add and the

Greedy drop construction heuristics could have been applied as suggested in [76, 77, 78].

Yet, empirically the use of greedy initialization methods is not necessary as the elaborate

local search function would soon find high quality solutions. The initial solution is the first

member to be inserted in the approximate Pareto front as explained later in Section 4.3.1.

Then the Randomize function chooses a random neighborhood structure from the cur-

rent approximate Pareto front before performing the Shake and LocalSearch procedures,

i.e. a solution will be chosen randomly among the existing solutions in the current Pareto

front. This helps diversify the solutions and better build the Pareto front. The Shake and

LocalSearch procedures are designed differently for each of the objective functions. The

BOVNS algorithm randomly chooses only one of the objectives at each iteration and performs

the Shake and LocalSearch procedures accordingly. This method creates high quality so-

lutions for both objectives while bringing in more diversity in the Pareto front.

The notion of the improvement in the bi-objective VNS is different from the single-objective

one, since the improvement is made whenever the Pareto front is updated, i.e. a non-

dominated solution enters the Pareto front. As the result, whenever the Pareto front is

84



updated, the step size kcur is reset to kmin, otherwise it is incremented by kstep. The

following subsections explain the BOVNS modules in details.

4.3.1 Pareto Front Update

In bi-objective optimization, unlike single-objective optimization, it is not possible to find

a single global optimum while considering all the objectives [38]. Each solution generated

within the BOVNS framework represents a value for the first objective (f1), and another

value for the second objective (f2). The f1 is a maximization objective, whereas f2 is a

minimization one. Therefore, two solutions S1 and S2 are called non-dominated solutions,

i.e. are not superior to each other, if S1 leads to a greater/better dispersion value for f1 but

greater/worse proximity value for f2 compared to solution S2, or vice vera. On the contrary,

the solution S1 dominates solution S2 if it has better value in one of the objectives as well

as equal or better value for the other objective.

In bi-objective optimization the goal is to find a set of non-dominated solutions or the

approximate Pareto front (for formal explanations see [16, 61]). The ParetoUpdate function

evaluates any solution Scur and inserts it into the current Pareto front if it’s not dominated.

The ParetoUpdate function is called after the Shake function and during the LocalSearch

procedures as explained in In Section 4.4.

4.3.2 Shake

The perturbation in most VNS-based heuristics is done in a simple manner by choosing a

random vertex from the kth neighborhood, i.e. Nk(S) from the current solution S and then

repeating k times the random swap move. The RandomShake function does so by choosing

one random leaving and entering candidates at each iteration with updates in between each

swap. However, we have developed two additional shake functions in order to control the

perturbation operation in a more intelligent manner. The reader is referred to [76] for more

details about the Shake functions for the MaxMinMin p-dispersion objective (f1), yet the

Shake functions for the gravity p-median objective (f2) are explained in the following.

85



The SemiGreedyShake function fixes a random leaving candidate from the current so-

lution set S and then chooses an entering candidate vi ∈ S̄ whose α(vi)/β(vi) value is the

smallest. The α and β values are initially calculated per each customer zone at point i.

Yet, we are also allowed to use these values to evaluate facility locations in terms of their

attraction, since it is assumed that both facilities and customer zones could be located at

each node i. This shake method does not guarantee an improvement in the objective func-

tion value, yet simply chooses a reasonable entering candidate after having fixed the leaving

candidate. This procedure is repeated until the shake size of k is attained. Each iteration

is performed in O(m) time and after each swap the Update function is called.

In order to have a more intensified shake operation the GreedyShake function could

be used which works the same way as the SemiGreedyShake function in order to find the

entering candidates. Yet, the leaving candidate would be the one with the largest α(vi)/β(vi)

value within the solution set. The performance of the shake functions in order to build the

Pareto front is compared in Section 4.4 where it is demonstrated that the more intelligent

shake functions dominate the purely random ones.

4.3.3 Local Search

The LocalSearch procedure for the MaxMinMin p-dispersion problem (f1) is explained in

[76]. The LocalSearch procedure for the gravity p-median objective (f2) is implemented

by performing 1-interchange swaps on the current solution as shown in Algorithm 4.2. This

means that at each iteration only one vertex is swapped at a time. The swap could be done

whenever the first (first improvement strategy) or the best (best improvement strategy) con-

tribution is made to the current objective value. In this work the first improvement strategy

is implemented in order to create more diversification. Besides, the first improvement strat-

egy has much less iteration complexity in practice.

In order to start the LocalSearch procedure the gain obtained from swapping the selected

entering candidate with the selected leaving candidate should be evaluated as explained in

Section 4.3.3.1. The two main Contribution and Update functions will be explained in

details in the following subsection.

86



function LocalSearch(S)
repeat

(vexit, venter, gain)← Contribution(S);
if gain > 0 then

Swap(vexit, venter);
Update(vexit, venter, S);

end
until gain > 0;

Figure 4.2: Pseudo Code for the Local Search Procedure

4.3.3.1 Contribution and Update

In the proposed LocalSearch procedure the Contribution function can determine the first

or best entering candidate venter ∈ S̄, as well as its corresponding contribution to the cur-

rent objective function value. The Contribution function for the MaxMinMin p-dispersion

problem (f1) is explained in details in [76]. The Contribution function for the gravity

p-median objective (f2) starts by choosing a random leaving candidate vexit ∈ S, and a

random entering candidate venter ∈ S̄. In order to efficiently calculate the objective function

value after the swap, the following values should be stored and updated during the BOVNS

algorithm:

α(vi) =
p∑

j=1
U(vi, vj)d(vi, vj), ∀i = 1, . . . , n,

β(vi) =
p∑

j=1
U(vi, vj), ∀i = 1, . . . , n.

The Update procedure performs all the required updates before proceeding to the subse-

quent iteration. It is implemented in two different phases in order to update all the α(vi)

and β(vi) values, and then to update the objective function value f2(Scur). The update for

the α(vi) and β(vi) after each swap of vexit ∈ S and venter ∈ S̄ is straightforward and is

performed in O(n) total time [25]:

α(vi) = α(vi) + U(vi, venter)d(vi, venter)− U(vi, vexit)d(vi, vexit), ∀i = 1, 2, . . . , n,

87



β(vi) = β(vi) + U(vi, venter)− U(vi, vexit),∀i = 1, 2, . . . , n.

The second objective function (f2) is calculated in O(np) time only for the first time, and

then its updated value is calculated in O(n) time at each iteration:

f ′2(Scur) =
n∑

i=1
wi
α(vi)
β(vi)

.

The gain in the LocalSearch procedure is the difference between f2(Scur) and f ′2(Scur)

(before and after each swap), and considering the minimization objective, an improvement

is made whenever the gain is positive, i.e. f2(Scur) > f ′2(Scur).

4.4 Computational Experiments

In this section the proposed BOVNS is applied on 40 classical p-median test problems

(pmed1 to pmed40) by Beasley [6, 7]. The total number of potential locations varies from

n=100 to 900, and the value of p from 5 to 200. The utility function is a decay function

of the distance which for comparison purposes is equal to U(d) = 1
d2+1 , and the wi is set

to 1 as suggested in [25]. The value of “1” is added in the denominator in order to avoid

“divisions by zero”.

First we describe our experiments that were designed to study the performance of dif-

ferent settings within the BOVNS framework and then analyze the overall results obtained

by different methods over all the test problems. The proposed VNS for the MaxMinMin

p-dispersion problem (f1) has already been discussed in details in [76], yet the suggested

VNS for the gravity p-median problem (f2) has never been addressed before. Therefore, we

discuss the results for the gravity p-median problem separately in Section 4.4.2.

4.4.1 Results and Analysis

The BOVNS algorithm starts with the Random add method. There are three different shaking

possibilities for both objectives: Random shake, Semi-Greedy shake and Greedy shake, and

the LocalSearch procedure pursues a first improvement strategy favoring more diversifica-

tion. Finally, the maximum shake size is set to: kmax = 0.5 ∗min{p,m}.

88



In order to better study the size of the Pareto front and the quality of the solutions for

both objective functions, we have designed two sets of experiments: 1) BOVNS including the

above-explained three shake methods and the LocalSearch function leading to the (Random-

LS), (SemiGreedy-LS) and (Greedy-LS)methods and 2) BOVNS including only the three shake

functions without any local search procedure leading to (Random-RS), (SemiGreedy-RS) and

(Greedy-RS) methods. The second set of experiments follows the Reduced VNS method [45],

favoring only the advancement of the Pareto front without necessarily putting any specific

effort in the LocalSearch procedure.

The heuristics are coded in C++ and compiled with the −O2 optimization option and

are run on a linux machine with 2.667 GHz and 3Gb Ram. Each method is run 5 times

for each of the 40 instances and the stopping criteria is the total running time which is set

to 5 hours for the pmed1 to pmed20 instances, and to 10 hours for the pmed21 to pmed40

instances.

Table 4.I summarizes the results obtained by each of the six methods. The first column

specifies the name of the method and the second and third columns represent the best

(largest) size of the Pareto front and the average size of the Pareto front in five runs,

averaged over all the 40 instances. The fourth and fifth columns show the best (largest) and

average values for the MaxMinMin p-dispersion objective (f1) respectively. The last two

columns represent the best (smallest) and average values for the gravity p-median objective

(f2) respectively.

As it is clear from the values marked in bold in Table 4.I , the first three BOVNS methods

including the LocalSearch procedure lead to better average results in terms of the size of

Table 4.I : Comparison of the BOVNS Methods

Method Pareto-Best Patero-Ave f1-Best f1-Ave f2-Best f2-Ave
Random-LS 13.03 12.17 60.7 60.47 10118.04 10118.04
SemiGreedy-LS 14.6 12.65 66.33 66.12 10118.04 10118.04
Greedy-LS 16.25 14.67 66.55 64.67 10118.04 10118.04
Average 14.63 13.16 64.53 63.75 10118.04 10118.04
Random-RS 11.83 10.65 53.95 52.71 10133.79 10138.07
SemiGreedy-RS 8.8 7.72 66.5 66.37 11451.78 11634.49
Greedy-RS 11.38 10.21 66.63 66.6 12488.29 12819.29
Average 10.67 9.53 62.36 61.89 11357.95 11530.61

89



the Pareto front and the quality of the solutions for both objectives (best known solutions

are shown in Table 4.II ). It should be noted that the (Greedy-RS) method finds slightly

better results for some of the larger instances only for the first objective (f1) compared to the

(Greedy-LS) method. Yet, the focus here is not on a slight superiority of a specific method

for an individual objective function and the goal is to consider both objectives and the size

of the Pareto front.

In order to better visualize the Pareto front for different instance sizes, Figures 4.3 to 4.5

illustrate the overall Pareto front obtained from the 5 runs for pmed1, pmed21 and pmed40

instances with small, medium and large sizes respectively. Each figure constitutes of three

sub-figures for each of the three shaking methods, while including two plots for each to

compare the two BOVNS strategies with the LocalSearch procedure (LS) and without the

LocalSearch procedure (RS). All the sub-figures have an increasing slope which illustrates

the non-dominance among the solutions in the Pareto front.

Based on the figures, the (LS) methods dominate or equal the (RS) methods for all the

three instances. The dominance in terms of the size of the Pareto front and the quality

of the obtained solutions becomes more evident as the size of the instances grow. Another

observation is that in order to find better solutions for larger instances, more elaborate

shake functions should be used (Random shake function alone is not capable of finding the

best known solutions). Overall, the most promising method in terms of the quality of the

solutions and the size of the Pareto front, is the (Greedy-LS) which includes the LocalSearch

procedure and performs a Greedy shake for both objectives. It should be noted that the best

known solutions for both objectives as shown in Table 4.II are: f1 = 228 and f2 = 8012.115

(for pmed1), f1 = 74 and f2 = 11691.122 (for pmed21) and f1 = 23 and f2 = 14359.427

0 50 100 150 200 250

0.8

1

1.2

1.4

1.6 ·104

f1

f 2

RS
LS

(a) Random Shake

0 50 100 150 200 250

0.8

1

1.2

1.4

1.6 ·104

f1

f 2

RS
LS

(b) SemiGreedy Shake

0 50 100 150 200 250

0.8

1

1.2

1.4

1.6 ·104

f1

f 2

RS
LS

(c) Greedy Shake

Figure 4.3: Comparison of the Six Methods for pmed1

90



0 20 40 60 801

1.5

2

2.5

3 ·104

f1

f 2

RS
LS

(a) Random Shake

0 20 40 60 801

1.5

2

2.5

3 ·104

f1

f 2

RS
LS

(b) SemiGreedy Shake

0 20 40 60 801

1.5

2

2.5

3 ·104

f1

f 2

RS
LS

(c) Greedy Shake

Figure 4.4: Comparison of the Six Methods for pmed21

0 5 10 15 20 251.4

1.6

1.8

2

2.2 ·104

f1

f 2

RS
LS

(a) Random Shake

0 5 10 15 20 251.4

1.6

1.8

2

2.2 ·104

f1

f 2

RS
LS

(b) SemiGreedy Shake

0 5 10 15 20 251.4

1.6

1.8

2

2.2 ·104

f1

f 2

RS
LS

(c) Greedy Shake

Figure 4.5: Comparison of the Six Methods for pmed40

(for pmed40), and our bi-objective methods obtain the best known results for each of the

individual objectives.

4.4.2 Gravity p-Median Problem

The proposed VNS for the gravity p-median problem has never been addressed before in the

literature and the studied datasets have never been used for the MaxMinMin p-dispersion

problem. Therefore, the results for both objectives are discussed in more details here.

In order to test the single-objective VNS for the gravity p-median problem (f2), the al-

gorithm explained in Section 4.2 is run using the three Random shake, Greedy shake and

SemiGreedy shake functions, as well as three different maximum shake sizes of kmax =

0.5 ∗min{p,m}, 0.75 ∗min{p,m} and min{p,m}. As the result, each instance is run under

the above nine settings only once with a total running time of 5 × n seconds. The same

setting has also been applied for the MaxMinMin p-dispersion problem (f1).

In the first three columns of Table 4.II , the name and specifications of the instances

are shown. The fourth, fifth and sixth columns represent the best solutions found in a

single run of the above-explained nine settings, the average results obtained by all the nine

91



Table 4.II : Individual Objective Function Best Known Values

Instance n p Best(f2) Ave.(f2) Time(f2) Best(f1) Ave.(f1) Time(f1)
pmed1 100 5 8012.115 8012.115 0.11 228 226.667 0
pmed2 100 10 6850.371 6850.371 0 181 181 1
pmed3 100 10 7071.6 7071.6 0 167 165 0
pmed4 100 20 6437.958 6437.958 0 125 125 0
pmed5 100 33 3447.913 3447.913 0 75 75 0
pmed6 200 5 10120.714 10120.714 0 159 159 0
pmed7 200 10 8902.829 8902.829 0.11 118 118 0
pmed8 200 20 8699.655 8699.655 0 92 92 0.22
pmed9 200 40 6778.697 6778.697 0.11 62 61.778 76.78
pmed10 200 67 4268.302 4268.302 0.44 33 32.556 62.44
pmed11 300 5 9834.83 9834.83 0.44 112 112 0
pmed12 300 10 10279.79 10279.79 0.56 92 92 0
pmed13 300 30 9059.974 9059.974 0.67 64 63.778 81.56
pmed14 300 60 8301.225 8301.225 4.44 43 42.333 161
pmed15 300 100 6271.2 6271.252 2.33 27 26.556 215.11
pmed16 400 5 10404.405 10404.405 0.56 91 91 1
pmed17 400 10 10516.011 10516.011 0.67 71 71 0
pmed18 400 40 10644.121 10644.471 1.33 48 47.667 162.56
pmed19 400 80 8794.938 8794.938 2.22 31 30.333 293.56
pmed20 400 133 7531.657 7531.681 5.78 21 20.333 1
pmed21 500 5 11691.122 11691.122 0.22 74 74 0
pmed22 500 10 12640.371 12640.371 0.33 66 65.667 1
pmed23 500 50 11008.56 11008.56 3.67 39 38.222 390.67
pmed24 500 100 9780.748 9780.786 6.56 25 24.333 270.33
pmed25 500 167 8291.135 8291.135 59.44 17 16.222 75.67
pmed26 600 5 12444.871 12444.871 0.44 68 68 0
pmed27 600 10 11973.176 11973.176 0.44 59 59 0
pmed28 600 60 11057.149 11057.294 5.89 31 30.667 384.67
pmed29 600 120 10482.444 10482.485 12.67 22 21.333 87
pmed30 600 200 9975.692 9975.75 98.22 15 14.333 1.33
pmed31 700 5 12909.707 12909.707 0.56 57 56.667 1
pmed32 700 10 13550.981 13550.981 0.89 52 51.333 0.44
pmed33 700 70 12347.303 12347.321 18 27 26.667 122
pmed34 700 140 11206.771 11206.771 23 19 18.111 108.89
pmed35 800 5 13060.535 13060.535 0.56 58 58 0.22
pmed36 800 10 14360.506 14360.506 2.33 51 51 0
pmed37 800 80 13810.45 13810.45 17.67 27 26.222 313
pmed38 900 5 13990.942 13990.942 1.44 57 57 1
pmed39 900 10 13551.33 13551.33 1.56 41 41 1.11
pmed40 900 90 14359.427 14359.611 22.44 23 22.333 1
Average 10118.04 10118.06 7.4 66.7 66.33 70.39

92



settings and the average time (over the nine settings) when the best solutions were found

for the gravity p-median objective, respectively. Here the best obtained results are exactly

the same as the best known values reported in [25]. The last three columns demonstrate the

same results for the MaxMinMin p-dispersion objective. All the various nine settings almost

always obtain the best known solutions for both objectives (10118.04 vs. 10118.06 and 66.7

vs. 66.33). Besides, the best known values for the gravity p-median problem are found in

a very short average computational time (the exact comparison with the literature is not

possible as the other methods reported in [25] have structural differences with our methods

and have different stopping criteria, etc.). It is worthwhile to mention that in this work the

single objective values are not of our concern and thus, the overall high performance of the

bi-objective model is taken into account.

4.5 Conclusions and Future Work

In this work we presented an innovative model within the franchise location domain, which

addresses the cannibalization issue and the proximity to the clients under a bi-objective

optimization model. Several heuristics have been discussed in order to create high qual-

ity solutions within the Pareto front using the Bi-objective Variable Neighborhood Search

method (BOVNS). The proposed BOVNS is a new way to address two objectives in the VNS

framework and could easily be expanded to solve multiobjective optimization problems.

The dispersion among the facilities is captured using the MaxMinMin ( p-dispersion)

model and the proximity to the clients is modeled by the gravity p-median problem. The

second objective function is non-linear and the use of heuristic methods helps find high

quality solutions even for larger instances. To the best of our knowledge, this work is the

first application of the VNS to the gravity p-median problem and our methods find all the

best known results in the literature in a very short time. The inclusion of the LocalSearch

procedure and the Greedy shakes embedded in the BOVNS framework help find dispersed

solutions within the Pareto front while reaching most of the best known solutions for both

objectives.

This work is a step towards more applied location models within the franchise location

domain and the decision makers could simply feed their real life data in terms of attraction

93



functions, distances, locations, etc. into the proposed model. As future research we propose

more elaborate BOVNS modules and finer tuning of its parameters in order to create even more

dispersed solutions within the Pareto front. The proposed model is very flexible and can

easily be adapted to include other dispersion metrics. Therefore, another interesting future

work would be the application of the proposed model in real life and practical problems and

to perhaps consider other dispersion metrics.

Acknowledgements

This research was funded by NSERC (Natural Sciences and Engineering Research Council

of Canada) grant PGSD2-392404-2010, and FQRNT (Fonds de recherche du Québec - Nature

et technologies) grant 134582. Pierre Hansen has been partially supported by NSERC grant

105574-2007, Sylvain Perron has been partially supported by NSERC grant 327435-06, and

they were both partially supported by FQRNT team grant PR-131365.

94



General Conclusion

Considering the importance of the cannibalization effects within the franchise location do-

main, this thesis proposes a new perspective to tackle this issue. The suggested method

is the utilization of the dispersion concepts which are designed to create dispersed location

solutions. This constitutes a novel perspective of the classical dispersion models in this

context.

Based on the extensive literature review, it is known that the dispersion problems impose

difficulties on exact and heuristic solution procedures especially for larger problem sizes. The

proposed methods in this work are shown to be very effective to solve large instances and our

methods compare favorably with the state-of-the-art heuristics in terms of the quality and

robustness of the obtained solutions, lower running times and computational complexity.

The heuristic algorithm developed for the p-dispersion-sum (MaxMinSum) is the first so-

lution procedure addressing this problem, setting new benchmarks for future research. The

computational experiments on the small to large-sized instances mainly study the tradeoffs

between the diversification and intensification VNS modules. It is concluded that the greedy

components within the VNS framework would lead to better results in longer running times.

On the contrary, the random modules would increase the chances of obtaining more diver-

sified and improved solutions in repeated runs. The choice of the best setting is based upon

the discretion of the decision maker and the available computational resources.

The maximum diversity problem (MaxSumSum) has been well studied by various state-

of-the-art heuristics, and thus imposing a challenge for new heuristics in order to further

improve the benchmark results. Our results reveal that the plateau search mechanism added

to the basic VNS framework plays an important role to improve the quality of the solutions.

95



Besides, the use of more intelligent shake functions is another successful technique leading

to several new benchmark results in the literature.

The p-dispersion problem (MaxMinMin) is another classical model that has been ad-

dressed by several exact and heuristic solution procedures. We developed the first VNS

approach with low computational complexity and an efficient update function. Our method

finds all the best known benchmark solutions with the proof of optimality for most of the

instances. Like the previous models, the results confirm the necessity of the plateau search

mechanism and the greedy-based shake functions.

The bi-objective p-diversity-proximity problem is an innovative approach towards more

practical location optimization models. The proposed model is a very flexible decision

support tool allowing the decision makers to use real data and to choose among various

tradeoffs and scenarios. Besides, our proposed bi-objective Variable Neighborhood Search

framework is a new way to address multiple objectives in the VNS framework. The results

indicate that as the size of the instances grow, the use of greedy-based shake functions and

the utilization of the local search procedure (as opposed to the reduced VNS method that

does not include the local search function) become more and more important in terms of

the size and the quality of the non-dominated solutions within the Pareto front.

In order to illustrate a general overview of all the above suggested VNS methods for the

MaxMinSum (Chapter 1), MaxSumSum (Chapter 2) and MaxMinMin (Chapters 3 and 4)

problems, we have designed a comparison test based on the large datasets studied in the

previous chapters. The VNS configuration used in the final tests follow the first improvement

strategy for the local search procedure, and starts from the current solution at the beginning

of each iteration. For each problem we compared the three different shaking methods over

three different running times of 2, 5 and 10 hours, leading to nine various tests. The

maximum shake size is selected based on each problem’s characteristics. The objective here

is to highlight the methods that find the best known results in the above running times.

Since we do a single run of each setting, any method that finds results within 0.5% of the

best known solutions is selected. Besides, Ilog cplex is run for the same 2, 5 and 10 hours

of running time to provide a comparison basis with exact methods.

96



Figure C1 shows the test results for the MaxMinSum (Chapter 1) problem. The largest

dataset studied in this chapter is the MDG-c containing 20 instances with n = 3000 and

p = 300, 400, 500 and 600. Since several instances have the same n and p values, we have

selected the p/n ratio as the Y axis, and the instance number as the X axis for illustration

purposes. It should be noted that the instance numbers are presented in the same order

that they appear in the dataset. The results reveal that:

• The longer running times do not make a difference within the 0.5% of the best known

solutions.

• The SemiGreedy Shake method finds all the best known results (within 0.5%).

• The Random Shake and Greedy Shake methods find the best known results (within

0.5%) only for instances 14 to 20. One possible reason could be the fact that the

Random Shake method is not strong enough to do intelligent moves, and the Greedy

Shake method is too intensified for this specific problem and gets caught due to lack

of diversification.

• Results obtained by Ilog cplex are never within the 0.5% of the best known solutions.

Figure C2 presents the same results for the MaxSumSum (Chapter 2) problem. MDG-c

dataset is also one of the largest datasets used in this chapter with n = 3000 and p =

300, 400, 500 and 600. Same illustration method has been used in order to present the X

axis and the Y axis. Besides, all the tests include the plateau search mechanism explained

in Chapter 2. The results reveal that:

• The longer running times do not make a difference within the 0.5% of the best known

solutions.

• The SemiGreedy and Greedy Shake methods find all the best known results (within

0.5%).

• The Random Shake method finds the best known results (within 0.5%) only for in-

stances 6 to 20. As explained before, this could be due to the fact that the pure Random

Shakes are not capable of making intelligent swaps for the dispersion problems.

• Results obtained by Ilog cplex are never within the 0.5% of the best known solutions.

97



0 5 10 15 20

0.1

0.15

0.2

Instance

p
/n

SemiGreedy Shake
Greedy Shake

Random Shake

Figure C1: Comparison of the Three VNS Methods for MaxMinSum Problem

0 5 10 15 20

0.1

0.15

0.2

Instance

p
/n

SemiGreedy Shake
Greedy Shake

Random Shake

Figure C2: Comparison of the Three VNS Methods for MaxSumSum Problem

98



0 5 10 15 20

0.1

0.15

0.2

0.25

0.3

Instance

p
/n

SemiGreedy Shake
Greedy Shake

Figure C3: Comparison of the Three VNS Methods for MaxMinMin Problem

Finally, Figure C3 presents the results for the MaxMinMin (Chapters 3 and 4) problem.

One of the largest and most challenging instances used in the chapter is the Ran dataset

consisting of 20 instances with n = 500 and p = 50, 150. Same illustration method as the

previous two models has been used in order to present the X axis and the Y axis. Besides,

all the tests include the plateau search mechanism explained in Chapters 3. The results

reveal that:

• The longer running times do not make a difference within the 0.5% of the best known

solutions.

• The SemiGreedy Shake method find all the best known results (within 0.5%).

• The Greedy Shake method finds the best known results (within 0.5%) only for instances

11 to 20. Again this could be due to the intensified nature of this module which causes

the algorithm to spend more computational time per iteration and thus to get caught

in lower quality solutions.

• Results obtained by the Random Shake method and Ilog cplex are never within the

0.5% of the best known solutions. It should be noted that the distance values for this

dataset are all integers, and thus finding results which are even one unit less than the

best known solutions would not be within the 0.5% threshold.

99



The synthesis of the observations from Figures C1 to C3 would lead to the following

integrated conclusions which have already been highlighted throughout the various chapters

of the thesis:

• The shake function is an important component of the VNS framework and most of the

VNS-based methods apply a random version of this function. Here, we pointed out

that the utilization of more intelligent shake functions would significantly improve the

quality of the obtained solutions. The SemiGreedy Shake function seems to perform

better than the Greedy Shake method which could be due to the fact that it contains

a combination of intensification and diversification modules.

• The data structure of the instances plays an important role in terms of the diffi-

culty of the solution procedure. Although we have not found any consistent empirical

rule between the p/n ratio and the number of obtained best known solutions, results

demonstrate that smaller p/n ratios might be more challenging to solve.

• The exact methods are not capable of finding results within a reasonable percentage

of the best known solutions which confirms the need for heuristic solution procedures

to tackle large and challenging dispersion problem instances.

This thesis is another step towards more applied location models within the franchise

location domain allowing flexible VNS modules, input data, parameters, etc., in order to em-

brace practical considerations. The elaborate local search and plateau search mechanisms,

intelligent shake functions, low complexity update methods and the bi-objective framework

created in this thesis would complement the existing modules within the Variable Neigh-

borhood Search metaheuristic framework and can easily be used in order to solve various

optimization problems. As future research we propose the application, modification and

further elaboration of the proposed methods in order to solve other potential combinato-

rial problems, even including multiple objectives. Applying these methods to real industry

problems would be another interesting path for future research.

100



Bibliography

[1] Achabal D, Gorr W, Maharajan V. Multiloc: A multiple store location decision model.
Journal of Retailing 1982;58(2):5.

[2] Agcaand S, Eksioglu B, Ghosh J. Lagrangian solution of maximum dispersion problems.
Naval Research Logistics (NRL) 2000;47(2):97–114.

[3] Aringhieri R, Bruglieri M, Cordone R. Optimal results and tight bounds for the
maximum diversity problem. Foundations of Computing and Decision Sciences
2009;34(2):73–85.

[4] Aringhieri R, Cordone R. Comparing local search metaheuristics for the maximum
diversity problem. The Journal of the Operational Research Society 2011;62(2):266–
280.

[5] Bearden W, Netemeyer R, Teel J. Measurement of consumer susceptibility to interper-
sonal influence. Journal of Consumer Research 1989;15(4):473–481.

[6] Beasley J. A note on solving large p-median problems. European Journal of Operational
Research 1985;21(2):270–273.

[7] Beasley J. Or-library: Distributing test problems by electronic mail. The Journal of
the Operational Research Society 1990;41(11):1069–1072.

[8] Benati S. An improved branch & bound method for the uncapacitated competitive
location problem. Annals of Operations Research 2003;122:43–58.

[9] Benati S, Hansen P. The maximum capture problem with random utilities: Problem for-
mulation and algorithms. European Journal of Operational Research 2002;143(3):518–
530.

[10] Bloch P, Ridgway N, Dawson S. The shopping mall as consumer habitat. Journal of
Retailing 1994;70(1):23–42.

[11] Brimberg J, Mladenović N, Urošević D, Ngai E. Variable neighborhood search for the
heaviest k-subgraph. Computers & Operations Research 2009;36(11):2885–2891.

[12] Carling K, Hakansson J. Short communication: A compelling argument for the gravity
p-median model. European Journal of Operational Research 2012;In press.

[13] Chebat J, Chandon J. Predicting attitudes toward road safety from present and
future time orientations: An economic approach. Journal of Economic Psychology
1986;7(4):477–499.

101



[14] Christaller W. Central places in southern Germany: Translated from Die zentralen
Orte in Süddeutschland. Prentice Hall, 1966.

[15] Cliquet G. Implementing a subjective mci model: An application to the furniture
market. European Journal of Operational Research 1995;84(2):279–291.

[16] Coello C. A comprehensive survey of evolutionary-based multiobjective optimization.
Knowledge and Information Systems 1999;1(3):269–308.

[17] Converse P. New laws of retail gravitation. Journal of Marketing 1949;14(3):379–384.

[18] Curtin L, Church R. A family of location models for multiple-type discrete dispersion.
Geographical Analysis 2006;38(3):248–270.

[19] Curtin L, Church R. Optimal dispersion and central places. Journal of Geographical
Systems 2007;9(2):167–187.

[20] Della Croce F, Grosso A, Locatelli M. A heuristic approach for the max-min diversity
problem based on max-clique. Computers & Operations Research 2009;36(8):2429–2433.

[21] Desarbo W, Kim J, Choi S, Spaulding M. A gravity-based multidimensional scaling
model for deriving spatial structures underlying consumer preference/choice judgments.
Journal of Consumer Research 2002;29(1):91–100.

[22] Drezner T, Drezner Z. A note on applying the gravity rule to the airline hub problem.
Journal of Regional Science 2001;41(1):67–73.

[23] Drezner T, Drezner Z. Validating the gravity-based competitive location model using
inferred attractiveness. Annals of Operations Research 2002;111:227–237.

[24] Drezner T, Drezner Z. Multiple facilities location in the plane using the gravity model.
Geographical Analysis 2006;38(4):391–406.

[25] Drezner T, Drezner Z. The gravity p-median model. European Journal of Operational
Research 2007;179(3):1239–1251.

[26] Drezner T, Drezner Z. The gravity multiple server location problem. Computers &
Operations Research 2011;38(3):694–701.

[27] Duarte A, Martí R. Tabu search and grasp for the maximum diversity problem. Euro-
pean Journal of Operational Research 2007;178(1):71–84.

[28] Eiselt H, Gendreau M, Laporte G. Location of facilities on a network subject to a
single-edge failure. Networks 1992;22(3):231–246.

[29] Eiselt H, Laporte G. Sequential location problems. European Journal of Operational
Research 1997;96(2):217–231.

[30] Eiselt H, Laporte G, Thisse J. Competitive location models: A framework and bibliog-
raphy. Transportation Science 1993;27(1):44–54.

[31] Eiselt H, Marianov V. A conditional p-hub location problem with attraction functions.
Computers & Operations Research 2009;36(12):3128–3135.

[32] Erkut E. The discrete p-dispersion problem. European Journal of Operational Research
1990;46(1):48–60.

102



[33] Erkut E, Neuman S. Comparison of four models for dispersing facilities. INFOR
1991;29(2):68–86.

[34] Erkut E, Neuman S. A multiobjective model for locating undesirable facilities. Annals
of Operations Research 1992;40:209–227.

[35] Erkut E, Ülküsal Y, Yeniçerioǧlu O. A comparison of p-dispersion heuristics. Computers
& Operations Research 1994;21(10):1103–1113.

[36] Fernández J, Pelegrín B, Plastria F, Tóth B. Planar location and design of a new facility
with inner and outer competition: An interval lexicographical-like solution procedure.
Networks and Spatial Economics 2007;7:19–44.

[37] Fernández J, Pelegrín B, Plastria F, Tóth B. Solving a Huff-like competitive location
and design model for profit maximization in the plane. European Journal of Operational
Research 2007;179(3):1274–1287.

[38] Geiger M. Randomised variable neighbourhood search for multi objective optimisation.
In: Proceedings of the 4th EU/ME Workshop: Design and Evaluation of Advanced
Hybrid Meta-Heuristics. 2004. p. 34–42.

[39] Ghosh A, Craig C. Fransys: A franchise distribution system location model. Journal
of Retailing 1991;67(4):466–495.

[40] Ghosh A, McLafferty S. Location strategies for retail and service firms. Lexington
Books Lexington, MA, 1987.

[41] González-Benito O, Greatorex M, Munoz-Gallego P. Assessment of potential retail
segmentation variables an approach based on a subjective mci resource allocation model.
Journal of Retailing and Consumer Services 2000;7(3):171–179.

[42] Hakimi S. Locations with spatial interactions: competitive locations and games. John
Wiley & Sons, New York, 1990.

[43] Hansen P, Labbé M, Minoux M. The p-center-sum location problem. Cahiers du CERO
1994;36:203–219.

[44] Hansen P, Mladenović N. First vs. best improvement: An empirical study. Discrete
Applied Mathematics 2006;154(5):802–817.

[45] Hansen P, Mladenović N, Moreno Pérez J. Variable neighbourhood search: methods
and applications. Annals of Operations Research 2010;175:367–407.

[46] Hansen P, Mladenović N, Perez-Britos D. Variable neighborhood decomposition search.
Journal of Heuristics 2001;7:335–350.

[47] Hansen P, Moon ID. Dispersing facilities on a network. Cahiers du GERAD 1995;.

[48] Hansen P, N. Mladenović J. Brimberg J, Pérez JM. Variable neighborhood search. In:
Gendreau M, Potvin JY, editors. Handbook of Metaheuristics. Springer US; volume 146
of International Series in Operations Research & Management Science; 2010. p. 61–86.

[49] Hubbard R. A review of selected factors conditioning consumer travel behavior. Journal
of Consumer Research 1978;5(1):1–21.

103



[50] Huff D. Defining and estimating a trading area. Journal of Marketing 1964;28(3):34–38.

[51] Huff D. A programmed solution for approximating an optimum retail location. Land
Economics 1966;42(3):293–303.

[52] Ingene C, Yu E. Determinants of retail sales in smsas. Regional Science and Urban
Economics 1981;11(4):529–547.

[53] Kang Y, Herr P, Page C. Time and distance: Asymmetries in consumer trip knowledge
and judgments. Journal of Consumer Research 2003;30(3):420–429.

[54] Kaufmann P, Donthu N, Brooks C. An illustrative application of multi-unit franchise
expansion in a local retail market. Journal of Marketing Channels 2007;14(4):85–106.

[55] Lafontaine F, Shaw K. Targeting managerial control: evidence from franchising. The
Rand journal of economics 2005;36(1):131–150.

[56] Leszczyc PP, Sinha A, Sahgal A. The effect of multi-purpose shopping on pricing and
location strategy for grocery stores. Journal of Retailing 2004;80(2):85–99.

[57] Liang Y, Chuang C. Variable neighborhood search for multi-objective resource alloca-
tion problems. Robotics and Computer-Integrated Manufacturing 2012;In press.

[58] Liang Y, Lo M. Multi-objective redundancy allocation optimization using a variable
neighborhood search algorithm. Journal of Heuristics 2010;16(3):511–535.

[59] Lozano M, Molina D, García-Martínez C. Iterated greedy for the maximum diversity
problem. European Journal of Operational Research 2011;214(1):31–38.

[60] Marjanen H. Longitudinal study on consumer spatial shopping behaviour with special
reference to out-of-town shopping: Experiences from turku, finland. Journal of Retailing
and Consumer Services 1995;2(3):163–174.

[61] Marler R, Arora J. Survey of multi-objective optimization methods for engineering.
Structural and Multidisciplinary Optimization 2004;26:369–395.

[62] Martí R, Gallego M, Duarte A. A branch and bound algorithm for the maximum
diversity problem. European Journal of Operational Research 2010;200(1):36–44.

[63] Martí R, Gallego M, Duarte A, Pardo E. Heuristics and metaheuristics for the maximum
diversity problem. Journal of Heuristics 2011;doi: 10.1007/s10732-011-9172-4.

[64] Mladenović N, Hansen P. Variable neighborhood search. Computers & Operations
Research 1997;24(11):1097–1100.

[65] Mladenović N, Labbé M, Hansen P. Solving the p-center problem with tabu search and
variable neighborhood search. Networks 2003;42(1):48–64.

[66] Nakanishi M, Cooper L. Parameter estimation for a multiplicative competitive interac-
tion model: Least squares approach. Journal of Marketing Research 1974;11(3):303–311.

[67] Palubeckis G. Iterated tabu search for the maximum diversity problem. Applied Math-
ematics and Computation 2007;189(1):371–383.

104



[68] Palubeckis G, Karčiauskas E, Riškus A. Comparative performance of three metaheuris-
tic approaches for the maximally diverse grouping problem. Information Technology
and Control 2011;40(4):277–285.

[69] Pan Y, Zinkhan G. Determinants of retail patronage: A meta-analytical perspective.
Journal of Retailing 2006;82(3):229–243.

[70] Porumbel D, Hao J, Glover F. A simple and effective algorithm for the maxmin diversity
problem. Annals of Operations Research 2011;186:275–293.

[71] Prokopyev O, Kong N, Martinez-Torres D. The equitable dispersion problem. European
Journal of Operational Research 2009;197(1):59–67.

[72] Ravi S, Rosenkrantz D, Tayi G. Heuristic and special case algorithms for dispersion
problems. Operations Research 1994;42(2):299–310.

[73] Reilly W. The law of retail gravitation. WJ Reilly, 1931.

[74] Resende M, Marttí R, Gallego M, Duarte A. Grasp and path relinking for the max-min
diversity problem. Computers & Operations Research 2010;37(3):498–508.

[75] Ruiz J, Chebat J, Hansen P. Another trip to the mall: a segmentation study of
customers based on their activities. Journal of Retailing and Consumer Services
2004;11(6):333–350.

[76] Saboonchi B, Hansen P, Perron S. Franchise location models and cannibalization effects:
A variable neighborhood search approach. Les Cahiers du GERAD 2012;G-2012-60.

[77] Saboonchi B, Hansen P, Perron S. A greedy variable neighborhood search heuristic for
the maxsumsum p-dispersion problem. Les Cahiers du GERAD 2012;G-2012-46.

[78] Saboonchi B, Hansen P, Perron S. Variable neighborhood search heuristics for the
maxminsum (p-dispersion-sum) problem. Les Cahiers du GERAD 2012;G-2012-28.

[79] Silva G, Ochi L, Martins S. Experimental comparison of greedy randomized adaptive
search procedures for the maximum diversity problem. In: Ribeiro C, Martins S, editors.
Experimental and Efficient Algorithms. Springer Berlin / Heidelberg; volume 3059 of
Lecture Notes in Computer Science; 2004. p. 498–512.

[80] Wang J, Zhou Y, Cai Y, Yin J. Learnable tabu search guided by estimation of distri-
bution for maximum diversity problems. Soft Computing - A Fusion of Foundations,
Methodologies and Applications 2012;16:711–728.

105




	Résumé
	Summary
	Aknowledgements
	General Introduction
	Variable Neighborhood Search Heuristic Methods for the MaxMinSum (p-Dispersion-Sum) Problem
	Abstract
	Introduction
	VNS for The p-Dispersion-Sum Problem
	Initialization
	Local Search
	Contribution
	Update

	Shake

	Computational Experiments
	Experiments Setup
	Post-Hoc Analysis
	Comparison With Exact Methods

	Conclusions and Future Work

	A Greedy Variable Neighborhood Search Heuristic for the MaxSumSum p-Dispersion Problem
	Abstract
	Introduction
	Problem Statement and Mathematical Formulation
	VNS for the p-Dispersion-Sum Problem
	Initialization
	Local Search
	Contribution and Update

	Refined Local Search
	Shake

	Computational Experiments
	Preliminary Experiments Setup
	Results and Analysis

	Conclusions and Future Work

	Franchise Location Models and Cannibalization Effects: A Variable Neighborhood Search Approach
	Abstract
	Introduction
	Problem Statement and Mathematical Formulation
	VNS for the MaxMinMin Problem
	Initialization
	Local Search
	Contribution
	Update

	Refined Local Search
	Shake

	Computational Experiments
	Experiments Setup
	Results and Analysis
	Comparison With Exact Methods

	Conclusions and Future Work

	Bi-Objective Variable Neighborhood Search for the p-Diversity-Proximity Problem
	Abstract
	Introduction
	Problem Statement and Mathematical Formulation
	Bi-Objective Variable Neighborhood Search
	Pareto Front Update
	Shake
	Local Search
	Contribution and Update


	Computational Experiments
	Results and Analysis
	Gravity p-Median Problem

	Conclusions and Future Work

	General Conclusion

