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Résumé

Les services de santé peuvent être prodigués par de grands réseaux d'organisations

qui opèrent en continu, tel que c'est le cas dans la province du Québec, au Canada,

où les services de santé sont publics. Ces réseaux sont cependant gérés en silos,

créant ainsi un environnement où le partage de ressources humaines et matérielles

est peu répandu. Dans une perspective d'optimisation du réseau, ce contexte crée

d'excellentes opportunités de recherche en �exibilité et portabilité d'approches de

résolution de problèmes de confection d'horaires. Nous présentons donc dans cette

thèse quatre essais sur la confection d'horaires de personnel appliquée au secteur

des services de santé.

Le premier essai est une revue de la littérature en confection d'horaire de person-

nel. Elle documente plus de 160 publications et décrit leurs travaux par modèles,

méthodes de résolution et applications. Bien que les services de santé y soient dis-

cutés, la revue inclut aussi d'autres applications avec leurs méthodes de résolution

et leurs modèles puisqu'elles partagent plusieurs caractéristiques avec les services

de santé.

Le deuxième essai présente SOFA (Scheduling Optimizer with a Flexible Ap-

proach), une méthode heuristique �exible et portable de décomposition séquen-

tielle pour résoudre les problèmes de confection d'horaires de personnel en santé.

Nous y présentons une classi�cation des types de contraintes rencontrées en confec-
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tion d'horaires qui est utilisée pour structurer la méthode de résolution. SOFA est

une métaheuristique divisée en trois phases qui resolvent séquentiellement un pro-

blème de jour de travail, un problème simpli�é d'a�ectation de quart de travail,

et un problème complet d'a�ectation de quart de travail. Un mécanisme de bras-

sage ainsi que deux mécanismes de rétroaction sont ajoutés comme extensions a�n

d'améliorer la qualité des solutions. La méthode de résolution est testée en deux

variantes sur un cadre expérimental de 115 instances, et les résultats indiquent

qu'une méthode �exible et portable peut produire de bonnes solutions sur des

problèmes de confection d'horaires.

Le troisième essai présente CHAIR (Column generation Heuristic Approach for

Inde�nite Rostering), une heuristique �exible et portable inspirée de la génération

de colonnes pour résoudre les problèmes de confection d'horaires de personnel en

santé. Cette méthode est conçue a�n d'analyser le potentiel d'une approche de

décomposition fondamentalement di�érente de celle de SOFA : Elle est structurée

avec un problème-maître et un ensemble de sous-problèmes. Le problème-maître

est résolu par une métaheuristique avec plusieurs structures de voisinages pour

la recherche locale, alors que les sous-problèmes sont résolus par une heuristique

gloutonne. Plusieurs extensions sont ajoutées a�n d'améliorer la qualité de l'ap-

proche, incluant une procédure de post-optimisation pour les sous-problèmes, et

un mécanisme de brassage pour le problème-maître. Une analyse comparative des

résultats de CHAIR et de SOFA permet de mieux comprendre les forces et fai-

blesses des deux approches.

Finalement, le quatrième essai présente les résultats d'une version améliorée de

CHAIR appliquée spéci�quement aux problèmes de confection d'horaires d'in�r-

mières. La méthode de résolution est testée sur un cadre expérimental théorique

de 144 instances, et sur 10 instances de la littérature incluant plusieurs applica-
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tions réelles. Les résultats obtenus sur le cadre expérimental théorique sont des

horaires de bonne qualité et fournissent un aperçu intéressant de l'impact de cer-

tains types de contraintes. De plus, les résultats obtenus sur les instances tirées

de la littérature sont comparés à ceux des méthodes de résolution de la même

littérature et démontrent qu'une approche �exible et portable peut se mesurer à

la plupart des algorithmes spécialisés.

Mots clés : Santé, Confection d'horaires, In�rmières, Heuristique, Décomposi-

tion, Flexibilité, Portabilité.

v



Abstract

Health care services can be provided by large networks of organizations operating

around the clock, as it is the case in the province of Quebec, Canada where health

care services are public. These networks employ numerous groups of employees

which are however managed in silos, creating an environment where sharing re-

sources such as software is not natural. This context creates however great research

opportunities on �exibility and portability of sta� scheduling approaches. Hence,

in this thesis we present four essays on sta� scheduling applied to health care.

The �rst essay is a literature survey on sta� scheduling. It surveys more than

160 papers and describes their research by models, solution approaches and ap-

plications. While health care applications are discussed, the survey also includes

other applications with their models and solution approaches as they share many

characteristics.

The second essay presents SOFA (Scheduling Optimizer with a Flexible Ap-

proach), a sequential decomposition heuristic for �exible and portable sta� sche-

duling in health Care. We present a classi�cation of types of sta� scheduling

constraints which is used to structure the solution approach. SOFA is a metaheu-

ristic divided into three phases solving sequentially a days o� scheduling problem,

a simpli�ed shift scheduling problem, and a full shift scheduling problem. A shuf-

�ing mechanism and two backtracking mechanisms are implemented as extensions
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to improve solution quality. The solution approach is tested in two variants on an

experimental framework of 115 instances, and results indicate that a �exible and

portable approach can provide good solutions on sta� scheduling problems.

The third essay presents CHAIR (Column generation Heuristic Approach for In-

de�nite Rostering), a heuristic inspired from column generation for �exible and

portable sta� scheduling in health care. This solution approach is designed in order

to analyze the potential of a fundamentally di�erent decomposition structure than

that of SOFA : it is structured as a master problem with subproblems. The mas-

ter problem is solved by a metaheuristic with multiple local search neighborhood

structures, while the subproblems are solved by a greedy heuristic. A number of

extensions are added to improve solution quality, including a post optimization

procedure for subproblems, and a shu�ing mechanism for the master problem.

A comparative analysis of results obtained with CHAIR and SOFA shows the

relative strengths and weaknesses of each approach.

Finally, the fourth essay presents results of an improved version of CHAIR ap-

plied speci�cally on nurse scheduling problems. The solution approach is tested

on a nurse scheduling experimental framework including 144 instances, and on

10 instances from the literature, including many real life applications. Results

obtained on the experimental framework show good solution quality and provide

interesting insight on the impact of some types of constraints. Meanwhile, results

on instances from the literature are benchmarked with solution approaches from

the same literature and demonstrate that a �exible and portable approach can

compete with most specialized algorithms.

Keywords : Health care, Nurse scheduling, Heuristic, Decomposition, Sta� sche-

duling, Flexibility, Portability.

vii



Table des matières

Résumé iii

Abstract vi

Liste des abréviations xv

Remerciements xvii

1 Introduction 1

2 A Literature Survey of Sta� Scheduling 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Days O� Scheduling . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Shift Assignment . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.3 Explicit and Implicit Models in Tour Scheduling . . . . . . 12

2.3.4 Cyclic Schedules . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.5 Objective Functions . . . . . . . . . . . . . . . . . . . . . . 22

2.3.6 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Mathematical Programming Approaches . . . . . . . . . . 27

2.4.2 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

viii



2.4.3 Constraint Programming . . . . . . . . . . . . . . . . . . . 40

2.4.4 Hybrid Approaches . . . . . . . . . . . . . . . . . . . . . . 42

2.4.5 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.1 General Applications . . . . . . . . . . . . . . . . . . . . . 48

2.5.2 Health Care Services . . . . . . . . . . . . . . . . . . . . . 51

2.5.3 Airports Operations . . . . . . . . . . . . . . . . . . . . . 59

2.5.4 Call Centers . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5.5 Postal Services . . . . . . . . . . . . . . . . . . . . . . . . 63

2.5.6 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3 A Sequential Decomposition Heuristic for Flexible and Portable

Sta� Scheduling in Health Care 67

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3.1 General Structure . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.2 Phase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3.3 Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3.4 Phase 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.1 Reshu�e Mechanism . . . . . . . . . . . . . . . . . . . . . 85

3.4.2 Backtracking Mechanisms . . . . . . . . . . . . . . . . . . 86

3.5 Computational Experiments . . . . . . . . . . . . . . . . . . . . . 87

3.5.1 Experimental Framework . . . . . . . . . . . . . . . . . . . 90

3.5.2 Experiments with Two Algorithm Variants . . . . . . . . . 96

3.5.3 Analysis of the Impact of Service Demand . . . . . . . . . 101

ix



3.5.4 Analysis of Impact of Types of Constraints . . . . . . . . . 103

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4 A Heuristic Inspired from Column Generation for Flexible and

Portable Sta� Scheduling in Health Care 108

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3 General Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.3.1 Problem Description . . . . . . . . . . . . . . . . . . . . . 112

4.3.2 Flexible Sta� Scheduling Models . . . . . . . . . . . . . . 115

4.3.3 Global Algorithm . . . . . . . . . . . . . . . . . . . . . . . 120

4.4 Master Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.4.1 Master Problem Model . . . . . . . . . . . . . . . . . . . . 122

4.4.2 Heuristic Algorithm for Solving the Master Problem . . . . 123

4.4.3 Master Problem Solution Value Calculation . . . . . . . . 124

4.5 Subproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.5.1 Subproblem Model . . . . . . . . . . . . . . . . . . . . . . 126

4.5.2 Subproblem Algorithm . . . . . . . . . . . . . . . . . . . . 127

4.5.3 Subproblem Solution Value Calculation . . . . . . . . . . . 128

4.6 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.6.1 Subproblem Post Optimization . . . . . . . . . . . . . . . 129

4.6.2 Extended Subproblem . . . . . . . . . . . . . . . . . . . . 131

4.6.3 Shu�e Mechanism . . . . . . . . . . . . . . . . . . . . . . 133

4.6.4 Limited Tour Pool . . . . . . . . . . . . . . . . . . . . . . 133

4.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.7.1 Con�guration . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.7.2 Testing Two CHAIR Variants . . . . . . . . . . . . . . . . 137

4.7.3 Comparison with SOFA . . . . . . . . . . . . . . . . . . . 145

x



4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5 A Flexible and Portable Approach Applied to Nurse Scheduling152

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.3 Algorithmic Approach . . . . . . . . . . . . . . . . . . . . . . . . 157

5.3.1 Problem Description . . . . . . . . . . . . . . . . . . . . . 158

5.3.2 Global Algorithm . . . . . . . . . . . . . . . . . . . . . . . 159

5.3.3 Subproblem . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.3.4 Master Problem . . . . . . . . . . . . . . . . . . . . . . . . 164

5.3.5 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.3.6 CHAIR Improvements for Nurse Scheduling . . . . . . . . 167

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.4.1 Nurse Scheduling Experimental Framework . . . . . . . . . 169

5.4.2 Literature and Practice Benchmark . . . . . . . . . . . . . 179

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6 Conclusion 187

Bibliographie 191

xi



Liste des tableaux

2.I Example of the Assignment of a Cyclic Tour to Employees . . . . 20

3.I Example of Service Demand Conversion Between the Tour Sche-

duling and the Days On/Days O� Problem for One Week from

Monday to Sunday . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.II Description of Constraints . . . . . . . . . . . . . . . . . . . . . . 94

3.III Constraint Sets (CS) Reference Numbers with Their Corresponding

Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.IV Solution Times (in seconds) and Values for S1 (algorithm variant

implementing BM1, BM2 and excluding RM) . . . . . . . . . . . 98

3.V Solution Times (in seconds) and Values for S2 (algorithm variant

implementing all three extensions - RM, BM1 and BM2) . . . . . 100

3.VI Ratios of Solution Times and Values for S2 Compared to S1 . . . 101

3.VIIAnalysis of the Impact of Service Demand Pattern on the Solution 102

3.VIIIAnalysis of the Impact of Constraints on the Solution . . . . . . . 105

4.I Description of Constraints . . . . . . . . . . . . . . . . . . . . . . 136

4.II Constraint Sets Reference Numbers with Their Corresponding Des-

criptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.III Solution Times (in seconds) and Values for C1 . . . . . . . . . . . 139

4.IV Solution Times (in seconds) and Values of C2 . . . . . . . . . . . 140

xii



4.V Solution Times (in seconds) and Values of C2 Divided by C1 . . . 141

4.VI Ratios of Solution Times and Values Obtained Dividing the Results

of C1 of CHAIR by Those of S1 of SOFA . . . . . . . . . . . . . . 146

4.VIIRatios of Solution Times and Values Obtained Dividing the Results

of C2 of CHAIR by Those of S2 of SOFA . . . . . . . . . . . . . . 148

5.I The Six Contract Type Combinations of the Experimental Framework170

5.II The Four Preference Type Combinations for the Experimental Fra-

mework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.III The Six Skill Type Combinations for the Experimental Framework 171

5.IV Nurse Scheduling Experimental Framework Best Solutions Obtai-

ned with CHAIR . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.V Nurse Scheduling Experimental Framework Average Solution Time

and Value Obtained with CHAIR . . . . . . . . . . . . . . . . . . 173

5.VI Nurse Scheduling Experimental Framework Standard Deviation for

Solution Times and Values Obtained with CHAIR . . . . . . . . . 174

5.VIINurse Scheduling Experimental Framework Coe�cient of Variation

(standard deviation divided by average) for Solution Times and

Values Obtained with CHAIR . . . . . . . . . . . . . . . . . . . . 175

5.VIIINurse Scheduling Experimental Framework Results Obtained with

CHAIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

xiii



Table des �gures

2.1 Personnel scheduling processes . . . . . . . . . . . . . . . . . . . . 8

2.2 Example of a tour for cyclic scheduling . . . . . . . . . . . . . . . 20

3.1 Algorithm of the First Local Search of Phase 1 (the line builder) . 76

3.2 Algorithm of the Second Local Search of Phase 1 (the assignment

swapper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3 Algorithm of the Single Local Search of Phase 2 (shift start time

modi�er) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4 Algorithm of the First Local Search of Phase 3 (individual shift

start time modi�er) . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.5 Algorithm of BM1 . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.6 Algorithm of BM2 . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.7 Demand curves of D1, D2, D3, D4 and D5 . . . . . . . . . . . . . 92

4.1 Algorithm of the Core of the Solution Approach . . . . . . . . . . 121

4.2 Algorithm to Solve the Master Problem . . . . . . . . . . . . . . . 124

4.3 Algorithm to Solve the Subproblem . . . . . . . . . . . . . . . . . 128

4.4 Demand Curves of D1, D2, D3, D4 and D5 . . . . . . . . . . . . . 139

5.1 Core Algorithm of the Solution Approach . . . . . . . . . . . . . . 160

xiv



Liste des abréviations

BM1 : First backtracking mechanism for SOFA

BM2 : Second backtracking mechanism for SOFA

C1 : Algorithm variant of CHAIR with the subproblem post optimization, the

reshu�e mechanism and the limited tour pool

C2 : Algorithm variant of CHAIR with all extensions of C1 plus the extended

subproblem

CHAIR : Column generation Heuristic Approach for Inde�nite Rostering

MP : Master problem

RM : Reshu�ing mechnism for SOFA

S1 : Algorithm variant of SOFA implementing both backtracking mechanisms

S2 : Algorithm variant of SOFA implementing all extensions of S1 plus the reshuf-

�ing mechanism

xv



SOFA : Scheduling Optimizer with a Flexible Approach

SP : Subproblem

xvi



Remerciements

Je veux d'abord et avant tout à remercier mon directeur de thèse, M. Patrick

Soriano, pour m'avoir o�ert l'opportunité de travailler sur ce sujet de thèse. J'ai

grandement apprécié sa disponibilité, ses idées, ainsi que ses conseils tout au long

du doctorat. Il va sans dire que sans son support �nancier, les travaux présentés

dans cette thèse n'auraient pu être accomplis. Sur une autre note, nos lunchs "de

travail" au restaurant Kam Shing vont bien me manquer, ainsi que les conférences

en Europe !

Je tiens aussi à remercier M. Michel Gendreau pour son encadrement et son sup-

port dans le cadre de nos travaux de recherche. Michel a grandement contribué

aux travaux par ses judicieux conseils, par ses e�orts pour mettre en place un

stage de recherche à l'université de Nottingham à l'automne 2011, et par son sou-

tient �nancier. Au risque de me répéter, nos lunchs au restaurant Kam Shing vont

encore une fois me manquer !

Je me dois aussi de remercier M. Edmund Burke pour sa contribution et son sup-

port �nancier sans lesquels mon passage à Nottingham n'aurait pu être possible.

J'y ai beaucoup apprécié l'intérêt, le support et la collaboration de M. Tim Cur-

tois qui a été déterminant pour la réalisation du dernier article.

xvii



Finalement, je désire aussi remercier M. Gilles Caporossi et M. Walter Rei pour

leur participation au jury de la proposition de thèse, avec les conseils et avis im-

portants qu'ils m'ont donnés pour améliorer le contenu des travaux de recherche.

J'en pro�te par le fait même pour remercier l'implication de ceux qui se sont en-

gagés à faire partie du jury de thèse.

xviii



Chapitre 1

Introduction

Depuis plusieurs années, les soins de santé sont devenus un enjeu important au

Québec, au Canada et ailleurs dans le monde. Le vieillissement anticipé de la

population dans les pays occidentaux ne fera qu'augmenter l'importance de cet

enjeu dans les prochaines décennies. Pourtant, au Québec et ailleurs, la gestion

des soins de santé fait déjà face à plusieurs problèmes : des listes d'attentes sur

prise de rendez-vous allant de quelques semaines à plus d'un an, des �les d'attente

aux urgences de plusieurs heures, des retards fréquents de prestation de service

sur rendez-vous, un niveau élevé d'insatisfaction du personnel à l'égard de leur

emploi, un écart important entre les disponibilités o�ertes par les professionnels

et les besoins des employeurs, et un budget de service qui ne croît pas nécessaire-

ment proportionnellement à la demande pour ne nommer que ceux-ci.

Dans un tel contexte, les sciences de la gestion ont le potentiel d'enrichir le réseau

de la santé en le guidant vers plus d'e�cience, un contrôle raisonnable des coûts

et un service de qualité pour le patient. Les gestionnaires exécutifs trouveront du

support sur les politiques de gestion à implanter dans les théories du manage-

ment, les ressources humaines trouveront du support pour attirer les talents vers

le réseau dans les approches de marketing, les gestionnaires à tous les niveaux
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pourront avoir accès à de l'information pertinente et ciblée pour supporter leur

prise de décision grâce aux technologies de l'information, et la qualité du service

o�ert pourra être améliorée grâce aux stratégie de gestion des opérations et de la

chaîne logistique.

Les méthodes quantitatives de gestion fournissent quant à elles aussi un potentiel

important de support aux gestionnaires de services de santé : techniques prévi-

sionnelles d'intelligence d'a�aires pour anticiper l'évolution des besoins, analyses

statistiques pour comprendre les relations actuelles entre di�érents leviers du sys-

tème de santé, et la recherche opérationnelle pour optimiser l'utilisation des res-

sources disponibles.

Au Québec par exemple, la plus grande part des dépenses publiques annuelles en

santé de 30 milliards de dollars est imputée aux ressources humaines qui totalisent

un nombre d'employés de près de 300 000 personnes. Cette taille critique fait de

l'optimisation de l'utilisation des ressources humaines un terrain de recherche riche

en opportunités, parmi lesquelles la confection d'horaires (� sta� scheduling �, �

personnel scheduling � ou � personnel rostering �) en est une ayant un potentiel

majeur aussi bien sur la qualité de service, que sur le niveau de productivité et la

rétention du personnel.

Un grand nombre de recherches dans la littérature portent sur la confection d'ho-

raires. Dans le domaine des services de santé, c'est sur les applications d'in�rmière

qu'on en recense le plus. La très grande majorité de ces recherches portent sur des

groupes d'employés restreints (généralement quelques dizaines de personnes au

maximum) d'une unité de soin en particulier, ce qui explique en partie pourquoi

il en existe autant.
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Ce type de contenu de la littérature s'explique lorsqu'on remarque que dans la

pratique des services de soins de santé, les disparités entre les règles de confection

d'horaires sont importantes entre groupes de professionnels, départements et éta-

blissements. Toutefois, avec un nombre de ressources humaines limitées, de budget

limité, et de temps limité, il n'est que rarement envisageable d'avoir accès aux res-

sources nécessaires pour concevoir un système de confection d'horaire spéci�que

à chaque classe de professionnel de chaque unité de soin de chaque établissement.

Les gestionnaires continuent donc à ce jour d'avoir recours à des processus de

confection d'horaires en grande partie manuels.

Dans la présente thèse, nous proposons une alternative : le développement d'ap-

proches �exibles et portables de confection d'horaires pour les services de santé.

L'objectif est l'accomplissement d'un système portable et donc rapidement con�-

gurable, basé sur une structure ayant la �exibilité requise pour s'adapter à di�é-

rentes combinaisons de règles de confection d'horaires. Nous désirons donc propo-

ser une approche au coût d'implantation minimal pour l'organisation et produisant

des horaires de qualité.

Cette thèse est composée de quatre articles. L'auteur de cette thèse en est l'auteur

principal de chacun, tant pour la recherche et le développement du contenu que

pour la rédaction. Le premier est une revue exhaustive de la littérature en confec-

tion d'horaires de personnel qui n'est pas limitée au domaine de la santé. Elle

décrit les di�érents modèles, méthodes de résolution et applications présents dans

la littérature. Le deuxième article présente une approche de résolution �exible et

portable de confection d'horaire pour le domaine de la santé appelé SOFA (Sche-

duling Optimization with a Flexible Approach). C'est une approche heuristique

basée sur une décomposition séquentielle du problème de confection d'horaires,

qui est testée sur un cadre expérimental à multiples dimensions a�n d'évaluer
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ses performances et de comprendre les impacts de certains choix de gestion sur

les horaires. Le troisième article présente une approche de résolution alternative

appelée CHAIR (Column generation heuristic approach for inde�nite rostering)

basée sur une décomposition de type problème maître/sous-problème. Les résul-

tats de CHAIR y sont comparés à ceux de SOFA a�n de comprendre les forces

et faiblesses de chacune des approches. Finalement, le quatrième article présente

une version de CHAIR améliorée pour gérer les particularités des problèmes de

confection d'horaires d'in�rmières. Dans un premier temps, la méthode y est éva-

luée sur un cadre expérimental conçu spéci�quement pour tester ses performances

en fonction de la réalité des horaires d'in�rmières. Par la suite, elle est compa-

rée aux meilleures approches connues sur un ensemble de dix problèmes d'horaire

réels d'in�rmière. Finalement, une conclusion clôturera cette thèse.
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Chapitre 2

A Literature Survey of Sta�

Scheduling

2.1 Introduction

There are many important aspects regarding capacity management in service ope-

rations, one of which being human resources management, and more precisely per-

sonnel scheduling (also referred to as personnel rostering or sta� scheduling). In

the service operations context, it is straightforward to reach the conclusion that

in order to have the required capacity available at the required time, you need

to have the right number of employees available at the right time. To obtain this

result, one must follow a sequence of decisions which includes (but is not limited

to) : shift scheduling, days o� scheduling, the combination of the former and the

latter into a tour (also called a line of work), and the assignment of the tour to

an employee.

The operations research literature regarding these decisions will be reviewed here.

Furthermore, because of the very large number of papers published on this topic,

and the fact that most envision a scope limited to one single very well-de�ned
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scheduling application, we believe there may be very interesting research oppor-

tunities in the area of �exible and portable personnel scheduling algorithms and

models. Hence, we will provide special attention to the few published papers which

focus on algorithmic and modeling �exibility and portability.

The following section will describe in details the scope and limitations of this re-

view. Section 2.3 will then present an overview or the main models found in the

literature, while section 2.4 will expose the di�erent solution methods proposed

to tackle them. Section 2.5 will discuss the large amount of di�erent application

areas in which the previously presented models and solution methods have been

applied, and �nally, section 2.6 will conclude this review.

2.2 Scope

Literature on the topic of personnel scheduling is very abundant in operations

research. An exhaustive list of it, dating from 2004, can be found in Ernst & al.

(2004 [83]) . Ernst & al. (2004 [84]) de�ne personnel scheduling (or personnel

rostering) as the process of constructing work timetables for sta� so that an or-

ganization can satisfy the demand for its goods or services. In practice, it can be

viewed as a set (and often a sequence) of subproblems. Ernst & al. (2004 [84])

de�nes it as the set of the following subproblems : Demand modeling, days o�

scheduling, shift scheduling, line of work construction, task assignment, and sta�

assignment. Break scheduling (at lunchtime for instance) is usually assumed to

be included within shift scheduling, but could be considered as an independent

subproblem. Indeed, in practice managers schedule shifts on a weekly/monthly

basis, but frequently assign lunch breaks to employees on a daily basis. Further-

more, Ernst & al. (2004 [84]) speci�es that line of work construction is usually
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called tour scheduling when dealing with �exible demands, and crew rostering

when dealing with crew pairings. The latter will be excluded as our scope will be

limited to tour scheduling. The reader interested in crew scheduling is referred to

Gopalakrishnan & al. (2005 [94]), which reviews its applications in airlines.

Days o� scheduling, shift scheduling, break scheduling, tour scheduling and sta�

assignment will be the focus of the present review. This choice is justi�ed by the

following : (1) all �ve subproblems are present in every standard personnel sche-

duling problem, (2) decisions taken within any of those �ve subproblems have an

impact on the decisions that must be taken in all the subsequent ones, and (3) all

�ve are either optimization or constraint satisfaction problems in practice. This

last argument brings us to exclude demand modeling, which is generally conside-

red as a statistical analysis problem that will be used as an input (deterministic or

stochastic) into the subsequent subproblems. Task assignment will also be exclu-

ded since it does not arise frequently in standard personnel scheduling problems.

Furthermore, personnel scheduling is by de�nition a tactical problem. Hence, it is

a clearly distinct problem from manpower planning, which is a strategic one. It is

also distinct from re-rostering (also called real-time rostering), which consists of

the operational day-to-day (or even within day) decision of scheduling personnel at

the last minute according to no-shows and unexpected �uctuations in demand. As

such, manpower planning and re-rostering will also be excluded from this review.

Figure 2.1 presents an aggregate diagram of the process of personnel rostering.

2.3 Models

The literature in personnel scheduling contains a large variety of models because

of important di�erences between individual problems. The following is a non-

exhaustive list of elements causing those di�erences :
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Figure 2.1 � Personnel scheduling processes

� Number of possible shifts per day,

� Presence of overlapping shifts,

� Number of service providing days per week,

� Objective of the model,

� Constraints on individual tours,

� Flexibility,

� Solution method.

All the above elements have impacts on the mathematical model used, and they

will be discussed throughout the following paragraphs, along with a few important

models. The present section is structured as follows : days o� scheduling will be

discussed �rst, followed by shift assignment and tour scheduling. Then, scheduling

cycles will be analyzed, followed by objective functions and �nally constraints.
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2.3.1 Days O� Scheduling

Days-o� scheduling is the process of assigning a sequence of work days and days

o� to individual schedules. This problem arises where a service is provided during

a larger number of days than the number of shifts worked by an employee in a

week. Hence, it usually arises in services running 6 or 7 days per week since full

timers typically work 5 days. Baker (1976 [19]) proposes a basic days-o� scheduling

model presented between (2.1) and (2.3) where :

� xj is the number of employees working on sequence j,

� aij = 1 if sequence j calls for work on day i, 0 otherwise,

� ri is the service demand for day i,

� cj is the cost of working sequence j.

In this model, the di�erent work sequences are prede�ned in the [aij]matrix. While

this model is an adequate base for most problems, the allowable sequences for the

[aij] matrix may di�er from one setting to another. For instance, some problems

will require that all days o� per week be consecutive ones, as reported in Alfares

(1998 [7]). In the speci�c case where only one shift length must be covered each

day, solving the days-o� scheduling problem is the only step required for solving

the tour scheduling problem. Otherwise, solving a days-o� scheduling problem

means that a shift assignment problem will have to be solved subsequently.

min
J∑

j=1

cjxj (2.1)

subject to :

j∑
j=1

aijxj ≥ ri ∀ i ∈ I, (2.2)

xj ∈ Z+ ∀ j ∈ J, (2.3)
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Papers on days-o� scheduling include the following : [7], [8], [15], [24], [25], [26],

[37], [38], [81], [82], [99], [130], [132], [136] and [160].

2.3.2 Shift Assignment

Shift assignment (also called shift scheduling) is the process of assigning a single

work shift to each line of work. This can be implemented as a subproblem solved

independently for each work day of a planning horizon. Furthermore, if :

1. A service is provided the same number of days as the number of shifts worked

by each employee per week (usually 5 days) and,

2. An employee works the same shift everyday,

Then, solving the shift assignment problem is a shortcut to solving the tour sche-

duling problem. Baker (1976 [19]) presents a model for shift scheduling presented

between (2.4) and (2.6) where :

� xj is the number of employees working on shift j,

� aij = 1 if shift j is on duty during period i, 0 otherwise,

� ri is the service demand for period i,

� cj is the cost of working shift j.

This model is the same as the one proposed by Dantzig (1954 [69]), and it requires

all shifts to be de�ned in matrix [aij], which can make the problem rather large

when many di�erent types of shifts (de�ned by shift length, shift starting-time,

min
J∑

j=1

cjxj (2.4)

subject to :

J∑
j=1

aijxj ≥ ri ∀ i ∈ I, (2.5)

xj ∈ Z+ ∀ j ∈ J, (2.6)
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break time-window, etc.) are considered. Putting aside the de�nitions of variables

and parameters, it is the same set covering model as presented in section 2.3.1

for days-o� scheduling. A more complete goal programming (multi objective) ap-

proach to shift assignment is proposed by Thompson (1996 [153]) and presented

between (2.7) and (2.11) where :

� e is the index for employees,

� E is the set of available employees,

� Se is the set of shifts for which employee e is available (de�ned by the speci�c

periods in which employee e is available for work and by the minimum and

maximum lengths of shifts to which employee e can be assigned),

� xen = 1 if employee e is assigned to shift n, 0 otherwise,

� upj = 1 if period p is understa�ed by at least j employees, 0 otherwise,

� opj = 1 if period p is oversta�ed by at least j employees, 0 otherwise,

� kpj is the incremental monetary cost of increasing the understa�ng in period p

from j-1 to j employees, where 1 ≤ kp1 ≤ kp2 ≤ ... ≤ kprp ,

� bpj is the incremental monetary bene�t of increasing the oversta�ng in period

p from j-1 to j employees, where 1 > bp1 ≥ bp2 ≥ ....

This model has the interesting characteristic of allowing understa�ng, and ma-

king a trade-o� between the cost of hiring employees and the cost of not meeting

sta�ng targets. Many more extensions can be included in a shift assignment mo-

del ; however, as they all are extensions that can also be included in the tour

scheduling problem, they will be discussed in section 2.3.3.

Papers on shift assignment include : [31], [96], [97], [112], [128], [132], [134], [149],

[151], [153], [154], [155], [164], [169] and [171].
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minZ =
∑
e∈E

∑
n∈Se

Cnxen +
∑
p∈P

(

rp∑
j=1

kpjupj −
∞∑
j=1

bpjopj) (2.7)

subject to :

∑
e∈E

∑
n∈Se

anpxen +

rp∑
j=1

upj −
∞∑
j=1

opj = rp ∀ p ∈ P, (2.8)

∑
n∈Se

xen ≤ 1 ∀e ∈ E, (2.9)

xen ∈ {0, 1} ∀ e ∈ E, n ∈ Se, (2.10)

upj ∈ {0, 1} ∀ p ∈ P, j ∈ J, (2.11)

2.3.3 Explicit and Implicit Models in Tour Scheduling

Tour scheduling is the process of combining days-o� and shift assignment solu-

tions into a full schedule. In tour scheduling problems, two main types of models

are encountered : explicit and implicit. In explicit models, also called set-covering

and based on Dantzig (1954 [69]), the full tours (possible individual schedules) are

explicitly represented in the models by a large number of constant parameters.

These are usually binary and represent the presence (value of 1) or absence (value

of 0) of a work shift in a given tour for a given period. Linked to the decision

variables, they create a large number of service coverage constraints, which unfor-

tunately makes the model very large and di�cult to solve optimally when many

tours are included in it. On the other hand, implicit models can be more complex

to design but have the advantage of greatly reducing the size of the problem by

representing shifts and/or breaks as variables.

The basic tour scheduling model, presented as a set covering model by Dantzig

(1954 [69]), is presented between (2.12) and (2.14) where :

� xj is the number of employees working on tour j,
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� aij = 1 if tour j is on duty during period i, 0 otherwise,

� ri is the service demand for period i,

� cj is the cost of working tour j.

Apart from some variables de�nitions, this is the same basic set covering model

presented in sections 2.3.1 for days-o� scheduling and 2.3.2 for shift assignment.

One of its notable characteristic is that it allows oversta�ng, but not understa�ng.

This can be useful in situations where a minimum sta� must be provided for each

period. An extension of this model is the following, referred by Baker (1976 [19])

and initially proposed by Luce (1973 [122]) is presented between (2.15) and (2.18)

where :

� cj is the cost of assigning one employee to tour j,

� si is the shortage allowed at period i,

� ti is the surplus allowed at period i.

This extension provides an interesting improvement over the previous model :

(2.16) and (2.17) allow bounded variations around ri, which becomes a target of

service coverage instead of a strict minimum. One limitation of this approach is

the dependence of the quality of the solution on how parameters si and ti have

been adjusted. If the bounds are too loose, the resulting coverage will likely be

far from ri, while if they are too tight, a feasible solution may not exist.

min
J∑

j=1

cjxj (2.12)

subject to :

J∑
j=1

aijxj ≥ ri ∀ i ∈ I, (2.13)

xj ∈ Z+ ∀ j ∈ J, (2.14)
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min
J∑

j=1

cjxj (2.15)

subject to :

J∑
j=1

aijxj ≥ ri − si ∀ i ∈ I, (2.16)

J∑
j=1

aijxj ≤ ri + ti ∀ i ∈ I, (2.17)

xj ∈ Z+ ∀ j ∈ J, (2.18)

As reported by Alfares (2004 [9]), Easton & al. (1996 [76]) proposes a goal pro-

gramming (multi-objective) approach presented between (2.19) and (2.21) where :

� Je is the set of feasible tours for employee category e,

� Z is the total labor cost,

� Cj is the cost of assigning one employee to tour j ∈ Je,

� d+i , d
−
i are respectively the labor understa�ng and oversta�ng at period i,

� ui, oj are respectively the penalties for understa�ng and oversta�ng at period

i.

Two main di�erences arise when comparing this last model with the previous ones.

First, di�erent categories of employees are considered here. This limits tours to

which an employee may be assigned to, and hence allows a higher level of indivi-

minZ =
E∑

e=1

∑
j∈Je

Cjxj +
I∑

i=1

uid
−
i − oid+i (2.19)

subject to :

E∑
e=1

∑
j∈Je

aijxj + d−i − d+i = ri ∀ i ∈ I, (2.20)

xj ∈ Z+ ∀ j ∈ J, (2.21)
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dualization of assignments. Second, service coverage is now a soft constraint and

its violations are penalized in the objective function. Hence, this goal program

is a multi-objective approach in which the cost of scheduling employees must be

balanced with the cost of reaching the service coverage target. Important charac-

teristics of such an approach include that it guaranties a feasible solution and that

it provides more �exibility.

Thompson (1995 [152]) presents another extension of the explicit tour scheduling

model which includes the positive impact of sta�ng levels in its objective (for

clarity purposes, we use the notation of Goodale & al. (2004 [91])) presented

between (2.22 and (2.24) where :

� i is an index for planning periods,

� j is an index of work schedules,

� k is the number of additional workers in period i beyond the minimum accep-

table level,

� T is the set of work schedules,

� xj is the number of employees assigned to work schedule j,

� cj is the cost of assigning an employee to work schedule j,

� aij = 1 if i is a work period of schedule j, 0 otherwise,

� ri is the number of workers required at period i,

� τik = 1 if the number of employees working in period i equals or exceeds mi+k,

0 otherwise,

� qi is the number of employees in period i in excess of the minimum reasonable

sta� size, who, ignoring labor costs, contribute to increased NPV (net present

value) pro�ts,

� mi is the minimum reasonable number of workers for period i,

� dik is the incremental improvement in NPV pro�t (ignoring labor costs) that

occurs with the addition of the (mi + k)th employee in period i (assuming
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nonincreasing marginal NPV returns for each period - i.e., dik ≥ di,k+1 for i ∈ I

and for all j).

An interesting characteristic of this model is that it doesn't treat scheduling as a

cost, but rather as a source of pro�t to be maximized. However, maximization of

pro�ts remains a relatively rare objective in personnel scheduling.

With no exceptions, all models presented previously are explicit ones. We de�ne

explicit models as those including in their formulation a matrix describing all

possible tours (set covering models). They are simple and easy to implement,

but require to de�ne beforehand the content of the matrix. Furthermore, when

�exibility is required, the consequently large number of tours included in the

models make them very time consuming to solve. In order to deal with these

limitations, many implicit models have been proposed. We de�ne implicit models

as those de�ning shifts and tours by variables and constraints, in such a way that

the formulation de�nes the structure of tours, but does not provide a list of possible

ones. Such formulations are more time consuming to develop, but require much

less time to solve. Jacobs & al. (1996 [106]) proposes an implicit tour scheduling

model presented between (2.25) and (2.29) where :

� i is the index of planning periods in an operating day,

� j is the index of days in an operating week,

� k is the index of start-time bands,

max
∑
i∈I

qi∑
k=1

dikτik −
∑
j∈T

cjxj (2.22)

subject to :

∑
j∈T

aijxj −
qi∑

k=1

τik ≥ mi ∀ i ∈ I, (2.23)

τik ∈ {0, 1} ∀ i ∈ I, 0 ≤ k ≤ qi, (2.24)
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� l is the index of shift-starting times per band,

� m is the index of days-on patterns,

� Dkm is the number of employees working in start-time band k and days-on

pattern m,

� αikl = 1 if planing period i is a work period in a shift included in start-time

band k and beginning at period l, 0 otherwise,

� γjkl is the number of employees working a shift on day j, in start-time band k,

beginning at planning period l,

� βjm = 1 if day j is a work day in days-on pattern m, 0 otherwise.

Compared to explicit models, an implicit model such as the one here above greatly

reduces the size of the problem to solve. Furthermore, by using variables which

de�ne both days-on and shift assignments, it also eliminate the need of explicitly

selecting the tour schedules included within the master problem. Also, the concept

of start-time bands allows a given tour to have di�erent bounded shift start-times,

which greatly increases the �exibility of the model. However, none of the previously

presented models (explicit or implicit) consider breaks. The model proposed by

Topaloglu & al. (2002 [161]) and presented between (2.30) and (2.34) does consider

breaks, where :

� i is the index for days of week,

� k is the index of shift types,

� l is the index for time periods,

� Li is the number of time periods to be scheduled on day i,

� D is the duration of a shift type,

� DS is the set of indices for shift types with duration D,

� DP is the set of indices for days-on patterns with shift of duration D,

� Ki is the number of shift types on day i,

� Alk = 1 if shift pattern k calls for work during period l, 0 otherwise,
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� BLik is the set of time periods in which an employee working shift k on day i

may start his/her break,

� TLil is the set of shifts for which period l is a break start time within their time

windows on day i,

� Dil is the number of employees required during period l on day i,

� Xj is the number of employees assigned to days-on pattern j,

� Xjk is the number of employees assigned to shift type k on day i,

� Bikl is the number of employees assigned to shift type k and taking their breaks

in period l on day i.

When compared to previous models, an interesting element of this model is that

breaks are included. Indeed, many service providers must take breaks into account

in order to obtain a schedule providing good adequate coverage in application.

When breaks are not considered, service coverage requirements can often be un-

derestimated. Also, if few di�erent shift start times are used, many employees

will take their breaks simultaneously, which may cause critical gaps in coverage.

Another comparable model including breaks can be found in Rekik & al. (2004

[142]).

Papers on tour scheduling include : [1], [3], [4], [5], [10], [11], [13], [14], [16], [17],

[18], [20], [21], [22], [23], [27], [28], [29], [30], [32], [33], [34], [35], [36], [39], [40],

[41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [57],

[59], [61], [62], [63], [69], [70], [71], [72], [73], [74], [75], [80], [85], [86], [87], [88],

[90], [91], [93], [95], [98], [100], [102], [103], [104], [105], [106], [107], [108], [110],

[111], [113], [114], [116], [117], [118], [119], [120], [121], [123], [125], [126], [127],

[132], [135], [137], [138], [141], [142], [143], [144], [147], [150], [155], [158], [161],

[162], [165], [166], [167] and [172].

18



min
K∑
k=1

M∑
m=1

Dkm (2.25)

subject to :

K∑
k=1

L∑
l=1

αiklγjkl ≥ rij ∀ i ∈ I, j ∈ J, (2.26)

L∑
l=1

γjkl −
M∑

m=1

βjmDkm = 0 ∀ j ∈ J, k ∈ K, (2.27)

γjkl ∈ Z+ ∀ j ∈ J, k ∈ K, l ∈ L, (2.28)

Dkm ∈ Z+ ∀ k ∈ K, m ∈M, (2.29)

min
J∑

j=1

Xj (2.30)

Subject to :

Ki∑
k=1

AlkXik −
∑

k∈TLil

Bikl ≥ Dil ∀ l ∈ Li, i ∈ I, (2.31)

∑
j∈DP

AijXj −
∑
k∈DS

Xik = 0 ∀ i ∈ I, ∀D, (2.32)

Xik −
∑

I∈BLik

Bikl = 0 ∀ k ∈ Ki, i ∈ I, (2.33)

Xik, Xj, Bikl ∈ Z+ ∀ i ∈ I, j ∈ J, k ∈ K, l ∈ L, (2.34)
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2.3.4 Cyclic Schedules

Ernst & al. (2004b [84]) suggest that in a cyclic roster, employees of the same

class perform exactly the same line of work (tour), but with a di�erent starting

day for the �rst duty. This case is illustrated in Figure 2.2 and table 2.I.

Figure 2.2 � Example of a tour for cyclic scheduling

Figure 2.2 presents the tour of a cyclic schedule, and table 2.I presents how this

tour is assigned to each employee. In this case, the four week long tour is done

by 4 employees. Each of them works the same shifts but at di�erent times of the

tour. For instance, employee 1 starts the tour at section 1, employee 2 at section

2, and so on. The main advantages of a cyclic schedule are that : it is normally

easier to manage since it consists in reality of only one tour, and it is fair for all

employees since everyone works the same shifts in the same order.

The rotating schedule is a special cyclic case where the service is provided around

the clock, 7 days a week. This means that at least two di�erent shift start times

must be covered each day (f.ex. : two 12 hours shifts starting at midnight and

noon). Hence, because the same tour is shared by all employees, all employees

Week #1 Week #2 Week #3 Week #4

M T W T F S S M T W T F S S M T W T F S S M T W T F S S
Employee #1 Section#1 Section#2 Section#3 Section#4
Employee #2 Section#2 Section#3 Section#4 Section#1
Employee #3 Section#3 Section#4 Section#1 Section#2
Employee #4 Section#4 Section#1 Section#2 Section#3

Table 2.I � Example of the Assignment of a Cyclic Tour to Employees
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work all possible shifts. This situation increases the di�culty of solving the pro-

blem, partly because many ergonomic constraints must be taken into consideration

(f.ex. : a night shift can only be worked after a night or afternoon shift, an af-

ternoon shift can only be worked after an afternoon or day shift, a day shift can

only be worked after another day shift, and �nally night shift sequences must be

followed by a given number of days o�, etc.).

Papers on cyclic scheduling include : [7], [8], [22], [23], [24], [40], [61], [87], [125],

[132] and [147]. More speci�cally, papers on rotating schedules include [113] and

[114].

On the other hand, cyclic schedules are not adequate for situations where high

�uctuations in demand are present or where employees are allowed to have indi-

vidual preferences (f.ex. : length of shift, number of working hours, start times,

etc.). In such cases, acyclic schedules must be used. These provide di�erent tours

for each employee, and hence allow a degree of individualization, as well as a larger

�exibility to cope with high �uctuations in demand. However, they are usually

larger than in the cyclic equivalent, and hence harder to solve. Furthermore, acy-

clic schedules may have individual tours in which shift starting times may vary.

However, because they are not cyclic, and because their individual schedules do

not necessarily contain a full rotation (day, evening and night shifts), they will

not be considered as rotating schedules.

Papers on acyclic schedules include : [1], [3], [4], [5], [10], [11], [13], [14], [15], [16],

[17], [18], [20], [21], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36],

[37], [38], [39], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53],

[54], [55], [57], [59], [62], [63], [69], [70], [71], [72], [73], [74], [75], [80], [81], [82],

[85], [86], [88], [90], [91], [93], [95], [96], [97], [98], [99], [100], [102], [103], [104],
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[105], [106], [107], [108], [110], [111], [112], [116], [117], [118], [119], [120], [121],

[123], [126], [127], [128], [130], [134], [135], [136], [137], [138], [141], [142], [143],

[144], [149], [150], [151], [153], [154], [155], [158], [160], [161], [162], [164], [165],

[166], [167], [169], [171] and [172].

2.3.5 Objective Functions

In sections 2.3.1, 2.3.2 and 2.3.3, a few di�erent objective functions have been

presented. However, these remain rather basic ones, and literature on personnel

scheduling presents a much larger variety of objectives, including very complex

ones. Generally, two types of problems are encountered in the literature :

� Optimization problems,

� Constraint satisfaction problems.

Typically, previous literature was focused on optimization problems, while there

has been an emergence of constraint satisfaction problems in recent years. This

is perhaps due to the ever-rising importance of quality of service, as well as the

shortage of quali�ed manpower in many industries, which logically leads to believe

that minimising cost is no longer as important as providing a schedule that will

be good enough both to deliver the required level of service and to keep your

current sta�. However, among those two types of problems, many variations exist

in encountered objective functions. According to Alfares (2004 [9]) and Bechtold &

al. (1991 [30]), the objective functions suggested in the tour scheduling literature

include :

� Total labor hours scheduled,

� Total number of employees,

� Labor costs,

� Unscheduled labor costs,

� Customer service,

� Oversta�ng,

22



� Understa�ng,

� Number of schedules with consecutive days o�,

� Number of di�erent work schedules utilized,

� Net present value of pro�t,

� Employee satisfaction,

� Consistent employee workloads,

� Fair assignment of employees to schedules,

� Di�erent combinations of the above elements.

Aggarwal (1982 [2]) also presents a list of objective functions, but this one is

classi�ed by application type. We will elaborate on this one in section 2.5. As

a general rule, models in personnel scheduling have at least one of the following

type of objective :

� Pro�t maximization,

� Cost minimization,

� Maximization of employee satisfaction.

In our opinion, all objective functions in personnel scheduling are combinations of

elements included in the three above. Clearly, the type of objective used is related

to the selected solution method. For instance, single objective functions will be

well suited for pure linear programming, while multi-objective functions will be

better suited for goal-programming or sophisticated heuristics.

2.3.6 Constraints

In sections 2.3.1, 2.3.2 and 2.3.3, typical basic constraints were presented. Howe-

ver, the literature on personnel scheduling o�ers a much larger variety of constraints,

including very complex ones. According to Alfares (2004 [9]), the constraints in

personnel scheduling concern the following aspects :

� Allowable shift start times,

� Minimum and maximum length of each shift,
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� Frequency and duration of meal and rest breaks,

� Minimum rest period between shifts,

� Operating hours per day,

� Number of workdays per week,

� Limits on the number of consecutive workdays,

� Shift rotation.

Furthermore, through our review of the existing literature we have identi�ed the

following which were not included in Alfares (2004 [9]) :

� Service coverage,

� Required skills,

� Individual preferences,

� Ergonomic (worker's health) factors,

� Number of week-ends o�,

� Fairness.

Aggarwal (1982 [2]) also presents a list of constraints, but this one is classi�ed

by application type. We will elaborate on it in section 2.5. Because of the large

number of constraints in most realistic personnel scheduling problems, many are

often modeled as soft constraints. This is due to the fact that a large combi-

nation of hard constraints would most likely make the problem unfeasible. This

explains why sophisticated heuristics and goal programming approaches are so

often encountered in the personnel scheduling literature : they are well suited for

multiobjective approaches dealing with many con�icting constraint violations.

2.4 Solution Methods

The large variety in structures and characteristics of personnel scheduling pro-

blems have motivated researchers and practitioners to implement a large number
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of di�erent types of solution approaches. Alfares (2004 [9]) classi�es tour schedu-

ling approaches in the following way :

� Manual solution,

� Integer programming,

� Implicit modeling,

� Decomposition,

� Goal programming,

� Working set generation,

� LP-based solution,

� Construction/improvement,

� Metaheuristics,

� Other methods.

This classi�cation is quite detailed. However, it has the limitation of having some

classes that are closely interrelated. For instance, implicit modeling is a subset

of integer programming, and decompositions are frequently LP-based solution

approaches. However, in our opinion this limitation is hardly avoidable when using

a detailed classi�cation. This may explain why some reviews such as Aggarwal

(1982 [2]) have opted for limiting themselves to presenting a classi�cation by

application, which is also a pertinent choice in the context of personnel scheduling.

To the best of our knowledge, the most detailed classi�cation is the one proposed

by Ernst & al. (2004 [83]), which is the following :

� Branch-and-bound,

� Branch-and-cut,

� Branch-and-price,

� Column generation,

� Constraint logic programming,

� Constructive heuristic,

� Dynamic programming,
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� Enumeration,

� Evolution,

� Expert systems,

� Genetic algorithms,

� Goal programming,

� Integer programming,

� Iterated randomized construction,

� Lagrangian relaxation,

� Linear programming,

� Matching,

� Mathematical programming,

� Network �ow,

� Other meta-Heuristic,

� Other methods,

� Queuing theory,

� Set covering,

� Set partitioning,

� Simple local search,

� Simulated annealing,

� Simulation,

� Tabu search.

The above classi�cation includes a large number of di�erent approaches. Howe-

ver, because the scope of Ernst & al. (2004 [83]) is much wider than ours, we

believe this classi�cation to be much too large for our needs. On the other hand,

Ernst & al. (2004 [84]) has opted for using the following much simpler aggregated

classi�cation :

� Demand modeling,

� Arti�cial intelligence approaches,
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� Constraint programming,

� Metaheuristics,

� Mathematical programming approaches.

Because of its simplicity, we believe this last classi�cation provides less opportu-

nities for a method to �t into more than one category. However, this classi�cation

is strongly unbalanced as AI approaches are much less common than mathema-

tical programming and metaheuristic ones. Furthermore, since we have excluded

demand modeling from the scope of our review, we will hence use the following

classi�cation which is inspired from the previous ones, but adapted to our scope

and needs :

� Mathematical programming approaches,

� Heuristics,

� Constraint programming,

� Hybrid approaches,

� Other approaches.

Although unbalanced because the �rst two classes account for most of the litera-

ture, we believe this classi�cation includes all solution methods proposed up to

this day, without allowing many methods to be assignable to more than one class.

Hence, the rest of this section will be structured accordingly.

2.4.1 Mathematical Programming Approaches

Mathematical programming approaches are very often used to solve personnel

scheduling problems. The most basic version of them is pure linear program-

ming, which can solve problems dealing with continuous variables. With present

day computer performances, this approach can solve real-life problems in many

areas. However, personnel scheduling problems require the use of integer variables.

Hence, linear programming must be combined with other methods such as branch-

and-bound, in order to obtain a feasible solution. Unfortunately, for a similar
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number of variables, algorithms for problems with integer variables require much

more computing time.

The current section will be structured according to the most common mathe-

matical programming approaches used in personnel scheduling : Mixed-integer

programming, column generation and other mathematical decomposition tech-

niques, and �nally other less common mathematical programing approaches. For

each solution approach, papers considered particularly interesting with regard to

our scope will be discussed.

Isken (2004 [104]) proposes a mixed-integer programming solution for a tour sche-

duling problem applied to health care, which is modeled implicitly in order to

reduce its size. The approach was implemented using CPLEX 7.1 on a pentium

III running at 1.0 GHz, with 128 MB of RAM. A total of 1800 problem instances

were solved, which have a number of integer variables ranging from 896 to 9842,

and a number of constraints ranging from 1004 to 3567. They represent a large

array of di�erent combinations of start-time bands, tour types, objective func-

tions and bounds on part-timers. Also, 25 demand pro�les are used, which all

average 1600 hours per week, or 40 full-time equivalents. With a time limit of

14400 seconds, 1534 problems were solved optimally, among which 1483 within

600 seconds. Interesting �ndings of this paper include that start-time band width

can have an important e�ect on the cost of the schedule, depending on the type

of demand pattern. Also, on some instances, a larger start-time band width seems

to compensate for stronger limitations on the number of part timers available.

However, the strongest savings come from increased tour type �exibility. Overall,

the results presented by Isken (2004 [104]) con�rm the intuitive idea that more

�exibility leads to cost savings, at least on the short term, and from a purely

theoretical point of view. However, as it is the case for most problem structure

analysis in personnel scheduling, these results can not automatically be assumed
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to be correct for di�erent problem structures (and there are a lot of di�erent

problem structures in personnel scheduling !).

Jacobs & Bechtold (1993 [105]) proposes another interesting mixed-integer pro-

gram to solve an implicit model of tour scheduling. Like Isken (2004 [104]), it also

analyses the impact of a given set of schedule structure choices on the cost of the

solution. However, some of the results presented by Jacobs & Bechtold (1993 [105])

contradict those of Isken (2004 [104]). For instance, Jacobs & Bechtold (1993 [105])

concludes that modifying consecutive days-o� constraints has no impact on labor

utilization, and almost no improvements come from allowing shift start times to

vary across the working days. The �rst �nding contradict the positive impact of

tour-type �exibility found by Isken (2004 [104]), and the second one the posi-

tive impact of the width of start-time bands. The elements analyzed by Jacobs

& Bechtold (1993 [105]) are the following : Tour length, break placement, start-

time �oat, start time (level of discretization), shift length, days o�, day length,

labor requirement mean and labor requirement amplitude. This design produced

a total of 896 instances, which were solved by the SAS/OR branch-and-bound

mixed ILP module, on an Amdahl 5860 mainframe computer. With a time limit

of 300 seconds, an optimal solution was obtained for 75% of the instances. The

�ndings were that : (1) break placement �exibility could be extremely e�ective in

improving labor utilization, (2) part-timers working fewer days per week can also

support labor utilization improvements, (3) increasing the number of daily shift

start times also has a positive e�ect. Furthermore, an intuitive �nding is that re-

lationships between �exibility alternatives, labor requirement characteristics and

labor requirement distributions are found to be highly complex, and hence hard

to predict. This is a fact that has unfortunately strongly limited the usefulness of

comparative studies in personnel scheduling up to this day.

Thompson (1995 [151]) presents a large implicit model for shift scheduling, solved

by integer programming and based on Bechtold & al. (1990 [31]). This shift sche-
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duling approach considers both a large number of shift and break start times. A

total of 588 tests were made, into which the varying parameters included employee

requirements, shift types, length of planning interval, length of operating day and

restrictions on acceptable shifts. Some of the tests were using periods as small as

15 minutes, which is one of the most detailed level of discretization found in the

literature. The model is solved by the branch and bound module of SAS/OR on

a 486DX33 personal computer. The problem instances solved had up to 15,885

possible shifts, being 55% more than previously solved by [31]. On average, [151]'s

model was 36.5% quicker to solve than the former.

Topaloglu & al. (2002 [161]) proposes another implicit tour scheduling model sol-

ved by mixed integer programming, this time with �exible breaks. Among other

things, this approach allows for di�erent shift starting times throughout an indi-

vidual tour. Also, di�erent days-on patterns, shift length, and break start times

are allowed. A total of 36 problems are solved, on a 800 MHz Pentium III with

OPL studio and CPLEX 7.1. The largest instance had 5,361,741 variables and the

average solution time was under 310 seconds for 30 instances. The authors note

that for a break window of one hour and for 8 hours shifts on a day of work of

12 hours, the implicit formulation reduces the number of variables from 700,000

in the set covering model to 112. With a stopping criterion of 100,000 iterations,

an optimal solution could be found for all instances with the implicit model, but

only for 3 with the set covering model.

Finally, Brusco & al. (1998 [43]) proposes a procedure to eliminate redundant co-

lumns (tours) in set covering models for tour scheduling problems. The proposed

approach eliminates tours that are not part of the optimal solution, because they

begin or �nish during periods with no service requirements. However, because of

this last element, this approach can only be used in a limited number of situations.
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The other common mathematical programming approach to personnel scheduling

is column generation, and generally speaking, mathematical decomposition tech-

niques. Indeed, while approaches like implicit modeling can e�ciently reduce the

size of problems, another way to accomplish a similar result is to decompose the

problem. Jaumard & al. (1998 [108]) proposes such a column generation approach

for nurse scheduling. Here, the master problem �nds the best combination of in-

dividual schedules to create the full solution, and the subproblem produces an

acceptable schedule for a given nurse. With some small variations, this appears to

be the most common (and natural) way of decomposing personnel scheduling pro-

blems. Preliminary results based on data from a hospital show that, for a problem

of 41 employee on a horizon of 6 weeks, a solution to a linearly relaxed problem

is obtained in less than 40 minutes. A good integer solution however takes 16.5

hours with a partial branch and bound, and a gap of 0.86% from the lower bound.

Eitzen & al. (2004 [80]) also proposes a column generation approach, which has

a master problem optimizing the schedule, and a subproblem that generates in-

dividual tours to add to the master problem as required. Here, the results of the

column generation approach are compared with those of two heuristics referred

to as reduced columns subset and column expansion methods. The computatio-

nal e�ort of the tests is limited in cpu to either 5000 nodes in the branch and

bound tree or 4 hours in cpu time, whichever is reached �rst. Because not all

tours are included in column expansion and reduced columns subsets, there are

no guarantees that these approaches can obtain the optimal solution. In terms of

solution quality, column generation produces better solutions than the two other

methods. With the objective function being to reduce understa�ed shifts, column

generation provides solution costs more than 25% lower than both other methods.

However, on CPLEX 6.6 with a 450 MHz running on Linux, column generation

requires more computing time.
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LP-based decomposition approaches other than column generation have also been

proposed. Unlike column generation many of them do not guarantee �nding an

optimal solution. They are often sequential approaches, where a large problem

is split into smaller ones, and then sequentially solved. For such methods, the

objective is rather to obtain a solution within reasonable time than an optimal

one. In fact, each sequential problem can potentially be solved optimally, but the

original global problem will most likely not be. Jarrah & al. (1994 [107]) proposes

such an approach, where a tour scheduling problem is handled by �rst solving a

days o� scheduling problem, and then 7 di�erent shift assignment problems (one

for each day of the week). Each day is divided into 48 half hour periods. Throu-

ghout all the di�erent sets of instances for the shift assignment subproblem, the

largest number of constraint is 947, and the largest number of variables is 1607.

The branch and bound code is written in FORTRAN and runs on an IBM 3081-D

machine. Results are obtained within times largely inferior to 1000 seconds for

most instances. Bechtold & al. (1994 [27]) is another paper decomposing the tour

scheduling problem in two sequential phases, being shift scheduling and days-o�

scheduling. In fact, handling a tour scheduling problem by splitting it into a day

sequencing problem and a shift problem is a very natural way to solve it. Among

sequential decomposition approaches, variations of this one clearly seem to be the

most common.

Finally, some mathematical programming approaches are combined with heuris-

tics to decrease solution time. For instance, Wan & al. (2007 [165]) proposes two

di�erent LP-based heuristics, including a column generation one. Tests were made

on a Pentium IV 2.53 GHz with 512 MB of RAM and CPLEX 8.1. When com-

pared with CPLEX, results obtained by the column generation heuristics were

considered very interesting in terms of solution time and solution quality. Such
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methods can however be considered as hybrid, such as those described in section

2.4.4.

A few other exact approaches exist, but they are much less frequently used for

personnel scheduling. For instance, Elshafei & al. (2008 [81]) proposes a dyna-

mic programming approach for days-o� scheduling. However, like mathematical

programming, all exact approaches have the limitation of requiring much longer

solution times than a well conceived heuristic for a given problem.

Papers on exact solution methods include : [7], [8], [14], [16], [17], [18], [20], [21],

[24], [26], [30], [31], [36], [38], [39], [42], [43], [45], [46], [47], [48], [49], [61], [69],

[72], [80], [81], [86], [87], [90], [93], [97], [103], [104], [105], [106], [107], [108], [110],

[113], [114], [116], [119], [121], [123], [125], [128], [135], [136], [137], [138], [142],

[149], [151], [155], [158], [160], [161], [162], [164], [166], [167], [169] and [171].

Papers on LP-based heuristics include : [11], [16], [22], [28], [29], [30], [40], [48],

[49], [74], [80], [87], [96], [107], [123], [132], [144], [150], [165] and [172].

2.4.2 Heuristics

Heuristics are the other common type of approaches frequently found in personnel

scheduling literature. They are useful when exact approaches can't provide a good

solution within reasonable time. There is a large number of di�erent heuristics,

but most of them are included within the following categories :

� LP-based heuristics,

� Constructive heuristics,

� Metaheuristics.

LP-based heuristics are procedures based on mathematical programming metho-

dology but which are not solved completely in order to reduce computation times.

They have been brie�y discussed in the previous section and will be excluded from

33



the present one. In the current section, we will focus our attention on constructive

heuristics and metaheuristics.

Goodale & al. (2004 [91]) compare a set of heuristics for assigning individual

employees to tour schedules, considering both individual costs and productivity.

Five methods are compared : one random assignment, three simple heuristics, and

one simulated annealing approach. The �rst heuristic (H-DOP) sorts individuals

in descending order of estimated productivity. It assigns workers to longer tours

�rst, and then to shorter tours. The second heuristic (H-AOC) sorts individuals in

ascending order of estimated relative cost and assigns the workers to longer tours

�rst also. The third heuristic (H-DOR) sorts individuals in descending order of

their estimated productivity/cost ratio and assigns workers to longer tours �rst

again. Finally, the last one is a simulated annealing approach (H-NPV) which

minimizes the net pro�t value (NPV) of the entire schedule by �nding a good

combination of assignments. H-NPV turned out to be the most successful pro�t

maximizing approach, closely followed by H-DOR. Respectively, they provided in-

creases of 3.23% and 2.61% over H-RAN on the instance in which they performed

best, while H-AOC provided worse results than H-RAN.

Baxter & al. (1988 [23]) present a heuristic that was built to produce schedules

in a workplace where manpower needs �uctuate frequently, and hence where the

manager spends too much time making new schedules on a regular basis. The

heuristic was built to produce an array of feasible schedules from which the ma-

nager could subsequently chose the one he preferred. It is divided in four stages :

the generation of a schedule allocating men to days for a period of one week, the

allocation of men to shifts, the creation of an acceptable rotation of men from one

week to the next, and �nally assessing a set of potential arrangements produced

by the �rst three phases to obtain the best o�ering to the workforce. Results of
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this simple heuristic have been satisfying and implemented, but not empirically

compared.

Chiaramonte (2008 [62]) proposes a heuristic agent-based nurse rostering system.

According to Chiaramonte (2008 [62]), typical mathematical model or heuristics

are not well suited to handle individual preferences for rosters in an objective func-

tion. However, the agent based rostering system allows to isolate the preference

from the cost minimization problem. Among other things, the concept of agent is

used to simulate exchange of stints (sequences of shifts) between nurses, like it is

frequently done manually in real life. The algorithm is tested on 20 instances with

2 work shifts per days on a horizon of 28 days, and with 20 nurses. The average

runtime is 36 seconds. However, when compared to the manual solution used by

a hospital, the nurses rated the performance of the agent based as being nega-

tive 33% of the time, versus 25% for the manual solution. An interesting element

about this approach is that modeling a heuristic based on human behavior could

potentially facilitate its implementation, as managers and workers may have more

con�dence in a schedule building process they understand.

There are also heuristic decompositions, which are usually sequential. Their logic

is the same as mathematical programming decomposition methods : to split a

problem, and then solve each resulting section individually. Afterwards, the solu-

tions of each sections are combined to produce a good feasible �nal solution. For

instance, McGinnis & al. (1978 [126]) proposes a two-phase heuristic approach for

tour scheduling. The �rst phase selects the shifts that must be worked, and the

second assigns shifts to individual employees in order to build tours. This heuristic

is compared to a single-phase one for the same problem. Both are programmed

in FORTRAN and solved on a Univac 1108. The instances tested counted around

200 employees, and the one-phase heuristic took an average one 3 minute to solve
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them, compared to 1 minute for the 2-phase one. Performance is measured in terms

of idle manpower (understa�ng is not allowed) and consecutive number of days

o� pairs. The one-phase heuristic leads to substantially better results in terms

of idle manpower (15% less), but the 2-phase heuristic produces better results in

terms of regular days o� pairs (20% better). Of course, sequential decomposition

heuristics have little advantage over single phase ones when the problem size is

small. However, they become interesting when the problem to solve is so large

that the search space can not be explored su�ciently with a single phase in order

to guarantee a good solution.

Papers on greedy heuristics include : [13], [15], [20], [21], [23], [25], [26], [27], [30],

[40], [44], [46], [47], [62], [70], [75], [82], [91], [93], [96], [98], [99], [100], [111], [112],

[118], [126], [127], [130], [141], [147] and [154].

Metaheuristics are more sophisticated approaches than constructive heuristics.

Their strength relies on their capacity to continue searching for a better solution

even after �nding a local optimum, something classical greedy construction or local

search heuristics can not achieve. Furthermore, they have the capacity to do so

within reasonable amounts of time. In fact, most recent papers using approximate

approaches deal with metaheuristics, and the most frequently encountered in the

personnel scheduling literature are the following :

� Tabu search,

� Genetic algorithms,

� Simulated annealing.

Metaheuristics usually function in the following manner : a simple constructive

heuristic produces an initial solution, and afterwards the metaheuristic explores

some solution space with the initial solution as a starting point. Often with ap-

plications in personnel scheduling, the solution space will be explored for instance
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by exchanging shifts between employees, changing the start time of a shift, or

trading a shift for a day o�.

More speci�cally, tabu search is an approach that explores the solution in the

previously mentioned manner, and allows the search procedure to escape local

optima by excluding them from the possible search space for some time, in order

to prevent the search process from cycling over the same solutions continuously.

These restrictions are kept in memory within a tabu list, hence the name tabu

search. Dowsland (1998 [71]) proposes a tabu search for solving a nurse rostering

problem. The proposed tabu search has the characteristic of using strategic oscil-

lations to move around the boundaries of the feasible region, as well as chains of

moves and the recognition of sub-optimal attributes in solutions. Basically, stra-

tegic oscillations is a method that allows the search mechanism to violate hard

constraints, hence exiting the space of feasible solutions temporarily in order to

re-enter it subsequently it in a di�erent location. The standard neighborhood de-

�nition used here involves modifying the shift pattern for a single nurse. On the

�rst test data set, the strategic oscillation tabu search was consistently able to

�nd the optimal solution within 1000 moves. On a 60 MHz Pentium, executing

1000 moves took between 1 and 2.5 minutes. In comparison, a random descent

algorithm, a simple tabu search and a simulated annealing could only obtain op-

timal solutions on 50% of the instances. Furthermore, on real data, all previously

mentioned algorithms produced results with penalty costs almost twice as high as

the strategic oscillation tabu search.

Bester & al. (2007 [37]) also propose a tabu search to solve a nurse rostering

problem. Here, a total of �ve neighborhood moves are proposed, including swaps,

modi�cations in values of variables and chain moves. The algorithm is implemen-

ted in visual basic 6.0. During a run of a little more than 120 iterations, the tabu

search obtains a much better schedule than the randomly generated one, both in
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terms of salary costs and dissatisfaction costs.

On the other hand, genetic algorithms explore the search space in a manner inspi-

red from biological evolution : parent solutions are combined in order to produce a

given number of o�spring solutions. These o�spring are created by combining the

interesting sections of each parent solution, and in a small percentage of combi-

nations, by adding a mutation factor to increase the exploration capacity. Easton

& al. (1999 [73]) propose a distributed genetic algorithm for labor scheduling pro-

blems. The idea behind the concept of distribution is to have a set of di�erent full

schedule populations evolving in isolation, and to introduce a number of migra-

tions between populations. Here, a chromosome is de�ned as a full schedule, and

each element (gene) within it is an individual tour, which is a rather common way

of de�ning a chromosome in personnel scheduling. Hence, the variable for each

gene represents the number of employees assigned to that tour. Furthermore, the

size of a chromosome depends on the number of feasible schedules, �tness is eva-

luated according to the objective function of cost minimization, and mating is

done by classifying individuals according to �tness. Then, with a probability of

being selected that is allocated according to their �tness level, individuals are

selected and a cross-over is applied to them in order to create o�spring, with a

small probability of mutation. On the largest instances, more than 66 possible

tours are available. The algorithm is programmed in FORTRAN and runs on an

IBM RS/6000 550 workstation, with three subpopulations each of size 20. The

approach is compared to a large set of others found in the literature, and the

genetic algorithm outperforms all others by obtaining the least cost solution more

than 66% of the time for general set covering problems, and 86% for stochastic

goal programming. It also performs well for deterministic goal programming, but

it does not outperform all other algorithms there. Furthermore, solution time is
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always on the higher half of the set of compared approaches.

Cai & al. (2000 [59]) also propose a genetic algorithm, this time for scheduling

sta� of mixed skills with multiple criteria. Here, each chromosome is coded as a

set of all feasible schedules and the parents are selected by ranking. Then, two

parents are selected (with a bias according to their ranking) and a cross-over is

done to produce an o�spring, with some probability of mutation. The o�spring

are then integrated in the next generation. The GA is programmed in C on a Sun

Sparc station. Good feasible solutions are obtained within 10 minutes.

Finally, simulated annealing uses an analogy to the process of annealing steel

in order to search for good solutions. It explores the search space using a single

parameter representing a simulated temperature. As long as the temperature is

high, the solution space is very easy to explore and constraint violations are not

penalized much. Then, little by little, the temperature drops, and the solution

space becomes more and more di�cult to explore, until the temperature freezes

on the best found solution. Brusco & al. (1993 [40]) proposes a simulated annealing

approach to the cyclic sta�-scheduling problem, which is compared to integer pro-

gramming and linear-programming-based heuristics. A total of 72 test problems

are used to compare each approach, with a maximum of 50 employees on a horizon

of 1 week. Here, the authors provide a rather large de�nition of a neighborhood

as being the dropping of a set of employee, and subsequently the rebuilding of the

schedule back to feasibility. Integer programming was implemented on SAS/OR

6.06, and all heuristics were coded in FORTRAN 77, and executed on an Amdahl

5890. When parameterizing the simulated annealing heuristic, it was noted that

neighborhood size had the largest impact on the quality of the solution. In ave-

rage, the SA heuristic outperformed other approaches in terms of gap with respect

to a lower bound, while run time were around 75 seconds, higher than most other
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approaches.

Brusco & al. (1993 [41]) also propose a simulated annealing approach for the so-

lution of �exible labour scheduling problems. In this paper, many restrictions on

schedule �exibility are eliminated, which results in problem environments contai-

ning more than 2 billion allowable tours. The neighborhood structure is de�ned

in the same manner as in [40]. Tests are performed on a total of 36 di�erent la-

bour requirements distributions. On each instance, the obtained result is within a

2% gap from the lower bound. The SA heuristic obtained its best solution often

within 10 seconds, and its allowable running time was 10 times smaller than that

of the compared implicit model solved by branch and bound.

Other less frequent metaheuristics in personnel scheduling exist as well, such as

the variable neighborhood (VNS) search used in Burke & al. (2003a [53]), where

the search procedure can escape a local optimum by restarting the search at a

new random point in the solution space through the use of a randomized control

mechanism using a series of neighborhoods.

Papers on metaheuristics include : [3], [4], [5], [10], [18], [32], [33], [34], [35], [36],

[37], [40], [41], [42], [50], [51], [52], [53], [54], [55], [57], [59], [71], [72], [73], [85],

[88], [102], [103], [117], [120], [134], [143] and [153].

2.4.3 Constraint Programming

Constraint programming is much less frequent than the previously mentioned ap-

proaches in personnel scheduling. However, it is a very well suited approach for

problems of the constraint satisfaction type, which arise quite frequently in person-

nel scheduling practice. Indeed, basic approaches of constraint logic programming

do not include any objective functions to optimize, but simply constraints to sa-
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tisfy. Hence, it is an adequate approach to problems where there is no natural

objective to optimize, but many natural (hard) constraints to consider. It is also a

well-suited approach to the philosophy of �nding a good feasible schedule rather

than an optimal one.

Auf'm Hofe (2000 [13]) presents a hierarchic constraint optimization approach.

On top of a simple constraint optimization system, it combines an optimization

function, as well as a set of constraints hierarchically arranged. The constraint

hierarchy is used to classify constraints by level of importance : it allows the sys-

tem to de�ne mandatory constraints, important constraints, and less important

ones. Here, there are hierarchies from level 0 to level 7. The system is based on

a rostering system used in more than 60 German hospitals, but few details are

given on how well it performs.

Abdennadher & al. (1999 [1]) propose a constraint logic programming system for

nurse scheduling, based on a system called INTERDIP. Here, an objective func-

tion is also integrated in the system in order to evaluate and guide improvements

of the solution after each iteration. Also, the problem is modeled as a partial

constraint satisfaction problem, which allows the system to integrate the notion

of soft constraints, not only hard ones. The system is said to produce satisfying

schedules for 20 nurses within a few minutes, and is said to produce schedules

equals or better to the ones manually made by an experienced head nurse.

Finally, Tsang & al. (2007 [163]) present an open source package named ZDC for

rostering with constraint logic programming, which can be implemented with a

di�erent set of heuristics to explore the search space. A test is done with around

30 nurses for a horizon of two to three weeks on an Athlon 2500+ PC having 1

GB or RAM. Depending on the number of shifts to schedule (between 21 and 63),
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and the number of assistant nurses (8 to 12), solution time varies between 50 and

800 seconds.

Papers on constraint logic programming include : [1], [13], [63], [117] and [143].

2.4.4 Hybrid Approaches

Hybrid approaches combine aspects from at least two di�erent methods. The ma-

thematical programming based heuristics brie�y presented at the end of section

2.4.1 can be considered as hybrid methods for instance. In this section, we will

focus on papers about other types of hybrid approaches.

Rousseau & al. (2002 [143]) presents a hybrid approach combining constraint pro-

gramming, local search techniques and genetic algorithms, to solve a physician

rostering problem. First, a simple constraint programming model is used, subject

to a set of distribution and pattern constraints. The idea is to use the constraint

programming model to quickly generate a population of solutions. Then, these

solutions are ranked according to a performance criteria such as the number of

physicians who have a satisfying schedule. This population is then used as the

starting point for an iterative process to improve the solution quality, based on

partial reconstruction of existing solutions and combination of elements from dif-

ferent solutions. Two test runs are presented. First, for an instance of 23 physicians

on a planning horizon of one month and six shifts per day, generating a feasible so-

lution takes around 5 seconds, and a very good solution can take up to 15 minutes

to produce, while with an e�cient set of parameters, the optimal solution can be

found in 5 minutes. The population has 10 individuals and the crossover is done

with the best �ve. The second instance concerns 15 physicians over a planning

horizon of 14 weeks, with 3 shifts per week-day and 1 per week-end, and takes
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around one hour and a half to run.

Burke & al. (2008 [51]) propose a hybrid method that combines an ordering heuris-

tic and a variable neighborhood search for the nurse rostering problem. Here, the

heuristic ordering procedure starts building the initial solution by sorting shifts

in order of how likely they are to cause high penalties. Then, the most penalized

shifts are assigned earlier in the schedule construction process, to the nurse that

provides it with the least penalty for assignment. After, the VNS improves the so-

lution of the ordering heuristic. Two neighborhood de�nitions are used : assigning

a shift to a di�erent nurse and swapping the nurses assigned to each of a pair

of shifts. When a local optimum is reached, a �xed number of nurses who have

the worst individual schedules are selected, and they are unassigned from all their

shifts. The ordering heuristic is then used to rebuild those schedules, and hence

serves as a restart mechanism. A total of 16 test instances varying between 12

and 30 nurses on a period of 13 weeks, are run on a P4 2.4 GHz. The results are

compared to a commercial genetic algorithm, and the hybrid VNS is especially

e�ective for instances under 20 nurses.

Dowsland & al. (2000 [72]) presents a hybrid tabu search and LP method for

nurse scheduling also. Here, the tabu search is the main engine of the approach,

and neighborhood moves involve changing the pattern of a single nurse. In order

to avoid infeasibility problems during the solution process, a LP knapsack model

is used for preprocessing in order to make available the correct number of nurses

before starting the local search. Finally, a LP network �ow model is used to make

small adjustments on shifts allocations, as a post-processing tool. A total of 51

problems are tested, and the optimal solution is found for all problems with most

of the runs.
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Finally, hyperheuristics are another type of approach that can be considered as a

hybrid. A hyperheuristic is an arti�cial intelligence mechanism consisting of a set

of di�erent heuristics ; through a learning process, it has the ability to determine

which heuristic is the most likely to perform well on a problem including a given

set of attributes. When a problem needs to be solved, the mechanism selects and

uses the heuristics most likely to provide the best solutions for the problem. Burke

& al. (2003b [57]) proposes a tabu-search hyperheuristic for timetabling and ros-

tering.

Papers on hybrid approaches include : [13], [21], [32], [33], [34], [50], [72] and [117].

2.4.5 Other Approaches

There are a few more types of solution approaches in the literature on top of

the ones presented previously. However, they are not encountered frequently. For

instance, arti�cial intelligence techniques can be used, although they are usually

combined with other approaches such as heuristics, and hence can be considered

as hybrid methods. Beddoe & al. (2006 [32]), Beddoe & al. (2007 [33]) and Beddoe

& al. (2009 [34]) present metaheuristic approaches including an arti�cial intelli-

gence technique named case-based reasoning. With it, new problems are solved by

considering the solutions to previous similar problems, and by keeping a history of

hard constraint violations on many instances and how they were dealt with. This

mechanism allows the metaheuristic to be guided towards good feasible solutions

without explicitly de�ning soft constraint objectives. This is very practical for

scheduling problems with many individual preferences, such as often encountered

in nurse scheduling.

Other approaches include the use of a spreadsheet. Clearly, some spreadsheet

models are linear or non-linear programs, but they can also simply be used for
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manual mathematical approaches. Ovchinnikov & al. (2008 [138]) presents a pro-

blem where between 15 and 20 residents in radiology must be scheduled. Here,

in order to provide the chief resident with a tool that would mimic her manual

approach to building schedules and hence not make her uncomfortable, both a

calculator spreadsheet and and optimizer one on top of it were developed. Hence,

the chief resident could use the linear program to produce a schedule, and try to

apply modi�cations by hand to ensure the quality of the solution.

Laporte (1999 [113]) also discusses (among other things) some possible manual

approaches, this time for rotating schedules. The author notes that even though

many algorithms have been proposed for such schedules, they are often not �exible

enough to produce a satisfying schedule. Hence, the author proposes that deve-

loping rotating schedules by hand can sometimes produce good results quicker.

Throughout the paper, a series of simple arithmetic techniques are proposed, as

well as tips. Finally, a case study for the Quebec ministry of transportation is

presented.

Papers on other approaches include : [32], [33], [34], [95], [113], [117] and [127].

2.5 Applications

As personnel scheduling is an area of operations research motivated by real-life

problems, much of the literature's content deals with either real or simulated appli-

cations. Most papers are speci�cally meant for one application, while a few others

are described as more �exible and portable. Many classi�cations by application

types have been proposed throughout past reviews ; the following, proposed by

Ernst & al. (2004 [83]), is among the most detailed and is ordered by decreasing

number of papers found in the literature :
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1. Buses,

2. Nurse scheduling,

3. Airlines,

4. Railways,

5. Call centers,

6. General,

7. Manufacturing,

8. Mass transit,

9. Health care systems,

10. Civic services and utilities,

11. Venue management,

12. Protection and emergency services,

13. Other applications,

14. Transportation systems,

15. Hospitality and tourism,

16. Financial services,

17. Sales.

However, this classi�cation considers a scope that is much larger than ours and

includes elements such as crew scheduling and demand modeling problems. Ernst

& al. (2004 [84]) uses the following somewhat more condensed classi�cation :

� Transportation systems,

� Call centers,

� Health care systems,

� Protection and emergency services,

� Civic services and utilities,
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� Venue management,

� Financial services,

� Hospitality and tourism,

� Retail,

� Manufacturing.

However, this last structure also considers a much larger scope than ours. Finally,

the following is yet another classi�cation, proposed this time by Aggarwal (1982

[2]) :

� Hospital health care systems,

� Emergency services,

� Transport systems,

� Street services,

� Telephone operations,

� Higher education systems,

� Library operations,

� Criminal justice systems,

� Electric power supply systems,

� Employee-to-customer individualized services.

Again, this last classi�cation unfortunately includes many papers outside of our

scope. Hence, because we wanted a structure both adapted and limited to our

scope, and which would be representative of the most common applications en-

countered, we have therefore opted for the following more aggregated one :

� General applications,

� Health care services,

� Airport operations,

� Call centers,

� Postal services,

� Others.
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This section will be structured according to this last classi�cation. Because mo-

dels and solution approaches have already been discussed, we will focus here on

the characteristics of the applied problems, i.e. structure of the schedules, work

regulations, coverage requirements, managerial objectives and other relevant en-

vironmental elements. Also, our focus will be on the more complex applications

for each class.

2.5.1 General Applications

Here, we use the term general applications as being de�ned by the inclusion of

the following two elements :

1. Purely academic papers studying a simulated generic problem,

2. Papers regarding �exible approaches that can (at least theoretically) solve

a large number of di�erent problems.

Because many papers in personnel scheduling are instance-speci�c, the �rst cate-

gory includes the majority of the literature we will discuss here. Indeed, constraints,

objective functions, size and complexity of the problem are all elements that can

strongly vary from one application context to another. Hence, developing very

�exible approaches is a hard task, and the strong limitations of current researches

on this subject seem to have resulted in few technological transfers towards prac-

titioners. On the other hand, a good number of instance-speci�c approaches have

been implemented in practice. The following papers deal with theoretical generic

problems.

Brusco & al. (1993 [41]) propose an approach to solve one of those generic pro-

blem. The characteristics dealt with here include that : the service is provided 16

hours per day and seven days per week, all employees work �ve days per week and

are considered full-timers, shifts have a duration of 8 hours including a one hour
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break, breaks can start in �ve di�erent time slots for each shift and can start at

di�erent times on di�erent shifts of an individual tour, shifts can start at di�erent

times on an individual tour, days-o� are not required to be consecutive, and the

objective is to minimize the number of full time employees. Because the formula-

tion used here doesn't allow understa�ng, the best heuristic always produces 10

to 20% of excess labour.

Furthermore, some general application papers discuss characteristics that are not

encountered in all personnel scheduling problems. Such is the case of Cai & al.

(2000 [59]), which also discusses a generic problem of sta� scheduling, but this

time including mixed skills. The multi-objective approach considers three crite-

ria : First, to minimize the total cost of manpower, second, to seek a schedule with

maximum sta� surplus, and third, to minimize the variations of sta� surplus. A

set of constraints ensures that workers are only used to cover labor requirements

for skills they possess, and considers that some workers possess multiple skills.

There is a total of 10 shifts per day, seven days a week.

In fact, most papers studying a generic instance focus on oversimpli�ed problems

that have little chances of being reproduced in real life without very large mo-

di�cations and improvements. Like [59] with mixed skills, they frequently focus

on researching one or a few basic aspects of personnel scheduling, such as �exible

break assignments in [31] and [161], mixed workforce (part timers and full timers

both in terms of shift length and number of works days) in [27] and [144], analyzing

the impact of the number of scheduled employees on pro�ts in [152], exploring the

e�ect of variable productivity between employees in [158], dynamic service rates

and learning curves within employees in [92], days-o� scheduling with hierarchical

skills in [82], [99] and [38], the latter with the addition of a minimum number of

week-ends o� for each worker in [136], multiskilled workforce for tour scheduling in
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[80], designing shifts in [134], overlapping start-time bands in [106], improving the

dispersion of surplus labor in [48], rotating schedules in [113] and [114], di�erent

work locations in [11], or non-continuously available employees in [153]. On the

other hand, a few approaches pretending to be very �exible are developed based

on generic problems ; they are the topic of the papers we will describe hereafter.

For instance, Thompson (1995 [151]) proposes one of those �exible approaches for

shift scheduling. Here, the assumptions are the following : employees have identi-

cal skills and are continuously available for work, each shift receives at most one

break, shifts and breaks may start at the beginning and �nish at the end of any

period, durations of shifts are consistent within each shift type, possible durations

of work stretches before and after meal-breaks are also consistent within each shift

type, and for each shift type, the cost is a linear function of the number of working

periods in the shift (there are no shift premiums and meal breaks are unpaid).

These assumptions are not very limitative and are quite realistic for many real life

problems. The approach allows the user to de�ne the possible shift lengths, the

lengths of work stretches before and after meal-breaks, and the shift type - the

attributes that will be the same for all shifts of this type (cost, length of meal-

break, etc.). Results are presented with planning intervals as short as 15 minutes,

and as much as 20 service operating hours each day.

Another interesting �exible approach is proposed by Jacobs & al. (1993 [105]), this

time regarding tour scheduling. Here, the labor scheduling �exibility elements im-

plemented are the following : days-o� �exibility, shift-length �exibility, start-time

�exibility, break-placement �exibility, start-time �oat and tour-length �exibility.

One hour planning periods are used on a 7 days per week planning horizon, with

however less than 24 hours of work per day. Furthermore, employees were assumed

to be available for any tour and shifts were limited to 5 or 9 hours long, including
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a one hour break, while tours lasted either 2 or 5 days. Di�erent generic instances

were tested with di�erent sets of labour requirements.

A very interesting table, providing good insight on �exibility of some propo-

sed approaches by listing a large number of di�erent attributes for each pa-

per surveyed, is presented on page 166 and subsequents of Alfares (2004 [9]).

Papers on general applications include : [7], [8], [15], [17], [23], [25], [26], [27], [28],

[29], [30], [31], [38], [39], [40], [41], [42], [48], [49], [59], [69], [73], [74], [75], [81],

[82], [86], [91], [98], [99], [100], [103], [105], [107], [113], [114], [126], [132], [134],

[135], [136], [137], [142], [144], [149], [150], [151], [153], [155], [158], [161] and [164].

2.5.2 Health Care Services

Health care is a very important area of application in personnel scheduling litera-

ture, among other things because many of its operations must run continuously

24 hours a day and 7 days a week, which increases the complexity of its related

problems. Already in 1976, Fries (1976 [89]) compiled more than 30 papers on

sta�ng in health care. At present time, the speci�c application on nurse sche-

duling largely outnumbers all the other ones in health care. Furthermore, nurse

scheduling problems happen to have some characteristics rarely encountered in

other problems. Hence, in this current section, we will isolate nurse applications

from the other ones in health care.

Nurses Applications

Given the large number of papers dealing speci�cally with nurse scheduling, it

is not surprising to �nd several review papers on the subject. Burke & al. (2004

[56]) consider a large number of papers and provides a list of approaches that

were tested on real data and/or implemented in practice in hospitals. This is
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interesting considering that nurse rostering is a very practical application. As

a matter of fact, Kellogg & al. (2007 [109]) also discuss the implementation of

nurse scheduling approaches developed by researchers, and notes that only 30 %

of systems discussed by research papers are implemented, while there is very little

academic involvement in systems o�ered by third-party vendors. [56] suggests the

following large number of elements as interesting future research areas :

� Multi-criteria reasoning,

� Flexibility and dynamic reasoning,

� robustness,

� Ease of use,

� Human/ computer interaction,

� Problem decomposition,

� Exloitation of problem speci�c information,

� Hybridisation,

� Inter-disciplinarity.

Also, a large number of appendixes can be found in Burke & al. (2004 [56]),

classifying di�erent papers on nurse rostering according to several criteria. Cheang

& al. (2003 [60]) also surveys nurse rostering literature and presents the following

list of commonly encountered constraints :

� Nurse workload (minimum/maximum),

� Consecutive same working shift (minimum/maximum/exact number),

� Consecutive working shift/days (minimum/maximum/exact number),

� Nurse skill levels and categories,

� Nurses' preferences or requirements,

� Free days (minimum/maximum/consecutive free days),

� Free time between working shifts (minimum),

� Shift types assignments (maximum shift type, requirements for each shift type),

� Holidays and vacations (predictable), e.g., bank holiday, annual leave,
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� Working weekend, e.g., complete weekend,

� Constraints among groups/types of nurses, e.g., nurses not allowed to work

together or nurses who must work together,

� Shift patterns,

� Historical record, e.g., previous assignments,

� Other requirements in a shorter or longer time period other than the planning

time period, e.g., every day in a shift must be assigned,

� Constraints among shifts, e.g., only one shift be assigned to a person at a given

time,

� Nurse requirements per skill category for each shift (minimum/maximum/exact

number).

Burke & al. (2001 [50]) present an approach to solve a nurse rostering problem

with di�erent skill categories. Here, the wards consist of about 20 people, and the

planning horizon is around 1 month. There is only one set of hard constraints,

which are the labor requirements for each skill category. The other constraints are

soft ones, and are the following :

� Minimum time between two assignments, depending on the type of duties in-

volved,

� Maximum and minimum number of work hours during the planning period,

� Maximum number of assignments during the planning period,

� Working full weekends,

� Working according to a prede�ned pattern,

� Maximum number of assignments of each duty type during each week, and

during the entire planning period,

� Restricting the order in which shifts and free days may and may not be sche-

duled (for instance never a night duty the day after a free day),

� Distributing the duty types uniformly over people with the same work regula-

tions,
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� Personal preferences such as days-o� request, speci�c duty on a given day, illness

leave, maternity leave, or temporary secondment to another ward.

Because of the complexity and large number of constraints in some nurse rostering

problems, the use of soft constraints is often unavoidable as a large number of hard

ones would most likely preclude any feasible solution. With such a number of soft

constraints, the user sets the wanted penalty for each constraint violation, and the

objective function then minimizes the weighted sum of all these penalties, making

it a multi objective approach. This approach has been tested on four instances

coming from real world Belgian hospitals. The resulting schedules are produced in

times ranging anywhere from a few seconds to a few hours, which is clearly much

faster than for the manual solution currently used. Furthermore, the resulting

schedules are judged as being of a higher quality than their manual counterparts.

[162] presents a nurse tour scheduling model with individual preferences conside-

ring :

� Schedule workload,

� Week-end and special days-o� requirements,

� Shift type preferences,

� Consecutive-working-day limitations.

An interesting aspect of this approach is that it also considers the following �exi-

bility alternatives :

� Start-time �exibility,

� Shift-length �exibility,

� Break-placement �exibility,

� Days-o� �exibility,

� Start-time �oat,

� Shift-length �oat.

The goal programming approach used here allows the user to calibrate the respec-

tive importance of service coverage constraints versus employee preferences (both
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understa�ng and oversta�ng are allowed). Schedules cover a 7-day workweek,

with one hour planning intervals, and shifts lengths of 8, 10 and 12 hours with a

one hour break located within a 2 hour time window. Instances with two di�erent

objective functions are tested for wards of 11 nurses and optimal solutions are

obtained.

Papers on nurse scheduling applications include : [1], [3], [4], [5], [13], [14], [18],

[22], [32], [33], [34], [35], [36], [37], [50], [51], [52], [53], [54], [55], [57], [62], [63],

[70], [71], [72], [88], [102], [108], [111], [117], [127], [130], [141], [147], [162], [166]

and [167].

Other Healthcare Applications

Other personnel scheduling applications in health care are much less frequent

than nurse rostering. However, most applications still come from within-hospital

or hospital-based operations. For instance, Rousseau & al. (2002 [143]) proposes an

approach for the scheduling of physicians, which is speci�cally structured to deal

with constraints regarding individual tours. These constraints are split into two

types : distribution and pattern. Distribution constraints deal with the number

of shifts of a given type that a given physician can work during a predetermined

set of days. They include preferences regarding if the week-end shifts should be

worked in one block or separated, or limiting the number of night shifts that a

physician can work. The pattern constraints deal with how work sequences in

tours can be built. For instance, there could be a minimum of 16 hours between 2

shifts, no consecutive full week-ends allowed, or forcing a physician working a day

shift to either work night shifts or be o� for two days afterwards. Experiments

were made on two instances, one with 23 physicians, a 1 month horizon and six

shifts per day, and the other with 15 physicians, a 14 weeks horizon, three shifts

per week-day and one per week-end day. Solutions require between 15 minutes and

55



1.5 hours of computational time, and tests were based on real data from hospitals

of the Montreal area.

Also, Topaloglu (2009 [160]) proposes an approach for the scheduling of medical

residents, which deals with a large number of constraints. Here, depending on

the number of years of residency they have completed, residents are classi�ed

according to di�erent levels of skills. The following is a list of the hard constraints

considered :

� A senior and non-senior residents must be assigned to each weekday and wee-

kend day shift.

� Shifts should be scheduled no more often than every third day for each resident.

� The number of weekend shift duties either remains the same or decreases within

the same senior group as the duration of time in residency increases.

� The number of weekend shift duties of a resident in a senior group is less than

or at most equal to that of a resident in one of the less senior groups.

� The di�erence between residents' total number of shift duties in consecutive

senior groups should not be greater than two.

� The di�erence between the (m)th year and (m+2)th year senior residents' total

number of shift duties should be at least greater than one.

� A resident's total number of shift duties is greater than or at most equal to that

of a resident who has a higher seniority within the same group.

� Residents do not prefer working a shift on Friday because it is the last working

day of the week and the day before the week-end holiday. For this reason, Friday

shifts are allocated from the least ranked resident in each senior and non-senior

group.

� Senior and non-senior residents are assigned to at most one Friday shift.

� Each non-senior resident should be assigned at least one week-end day shift

if the number of weekend day shifts is greater than the number of non-senior

residents.
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� The �rst year residents to the unit should be preferred to the rotating non-

senior residents if an extra shift duty is to be assigned. For this to happen, the

rotating residents are already listed �rst in the non-senior group.

Even though this problem has a lot of hard constraints, it also has a large amount

of soft ones. They are the following :

� Residents with the same number of years of seniority are gathered in di�erent

subgroups, each having approximatively the same number of days of seniority.

Within a subgroup, residents should have equal number of weekend duties as

well as equal number of total duties. The number of subgroups can be adjusted

according to the scheduling environment.

� The total number of weekday and weekend day shifts between residents of conse-

cutive senior groups can be equal to each other only if the less senior resident

is assigned an extra weekend shift, otherwise the more senior resident should

have been assigned at least one less duty in total.

� The di�erence between (m)th year and (m+2)th year residents' total number

of duties should be at most three.

� Less senior residents within the same senior group can have at most one extra

duty assigned compared to more senior ones.

� All non-senior residents should be allocated an equal number of duties. In case

this equality cannot be provided, �rst the rotating residents and then the �rst

years should be favored in the ascending duration of time in residency.

� Within the senior group, the duties on the middle days of a public holiday

should be allocated to the less senior residents, while the beginning and ending

days should be saved for the more senior ones.

� The total number of weekday and weekend shifts assigned to a resident should

be less than or equal to the maximum number of weekday and weekend shifts

speci�ed according to his/her grade of seniority.

� A resident may or may not wish to work on speci�c days.
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Furthermore, the objective functions are ordered as follows (by decreasing impor-

tance) :

� Equalize the number of weekend day shifts and total number of shifts assigned

to the (m)th year residents who are in the same subgroup,

� Satisfy the soft constraints related to the shift numbers assigned to residents of

di�erent seniority levels,

� Satisfy the soft constraints related to the shift numbers assigned to senior re-

sidents within the same group and equalize the number of shift duties among

the non-senior residents,

� Assign public holiday shift duties favoring the more senior residents for the

beginning and ending days, allocating the less senior ones to the middle days,

� Do not assign more than the maximum number of allowed weekday and weekend

day shifts for the residents,

� Satisfy the senior residents' requests and then the non-senior residents' requests.

Problems for wards with up to 40 residents based on real data have been conside-

red, and solution times vary between 1 and 4000 seconds. The approach provides

better results than the manual solutions previously used, and has been implemen-

ted in the pulmonary unit of a local hospital.

As can be seen from this above paper, some health care approaches require to

consider a rather large number of constraints and objectives if their solutions are

to be implemented in real life. Also, there is a trend in health care applications,

mainly for nurses and physicians, to give more importance to the ergonomic qua-

lities of a schedule and the individual preferences of the personnel, compared with

past solution methods where service requirement was the only priority.

Finally, there are also a few cases of applications that are not hospital-based. One

of them is presented by Ernst & al. (1999 [85]), which researches the rostering

of ambulance o�cers within a single station. Here, a cyclic roster is made on a

horizon of 48 weeks for 6 sta� members, and includes the following possible as-
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signments : Day shift (10h), night shift (14h), day o�, leave, and management

functions shifts. The schedule is built based on sequences of shifts called stints

(the possible stints are built prior to the scheduling process). Work rules specify

for instance that work stints must be followed by days-o� stints. There are also

transition rules, dictating which stint may follow which other, which can't, and

which should preferably not. The quality of the roster is evaluated in terms of

demand coverage (measured by undercoverage and overcoverage) and stint tran-

sition preferences, as well as with a measure of equity along the work sequence.

Papers on health care applications (excluding nurse scheduling) include : [85],

[104], [138], [143] and [160].

2.5.3 Airports Operations

The remaining application areas we will discuss from hereon are far less impor-

tant than the previous ones in terms of number of published papers ; they remain

nevertheless interesting and relevant. Here, we de�ne as airport operations the

activities of airlines happening on the ground, mostly at customer service, lug-

gage transport and handling or airplane refueling. Although less discussed in the

literature than �ight personnel scheduling (excluded from this review), they are

nevertheless common subjects of research. A typical characteristic of these pro-

blems is that demand tends to �uctuate highly within a single day, sometimes

with very short-lasting �uctuations that are di�cult to cover. These �uctuations

are caused by the arrival or departure of a plane. However, on the other hand,

labour requirements are relatively easy to know with a good degree of certainty

since the workload associated with the �ight schedule can be known in advance.

For instance, Hao & al. (2004 [95]) present an approach to solve an airport ser-

vicing sta� rostering problem for an airline company. The characteristics of the

problem are the following :
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� Only full time sta� members are to be scheduled,

� There are di�erent types of duty shifts to be considered (early, middle, late, �ex

shift - a standby shift, and day o�),

� The workforce volume �uctuates within a week, but not from a week to another,

� The appropriate number of personnel must be scheduled for each shift,

� The schedule is cyclic,

� Each sta� member must take 2 days o� per week (consecutive is better, but

not compulsory),

� Full week-ends o� should be schedules as much as possible,

� Each sta� member is expected to work 42 hours per week, with some deviation

allowed,

� An early or a �ex shift must not follow a late-shift or a �ex shift on two conse-

cutive days,

� Di�erent shifts should be evenly distributed across the roster.

The objective of this problem is divided between the following goals (classi�ed in

decreasing order of importance) :

1. Minimize the total amount of absolute deviation of working hours assigned

to all sta� members,

2. Maximize the total number of full weekends o�.

Tests were made for instances varying between 40 and 500 employees, and took

between one and 25 minutes to solve with the proposed neural network approach.

Another paper for this type of application is presented by Alvarez-Valdes & al.

(1999 [10]), which studies an application for labour scheduling at the refueling

installations of a company operating in Spanish airports. The characteristics of

the problem are the following :

� The installations provide continuous service 24 hours a day, 365 days per year,

� There are three types of periods : night, morning and evening,

� Labour requirements vary within days, across days and weeks,
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� There is a total of 18 di�erent shifts each day,

� There are full timers and part timers, as well as regular and discontinuous

workers,

� Each worker has a set of admissible shifts,

� The shift assigned to a worker may vary from one day to the next, but the type

of shift can only change after a day o�,

� Each worker has a rest period of at least 36 consecutive hours each week,

� Each worker must receive at least one week-end o� each four weeks,

� Full time employees must work an average of 35 hours per week,

� Regular workers can't work more than 223 days per year,

� Each regular worker is entitled to 30 days of holidays each year,

� The problem must be able to be solved for horizons ranging anywhere from one

week to one year,

� Any feasible solution must respect labour requirements and worker's conditions,

� The problem is viewed more as a feasibility problem than an optimization one.

It takes 30 seconds for a one week schedule to be produced, 2 minutes for 4 weeks,

and 30 minutes for one year. The solution approach, based on tabu search, has

been implemented in a number of airports.

Papers on airport operations applications include : [10], [43], [44], [47], [61], [87],

[95] and [125].

2.5.4 Call Centers

Personnel scheduling problems in call centers usually deal with a smaller number of

work regulations constraints than the previous applications discussed. However,

unlike in airport operations, demand can �uctuate strongly and unpredictably,

which can complicate the decision-making process. Hence, the most complex pro-

blem to solve will frequently be the demand modeling, which is excluded from

61



our scope. There are however a few exceptions. Lin & al. (2000 [119]) present the

development of a workforce management system for a customer hotline service.

The characteristics of the problem are the following :

� The center operates 24 hours a day,

� There are 8 shifts per day : 5 day shifts, one evening shift and 2 night shifts,

� Each employee works 22 days per month, minus the number of public holidays,

� Each shift has a meal break of a duration of one hour,

� Each o�cer should not work continuously for more than 6 days,

� At least 2 Sundays o� and 1 Saturday o� should be arranged for each sta�

member during one month,

� Each employee can request 2 speci�c days o� during a month,

� Identical shifts on consecutive days is preferred by sta�, as switching shift type

everyday may cause confusion,

� There should be an acceptable number of o�-duty periods between the end of

a shift and the beginning of the following one,

� An o�cer should not be assigned more than 2 days o� in a row (apart from the

annual leave approved),

� At least one senior o�cer should be present in every daytime hour through

specifying the following arrangements,

� At least one senior o�cer should be assigned a given day shift everyday,

� The senior o�cers of night shifts and evening shift should not be allowed o�

on the same day,

� When the evening shift senior o�cer is o�, at least two senior o�cers (one if

Sunday) should be assigned on a given late day shift,

� At least two junior o�cers must be on duty daily in the evening shift.

� At least 2 o�cers (including a senior) must be assigned to each night shift. On

Sundays when tra�c is the lightest, this may be relaxed to one o�cer assigned

to one of the two shifts and two to the other one.
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In the test instances presented, rosters are created for more than 70 employees by

a decomposed approach, which takes into consideration both employee preferences

and labour requirements. Another call center application of personnel scheduling

is presented by Thompson (1997a [154]). The problem studied here is a shift as-

signment one, where the �rst objective is to minimize the number of unassigned

shifts, and the second one is to satisfy the employee's personal choices of shift,

in order of seniority if possible. The constraints ensure that : all employees get

shifts, no employee gets more than his desired number of shifts, no more than

one shift per day is assigned to any one employee, and a senior employee must

work its desired shifts before a less senior one does. The heuristic developed was

implemented after it was judged more performing than the previous manual me-

thod. Wilson & al. (1983 [171]) also proposes a heuristic, for scheduling telephone

betting operators in horse racing. The cost of scheduling operators is not the same

in the day as in the evening, and shift length may vary between 2h55 minutes and

6h10 minutes, including breaks. Here, the use of the simple proposed LP model

has allowed savings of more than 350,000 $ per year, for 2 wards of over 200 ope-

rators each.

Papers on call center applications include : [16], [45], [46], [96], [97], [119], [154],

[169] and [171].

2.5.5 Postal Services

Personnel scheduling problems applied to postal services are less frequent than

any previously discussed application area. However, with many large mail proces-

sing centers operating continuously, it is another area where operations research

approaches can provide important bene�ts. The modeling of problems here is akin

to those for airport operations and call centers (2.5.3 and 2.5.4).
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Bard & al. (2003 [21]) proposes an approach to solve a sta� scheduling problem

at the United States Postal Service mail processing and distribution centers. The

characteristics of the problem are the following :

� There are three types of employees : Full time regulars, part time regulars and

part time �exible (�exible employees are called when needed),

� Full timers shift last 8.5 hours, and include a half hour break, while part timers

work anywhere between 4 and 8.5 hours per day (including a half hour lunch

break when the shift is longer than 6 hours),

� The facility operates 24 hours a day, 7 days a week,

� A day is divided into 48 periods of half an hour each,

� There are 9 di�erent possible start times for full time shifts,

� There are 12 di�erent start times and 5 di�erent lengths, which makes a total

of 60 possible shifts for part timers,

� A worker must be given 2 days o� per week, among which Saturdays, Sundays,

and consecutive ones are preferable but not compulsory,

� Demand must be covered,

� The objective is to minimize the cost of the workforce,

� The schedule has a one week horizon,

� The number of part timers is limited.

With an approach that solves sequentially shift scheduling and days-o� schedu-

ling, respectively with integer programming and a heuristic, a solution with around

125 employees scheduled is obtained in around 45 minutes for this last problem.

Wan & al. (2007 [165]) proposes another approach for a US postal service mail

processing and distribution center, this time for sta� scheduling with workstation

group restrictions. The problem studied here has many similarities with Bard &

al. (2003 [21]), but has shift lengths ranging from 4 to 12.5 hours, workstation

group restrictions (akin to skills), and overtime constraints. An LP-based decom-

position heuristic produces results within 2 or 3 minutes for instances of around
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80 employees and four workstation groups, and in approximately 10 minutes for

instances of around 230 employees and 8 workstation groups. Other papers on

applications in postal services include Bard (2004 [20]) and Jarrah & Bard (1994

[107]), which both also study the case of the United States postal service facilities.

Papers on postal services applications include : [20], [21], [107] and [165].

2.5.6 Others

Many other application areas have been studied in personnel scheduling, but each

one counting a small number of papers when focusing on our review scope. Many

of them could fall under a category called retail sector, but because the reality

of a fast-food restaurant is not the same as that of a bank, these remaining ap-

plications often have important di�erences between them. These papers include

[128] which studies the scheduling of cashier at a supermarket store, [116] the

scheduling of computer lab attendants, [118] the lockbox system personnel in a

commercial bank, [112] the banking operations of check processing, [93] a news-

paper publishing installation, [11] a set of petroleum stations, [110] police patrol

cars, [123] a check proof and encoding facility, [120] a restaurant, [90] liquor stores,

[80] a power station, and [121] a fast-food restaurant.

Papers on other applications include : [11], [24], [80], [90], [93], [106], [110], [112],

[116], [118], [120], [121], [123], [128] and [172].

2.6 Conclusion

A large number of elements have an impact on the quality of a work schedule. Even

though e�orts have been made by researchers to �nd characteristics in solutions

that empirically depend on constraint parametrization and choice of allowable
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schedule structures, no absolute rules have yet been found to know in advance

what will have the most positive impact on the solution. Building a good personnel

schedule remains partly a work of trial-and-error, and an art as much as of a

science. This being said, the literature in personnel scheduling remains full of

both interesting and useful ideas.

In this review, we have discussed models, solution methods, and applications. Re-

garding models, it seems that implicit modeling is a very promising approach,

especially for more complex problems like tour scheduling. It allows a strong re-

duction of the number of variables, which increases the performance of integer

programming. Furthermore, it doesn't require tours to be pre-selected and fed

into the model, which in turn decreases the total time needed to obtain a solu-

tion. Regarding solution methods, a large number of them seem well suited to

solve personnel scheduling problems. Here, the choice will most likely depend on

the following : the size of the problem to solve, the time available to develop

the method, the time available to solve instances, and of course the skills and

preferences of the developer. However, for large problems, hybrid, sequential or

iterative decomposition methods clearly seem very promising. Finally, regarding

applications, it is obvious that researchers have proved how well real-life com-

plex personnel scheduling problems could be handled with operations research

methods. However, �exibility and portability of approaches from one problem to

another (even within the same application area) remains a rarely discussed topic

that we believe has much potential for future research.
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Chapitre 3

A Sequential Decomposition

Heuristic for Flexible and Portable

Sta� Scheduling in Health Care

3.1 Introduction

Providing health care services engenders important costs for stakeholders. For

instance, according to the WHO (World Health Organization) [170], total ex-

penditures on health represented 10.9% of the GDP while 18.1% of government

expenditures were attributed to health in 2009 in Canada. In the province of Que-

bec only, around 45% of the annual public budget was allocated to the ministry of

health care and social services in the �nancial year 2010-2011, out of which over

60% (or 20.5 billion dollars) were payroll expenses [131].

With such large �nancial stakes and limited public funds, optimizing the use of

all available resources is crucial to maintaining cost e�ectiveness and a reasonable

level of service accessibility. Furthermore, as an insu�cient workforce must be

reckoned with in health care, the quality of work conditions must be maximized
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simultaneously.

Individual applications in health care sta� scheduling have been extensively dealt

with by researchers, mostly on the topic of nurses as surveyed by Cheang et al.

(2003) [60], Burke et al. (2004) [56] and Ernst et al. (2004) [83]. Also, emergency

room physicians and ambulance o�cer scheduling applications have been studied

respectively by Rousseau et al. (2002) [143] and Ernst et al. (1999) [85] among

others. However, to the best of our knowledge a systemic methodology for dealing

with families of related applications has not yet been proposed in health care.

Such a methodology for sta� scheduling is what we are proposing here, both for

health care applications and others. As sta� scheduling problems arising in the

context of health care are among the most di�cult to solve and vary signi�cantly

between each other in terms of problem structures, the context of health care

applications has served as the main basis for designing our proposed approach.

In health care practice, tactical sta�ng decision-making is strongly decentralized :

each profession (nurse, physician, ambulance o�cer, technician, etc.) is sta�ed in-

dependently within each unit (intensive care unit, emergency room, operating

theaters, clinics, emergency medical service, etc.) with some unique set of objec-

tives and constraints. In the context of an integrated health care system, it is too

costly, time consuming and labor-intensive to develop one solution approach for

each of these sta� scheduling problems. In our opinion, this is a reason why OR

research has resulted in a limited number of implementations in health care. To

tackle this issue, we propose a more systemic methodology based on �exibility

and portability, and the resulting solution approach named SOFA (Scheduling

Optimizer with a Flexible Approach). We de�ne �exibility as the capacity of a

solution approach to tackle a large variety of instances, applications and problem

structures, while we de�ne portability as the capacity of a solution approach to be
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easily con�gured to solve a new instance, application or problem structure, quickly

and with a limited amount of work. Based on these de�nitions, the objectives of

this research are twofold :

1. Propose an e�cient �exible and portable algorithm structure (SOFA) ;

2. Propose a framework for testing sta� scheduling �exibility in order to pro-

vide benchmarking tools for past and future research.

This paper is structured as follows : the next section presents the literature review,

followed by descriptions of the proposed solution approach and its extensions

respectively in sections 3.3 and 3.4. The experimental framework developed to

test �exibility and portability as well as the results obtained with the proposed

approach are then discussed in section 3.5 and �nally, section 3.6 concludes the

paper.

3.2 Literature Review

A few of the solution approaches proposed in the literature to solve generic pro-

blems are �exible to some extent. For instance, Bechtold et al. (1991) [31] and

Topaloglu et al. (2002) [161] research �exible break assignments. Meanwhile, �exi-

bility of shift duration and of number of work days for individual tours is studied

by Bechtold et al. (1994) [27] and Showalter et al. [144] (1988). Also, Isken (2004)

proposes a generic sta� scheduling implicit model for applications in health care

and provides analysis on the impact of a limited number of factors such as start

time bandwidth (the daily time interval within which shifts of a given employee

may start). For a detailed survey of the sta� scheduling literature, including but

not limited to generic approaches and health care applications, we refer the reader

to the literature survey of this thesis in section 2.
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While some interesting generic solution approaches have been proposed in the

literature, their scope generally does not consider the large variety of realistic sta�

scheduling characteristics often found in health care applications. For example, the

kind of complex and con�icting sets of constraints often encountered in practice is

rarely dealt with in the literature. Furthermore, to the best of our knowledge, the

notion of portability of a solution approach on a variety of applications has not

been discussed yet. Indeed, we believe in the importance for �exible approaches to

require a limited con�guration workload when tackling a new application. Hence,

in this chapter we propose SOFA, an algorithm designed to contribute to research

on �exible solution approaches for sta� scheduling in health care and to introduce

the notion of portability. The following section will describe the proposed structure

of this algorithm.

3.3 Solution Approach

In order to maximize �exibility and portability, we have devoted much attention

to the structure of the solution approach. Before presenting the proposed struc-

ture in more details, we will de�ne some terminology which will be used further

to discuss our sta� scheduling problem : a period is a discretized unit of time,

generally representing an hour in this paper ; a planning horizon is the continuous

set of periods for which a schedule needs to be provided, generally representing

two weeks in this paper ; a work shift is a continuous set of periods including a

lunch break, during which a worker is available to provide service at any time

except the lunch break ; a work shift type de�nes a work shift by duration (total

number of periods from its beginning up until its termination), by duration of

its lunch break and by lunch break time window ; a lunch break is a number of

continuous periods inside a work shift during which the worker is not available

to provide service ; a tour is a set of work shifts spread out through the planning
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horizon which represents the schedule of a single employee (also called an indivi-

dual schedule) ; a tour type de�nes a tour by work shift type and total number

of work shifts within the planning horizon ; and a demand represents the service

requirements for periods of the planning horizon. Finally, a coverage represents

how much service resources are provided during the periods of the planning ho-

rizon : Undercoverage is present when coverage is lower than demand for a given

period, while overcoverage is present when coverage is higher than demand for a

given period.

3.3.1 General Structure

A comprehensive analysis of the literature and of our consulting experiences in

sta� scheduling applied to health care has resulted in the following list of requi-

rements for a �exible and portable approach : Able to solve the continuous tour

scheduling problem ; include the fewest possible hard constraints ; allow the user

to calibrate it for a new problem by modifying sets of constraints and parameters,

but without altering its core structure or optimization procedures ; let the user

de�ne the bounds of possible individual schedules and shifts structures, without

requiring him to list all the possible solutions.

These requirements are justi�ed by the following factors : Some health care ser-

vices such as emergency rooms need to operate continuously ; As all future pro-

blems to solve can not be fully anticipated during the development phase of the

algorithm, most basic structural constraints should be soft in order to avoid un-

predictable solution feasibility issues ; As a large number of di�erent problems

need to be solved, the di�erent users should not have to dedicate a large amount

of time to the calibration of the approach or its use will become ine�cient and

costly ; As these types of problems are complex to solve and sometimes have large
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feasible solution spaces, a user will not have the time nor an interest to dedicate

time listing all the di�erent possible individual schedules in order to solve the

problem.

These elements have led us to build a continuous tour scheduling approach im-

plementing only one hard constraint which limits the assignment of work shifts

to one per day, uses mostly soft constraints to avoid infeasibility, and de�nes pos-

sible tour types by a combination of shift duration (up to 24 hours in duration),

number of worked shifts, lunch break duration, and lunch break assignment time

window. Furthermore, this approach allows the user to calibrate the bounds of all

the di�erent tour types wanted, the duration of the planning horizon, the dura-

tion of periods, and the penalty weight and right hand side values of the required

constraints. As these constraints are always structured either on a period axis or

on a tour axis, we propose the following classi�cation by constraint types which

is based on a classic matrix representation where tours are de�ned by lines and

periods by columns.

� Vertical constraints :

� Constraints on a single period :

� Service demand coverage ;

� Capacity (ex. : number of available vehicles or workspaces, budget per

period, . . . ).

� Horizontal constraints :

� Constraints on sets of lines :

� Management constraints (ex. : maximum number of tours of each type,

budget by number of employees, . . . ).

� Constraints on a sets of shifts of a single tour :
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� Collective agreements, ergonomics, working conditions (ex. : maximum

number of consecutive work days, minimum number of consecutive days

o�, . . . ).

� Constraints on a single shift :

� Collective agreements, ergonomics, working conditions (ex. limits on pos-

sible start-times for work shifts, . . . ).

This classi�cation of constraints will serve as a basic structure for our �exibility

experimental framework presented in section 3.5. We have also designed the core

of our solution approach in order to pro�t from this classi�cation, by dividing the

complete solution process including all constraint types into a number of phases

which would each require only a limited subset of these constraint types. The

proposed structure is the following sequential decomposition approach :

1. Solve the days o� / days on problem ;

2. Solve a shift scheduling problem where work shifts of a given tour have the

same start time ;

3. Solve a shift scheduling problem where work shifts may have di�erent start

times.

This approach will be discussed in detail in section 3.3. While instances of typical

size for the full version of the sta� scheduling problem can't be solved to optimality,

most instances of each of our three subproblems could be solved with a commercial

linear solver, save for the following elements :

� To maintain �exibility and avoid infeasibility, most constraints will be modeled

as soft. However, linear programming tends to lose some e�ciency when dealing

with objective functions comprising many penalty terms ;

� Some complex constraints can be either di�cult or unrealistic to model in a

linear fashion ;
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� Because of the large number of qualitative factors such as ergonomic quality,

employee preferences and work conditions, sta� scheduling in health care are

typically constraint satisfaction problems rather than pure optimization ones ;

� Most health care managers often feel more comfortable with choosing the best

schedule themselves among a set of proposed good schedules, rather than being

provided with a single mathematically optimal solution by a computerized sys-

tem ;

� As sta� scheduling in practice is a process involving stakeholders with con�ic-

ting objectives (managers and unions), and as the production process of a new

schedule is typically seen as an opportunity to analyze new work arrangements,

the process is generally iterative, time consuming, and requires the production

of a large number of scenarios. In this practical context, the algorithm needs

to produce good solutions quickly for every scenario regardless of the size and

complexity of the instances. Otherwise, deadlines for the scheduling process are

not likely to be met.

The following paragraphs details phase 1 which solves the days o� subproblem,

phase 2 which solves a limited shift scheduling subproblem, and phase 3 which

solves an extended shift scheduling subproblem. They will be followed by a des-

cription of extensions which will conclude this section.

3.3.2 Phase 1

Phase 1 is limited to solving the days o� subproblem. Because it only considers

whether a shift is assigned to a given day, phase 1 can quickly deal with all ho-

rizontal constraints on sets of lines and on sets of shifts. Meanwhile, as decisions

related to these constraints are not questioned in subsequent phases, they can be

excluded from the more time consuming phase 2 and 3. On the other hand, all

constraints on individual shifts can be excluded from phase 1 as it does not deal

with decisions regarding to which periods shifts are assigned. Globally, this makes
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phase 1 very e�cient as the size of the problem it solves is limited even when the

global approach deals with a very large problem.

Phase 1 is built as a variable neighborhood descent (VND). Because this phase

is initialized with an empty initial solution, its local search is both a constructive

and an improvement process executed by two local search structures : a line buil-

der and an assignment swapper.

The line builder is the �rst activated local search structure of phase 1 and creates

a days o� pattern for each single line (individual schedule). Since its neighborhood

is de�ned as the addition, replacement or deletion of an entire line, it makes phase

1 both a constructive and improvement heuristic. Its local search proceeds as fol-

lows : one complete work day assignment and one completely empty assignment

are tested sequentially for each line. Complete work day assignments are built

by randomly allocating a work assignment to an available day. The new solution

value is calculated after each tested modi�cation and the �rst improvement found

to the current solution is immediately implemented and terminates a local search

iteration. If no improvements are found, the current iteration terminates when

each line has been visited. The algorithm for the �rst local search of phase 1 (the

line builder) is succinctly presented on �gure 3.1.

The second local search structure is an assignment swapper : it swaps days o�

and work days within a single line of work. For each line of work, it executes each

possible swap between one day o� and one work day. The local search terminates

when all possible swaps have been tried, and the best swap is implemented at

the end of the local search iteration only if it improves the current solution (best

improvement). The algorithm of the second local search of phase 1 is presented
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sol_A : current solution
v_A : value of sol_A

For each line l

For each tour type t

sol_B ← sol_A with a new random assignment for line l, tour type t
v_B = solution value of sol_B

If v_B < v_A
sol_A ← sol_B
v_A = v_B
terminate local search

End if

Next tour type t

Next line l

Figure 3.1 � Algorithm of the First Local Search of Phase 1 (the line builder)

succinctly on �gure 3.2.

Phase 1 always initiates the local search process with the line builder since it is

the only neighborhood structure allowing the improvement of an empty (or par-

tial) solution. Afterwards, the algorithm alternates between the two local search

structures each time one of them cannot �nd any improvements during one full

iteration. Phase 1 terminates after two full iterations without improvements (one

with each neighborhood).

For �exibility purposes, the objective function of phase 1 is to minimize the sum

of all costs arising from soft constraint violations. Except implicit constraints such

as the number of work shifts for a given tour type, all constraints are implemen-
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sol_A : current solution
v_A : value of sol_A
sol_C : empty solution
v_C : value of sol_C

For each existing tour t

For each possible swap s

Swap a work day and a day o�
sol_B ← sol_A with swap s
v_B = solution value of sol_B

If v_B < v_A and v_B < v_C
sol_C ← sol_B
v_C = v_B

End if

Next swap s

Next tour t

Implement the best solution between sol_A and sol_C

Figure 3.2 � Algorithm of the Second Local Search of Phase 1 (the assignment
swapper)
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ted as soft. Clearly, these constraints will vary from one problem to another, but

typically they will include a subset of the following : service demand coverage

(target or minimum level) ; upper or lower bounds on the number of consecutive

work days ; lower bounds on the number of consecutive days o� ; upper and lower

bounds on the number of work days within a calendar week ; upper bound on the

total number of lines of work ; upper bound on the total number of work hours ;

lower bound on the number of complete week-ends o�.

In days o� problems, the duration of a period is one day (24 hours). As tour

scheduling problems typically have periods of 12 hours or less, it is necessary to

convert service demand values for the days o� problem. This conversion is made

by aggregating the demand of the initial tour scheduling problem per day. For

instance, if the initial tour scheduling problem has a service demand discretized

into 3 periods of eight hours per day, the demand of phase 1 for a complete day

of the planning horizon will be the sum of the corresponding three values (one for

each period of 8 hours) from the initial tour scheduling problem. An example of

conversion is presented in table 3.I. On Monday for instance, the sum of the night

demand (5), the day demand (10) and the evening demand (6) equals 21 which is

the value used for the aggregated demand for Monday in phase 1.

Problem Period Mo Tu We Th Fr Sa Su

Tour scheduling
0 :00 am to 8 :00 am 5 6 7 7 6 5 4
8 :00 am to 4 :00 pm 10 12 13 12 11 8 7
4 :00 pm (day j) to 6 7 7 6 5 4 5
0 :00 am (day j+1)

Days on/Days o� 0 :00 am (day j) to 21 25 27 25 22 17 16
0 :00 am (day j+1)

Table 3.I � Example of Service Demand Conversion Between the Tour Scheduling
and the Days On/Days O� Problem for One Week from Monday to Sunday
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The solution obtained with phase 1 is a set of lines of work where the days o�

found in all tours of the �nal solution are selected. Once the algorithm of phase

1 has reached its termination criterion, the best found solution is transferred to

phase 2 which is described in the next subsection.

3.3.3 Phase 2

The solution of phase 1 provides the days o� for the �nal solution to the sta�

scheduling problem. The objective of phase 2 is to assign a start time for shifts

corresponding to work days provided by phase 1. Phase 2 provides solutions where

all work shifts of a tour start at the same period. This single start time may ho-

wever be located at any period of the day. The number of planning periods within

a day is a user de�ned parameter which can theoretically vary between 1 and

in�nity. In practice, this number is generally either three when dealing with nurse

scheduling problems where each period corresponds to one of the three usual 8

hours shifts of any day, or 24 when dealing with more complex problems where

continuous demand variations create a need for hourly discretization and a large

number of possible start times for shifts.

The initial solution of phase 2 is built by randomly assigning a single shift start-

time to each line of work from the best solution obtained after phase 1. While phase

2 only solves a limited shift scheduling problem, combining its results with those

of phase 1 provides a �rst solution to the tour scheduling problem. Excluding its

initial solution mechanism, phase 2 is a single neighborhood local search heuristic.

The local search structure of phase 2 is a set of shift start-time movers in which the

neighborhood of a solution is de�ned by modifying, simultaneously for all shifts

of a given line, their start time to a value comprised between the �rst and last

period of a work day. Hence, the local search sequentially evaluates the impact of
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moving the shift start time of each line to all possible periods. After all possible

movements have been evaluated, an iteration is terminated by the implementation

of the best move only if it improves the current solution (best improvement). The

algorithm of the single local search procedure of phase 2 is presented succinctly

in �gure 3.3.

Because phase 2 has a single local search structure, its optimization process stops

immediately after one iteration has been completed without producing any impro-

vement to the current solution. Since the only set of variables in phase 2 manages

start times for groups of work shifts, most constraints here deal with periods

rather than lines of work. Typically, these constraints will include the following :

� Service demand (target or minimum level) ;

� Service capacity (an upper bound on the possible number of workers on duty

at one given period) ;

� Limits on the number of work shifts starting or ending at given periods.

Service demand is expressed in full detail in phase 2 and no aggregation is needed

(unlike during phase 1). The main objective of a solution to this subproblem is

to provide a good draft of the �nal schedule. In fact, in many cases the solution

provided by phase 2 will be very similar to the �nal one. A major advantage of the

structure proposed for phase 2 is the small amount of time required to solve the

problem, considering it has only one integer decision variable per line of work (the

start time of all shifts). Furthermore, the set of constraints will typically be small

as well since it will be limited to vertical constraints and horizontal constraints

on individual shifts. When phase 2 terminates its optimization process, the best

solution found is transferred to phase 3.
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sol_A : current solution
v_A : value of sol_A
sol_C : empty solution
v_C : value of sol_C
sol_C leftarrow sol_A
v_C = v_A

For each existing tour t

For each period of a day p

Set start time p for all shifts of tour t
sol_B leftarrow sol_A with start time p for tour t
v_B = solution value of sol_B

If v_B < v_C
sol_C ← sol_B
v_C = v_B

End if

Next period p

Next tour t

Implement solution sol_C

Figure 3.3 � Algorithm of the Single Local Search of Phase 2 (shift start time
modi�er)
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3.3.4 Phase 3

The best solution found during phase 2 serves as the initial solution for phase

3, which provides a �nal solution to the tour scheduling problem. Phase 3 is an

extension of phase 2 : it assigns speci�c and potentially di�erent start times to

individual shifts, providing the solution approach with the �exibility needed to

further improve service coverage by implementing rotation of work shifts within

tours if necessary.

Phase 3 is a single neighborhood search heuristic : its local search is an individual

shift start time mover. The neighborhood of a solution is therefore de�ned by

the move of the start-time of a single shift between the �rst and last period of

a work day. The local search evaluates sequentially each possible starting period

for all shifts of all tours. After having evaluated all possibilities, an iteration of

the local search is terminated by the implementation of the best movement only

if it improves the current solution (best improvement). The algorithm of the local

search procedure of phase 3 is presented succinctly in �gure 3.4.

Because phase 3 has a single local search structure, its optimization process stops

immediately after one iteration has not produced any improvement to the current

solution. Being an extension of phase 2, all constraints of phase 2 must also be

present and satis�ed in phase 3. The additional constraints in phase 3 will typically

be the following :

� Limits on the variation of start times between consecutive work shifts ;

� Limits on the variations between all start times of one work line (start-time

bandwidth constraints) ;

� Limits on the number of di�erent start times within one tour.

Combined together, these constraints allow much �exibility for the structure of

tours. They also provide the user with the possibility to either allow or block
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sol_A : current solution
v_A : value of sol_A
sol_C : empty solution
v_C : value of sol_C
sol_C leftarrow sol_A
v_C = v_A
For each existing tour t

For each work shift s

For each period of a day p

Set start time p for shift s of tour t
sol_B ← sol_A with start time p for tour t
v_B = solution value of sol_B

If v_B < v_C
sol_C ← sol_B
v_C = v_B

End if

Next period p

Next work shift s

Next tour t
Implement solution sol_C

Figure 3.4 � Algorithm of the First Local Search of Phase 3 (individual shift
start time modi�er)
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rotation of work shifts within a tour while maintaining a strong control over

con�guration of the rotation. The solution space of phase 3 is very large : Hence,

even though phase 3 is an extension of phase 2, phase 2 remains necessary in order

to quickly provide a good initial solution to phase 3.

In our opinion, the three phase algorithm structure we propose is well adapted

to a �exible and portable context. Indeed, this sequential decomposition will al-

low the algorithm to exhibit quick solution times while having few limitations

in terms of implementable problem characteristics. Furthermore, the use of ran-

domness reduces the calibration workload when tackling new problems, making

this solution approach simple and quick to parameterize. However, these qualities

are meaningless without good performances in terms of solution quality. Indeed,

sequential decomposition approaches generally have some weaknesses regarding

the quality of the solutions they provide. In order to deal with these and make

our approach more robust, we have developed a number of extensions presented

in the next section.

3.4 Extensions

The most important limitation of a sequential decomposition approach is that

decisions are taken in prior subproblems with limited information regarding their

consequences on subsequent subproblems. Indeed, we have no guarantee that the

best solution in phase 1 will lead to the best solutions in phases 2 and 3. Fur-

thermore, because phase 2 serves as an initial solution for phase 3, the solution

approach must be safeguarded against launching phase 3 in a local optima it

can't escape. Hence, in order to mitigate the e�ects of these limitations, we have

implemented one reshu�ing and two backtracking mechanisms.
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3.4.1 Reshu�e Mechanism

We propose a reshu�e mechanism (RM) somewhat inspired from the random res-

tart of Variable Neighborhood Search (VNS). However, this mechanism is applied

to the complete solution process instead of being executed within a phase. Once

phase 3 has terminated, the best solution found is stored. We then obtain a new

partial solution by erasing a proportion p of tours. The speci�c value of p is cho-

sen randomly between prede�ned lower and upper bounds, and the tours erased

are also selected in a random fashion. The solution process is then restarted at

phase 1 with this partial solution. This mechanism is repeatedly executed until

some termination criterion is satis�ed, which is expressed as a number of com-

plete solution processes executed without improving the best solution found. The

reshu�ing process can either be applied to the best known solution, or to the best

solution of the current iteration.

We use randomness intensively for �exibility and portability purposes. Indeed,

while using prede�ned strategies should likely produce better results on some ins-

tances, those same strategies may reduce the e�ciency of the search on di�erent

problem structures. Furthermore, since our solution approach will deal with a

variety of problem structures, a large set of prede�ned strategies would be requi-

red. The supplementary workload required to select the most adequate strategy

for the current problem would increase solution times, which would reduce the

number of applications for which our approach could be used. Hence, by using

randomness, we protect our solution approach from risks related to the negative

impacts of overspecialization in a �exible environment, and from risks related to

creating obstacles to the solution process by using di�erent con�icting exploration

strategies.
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3.4.2 Backtracking Mechanisms

A �rst limitation of RM is that it cannot guide a search as it relies solely on

random selections. A second limitation is its signi�cant consumption of CPU time

as it requires the complete solution process to be executed several times. Hence,

there is a need for both time e�cient and guided optimization mechanisms.

In order to �ll this need, we have developed two backtracking mechanisms. In

a nutshell, they are an adaptation within phase 2 and 3 of the two local search

structures used in phase 1 : they allow the algorithm to improve the solution of

the days o� subproblem while solving the shift scheduling subproblem. The main

idea of the backtracking mechanisms is to pro�t from the information available in

the current phase to improve the decisions made with less information during a

previous phase.

The �rst backtracking mechanism is the tour builder (BM1). It is designed to

be activated during phase 2 or phase 3 when the basic local search procedure

of the current phase is unable to provide new improvements. The neighborhood

of BM1 is very large : it consists of any solution obtained by adding, modifying

or deleting one tour. In cases of addition or modi�cation, BM1 sets the days o�

pattern of the tour (phase 1) while simultaneously de�ning the start time for its

work shifts (phases 2 and 3). The local search implements modi�cations to the

days o� structure in the same manner as the �rst local search of phase 1 (the line

builder), while it locates the best possible start time for all shifts of the current

tour in the same fashion as the local search of phase 2 (the shift start time mover).

Clearly, executing simultaneously a search in both solution spaces of phase 1 and

2 is time consuming. However, BM1 is a very powerful tool which can signi�cantly

remodel a solution and hence improve many past decisions. BM1 implements �rst
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improvements and its algorithm is summarized in �gure 3.5.

The second backtracking mechanism is the day swapper (BM2), which is imple-

mented in phases 2 and 3 with a structure based on the second local search of

phase 1 (the assignment swapper). In fact, the di�erences between BM2 and the

second local search of phase 1 are that the former can swap two work days (if the

work shifts are not identical) and must update the start times when swaps are

executed. Indeed, BM2 swaps both the work status of the day (work day versus

day o�) and the start time of the work shift. Unlike BM1 however, BM2 does

not search the solution space for possible improvements of the start times. While

BM2 has a limited impact on the solution structure in comparison with BM1, it

is necessary in order to make precision improvements which BM1 cannot execute

because it uses randomness to build the days o� pattern. Unlike the second local

search of phase 1, BM2 is structured to implement �rst improvements. The algo-

rithm of BM2 is presented in �gure 3.6.

The extensions presented in this section can combined in the solution approach.

In fact, the combination of the backtracking mechanisms with the reshu�e allow

the solution approach to pro�t from the improved guided search provided by the

former and from the extensive diversi�cation capabilities provided by the later.

The results obtained with the proposed solution approach are presented in the

next section.

3.5 Computational Experiments

In this section, we present experimental framework on which two variants of our

solution approach were tested. This framework was developed speci�cally to test

the �exibility of solution approaches on sta� scheduling problems, and in our
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sol_A : current solution
v_A_p2 : value of sol_A in phase 2
v_A_p3 : value of sol_A in phase 3

For all lines l

For all tour types t

For all periods of a day p

Assign a new random work day pattern for line l, tour type t
Assign start time p for all work shifts
sol_B ← sol_A with schedule l, t, p
v_B_p2 = solution value of sol_B in phase 2
v_B_p3 = solution value of sol_B in phase 3

If v_B_p3 < v_A_p3

sol_A ← sol_B
v_A_p2 = v_B_p2
v_A_p3 = v_B_p3
terminate local search

End if
Next period p

Next tour type t
Next line l

Figure 3.5 � Algorithm of BM1
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sol_A : current solution
v_A_p2 : value of sol_A in phase 2
v_A_p3 : value of sol_A in phase 3

For all lines l

For all work/o� day swap s

Execute swap s on line l for all three phases
sol_B ← sol_A with swap s, l
v_B_p2 = solution value of sol_B in phase 2
v_B_p3 = solution value of sol_B in phase 3

If v_B_p3 < v_A_p3

sol_A ← sol_B
v_A_p2 = v_B_p2
v_A_p3 = v_B_p3
terminate local search

End if

Next swap s

Next line l

Figure 3.6 � Algorithm of BM2
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opinion it constitutes an adequate reference basis for benchmarking past and

future solution approaches proposed for sta� scheduling problems. An analysis of

the impact of di�erent service demand requirements is then carried out, followed

by an analysis on the impact of di�erent sets of constraints. All programs were

coded in C++. All experiments were carried out on an Intel R©CoreTMDuo CPU

running at 1.86 GHz with 1 Gb of RAM.

3.5.1 Experimental Framework

After extensive preliminary testing, we have set the lower and upper bound values

for parameter p respectively to 0.10 and 0.30. This means that between 10 and

30% of tours will be erased from the solution when the RM is activated. Also, the

stopping criterion of RM has been set to �ve iterations without improvement of

the best solution found. For portability purposes, these parameters have been set

to values yielding the best results on average in order to avoid the need to adjust

them when dealing with a new problem instance.

Since the scope of our experimental framework is limited to the analysis of impact

of types of constraints and service demand patterns, a number of instance charac-

teristics will remain identical in all instances : A continuous planning horizon of

2 weeks (14 days), 24 work periods per day (one hour each), and 2 types of tours.

The �rst tour type has 10 work days with shifts of 8 hours and a continuous break

of 45 minutes within a time window opened on the 4 median periods of the shift,

and the second type has 7 work days of 12 hours shifts with continuous breaks

of 75 minutes also within a time window opened on the 4 median periods of the

shift. Furthermore, a constraint forcing forward rotation of work shifts within a

tour has been implemented in all problem instances, and its violations for each

period of each shift are penalized by 30 points.
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Demand Curves

Our experimental framework includes a total of 5 di�erent service demand co-

verage curves speci�cally built for our tests. To allow an analysis on the impact

of demand patterns on the cost of the solution, all �ve demands have an equal

surface underneath their curves which means that the total theoretical number of

service hours required is the same for all. These �ve service demand curves are

presented in �gure 3.7. They are respectively demands which represent a daily

mild double peak (public transit, city tollbooths), a high early morning and low

late afternoon peak (shipping personnel of a warehouse), a low early morning and

high late afternoon peak (o�ce cleaning personnel), a daily high peak (emergency

services, retail stores, restaurants) and a uniform demand (factory personnel).

As each of our �ve initial demand curves averages a value of 1 on the vertical axis,

we have multiplied the values of each point on each period of each curve by 30

in order to obtain a real-life representative size for our instances. This set of �ve

service demand curves represents a good variety of shapes similar to those encoun-

tered in real-life applications (although their amplitudes may of course strongly

vary in practice).

Constraint Sets

The proposed experimental framework includes instances with a variety of com-

binations of constraints from each class (see section 3.3.1 for our classi�cation by

type of constraint). This was necessary in order to thoroughly evaluate the le-

vel of �exibility of our approach, and to analyze the impact of di�erent classes of

constraints on schedules. While it is not possible to include all possible constraints

of each class in our framework, it is reasonable to assume that constraints of a

given class have similar impacts both on the structure of solutions and on the
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Figure 3.7 � Demand curves of D1, D2, D3, D4 and D5

performance of the solution approach. This last assumption is important because

it is impossible to test all existing sta� scheduling constraints in a single experi-

mental framework.

The penalty for violations of each constraint is presented in �gure 3.II, while the

di�erent combinations of constraint sets used in our experimental framework are

presented in �gure 3.III. When relevant, given sets of constraints have been tested

with two di�erent right hand side values : a looser bound (level 1) and a tighter

one (level 2). In the class of vertical constraints, service demand target and service

capacity constraint sets have been included. Service demand target constraints pe-

nalize both overcoverage and undercoverage by one point, but only undercoverage

penalties for each period are squared in order to avoid solutions with large service

level variations between periods. Meanwhile, capacity constraints model situations

where levels of service coverage are limited by service capacity. In an emergency

room for instance, it could model the number of beds, stretchers or triage desks.

Likewise, it could model the number of available o�ces for physicians in a clinic
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and the size of the �eet of ambulances in an EMS. The �rst level for this constraint

is expressed as a right hand side equal to 95% of the peak service demand for the

instance solved, while the second level is expressed as 85% of this same peak. Fur-

thermore, each service unit of violation is penalized by 10,000 points : this value

was set very high in order to avoid violations, as service capacity is typically a

hard constraint in practice.
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In the general class of horizontal constraints, the �rst subclass includes constraints

on sets of lines. This subclass includes constraints on the size of budget and on the

maximum number of tours of each tour type. In our framework, constraints on the

size of the budget have been expressed as a maximum number of employees, since

all tour types have a comparable number of service hours. In other circumstances,

it could have been expressed as the maximum total number of service hours. The

right hand side value of this constraint is set at 130 employees for the �rst level,

and 120 for the second. Each employee (tour) violating this constraint is penalized

by 10,000 points : this value was again set very high since the number of available

employees is typically a hard constraint. Meanwhile, constraints on the maximum

number of tours of each tour type have been implemented to model situations

where managers wish to force some diversity in the type of tours o�ered to their

employees. There is only one level for this constraint in which no more than 50 of

the second type of tours may be included in a solution. Each unit of violation for

this constraint is penalized by 5000 points : this value was set very high in order

to avoid violations, although lower than for budget constraints since diversifying

tour types is less important than respecting a budget.

The second subclass of horizontal constraints is about sets of work shifts. It in-

cludes constraints on the maximum number of consecutive work days and constraints

on the minimum number of consecutive days o�. At the �rst level of constraints

on the maximum number of consecutive work days, the value of the right hand

side is 6 for the �rst tour type, and 4 for the second. At the second level, it is 5 for

the �rst, and 3 for the second. Meanwhile for constraints on the minimum number

of consecutive days o�, the right-hand side value for the �rst level is respectively

1 and 2 for the �rst and second tour types, and 2 for all tour types on the second

level. Each violation by one day for any constraint mentioned in this paragraph

is penalized by 500 points since these constraints have a limited importance in
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comparison to others.

Finally, the last subclass of horizontal constraints is about single shifts. It includes

constraints which forbid shifts to start at speci�ed periods, and which forbid shifts

to end at speci�ed periods. There is only one level for both constraints, and they

both forbid periods from 2 am to 5 am inclusively. Indeed, it is generally accepted

in practice that work shifts should not begin or end in the middle of the night.

Each shift violating either constraint is penalized by 500 points since their impor-

tance is comparable to that of constraints on sets of work shifts.

3.5.2 Experiments with Two Algorithm Variants

In this section we experiment with two algorithm variants : S1 which combines

BM1 and BM2 in phases 2 and 3, and S2 which combines the former with RM.

S1 is designed to obtain good solutions quickly and S2 to obtain the best possible

solution values. The results obtained with S1 on the 23 constraint sets de�ned

in section 3.5.1 and for each of the 5 demand curves are presented in table 3.IV,

while those obtained with S2 appear in table 3.V.

Solution values for S1 are presented in table 3.IV, where solution times are in

the left part of the table, solution values in the right part, each column is for

one demand curve and each line for one constraint set. Most results were as ex-

pected on this table : Budget constraints (CS4, CS5, CS7, CS8, CS20 and CS21)

have a strong negative impact on solution values, while constraints which could

be quali�ed as ergonomic such as most horizontal constraints on sets of shifts

and on single shifts (CS9 to CS23) generally have a much smaller impact on the

solution cost. However, we have encountered a few isolated instances where S1

provided slightly higher solution values on looser problems. In our opinion, it is
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Constraint set description Set number

Service Demand

- 1
Capacity 1 2
Capacity 2 3
Budget 1 4
Budget 2 5

Max tours of each type 6

Max tours of each type
Budget 1 7
Budget 2 8

Max consecutive work shifts 1 9
Max consecutive work shifts 2 10
Min consecutive days o� 1 11
Min consecutive days o� 2 12

Max consecutive work shifts 1
Min consecutive days o� 1 13
Min consecutive days o� 2 14

Max consecutive work shifts 2
Min consecutive days o� 1 15
Min consecutive days o� 2 16

Limits on shift start times 17
Limits on shift end times 18

Limits on shift start times Limits on shift end times 19
All constraints 1 20
All constraints 2 21

All constraints 1 except capacity & budget 22
All constraints 2 except capacity & budget 23

Table 3.III � Constraint Sets (CS) Reference Numbers with Their Corresponding
Descriptions
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Constraint CPU (s) Solution values
set D1 D2 D3 D4 D5 Mean D1 D2 D3 D4 D5 Mean

1 330 505 441 343 285 380.80 143.43 790.32 791.76 333.47 74.58 426.71

2 470 612 464 402 251 439.80 676.53 981.07 981.52 656.25 2750.31 1209.14

3 510 468 496 432 247 430.60 3601.42 5701.34 5796.91 2636.75 11113.49 5769.98

4 203 337 329 208 142 243.80 694.51 2600.54 2613.71 1092.63 345.09 1469.30

5 132 251 265 159 142 189.80 4115.94 7541.12 7599.47 4889.48 3339.41 5497.08

6 350 362 394 375 297 355.60 73.80 845.06 808.04 355.11 58.01 428.00

7 185 272 238 227 178 220 865.45 2694.87 2631.83 1251.67 846.71 1658.11

8 166 191 220 168 150 179 4657.81 7592.92 7644.43 5121.79 4650.70 5933.53

9 337 441 472 407 328 397 199.77 832.82 831.42 336.16 83.03 456.64

10 367 567 555 445 264 439.60 247.80 840.51 894.20 307.55 88.10 475.63

11 391 568 647 477 354 487.40 156.01 805.60 805.77 312.76 70.53 430.13

12 368 549 628 442 383 474 238.54 900.01 893.22 467.96 69.12 513.77

13 500 659 618 546 395 543.60 154.15 867.50 879.77 389.73 63.28 470.89

14 490 649 747 523 329 547.60 324.19 1261.79 1337.85 686.22 83.09 738.63

15 539 682 637 499 447 560.80 85.92 1072.71 858.22 278.31 63.45 471.72

16 480 1052 1074 656 451 742.60 443.71 1949.24 2160.34 820.25 70.50 1088.81

17 276 430 394 471 259 366 412.57 5256.92 2187.93 403.72 97.43 1671.71

18 320 487 554 331 303 399 125.68 797.70 842.11 347.2 72.46 437.03

19 270 521 408 398 274 374.20 372.54 5283.46 2229.75 438.06 102.91 1685.34

20 444 404 521 473 495 467.40 2205.19 10128.68 4742.53 1765.83 2597.07 4287.86

21 691 699 625 599 504 623.60 6252.59 16183.90 10531.40 6323.85 12562.73 10370.89

22 486 554 554 611 479 536.80 893.82 5877.72 2176.26 815.11 102.57 1973.10

23 830 915 895 843 777 852 975.72 5950.93 2477.02 1006.66 77.22 2097.51

Mean 397.17 529.35 529.39 436.30 336.26 445.70 1213.79 3772.03 2726.76 1349.41 1712.25 2154.85

Table 3.IV � Solution Times (in seconds) and Values for S1 (algorithm variant
implementing BM1, BM2 and excluding RM)

not a serious problem in this context since it only happens on a few instances

with low solution costs, which means that the di�erence is quite small in terms of

number of violations. Furthermore, such a behavior is to be expected of a �exible

and portable solution approach where some local search procedures are executed

randomly.

Furthermore, these results indicate that instances with capacity constraint (CS2,

CS3, CS20 and CS21) have high solution values with D5. This situation is caused

by the structure of our instances : capacity constraints are active when demand

is within 5% of its peak value at level 1, and within 15% of its peak value at level

2. Hence, for variable curves (D1 to D4 inclusively), this constraint is active on

a small number of periods only. However, it is constantly active on D5 (uniform

demand) where all periods are peak periods. Hence, the best solution that can be

found with D5 have a much larger number of violations of demand constraints.

This makes sense when transposed to a real life context, since having a lower

capacity than the maximum demand may be a good decision when the demand
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peak is steep and short in duration but certainly not the case anywhere when the

demand peak is constant throughout the day.

The highest solution value is obtained when all constraints are activated at level 2

(CS21) for D2. This result is most likely explained by the fact that D2 has a very

high but narrow peak during the night while CS21 includes limits on start and

end times for shifts inclusively between 2 am and 5 am. Hence, the strong early

morning variation of the curve becomes more di�cult to cover because no shift

can either start or �nish before 6 am. As this situation is repeated every day for

14 days, it creates a large number of violations when combined with the impact

of many more constraints.

As for the solution times reported in table 3.IV, they were in general surprisin-

gly low for sta� scheduling instances of such a large size. Indeed, the schedules

built as solutions for the instances of the experimental framework generally in-

clude around 140 tours (less when budget or capacity constraints are activated).

It is interesting to notice that instances with budget constraints were solved very

fast, possibly because these constraints strongly reduce the size of the promising

exploration areas of the solution space. On the other hand, some instances with

constraints on sets of shifts seemed to require much more time to solve, possibly

due to the large size of the promising solution space and the smaller improvements

obtained with each local search iteration.

Solution values obtained with S2 are presented in table 3.V. These results are

similar to those presented on table 3.IV, though without surprise S2 provides on

average lower solution values than S1 by almost 10%. However, these better solu-

tion values come at a signi�cant cost : solution times are almost 17 times larger

with S2, a result that is due to the presence of the RM mechanism. Solution times
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Constraint CPU (s) Solution values
set D1 D2 D3 D4 D5 Mean D1 D2 D3 D4 D5 Mean

1 3482 6640 7581 3893 8352 5989.60 143.43 787.53 787.96 314.89 61.19 419

2 8167 7160 5780 7467 3899 6494.60 517.59 1020.46 985.66 456.11 2427.48 1081.46

3 14622 14985 10769 10790 3757 10984.60 3330.73 3673.37 3549.2 2369.65 11075.88 4799.77

4 3993 5094 3632 2831 3976 3905.20 596.69 2544.80 2575.07 1041.82 340.74 1419.82

5 2773 4366 5959 2874 2652 3724.80 4065.59 7542.93 7512.65 4868.34 3321.08 5462.12

6 6794 6748 7558 6842 4429 6474.20 66.81 791.04 805.66 303.37 57.48 404.87

7 3885 3138 4154 2941 4926 3808.80 855.25 2611.66 2562.89 1233.88 845.61 1621.86

8 4485 5102 2935 3356 5271 4229.80 4655.45 7574.08 7540.48 5060.29 4638.59 5893.78

9 6815 6988 6163 10963 9106 8007 129.12 797.69 843.05 339.35 59.86 433.81

10 4977 4824 5063 4892 5957 5142.60 172.11 790.64 829.23 351.62 62.23 441.17

11 15544 4891 5466 12069 11457 9885.40 78.17 780.16 783.01 278.68 57.54 395.51

12 15871 4845 5565 4428 5991 7340 97.04 852.27 813.14 344.05 65.26 434.35

13 9282 5252 13815 7522 8281 8830.40 81.21 806.32 795.73 274.05 57.12 402.89

14 5835 19444 10016 11648 3912 10171 253.99 976.29 1016.93 411.48 74.48 546.63

15 5807 5941 5007 8948 9396 7019.80 78.16 828.46 881.45 277.23 54.60 423.98

16 8735 15283 17760 9344 6041 11432.60 309.72 1363.30 1638.72 655.95 68.46 807.23

17 3374 13642 5126 7030 5002 6834.80 387.64 5222.28 2207.56 374.12 76.32 1653.58

18 5300 4376 4141 3284 9552 5330.60 121.68 792.40 838.42 405.47 65.90 444.77

19 3738 7178 3458 3755 4172 4460.20 364.89 5229.75 2201.70 405.50 61.61 1652.69

20 10060 7976 7686 5042 27455 11643.80 2067.00 10095.67 4597.50 1703.04 2475.12 4187.67

21 5591 12883 23073 5999 5563 10621.80 6252.59 16234.98 10200.13 6241.42 11620.12 10109.85

22 4976 11988 12352 6994 7539 8769.80 893.82 5873.46 2176.12 736.94 78.01 1951.67

23 6958 12820 15683 10433 5034 10185.60 933.93 5955.56 2321.05 834.64 85.40 2026.12

Mean 7002.78 8328.87 8206.17 6667.17 7031.30 7447.26 1150.11 3615.00 2541.88 1273.13 1640.44 2044.11

Table 3.V � Solution Times (in seconds) and Values for S2 (algorithm variant
implementing all three extensions - RM, BM1 and BM2)

for S2 are also presented on table 3.V.

In table 3.VI, each cell contains the following ratio : The result obtained with

S2 divided by the result obtained with S1 for the same problem instance. Hence,

if the ratio is larger than 100%, S1 performed better, and if the ratio is smaller

than 100%, S2 performed better, these situation being highlighted in bold type.

This table demonstrates the superior performance of S2 in terms of solution value.

Although the average performance improvement is smaller than 10%, S1 provided

better solution values on very few instances. Again, the largest variations in terms

of percentage were found on instances which resulted in small solution values with

both algorithm variants, meaning that the di�erence between both solutions are

in fact small in terms of number of violations. However, solution times presented

in table 3.VI are almost 18 times larger on average with S2, which makes this

algorithm variant less suitable for real life health care applications. Indeed, health

care services are frequently unionized. In contexts where unions are consulted

during the scheduling process, many iterations of scheduling scenarios have to
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Constraint CPU (s) Solution values
set D1 D2 D3 D4 D5 Mean D1 D2 D3 D4 D5 Mean

1 10.55 13.15 17.19 11.35 29.31 16.31 100.00% 99.65% 99.52% 94.43% 82.05% 95.13%

2 17.38 11.70 12.46 18.57 15.53 15.13 76.51% 104.02% 100.42% 69.50% 88.26% 87.74%

3 28.67 32.02 21.71 24.98 15.21 24.52 92.48% 64.43% 61.23% 89.87% 99.66% 81.53%

4 19.67 15.12 11.04 13.61 28.00 17.49 85.92% 97.86% 98.52% 95.35% 98.74% 95.28%

5 21.01 17.39 22.49 18.08 18.68 19.53 98.78% 100.02% 98.86% 99.57% 99.45% 99.34%

6 19.41 18.64 19.18 18.25 14.91 18.08 90.53% 93.61% 99.71% 85.43% 99.09% 93.67%

7 21.00 11.54 17.45 12.96 27.67 18.12 98.82% 96.91% 97.38% 98.58% 99.87% 98.31%

8 27.02 26.71 13.34 19.98 35.14 24.44 99.95% 99.75% 98.64% 98.80% 99.74% 99.38%

9 20.22 15.85 13.06 26.94 27.76 20.77 64.63% 95.78% 101.4% 100.95% 72.09% 86.97%

10 13.56 8.51 9.12 10.99 22.56 12.95 69.46% 94.07% 92.73% 114.33% 70.64% 88.25%

11 39.75 8.61 8.45 25.30 32.36 22.89 50.11% 96.84% 97.18% 89.10% 81.58% 82.96%

12 43.13 8.83 8.86 10.02 15.64 17.30 40.68% 94.70% 91.03% 73.52% 94.42% 78.87%

13 18.56 7.97 22.35 13.78 20.96 16.72 52.68% 92.95% 90.45% 70.32% 90.27% 79.33%

14 11.91 29.96 13.41 22.27 11.89 17.89 78.35% 77.37% 76.01% 59.96% 89.64% 76.27%

15 10.77 8.71 7.86 17.93 21.02 13.26 90.97% 77.23% 102.71% 99.61% 86.05% 91.31%

16 18.20 14.53 16.54 14.24 13.39 15.38 69.80% 69.94% 75.85% 79.97% 97.11% 78.53%

17 12.22 31.73 13.01 14.93 19.31 18.24 93.96% 99.34% 100.90% 92.67% 78.33% 93.04%

18 16.56 8.99 7.47 9.92 31.52 14.89 96.82% 99.34% 99.56% 116.78% 90.95% 100.69%

19 13.84 13.78 8.48 9.43 15.23 12.15 97.95% 98.98% 98.74% 92.57% 59.87% 89.62%

20 22.66 19.74 14.75 10.66 55.46 24.65 93.73% 99.67% 96.94% 96.44% 95.30% 96.42%

21 8.09 18.43 36.92 10.02 11.04 16.90 100.00% 100.32% 96.85% 98.7% 92.50% 97.67%

22 10.24 21.64 22.30 11.45 15.74 16.27 100.00% 99.93% 99.99% 90.41% 76.06% 93.28%

23 8.38 14.01 17.52 12.38 6.48 11.75 95.72% 100.08% 93.70% 82.91% 110.59% 96.60%

Mean 18.82 16.42 15.43 15.57 21.95 17.64 84.25 93.60 94.27 90.86 89.23 90.44

Table 3.VI � Ratios of Solution Times and Values for S2 Compared to S1

be done before a deal is reached. Typically, there is very little time available to

produce the schedule at each iteration of the negotiations.

3.5.3 Analysis of the Impact of Service Demand

In order to understand the isolated impact of service demand and constraint sets,

we will analyze them independently ; service demand will be discussed in the

present section while constraint sets will be in the next. Since S1 provides both

fast and very stable solution times as well as good quality solutions , it is the

algorithm variant we have chosen to use in order to evaluate the impact of ser-

vice coverage demand (in this section), and the impact of types of constraints (in

section 3.5.4). These results are obtained from the experimental framework used

for testing S1 and S2 in the previous sections.

In table 3.VII, the value in each cell is an average per service demand of the results

obtained with all constraint sets of the experimental framework. This value is pre-

sented as a percentage computed from : the average of the corresponding instances
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D1 D2 D3 D4 D5

Solution Value 32.18% 100.00% 72.29% 35.77% 45.39%

Solution Time 75.02% 99.99% 100.00% 82.42% 63.52%

Solution value without capacity constraints 28.24% 100.00% 75.64% 36.56% 19.27%

Solution time without capacity constraints 69.71% 99.23% 100.00% 80.72% 61.94%

Table 3.VII � Analysis of the Impact of Service Demand Pattern on the Solution

in the experimental framework divided by the highest average for all demands.

For example, the highest average for solution values of all constraint sets is for D2

(100%) while the lowest is for D1 (32.18%). This can be interpreted as follows :

average values obtained for D1 are 32.18% of those found for D2. When looking

at the �rst line, service coverage D1 has a lower cost than D5 (uniform) : this is

caused by the instances with capacity constraints. Indeed, as capacity constraints

are only active during the peak periods of demand, they are continuously active

in the case of a uniform demand while rarely active on more variable curves (as

previously explained). Without surprise, when instances with capacity constraints

are excluded, the lowest average solution values are obtained on instances with

uniform demand. These instances also happen to be the quickest to solve on ave-

rage.

On the other hand, D2 and D3 are the most costly to cover (highest average solu-

tion values) most likely because their curves have the largest variations between

bottoms and peaks. More speci�cally, while D2 and D3 are mirror versions of each

other, D2 is more costly to cover (the cost increases by more than 30% on ave-

rage). As explained in section 3.5.2 regarding why the CS21-D2 instance resulted

in the most costly solution, a combination of two elements may explain this : in

D2, service coverage peaks are reached during the night, and some instances of

the framework have limits on shift starting and �nishing times during the night

(between 2 am and 5 am inclusively). When these two elements are combined in
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the same instance, they strongly increase the costs of potential solutions.

Meanwhile, D1 and D4 are not very costly to cover on average, though they are

more costly than the uniform demand without capacity instances. This was ex-

pected for D1 as it has relatively small variations between bottoms and peaks of

demand throughout the day, but it is somewhat more surprising for D4 which

has the highest service demand peak (though not the largest di�erence between

bottoms and peaks). In our opinion, this is explained by the very low variations

of the D4 curve outside of the peak area.

Globally, if we isolate the impact of constraints, it is clear that service demand

curves with smaller intra-day variations are less costly to cover. However, caution

is necessary as capacity constraints for instance can amplify the coverage cost of

the more �at demand curves in some speci�c circumstances.

3.5.4 Analysis of Impact of Types of Constraints

Table 3.VIII presents the results of the analysis by constraint sets where all

values are presented as the following ratio : The average for instances sharing

one constraint set from the experimental framework divided by the value for the

constraint set with the highest average. For example, the value corresponding to

constraint set 1 is the lowest while the value corresponding to constraint set 21

is the highest. Furthermore, the value of the former can be interpreted as being

4.11% of the value of the latter. In the column labeled solution value, all values

are computed from averages of �ve instances each with a di�erent service demand

curve presented previously. The "solution times" column presents in each cell a

value calculated in the same fashion as those in the solution value column, but

for solution times. Finally, the last two columns present the same information

respectively as the �rst and second one, but excluding instances with a uniform

103



demand (D5) since they overweight the impact of the capacity constraint sets.

In table 3.VIII, better solution values are always found on instances with looser

constraint sets, which in our opinion demonstrates the stability of the algorithm on

a large variety of instances. Unsurprisingly, the lowest solution values are obtained

with constraint set 1 (target demand only), while the highest are obtained with

constraint set 21 (all constraints activated at level 2). In fact, the highest solution

values are generally obtained when budget or capacity constraints are activated

at level 2. When analyzing the di�erences in results obtained caused by capacity

constraints when D5 is included, it is straightforward to understand that demand

curves and constraints do interact with each other, and that speci�c combinations

of these may have a strong impact on possible solutions. Also, it is interesting to

notice how small the impact of some constraints on sets of shifts or individual

shifts can be, while they may provide strong bene�ts for employee satisfaction

(in our opinion, further studies on the relationship between solution costs and

employee satisfaction should be made). Furthermore, while budget constraints

have a strong impact on solution values as expected, instances with only budget

constraints have the quickest solution times. On the other hand, instances with

all constraints at level 2 (the tighter ones) have the longest solution times. This

was expected since the solution space is more di�cult to explore thoroughly in

such contexts.

3.6 Conclusion

We have proposed a �exible and portable algorithm approach to solve sta� sche-

duling problems in health care which could be extended to many other applica-

tion areas with very limited adaptations. To the best of our knowledge, this is

the �rst algorithm structure where both portability and �exibility are thoroughly
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Constraint set Solution value Solution time Solution value Solution time
without D5 without D5

1 4.11% 44.69% 5.24% 46.48%
2 11.66% 51.62% 8.39% 55.93%
3 55.64% 50.54% 45.14% 54.72%
4 14.17% 28.62% 17.82% 30.92%
5 53.00% 22.28% 61.45% 23.17%
6 4.13% 41.74% 5.30% 42.52%
7 15.99% 25.82% 18.94% 26.47%
8 57.21% 21.01% 63.67% 21.39%
9 4.40% 46.60% 5.60% 47.57%
10 4.59% 51.60% 5.83% 55.53%
11 4.15% 57.21% 5.29% 59.80%
12 4.95% 55.63% 6.36% 57.05%
13 4.54% 63.80% 5.83% 66.70%
14 7.12% 64.27% 9.19% 69.16%
15 4.55% 65.82% 5.84% 67.67%
16 10.50% 87.16% 13.68% 93.65%
17 16.12% 42.96% 21.03% 45.10%
18 4.21% 46.83% 5.38% 48.58%
19 16.25% 43.92% 21.18% 45.85%
20 41.35% 54.86% 47.95% 52.89%
21 100.00% 73.19% 100.00% 75.05%
22 19.03% 63.00% 24.85% 63.31%
23 20.22% 100.00% 26.49% 100.00%

Table 3.VIII � Analysis of the Impact of Constraints on the Solution
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considered. Indeed, the approach is adaptable to a large number of real-life sta�

scheduling instances without any other modi�cations needed than activating a

few instance-speci�c constraints.

It is clear that a sequential phase structure has some weaknesses and can provide

unstable results in some situations. However, when successfully combined with

backtracking mechanisms, the stability of the algorithm can be highly increased

in terms of solution value while maintaining the capacity to solve widely di�erent

problems. Furthermore, mechanisms such as a partial restart (reshu�e) can in-

crease the quality of the solution, but with the consequence of requiring solution

times that may not be suitable for some real life application instances. Indeed,

quickness and stability of solution times are important for many real life appli-

cations in health care, for example in emergency departments where a schedule

sometimes needs to be changed with very little delay of notice, or when schedules

have to be produced in a context involving multiple shortly spaced rounds of ne-

gotiations between managers and unions.

We have also developed an experimental framework to evaluate sta� scheduling

�exibility. To the best of our knowledge, it is the �rst such framework built accor-

ding to a classi�cation by structure of constraints. In our opinion, this framework

is comprehensive and includes a large number of constraints and demand curves,

representing a reasonable number of realistic combinations. The results obtained

with this framework now allows us to have more information on the impact of

typical sta� scheduling constraints, on some typical service demands, and on a

good number of combinations of both. More importantly, we hope that our work

will also set a basis for more thorough benchmarking between di�erent �exible

and portable sta� scheduling solution approaches in the future.
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Future research should include tests on real life applications and be focused on

improving the algorithm to enlarge its implementation potential, among other

things by implementing the notion of optimization of employee assignment, indi-

vidual preferences, seniority, discrete �exible break allocation, competences, task

assignments and integration with routing optimization for problems such as sche-

duling with home care nurses.
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Chapitre 4

A Heuristic Inspired from Column

Generation for Flexible and

Portable Sta� Scheduling in Health

Care

4.1 Introduction

Nurse scheduling problems have been extensively researched in the literature,

unlike physician and ambulance o�cers scheduling problems which are less fre-

quently documented. Other applications in health care are even more scarce. While

many di�erent approaches have been proposed to solve these various problems,

few �exible and portable solution approaches have been researched. As de�ned by

[66], �exibility is the capacity of a solution approach to tackle a large variety of

instances, applications and problem structures, and portability is the capacity of

a solution approach to be easily con�gured to solve a new instance, application

or problem structure, quickly and with a limited amount of work. To the best of

our knowledge, the only solution approach built to tackle a wide variety of appli-
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cations in health care by implementing these �exibility and portability concepts

was SOFA proposed by [66]. In this paper, we propose an alternative �exible and

portable approach to solving sta� scheduling problems applied to health care.

Hence, the objective and contributions of this paper are twofold :

1. Propose a very e�cient �exible and portable algorithm structure (CHAIR

- Column generation Heuristic Approach for Inde�nite Rostering) able to

tackle a variety of health care sta� scheduling applications, including all

those researched much less frequently than nurse scheduling ;

2. Benchmark CHAIR with the SOFA approach proposed by Crowe et al.

(2011) [66] on the framework proposed in that same paper to test the �exi-

bility and portability of sta� scheduling approaches.

Crowe et Soriano (2011) [66] have demonstrated that SOFA, a sequential decom-

position heuristic in three phases, was able to obtain interesting results on a large

set of very di�erent instances. We wish to investigate in this paper how CHAIR, a

fundamentally di�erent approach based on a master problem/subproblem struc-

ture, will perform in comparison to SOFA. This is in order to gain useful knowledge

on the strengths and weaknesses of both approaches regarding various sta� sche-

duling characteristics.

This paper is structured as follows : The next section presents the literature review,

followed by descriptions of the general approach in section 4.3, the subproblem in

section 4.5, the master problem in section 4.4, and the extensions of the solution

approach in section 4.6. Our results are then discussed in section 4.7, and �nally

section 4.8 concludes this paper.
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4.2 Literature Review

For a detailed survey of the sta� scheduling applied to health care and other ap-

plication areas, we refer the reader to chapter 2 of this thesis. From this survey,

it is clear that �exible and portable solution approaches have not been discussed

extensively in the literature. In this context, chapter 3 proposes a �exible and por-

table solution approach structured as a sequential heuristic called SOFA where

phase 1 builds days o� scheduling patterns, phase 2 produces a shift scheduling

solution where all shifts of a same employee start at the same time, and phase

3 produces a more detailed shift scheduling solution where any shift can start at

any time. A few solution improving mechanisms were also implemented, including

backtracking mechanisms and a reshu�ing procedure. Although it is a �rst step

of research on �exible and portable solution approaches to sta� scheduling, it has

produced very encouraging results on a large variety of instances. Furthermore,

an important contribution of that study was the introduction of a �exibility expe-

rimental framework for sta� scheduling in order to provide a benchmarking basis

for future research. The experimental tests executed in the present paper are ba-

sed on the framework proposed in chapter 3.

While limited in terms of �exibility and portability in the current literature, other

types of decomposition approaches such as column generation have proven to be

able to provide good solution values on sta� scheduling problems. However, co-

lumn generation like all linear programming approaches is much more time consu-

ming than heuristics on large problems. To deal with this drawback, Ikegami et

al. [102] have proposed a heuristic approach partly inspired from the decompo-

sition structure of column generation. To the best of our knowledge, this is the

only published fully heuristic approach inspired from mathematical decomposition

applied to sta� scheduling. The proposed decomposition is called a subproblem-
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centric approach, and is applied to a nurse scheduling problem. In this approach,

the scheduling problem is solved by iteratively minimizing a single nurse's tour

while �xing the rest of the solution. The algorithm is tested on real life instances

from Japanese hospitals and provided good results.

As previously mentioned in chapter 3, when dealing with health care problems

both employees (or unions) and managers are generally involved in some kind

of negotiation process regarding the production of the new work schedule. These

negotiations make the process in practice iterative by nature, with a large num-

ber of scheduling scenarios iterations each produced with little time available. In

this context where quick solution times will be required on large instances, the

obvious approach is to use some type of decomposition technique : this is what

was done with SOFA, where the problem was decomposed hierarchically into a

days-o�, a shift scheduling and an extended shift scheduling subproblem. In order

to deal with the typical limitations of hierarchical decomposition approaches, two

backtracking mechanisms were implemented in parallel with a reshu�ing mecha-

nism. While the solutions produced by this approach were visually appealing and

appeared to be of good quality on all instances, we found no comparative basis to

use in the literature. Furthermore, while the sequential decomposition of SOFA

was interesting and proved to perform well, the master problem/subproblem ap-

proach proposed here with CHAIR was clearly worth testing considering the good

track record of column generation approaches applied to sta� scheduling. Hence,

we believe there is an opportunity to gain valuable knowledge about the relative

strengths and weaknesses of SOFA and CHAIR, two solution approaches structu-

red fundamentally di�erently, by comparing their results on the same �exibility

experimental framework.
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In a context where both �exibility and portability are required, the structure of

the decomposition is the basis for providing good overall performance. The de-

composition approach proposed used for SOFA could be quali�ed as periodical :

days of work are chosen �rst, followed by start times for work shifts. In this paper,

we propose a somewhat perpendicular approach structured on lines (or tours) :

a fully heuristic decomposition approach inspired from column generation. With

CHAIR, the problem is decomposed into subproblems and a master problem : the

SPs produce tours, and the MP selects which tours to include in the solution.

4.3 General Approach

We refer to the solution approach proposed here as CHAIR for Column generation

Heuristic Approach with an Inde�nite Range. It is a fully heuristic procedure

which decomposes the original problem to be solved into one SP and one MP. To

illustrate the principles underlying the proposed approach, we will �rst present

a detailed problem description, followed by two general �exible sta� scheduling

models and �nally by a description of the global algorithm. The SP and MP will

respectively be discussed in sections 4.5 and 4.4.

4.3.1 Problem Description

Let us �rst recall a list of de�nitions of terms used in sta� scheduling, as was

introduced in Crowe et al. (2011) [66] : a period is a discretized unit of time, gene-

rally representing an hour in this paper ; a planning horizon is the continuous set

of periods for which a schedule needs to be provided, generally representing two

weeks in this paper ; a work shift is a continuous set of periods including a lunch

break, during which a worker is available to provide service at any time except

the lunch break ; a work shift type de�nes a work shift by duration (total number
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of periods from its beginning up until its termination), by duration of its lunch

break and by lunch break time window ; a lunch break is a number of continuous

periods inside a work shift during which the worker is not available to provide ser-

vice ; a tour is a set of work shifts spread throughout the planning horizon which

represents the schedule of a single employee (also called an individual schedule) ;

a tour type de�nes a tour by work shift type and total number of work shifts on

the planning horizon ; a demand represents the service requirements for periods

of the planning horizon ; a coverage represents how much service load is provided

during the periods of the planning horizon : Undercoverage is present when cove-

rage is lower than demand for a given period, while overcoverage is present when

coverage is higher than demand for a given period.

Since dealing with the �exible sta� scheduling problem involves solving a wide

variety of instance structures with a single solution approach, it is important to

start with a model having very few limitations in terms of implementable schedule

structures. Furthermore, the approach should allow the user to calibrate all the

di�erent tour types wanted, the duration of the planning horizon, the duration

of periods, and the penalty weights and right hand side values of the required

constraints. In order to potentially consider all sta� scheduling constraints, we

have proposed in Crowe et al. (2011) [66] the following classi�cation by types of

constraints :

� Vertical constraints :

� Constraints on a single period :

� Service demand coverage ;

� Capacity (f.ex. : number of available vehicles or workspaces, budget per

period, . . . ).

� Horizontal constraints :

� Constraints on sets of lines :
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� Management constraints (f.ex. : maximum number of tours of each type,

budget by number of employees, . . . ).

� Constraints on sets of shifts of a single tour :

� Collective agreements, ergonomics, working conditions (f.ex. : maximum

number of consecutive work days, minimum number of consecutive days

o�, . . . ).

� Constraints on a single shift :

� Collective agreements, ergonomics, working conditions (f.ex. limits on pos-

sible start-times for work shifts, . . . ).

In this classi�cation, vertical sets (or columns) represent periods while horizontal

sets (or lines) represent tours. This representation is a perpendicular transposition

of the usual mathematical design where columns are variables (tours) and lines are

periods. This transposition is motivated by the following reason : managers typi-

cally work with graphic designs of schedules where columns are periods and lines

are tours. Hence, in our opinion this representation is more suitable to a context

inspired from real life applications. In a context of �exibility, we believe that the

most interesting aspect of this classi�cation is that it is built following a basic,

natural and universal problem structure for sta� scheduling : All characteristics of

a schedule depend on periods of the planning horizon (vertical constraints), on the

number of tours which can be scheduled (horizontal constraints on sets of lines),

on the dynamics of days on and days o� within a tour (horizontal constraints on

sets of work shifts) and on the possible structure of individual work shifts (ho-

rizontal constraints on a single shift). The solution approach we propose in this

paper is structured according to a decomposition by types of constraints based on

this classi�cation.
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4.3.2 Flexible Sta� Scheduling Models

In its basic form, a sta� scheduling problem can be represented by a simple set

covering model. However, the problem is more di�cult to model when �exibility

is required, since the model must then be structured in order to implement any

type of constraints on tours and periods. A limited �exible sta� scheduling model

is presented here. It has some typical set covering constraints but includes an

objective function structured di�erently.

In this model, Xijk = 1 if tour i starts a work shift of tour type k at period j,

0 otherwise ; Yik = 1 if tour i has been assigned a type k, 0 otherwise ; nk, the

number of work shifts in a tour of type k ; dj, service demand at period j ; p,

the number of periods in one day ; qj, the cost of one unit of undercoverage at

period j ; rj, the cost of one unit of overcoverage at period j ; oj, the quantity of

overcoverage at period j ; uj, the quantity of undercoverage at period j ; skl, the

service covering value of a shift of tour type k at its period l ; v, the exponen-

tial factor of the cost function for undercoverage variable u ; w, the exponential

factor of the cost function for overcoverage variable o ; Zij, the coverage provided

by tour i at period j ; L, the set of possible periods for the duration of a work shift.

In this �exible model limited to a set of basic constraints and demand coverage

constraints, the objective function minimizes the sum of undercoverage and over-

coverage with both penalty terms computed as exponential functions in order

to balance coverage gaps throughout the planning horizon. Indeed, a linear cost

function will consider equal the two following solution examples : the �rst with

a perfect coverage on period 1 and an undercoverage of 10 shifts on period two,

and the second with an undercoverage of 5 shifts on both periods. Meanwhile, an

exponential function will result in the second solution being evaluated the best

as coverage quality is more balanced. Regarding other constraints of the model,

constraint set 4.2 forces each tour to have a number of shifts corresponding to
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min
∑
j∈J

qj(uj)
v +

∑
j∈J

rj(oj)
w (4.1)

Subject to : ∑
j∈J

Xijk = nkYik ∀ i ∈ I, k ∈ K (4.2)

Zi(j+l) = sklXijk ∀ i ∈ I,∀ j ∈ J,∀ k ∈ K, ∀ l ∈ L (4.3)

j+p∑
j=j

∑
k∈K

Xijk ≤ 1 ∀ j ∈ J (4.4)

∑
k∈K

Yik ≤ 1 ∀ i ∈ I (4.5)

∑
k∈K

Xijk ≤ 1 ∀ i ∈ I, j ∈ J (4.6)

uj − oj +
∑
i∈I

Zij = dj ∀ j ∈ J (4.7)

Xijk, Yik, Zij ∈ {0, 1} ∀ i ∈ I, j ∈ J, k ∈ K (4.8)
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its assigned tour type, constraint set 4.3 links variables X and Z, constraint set

4.4 ensures that no work shifts overlap each other, constraint set 4.5 ensures that

each tour is related to no more than one tour type, constraint set 4.6 ensures that

no more than one work shift starts at a given period of any given tour, and �nally

constraint set 4.7 ensures that the total coverage for each period equals demand

when overcoverage and undercoverage are respectively subtracted and added.

This model is a faithful representation of the problem we are working on, although

limited to a target demand coverage constraint for the sake of simplicity. While

service coverage is the one constraint always present in every model, any other

vertical or horizontal constraints could simply be added when needed. In this mo-

del, lunch breaks are considered and modeled as spread out on a predetermined

time window because we assume that the real lunch break assignment decisions

will be taken sometime during the work day by the manager. Indeed, the random

nature of demand for health care services makes long term planing of lunch break

assignments unrealistic in most practical situations. However, should other types

of applications be considered, the assignment of lunch breaks to a �xed period

within each work shift could be implemented in the model by simply adding ano-

ther set of variables.

In the literature, most models use a linear minimum service coverage constraint.

While linear cost functions for demand coverage typically perform well when the

problem structure is such that demand can be covered tightly for all periods of the

horizon, it is not e�cient when demand can not be well covered on at least a small

number of periods. This is due to the fact that the typical linear model does not

distinguish between a solution where there is a large coverage gap on a few periods

and one where the same total coverage gap is spread out on a larger number of

periods. Furthermore, most models in the literature only penalize undercoverage.
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In instances where the number of available units of service periods is greater

than the demand, this can lead to a situation where the excess of coverage will be

concentrated in a few periods instead of being spread out and balanced throughout

the whole planning horizon. Hence, in order to ensure an adequate distribution of

service coverage over all periods for all problems, we have implemented a demand

coverage cost function with two dimensions :

� A coverage target where both undercoverage and overcoverage are penalized ;

� An exponential function in order to increase the impact of larger gaps on the

solution value and force total gaps to be spread out over all periods.

A more generalized extended version of the previous model including all classes of

constraints proposed by Crowe et al. (2011) [66] is modeled here. In this model :

V (X, Y, Z) is a function returning the total costs related to violations of vertical

constraints ; H1(X, Y, Z) is a function returning the total costs related to viola-

tions of horizontal constraints on sets of tours ; H2(X, Y, Z) is a function returning

the total costs related to violations of horizontal constraints on sets of work shifts ;

H3(X, Y, Z) is a function returning the total costs related to violations of hori-

zontal constraints on single work shifts ; CV is the set of vertical constraints ; CH1

is the set of horizontal constraints on sets of lines ; CH2 is the set of horizontal

constraints on sets of work shifts ; CH3 is the set of horizontal constraints on single

work shifts.

This more comprehensive �exible model is based on the constraint classi�ca-

tion proposed by Crowe et al. [66] discussed in section 4.3.1. Here, the ser-

vice coverage function of the �rst limited model is now included in the term

V (X, Y, Z) ; other constraints such as service capacity by period would also be

included in this same function. H1(X, Y, Z) would include budget or manage-

ment constraints limiting the number of employees working on a given tour type,
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minV (X, Y, Z) +H1(X, Y, Z) +H2(X, Y, Z) +H3(X, Y, Z) (4.9)

Subject to : ∑
j

Xijk = nkYik ∀ i ∈ I, k ∈ K (4.10)

Zi(j+l) = sklXijk ∀ i ∈ I,∀ j ∈ J,∀ k ∈ K, ∀ l ∈ L (4.11)

j+p∑
j=j

∑
k

Xijk ≤ 1 ∀ j ∈ J (4.12)

∑
k

Yik ≤ 1 ∀ i ∈ I (4.13)

∑
k

Xijk ≤ 1 ∀ i ∈ I, j ∈ J (4.14)

CV (4.15)

CH1 (4.16)

CH2 (4.17)

CH3 (4.18)

Xijk, Yik, Zij ∈ {0, 1} ∀ i ∈ I, j ∈ J, k ∈ K (4.19)
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H2(X, Y, Z) constraints such as the maximum number of consecutive work days,

and H3(X, Y, Z) constraints such as the allowed shift start times.

4.3.3 Global Algorithm

While an important challenge in Crowe et al. (2011) [66] was to deal with how

to make adjustments on suboptimal decisions made in prior hierarchical phases

of the approach, an important challenge with CHAIR regards how to guide the

construction of a tour in the SP when the objective of that tour is to improve

the solution of the MP. In a mathematical approach such as column generation,

this is done by using dual variables to compute reduced costs. However, there is

no straightforward way of obtaining dual variables in a fully heuristic approach,

and calculating them would require a substantial increase in solution times when

starting from primal informations of a heuristic. We dealt with this problem in a

fashion inspired from the approach proposed by Ikegami et al. (2003) [102] : Using

only primal information, sets of constraints from the initial problem are either sent

to the SP or MP, or implemented in both problems in order to serve as links bet-

ween them, e�ectively ensuring that the SP produces tours which are interesting

to include in the current solution of the MP. Based on the classi�cation proposed

by Crowe et al. [66], in the context of our research, these links should include all

vertical constraints since they include information such as demand coverage and

period capacity which dictate where shifts should be added or subtracted in the

schedule in order to improve solution quality. Meanwhile, horizontal constraints

on sets of lines should be implemented only in the MP, as it is the only problem

where more than one individual schedule is involved at once. Finally, constraints

on sets of work shifts and on individual work shifts will be considered only in

the SP as these are the only problems where decisions are taken regarding the

location of shifts within individual schedules.
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The core of the algorithm combines and manages interactions between the two

solution approaches respectively for the SP and MP. The MP algorithm will be

detailed in section 4.4 and the SP algorithm in section 4.5. The structure of the

global algorithm is presented on �gure 4.1.

Basically, the global algorithm starts by activating the solution approach of the

SP to obtain a given number of tours equal to the number of tour types de�ned by

the user. This means that at each global iteration, the SP algorithm is executed k

times in order to produce k tours if the user has de�ned k tour types. During each

execution, the SP solution approach is constrained to produce one tour of a �xed

tour type. At the next SP execution, it will produce one tour of the following tour

type, and so on until one tour of each tour type has been produced. Then, these

tours are all inserted in the tour pool used by the solution approach of the master

problem. The tour pool includes all tours inserted in the current solution as well

as all other tours that have previously been produced by the SP algorithm. The

MP is then solved in order to improve the current schedule, and this process is

repeated until solving the SP does not yield tours which can be used to improve

the solution of the MP anymore. When this happens, the best known solution

becomes the �nal solution and the solution process is terminated.

Initialize the tour pool
Do until the MP solution can't be improved

For each tour type :
Update the tour pool ← Solve the subproblem

Solve the master problem
Repeat

Figure 4.1 � Algorithm of the Core of the Solution Approach
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4.4 Master Problem

The MP is solved by inserting tours provided by the SP in the schedule. In the

MP, decisions taken by the solution approach are limited to the selection of which

tours to include or exclude from the schedule. The solution approach for the MP

is designed to be provided by the SP with one tour of each type for each global

iteration. We have structured it in this fashion in order to increase the diversity

of available tours. Indeed, the approach proposed by Crowe et al. [66] (2011) typi-

cally builds initial solutions in phase 1 by adding a much larger number of tours

of the type providing more service hours than of any other types. As we have

noticed that this behavior produces initial solutions lacking tour type diversity,

we have structured CHAIR in order to avoid this limitation.

In the approach we propose, the set of tours provided by the SP are added to

a list which includes all tours previously provided : We will refer to this list as

the tour pool. In order to select which tours to select for the current solution, two

local search structures are executed in loops until no improvements to the current

solution can be found. At this point, the algorithm returns to the SP in order

to generate tours which could potentially improve the solution at the next MP

iteration. The local search structures of the MP will be discussed in section 4.4.2

once the MP model will have been presented. A description of the solution value

calculation will conclude this section on the MP.

4.4.1 Master Problem Model

The size of this model is dramatically reduced compared to the size of the initial

model of the full problem presented in section 4.3.2. Indeed, as no decisions are

taken regarding the internal structure of tours, both X and Z variables have been

removed from the MP model. Furthermore, as no decisions regarding tour types
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minV (Y ) +H1(Y ) +H2(Y ) +H3(Y ) (4.20)

Subject to :

Yi ≤ 1 ∀ i ∈ I (4.21)

CV (4.22)

CH1 (4.23)

Yi ∈ {0, 1} ∀ i ∈ I (4.24)

must be made, all k indexes have also been removed. While vertical constraints

among others require information about periods, index j may be removed and

considered implicitly in the cost functions it impacts. Finally, while cost infor-

mations on H2 and H3 are required to compute correctly the overall cost of a

solution, all constraints linked to those functions may be removed as no decisions

regarding these will impact the structure of individual tours.

4.4.2 Heuristic Algorithm for Solving the Master Problem

In order to build the schedule, two local search structures have been implemen-

ted : the �rst one either includes or excludes a tour from the solution, and the

second one swaps a tour of the solution with a tour excluded from it. All tours

inserted or excluded during these local search procedures are taken from the tour

pool. Furthermore, as tour selection variables are binary, a given tour may only

be inserted once in the solution (there may however be identical tours de�ned by

other variables).

For each iteration of the �rst local search, all inclusions and exclusions of tours

in the pool are sequentially tested for implementation. After all possible moves
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have been tried, the best one is implemented only if it improves the solution.

Meanwhile, for each iteration of the second local search, all swaps between included

and excluded tours from the pool are tested. Here again, after all possible swaps

have been tried, the best one is implemented only if it improves the solution in

this case also. The algorithm of the MP is described on �gure 4.2.

Do
For each local search structure :

Do :
Execute current local search

Repeat until no improvements are found
Next local search structure

Repeat until no more improvements have been found with any local search

Figure 4.2 � Algorithm to Solve the Master Problem

4.4.3 Master Problem Solution Value Calculation

The classes of constraints for which penalties must be considered in the solution

value of the MP are the following :

� Vertical constraints : all vertical constraints are considered

� Horizontal constraints :

� Constraints on sets of lines : all constraints are considered ;

� Constraints on sets of shifts : the cost is included, but no calculations are

needed as each tour's individual cost has already been computed in the SP

and memorized when it was transferred to the tour pool ;

� Constraints on single shifts : Same case as constraints on sets of shifts.

While the cost from violations of all constraints must be considered in the MP

in order to evaluate the true solution value, the calculation e�ort can be limited

to violations of vertical constraints and of constraints on sets of lines. While the

cost from violations of all other horizontal constraints must also be considered,
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it can simply be memorized each time a tour is produced by the SP as it will

never need to be computed again. This e�ectively excludes calculations related to

any single shift and sets of shifts constraint from the MP, substantially reducing

its size and computation requirements. Moreover, the fact that the local search

is limited to binary variables of tour selection is a key to making this solution

approach structure e�cient.

4.5 Subproblem

In a column generation approach, the SP provides variables with a negative redu-

ced cost to the MP. More speci�cally, for a sta� scheduling problem these variables

typically de�ne tours. Our heuristic approach is structured in the same fashion :

the SP will also provide tours to the MP. However, unlike mathematical pro-

gramming approaches, primal heuristics do not provide straightforward ways of

obtaining reduced cost values.

As presented in section 4.3.1, Crowe et al. [66] have proposed a classi�cation

for types of constraints in which the two main categories were de�ned as verti-

cal and horizontal. With our proposed solution approach architecture, horizontal

constraints on sets of work shifts and on individual work shifts should be conside-

red within the SP, while horizontal constraints on sets of lines in the MP. Vertical

constraints should be considered in both in order to serve as links. To create these

links, the current solution's information on the violations of vertical constraints

will be transferred to the SP. With this information, the SP will then produce

tours which increase the quality of the solution in terms of service coverage and

other vertical constraints while limiting violations of the considered horizontal

constraints. As most constraints are modeled as soft in order to avoid infeasibility

and enforce �exibility, solving the SP will result in a trade-o� between the hori-
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zontal constraint cost of the tour and the cost of adding this tour to the solution

in terms of vertical constraints satisfaction. Our proposed SP solution approach is

detailed in the subsequent paragraphs : First, the SP model is presented, followed

by a description of its solution approach, and �nally by a detailed description of

the solution value computation method.

4.5.1 Subproblem Model

The de�nitions of variables and parameters in this model are the same as those

used in the previous models. In our �exible approach, tour characteristics such

as number of work days, duration of shifts, duration of breaks and so on are

user de�ned. A user may de�ne as many types of tours as he wishes, however

a SP solution always provides only one tour of a single user-de�ned tour type.

As explained in section 4.3.3, the SP is sequentially solved once for each tour

type de�ned in the current instance. This allows the algorithm to produce one

tour of each type during each global iteration. As solving the SP always produces

only one tour of a predetermined type, the set of variables Y from the global

�exible models have been completely removed. Furthermore, all constraints and

related penalties regarding sets of tours (H1) have been removed from this model.

Indeed, considerations regarding the total number of tours are irrelevant as the SP

always produces one tour of a predetermined type. Finally, both i and k indexes

have also been removed because decisions taken for an instance of the SP do

not concern more than one tour type. In the end, all these elements contribute to

substantially reduce the size of the SP compared to the initial problem. Meanwhile,

crucial information related to the quality of a tour both in terms of horizontal and

vertical constraints remain.
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minV (X,Z) +H2(X,Z) +H3(X,Z) (4.25)

Subject to : ∑
j

Xj = n (4.26)

Z(j+l) = slXj ∀ j ∈ J,∀ l ∈ L (4.27)

j+p∑
j=j

Xj ≤ 1 ∀ j ∈ J (4.28)

CV (4.29)

CH2 (4.30)

CH3 (4.31)

Xj, Zj ∈ {0, 1} ∀ i ∈ I, k ∈ K (4.32)

4.5.2 Subproblem Algorithm

When solving an instance of the SP, the structure of the tour is built by the fol-

lowing greedy heuristic : sequentially, each shift is located to start at the period

of the horizon where it will either improve the most or deteriorate the least the

solution value. This iterative process is executed a number of times equal to the

number of work shifts to be inserted in the tour. This number of work shifts is

predetermined according to the tour type of the current instance of the SP. During

this process, a shift can be assigned to start at any period as long as it respects

the only hard constraint which prohibits shifts from overlapping one another ; all

other constraints are soft and considered via penalties in the objective function

of the SP. A description of the algorithm is presented on �gure 4.3.
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For each shift to assign :
Add a shift starting at the period j which minimizes the cost function

Next shift to assign
Return tour

Figure 4.3 � Algorithm to Solve the Subproblem

While such an algorithm structure seems simple when compared to more sophis-

ticated metaheuristics found abundantly in the literature, we believe it is well

suited to solve our SP. Indeed, it is clear that such a simple procedure should

have a signi�cant positive impact on solution times. As a matter of fact, a limited

execution time is paramount considering that thousands of instances of the SP

can be solved on typical problems. Furthermore, much of our work was focused

on e�ciently decomposing the global problem into simpler and easier to solve

problem structures. Finally, it is important to keep in mind that we are working

in a context of real life instances where constraint satisfaction has largely more

meaning than pure mathematical optimality. Hence, our solution approach to the

SP shares the same objective as our global approach, which is to produce good

solutions quickly. Indeed, our preliminary tests have indicated that this is exactly

what our greedy heuristic does for the SP.

4.5.3 Subproblem Solution Value Calculation

Using the classi�cation presented in our previous paper, the costs to consider

in the SP concern the following classes : all horizontal constraints limited to the

current tour of the subproblem (constraints on sets of shifts and on single shifts are

included, but constraints on sets of tours are excluded), and all vertical constraints.

In a mathematical approach such as column generation, dual variables can be

used to quickly obtain interesting variables with a negative reduced cost. As this
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approach is less suitable to our context, we will solve the subproblem by strictly

using the following primal information :

� Vertical constraints : all vertical constraints are considered, but our calculations

can be limited to variations of the current di�erence between left and right hand

side values of constraints in the MP ;

� Horizontal constraints :

� Constraints on sets of shifts : all included, only for the current SP tour ;

� Constraints on single shifts : all included, only for the current SP tour.

While the impact of most types of constraints must be evaluated at the SP level,

the solution time is strongly reduced by the fact that decision variables are for a

single tour. For example, while full service coverage information must be conside-

red at each SP decision, the calculation e�ort can be limited to modi�cations on

the current SP tour. Indeed, as the schedule obtained by solving the MP is not

modi�ed when solving a SP instance, the impact of the current MP schedule on

demand coverage can be calculated once before solving the SP, and memorized

afterwards until the current SP instance has been solved.

4.6 Extensions

While the structure presented above is a solid �exible base, heuristics typically

have limitations in terms of performance consistency between instances. Hence, in

order to make our �exible and portable approach more robust, we have developed

the following extensions : a post optimization procedure for the SP, an extended

version of the SP, a shu�ing mechanism, and a limited tour pool.

4.6.1 Subproblem Post Optimization

Firstly, we have extended our SP solution approach by implementing a post op-

timization procedure in order to improve the solutions found by the greedy algo-
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rithm. Two local search neighborhood structures are implemented in this exten-

sion : (1) the swap of two days, and (2) the modi�cation of the start time of a

work shift.

In the �rst local search structure, a neighborhood is de�ned as the set of feasible

solutions obtained by swapping two non identical days of the current tour. Clearly,

resulting solutions with shifts overlapping each other are prohibited since they are

not feasible. An iteration of this local search analyses all possible swaps between

two non identical days, and implements the best one if it improves the current

solution value.

In the second local search structure, a neighborhood is de�ned as the set of fea-

sible solutions obtained by moving the start time of a shift anywhere within the

24 hour period of its current calendar day (from midnight inclusively to midnight

exclusively). Again, resulting solutions with shifts overlapping each other are pro-

hibited to avoid infeasibility. An iteration of this local search analyses all possible

movements of start times for all shifts, and implements the best one if it improves

the current solution value.

The post optimization process is initiated with the �rst local search neighborhood.

If no improvements to the current solution are found during one full iteration, the

local search is then applied to the second neighborhood. When a full iteration with

both neighborhoods has been executed without providing any improvement to the

current solution, the post optimization process is terminated, and the resulting

tour will be transferred to the MP.
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4.6.2 Extended Subproblem

In the SP structure presented in section 4.5, the solution value calculation method

assumes that new tours produced by solving the SP are added to the MP schedule.

This is reasonable when the MP is in the constructive process of adding new

tours to cover large remaining undercoverage gaps. However, once a solution with

limited undercoverage has been found, it is likely that new tours provided by the

SP will replace currently inserted tours instead. In this situation, the previously

proposed subproblem solution value calculation function does not seem adequate

since it does not consider the possibility of a tour swap. In fact, simulating the

withdrawal of a tour from the current schedule may be a more suitable method

for calculating the solution value in the SP. Furthermore, it is more similar to

using dual information implicitly. Hence, we have extended our SP algorithm by

implementing a mechanism which sequentially solves the SP for each possible tour

withdrawal from the current MP schedule. While very time consuming, we expect

this extended mechanism to substantially improve solution values.

When compared with the initial subproblem model presented in section 4.5, the

main di�erence regards the insertion of horizontal constraints on sets of tours and

the related cost function informations (H1). Indeed, as the extended SP considers

the possibility of withdrawing tours from the SP, considering CH1 becomes neces-

sary as not all withdrawals will have the same impacts on this set of constraints

(for instance, constraints impacting tour types will be a�ected di�erently by with-

drawals of tours of speci�c types). However, apart from the insertion of constraint

set CH1 , this model is identical to the one presented in section 4.5.

While this model should compensate for a limitation of the initial SP structure,

it creates a new one : A large increase in solution times. In order to manage this

situation, we have structured this extended SP to increase its solution speed.
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minV (X,Z) +H1(X,Z) +H2(X,Z) +H3(X,Z) (4.33)

Subject to : ∑
j

Xj = n (4.34)

Z(j+l) = slXj ∀ j ∈ J,∀ l ∈ L (4.35)

j+p∑
j=j

Xj ≤ 1 ∀ j ∈ J (4.36)

CV (4.37)

CH1 (4.38)

CH2 (4.39)

CH3 (4.40)

Xj, Zij ∈ {0, 1} ∀ i ∈ I, k ∈ K (4.41)
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It is likely that the initial structure of the SP will provide the same solution as

its extended version until the number of tours inserted in the MP schedule is

large enough to bring the undercoverage to small values. Hence, we propose the

following strategy : to use the initial SP structure until the undercoverage are small

enough, and the extended version afterwards. Of course, the issue is to determine

which value of undercoverage should be used as a trigger to activate the extension.

Since we don't expect the SP to replace a tour until there is a period with less

than one unit of undercoverage somewhere on the planning horizon, we have set

this extension's activation trigger at the �rst period reaching an undercoverage

smaller than one unit.

4.6.3 Shu�e Mechanism

Being a heuristic, our algorithm faces the risk of entering into a local optimum

from which escaping will be di�cult. This is an especially serious risk considering

there are no moves implemented to allow temporary degradations of the solution

value such as a tabu search would typically have. Indeed, as such mildest ascent

mechanisms generally require speci�c calibrations for each instance in order to

perform well, we believed it was not really suitable for a very �exible algorithm

structure. Hence, we have developed a shu�ing extension which excludes all tours

from the current solution, providing the MP with an opportunity to rebuild a

completely new schedule with a large set of tours already at its disposal in the

tour pool.

4.6.4 Limited Tour Pool

Since it has access to all tours used in the previous solution, a limitation of the

shu�e mechanism is that it might simply reconstruct a schedule identical to the

previous solution. By tracking how many iterations have been executed since a
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given tour has been excluded from the solution, it is possible to specify how long

to keep uninserted tours in memory. This allows a dynamic management reduc-

tion of the size of the problem which reduces solution times, but also provides

an increase in the exploration potential of the shu�e mechanism by setting the

maximum number of iterations for uninserted tours to a value smaller than the

number of tours needed in the schedule. By doing so, the shu�e mechanism will

run out of available tours from the tour pool before it has reconstructed a sche-

dule with the same number of tours as the previous solution. Hence, in order to

complete the new schedule, other tours will have to be provided by the SP from

a partially reconstructed solution, which will create some potentially very useful

diversi�cation.

4.7 Results

We have tested two algorithm variants of CHAIR and in this section we will

present how they perform on the �exibility benchmarking framework developed

by Crowe et al. [66]. This �rst variant (C1) aims at providing good solutions fast,

while the second variant (C2) aims instead at providing the best solution values.

These results will be compared with those obtained with the SOFA algorithm

variants presented in [66]. All programs were coded in C++. All experiments

were carried out on an Intel R©CoreTMDuo CPU running at 1.86 GHz with 1 Gb

of RAM.

4.7.1 Con�guration

The very limited number of parameters used increases the robustness of the

present approach in terms of portability. In fact, the only parameters changing

between instances in our tests are the values of penalties for constraint violations.

The few other parameters of our approach will not be modi�ed throughout the
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computational experiments discussed hereafter. They have been set after some

extensive preliminary testing, and are the following : the size of the tour pool and

the termination criteria of the reshu�e mechanism.

The size of the tour pool is limited by de�ning the number of iterations that a tour

can be kept in the pool without having been used in a solution. For portability

purposes, we set this value in the following fashion : a percentage of the number

of tours needed to obtain a quantity of service coverage equal to the quantity

of service demand required. This value is calculated by assuming that all tour

types are used in equal proportion in the solution. While this assumption clearly

introduces a signi�cant bias in the context of a given instance or family of similar

instances, it is however an e�cient way of de�ning a portable parameter which

does not have to be recalibrated on each new instance. We have set this parameter

at 0.40 (40%). This means that if a problem requires 100 tours to obtain a theo-

retical complete coverage, tours excluded from the current solution will be kept

in the tour pool during 40 iterations. The value of the termination criterion of the

reshu�e mechanism has been set to �ve iterations without any improvement of

the best known solution.

To enable the comparison with SOFA, all constraint violation penalties have been

set to the same values as those selected by Crowe et al. [66] for the proposed �exi-

bility benchmarking experimental framework. All implemented constraints and

their respective penalties for violations are presented on �gure 4.I. Meanwhile,

the descriptions of sets of constraints activated for each instance set of the �exibi-

lity experimental framework are presented in table 4.II. Both tables were initially

presented by Crowe et al. (2011) [66].
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The framework proposed by [66] includes a total of 5 di�erent service demand

coverage curves speci�cally built for our tests. To allow an analysis on the impact

of demand patterns on the cost of the solution, all �ve demands have an equal

surface underneath their curves which means that the total theoretical number of

service hours required is the same for all. These �ve service demand curves are

presented in �gure 4.4. They are respectively demands which represent a daily

mild double peak (public transit, city tollbooths), a high early morning and low

late afternoon peak (shipping personnel of a warehouse), a low early morning and

high late afternoon peak (o�ce cleaning personnel), a daily high peak (emergency

services, retail stores, restaurants) and a uniform demand (factory personnel).

As each of the �ve initial demand curves averages a value of 1 on the vertical axis,

the values of each point on each period of each curve have been multiplied by 30 in

order to obtain a real-life representative size for our instances. This set of �ve ser-

vice demand curves represent a good variety of shapes similar to those encountered

in real-life applications (although their amplitudes may strongly vary in practice).

4.7.2 Testing Two CHAIR Variants

C1 was built to produce good results quickly and C2 to produce the best solu-

tion values. C1 combines the initial algorithm with the SP post optimization, the

reshu�e mechanism and the limited tour pool, while C2 combines all the exten-

sions of the former and the extended subproblem. The results of C1 and C2 on

the framework proposed by [66] are respectively presented in table 4.III and 4.IV.

Furthermore, table 4.V presents a comparison of results between C1 and C2. In

this last table, the values in each cell are computed by dividing the corresponding

value of C2 by that of C1. Hence, a value lower than 1 (or 100%) means that C2
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Constraint set description Set number

Service Demand

- 1
Capacity 1 2
Capacity 2 3
Budget 1 4
Budget 2 5

Max tours of each types 6

Max tours of each types
Budget 1 7
Budget 2 8

Max consecutive work shifts 1 9
Max consecutive work shifts 2 10
Min consecutive days o� 1 11
Min consecutive days o� 2 12

Max consecutive work shifts 1
Min consecutive days o� 1 13
Min consecutive days o� 2 14

Max consecutive work shifts 2
Min consecutive days o� 1 15
Min consecutive days o� 2 16

Limits on shift start times 17
Limits on shift end times 18

Limits on shift start times Limits on shift end times 19
All constraints 1 20
All constraints 2 21

All constraints 1 except capacity & budget 22
All constraints 2 except capacity & budget 23

Table 4.II � Constraint Sets Reference Numbers with Their Corresponding Des-
criptions
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Figure 4.4 � Demand Curves of D1, D2, D3, D4 and D5

Constraint CPU (s) Solution values
set D1 D2 D3 D4 D5 Mean D1 D2 D3 D4 D5 Mean

1 210 447 656 337 281 386.20 98.08 751.33 745.31 266.24 64.81 385.15

2 145 295 551 206 108 261 486.01 1056.59 1059.48 428.11 1835.45 973.13

3 116 186 376 142 278 219.60 3480.94 3847.84 3816.74 2368.79 8934.45 4489.75

4 187 288 406 192 239 262.40 599.74 2530.89 2528.63 1015.88 322.56 1399.54

5 263 264 332 152 150 232.20 4090.93 7523.72 7522.70 4823.55 3314.94 5455.17

6 165 362 412 184 162 257 86.22 754.55 755.67 369.83 67.12 406.68

7 132 447 235 136 258 241.60 884.75 2509.44 2523.30 1259.09 864.14 1608.14

8 135 250 174 107 106 154.40 4672.30 7519.54 7517.90 5114.47 4657.28 5896.30

9 243 336 392 297 247 303 101.44 750.09 751.56 276.20 68.79 389.62

10 193 439 375 199 329 307 105.09 752.53 753.28 275.61 75.24 392.35

11 100 372 479 262 191 280.80 96.16 760.62 749.93 276.17 95.11 395.60

12 209 476 700 367 312 412.80 98.08 751.33 745.31 266.24 64.81 385.15

13 264 449 550 449 272 396.80 101.29 756.65 757.43 279.78 85.23 396.08

14 244 466 472 277 347 361.20 152.01 833.38 830.42 341.17 109.85 453.37

15 327 457 683 212 229 381.60 107.36 757.67 754.06 282.03 95.47 399.32

16 175 538 532 231 302 355.60 156.36 843.56 833.41 342.69 113.32 457.87

17 225 631 988 648 180 534.40 360.67 5421.57 2191.57 380.03 111.42 1693.05

18 172 401 474 211 192 290 104.91 752.09 809.40 484.24 109.58 454.04

19 239 629 300 293 321 356.40 360.67 5421.57 2179.87 398.89 94.67 1691.13

20 153 191 369 155 219 217.40 2052.35 10342.50 4590.04 1867.89 2841.18 4338.79

21 130 165 188 125 100 141.60 6356.93 16437.62 9935.64 6538.47 11697.02 10193.14

22 210 424 636 222 213 341 952.69 6065.95 2204.59 889.03 177.64 2057.98

23 236 411 596 240 230 342.60 996.47 6166.11 2255.39 956.49 219.47 2018.61

Mean 194.48 388 472.87 245.39 228.96 305.94 1152.24 3622.05 2470.07 1282.65 1566.07 2018.61

Table 4.III � Solution Times (in seconds) and Values for C1
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Constraint CPU (s) Solution values
set D1 D2 D3 D4 D5 Mean D1 D2 D3 D4 D5 Mean

1 2083 15257 17646 2337 1589 7782.40 74.75 751.45 749.52 255.95 41.63 374.66

2 709 8584 7604 2011 84 3798.40 470.39 1061.64 1085.78 408.59 1835.45 972.37

3 235 2557 2443 1102 7314 2730.20 3458.96 3747.72 3768.05 2366.19 8934.45 4455.07

4 7326 11598 7279 619 2808 5926.00 596.90 2518.33 2527.30 1007.44 323.63 1394.72

5 6001 3366 2315 1467 1462 2922.20 4090.93 7529.89 7545.47 4823.55 3314.94 5460.96

6 1861 17507 17848 2354 1740 8262.00 84.95 748.63 751.52 369.83 61.42 403.27

7 117 11599 2650 374 5614 4070.80 884.75 2519.13 2543.26 1259.09 864.14 1614.07

8 555 2026 2244 96 95 1003.20 4672.3 7520.00 7529.71 5114.47 4657.28 5898.75

9 1798 7794 18678 2373 1431 6414.80 79.00 752.81 754.32 261.83 62.86 382.16

10 1972 17248 15774 2380 2196 7914.00 66.93 749.57 752.47 260.94 70.88 380.16

11 2026 16912 18670 2985 2143 8547.20 73.68 751.62 752.43 266.90 68.61 382.64

12 2458 11686 17150 3141 2339 7354.80 106.04 818.05 823.24 304.87 90.99 428.64

13 1937 11562 13754 2678 2252 6436.60 84.99 763.05 755.72 267.88 76.29 389.59

14 2114 16486 15608 2681 2145 7806.80 101.94 824.79 820.07 283.51 83.96 422.85

15 2269 11344 19218 2813 2093 7547.40 90.93 765.65 756.93 261.93 68.22 388.73

16 2403 16435 15259 3108 2523 7945.60 103.27 837.60 821.32 299.47 102.25 432.78

17 5191 20437 16810 2899 1863 9440.00 366.78 5414.89 2208.76 375.16 83.00 1689.72

18 2048 12356 8736 3715 2017 5774.40 80.98 754.49 813.49 432.14 81.86 432.59

19 6014 21089 18155 2745 2244 10049.40 366.78 5414.89 2182.23 415.91 83.82 1692.73

20 667 1288 13134 698 3784 3914.20 2052.35 10348.14 4594.86 1867.89 2841.18 4340.88

21 219 598 1500 185 83 517.00 6356.93 16447.50 9945.27 6538.47 11697.02 10197.04

22 3081 8073 16527 3657 2058 6679.20 938.64 6057.84 2203.47 889.03 186.65 2055.13

23 3838 9326 11761 3384 2543 6170.40 995.63 6154.28 2311.05 921.02 194.85 2115.37

Mean 2474.87 11092.52 12207.09 2165.30 2279.13 6043.78 1139.08 3619.65 2478.01 1271.83 1557.63 2013.26

Table 4.IV � Solution Times (in seconds) and Values of C2

performs better, while a higher value means C1 performs better.

Our main interest in this section is to compare the performances of C1 with those

of C2. As expected, C2 provides in average slightly better solution values than

C1. On a total of 115 instances, C2 produces better results on 61 instances, while

C1 produces better results on 35 instances ; both algorithm variants provided the

exact same solution values on 19 instances. The average solution value for C1 is

2018.61 compared to 2013.26 for C2, while standard deviations are respectively

2880.47 and 2884.15. Although the large standard deviations are simply an indica-

tor of the large variations in the problem structures of our di�erent instances, the

very small di�erence between both averages would suggest that both algorithm

variants are rather equivalent in terms of quality of solution value. However, com-

paring the results of corresponding individual instances in terms of solution values

suggests some important di�erences between the performance of both algorithm

variants. We have constructed table 4.V to provide a better insight on those dif-
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Constraint CPU (x) Solution values (%)
set D1 D2 D3 D4 D5 Mean D1 D2 D3 D4 D5 Mean

1 9.92 34.13 26.9 6.93 5.65 16.71 76.21% 100.02% 100.56% 96.14% 64.23% 87.43%

2 4.89 29.10 13.8 9.76 0.78 11.67 96.79% 100.48% 102.48% 95.44% 100.00% 99.04%

3 2.03 13.75 6.50 7.76 26.31 11.27 99.37% 97.40% 98.72% 99.89% 100.00% 99.08%

4 39.18 40.27 17.93 3.22 11.75 22.47 99.53% 99.50% 99.95% 99.17% 100.33% 99.70%

5 22.82 12.75 6.97 9.65 9.75 12.39 100.00% 100.08% 100.30% 100.00% 100.00% 100.08%

6 11.28 48.36 43.32 12.79 10.74 25.30 98.53% 99.22% 99.45% 100.00% 91.51% 97.74%

7 0.89 25.95 11.28 2.75 21.76 12.53 100.00% 100.39% 100.79% 100.00% 100.00% 100.24%

8 4.11 8.10 12.90 0.90 0.90 5.38 100.00% 100.01% 100.16% 100.00% 100.00% 100.03%

9 7.40 23.2 47.65 7.99 5.79 18.41 77.88% 100.36% 100.37% 94.80% 91.38% 92.96%

10 10.22 39.29 42.06 11.96 6.67 22.04 63.69% 99.61% 99.89% 94.68% 94.21% 90.42%

11 20.26 45.46 38.98 11.39 11.22 25.46 76.62% 98.82% 100.33% 96.64% 72.14% 88.91%

12 11.76 24.55 24.50 8.56 7.50 15.37 108.12% 108.88% 110.46% 114.51% 140.40% 116.47%

13 7.34 25.75 25.01 5.96 8.28 14.47 83.91% 100.85% 99.77% 95.75% 89.51% 93.96%

14 8.66 35.38 33.07 9.68 6.18 18.59 67.06% 98.97% 98.75% 83.10% 76.43% 84.86%

15 6.94 24.82 28.14 13.27 9.14 16.46 84.70% 101.05% 100.38% 92.87% 71.46% 90.09%

16 13.73 30.55 28.68 13.45 8.35 18.95 66.05% 99.29% 98.55% 87.39% 90.23% 88.30%

17 23.07 32.39 17.01 4.47 10.35 17.46 101.69% 99.88% 100.78% 98.72% 74.49% 95.11%

18 11.91 30.81 18.43 17.61 10.51 17.85 77.19% 100.32% 100.51% 89.24% 74.70% 88.39%

19 25.16 33.53 60.52 9.37 6.99 27.11 101.69% 99.88% 100.11% 104.27% 88.54% 98.90%

20 4.36 6.74 35.59 4.50 17.28 13.69 100.00% 100.05% 100.11% 100.00% 100.00% 100.03%

21 1.68 3.62 7.98 1.48 0.83 3.12 100.00% 100.06% 100.10% 100.00% 100.00% 100.03%

22 14.67 19.04 25.99 16.47 9.66 17.17 98.53% 99.87% 99.95% 100.00% 105.07% 100.68%

23 16.26 22.69 19.73 14.10 11.06 16.77 99.92% 99.81% 102.47% 96.29% 88.78% 97.45%

Mean 12.11 26.53 25.78 8.87 9.45 16.55 90.33% 100.21% 100.65% 97.34% 91.89% 96.08%

Table 4.V � Solution Times (in seconds) and Values of C2 Divided by C1

ferences.

Indeed, the average comparative value obtained from table 4.V is 96.08%. This

value may be de�ned as an indicator of how much better C2 performs compared

to C1 and hence can be translated as meaning that the former provides results

which are on average 4.08% better in this context of minimization. Meanwhile,

the corresponding standard deviation is 10.56%, which implies the existence of at

least a few important gaps between the performances of each algorithm variant.

At this point, the important question regards which instances are responsible for

most variations of performance.

Since our algorithm is fully heuristic, has a quadratic objective function, requires

small execution times relatively to problem sizes and prioritizes portability and

�exibility, a number of instances might have solutions with signi�cant optimality

gaps. While optimal solutions (or reliable lower bounds) are unknown for any of

our instances and of little interest to us in this context of constraint satisfaction,
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the reader may notice a few isolated instances such as constraint set 10 with

service demand D1 or constraint set 12 with service demand D5 revealing large

di�erences in solution values between both algorithm variants. An interesting fact

seems to be that larger di�erences in solution values between algorithm variants

happen with smaller solution values, which can be interpreted as meaning that

the di�erence in terms of number of violations remains relatively limited.

While extracting individual results provides little insight on general performance

(these last two examples combined represent less than 2% of all instances), ave-

rages by columns (service demands) and lines (constraint sets) appear to be much

more revealing. Indeed, the average values of table 4.V show that C2 performs

largely better on service demand 1 and 5 (averages for each column are respec-

tively 90.32% and 91.89%), slightly better for service demand 4 (97.34% ) and

comparable performances for service demands 2 and 3 (respectively 100.21% and

100.65% ). A noteworthy fact about these last statistics is that from our expe-

rience, these service demand coverage curves can be ordered from the most to

least di�cult to cover by the following sequence : 1, 5, 4, 3, 2. While experience

obviously provides no statistical proof, it nevertheless seems to indicate that the

performance di�erences between both algorithm variants is reduced when ins-

tances include more di�cult service demands to cover. Another way to present

this is that C2 provides better results when service demands are less constraining

to cover.

This last insight seems to be con�rmed when analyzing results by constraint sets.

Indeed, experience with these instances has led us to observe that the inclusion of

at least one type of constraint on sets of lines (maximum number of tours of each

type or budget limitations) or of capacity constraints create di�cult instances to

solve. Indeed, the average values for instances including one of these three di�cult
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constraints in table 4.V is 99.46% (this includes constraint sets 2, 3, 4, 5, 6, 7,

8, 20, 21, 22 and 23), while the average for all other instances is 92.98%. Again,

this can be interpreted as a strong indicator that C2 generally provides larger

improvements on less tightly constrained instances.

A joint analysis of tables 4.III, 4.IV and 4.V indicates that large di�erences in

terms of percentage of solution values between algorithm variants always occur

with small di�erences in number of penalty for violations. We have de�ned a large

di�erence as a value under 85% or over 115% in table 4.V. Indeed, basing our-

selves on table 4.IV for calculations, the average empirical value of instances with

di�erences larger than +/- 15% is 91.66, which is almost 22 times smaller than

the average solution value for the full table 4.IV. Hence, these cases can be inter-

preted as di�erences limited to a small number of minor violations. While we �nd

solution value results quite convincing and stable in terms of overall performance,

we are surprised by the larger improvements provided by C2 on less constrained

instances. Indeed, we had initially developed the extended SP mechanism because

we expected the initial SP algorithm to face challenges when capacity or budget

constraints are included. This expectation was based on the fact that the ini-

tial SP algorithm always assumes new tours will be added to the current schedule

when creating them. Intuitively, this led us to believe that it could perform poorly

when reaching a point in the solution searching process where budget or capacity

constraints forbid adding new tours, forcing instead the replacement of current

ones to obtain improvements to the current solution. Hence, while the extended

SP does improve solution values on average, it does not perform in the way we

had initially built it for.

When analyzing the di�erences in values between solutions obtained with C1 and

C2, we have computed that the average absolute di�erence is 9.90 penalty points
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for instances with tighter constraint sets and larger solution values (all instances

of constraint sets 2, 3, 4, 5, 6, 7, 8, 20, 21, 22 and 23) and 17.86 for all other

instances which have smaller solution values. When considering negative values in

our calculations, these averages become respectively an improvement of 2.71 and

of 7.79 points provided by C2. One possible way to explain these counter-intuitive

results is the lack of performing local searches which can modify single shift struc-

ture inside the MP. Clearly, such a structure (like backtracking local searches 3

and 4 which were excluded after preliminary testings) goes against the basic phi-

losophy of this approach. However, it is possible that dividing the construction of

individual tours and the selection of tours is a less e�cient strategy when facing

budget or capacity constraints as they both limit sums of tours, which are more

di�cult to consider in the SP. More insight on this matter is available in section

4.7.3 where CHAIR is compared with SOFA [66].

On the other hand, analyzing solution times is very straightforward. Indeed, a

quick look at table 4.V will su�ce for the reader to notice the large di�erences

between C1 and C2 on this matter. Out of 115 instances, only 5 have smaller

solution times with C2. In addition, solution times are on average almost 20 times

smaller with C1. Although clear solution time patterns are di�cult to �nd when

data is aggregated by constraint set, there is once again a clear pattern when

aggregated by service demand : the increase in solution times are much higher

for service demand 2 and 3 when using C2 compared to C1. This leads us to

another possible explanation for the limited improvement provided by C2 on more

constrained instances : these instances may generally include a large number of

rather �at areas in the solution space, with a large number of local optima with

only slight di�erences in solution value between them. This would indeed explain

higher solution times as more searching is required to progress towards a local

optima, while escaping an area of the solution space would be a di�cult task.
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4.7.3 Comparison with SOFA

In Crowe et al. [66], S1 and S2 of SOFA were the two algorithm variants tested.

In this paper, we have tested C1 and C2 of CHAIR. For both algorithms, one

algorithm variant was designed to provide the best solution values, and one algo-

rithm variant was designed to provide a good solution time/solution value ratio.

In order to make a fair comparison, S1 of SOFA and C1 of CHAIR will be com-

pared together as they each provide the best solution time/solution ratio for their

respective algorithm, while S2 of SOFA and C2 of CHAIR will be compared with

each other as they each provide the best overall solution values out of all other

algorithm variants of their respective algorithm.

Best Solution Time/Solution Value Ratio

In this section, S1 of SOFA will simply be referred to as SOFA and C1 of CHAIR

will simply be referred to as CHAIR. Table 4.VI presents a comparison of solu-

tion values and solution times obtained by both algorithms. In each cell, values

are obtained by dividing the result obtained with CHAIR by the one obtained

with SOFA. If the value is lower than 100%, CHAIR performs better and if the

value is over 100%, SOFA performs better.

In terms of solution values, results are very convincing and clearly indicate that

CHAIR performs better. Indeed, CHAIR outperforms SOFA on 68.70% of ins-

tances. On average, solution values obtained with CHAIR are 6.40% lower. Ho-

wever, CHAIR is outperformed on some speci�c instances, mainly on those with

constraint sets 20 to 23 inclusively, as well as on instances with the �fth service de-

mand (uniform). On average, solution values are 19.01% higher for instances with

the �fth service demand, while they are 13.53% higher on average for instances

with constraint sets 20 to 23. However, when excluding results for the �fth service

demand, solution values are only 0.67% higher on instances for constraint sets 20
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Constraint CPU (%) Solution values (%)
set D1 D2 D3 D4 D5 Mean D1 D2 D3 D4 D5 Mean

1 63.64% 88.51% 148.75% 98.25% 98.60% 99.55% 68.38% 95.07% 94.13% 79.84% 86.90% 84.86%

2 30.85% 48.20% 118.75% 51.24% 43.03% 58.41% 71.84% 107.70% 107.94% 65.24% 66.74% 83.89%

3 22.75% 39.74% 75.81% 32.87% 112.55% 56.74% 96.65% 67.49% 65.84% 89.84% 80.39% 80.04%

4 92.12% 85.46% 123.40% 92.31% 168.31% 112.32% 86.35% 97.32% 96.74% 92.98% 93.47% 93.37%

5 199.24% 105.18% 125.28% 95.60% 105.63% 126.19% 99.39% 99.77% 98.99% 98.65% 99.27% 99.21%

6 47.14% 100.00% 104.57% 49.07% 54.55% 71.07% 116.83% 89.29% 93.52% 104.15% 115.70% 103.90%

7 71.35% 164.34% 98.74% 59.91% 144.94% 107.86% 102.23% 93.12% 95.88% 100.59% 102.06% 98.78%

8 81.33% 130.89% 79.09% 63.69% 70.67% 85.13% 100.31% 99.03% 98.34% 99.86% 100.14% 99.54%

9 72.11% 76.19% 83.05% 72.97% 75.30% 75.92% 50.78% 90.07% 90.39% 82.16% 82.85% 79.25%

10 52.59% 77.43% 67.57% 44.72% 124.62% 73.39% 42.41% 89.53% 84.24% 89.61% 85.40% 78.24%

11 25.58% 65.49% 74.03% 54.93% 53.95% 54.80% 61.64% 94.42% 93.07% 88.30% 134.85% 94.46%

12 56.79% 86.70% 111.46% 83.03% 81.46% 83.89% 41.12% 83.48% 83.44% 56.89% 93.76% 71.74%

13 52.80% 68.13% 89.00% 82.23% 68.86% 72.20% 65.71% 87.22% 86.09% 71.79% 134.69% 89.10%

14 49.80% 71.80% 63.19% 52.96% 105.47% 68.64% 46.89% 66.05% 62.07% 49.72% 132.21% 71.39%

15 60.67% 67.01% 107.22% 42.48% 51.23% 65.72% 124.95% 70.63% 87.86% 101.34% 150.46% 107.05%

16 36.46% 51.14% 49.53% 35.21% 66.96% 47.86% 35.24% 43.28% 38.58% 41.78% 160.74% 63.92%

17 81.52% 146.74% 250.76% 137.58% 69.50% 137.22% 87.42% 103.13% 100.17% 94.13% 114.36% 99.84%

18 53.75% 82.34% 85.56% 63.75% 63.37% 69.75% 83.47% 94.28% 96.12% 139.47% 151.23% 112.91%

19 88.52% 120.73% 73.53% 73.62% 117.15% 94.71% 96.81% 102.61% 97.76% 91.06% 91.99% 96.05%

20 34.46% 47.28% 70.83% 32.77% 44.24% 45.92% 93.07% 102.11% 96.78% 105.78% 109.40% 101.43%

21 18.81% 23.61% 30.08% 20.87% 19.84% 22.64% 101.67% 101.57% 94.34% 103.39% 93.11% 98.82%

22 43.21% 76.53% 114.80% 36.33% 44.47% 63.07% 106.59% 103.20% 101.30% 109.07% 173.19% 118.67%

23 28.43% 44.92% 66.59% 28.47% 29.60% 39.60% 102.13% 103.62% 91.05% 95.02% 284.21% 135.21%

Mean 59.30% 81.23% 96.16% 61.08% 78.88% 75.33% 81.82% 90.61% 89.33% 89.16% 119.01% 93.99%

Table 4.VI � Ratios of Solution Times and Values Obtained Dividing the Results
of C1 of CHAIR by Those of S1 of SOFA

to 23. This clearly indicates us that SOFA signi�cantly outperforms CHAIR on

instances with the �fth service demand. An analysis of empirical values demons-

trates that di�erences in terms of number of penalty violations are in fact rather

small for these speci�c instances : They are of 53.37 penalty points of violations on

average for instances where SOFA performs better. In fact, the few times SOFA

outperforms CHAIR seem to be mostly limited to instances with small solution

values. Meanwhile, CHAIR tends to outperform SOFA on instances with large

numbers of penalized violations, even when the instance includes the �fth service

demand. For example, this is the case for the instance combining constraint set 3

with the �fth service demand.

In terms of solution times, results are straightforward. On average, solution times

are 32.75% lower with CHAIR. The only exception seems to be for instances with

constraint set 5 (tight budget constraints) and constraint set 17 (limits on possible

start time for shifts) where solution times are on the contrary respectively 26.19%
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and 37.22% longer with CHAIR. Overall, solution times are quicker with CHAIR

on 80% of the instances.

Best Overall Solution Values

In this section, S2 of SOFA will simply be referred to as SOFA and C2 of CHAIR

will simply be referred to as CHAIR. Table 4.VII presents a comparison of solu-

tion values and solution times obtained by both algorithms. In each cell, values

are obtained by dividing the result obtained by chair with the one obtained by

SOFA. If the value is lower than 100% , CHAIR performs better and if the value

is higher than 100%, SOFA performs better.

The performance di�erences in terms of solution values is very small between

SOFA and CHAIR. Indeed, CHAIR provides solution values 0.47% better than

SOFA in average, which is clearly not a very signi�cant di�erence in this context.

While a certain number of large performance di�erences can be noticed on some

instances, 63.48% of instances have values bounded between 90% and 110% while

76.52% of instances have values bounded between 80% and 120% on table 4.VII.

Considering that our main research objective is �exibility and that we are dealing

with a large variety of instances with very di�erent problem structures, we believe

one can interpret these numbers as meaning that both algorithms perform in a

similar fashion and are competitive on most instances. However, CHAIR performs

better on instances with service demands 1, 2, 3 and 4 and constraint sets 1 to

19 inclusively, while SOFA performs better on service demand 5 and constraint

sets 20 to 23 inclusively. In fact, this behavior is very similar to the one we had

already noticed with the fast versions of these algorithms in section 4.7.3. Indeed,

the solution value is 6.15% better on average with CHAIR on all instances built

with demands 1 to 4. The performances of this same algorithm become 8.93% bet-

ter for instances built with the same four �rst demand when limited to constraint
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Constraint CPU (%) Solution values (%)
set D1 D2 D3 D4 D5 Mean D1 D2 D3 D4 D5 Mean

1 59.82% 229.77% 232.77% 60.03% 19.03% 120.28% 52.12% 95.42% 95.12% 81.28% 68.03% 78.39%

2 8.68% 119.89% 131.56% 26.93% 2.15% 57.84% 90.88% 104.04% 110.16% 89.58% 75.61% 94.05%

3 1.61% 17.06% 22.69% 10.21% 194.68% 49.25% 103.85% 102.02% 106.17% 99.85% 80.67% 98.51%

4 183.47% 227.68% 200.41% 21.87% 70.62% 140.81% 100.04% 98.96% 98.14% 96.70% 94.98% 94.76%

5 216.41% 77.10% 38.85% 51.04% 55.13% 87.71% 100.62% 99.83% 100.44% 99.08% 99.82% 99.96%

6 27.39% 259.44% 236.15% 34.41% 39.29% 119.31% 127.15% 94.64% 93.28% 121.91% 106.85% 108.77%

7 3.01% 369.63% 63.79% 12.72% 113.97% 112.62% 103.45% 96.46% 99.23% 102.04% 102.19% 100.67%

8 12.37% 39.71% 76.46% 2.86% 1.80% 26.64% 100.36% 99.29% 99.86% 101.07% 100.40% 100.20%

9 26.38% 111.53% 303.07% 21.65% 15.71% 95.67% 61.18% 94.37% 89.48% 77.16% 105.01% 85.44%

10 39.62% 357.55% 311.55% 48.65% 36.86% 158.85% 38.89% 94.81% 90.74% 74.21% 113.90% 82.51%

11 13.03% 345.78% 341.57% 24.73% 18.70% 148.76% 94.26% 96.34% 96.09% 95.77% 119.24% 100.34%

12 15.49% 241.20% 308.18% 70.93% 39.04% 134.97% 109.27% 95.98% 101.24% 88.61% 139.43% 106.91%

13 20.87% 220.14% 99.56% 35.60% 27.19% 80.67% 104.65% 94.63% 94.97% 97.75% 133.56% 105.11%

14 36.23% 84.79% 155.83% 23.02% 54.83% 70.94% 40.14% 84.48% 80.64% 68.90% 112.73% 77.38%

15 39.07% 190.94% 383.82% 31.44% 22.28% 133.51% 116.34% 92.42% 85.87% 94.48% 124.95% 102.81%

16 27.51% 107.54% 85.92% 33.26% 41.76% 59.20% 33.34% 61.44% 50.12% 45.65% 149.36% 67.98%

17 153.85% 149.81% 327.94% 41.24% 37.25% 142.02% 94.62% 103.69% 100.05% 100.28% 108.75% 101.48%

18 38.64% 282.36% 210.96% 113.12% 21.12% 133.24% 66.55% 95.22% 97.03% 106.58% 124.22% 97.92%

19 160.89% 293.80% 525.01% 73.10% 53.79% 221.32% 100.52% 103.54% 99.12% 102.57% 136.05% 108.36%

20 6.63% 16.15% 170.88% 13.84% 13.78% 44.26% 99.29% 102.50% 99.94% 109.68% 114.79% 105.24%

21 3.92% 4.64% 6.50% 3.08% 1.49% 3.93% 101.67% 161.25% 61.26% 104.76% 100.66% 105.92%

22 61.92% 67.34% 133.80% 52.29% 27.30% 68.53% 105.01% 103.14% 101.26% 120.64% 239.26% 133.86%

23 55.16% 72.75% 74.99% 32.44% 50.52% 57.17% 106.61% 103.34% 99.57% 110.35% 228.16% 129.61%

Mean 52.69% 168.98% 193.14% 36.45% 41.66% 98.59% 89.17% 99.04% 93.47% 95.17% 120.81% 99.53%

Table 4.VII � Ratios of Solution Times and Values Obtained Dividing the Results
of C2 of CHAIR by Those of S2 of SOFA

sets 1 to 19 inclusively. Meanwhile, solution values are 20.81% better on average

with SOFA for instances with the �fth service demand, and 18.66% better on ave-

rage with SOFA for all instances with constraint sets 20 to 23 inclusively. In fact,

the compared behavior of both algorithms is similar to what had been observed

in section 4.7.3. Indeed, it seems that SOFA performs better on instances with

tighter solution spaces and less natural demand curves, while CHAIR performs

better on instances with looser bounds and more natural service demand curves.

In terms of solution times, results are also similar : CHAIR outperforms SOFA

only by a slight 1.43% on average. A very interesting fact to notice is that so-

lution times are 2.4 times quicker in average with CHAIR on instances with the

�fth service demand, which would indicate that this algorithm does not manage

to fully explore the solution space on those instances. Likewise, solution times are

2.3 times faster on average with CHAIR on instances with constraint sets 20 to

23, leading to the same observations. On the other hand, solution times are 55%

lower with SOFA on instances with service demands 1 to 3 and constraint sets
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1 to 19. Interestingly, solution times are much quicker with CHAIR for instances

with the fourth service demand even though CHAIR also obtains better solution

values on average on these instances.

Overall, CHAIR performs slightly better than SOFA both in terms of solution va-

lue and solution time. However, it is relevant to note that this better performance

comes mostly from the less severely constrained instances. Indeed, constraints

seem to explain a larger share of performance variations than demand functions

do.

4.8 Conclusion

In this paper we have demonstrated the �exibility and portability potential of a

fully heuristic approach inspired from column generation to solve a wide variety of

sta� scheduling problems. Our approach is divided into a subproblem (SP) which

builds individual tours and a master problem (MP) which selects which tours are

inserted in the schedule. In its basic structure, this algorithm solves the SP with

a greedy heuristic and the MP with a combination of two local search procedures.

In order to improve solution quality, a number of extensions have also been imple-

mented : a post-optimization local search procedure for the SP, an extended SP

local search algorithm, an accelerated version of the latter, a shu�e mechanism,

a tour pool to use jointly with the shu�e mechanism and two backtracking local

search structures. After a signi�cant set of preliminary tests, two versions of the

algorithm were found the most promising : the �rst one includes the post optimi-

zation mechanism for the SP combined with the shu�e mechanism and the tour

pool, and the second one includes all the extensions of the �rst plus the accelera-

ted extended SP structure. The �rst one was chosen for the very good compromise

between solution quality and time it provides, while the second one was chosen be-
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cause it provided the best overall performances in terms of solution quality. Both

versions were tested on a large experimental framework of 115 instances structu-

red speci�cally to evaluate the level of �exibility of a sta� scheduling algorithm.

Results were very promising and were obtained without any calibration of the

algorithm between instances in order to demonstrate its portability. Meanwhile,

the overall quality of the solutions and the limited variations in terms of solution

quality relatively to this context of wide variations in the structure of instances

demonstrated in our opinion the strong �exibility of the algorithm.

Both selected versions of the algorithm were each compared with a similar ver-

sion of SOFA. When the objective was to obtain the best compromise between

solution quality and solution times, CHAIR performed signi�cantly better than

SOFA. On the other hand, CHAIR performed only slightly better than SOFA on

average when the objective was to simply obtain the best solution value. Inter-

estingly, results from tests on the �exibility experimental framework seemed to

indicate that CHAIR performed better on instances with more natural demand

structures and looser solution search spaces, while SOFA performed better on ins-

tances with more angular demand structures and tighter solution search spaces.

While we believe we have demonstrated the potential of using heuristics inspired

from column generation to obtain good solutions on a large variety on instances

without requiring any calibrations, there is clearly in our opinion many oppor-

tunities left for more work on this topic. Indeed, our work has been focused on

demand shape variations and schedule structure variations : assignment of tours to

speci�c employees and individual tailorship of tours have been excluded from the

scope of this paper. In our opinion, future research on �exibility and portability

of sta� scheduling algorithms should include important factors such as seniority,

preferences, availability, competences and task assignment. As the structure of our

150



algorithm is based on the assembly of individual tours at the SP level, we believe

there is much potential for increasing the scope of sta� scheduling problems it can

solve in the future.
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Chapitre 5

A Flexible and Portable Approach

Applied to Nurse Scheduling

5.1 Introduction

Nurses play an important role in the patient care process. Yet, in places such as

the province of Quebec, nursing departments are frequently understa�ed for va-

rying reasons : budget cuts, too few graduates, too many retirees, uncompetitive

working conditions, service capacity limitations, etc. To deal with this, managers

have little choice but to do better with less.

In this context, operations research has much to o�er to nurse chiefs and health

care service managers. Not surprisingly, nurse scheduling is the application with

the largest number of published papers in sta� scheduling according to Ernst et

al. (2004) [83]. However, few of these papers share methodologies or solution ap-

proaches. Hence, we are interested in knowing how a shared methodology would

perform in comparison with the stand-alone ones. Indeed, as suggested by Crowe

and Soriano [66], practitioners and academics alike might have much to gain by

having access to an e�ective �exible and portable methodology for nurse schedu-
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ling. This provides us with an opportunity to assess the performances of CHAIR

(Column generation Heuristic Approach for Inde�nite Rostering), a �exible and

portable solution approach proposed by Crowe and Soriano (2012) [67], on a set

of nurse scheduling problems.

CHAIR is a fully heuristic approach inspired from column generation : A subpro-

blem builds a set of tours, and a master problem selects which tours are included

in the schedule (the solution). This approach aims to provide good solutions on a

large variety of sta� scheduling problems, while limiting to a minimum the con�-

guration e�orts required to implement it on a di�erent scheduling problem.

Our objective is to demonstrate that a �exible and portable solution approach can

provide good results on nurse scheduling problems, and is an option worth consi-

dering for organizations dealing with many di�erent nurse scheduling problems

(e.g. a large general hospital) but having limited time and �nancial resources to

develop a uniquely tailored approach for each one of them. Likewise, we believe

it is an option worth considering for researchers collaborating with many nurse

teams but lacking resources to provide a tailored approach for each of them.

CHAIR has already been successfully tested on a large set of theoretical sta�

scheduling instances inspired from the health care sector, as well as successfully

benchmarked on 2 real-life health care scheduling problems from Montreal. In this

paper, we plan to test it even further with 2 sets of nurse scheduling instances :

a set of 144 theoretical instances created by the authors of this paper, and a set

of 10 real-life instances from all over the world proposed both by academics and

practitioners. The �rst set of instances will be used to test the impact of a number

of selected types of constraints of interest on the behavior of the solution approach

while understanding their impact on the structure of solutions, and the second set
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of instances will be used to benchmark CHAIR with the best solution approaches

known for each problem.

This paper is structured as follows. Firstly, section 5.2 will shortly review the

nurse scheduling literature. This review will be followed by a description of the

algorithmic approach in section 5.3, and then in section 5.4 by a a detailed des-

cription of the test instances and the results achieved. Finally, section 5.5 will

conclude this paper.

5.2 Literature Review

Literature in nurse scheduling is abundant. Among all problems tackled in the

literature, the objectives are generally to minimize violations of demand coverage,

minimize violations of work conditions, or a combination of both. Minimizing

cost is rarely an issue for two reasons : �rstly, the priority for health care service

providers is generally to maximize the use of the allocated budget, as many are

non-pro�t or public organizations, and secondly, the typically understa�ed context

creates more concern about �lling vacancies than about reducing overcapacity.

While objective functions of di�erent models are similar, a large variety of constraints

are found in the literature. As reviewed by Crowe et al. (2001) [65], Cheang et

al. (2003) [60] propose a comprehensive survey of the nurse rostering literature in

which the most typical constraints are categorized as follows :

� Nurse workload (minimum/maximum) ;

� Consecutive same working shift (minimum/maximum/exact number) ;

� Consecutive working shift/days (minimum/maximum/exact number) ;

� Nurse skill levels and categories ;

� Nurses' preferences or requirements ;
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� Free days (minimum/maximum/consecutive free days) ;

� Free time between working shifts (minimum) ;

� Shift types assignments (maximum shift type, requirements for each shift type) ;

� Holidays and vacations (predictable), e.g., bank holiday, annual leave ;

� Working weekend, e.g., complete weekend ;

� Constraints among groups/types of nurses, e.g., nurses not allowed to work

together or nurses who must work together ;

� Shift patterns ;

� Historical record, e.g., previous assignments ;

� Other requirements in a shorter or longer time period other than the planning

time period, e.g., every day in a shift must be assigned ;

� Constraints among shifts, e.g., only one shift be assigned to a person at a given

time ;

� Nurse requirements per skill category for each shift (minimum/maximum/exact

number).

While nurse scheduling problems rarely include all the aforementioned categories

of constraints simultaneously, they frequently include enough to make them dif-

�cult to solve. More details about the nurse scheduling literature can be found

in chapter 2. Meanwhile, the literature listed in the following paragraphs contain

problems and solution approaches which are discussed later in this paper when

benchmarking CHAIR on nurse scheduling problems. These problems and the

benchmark test structure will be discussed further in section 5.4.

Azaiez et al. (2005) [14] propose a binary goal programming model for nurse sche-

duling. The model aims to solve a problem from a Saudi Arabia hospital and to

replace a currently manual scheduling procedure. While all the labor constraints

of the local hospital are taken into account, the authors also use a survey on

nurses of a few di�erent countries to gain an understanding of nurse preferences.
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The results from this survey are used to add some work quality soft constraints

to the model.

Ikegami et al. (2003) [102] propose a heuristic solution approach based on tabu

search with a structure sharing similarities with column generation to solve a

nurse scheduling problem from a Japanese hospital. This problem is particularly

complex due to large numbers of workload balance constraints and employee skills

which must be considered.

Li et al. (2003) [117] propose a hybrid AI approach to solve a class of nurse ros-

tering problems which they classify as over-constrained. The approach is divided

into two phases : the �rst is a relaxed problem including all hard constraints and a

limited number of preference constraints solved by a forward checking algorithm,

while the second is a local descent using tabu search on the full problem. On top

of personal preferences, the problem is also constrained by a total of 8 work rules

on how shifts can be assigned.

Millar et al. (1998) [129] solve some nurse scheduling problems by network pro-

gramming. They use stints of shifts in their model, meaning that the schedules

are built by assembling preexisting sequences of work shifts.

Finally, Burke et al. (2010) [58] propose a hybrid model of integer programming

and VNS (variable neighborhood search) to solve highly-constrained nurse ros-

tering problems. The integer programming is used to solve a partial problem in

a �rst phase including all hard constraints and a subset of soft constraints. The

VNS is then used in a second phase to improve the solution by considering all soft

constraints excluded from the �rst phase. This approach is used to solve a nurse

scheduling problem from an intensive care unit in the Netherlands. A total of 10
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hard constraints and 7 soft ones are included.

Clearly, all the above listed problems di�er from each other in many ways, which

makes it challenging to solve them all with a single solution approach. Neverthe-

less, we will assess the capacity of our approach to solve all these instances in

section 5.4.2.

Interestingly, Burke et al. (2004) [56] suggests the following elements as valuable

future research areas for nurse scheduling : multi-criteria reasoning, �exibility and

dynamic reasoning, robustness, ease of use, human/computer interaction, pro-

blem decomposition, exploitation of problem speci�c information, hybridization,

and inter-disciplinarity. In fact, our research will deal with a number of them :

multi-criteria reasoning, �exibility and dynamic reasoning, robustness and pro-

blem decomposition. Furthermore, our research is clearly about inter-disciplinarity

as the solution approach used was initially built with a much larger application

spectrum in mind than nurse scheduling, as discussed by Crowe et al. (2011) [67].

This solution approach is CHAIR, which is described in the following section.

5.3 Algorithmic Approach

The solution approach used to solve nurse scheduling problems in this paper is

CHAIR (Column generation Heuristic Approach for Inde�nite Rostering) pro-

posed by Crowe et al. (2011) [67]. It is a fully heuristic approach based on a

decomposition method inspired from column generation : a subproblem is solved

to identify variables which are likely to improve the current solution of the master

problem, and these variables are fed to the master problem in order to �nd a

good solution to the full problem. As CHAIR is an algorithm built to solve sta�

157



scheduling problems, solving the subproblem produces tours, and these tours are

used in the master problem to create a good schedule.

The present section will provide the reader with a general description of nurse

scheduling problems, followed by a presentation of the solution approach. Since

this paper focuses on presenting and discussing the results obtained by CHAIR

on nurse scheduling problems, the reader is referred to Crowe et al. (2011) [67]

from which section 5.3.2 to 5.3.5 are based for a more detailed description of the

solution approach.

5.3.1 Problem Description

Nurse scheduling problems are solved by assigning a set of work shifts to a set of

nurses in order to create a feasible work schedule. The objective can be to maxi-

mize demand coverage, maximize employee satisfaction, minimize work constraint

violations, or any combination of these. Constraints typically include work prefe-

rences (length of shift, start time of shift, number of days o�), work rules (typi-

cally described in work contracts or collective agreements), varying skills between

nurses and service demand coverage.

The algorithm approach presented in the following paragraphs is structured ac-

cording to a classi�cation by constraint types proposed by Crowe et al. (2011)

[66]. To the best of our knowledge, this classi�cation can include any constraint

found in nurse scheduling contexts. It is organized as follows :

� Vertical constraints :

� Constraints on a single period :

� Service demand coverage ;

� Capacity (f.ex. : number of available vehicles or workspaces, budget per

period, . . . ).

158



� Horizontal constraints :

� Constraints on sets of lines :

� Management constraints (f.ex. : maximum number of tours of each type,

budget by number of employees, . . . ).

� Constraints on sets of shifts of a single tour :

� Collective agreements, ergonomics, working conditions (f.ex. : maximum

number of consecutive work days, minimum number of consecutive days

o�, . . . ).

� Constraints on a single shift :

� Collective agreements, ergonomics, working conditions (f.ex. : limits on

possible start-times for work shifts, . . . ).

As CHAIR is structured on the above classi�cation, which includes a wide specter

of possible types of constraints, it provides us with the ability to tackle a large

number of nurse scheduling problem characteristics. It is required in order to deal

with the large sets of problems presented in section 5.4.

5.3.2 Global Algorithm

Since CHAIR is structured in a fashion inspired from column generation, selecting

a good strategy for constructing tours in the subproblem (SP) that will improve

the solution of the master problem (MP) is critical. In a mathematical approach

such as column generation, this is done by using dual variables to compute re-

duced costs. However, there is no straightforward way of obtaining dual variables

in a fully heuristic approach, and calculating them would require a substantial

increase in solution times when starting from primal informations of a heuristic.

We dealt with this problem in a fashion inspired from the approach proposed by

Ikegami et al. (2003) [102] : using only primal information, sets of constraints

from the initial problem are either sent to the SP or MP, or implemented in both

problems in order to serve as links between them, e�ectively ensuring that the
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SP produces tours which are interesting to include in the current solution of the

MP. Based on the classi�cation proposed by Crowe et al. [66], in the context of

our research, these links should include all vertical constraints since they include

information such as demand coverage and period capacity which dictate where

shifts should be added or subtracted in the schedule in order to improve solution

quality. Meanwhile, horizontal constraints on sets of lines should be implemented

only in the MP, as it is the only problem where more than one individual schedule

is involved at once. Finally, constraints on sets of work shifts and on individual

work shifts will be considered only in the SP as these are the only problems where

decisions are taken regarding the location of shifts within individual schedules.

The core of the algorithm manages interactions between the two solution ap-

proaches respectively for the SP and MP ; the SP algorithm in section 5.3.3 and

the MP algorithm will be discussed in section 5.3.4. The structure of the core

algorithm is succinctly presented in �gure 5.1.

The �rst step executed by the algorithm is to execute the solution approach of the

SP in order to obtain a number of tours equal to the number of user-de�ned tour

types. Basically, for each global iteration the SP algorithm is executed a number

of times equal to the number of tour types. A tour type is de�ned by the com-

Initialize the tour pool
Do until the MP solution cannot be improved

For each tour type :
Update the tour pool ← Solve the subproblem

Move to the next tour type
Solve the master problem

Repeat

Figure 5.1 � Core Algorithm of the Solution Approach
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bination of a single duration for work shifts (the number of periods between the

beginning and the end of a work shift) and of a number of work shifts to schedule

in the tour. This approach by tour type was a very e�cient way to provide the

�exibility needed to deal with the problems tackled by Crowe et al. (2011) [67].

Indeed, these problems included large numbers of possible start times for work

shifts, meaning that solution approaches where all possible work shifts are pre-

de�ned were inadequate and fastidious to use. However, this tour type approach

has a limitation in such contexts : only one shift duration can be used in a tour.

While in our experience this suits most real-life health care applications, it does

exclude a small number of nurse scheduling ones.

Thankfully, nurse scheduling problems have much simpler work shift structures

than problems tackled by Crowe et al. (2011) [67]. Furthermore, the notions of

shifts and periods are typically not distinct in nurse scheduling. Hence, by mode-

ling a planning horizon where a time period always corresponds to a shift, all work

shift durations can be equal to one period even though some shift durations may

di�er in reality. Hence, this modeling approach eliminates the main limitation of

the tour type approach proposed by Crowe et al. (2011) [67] by allowing shifts of

di�erent durations to be assigned to the same tour.

In the CHAIR algorithm structure, each SP execution produces a single tour of

a �xed tour type (for the reasons discussed in the previous paragraph, a tour

type in this paper is de�ned only by the number of shifts worked on the planning

horizon). Other tours type will be produced one by one during the following

iterations, until one tour of each type has been produced. Afterwards, these new

tours are all inserted in the tour pool of the MP. The tour pool includes all tours

inserted in the current solution as well as all other tours that have previously

been produced by solving the SP. Once an iteration of the SP has been executed
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for each tour type, the MP is solved in order to improve the current schedule,

and this process is repeated until solving the SP does not generate any new tours

which can improve the current MP solution. When this happens, the best known

solution becomes the �nal solution and the solution process is terminated.

5.3.3 Subproblem

As initially proposed by Crowe et al. (2011) [67], the SP was solved by a greedy

heuristic which sequentially assigns shift to the best improving period of the plan-

ning horizon. As a robust post-optimization procedure, discussed in section 5.3.5,

has been added, this greedy procedure has been replaced by a random assignment.

While this may seem like a downgrade, preliminary testing on real-life instances

indicated that this actually improved solution quality when the algorithm was

allowed to run for a large number of iterations. Clearly, this can only be explained

by the increased diversi�cation provided by randomness. This new simple mecha-

nism is as �exible as the previous one in terms of �exibility. Furthermore, as it

was the case with the previous mechanism, all SP constraints are soft except the

number of shifts to schedule on a tour. Hence, the objective function is to mini-

mize the sum of penalties from constraint violations.

In this model which returns a single tour as a solution by minimizing the sum

of violation penalties from constraints of the vertical type V (X,Z), of the ho-

rizontal on sets of shifts type H2(X,Z), and on the horizontal on a single shift

type H3(X,Z), Xj = 1 if a work shift is assigned at period j, 0 otherwise ; n

is the number of work shifts to assign ; sl is the service covering value of a shift

for period l ; Zj is the coverage provided at period j ; J is the set of periods of

the planning horizon ; and L is the set of possible periods for the duration of a

work shift (always 1 for nurse scheduling problems, as mentioned in section 5.3.2).
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minV (X,Z) +H2(X,Z) +H3(X,Z) (5.1)

Subject to : ∑
j

Xj = n (5.2)

Z(j+l) = slXj ∀ j ∈ J,∀ l ∈ L (5.3)

j+p∑
j=j

Xj ≤ 1 ∀ j ∈ J (5.4)

CV (5.5)

CH2 (5.6)

CH3 (5.7)

Xj, Zj ∈ {0, 1} ∀ i ∈ I, k ∈ K (5.8)

In this �exible approach, tour characteristics such as the number of work days,

the duration of shifts, the duration of breaks and so on are user de�ned. Howe-

ver, as periods represent shifts with this modeling approach, breaks will not be

considered. A user may de�ne as many types of tours as he wishes, even though a

SP solution always provides only one tour of a single user-de�ned type. As explai-

ned in section 5.3.2, the SP is sequentially solved a number of times equal to the

number of tour types de�ned in the current instance. This allows the algorithm

to produce one tour of each type during each global iteration. As solving the SP

always produces only one tour of a predetermined type, all tour types indexes have

been removed from the model. Furthermore, all constraints and related penalties

regarding sets of tours (H1) have been removed as well. Indeed, considerations

regarding the total number of tours are irrelevant as the SP always produces one

tour of a predetermined type. Hence, the sets of constraints left to consider are :
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the vertical sets of linking constraints V (X,Z), the horizontal constraints on sets

of shifts H2(X,Z), and the horizontal constraints on single shifts H3(X,Z). Fi-

nally, both employees and tour types indexes have also been removed because

decisions taken for an instance of the SP do not concern more than one employee

and one tour type. In the end, all these elements contribute to substantially re-

duce the computing e�ort required to produce tours when compared to what it

would have been in a single full nurse scheduling problem. Meanwhile, crucial in-

formations related to the quality of a tour both in terms of horizontal and vertical

constraints remain.

5.3.4 Master Problem

The MP is solved by including into or excluding from the solution tours priorly

obtained when solving the SP. Decisions taken in the MP are strictly limited to

inclusions and exclusions of tours from the schedule, e�ectively limiting the size

of the problem. The solution approach for the MP is designed to be provided by

the SP with one tour of each type for each global iteration. We have structured

it in this fashion in order to increase the diversity of available tours and ensure

the approach does not initially favor a tour type with a larger number of service

hours when building the initial solution. While the number of employees to sche-

dule is predetermined in the tests results presented in this paper (CHAIR has

dealt with soft constraints on the number of employees as presented by Crowe

et al. (2011) [67]), all other MP constraints are soft in order to ensure �exibility.

For this reason, the MP objective function is to minimize the sum of all penalties

from constraint violations.

In the approach we propose, the set of tours provided by the SP is added to a

list which includes all tours previously provided : we will refer to this list as the

tour pool. In order to select which tours to include in the current solution, two
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local search structures are executed in loops until no improvement to the current

solution can be found. At this point, the algorithm returns to the SP in order to

generate tours which could potentially improve the solution at the next MP itera-

tion. The neighborhood of the �rst local search is de�ned as any move involving

one inclusion or one exclusion of a tour from the solution. The neighborhood of

the second local search is de�ned as any move involving the swap of a tour in

the current solution with an inactive tour of the tour pool. In our opinion, these

�exible local search structures provide the algorithm with the capacity to deal

with almost any nurse scheduling problem.

The complexity of this model for selecting tours to include in the schedule is

dramatically reduced compared to what it would have been in a single full nurse

scheduling problem. Indeed, as no decisions are taken regarding the internal struc-

ture of tours, work shift variables have been removed from the MP model. Fur-

thermore, as no decisions regarding tour types must be made, all corresponding

indexes can be excluded. Even though vertical constraints (among others) require

information about periods, these period indexes may still be removed and consi-

dered implicitly in the cost functions they impact. Finally, while cost informations

about constraints on sets of shifts and on single shifts are required to compute

minV (Y ) +H1(Y ) +H2(Y ) +H3(Y ) (5.9)

Subject to :

Yi ≤ 1 ∀ i ∈ I (5.10)

CV (5.11)

CH1 (5.12)

Yi ∈ {0, 1} ∀ i ∈ I (5.13)
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correctly the overall cost of a solution, all constraints linked to those functions

may be removed as no decisions regarding them will impact the structure of in-

dividual tours. The remaining information left necessary in the model outside of

the objective function is the decision regarding the inclusion (1) or exclusion (0)

of a tour Yi, vertical linking constraints CV and horizontal constraints on sets of

tours CH1 .

5.3.5 Extensions

While the structure presented previously is a solid �exible base in our opinion,

heuristics typically have limitations in terms of performance consistency between

instances. Hence, in order to make our �exible and portable approach more robust,

a number of extensions proposed by Crowe et al. (2011) [67] have been kept : a

post optimization procedure for the SP, an extended version of the SP, a shu�ing

mechanism, and a limited tour pool.

The post optimization procedure is a variable neighborhood search without any

restart mechanism. As initially proposed by Crowe et al. (2011) [67], it includes

two local search structures : the neighborhood of the �rst one is de�ned as any

possible swaps between 2 days of the schedule, while the second one is de�ned as

any possible deletion or insertion of a shift.

An extended version of the SP has also been included for the following reason :

the initial subproblem cost mechanism assumed that a tour would be added to

the current MP solution. This assumption holds when the algorithm is building

an initial solution. However, when a full initial solution has already been built, it

is more likely that a tour will be swapped instead. Hence, the extended version

of the subproblem also evaluates the cost impact for each possible swaps between
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the current SP tour and any given tour currently included in the MP solution.

The shu�ing mechanism allows the global algorithm to restart from an empty

solution with a tour pool containing tours from past iterations. It is activated

when the SP is not able to provide new tours to improve the current MP solution

anymore. This mechanism allows robust diversi�cation, and makes the logic of the

global solution approach very similar to a variable neighborhood search.

Finally, the limited tour pool is a mechanism which deletes tours which have

not been included in the MP solution for a long time. This mechanism allows

intensi�cation while somewhat reducing the computing e�ort.

5.3.6 CHAIR Improvements for Nurse Scheduling

Crowe et al. (2011) [67] tested CHAIR on a set of instances where individual assi-

gnment of tours was not considered. The assumption was that all personnel were

sharing the same work rules and had no individual preferences for work shifts

and days o�. This assumption is reasonable in many health care applications, but

not in nurse scheduling where individual preferences and skills must frequently be

taken into account. Hence, although no modi�cations have been made to the core

structure of the algorithm proposed by Crowe et al. (2011) [67], we have improved

the approach by providing it with the capacity to assign tours to individuals. Once

this improvement has been made, dealing with preferences was simple as they can

be modeled as constraints on sets of shifts or on individual shifts from the clas-

si�cation proposed by Crowe et al. (2011) [66]. Meanwhile, the same reasoning

applies to skills which can be modeled as vertical constraints related to demand

coverage.
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The other important limitation of CHAIR as proposed by Crowe et al. (2011) [67]

is that all durations of shifts are assumed to be identical for a single tour. This

limitation has been explained in detail in section 5.3.2. As explained then, by

adopting a modeling approach where shifts and periods are the same, work shifts

of di�erent durations may now be assigned on the same tour without modifying

the core solution approach.

Furthermore, during preliminary testings we have noticed that CHAIR was some-

times struggling to produce good tours when constraints with quadratic penalty

costs were used. These types of constraints had the impact of limiting the capacity

of the subproblem local search mechanisms to explore solution space thoroughly.

In order to deal with this, we have added a diversi�cation mechanism to the SP

which temporally lowers all violation costs for constraints on tours and increases

the weight of vertical constraints.

Finally, to improve the diversi�cation capacities of the MP, we have implemented

a weight adjustment mechanism. This mechanisms is activated for a small number

of iterations once the MP has found a solution which its local search procedures

can not improve anymore. At that point, the mechanism lowers the violation cost

of the most violated constraint and increases the cost of the least violated one.

This mechanism is only activated for a small number of iterations to ensure the

quality of the current solution is not strongly reduced.

5.4 Results

Crowe et al. (2011) [67] have tested the CHAIR solution approach on an experi-

mental framework consisting of instances with di�erent combinations of constraints
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and service demands from health care applications in general. In this paper, we

�rst test the CHAIR solution approach on an experimental framework speci�c

to nurse scheduling. Afterwards, we benchmark it on a set of problems from the

nurse scheduling literature. All programs were coded in C++. All experiments

were carried out on an Intel R©CoreTMi3-2350M CPU running at 2.30 GHz with 6

Gb of RAM.

5.4.1 Nurse Scheduling Experimental Framework

The objective of this experimental framework is twofold : �rstly to test CHAIR

on a combination of important characteristics speci�c to nurse scheduling, and

then to evaluate their impact on the cost of schedules. The three characteristics

tested are contracts, preferences and skills.

We de�ne contracts as characteristics dictating the availability of personnel on a

stable (or long term) basis. In this paper, we consider full time regular personnel,

part time regular personnel, full time temporary personnel and part time tempo-

rary personnel. A full timer works 20 shifts on a horizon of 28 days (an average

of 5 per week), while a part timer works 10 shifts on 28 days. A regular employee

always works on a single predetermined shift type (day, evening or night) with no

rotations, while a temporary employee may work on any shift type, and may work

on di�erent shift types within a single schedule. The six combinations of contract

types tested in the framework are presented on table 5.I.

Preferences include characteristics dictating the availability of personnel on a va-

rying (short term) basis. They are days o� requests which may correspond to a

special request (a single day) or a vacation (a sequence of days). They can ei-

ther be soft constraints or hard constraints. Sequences are only modeled as hard

constraints since vacations must not be violated once they have been granted by
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Contracts Permanent full timers Permanent part timers Temporary full timers Temporary part timers

1 No No Yes No

2 No No Yes Yes

3 Yes No No No

4 Yes No Yes No

5 Yes Yes No No

6 Yes Yes Yes No

Table 5.I � The Six Contract Type Combinations of the Experimental Framework

the chief nurse. In all instances with preferences, a number of days o� equal to

5% of the sum of all work shifts has been allocated to employees. The four com-

binations of preference types tested in the framework are presented in Table 5.II.

Finally, skills determine the abilities of each nurse to execute tasks or take charge

of responsibilities. Multiple skills describe contexts where each nurse may have a

unique combination of skills, while hierarchic skills describe problems where hi-

gher ups have all skills of underlings and more. There are three di�erent skills a

nurse can have in the multiple skills instances, and three levels in the hierarchic

skills instances (assistant nurse, full nurse, coordinator nurse). As skills are always

related to service demand, skill sets have been coupled to two di�erent demand

structures : a uniform one and a varying one where demand is reduced on evening

shifts, night shifts and week-end shifts. The six combinations of skill types tested

in the framework are presented in Table 5.III.

Preferences Single, Soft Single, Hard Sequence, Hard

1 No No No

2 Yes No No

3 No Yes No

4 No No Yes

Table 5.II � The Four Preference Type Combinations for the Experimental Fra-
mework
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Set Skills Service Demand
Multiple Hierarchic Uniform Varying

1 No No Yes No

2 No No No Yes

3 Yes No Yes No

4 Yes No No Yes

5 No Yes Yes No

6 No Yes No Yes

Table 5.III � The Six Skill Type Combinations for the Experimental Framework

Besides contracts, skills and preferences, all instances of the framework share the

same following characteristics. The planning horizon is 28 days. On each day, a

nurse can be assigned to a day shift, an evening shift, a night shift or a day o�

(no assignment). Employees must have at least one full week-end o�, must not

work more than 6 consecutive work shifts, must not have any isolated work days

or days o�, and must have a clockwise forward rotation of work shifts (for tem-

porary employees as their contracts allow rotation). If all nurses are full timers,

there is a total of 21 nurses to schedule, and when there are part timers, a total

of 28 must be scheduled with 14 part timers. Most constraints are soft, and each

violation is penalized by 5 points. Exceptions include service demand where vio-

lations are penalized by 1 point each, and hard preferences for which violations

are penalized by 500 points. The number of work shift per tour (20 for full timers

and 10 for part timers) is modeled as a hard constraint. When permanent nurses

are scheduled, the �xed shift type of their contracts are allocated proportionally

to the demand of each shift.
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For each instance of the experimental framework, a total of �ve runs with �ve

di�erent random seeds were made. Table 5.IV presents the value of the best solu-

tion with its time for each instance, while table 5.V presents the average solution

values and times, table 5.VI presents the standard deviations and table 5.VII pre-

sents the coe�cients of variation (standard deviation divided by average) as a

percentage.

On table 5.IV, the best solution value and the corresponding solution time are

presented for each instance. On this table, each line is a combination of a skill set

(S#) and a preference set (P#), while each column is a contract set (C#). The

last column of each half table contains the average value of the half line, and the

last line of each column contains the average of its column. Tables 5.V through

5.VII have the same structure but no lines or columns for averages.

As expected from table 5.IV, on average solution values for preference set 1 are

smaller than for set 2, set 2 smaller than set 3, and set 3 smaller than set 4.

Of course, instances without preferences resulted in a reduced number of soft

constraint violations. Furthermore, dealing with hard preferences (3 and 4) turned

out to increase the total number of soft constraint violations. Likewise, respecting

the days o� sequences (4) was more costly than the isolated days o� requests (2

and 3). The fact that standard deviations for solution values is similar for each

set of preferences suggests that each turned out to be impacted in a similar way

by combinations with skills and contracts. Finally, preferences do not appear to

have an important impact on solution times.

Results of solution values for skills are more di�cult to interpret as there was no

signi�cance in creating a relationship between a type of skill and a level of tight-

ness in the problem. The same can be said about the service demand structures,
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where the di�culty of covering week-ends on the uniform demand was counterba-

lanced by the di�culty of covering day shifts on weekdays in the varying demand

structure (both demand structures require the same total number of nurse-shifts

for each type of skill). Of course, the distribution of �xed work shift types by

contracts for permanent workers also had an impact on the coverage. Actually,

the questions for which we wanted answers by including skills were twofold : �rst,

how well can the algorithm deal with di�erent types of skills, and then what is

the impact of dealing with di�erent types of skills on computing workloads (solu-

tion times). Clearly, the results obtained show that the algorithm can deal with

multiple and hierarchic of skills, as well as provide very reasonable solutions. Re-

garding solution times, the computing e�ort was reduced without skills, which

was expected. Indeed, skills require to deal with supplementary sets of service

demand constraints, which increase the time required to execute a similar number

of iterations. However, it is interesting to notice that hierarchic skills turned out

to require more solution time in average than multiple skills. This might be ex-

plained by the fact that some hierarchic skills were possessed by a limited number

of coordinator nurses, hence making the problem tighter and the scheduling tasks

more complex to solve.

Finally, as expected regarding contracts, instances with contract set #2 provided

the best solution values on average, while those with contract set #3 corresponded

to solutions with the largest number of violations. From lowest to highest solution

cost, the order is as follows : 2, 1, 6, 4, 5, 3. Surprisingly, the average for 1 and 6

is very similar, meaning that a mix of permanent part timers and temporary full

timers can o�set the cost impact of permanent full timers on demand coverage

quality. This is a very interesting �nding as it means that organizations might ma-

nage to provide some better working conditions to a limited group of employees

without much impact on total cost. Other results were as expected, and we can
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deduce that the cost of contracts from lowest to highest is as follows : temporary

part timers, temporary full timers, regular part timers and regular full timers. In

terms of solution times, 1, 2, 4 and 5 were comparable, while 3 was shorter and 6

longer. This might be explained by the fact that there is a more limited solution

space to explore with contract set #3 (rigid regular full timers only) compared to

contract 6 (both �exible and rigid contracts, both part time and full time).

Overall, solution quality was good in our opinion. The resulting schedules usually

had a limited number of violations and seemed adequate for implementation.

Clearly, while solution times remain reasonable, they are high for a heuristic sol-

ving nurse scheduling problems. This is explained by the fact that the algorithm

was built to deal with much more complex problem structures for periods and

shifts, requiring the implementation of mechanisms which are not the most time

e�cient to deal with nurse scheduling. Likewise, the �exible local search mecha-

nisms implemented allow the algorithm to execute adequate local descents in any

nurse scheduling problems, but these descent mechanisms can not compete in time

e�ciency with those crafted for a speci�c nurse scheduling environment. In other

words, longer solution times are the price to pay for saving the time and e�ort

required to build a new solution approach for every new problem to solve. In this

case, we believe the bene�ts to largely outweighs the costs.

Finally, tables 5.VI and 5.VII show that CHAIR is quite robust in terms of solu-

tion values when launched with di�erent random seeds. In fact, table 5.VI shows

that the average standard deviation is around two. While some coe�cients of va-

riation may appear high on instances with low average solution values, the only

large penalty points variation found between di�erent random seeds is for the

S6-P3-C1 instance (standard deviation of 18.61 with a coe�cient of variation of

29.16% for solution values). A few other noticeable variations are found on the
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following instances : S3-P1-C2, S4-P2-C3, S5-P1-C1, S5-P3-C2, S6-P2-C4 and S6-

C4-P2. Standard deviations for all other instances are smaller than 5 points, which

is very satisfactory in this context of constraint satisfaction. On the other hand,

solution times vary signi�cantly between random seeds, but that is to be expected

since CHAIR implements a shu�ing mechanism and a stop criteria based on the

number of iterations without improvements.

5.4.2 Literature and Practice Benchmark

The series of tests executed in the experimental framework presented in the pre-

vious section provide an insight on the impact of di�erent decisions on the per-

formance of the solution approach. However, this framework leaves two ques-

tions unanswered : how does CHAIR perform on real life instances, and how does

CHAIR perform in comparison with other solution approaches. To answer these

questions, we have assembled a set of 10 problems both from the literature and

practice in nurse scheduling. These problems, their best known solutions and the

solution approaches used to obtain them are all available on the employee sche-

duling benchmark data sets of the ASAP research group [68].

In table 5.VIII, the Azaiez problem [14] is about scheduling 13 employees on a 4-

week planning horizon. For any given day of the horizon, the possible assignments

are a day shift, a night shift or a day o�. The problem includes multiple skills

(there are 2, and an employee can have both) and demand is a hard constraint

with a minimum level. Other constraints include minimum and maximum num-

bers of days o� for each employee, a maximum number of days on, limits on the

number of shifts of each type, a maximum number of consecutive work days, no

isolated days o� or days of work, and a limit on the number of days worked du-

ring week-ends. The objective is to minimize the sum of penalties for constraint
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Problem CPU (s) Solution values
CHAIR Z* CHAIR Z*

Azaiez [14] 109 600 0 0

Gpost [140] 723 - 15 5

Ikegami-2-shift [102] 1207 13 10 0

LLR [117] 296 10 371 301

Millar 2 shift [129] 2 1 0 0

MUSA [133] 1 - 175 175

ORTEC01 [58] 2299 105 1132 270

Ozkarahan [139] 1 - 0 0

SINTEF [146] 78 - 0 0

WHPP [168] 1302 - 16 5

Table 5.VIII � Nurse Scheduling Experimental Framework Results Obtained
with CHAIR

violations.

The Gpost problem [140] is about scheduling 8 employees on a four week long

planning horizon. A day shift, a night shift and a day o� can be scheduled every

day. Demand is a hard target constraint with upper and lower bounds equal for

each period. Other constraints include limits on the number of shifts worked, on

the number of consecutive work shifts, on the number of days o�, forbidding bro-

ken week-ends, limits on the number of week-ends worked, bounds on the number

of consecutive days o�, and workload balance between the di�erent weeks of the

planning horizon. The objective function is to minimize the sum of penalties for

soft constraint violations.

The Ikegami-2-shift problem [102] involves 28 employees on a planning horizon of

30 days. There is a total of 8 di�erent skills, and three possible shifts assignments

for every day plus days o�s ; Demand is a target soft constraint. Other constraints

include limits on the number of work shifts per week, limits on the number of wor-

ked week-ends, limits on the number of shifts assigned of each type, and limits on
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the number of consecutive work shifts. The problem also includes some personal

assignment requests. The objective function is to minimize the sum of penalties

for soft constraint violations.

The LLR problem [117] is about scheduling 27 employees on a one-week hori-

zon. Everyday, three di�erent shifts can be assigned, plus a day o�. Demand is

a target hard constraint where the upper and lower bounds are equal for each

period. Other constraints include a minimum number of night shifts, a maximum

number of work shifts, clockwise shift rotation, and a set of forbidden days o�

sequences. Finally, the problem includes some personal assignment requests. The

objective function is to minimize the sum of penalties for soft constraint violations.

The Millar 2 shift problem [129] is about scheduling 8 employees on a 2-week

horizon. A day shift and a night shift can be assigned everyday, plus a day o�.

Demand is a target hard constraint, where the lower and upper bounds are equal.

Other constraints include limits on the number of days o�, on the number of shifts

of each type, on the number of week-ends o�, and on the limit of consecutive work

shifts or days o�. The objective function is to minimize the sum of penalties for

soft constraint violations.

The MUSA problem [133] is about scheduling 11 employees on a planning horizon

of 2 weeks. There are three di�erent exclusive skills and some individual days

o� requests must be considered. Demand is a lower bound soft constraint. Other

constraints include limits on the number of work shifts, the number of days o�,

and some forbidden shift sequences. The objective function is to minimize the sum

of penalties for soft constraint violations.
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The ORTEC01 problem [58] is about scheduling 16 employees on a 31-day plan-

ning horizon. It includes shift o� requests, there are 4 di�erent work shifts types

which can be assigned every day, and days o� also. Demand is a target hard

constraint where lower and upper bounds are equal for any given period. Other

constraints include many di�erent bounds on the number of work shifts of each

type, workload balance between weeks, forbidden isolated work days or days o�,

and forbidden broken week-ends. The objective function is to minimize the sum

of penalties for soft constraint violations.

The Ozkarahan problem [139] is about scheduling a total of 14 employees on a

7-day planning horizon. There are 2 possible work shifts which can be assigned

every day, plus days o�. The problem includes some individual requests on types of

shift. There are two di�erent skills, and demand is a lower bound hard constraint.

Other constraints include bounds on the number of shifts of each type, and on

week-ends o�. The objective function is to minimize the sum of penalties from

soft constraint violations.

The SINTEF problem [146] is about scheduling 24 employees on a horizon of three

weeks. The problem includes individual requests for days o�. There is a total of

5 shift types which can be assigned every day, plus days o�. Demand is a target

hard constraint. Other constraints include limits on consecutive work shifts of

each type, and limits on the maximum number of hours worked. The objective

function is to minimize the sum of penalties for soft constraint violations.

Finally, the WHPP problem [168] is about scheduling 30 employees on a planning

horizon of 2 weeks. There are three possible shifts which can be assigned every

day : a day shift, an evening shift and a night shift. Also, a day o� can be as-

signed. Demand is a target soft constraint. Other constraints include bounds on
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the number of consecutive work days of each type, clockwise rotation of shifts, no

isolated work days of days o�, no broken week-ends and bounds on the number

of week-ends worked. The objective function is to minimize the sum of penalties

for soft constraint violations.

For each of the above mentioned problems, Table 5.VIII presents a comparison

between CHAIR and the solution approach providing the best known solution.

Essentially, we are benchmarking our solution approach with a total of 10 others,

each on the single problem where they provide the best known solution.

In such a context, we did not expect our algorithm to outperform the benchmar-

king set. We did however expect it to provide good solutions for all problems. In

this regard, we were very satis�ed with the performance of the algorithm, with

the exception of the solution obtained on the ORTEC01 instance. For all other

instances, CHAIR provided good work schedules, and solution values generally

close or equal to the best known.

In fact, in half of the instances, our solution approach has found the optimal so-

lution (Azaiez, Millar 2 shift, MUSA, Ozkarahan and SINTEF). On three other

problems, the solutions obtained with CHAIR were close to the optimal ones in

terms of number of violations (Gpost, LLR and WHPP). When dealing with the

ikegami-2-shift problem, we obtained a solution with 10 points for violations of

demand over the optimal solution. However, because of the large number of skills,

the large number of employees and the long planning horizon, this actually meant

a solution which is very good in terms of demand coverage quality. Hence, in our

opinion, our algorithm performed well and achieved its objectives on 9 instances

out of 10.
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In fact, ORTEC01 was the only problem where we did not �nd a satisfactory

solution. Firstly, it is a problem with a target demand hard constraint where both

the lower and upper bounds are equal. From information gathered during tests

with the other 9 instances of Table 5.VIII, it is clear that CHAIR's search descent

mechanisms are less e�ective with tight target demand hard constraints. A few

reasons can explain this behavior. As it builds schedules in a column generation

type of approach, reaching a perfect equilibrium between service demand and of-

fer is challenging when compared with the type of approach which starts from an

initial solution built to have the exact right number of employees and shifts al-

ready scheduled. Also, our solution approach was initially built with the �exibility

required to produce schedules with a large number of employees and overlapping

shifts, which are a type of problems where a perfect equality between service

demand and o�er is generally impossible. Indeed, the use of an initial solution

mechanism providing a number of shifts perfectly equal to demand is not appro-

priate with the objectives of �exibility and portability for which CHAIR was built.

Another challenge with the ORTEC01 problem is the large number of soft constraints

with quadratic cost structures. Indeed, we have used the exact same cost structure

as proposed on the employee scheduling benchmark data sets page [68], which in-

cluded a large number of quadratic penalty functions. However, from information

gathered with the other 9 problems of Table 5.VIII, it appears that our solution

approach is less e�cient for solution space exploration when dealing with a heavy

quadratic cost structure. Hence, we believe the fact that ORTEC01 implements

both tight target demand hard constraints and many quadratic penalty functions

explains why our algorithm was not able to produce a satisfactory solution on this

di�cult problem.
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While the solution values obtained with our approach are comparable with the

best known on 9 out of 10 problems, the solution times are generally higher on

instances where that information was available. This is simply due to the fact

that in order to be �exible and portable, the solution approach must sacri�ce

some time e�ciency when dealing with certain problem structures that it was not

speci�cally tailored to take advantage of.

5.5 Conclusion

In this paper, we have improved the CHAIR �exible and portable solution ap-

proach. While it was initially built to solve sta� scheduling problems of health

care applications in general, we have tested it thoroughly on nurse scheduling

problems. In order to do so, we have proposed a nurse scheduling experimental

framework based on three typical characteristics of these problems : contracts,

preferences and skills. The objective of this framework was to understand the im-

pact of each one of these characteristics both on the cost of the solution and on

the performance of the algorithm. CHAIR was tested on this framework and pro-

vided interesting insights on the impacts and relationships of di�erent scheduling

decisions. We also benchmarked CHAIR against a set of 10 solution approaches,

each one on a di�erent problem where it had found the best known solution.

Overall, the results obtained were very satisfying and demonstrated that it is

possible to obtain good implementable schedules on widely di�erent problems

without having to tailor a unique solution approach for each one. We believe this

is a very valuable demonstration both for researchers and practitioners, as it could

potentially open a whole new area of research on �exibility and portability, and

result in large time and �nancial savings for practitioners. In our opinion, this
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also creates a great opportunity to increase collaborations between researchers

and practitioners.
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Chapitre 6

Conclusion

Le contenu d'un ensemble de quatre articles a été présenté dans cette thèse. Pre-

mièrement, une revue de littérature a décrit et catégorisé par type d'applications

et par méthode de résolution plusieurs recherches publiées à ce jour sur la confec-

tion d'horaire de personnel. Deuxièmement, une méthode de résolution �exible

et portable en confection d'horaires appliquée au domaine de la santé appelée

SOFA (Schedule Optimization with a Flexible Approach) a été proposée et testée

sur un cadre expérimental exhaustif. Troisièmement, une méthode de résolution

alternative appelée CHAIR (Column generation Heuristic Approach for Inde�-

nite Rostering) a été présentée et comparée à SOFA sur le même cadre expéri-

mental mentionné précédemment. Finalement, une version de CHAIR améliorée

a�n d'être en mesure de gérer les spéci�cités des problèmes de confection d'ho-

raires d'in�rmières a été proposée et testée sur deux ensembles d'instances : un

cadre expérimental exhaustif spéci�que à la confection d'horaires d'in�rmière, et

un ensemble de dix instances réelles pour lesquelles les meilleurs solutions et les

meilleurs algorithmes sont documentés sur le site web du groupe de recherche

ASAP de l'université de Nottingham [68].

187



Avec la revue de littérature, le lecteur a pu remarquer l'étendue des recherches

publiées en confection d'horaires de personnel. Bien que certaines applications

telles la confection d'horaire d'in�rmières aient été favorisées jusqu'à aujourd'hui

en termes de nombre de publications, l'ensemble des publications en confection

d'horaires de personnel couvre un large éventail de méthodes de résolutions et de

domaines d'applications. Toutefois, les méthodes de résolutions �exibles et por-

tables pouvant résoudre un grand nombre de problèmes tout en requérant un

e�ort limité de con�guration ont fait l'objet de peu de recherches publiées dans

la littérature. Le reste de cette thèse a donc porté sur le développement de telles

méthodes de résolution appliquées au domaine de la santé. Ce domaine d'applica-

tion a été choisi pour ses caractéristiques telles que son grand volume de service et

sa structure en unités multiples qui en font un terrain fertile pour l'implantation

de ce type de méthodes.

La première méthode de résolution �exible et portable appliquée au domaine de

la santé que nous avons proposée est SOFA, une méta-heuristique qui résout les

problèmes par une décomposition séquentielle en trois étapes. Cette méthode est

testée sur un cadre expérimental de 115 instances qui comprend 5 di�érentes de-

mandes de service et 23 di�érents ensembles de contraintes. Ce cadre, ainsi que

SOFA, sont structurés à partir d'une classi�cation des contraintes de confection

d'horaires de personnel présentée dans ce même article. Les résultats obtenus

sont jugés satisfaisants en termes de qualité d'horaires, et permettent d'avoir un

premier aperçu de l'impact de certaines contraintes sur le comportement de l'al-

gorithme et sur la qualité générale de l'horaire résultant. La limitation principale

de cet article est l'absence de base objective pour comparer les performances de

SOFA.
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A�n de combler cette limitation d'une part, et d'autre part d'évaluer le potentiel

d'une approche fondamentalement di�érente, nous proposons dans le deuxième

article une méthode alternative appelée CHAIR. Cette dernière est entièrement

heuristique et construite selon une décomposition en sous-problème/problème-

maître inspirée de la génération de colonne. Elle est testée sur le cadre expéri-

mental proposé dans l'article précédent, et produit des horaires satisfaisants sur

ces instances. Ces tests permettent par ailleurs de comparer objectivement les ré-

sultats obtenus par SOFA et CHAIR sur le cadre expérimental. Il en ressort que

CHAIR performe légèrement mieux en moyenne, surtout sur des problèmes moins

sévèrement contraints. De plus, bien que la performance des deux algorithmes soit

comparable sur la majorité des instances, certains écarts de performances sont très

important sur un petit nombre d'instances. Ces comportements extrêmes sont gé-

néralement causés par une sous-performance de SOFA.

CHAIR a été sélectionnée pour être utilisée dans les recherches du quatrième ar-

ticle, entre autre pour ses performances légèrement supérieures, ainsi que pour

sa structure algorithmique plus adéquate à l'a�ectation d'horaires individualisés.

Dans ce dernier article, CHAIR est améliorée a�n de pouvoir résoudre des pro-

blèmes de confection d'horaires d'in�rmière, une problématique importante dans

la littérature en confection d'horaire. La principale amélioration apportée ici à

CHAIR est l'ajout d'une gestion des préférences individuelles, une caractéristique

exclue des articles précédents. Suite aux améliorations, CHAIR est d'abord testée

sur un nouveau cadre expérimental de 144 instances spéci�quement conçu pour

les problèmes de confection d'horaires d'in�rmières, où les trois dimensions testées

sont les habiletés, les préférences, et les conditions contractuelles. Les résultats ob-

tenus ont permis de comprendre l'impact de ces trois di�érentes dimensions sur la

structure des horaires, et de valider que la version améliorée de CHAIR produisait

des horaires satisfaisant sur l'ensemble des instances. Ensuite, CHAIR a été testée
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sur un ensemble de 10 instances réelles documentées sur le site web de l'ASAP

[68]. CHAIR y est comparé au meilleur algorithme connu sur chaque instance, et

produit des résultats très satisfaisants considérant sa nature �exible et portable.

En e�et, CHAIR obtient la meilleure solution connue sur 50% des instances, et

ne produit qu'une seule solution jugée insatisfaisante.

Dans l'ensemble, nous espérons que les travaux présentés dans cette thèse contri-

buerons positivement au développement de la recherche en méthodes de résolution

�exibles et portables. Nous sommes très satisfaits des résultats obtenus durant les

recherches dont les résultats ont été présenté dans cette thèse, bien que nous soyons

conscients d'un certain nombre de limitations de SOFA et de CHAIR. Entre autre,

la réduction des temps de calcul sera un élément utile à améliorer durant les tra-

vaux futurs, aussi bien pour CHAIR que pour SOFA. Plus spéciquement pour

SOFA, améliorer les mécanismes de rétroaction et tester l'intégration de méca-

nismes de prévision sera une priorité a�n d'augmenter la cohésion des décisions

de chaque phase, sans toutefois nuire à l'avantage en temps de calcul procuré par

la décomposition séquentielle. En ce qui concerne CHAIR, la priorité sera plutôt

d'investiguer les pistes d'amélioration du mécanisme liant le sous-problème et le

problème-maître. Finalement, élargir le spectre d'applications sur lequel les deux

approches sont utilisées permettra de démontrer leur potentiel pour aller bien au

delà du secteur de la santé.

En terminant, nous sommes convaincus que les méthodes �exibles et portables

représentent un intérêt autant pour la recherche que pour les praticiens. Nous

souhaitons d'ailleurs que ces méthodes puissent continuer d'évoluer à l'avenir vers

une rédution des temps de calcul, une amélioration de la qualité des solutions, et

un élargissement des spectres d'applications.
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