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Résumé

Un système de plani�cation intégrée de la chaîne d'approvisionnement est un outil

permettant d'optimiser conjointement plusieurs décisions de plani�cation de manière

à réaliser des économies liées à la coordination de di�érentes activités réalisées séquen-

tiellement dans la chaîne. Au cours des dernières années, plusieurs entreprises ont mis

en place de tels systèmes et ont réalisé des économies de plusieurs millions de dollars.

La clé du succès repose dans le développement de systèmes pouvant non seulement

produire des solutions de coût minimal, mais aussi être utilisés de manière rapide et

e�cace. Dans cette thèse, nous présentons des modèles et des algorithmes pour un

problème combiné de production et de tournées de véhicules (PPT) se posant dans

les chaînes d'approvisionnement comportant un site de production et plusieurs détail-

lants. Ce problème de plani�cation opérationnelle est une généralisation du problème

de gestion des stocks et tournées (PST) qui incorpore de plus les décisions liées à la

production.

Bien que le PPT et le PST aient reçu beaucoup d'attention au cours de la dernière

décennie, peu d'études ont proposé des algorithmes de résolution exacts et la plupart

des études ont supposé la présence d'un seul véhicule. Nous traitons ici le cas à

plusieurs véhicules et nous présentons des formulations avec et sans indice de véhicule

pour résoudre le PPT et le PST sous deux politiques de gestion des stocks: celle du

niveau maximal (NM) et celle du niveau cible (NC). Les formulations avec indice de

véhicule sont renforcées en utilisant des contraintes brisant la symétrie tandis que les

formulations sans indice de véhicule sont renforcées par l'ajout d'inégalités valides.

Des algorithmes de séparation et coupes sont proposés pour résoudre les di�érentes

formulations. Nous rapportons des résultats détaillés pour comparer les di�érentes

formulations et nous analysons aussi les gains liés à l'utilisation du calcul parallèle.

A�n de résoudre de plus grandes instances, nous présentons aussi une heuristique

e�cace basée sur la recherche adaptative à grand voisinage (RAGV). L'idée centrale
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de la RAGV est de détruire et de réparer une solution de manière répétitive a�n de

l'améliorer. Dans notre heuristique, les variables binaires associées aux décisions de

production sont traitées par une technique d'énumération inspirée du branchement

local et les décisions de distribution sont gérées par les opérateurs de la RAGV. Les

décisions continues sont pour leur part obtenues en résolvant un problème de �ot dans

un réseau. Cette heuristique est adaptée pour résoudre de manière uni�ée le PPT et

le PST avec les politiques NM et NC. Elle fournit aussi des solutions de départ pour

les algorithmes exacts. Des tests étendus ont été réalisés sur de grandes instances

provenant de la littérature pour évaluer la performance de l'heuristique.

Puisque la demande future est souvent inconnue en pratique, nous traitons �nale-

ment le PPT avec demande incertaine. Le problème est modélisé comme un processus

de décision en deux étapes où la première étape consiste à décider de la production et

des tournées avant que la demande soit connue avec certitude, alors que la deuxième

étape consiste à décider des quantités produites et livrées une fois que la demande est

connue. Bien que les algorithmes de branchement et coupes développés précédem-

ment puissent être adaptés pour traiter ce problème, il devient di�cile à résoudre

étant donné sa taille qui augmente rapidement avec le nombre de scénarios. Nous

proposons plutôt deux reformulations de Benders qui sont incorporées à une méth-

ode d'énumération pour résoudre le problème. Ces approches sont comparées à une

extension de l'algorithme de branchement et coupes que nous avons proposé pour le

problème déterministe. Nous discutons également des possibilités de réoptimisation

o�ertes par la décomposition de Benders et qui peuvent être particulièrement utiles

dans des environnements stochastiques.

Mots clés: système de plani�cation intégrée de la chaîne d'approvisionnement;

problème de production et tournées; problème de gestion des stocks et tournées;

algorithmes de séparation et coupes; recherche adaptative à grand voisinage; demande

incertaine; problème stochastique en deux étapes; décomposition de Benders.
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Abstract

An integrated supply chain operational planning system is a tool that is used to

jointly optimize several planning decisions thereby capturing the additional bene�ts

of coordination between sequential activities in the chain. In recent years, many

companies have set up integrated planning systems and achieved multi-million cost

savings. The key to success is an application that is not only able to produce solutions

with minimal costs, but that can also be used in an e�ective and timely manner. In

this thesis, we present solution algorithms for an integrated operational planning

problem arising in a typical supply chain network with a production facility and

multiple retailers, called the production routing problem (PRP). This problem is

a generalization of the inventory routing problem (IRP) obtained by incorporating

production lot-sizing decisions.

Although the PRP and the IRP have received much attention in the past decade,

only a few studies have introduced exact algorithms to solve the problems and most

studies assume a single vehicle due to the complexity of considering multiple vehicles.

In our study, we address the multi-vehicle aspect and introduce multi-vehicle PRP and

IRP formulations, with and without a vehicle index, to solve the problems under both

the maximum level (ML) and order-up-to level (OU) inventory replenishment policies.

The vehicle index formulations are further improved by using symmetry breaking

constraints, while the non-vehicle index formulations are strengthened by several cuts.

Branch-and-cut algorithms are proposed to solve the di�erent formulations. We report

extensive computational experiments to compare the two formulation schemes and

further explore the performance of the best formulation in the context of parallel

computing.

To handle larger instances, we also introduce an e�cient heuristic based on the

adaptive large neighborhood search (ALNS) framework. The basic idea of ALNS is to

repeatedly destroy and repair the solution in the hope of achieving an improvement.
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In our heuristic, binary variables representing setup and routing decisions are handled

by an enumeration scheme inspired from local branching and by upper-level ALNS

operators, respectively, while continuous variables indicating production, inventory

and delivery quantity decisions are set by solving a network �ow subproblem. This

heuristic is adapted for the PRP and IRP with both the ML and OU policies and

is used to determine initial solutions for the exact solution algorithms. Extensive

computational experiments have been performed on PRP-ML benchmark instances

from the literature to evaluate the performance of the algorithm on large instances.

As demand is often uncertain in practice, we �nally address the PRP under de-

mand uncertainty. The problem is modeled as a two-stage decision process, where

the �rst stage consists of making setup and routing decisions before the realization

of demand, and the second stage involves quantity decisions made when the demand

becomes known. Although the previously developed branch-and-cut algorithms can

be adapted to solve this problem, they may become ine�cient when the number of

possible scenarios increases. We propose two di�erent Benders reformulation schemes

which are implemented within a branch-and-cut framework to solve the problem.

These approaches are also compared to an extension of the branch-and-cut algorithm

that we proposed for the deterministic problem. We further discuss the reoptimization

capabilities of the Benders approach which can be particularly useful in stochastic

environments.

Keyword: Integrated supply chain planning; production routing; inventory rout-

ing; branch-and-cut; adaptive large neighborhood search; demand uncertainty; two-

stage stochastic problem; Benders decomposition.
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Chapter 1

Introduction

In a typical supply chain which consists of sequential activities of production, storage

and distribution, each individual process is often planned and optimized using pre-

determined decisions from its previous activity. For example, a production planner

makes production lot-sizing decisions in order to minimize production and inventory

costs at the production facility. The planned lot-sizing decisions are then used as

inputs in subsequent steps of distribution planning. Since the decisions are limited

by the plan of the former process, the bene�ts of coordination in the planning process

have been left behind.

It has been over �ve decades since two classical problems in logistics, namely lot-

sizing and vehicle routing, were introduced by Wagner and Whitin (1958), and by

Dantzig and Ramser (1959), respectively. The lot-sizing problem (LSP) consists of

making production lot-sizing and inventory decisions over a given planning horizon,

while the vehicle routing problem (VRP) concerns the design of vehicle routes to make

deliveries to customers in each period. Each of these problems has been the object of

countless studies, but most of these focus on a single problem and very few address the

integration of the two problems. As is well known in supply chain planning, however,

focusing on cost minimization in one area of the supply chain often leads to higher

costs in other areas. There is thus a strong incentive to integrate decision-making in

closely related problems. Several success stories related to integrated inventory and

distribution planning have been reported in the literature. For example, the Kellogg

company implemented an integrated production and distribution planning system

yielding $35-40 million in potential savings (Brown et al., 2001), while Frito-Lay put

into place an integrated production, inventory, distribution and routing system which

led to a 10% decrease in logistics costs (Çetinkaya et al., 2009).



The focus of this study is on an integrated planning problem that involves pro-

duction, inventory, distribution and routing decisions, called the production routing

problem (PRP), which is an extension of the well-known inventory routing problem

(IRP). The PRP is actually a combination of the LSP and VRP and becomes the

IRP when the production decisions are dropped. Chandra and Fisher (1994) showed

that double-digit percentage savings can be achieved by solving the PRP using even

a simple heuristic procedure compared to sequentially solving the two separate plan-

ning problems. This brought more attention to the PRP in recent years. Due to

the complexity of the problem, however, the majority of the research has focused on

heuristic procedures.

As the bene�ts of the integrated problem depend on the quality and performance

of the solution algorithm, this dissertation aims to provide e�cient tools for the PRP

under various restrictions, namely production, inventory and vehicle capacity. We

�rst focus on developing exact algorithms for the PRP, thus �lling an important gap

in the literature. Although some exact algorithms have been proposed before, most

of them assume a single vehicle and the multi-vehicle aspect, which is very important

in practice, is often neglected. We look speci�cally at exact algorithms for the PRP

with multiple vehicles. The approaches we develop can also be used to solve the IRP.

To handle large instances, we also introduce a heuristic based on the adaptive large

neighborhood search (ALNS) framework introduced by Ropke and Pisinger (2006).

The basic idea of the ALNS is to repeatedly destroy and repair a part of the current

solution to obtain an improved solution using search operators. These operators are

probabilistically selected based on empirical scores. In our procedure, the binary

variables are handled by an enumeration technique and by the upper-level search

operators of the ALNS and the continuous variables are set by solving a network �ow

problem. This procedure is called optimization-based adaptive large neighborhood

search (Op-ALNS). The Op-ALNS heuristically solves the �rst part using several

move operators, �xes the binary variables, and determines the optimal values of the

remaining continuous variables in the second part by solving a minimum cost �ow

problem.
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As the PRP is optimized over multiple periods, uncertainty of demand is a common

issue in real-world operations and assuming deterministic demand can possibly lead

to costly, sub-optimal solutions. To address this issue, we introduce the stochastic

PRP (SPRP) with demand uncertainty in a two-stage decision process and develop an

exact solution algorithm based on the Benders decomposition framework. We further

discuss the reoptimization capability of the Benders algorithm which is particularly

useful in stochastic environments.

The work presented in the dissertation has yielded three scienti�c articles as fol-

lows.

1. Adulyasak, Y., Cordeau, J.-F., Jans, R. Optimization-Based Adaptive Large

Neighborhood Search for the Production Routing Problem. Transportation Sci-

ence (Article in Advance), 2012.

2. Adulyasak, Y., Cordeau, J.-F., Jans, R. Formulations and Branch-and-Cut

Algorithms for Multi-Vehicle Production and Inventory Routing Problems.

GERAD Tech Rep. G-2012-14. 40 pages. Submitted to INFORMS Journal

on Computing in April 2012 (Revision submitted in October 2012).

3. Adulyasak, Y., Cordeau, J.-F., Jans, R. Benders Decomposition for Production

Routing under Demand Uncertainty. GERAD Tech Rep. G-2012-57. 35 pages.

Submitted to Operations Research in October 2012.

At the beginning of the corresponding chapters, we provide details on the sections

that were part of the articles.

The remainder of the thesis is organized as follows. Chapter 2 �rst provides a

review of the related literature. Formulations and exact algorithms for the PRP, in-

cluding extensive computational experiments are then presented in Chapter 3. Chap-

ter 4 presents the Op-ALNS heuristic and the computational results. This is followed

by the PRP under demand uncertainty in Chapter 5. Finally, Chapter 6 concludes

the dissertation and discusses possible directions for future work.
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Chapter 2

Literature Review

The broad categories of integrated production-distribution problems arising in oper-

ational supply chain planning are shown in Figure 2.1. We consider problems with a

discrete time �nite horizon and dynamic demand. The �rst problem is the integrated

version of lot-sizing and distribution planning with direct shipments (see, e.g., Feder-

gruen and Tzur (1999); Jin and Muriel (2009)). This problem determines production

lot sizes over a discrete planning horizon in order to minimize total production, setup,

inventory and direct shipment costs. This problem can also be seen as a two-level

lot-sizing problem or a one-warehouse multi-retailer problem. The second integrated

problem is the Inventory Routing Problem (IRP) which incorporates the routing as-

pect but disregards production lot-sizing decisions (see Andersson et al. (2010)). In

the IRP, the production quantities are typically assumed to be known in advance. The

problem is thus to determine the amounts to deliver to the customers and distribution

plans including routing decisions over a planning horizon. The integrated production,

inventory, distribution and routing problem is presented on the right. The problem is

known under many di�erent names: the integrated production and distribution prob-

lem (Chandra and Fisher, 1994; Fumero and Vercellis, 1999; Boudia and Prins, 2009;

Armentano et al., 2011), the integrated production, inventory, distribution and rout-

ing problem (Bard and Nananukul, 2009a, 2010; Lei et al., 2006), or the production

routing problem (Ruokokoski et al., 2010). We prefer to use the name �Production

Routing Problem� (PRP) as it clearly highlights the analogy with the IRP. The PRP

is actually a generalization of the IRP obtained by considering production decisions

(i.e., production quantity and setup decisions). The PRP reduces to the integrated

lot-sizing with direct shipment problem by dropping the routing aspect, and to the

IRP by disregarding the production aspect.



2.1. Integrated Production-Distribution Problems
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Figure 2.1: Supply Chain Planning Models

The main focus of this research is on the PRP which is the most general problem.

In this chapter, we will brie�y review the recent literature on the three categories

of integrated production-distribution problems mentioned in Section 2.1. The subse-

quent sections will focus on the recent developments of the PRP. Section 2.2 presents

a review of the PRP formulation schemes, followed by approaches to compute lower

bounds in Section 2.3, exact solution algorithms in Section 2.4, heuristics algorithms

in Section 2.5 and metaheuristics in Section 2.6. Finally, Section 2.7 discusses the

PRP with demand uncertainty.

2.1 Integrated Production-Distribution Problems

We focus on the problems with a discrete time �nite horizon which are closely related

to our research. This section presents a brief overview of the three categories.
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2.1. Integrated Production-Distribution Problems

2.1.1 Integrated Lot-Sizing with Direct Shipment

We �rst provide a general overview of the integrated production and distribution

planning without routing decisions. For consistency, our main focus here is the prob-

lem that incorporates the production aspect, e.g., production setup cost and/or setup

time, and distribution decisions where the cost of delivery is customer speci�c and

incorporates �xed costs (e.g., direct shipment vehicle dispatching cost) and/or unit

costs of delivery. In each period, production can be made and the products are di-

rectly transported from the manufacturing plant to the customers. The products can

be stored at the plant or at the customers incurring inventory holding costs in order to

satisfy demands. The production, setup, inventory and shipment costs are minimized

over the planning horizon. The network representation of this problem is shown in

Figure 2.2.

t = 1 t = 2 t = l

...

...

...

...

...

...

Production site

Visited customers

Non-visited customers

Underlying network

Route

Inventory flow

Figure 2.2: Integrated Lot-Sizing with Direct Shipments

The integrated production and direct shipment distribution planning was stud-

ied by some researchers. The problem incorporates the production setup cost and

mostly considers the distribution cost as a �xed cost or a complex cost function. In

the case of uncapacitated production and uncapacitated vehicles, this problem is also

known as the one-warehouse multi-retailer problem (OWMR). Federgruen and Tzur

(1999) considered the multi-item OWMR and developed a time-partitioning heuristic

to solve the problem. In this heuristic, the planning horizon is partitioned into smaller
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2.1. Integrated Production-Distribution Problems

intervals and each small interval is solved by a Lagrangian relaxation based branch-

and-bound approach. Solyal� and Süral (2012) proposed a new strong formulation

based on the combined transportation and shortest path model to solve the OWMR

with a single product. The simple truckload distribution problem for one product and

one customer was studied by Alp et al. (2003). They considered a �xed transporta-

tion cost per container and employed a dynamic programming approach to solve the

problem. Li et al. (2004) focused on a piecewise linear transportation cost function

where the supplier has the option to deliver by direct delivery with truckload (TL)

or less-than-truckload (LTL) transportation. They developed a dynamic program-

ming approach to solve the one product and one customer problem. Jaruphongsa

et al. (2007) proposed other dynamic programming algorithms to solve the problem

with TL and LTL cost structures. The multi-item problem with one customer was

considered by Lee et al. (2005). They developed a heuristic algorithm by using the

property that a feasible �ow is an extreme �ow if it does not contain a loop in the

network without arc capacities. A problem with a special cost structure, where the

supplier can get a discount from transportation capacity reservation, was studied by

van Norden and van de Velde (2005). A more general piece-wise linear transportation

cost function was addressed by Rizk et al. (2006). They decomposed the integrated

problem into uncapacitated lot-sizing and time-independent subproblems and applied

a Lagrangian relaxation technique to obtain lower bounds. In the more general case

of multiple customers, Chand et al. (2007) developed a dynamic programming algo-

rithm to solve the problem in which backlogging is allowed. Jaruphongsa and Lee

(2008) considered the problem with split delivery under time window restrictions and

employed dynamic programming algorithms to solve the problem. A special problem

of lot-sizing with truckload shipment where transshipments between the customers

are allowed was considered by Herer and Tzur (2001).

There is a link between the lot-sizing with truckload cost structure and the classical

lot-sizing with batch size where the batch quantity is smaller than the maximum

production quantity in one period. The truck capacity can be viewed as the �xed

batch quantity limit and the cost of dispatching one truck can also be considered as

the production cost of one batch. There is also a link between the lot-sizing problem

7



2.1. Integrated Production-Distribution Problems

with transshipments and the lot-sizing problem with production substitution where

a product can be used to substitute for the demand of another product (Hsu et al.,

2005). The cost of transshipment between customer locations can be viewed as the

cost of production substitution.

2.1.2 Inventory Routing Problem (IRP)

When the routing aspect is included and the production aspect is disregarded, the

problem is transformed into the integrated inventory distribution and routing prob-

lem. It is generally known as the inventory routing problem (IRP) (Andersson et al.,

2010), which was extensively studied in the past decade and applied to land trans-

portation and maritime logistics where the inventory plays an important role. Ad-

ditionally, this problem arises in contexts where a vendor managed inventory (VMI)

system is implemented. In a VMI system, a supplier or a vendor monitors its cus-

tomers' inventory levels and makes the decision to replenish the products to its cus-

tomers. This system transfers the inventory and ordering tasks from customers to the

vendor in order to reduce the workload, lower costs and achieve a better e�ciency

through supply chain collaboration.

The network of the IRP is shown in Figure 2.3. The starting point is a warehouse

where there is no production decision and a vehicle can visit more than one customer

by traveling along its route. As a more generic version of the VRP, which consists

of the decisions on delivery quantities and routes to serve customers, the decisions

in the IRP also include the timing to serve the customers' demands. This makes

the problem much more di�cult than the classical VRP due to the complex periodic

routing and inventory decisions. The IRP is obviously NP-hard since it contains the

VRP as a special case (Coelho et al., 2012c).

The IRP �rst appeared in a gas delivery study by Bell et al. (1983). The problem

was solved using a Lagrangian relaxation method and was decomposed by time pe-

riod and by vehicle. Christiansen (1999) introduced an IRP application in a maritime

context, called the inventory pickup and delivery problem, and applied a Dantzig-

Wolfe decomposition and column generation approach to solve the problem. Carter

8
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Figure 2.3: Inventory Routing Problem

et al. (1996) and Campbell and Savelsbergh (2004) proposed e�cient heuristic pro-

cedures by decomposing the IRP into an allocation problem (AP) and a vehicle rout-

ing problem (VRP). Since the IRP is a complicated combinatorial problem, several

metaheuristics, e.g., tabu search (Rusdiansyah and Tsao, 2005), genetic algorithm

(Abdelmaguid and Dessouky, 2006), greedy randomized adaptive search procedure

(GRASP) (Savelsbergh and Song, 2007), hybrid heuristic with combined tabu search

and MIPs (Archetti et al., 2011), and adaptive large neighborhood search (ALNS)

(Coelho et al., 2012a,c), have been proposed. Gaur and Fisher (2004) discussed a pe-

riodic IRP where the demand pattern is repeated and developed a heuristic to solve

the problem. As mentioned in Andersson et al. (2010), few exact algorithms have

been proposed to solve the IRP due to its complexity. Notable exceptions include

a branch-and-cut procedures by Archetti et al. (2007) and Solyal� and Süral (2011)

to solve the IRP with a single capacitated vehicle. Archetti et al. (2007) introduced

several valid inequalities to solve the problem under three di�erent inventory replen-

ishment policies. In the �rst policy, called order-up-to level (OU), a visited customer

receives exactly the amount which brings its inventory up to a prede�ned target stock

level (TSL). The second policy, called maximum level (ML), allows delivery quanti-

ties to be any positive value but the inventory at each customer cannot exceed its

maximum stock level. The third policy is similar to the ML policy but there is no

9
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maximum stock level imposed at the customers. Solyal� and Süral (2011) strength-

ened the formulation of the IRP with the OU policy of Archetti et al. (2007) by using

a shortest path network reformulation. Savelsbergh and Song (2008) considered the

IRP with continuous moves and developed a branch-and-cut algorithm to solve the

problem where the network consists of multiple plants and multiple customers.

2.1.3 Production Routing Problem (PRP)

The two integrated problems discussed in the previous sections each disregard one

important aspect of the supply chain operational planning process, i.e., the integrated

lot-sizing problem with direct shipment does not incorporate routing decisions, while

the IRP disregards the production part. We present here recent developments on

the integrated version of the lot-sizing, inventory, distribution and routing problem,

which is referred to as the production routing problem (PRP) (Ruokokoski et al.,

2010).

Figure 2.4 illustrates the structure of the PRP. The supply chain network consists

of a production plant and multiple retailers, which we can consider as customers of the

plant. Both the plant and the retailers have their own storage areas (e.g., warehouses)

to keep �nished products. The demand at each retailer has to be satis�ed in every

period of the planning horizon. In each period, the plant must decide whether or not

to make the product and determine the corresponding lot size. If production does

take place, this process incurs a �xed setup cost as well as unit production costs. In

addition, the lot size cannot exceed the production capacity. In each period, deliveries

are made from the plant to the retailers by a limited number of capacitated vehicles

and routing costs are incurred. If products are stored at the plant or at the retailers,

unit inventory holding costs are also incurred. Similar to the IRP, the problem is

obviously NP-hard since it contains the VRP as a special case (Boudia et al., 2007;

Archetti et al., 2011).

The PRP has also received more attention in recent years. The bene�ts of coor-

dination in the PRP were �rst discussed by Chandra (1993) and Chandra and Fisher

(1994). They showed that 3-20% cost savings can be achieved by solving the PRP

compared to sequentially solving the separate problems. Similar to the IRP, most

10
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Figure 2.4: Production Routing Problem

of the previous studies employed heuristic procedures to solve the problem. Several

metaheuristics, such as GRASP (Boudia et al., 2007), memetic algorithm (Boudia

and Prins, 2009), and tabu search (Bard and Nananukul, 2009a; Armentano et al.,

2011) have been employed to solve the PRP. Archetti et al. (2011) discussed the

PRP under the ML and OU policies and developed an integer linear programming

(ILP) heuristic to solve the problem. Bard and Nananukul (2009b, 2010) introduced

a heuristic based on a branch-and-price framework to solve the PRP.

Due to its complexity, few studies have introduced exact algorithms or meth-

ods to compute strong lower bound for the PRP. Fumero and Vercellis (1999) and

Solyal� and Süral (2009) developed a Lagrangian relaxation approach to obtain lower

bounds based on the multi-commodity �ow formulation. Ruokokoski et al. (2010) and

Archetti et al. (2011) employed a branch-and-cut approach similar to that of Archetti

et al. (2007) to solve the PRP. Ruokokoski et al. (2010) explored di�erent lot-sizing

reformulations for the PRP with uncapacitated production and a single uncapaci-

tated vehicle, while Archetti et al. (2011) focused on the PRP with uncapacitated

production and a single capacitated vehicle, and introduced several valid inequalities

to solve the problem.
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2.2. Production Routing Problem Formulations

2.2 Production Routing Problem Formulations

We consider a single product PRP network that consists of a production plant and

multiple customers. Since the PRP is an integrated version of the LSP and VRP,

several formulation schemes can be used to model the problem. Recent reviews of

the LSP and VRP can be found in Jans and Degraeve (2008) and Laporte (2009),

respectively.

2.2.1 A Basic PRP Formulation

We present a general case where the PRP network is de�ned on a complete directed

graph G = (N,A) where N represents the set of the plant and the customers indexed

by i ∈ {0, ..., n} and A = {(i, j) : i, j ∈ N, i 6= j} is the set of arcs. The plant is

represented by node 0 and we further de�ne the set of customers Nc = N \ {0} and
the set of time periods T = {1, ..., l}. We denote by u the unit production cost, f

the �xed production setup cost, hi the unit inventory holding cost at node i, and cij

the transportation cost from node i to j. Let C and Q be the production and vehicle

capacity, respectively. Let also m be the maximum number of vehicles that can be

dispatched in each period. The demand of customer i in period t is represented by

dit and the maximum inventory level at node i is represented by Li. We further let

Mt = min
{
C,
∑l

j=t

∑
i∈Nc

dij

}
and M̃it = min

{
Li, Q,

∑l
j=t dij

}
.

The decision variables are de�ned as follows. Let pt be the production quantity in

period t and yt equal to one if there is production at the plant in period t, 0 otherwise.

The inventory level at node i at the end of period t is represented by the variable Iit.

We also use the parameter Ii0 to represent the initial inventory level available at node

i at the start of the planning horizon (period 0). In the distribution part, we de�ne

qit to be the quantity delivered to customer i in period t and wit to be the load of a

vehicle before making a delivery to customer i in period t. Let zit be equal to one if

node i is visited in period t, 0 otherwise and let xijt be an arc variable, equal to one

if a vehicle travels from node i to j in period t, 0 otherwise.

We �rst present a model based on the basic LSP and VRP formulations. It is also

the most compact one in terms of the number of variables and constraints. The PRP

12



2.2. Production Routing Problem Formulations

is formulated with variables that control the amounts delivered by a homogenous �eet

of vehicles. A basic formulation based on that of Bard and Nananukul (2009b, 2010)

is as follows.

min
∑
t∈T

upt + fyt +
∑
i∈N

hiIit +
∑

(i,j)∈A

cijxijt

 (2.1)

s.t.

I0,t−1 + pt =
∑
i∈Nc

qit + I0t ∀t ∈ T (2.2)

Ii,t−1 + qit = dit + Iit ∀i ∈ Nc,∀t ∈ T (2.3)

pt ≤Mtyt ∀t ∈ T (2.4)

I0t ≤ L0 ∀t ∈ T (2.5)

Ii,t−1 + qit ≤ Li ∀i ∈ Nc,∀t ∈ T (2.6)

qit ≤ M̃itzit ∀i ∈ Nc,∀t ∈ T (2.7)∑
j∈N

xijt = zit ∀i ∈ Nc,∀t ∈ T (2.8)

∑
j∈N

xjit =
∑
j∈N

xijt ∀i ∈ Nc,∀t ∈ T (2.9)

∑
j∈Nc

x0jt ≤ m ∀t ∈ T (2.10)

wit − wjt ≥ qit − M̃it(1− xijt) ∀(i, j) ∈ A,∀t ∈ T (2.11)

0 ≤ wit ≤ Qzit ∀i ∈ Nc,∀t ∈ T (2.12)

pt, Iit, qit ≥ 0 ∀i ∈ N, ∀t ∈ T (2.13)

yt, zit, xijt ∈ {0, 1} ∀i, j ∈ N,∀t ∈ T. (2.14)

The objective function (2.1) minimizes the total production, setup, inventory and

routing costs. Constraints (2.2)-(2.6) represent the lot-sizing part of the problem.

Constraints (2.2) and (2.3) are the inventory �ow balance at the plant and cus-

tomers, respectively. Constraints (2.4) are the setup forcing and production capacity

constraints. The constraints force the setup variable to be one if production takes

place in a given period and limit the production quantity to the minimum value

13
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Figure 2.5: Vehicle Restriction and Subtour Elimination Constraints (2.11).

between the production capacity and the total demand in the remaining periods.

Constraints (2.5) and (2.6) limit the maximum inventory at the plant and customers,

respectively. The remaining sets of constraints, i.e., (2.7)-(2.12), are the vehicle load-

ing and routing restrictions. Constraints (2.7) allow a positive delivery quantity only

if customer i is visited in period t and each customer can be visited by at most one

vehicle (2.8). Constraints (2.9) are the vehicle �ow conservation. Constraints (2.10)

limit the number of trucks that can be used to the number of available trucks. Con-

straints (2.11) are the vehicle loading restrictions and subtour elimination constraints

in the form of the Miller-Tucker-Zemlin inequalities (Miller et al., 1960). These con-

straints do not allow taking an arc that generates a subtour as shown in Figure 2.5;

the arc (3, 1, t) cannot be taken because w1t − w2t ≥ q1t is not valid. Constraints

(2.12) are the vehicle capacity constraints.

In Bard and Nananukul (2009b, 2010), the subtour elimination constraints (2.11)

and vehicle capacity (2.12) constraints are used. However, this subtour elimination

constraint set can lead to a weak formulation in the routing part (Toth and Vigo,

2001). Constraints (2.11) and (2.12) can be replaced by other subtour elimination

constraints, i.e.,

• fractional capacity constraints (FCCs) (Letchford and Salazar-González, 2006)

as presented in Chandra and Fisher (1994):

∑
i/∈S

∑
j∈S

xijt ≥
∑
i∈S

qit/Q ∀S ⊆ Nc : |S| ≥ 1,∀t ∈ T (2.15)
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Figure 2.6: FCCs (left) and GFSECs (right) Illustration

• generalized fractional subtour elimination constraints (GFSECs):

∑
i∈S

∑
j∈S

xijt ≤ |S| −
∑
i∈S

qit/Q ∀S ⊆ Nc : |S| ≥ 1,∀t ∈ T. (2.16)

Figure 2.6 depicts how these constraints eliminate subtours. Suppose that (q1t+ q2t+

q3t)/Q = 1. The FCC forces one arc from outside the set S to connect to a node

inside S, while the GFSEC does not allow more than two arcs in the set S. Both of

the constraints can eliminate subtours in the set S.

These subtour elimination constraints are similar to the subtour elimination con-

straints for the VRP. However, unlike in the VRP where the delivery quantity to

each customer is known a priori, the value (
∑

i∈S qit)/Q cannot be rounded up in the

PRP because the delivery quantity qit is a decision variable and this would result in

a non-linear formulation. Additionally, by adding these constraints to the formula-

tion, the problem becomes much larger due to an exponential number of subsets. A

branch-and-cut procedure is generally used to solve the problem e�ectively. These

constraints are initially removed and added iteratively during the branch-and-cut pro-

cess. Note that in the case where an undirected graph is assumed, the formulations

can be converted by using the method presented by Toth and Vigo (2001).
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2.2.2 LSP and VRP Formulation Schemes

For the LSP, a review of basic formulation and reformulation schemes was presented by

Pochet and Wolsey (2006). In short, the basic LSP formulation is a weak formulation

that gives poor quality lower bounds. Many reformulation schemes can be used to

strengthen the formulation. The major LSP reformulation schemes considered for the

PRP include the shortest path (Eppen and Martin, 1987) and facility location (Krarup

and Bilde, 1977) reformulations. In the uncapacitated LSP, these two formulations

have the integrality property, i.e., feasible mixed-integer solutions are obtained by

solving the LP relaxation.

The formulation schemes for the VRP follow the classi�cation presented by Toth

and Vigo (2001). The di�erent formulations are typically used to solve the problems

with di�erent characteristics. For example, the basic formulation is a compact formu-

lation that is suitable for a homogeneous �eet and a limited number of vehicles. To

handle a heterogeneous �eet (e.g., various �eet size, consumption, speed, or costs),

one should employ a formulation in which a vehicle index can be incorporated, e.g.,

a multi-commodity �ow formulation. In some VRP applications in which the vehi-

cle routes are prede�ned or have few possibilities, e.g., a truck can only serve the

customers in the same cluster, or in maritime applications where the vessel sched-

ule option is prede�ned, it is more appropriate to use a set-partitioning formulation.

This formulation is also generally used as a master problem in the column genera-

tion process. Another issue in VRP formulations is the set of subtour elimination

constraints. Applying di�erent subtour elimination constraints can result in di�er-

ent lower bounds (Letchford and Salazar-González, 2006). Table 2.I provides the

summary for PRP formulations that appeared in previous studies.

Some formulations were used in the PRP to deal with speci�c issues, e.g., the

heterogeneous �eet by Lei et al. (2006) and the column generation approach by Bard

and Nananukul (2009b, 2010). The e�ciency of di�erent LSP reformulations in PRP

was studied by Ruokokoski et al. (2010).
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Table 2.I: Production Routing Problem Formulation Schemes

LSP → Basic LSP Facility Location Shortest Path

VRP ↓

Basic VRP Chandra and Fisher (1994) Ruokokoski et al. (2010) Ruokokoski et al. (2010)

Bard and Nananukul (2010, 2009b)

Ruokokoski et al. (2010)

Vehicle Index Archetti et al. (2011) Boudia et al. (2007, 2008)† -
Boudia and Prins (2009)†

Multi- Fumero and Vercellis (1999) - -
Commodity Lei et al. (2006)

Flow Solyal� and Süral (2009)

Armentano et al. (2011)

Set Partitioning Bard and Nananukul (2009b, 2010) - -
†Facility location reformulation in the distribution echelon only

2.2.2.1 Comparison Between LSP Formulations

Ruokokoski et al. (2010) investigated the quality of lower bounds by using di�erent

LSP reformulation schemes compared to the basic LSP formulation on the PRP with

uncapacitated production and a single uncapacitated vehicle. The computational re-

sults show that the LP relaxation values of the shortest path and facility location

reformulations when the subtour elimination constraints are dropped are much im-

proved compared to the basic formulation. The LP bound obtained by the shortest

path reformulation is greater than or equal to the LP bound by the facility location

reformulation which follows from the proof in Solyal� and Süral (2012), but the di�er-

ence between the bounds is very small. The facility location reformulation provides

better computational performance when adding the valid inequalities for the rout-

ing problem (including the subtour elimination constraints) and solving the integer

problem using a branch-and-cut process.

2.2.2.2 Comparison Between VRP Formulations

The VRP reformulation scheme is generally used to deal with di�erent routing prob-

lem characteristics. Since there is no research that focuses on the di�erent routing

formulations for the PRP, we brie�y review the VRP literature. An overview of
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the alternative formulations for the VRP can be found in Toth and Vigo (2001).

Letchford and Salazar-González (2006) discussed the lower bound quality provided

by non-vehicle index and vehicle index VRP formulations. With certain families of

valid inequalities (e.g., FCCs), the vehicle index VRP formulation gives the same

bound as the non-vehicle index in the VRP. In practice, the non-vehicle index formu-

lation is preferable because it contains fewer variables. The vehicle index formulation

is necessary when the vehicles are not identical or when the speci�c cuts for the ve-

hicle index formulation are used. The multi-commodity �ow formulation provides an

advantage to eliminate subtours through �ow conservation constraints, which do not

grow exponentially with the number of customers. The LP relaxation lower bound of

the multi-commodity �ow formulation is equal to the LP relaxation of the non-vehicle

index VRP with FCCs. For the set partitioning formulation, when only elementary

(feasible) routes are permitted, the LP relaxation of the formulation is also at least

as strong as the LP relaxation of the multi-commodity �ow formulation. However,

the number of variables in this formulation grows exponentially with the size of the

problem. One must trade-o� lower bound quality with computing time due to the

problem size.

2.3 Approaches to Compute Lower bounds

Since the PRP is a very complicated combinatorial problem and contains a large

number of binary variables, the quality of the lower bound of the basic PRP formula-

tion obtained by solving the LP relaxation is generally very poor. Nananukul (2008)

solved the LP relaxation of the basic formulation in Section 2.2.1 with small instances

with 3-8 periods and 5-20 customers and reported gaps of 30%-260% compared to

the optimal solutions. The LP relaxation of this formulation is not practical in pro-

viding relaxed solutions in exact algorithms such as branch-and-bound or measuring

the quality of other solution approaches. Hence, alternative relaxation methods have

to be developed to obtain better lower bounds.
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2.3.1 Lagrangian Relaxation

Lagrangian relaxation (see Fisher (1981)) is an approach to obtain lower bounds by

dualizing constraints with Lagrangian multipliers and decomposing the problem into

subproblems which are more easily solvable. A Lagrangian relaxation for a variant of

the PRP, where unit transportation costs are assumed, was proposed by Fumero and

Vercellis (1999). They decomposed the basic LSP and the multi-commodity �ow VRP

reformulation into subproblems by dualizing the plant inventory constraints and the

vehicle capacity constraints. The problem is then transformed into four subproblems,

i.e., production (PROD), inventory (INV), distribution (DIS), and routing (ROU)

subproblems. The �rst two subproblems can be solved by inspection and the DIS

subproblem can be solved by an LP solver. The lower bound of the ROU subproblem

is calculated by the minimum cost network �ow problem. Instances with up to 8

periods, 12 customers and 10 products were tested and the algorithm could obtain

solutions with an average optimality gap of 5.5%.

A similar Lagrangian relaxation approach was used by Solyal� and Süral (2009) to

solve the PRP with the order-up-to level (OU) policy. However, the lower bounds ob-

tained by this approach were weak. On the instances with 8 customers and 5 periods,

the lower bound produced by the Lagrangian relaxation has an average deviation of

33.16% from the optimal value. They also tested the performance of the formulation

based on the multi-commodity �xed charge network �ow problem using the same

instances and the longest computing time was approximately 20 hours to obtain the

optimal solution.

2.3.2 Column Generation

In a column generation procedure, a basic formulation is decomposed into a restricted

master problem (RMP) and subproblems. The original variables are replaced by a

convex combination of extreme points of the subproblems which are generated and

added iteratively by solving the subproblems. More details about recent general

column generation approaches can be found in Lübbecke and Desrosiers (2005).
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Bard and Nananukul (2010) proposed a RMP and subproblem formulations for

the PRP and developed a branch-and-price procedure. Let R(t) be the sets of delivery

plans in period t where a delivery plan, indexed by r, is characterized by the delivery

quantity to each customer and routing decisions. The binary variable θrt is equal to

one if the delivery plan r for period t is selected. The parameter crt is the total cost

of using delivery plan r in period t, and µirt is the amount delivered to customer i

with delivery plan r in period t. The RMP is formulated as follows.

min
∑
t∈T

upt + fyt +
∑
i∈N

hiIit +
∑
r∈R(t)

crtθrt

 (2.17)

s.t. (2.4), (2.5)-(2.6), (2.13) and

I0,t−1 + pt =
∑
i∈Nc

∑
r∈R(t)

µirtθrt + I0t ∀t ∈ T (2.18)

Ii,t−1 +
∑
r∈R(t)

µirtθrt = dit + Iit ∀i ∈ Nc,∀t ∈ T (2.19)

∑
r∈R(t)

θrt ≤ 1 ∀t ∈ T (2.20)

θrt ∈ {0, 1} ∀t ∈ T,∀r ∈ R(t). (2.21)

The objective function (2.17) and constraints (2.18)-(2.19) are equivalent to (2.1)

and (2.2)-(2.3), respectively. At most one delivery plan can be selected in each period

(2.20). In the column generation process, the integrality of the variables θrt is relaxed

to obtain the lower bounds of the RMP.

The subproblem is the delivery schedule generator. Denote by α1
t , α

2
it and α

3
t the

dual variables of the RMP associated with the constraints (2.18), (2.19) and (2.20),

respectively. The subproblem is decomposed into a VRP subproblem in each time

period. The subproblem for time period t, referred to as SV RPt, is as follows.

min
∑

(i,j)∈A

cijxijt −
∑
i∈Nc

(α1
t + α2

it)qit + α3
t (2.22)
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s.t. (2.13)-(2.14) and

qit ≤ min{Q,
l∑
j=t

dij}zit ∀i ∈ Nc (2.23)

∑
j∈N

xijt = zit ∀i ∈ Nc (2.24)

∑
j∈N

xjit =
∑
j∈N

xijt ∀i ∈ Nc (2.25)

∑
j∈Nc

x0jt ≤ m (2.26)

wit − wjt ≥ qit − M̃it(1− xijt) ∀(i, j) ∈ A (2.27)

0 ≤ wit ≤ Q ∀i ∈ Nc. (2.28)

Constraints (2.23)-(2.28) are equivalent to constraints (2.7)-(2.12).

Since SV RPt employs the VRP structure, it is very time consuming to solve the

problem to optimality. Therefore, Bard and Nananukul (2009b, 2010) developed a

heuristic to handle this subproblem.

2.4 Exact Solution Algorithms

Exact solution algorithms for PRP are very scant. To the best of our knowledge, only

two algorithms were proposed to solve the PRP: the branch-and-cut of Archetti et al.

(2011) and the branch-and-cut with strong reformulation of Ruokokoski et al. (2010).

2.4.1 Branch-and-Cut Algorithm by Archetti et al. (2011)

Archetti et al. (2011) studied the PRP with uncapacitated production and a single

capacitated vehicle. The formulation is similar to the basic LSP formulation but the

subtour elimination constraints are in the generalized form of the traveling salesman

problem (TSP) that is used by Archetti et al. (2007) for the IRP and Gendreau et al.

(1998) for the selective TSP as follows:

∑
i∈S

∑
j∈S

xijt ≤
∑
i∈S

zit − zet ∀S ⊆ Nc : |S| ≥ 2,∀e ∈ S,∀t ∈ T. (2.29)
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These constraints are used in place of constraints (2.11)-(2.12) in the basic formu-

lation. The authors also add the following inequalities as presented in Archetti et al.

(2007) for the inventory routing problem:

Ii,t−s−1 ≥
s∑
j=0

di,t−j

(
1−

s∑
j=0

zi,t−j

)
∀i ∈ Nc,∀t ∈ T, s = 0, 1..., t− 1 (2.30)

zit ≤ z0t ∀i ∈ Nc,∀t ∈ T (2.31)

xijt ≤ zit and xijt ≤ zjt ∀(i, j) ∈ A,∀t ∈ T. (2.32)

The inequalities (2.30) can be interpreted as follows: if there is no shipment

delivered during the time interval [t−s, t], the inventory level in period t−s−1 must

be su�cient to satisfy the demand in this interval. These constraints are similar to the

so-called (l, s,WW ) inequalities (Pochet and Wolsey, 2006) imposed at each customer

separately. By adding them to the PRP, they could strengthen the lot-sizing part of

the customer replenishment and provide better lower bounds. The inequalities (2.31)

and (2.32) are logical constraints. Constraints (2.31) impose that a customer cannot

be visited if the vehicle is not dispatched, while constraints (2.32) impose that the

arc (i, j) can be greater than zero only if nodes i and j are visited.

Archetti et al. (2011) also presented other sets of inequalities for the PRP with

uncapacitated production as follows:

It−1 ≤
∑
i∈Nc

l∑
j=t

dij(1− yt) ∀t ∈ T (2.33)

pt ≥
f

h0j
(yt−j + yt − 1) ∀2 ≤ t ≤ l,∀1 ≤ j ≤ t− 1. (2.34)

Constraints (2.33) are valid for the uncapacitated production because it is not optimal

to produce when the plant has a positive inventory level. Constraints (2.34) enforce a

minimum production quantity if production takes place. These constraints together

with the other two constraints that are used to prevent a stockout (see Archetti et al.

(2011)) are all added a priori to the formulation.
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In the branch-and-cut process, the subtour elimination constraints (2.29) are re-

moved and only the violated cuts are added iteratively during the branching process.

The performance of the algorithm is tested on generated test instances with 14 cus-

tomers and 6 periods. Most of the instances are solved to optimality within a few

seconds.

2.4.2 Branch-and-Cut Algorithm by Ruokokoski et al. (2010)

The uncapacitated lot-sizing problem and a single uncapacitated truck is considered

by Ruokokoski et al. (2010). They use the stronger LSP reformulations, e.g., facility

location and shortest path reformulations, to solve the PRP. The formulation is similar

to that of Archetti et al. (2011) but the subtour elimination constraints (2.29) are

replaced with

∑
i/∈S

∑
j∈S

xijt +
∑
i∈S

∑
j /∈S

xijt ≥ 2zet ∀S ⊆ Nc : |S| ≥ 2,∀e ∈ S,∀t ∈ T. (2.35)

The authors used a heuristic and an exact separation procedure based on a mini-

mum s−t cut problem to detect other violated sets. They also adapted the generalized

comb and 2-matching inequalities presented by Fischetti et al. (1997) which were de-

veloped for a generalized traveling salesman problem (GTSP) to the PRP. The results

show that when all valid inequalities are used, the facility location LSP reformulation

provides the best LP relaxation. This algorithm can solve problems with 80 customers

and 8 periods within about 30 minutes.

2.5 Heuristic Algorithms

2.5.1 Decomposition-Based Heuristics

This section presents a review of the heuristic methods that were developed to solve

the PRP by decomposing the problem into production and distribution planning

subproblems. The initial solution is obtained by sequentially solving each problem

and a heuristic procedure is called to improve the solutions. This approach was �rst
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introduced by Chandra (1993) and Chandra and Fisher (1994) to solve the multi-

product PRP. The integrated problem is decoupled into the capacitated lot-sizing

problem and the distribution scheduling problem. The lot-sizing problem is solved

to optimality and a distribution schedule for each period is produced by applying a

simple heuristic together with a 3-opt procedure (Lin, 1965). The result is further

improved by allowing production shifting across periods if the total cost is reduced.

This heuristic algorithm provides approximately 6% cost savings compared to the

uncoordinated approach with no improvement heuristic procedure in the small test

instances.

Boudia et al. (2008) developed an improved decomposition based approach by �rst

determining production lot sizes as large as possible to cover some future periods.

The distribution plan in each period is constructed by the savings algorithm (Clarke

and Wright, 1964). The algorithm �nds opportunities to reduce production costs

by adopting the Wagner-Whitin algorithm (Wagner and Whitin, 1958) for the LSP.

Then, a local search procedure based on 3-opt moves, insertion, and swap heuristics

are called to improve the solution. The algorithm is tested on the large instances

generated by Boudia et al. (2005) with 50-200 customers and 20 periods. It provides

10%-15% cost savings compared to the two-phase decoupled heuristic, called H1,

which basically provides a solution from the production plan identi�ed by the Wagner-

Whitin method, and the delivery plans generated by a 3-opt procedure.

Instead of focusing only on the lot-sizing part in the �rst phase of the algorithm,

Lei et al. (2006) incorporated the distribution part and developed a heuristic algo-

rithm to �nd a production-distribution plan. The delivery plan in each period is

later determined by partitioning demands in each period and constructing shortest

path networks to solve the route plans sequentially for each truck. They consider the

problem with a heterogeneous �eet of vehicles. In test instances with 8-12 customers,

5 vehicles, and 3-4 time periods, this algorithm provides solutions within a second

with a 2% average gap compared to CPLEX solutions in two hours.

Archetti et al. (2011) decomposed the PRP into the uncapacitated lot-sizing and

inventory-routing subproblems and developed a heuristic to solve the decomposed

problems. The algorithm starts by �xing production quantities equal to the demand in
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each period and solving the IRP by a heuristic procedure. In this process, each retailer

is selected sequentially and a search tree is solved to determine the time periods

and vehicles used to serve that retailer. After that, the uncapacitated lot-sizing

subproblem is solved to further explore whether the production plan can be improved

by shifting some production quantity to reduce the production and inventory costs. A

heuristic procedure is applied to the current solution to obtain further improvements

by removing two retailers, and then a problem is formulated to �nd the minimum

insertion cost of these retailers. If the total cost is reduced, the uncapacitated LSP

subproblem is solved again and the process is repeated until there is no improvement.

The authors evaluated the performance of this algorithm by comparing it to the

best solutions found by the exact branch-and-cut solution procedure as described in

Section 2.4.1 on instances with 14 customers, 6 periods and one vehicle. This heuristic

provides solutions within 1% of optimality in a few seconds.

2.5.2 Branch-and-Price Heuristic

Bard and Nananukul (2009b, 2010) presented a heuristic based on the branch-and-

price framework using the RMP and subproblems as described in Section 2.3.2. The

branch-and-price scheme is a decomposition based procedure which involves a branch-

ing process. At each branching node, starting from the initial solution, variables in

the RMP are �xed and column generation is performed to add variables to the RMP

and solve it again until an optimal solution is found. Then, the branching process

continues until an optimal solution to the original problem is obtained. The readers

are referred to Barnhart et al. (1998) for more details on branch-and-price.

The branching process starts with the production setup variables (yt) until all

these variables have integer values. Subsequently, the variables θrt are considered.

Branching on θrt directly, however, results in an unbalanced branching tree. When

the variable θrt is set to one, the delivery plan r is used and all corresponding qit and

xijt variables are �xed. But when θrt = 0, it is very di�cult to manage the variables to

only exclude the delivery plan r. Therefore, it is more appropriate to branch on the xijt

variables. This branching scheme is similar to the branch-on-edge approach presented

in Bramel and Simchi-Levi (2001). The depth-�rst-search strategy is used to quickly
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�nd the incumbent solution. To improve the branch-and-price procedure, several

features are included in the process. First, an initial solution is generated by the

tabu search heuristic presented by Bard and Nananukul (2009a). Second, during the

column generation process, instead of solving the subproblems to optimality, they are

solved by the separation based heuristic algorithms of Bard and Nananukul (2009b).

Third, the branching scheme is modi�ed to branch on groups of variables. And fourth,

a rounding heuristic procedure is used. With these modi�cations, the performance of

the branch-and-price process is substantially improved. The experiments on instances

with up to 50 customers and 8 periods showed that this branch-and-price heuristic

provides better solution quality compared to those obtained by CPLEX (solution

costs are improved by 12.2% on average) within one hour of computing time.

2.6 Metaheuristics

Some decomposition based heuristic approaches require relatively short runtimes but

provide poor solution quality because the initial solutions are created based on decou-

pling procedures which do not take into account the bene�ts of the production and

distribution coordination. To overcome this obstacle, metaheuristics can be applied

to further explore the solution space and provide better solutions. In this section, we

present several metaheuristics that have been developed to solve the PRP.

2.6.1 Greedy Randomized Adaptive Search Procedure
(GRASP)

We refer to Feo and Resende (1995) for an overview of GRASP. Basically, the pro-

cedure consists of two main phases, i.e., construction and local search. In the con-

struction phase, an initial solution is provided via an adaptive randomized greedy

algorithm. Then the local search phase is applied to improve the solution.

A GRASP for the PRP was developed by Boudia et al. (2007). In the construc-

tion phase, an initial solution is generated by sequentially developing a production

and delivery plan. Starting from the �rst period onwards, the production plan is

preliminarily determined by producing a su�cient amount to cover the demand in
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the period without excess production which creates inventory at the plant. Then, de-

livery routes in the period are constructed by an insertion algorithm. The demands

with the cheapest insertion costs are stored and one of them is randomly drawn to

be inserted in each iteration. After all demands are satis�ed, the algorithm �nds the

customer demands in the earliest future period which can be satis�ed by the residual

production capacity, the vehicle capacity, and the customers' storage. The insertion

process is again performed to improve the solution and the saving heuristic is called

to �nd a better routing solution. All routing plans are �xed and the production plan

improvement algorithm is applied to shift production quantities to combine with a

production plan in earlier periods if the cost is lower, i.e., the incurred storage cost

at the plant is less than the setup cost. In the local search phase, the routing plan of

each period is improved by using a 3-opt procedure, inserting, and swapping. Moves

across periods are also considered if the cost can be reduced. Boudia et al. (2007) also

developed a path relinking procedure (see Glover (1996)) as a post-processor. In this

process, solutions obtained during the GRASP are ranked according to their total

cost and a limited number of solutions are stored in a pool of elite solutions. Then,

any two solutions in the pool are chosen to create a new solution by transferring

some delivery quantities in one of these solutions to another period according to the

delivery quantities in the other solution to reduce the di�erences between these two

solutions. This process could slightly improve the solutions obtained by GRASP.

2.6.2 Memetic Algorithm (MA)

Informally speaking, a MA is an improved genetic algorithm (GA). The basic idea of

the genetic algorithm is to generate new solutions from a population of initial solutions

which are represented by chromosomes (or bitstrings) using natural evolution, i.e.,

crossover or mutation, to create new o�springs. In a memetic algorithm, a local

search procedure is additionally applied to improve both the initial population and

o�springs of the genetic algorithm. This approach was �rst introduced by Moscato

(1999). Boudia and Prins (2009) applied this approach to the PRP with an additional

function to control the population with a threshold policy. The new solutions found

are accepted only if they improve the current solution more than a threshold value.
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This approach is called memetic algorithm with population management (MA|PM)

(Sörensen and Sevaux, 2006).

In the study of Boudia and Prins (2009), solutions are represented by a tuple

of trips, shipping quantities, and production plans. An initial population is created

through a simple heuristic procedure that preliminarily sets a production plan in

each period equal to the total demand, then a savings heuristic is used to generate

the delivery plan and the production plan is later adjusted by the Wagner-Whitin

algorithm. O�springs of the population are generated by crossing over the randomly

selected parents. The local search procedure, similar to the algorithm in GRASP

by Boudia et al. (2007), is then called to improve the o�spring solutions. Those

o�springs are included in the population only if they reduce the cost more than the

constant diversity threshold. The algorithm terminates after the maximum number

of iterations is reached.

2.6.3 Tabu Search

The concept of tabu search was introduced by Glover (1989). In this procedure, a

solution is randomly examined and a move is performed to the best neighbor of the

current solution. In order to avoid cycling and to get out of local optima, all solutions

that were examined and passed the acceptance criteria are stored in a tabu list and

these solutions are forbidden from the search procedure. The tabu search approach

is known as one of the most e�cient solution methods for the VRP (Gendreau et al.,

2001).

Bard and Nananukul (2009a) proposed a tabu search with a special feature, the

so-called reactive tabu search (RTS), where the size of the tabu list is dynamic. They

create an initial solution by solving the integrated lot-sizing and distribution problem

which is a modi�ed PRP obtained by dropping the routing constraints (2.8)-(2.12),

removing variables xijt, and assuming that the delivery cost is equal to the round

trip transportation cost. Then, a subsequent routing decision is made by applying

a capacitated vehicle routing problem (CVRP) subroutine based on a tabu search

proposed by Carlton and Barnes (1996). They developed a neighborhood search

procedure to improve the incumbent solution by swapping the delivery quantities of
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two customers in two delivery periods. An insertion heuristic is applied if the swapped

customer is not assigned to the new delivery plan. Another move, called transfer, is

also performed to transfer the whole delivery quantity of a customer in period t so

that it can be combined with another delivery to this customer in some previous

period t′ < t without violating capacity constraints. Then, the customer is removed

from the route in period t and thus transportation costs can be reduced.

A di�erent tabu search procedure was developed by Armentano et al. (2011) who

used path relinking. The tabu search is used to move some shipment quantity from

customer i in period t to another period t′ 6= t without violating inventory capacity.

If the customer is not visited in period t′, this customer is inserted into that period

according to the cheapest insertion rule. The shipment quantity and the production

plan are adjusted, and the new total cost is calculated accordingly. Every customer-

period combination is considered and the one that minimizes the total cost is chosen.

A path relinking procedure is used to diversify the search. In this procedure, the

current tabu search solution is set as an initiating solution and another solution, called

the guiding solution, is selected from a pool of elite solutions. The path relinking

procedure tries to reduce the di�erences in delivery quantities of the two solutions by

transferring the di�erent amounts to another period. When all moves are �nished,

the guiding solution becomes the initiating solution and the new solution becomes the

guiding solution. The process is repeated until both solutions have the same value.

2.6.4 Computational Evaluation of the PRP Metaheuristics

A comparison of the computational performance of the metaheuristics described in

this section is reported in Tables 2.II and 2.III. The computational experiments were

conducted with the test instances from Boudia et al. (2005). The instances consist

of the sets of problems with 50, 100, 200 customers and 20 time periods and there

are 30 instances per set. All test evaluations were performed on workstations with

comparable CPU performances. The results show that the GRASP of Boudia et al.

(2007) can obtain solutions within a relatively short runtime, but the best solutions

are provided by the tabu search algorithm with path relinking procedure (TSPR)

developed by Armentano et al. (2011).
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Table 2.II: Average Results for Di�erent Metaheuristics

Prob Nc l H11 GRASP2 MA| PM3 RTS4 TSPR5

set

B1 50 20 511579 443264 393263 369662 361704

B2 100 20 963649 791839 714627 712294 685898

B3 200 20 1312612 1070026 1001634 1034923 951638
1Boudia et al. (2008) 4Bard and Nananukul (2009a)
2Boudia et al. (2007) 5Armentano et al. (2011)
3Boudia and Prins (2009)

Table 2.III: Average Computational Time (in Seconds) for Di�erent Metaheuristics

Prob Nc l H11 GRASP2 MA| PM3 RTS4 TSPR5

set

B1 50 20 0.1 87 172.7 451.8 317.0

B2 100 20 0.5 415.9 1108.1 1133.8 1147.6

B3 200 20 2.1 1801.8 4098.5 3060.2 3926.4
1,2,3executed on 2.30 GHz PC 4executed on 2.53 GHz PC

5executed on 2.80 GHz PC

2.7 PRP with Demand Uncertainty

In this section, we provide a review of the literature concerning demand uncertainty.

The di�culty of handling demand uncertainty in the PRP and IRP lies in the fact

that it makes the problem intractable (Hvattum and Løkketangen, 2009; Solyal� et al.,

2012). To the best of our knowledge, no studies have speci�cally addressed the PRP

with demand uncertainty. There are, however, a few studies that have discussed this

issue for the stochastic IRP (SIRP) as shown in Table 2.IV.
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Table 2.IV: Summary of the Literature on the Problem with Demand Uncertainty

Author (s) Time horizon Decision process Delivery Approach

Federgruen and Zipkin (1984) Single period Single stage Route Decomposition-based heuristic

Jaillet et al. (2002) Discrete �nite Markov Direct Fixed interval policy analysis

Kleywegt et al. (2002a) Discrete in�nite Markov Direct Approximate dynamic programming

Kleywegt et al. (2004) Discrete in�nite Markov Route Approximate dynamic programming

Adelman (2004) Discrete in�nite Markov Route Approximate dynamic programming

Hvattum et al. (2009) Discrete in�nite Markov Route Scenario-tree-based heuristic

Hvattum and Løkketangen (2009) Discrete in�nite Markov Route Scenario-tree-based heuristic

Bertazzi et al. (2011) Discrete �nite Markov Route Approximate dynamic programming

Solyal� et al. (2012) Discrete �nite Two-stage Route Branch-and-cut

Coelho et al. (2012b) Discrete �nite Markov Route Decomposition-based heuristic

Federgruen and Zipkin (1984) considered the SIRP with random demands but in

a single period planning horizon. The uncertainty is incorporated in the non-linear

objective function. The problem is decomposed into an inventory allocation (IA) and

a number of traveling salesman problems (TSPs), one for each vehicle. The �rst sub-

problem is solved by an exact algorithm and the dual solutions are used to evaluate

whether the total cost can be reduced by switching two customers between two di�er-

ent routes. The authors also showed that this approach could provide 6-7% savings

compared to the solution obtained by solving a deterministic vehicle routing problem

(VRP). A di�erent SIRP involving long term planning horizons was addressed by

Jaillet et al. (2002). In this study, a repeated distribution pattern is used and the

delivery cost for each customer is �xed. If a stockout occurs, an extra (non-scheduled)

delivery is required and a �xed penalty cost is applied. The problem is solved in a

rolling horizon framework by using approximations of the direct shipment delivery

costs.

The IRP with a discrete time in�nite horizon was addressed in several studies.

Kleywegt et al. (2002a) considered the SIRP with direct deliveries and the problem

is represented by a Markov decision process. Since the state space is too large to

compute, the authors employed approximate dynamic programming techniques to

solve the problem. Kleywegt et al. (2004) extended the previous study to a more

general case where a vehicle can deliver to multiple customers in the same route and

developed approaches to handle the problem when a vehicle can visit up to three

customers in a route. Adelman (2004) focused on the same problem and proposed a
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2.7. PRP with Demand Uncertainty

price-directed approach where the future costs of current actions are approximated

using optimal dual prices. This approach can be used to solve the problem with an

unbounded number of customers per route. Hvattum et al. (2009) and Hvattum and

Løkketangen (2009) used heuristics based on �nite scenario trees to solve the same

problem.

For the IRP with a discrete �nite planning horizon, Bertazzi et al. (2011) addressed

the stochastic problem with the order-up-to level (OU) policy and a penalty cost is

incurred when a stockout occurs. They employed a heuristic rollout algorithm using

an approximate cost-to-go. This approximate cost is formulated as a MIP and is

solved by a branch-and-cut algorithm. Solyal� et al. (2012) addressed the single

vehicle IRP with demand uncertainty in a discrete �nite planning horizon, but the

distribution of demand is unknown and backlogging is allowed. This problem is called

the robust inventory routing problem (RIRP). They presented robust formulations

and used a branch-and-cut algorithm similar to that of Archetti et al. (2007). Finally,

Coelho et al. (2012b) considered a dynamic and stochastic variant of the IRP in which

demands are gradually revealed over time. They proposed a heuristic to solve the

problem and evaluated the value of demand forecasts and transshipments between

customers.
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Chapter 3

Exact Algorithms for Production

Routing Problems

This chapter is based on the following article.

• Adulyasak, Y., Cordeau, J.-F., Jans, R. Formulations and Branch-and-Cut

Algorithms for Multi-Vehicle Production and Inventory Routing Problems.

GERAD Tech Rep. G-2012-14. 40 pages. Submitted to INFORMS Journal

on Computing in April 2012 (Revision submitted in October 2012).

The purpose of this chapter is to introduce new exact algorithms for the PRP, which

is a generalization of the IRP. Both are di�cult problems arising in the planning of

integrated supply chains. These problems are solved in an attempt to jointly optimize

production, inventory, distribution and routing decisions. Speci�cally, we emphasize

the multi-vehicle aspect, which is often neglected due to its complexity. Although the

main focus of the chapter is on the PRP, the approaches that we introduce in this

chapter can be adapted to solve the IRP with multiple vehicles.

3.1 Introduction

As mentioned in Chapter 2, few exact algorithms have been proposed to solve the IRP

due to its complexity. To represent instance sizes, we use the notation ac/bp/cv where

a, b and c are the number of customers, periods and vehicles, respectively. Archetti

et al. (2007) developed a branch-and-cut approach for the IRP with a single vehicle

and analyzed three di�erent replenishment policies for the customers. In the �rst

policy, called order-up-to level (OU), a visited customer receives exactly the amount

which brings its inventory up to a prede�ned target stock level (TSL). The second

policy, called maximum level (ML), allows delivery quantities to be any positive value
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but the inventory at each customer cannot exceed its maximum stock level. The third

policy is similar to the ML policy but there is no maximum stock level imposed at

the customers. Archetti et al. (2007) used di�erent inequalities to strengthen the

formulation for each policy and could solve instances up to 45c/3p/1v and 30c/6p/1v

to optimality within two hours for the IRP with the OU and ML policy, respectively.

Solyal� and Süral (2011) proposed a stronger formulation for the single-vehicle IRP-

OU using a shortest-path network representation of the OU policy at each customer

and used a similar branch-and-cut approach as Archetti et al. (2007). They could

solve instances up to 60c/3p/1v and 15c/12p/1v to optimality within four hours.

Variants of the IRP have been proposed as well. Christiansen (1999) introduced an

IRP application in a maritime context, called the inventory pickup and delivery prob-

lem, and applied a Dantzig-Wolfe decomposition and column generation approach to

solve the problem. Savelsbergh and Song (2008) considered the IRP with continuous

move where a product is distributed from a set of plants to a set of customers by mul-

tiple vehicles. In this study, minimum delivery quantities are imposed and inventory

costs are disregarded. The authors proposed a multi-commodity �ow formulation

with a vehicle index and developed a branch-and-cut approach to solve the problem.

Few studies have introduced exact algorithms or even methods to compute strong

lower bounds for the PRP. Fumero and Vercellis (1999) developed a Lagrangian relax-

ation approach to obtain lower bounds and heuristic solutions for a variant of the PRP

where unit transportation costs are assumed and the routing decisions can be deter-

mined by solving a minimum cost �ow problem. Instances with up to 12 customers,

8 periods and 10 products were tested and the algorithm could obtain solutions with

an average optimality gap of 5.5%. A similar Lagrangian relaxation approach was

used by Solyal� and Süral (2009) to solve the PRP-OU. However, the lower bounds

obtained by this approach were weak. On the instances with 8c/5p/1v, the lower

bound produced by the Lagrangian relaxation has an average deviation of 33.16%

from the optimal value. They also tested the performance of the formulation based

on the multi-commodity �xed charge network �ow problem using the same instances

and the longest computing time was approximately 20 hours to obtain the optimal

solution. Ruokokoski et al. (2010) explored the performance of di�erent lot-sizing
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reformulation schemes for the PRP-ML with uncapacitated production and a single

uncapacitated vehicle, and further employed a branch-and-cut approach similar to

that of Archetti et al. (2007) to solve the problem. Bard and Nananukul (2010) intro-

duced a branch-and-price procedure for the PRP-ML with multiple vehicles. Because

their subtour elimination constraints are in the form of the Miller-Tucker-Zemlin in-

equalities (Miller et al., 1960), they obtained rather weak lower bounds, and only the

instances up to 10c/2p/5v (Nananukul, 2008) were solved to optimality within 30

minutes. The emphasis of the study was instead on a heuristic procedure using the

branch-and-price framework. Archetti et al. (2011) adapted the branch-and-cut ap-

proach of Archetti et al. (2007) for the PRP-ML with uncapacitated production and a

single vehicle. Several valid inequalities were also used to strengthen the formulation.

However, computational testing was only performed on 14c/6p/1v instances and not

all instances were solved to optimality within two hours.

Table 3.I presents a summary of the exact algorithms for the PRP and IRP in the

literature. We classify the problems along three dimensions: IRP versus PRP, the

replenishment policy (ML versus OU) and the number of vehicles (single versus mul-

tiple). The size of the problems that can be solved to optimality and the computing

time limit (in hours) are shown in brackets. This table clearly shows an important

gap in the existing literature. The only exact algorithm for the multiple vehicle PRP

is that of Bard and Nananukul (2010) which only solved relatively small instances to

optimality compared to the results on the single vehicle case.

Table 3.I: Summary of Exact Algorithms for the Deterministic PRP and IRP with Single Product,
Single Plant and Multiple Customers

Problem
Maximum Level (ML) Order-Up-To Level (OU)

Single vehicle Multiple vehicles Single vehicle Multiple vehicles

IRP Archetti et al. (2007) - Archetti et al. (2007) -
[45c/3p/1v − 2h] , [45c/3p/1v − 2h],
[30c/6p/1v − 2h] [30c/6p/1v − 2h]

Solyal� and Süral (2011)
[60c/3p/1v − 4h],
[15c/12p/1v − 4h]

PRP Ruokokoski et al. (2010) † Bard and Nananukul (2010) - -
Archetti et al. (2011) [10c/2p/5v − 0.5h]
[14c/6p/1v − 2h]‡

† tests were performed only on the uncapacitated single vehicle case
‡ some instances were not solved to optimality
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In this chapter, we consider a single product and a production-distribution network

that consists of a production plant and multiple customers which have their own

storage area. At the beginning of the planning horizon, the production plant and

the customers may have initial inventory. In each period, each customer must have

su�cient inventory to satisfy its demand. In the case of the PRP, the plant must

decide whether or not to produce the product and the quantity to be produced.

If production takes place, �xed setup and unit production costs are incurred. The

produced quantities can be transported by a limited number of capacitated vehicles to

the customers and routing costs are paid. The product can also be stored at the plant

or at the customers and unit inventory holding costs are incurred. We consider the

cases where the customer replenishment is controlled by the ML and OU policies. The

hypotheses we adopt are generally in line with Chandra and Fisher (1994), Fumero

and Vercellis (1999) and Archetti et al. (2011) for the ML policy and Solyal� and

Süral (2009) for the OU policy. There is a slight di�erence on the imposed maximum

inventory in this study compared to Archetti et al. (2011). To be well aligned with the

concept of the OU policy, we set the delivery quantity to each customer equal to the

di�erence between its current stock level and its TSL before demand consumption.

In contrast, the TSL is imposed after demand consumption (which typically is not

known in advance in practice) in Archetti et al. (2011). This also applies to the ML

policy where the maximum inventory level is imposed before demand consumption.

It should also be noted that the replenishment practice in our PRP and the literature

stated above is slightly di�erent from the IRP presented in Archetti et al. (2007) and

Solyal� and Süral (2011). In the latter studies, the delivery to the customers must

take place before the distribution facility is replenished in each period, while in our

PRP, the quantity produced in period t can be delivered to customers to satisfy their

demand in the same period. These two practices, however, can be converted into

each other as we show in the Appendix. Since the PRP is a generalization of the IRP,

we prefer to use the name PRP in the remainder of this chapter to represent both

the IRP and PRP unless stated otherwise. Note that the name MVPRP is used to

represent the PRP with the multi-vehicle (MV) aspect.
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The main contributions of this chapter are threefold. First, we present strong

formulations and exact algorithms for both the IRP and PRP with multiple vehicles,

thereby �lling several important gaps in the literature as shown in Table 3.I. Sev-

eral formulations are presented and branch-and-cut algorithms are proposed to solve

the problems under both the OU and ML policy. Second, we propose several valid

inequalities and symmetry breaking constraints to strengthen the formulations, and

test the e�ect of these inequalities. Third, we provide extensive computational results

of the new formulations and further explore the performance of the algorithm on a

multi-core machine.

The rest of the chapter is organized as follows. Section 3.2 presents di�erent

formulations of the MVPRP. Section 3.3 describes the valid inequalities that are ap-

plied to the formulations. The details of the branch-and-cut approaches are discussed

in Section 3.4 and the details of the heuristic algorithm to calculate upper bounds

are presented in Section 3.5. This is followed by the discussion of computational

experiments in Section 3.6, and by conclusions.

3.2 MVPRP Formulations

This section presents the main notation and the mathematical formulations of the

MVPRP with ML and OU policy.

3.2.1 Notation

The PRP can be de�ned on a complete undirected graph G = (N,E) with the

following notation.

Sets:

T set of time periods, indexed by t ∈ {1, . . . , l}, and T ′ = T ∪ {l + 1};

N set of plant and customers, indexed by i ∈ {0, . . . , n}, where the plant is

represented by node 0 and Nc = N \ {0} is the subset of n customers;

E set of edges, E = {(i, j) : i, j ∈ N, i < j};

K set of identical vehicles, indexed by k ∈ {1, . . . ,m};
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E(S) set of edges (i, j) ∈ E such that i, j ∈ S, where S ⊆ N is a given set of nodes;

δ(S) set of edges incident to a node set S, δ(S) = {(i, j) ∈ E : i ∈ S, j /∈ S or i /∈
S, j ∈ S} (for simplicity, we also write δ(i) for δ({i}) to represent set of edges

incident to node i).

Variables:

pt production quantity in period t;

Iit inventory at node i at the end of period t;

yt equal to 1 if there is production at the plant in period t, 0 otherwise;

zikt equal to 1 if node i is visited by vehicle k in period t, 0 otherwise;

xijkt if vehicle k travels directly between node i and node j in period t, 0 otherwise;

qikt quantity delivered to customer i with vehicle k in period t;

Parameters:

u unit production cost;

f �xed production setup cost;

hi unit inventory holding cost at node i;

cij transportation cost between nodes i and j;

dit demand at customer i in period t;

C production capacity;

Q vehicle capacity;

Li maximum or target inventory level at node i;

Ii0 initial inventory available at node i

3.2.2 Multi-Vehicle Formulations for the ML Policy

In this section, we introduce two formulations for the MVPRP-ML: one with and one

without a vehicle index.
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3.2.2.1 Formulation with a Vehicle Index for the ML Policy

To formulate the MVPRP-ML with a vehicle index, we extend the single-vehicle PRP

formulation used by Archetti et al. (2011), as follows.

min
∑
t∈T

upt + fyt +
∑
i∈N

hiIit +
∑

(i,j)∈E

∑
k∈K

cijxijkt

 (3.1)

s.t.

I0,t−1 + pt =
∑
i∈Nc

∑
k∈K

qikt + I0t ∀t ∈ T (3.2)

Ii,t−1 +
∑
k∈K

qikt = dit + Iit ∀i ∈ Nc,∀t ∈ T (3.3)

pt ≤ min

{
C,
∑
i∈Nc

l∑
j=t

dij

}
yt ∀t ∈ T (3.4)

I0t ≤ L0 ∀t ∈ T (3.5)

Ii,t−1 +
∑
k∈K

qikt ≤ Li ∀i ∈ Nc,∀t ∈ T (3.6)∑
i∈Nc

qikt ≤ Qz0kt ∀k ∈ K, ∀t ∈ T (3.7)∑
k∈K

zikt ≤ 1 ∀i ∈ Nc,∀t ∈ T (3.8)

qikt ≤ min

{
Li, Q,

l∑
j=t

dij

}
zikt ∀i ∈ Nc,∀k ∈ K, ∀t ∈ T (3.9)

∑
(j,j′)∈δ(i)

xjj′kt = 2zikt ∀i ∈ N, ∀k ∈ K, ∀t ∈ T (3.10)

∑
(i,j)∈E(S)

xijkt ≤
∑
i∈S

zikt − zekt ∀S ⊆ Nc : |S| ≥ 2,∀e ∈ S,∀k ∈ K, ∀t ∈ T

(3.11)

pt, Iit, qikt ≥ 0 ∀i ∈ N, ∀k ∈ K, ∀t ∈ T (3.12)

yt, zikt, ∈ {0, 1} ∀i ∈ N, ∀k ∈ K, ∀t ∈ T (3.13)
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xijkt ∈ {0, 1} ∀(i, j) ∈ E : i 6= 0, ∀k ∈ K, ∀t ∈ T
(3.14)

x0jkt ∈ {0, 1, 2} ∀j ∈ Nc,∀k ∈ K, ∀t ∈ T. (3.15)

The objective function (3.1) minimizes the total production, setup, inventory and

routing costs. Constraints (3.2) and (3.3) ensure the inventory �ow balance at the

plant and at the customers, respectively. Constraints (3.4) are the setup forcing and

production capacity constraints at the plant: they force the setup variable to be one

if production takes place and limit the production quantity to the minimum of the

production capacity and the total demand in the remaining periods. The inventory

quantity at the production facility at the end of each period is limited by constraints

(3.5) and the inventory quantities at the customers after delivery cannot exceed their

inventory capacities (3.6). The total quantity loaded in each vehicle can be at most

the vehicle capacity as speci�ed by (3.7). Constraints (3.8) allow each customer to

be visited at most once in each period. Constraints (3.9) allow a positive delivery

quantity from vehicle k to node i in period t only if this node is visited by the vehicle

in period t. Since in the ML policy it is never optimal to carry inventory at the end of

the planning horizon, the delivery quantity to a customer is limited by the minimum

value between the inventory capacity at the customer, the vehicle capacity and the

total demand of the customer in the remaining periods. Constraints (3.10) are the

degree constraints. They require the number of edges incident to node i to be 2 if it is

visited. Constraints (3.11) eliminate for each vehicle subtours that do not go through

the depot.

Archetti et al. (2007, 2011) also strengthen the formulation using several valid

inequalities. We present here the inequalities that are valid for the PRP with capac-

itated production. Note that we extend the original inequalities for the multi-vehicle

case. Denote by t′ and t′′, the earliest period when the plant must produce and the

earliest period when at least one customer must be replenished to prevent a stock-

out, respectively, i.e., t′ = argmin1≤t≤l

{∑
i∈Nc

max
{

0,
∑t

j=1 dij − Ii0
}
− I00 > 0

}
,

and t′′ = mini∈Nc t
′′
i , where t

′′
i = argmin1≤t≤l

{∑t
j=1 dij − Ii0 > 0

}
. Let also κ be the
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minimum shipping quantity in t′′, i.e., κ =
∑

i∈Nc
max

{
0,
∑t′′

j=1 dij − Ii0
}
. First, two

inequalities are used to prevent stockouts:

t′∑
t=1

yt ≥ 1 (3.16)

∑
k∈K

t′′∑
t=1

z0kt ≥
⌈
κ

Q

⌉
. (3.17)

Second, the following inequalities are imposed to strengthen customer replenishments:

Ii,t−s−1 ≥

(
s∑
j=0

di,t−j

)(
1−

∑
k∈K

s∑
j=0

zik,t−j

)
∀i ∈ Nc,∀t ∈ T, s = 0, 1..., t− 1.

(3.18)

Finally, the following inequalities are imposed for the routing part:

zikt ≤ z0kt ∀i ∈ Nc,∀k ∈ K, ∀t ∈ T (3.19)

xijkt ≤ zikt and xijkt ≤ zjkt ∀(i, j) ∈ E(Nc),∀k ∈ K, ∀t ∈ T. (3.20)

The formulation (3.1)-(3.20) will be referred to as F (ML)|k.

3.2.2.2 Formulation without a Vehicle Index for the ML Policy

The previous formulation has the drawback that the number of variables grows in

proportion to the number of vehicles. Alternatively, one can express the routing

constraints with variables that do not comprise a vehicle index. The formulation

is written using the variables q, z and x with the same notation as in the previous

section but the vehicle index k is dropped. The only exception is the variable z0t

which is changed to be an integer variable representing the number of vehicles leaving

the plant in period t. The formulation without vehicle index can be stated as follows.

min
∑
t∈T

upt + fyt +
∑
i∈N

hiIit +
∑

(i,j)∈E

cijxijt

 (3.21)
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s.t. (3.4)-(3.5) and

I0,t−1 + pt =
∑
i∈Nc

qit + I0t ∀t ∈ T (3.22)

Ii,t−1 + qit = dit + Iit ∀i ∈ Nc,∀t ∈ T (3.23)

Ii,t−1 + qit ≤ Li ∀i ∈ Nc,∀t ∈ T (3.24)

qit ≤ min

{
Li, Q,

l∑
j=t

dij

}
zit ∀i ∈ Nc,∀t ∈ T (3.25)

∑
(j,j′)∈δ(i)

xjj′t = 2zit ∀i ∈ N, ∀t ∈ T (3.26)

z0t ≤ m ∀t ∈ T (3.27)

Q
∑

(i,j)∈E(S)

xijt ≤
∑
i∈S

(Qzit − qit) ∀S ⊆ Nc : |S| ≥ 2,∀t ∈ T (3.28)

pt, Iit, qit ≥ 0 ∀i ∈ N, ∀t ∈ T (3.29)

yt, zit, ∈ {0, 1} ∀i ∈ Nc,∀t ∈ T (3.30)

z0t ∈ Z+ ∀t ∈ T (3.31)

xijt ∈ {0, 1} ∀(i, j) ∈ E : i 6= 0,∀t ∈ T (3.32)

x0jt ∈ {0, 1, 2} ∀j ∈ Nc,∀t ∈ T. (3.33)

Constraints (3.22)-(3.26) are equivalent to (3.2)-(3.3), (3.6) and (3.9)-(3.10), re-

spectively. Constraints (3.27) limit the number of vehicles leaving the production

facility to the number of available vehicles in each period. Constraints (3.28) are the

subtour elimination and vehicle capacity constraints. If one divides the inequalities

by Q, these constraints have a form similar to the generalized fractional subtour elim-

ination constraints (GFSECs) for the VRP (Toth and Vigo, 2001). Unlike GFSECs in

the VRP, however, we cannot round up the value of the term qit/Q because it contains

the qit variable and therefore they do not provide strong LP relaxation bounds. We

prefer to use the form (3.28) since preliminary tests have indicated that the original

form of GFSECs is numerically unstable due to the fractional right hand side.
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3.2. MVPRP Formulations

We can also rewrite inequalities (3.17)-(3.20) for the non-vehicle index formulation

as follows:

t′′∑
j=1

z0j ≥
⌈
κ

Q

⌉
(3.34)

Ii,t−s−1 ≥

(
s∑
j=0

di,t−j

)(
1−

s∑
j=0

zi,t−j

)
∀i ∈ Nc,∀t ∈ T, s = 0, 1..., t− 1 (3.35)

zit ≤ z0t ∀i ∈ Nc,∀t ∈ T (3.36)

xijt ≤ zit and xijt ≤ zjt ∀(i, j) ∈ E(Nc),∀t ∈ T. (3.37)

The non-vehicle index formulation together with the inequalities (3.34)-(3.37) in

this section and (3.16) will be referred to as F (ML)|nk.
We also remark here on reformulation schemes for the PRP-ML. We have tested

the facility location reformulation, called four-index facility location (FIFL), proposed

by Ruokokoski et al. (2010). The preliminary results show that, in our case where

production, inventory and vehicle capacities are imposed, the facility location refor-

mulation is slightly inferior in terms of computing times to the basic formulation with

the inequalities used in Archetti et al. (2007, 2011). The main reasons are, �rst, that

the inequalities (3.18) already substantially strengthen the formulation, and second,

that the FIFL formulation has a much larger number of variables compared to the

basic formulation.

3.2.3 Multi-Vehicle Formulations for the OU Policy

This section presents two formulations for the MVPRP-OU: one with and one without

a vehicle index.

3.2.3.1 Formulation with a Vehicle Index for the OU Policy

In the OU policy, when a customer is visited, the inventory before demand con-

sumption must be replenished to reach its TSL. Archetti et al. (2007, 2011) added

constraints to the formulation F (ML)|k to solve the single vehicle IRP with the OU

policy. However, it has been shown by Solyal� and Süral (2011) that a stronger version
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3.2. MVPRP Formulations

of the IRP-OU can be obtained by using a shortest-path network representation for

the customer inventory replenishment part. This reformulation scheme exploits the

characteristic of the OU policy that the delivery quantity for a customer i visited in

period t is equal to the total demand consumption in the interval between t− 1 and

the previous visit in period v < t. In our preliminary test, we have also observed that

this reformulation is far superior to the formulations of Archetti et al. (2007, 2011) for

multiple vehicles. As a consequence, we adopt the reformulation presented in Solyal�

and Süral (2011) and extend it using a vehicle index. We de�ne di0 = di,l+1 = 0 and

use the following additional notation:

λikvt binary variable, equal to 1 if node i is visited by vehicle k in period t and the

previous visit is in period v, 0 otherwise;

givt total delivery quantity when customer i is visited in period t and the previous

visit is in period v;

eivt total inventory holding cost when customer i is visited in period t and the

previous visit is in period v;

µ(i, t) the latest period after period t when customer i can be replenished next with-

out having a stockout, i.e., µ(i, t) = argmaxt<v≤l+1{gitv ≤ Li};

π(i, t) the earliest period before period t when customer i can be replenished without

having a stockout, i.e., π(i, t) = argmin0≤v<t{givt ≤ Li}.

The parameters gitv and eitv can be calculated as follows:

givt =


∑t−1

j=1 dij + (Li − Ii0) if v = 0∑t−1
j=v dij if 0 < v < t ≤ l

0 if t = l + 1

eivt =

hi
(∑t−1

j=1(Ii0 −
∑j

l=1 dil)
)

if v = 0

hi

(∑t−1
j=v(Li −

∑j
l=v dil)

)
if 0 < v < t ≤ l + 1
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3.2. MVPRP Formulations

Preprocessing can be used to eliminate variables associated with infeasible delivery

quantities givt > Q and givt > Li. The strong formulation, referred to as F (OU)|k, is
as follows.

min
∑
t∈T

upt + fyt + h0I0t +
∑

(i,j)∈E

∑
k∈K

cijxijkt

+
∑
i∈Nc

∑
k∈K

∑
t=T ′

t−1∑
v=π(i,t)

eivtλikvt (3.38)

s.t. (3.5), (3.8), (3.10)-(3.15) and

I0,t−1 + pt =
∑
i∈Nc

∑
k∈K

t−1∑
v=π(i,t)

givtλikvt + I0t ∀t ∈ T (3.39)

pt ≤ Cyt ∀t ∈ T (3.40)∑
i∈Nc

t−1∑
v=π(i,t)

givtλikvt ≤ Qz0kt ∀k ∈ K, ∀t ∈ T (3.41)

t−1∑
v=π(i,t)

λikvt = zikt ∀i ∈ Nc,∀k ∈ K, ∀t ∈ T (3.42)

∑
k∈K

µ(i,0)∑
t=1

λik0t = 1 ∀i ∈ Nc (3.43)

∑
k∈K

t−1∑
v=π(i,t)

λikvt −
∑
k∈K

µ(i,t)∑
v=t+1

λiktv = 0 ∀i ∈ Nc,∀t ∈ T (3.44)

∑
k∈K

l∑
t=π(i,l+1)

λikt,l+1 = 1 ∀i ∈ Nc (3.45)

λikvt ∈ {0, 1} ∀i ∈ Nc,∀k ∈ K, ∀v, t ∈ T. (3.46)

The objective function (3.38) and constraints (3.39)-(3.41) are equivalent to (3.1),

(3.2), (3.4) and (3.7), respectively. Constraints (3.42) provide the link between the

λikvt and zikt variables. Constraints (3.43)-(3.45) represent the shortest-path network

of the OU policy at each customer.

45



3.2. MVPRP Formulations

As in the formulation presented by Solyal� and Süral (2011), the inequalities (3.19)-

(3.20) are also added to strengthen the routing part of the formulation. We further

add (3.16)-(3.17) to reinforce the production part.

3.2.3.2 Formulation without a Vehicle Index for the OU Policy

The non-vehicle index formulation for the OU policy can be written using the same

notation as the formulation F (ML)|nk, using the variable λ as in the previous section,
but without the vehicle index k. The formulation, referred to as F (OU)|nk, is as
follows.

min
∑
t∈T

upt + fyt + h0I0t +
∑

(i,j)∈E

cijxijt

+
∑
i∈Nc

∑
t∈T ′

t−1∑
v=π(i,t)

eivtλivt (3.47)

s.t. (3.5), (3.40) , (3.26)-(3.27), (3.29)-(3.33), and

I0,t−1 + pt =
∑
i∈Nc

t−1∑
v=π(i,t)

givtλivt + I0t ∀t ∈ T (3.48)

t−1∑
v=π(i,t)

λivt = zit ∀i ∈ Nc,∀t ∈ T (3.49)

µ(i,0)∑
t=1

λi0t = 1 ∀i ∈ Nc (3.50)

t−1∑
v=π(i,t)

λivt −
µ(i,t)∑
v=t+1

λitv = 0 ∀i ∈ Nc,∀t ∈ T (3.51)

l∑
t=π(i,l+1)

λit,l+1 = 1 ∀i ∈ Nc (3.52)

Q
∑

(i,j)∈E(S)

xijt ≤
∑
i∈S

Qzit − t−1∑
v=π(i,t)

givtλivt

 ∀S ⊆ Nc : |S| ≥ 2,∀t ∈ T

(3.53)

λivt ∈ {0, 1} ∀i ∈ Nc,∀v, t ∈ T. (3.54)
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3.3. Valid Inequalities

Constraints (3.48)-(3.52) are equivalent to (3.39) and (3.42)-(3.45), respectively.

Constraints (3.53) are equivalent to (3.28). Note that inequalities (3.16), (3.34) and

(3.36)-(3.37) are also added a priori in our implementation in order to make a fair

comparison with the other formulations.

3.2.4 Formulations for the MVIRP

All formulations above can be easily modi�ed to solve the MVIRP by disregarding the

production part (i.e., production setup and quantity decisions). First, the production

setup variable yt is set to one, i.e., yt = ȳt = 1, ∀t ∈ T . Second, denote by Bt the

production quantity made available in each period, constraints (3.4) and (3.40) are

replaced with pt = Btȳt,∀t ∈ T , and parameters min
{
Li, Q,

∑l
j=t dij

}
in constraints

(3.9) and (3.25) are replaced with min {Li, Q}. The rest of the formulations remains

unchanged.

3.3 Valid Inequalities

In this section, we introduce two groups of new valid inequalities: one for the vehicle

index and the other for the non-vehicle index formulation.

3.3.1 Valid Symmetry Breaking Inequalities for the Vehicle
Index Formulations

In each period t, there are two main symmetry issues which stem from the presence of

identical vehicles. Denote by mt the number of dispatched vehicles in period t. First,

in vehicle dispatching, there are
(
m
mt

)
possible options to select mt vehicles from the

�eet. Second, among the selected vehicles, there are still mt! options to swap the

routes that are assigned to each dispatched vehicle. These two types of symmetry are

present in each period, and hence there can be
[(

m
m1

)
m1!
] [(

m
m2

)
m2!
]
...
[(

m
ml

)
ml!
]

equivalent solutions. For example, for an instance with three periods and three ve-

hicles, if two vehicles are used in each period, there are
[(

3
2

)
2!
]3

= 216 equivalent

solutions that can be obtained by re-indexing the vehicles. Such symmetry issues typ-

ically slow down the branch-and-bound process due to the duplications in the search

process (Sherali and Smith, 2001).
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3.3. Valid Inequalities

To break the �rst type of symmetry, we can use the following symmetry breaking

constraints (SBCs) to allow vehicle k + 1 to be dispatched only if vehicle k is also

dispatched:

(SBC0) z0kt ≥ z0,k+1,t ∀1 ≤ k ≤ m− 1,∀t ∈ T.

To address the second symmetry issue, we can use di�erent sets of symmetry

breaking constraints. These sets cannot be imposed together but each of them can

be used in conjunction with SBC0. The �rst set breaks the symmetry of the routes

by ordering them according to their total route costs:

(SBC1)
∑

(i,j)∈E

cijxijkt ≥
∑

(i,j)∈E

cijxij,k+1,t ∀1 ≤ k ≤ m− 1, ∀t ∈ T.

Alternatively, one can impose that the vehicles be ordered according to their total

delivery quantity:

(SBC2)
∑
i∈Nc

qikt ≥
∑
i∈Nc

qi,k+1,t ∀1 ≤ k ≤ m− 1,∀t ∈ T for F (ML)|k

or
∑
i∈Nc

t−1∑
v=π(i,t)

givtλikvt ≥
∑
i∈Nc

t−1∑
v=π(i,t)

givtλi,k+1,vt ∀1 ≤ k ≤ m− 1,∀t ∈ T

for F (OU)|k.

We also use the lexicographic ordering constraints (Sherali and Smith, 2001; Degraeve

et al., 2002; Jans, 2009) to assign a unique number to each possible set of customers

for a route and we order the vehicles according to their assigned number. The lexico-

graphic ordering constraints can be imposed �rst with respect to customer one only,

next with respect to customers one and two, and so on:

(SBC3)

j∑
i=1

2(j−i)zikt ≥
j∑
i=1

2(j−i)zi,k+1,t ∀j ∈ Nc,∀1 ≤ k ≤ m− 1,∀t ∈ T.
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3.3. Valid Inequalities

We can also use only the �nal constraint of SBC3 including all the customers to

impose a unique ordering in each period:

(SBC4)
n∑
i=1

2(n−i)zikt ≥
n∑
i=1

2(n−i)zi,k+1,t ∀1 ≤ k ≤ m− 1,∀t ∈ T.

3.3.2 Valid Inequalities for the Non-Vehicle Index Formula-
tions

To strengthen the non-vehicle index formulations, we add the following inequalities a

priori.

Qz0t ≥
∑
i∈Nc

qit ∀t ∈ T for F (ML)|nk (3.55)

or Qz0t ≥
∑
i∈Nc

t−1∑
v=π(i,t)

givtλivt ∀t ∈ T for F (OU)|nk. (3.56)

Constraints (3.55) and (3.56) require the number of vehicles leaving the production

facility to be su�cient to carry delivery quantities to all customers in each period.

Since GFSECs (3.28) and (3.53) are generally weak, we further strengthen the non-

vehicle index formulations by adding the following subtour elimination constraints

(SECs):

∑
(i,j)∈E(S)

xijt ≤
∑
i∈S

zit − zet ∀S ⊆ Nc : |S| ≥ 2, e ∈ S,∀t ∈ T. (3.57)

These cuts are used to prevent subtours in each period, but they do not take into

account the vehicle capacity. Therefore, they have to be used together with GFSECs

(3.28) or (3.53) to generate feasible multi-vehicle routes.

To take into account the periodic routing decisions of the MVPRP, we also add

another set of constraints to the formulation, called multi-period generalized fractional
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3.4. Branch-and-Cut Approaches

subtour elimination constraints (MGFSECs), as follows.

Q
∑
t∈R

∑
(i,j)∈E(S)

xijt ≤
∑
t∈R

∑
i∈S

(Qzit − qit) ∀S ⊆ Nc : |S| ≥ 2,∀R ⊆ T (3.58)

or Q
∑
t∈R

∑
(i,j)∈E(S)

xijt ≤
∑
t∈R

∑
i∈S

Qzit − t−1∑
v=π(i,t)

givtλivt

 ∀S ⊆ Nc : |S| ≥ 2, ∀R ⊆ T.

(3.59)

Similar to the GFSECs (3.28) and (3.53), constraints (3.58) (for F (ML)|nk) and
(3.59) (for F (OU)|nk) prevent subtours and ensure that the number of vehicles is

su�cient to carry the delivery quantity to the set of customers S during the time

period set R. These constraints are an aggregated version of the GFSECs ((3.28) and

(3.53)) and equivalent to GFSECs when |R| = 1.

Denote by ρ(S, r) the minimum number of vehicles that must be dispatched to

carry the demands in customer set S during periods 1 to r, calculated as ρ(S, r) =⌈∑
i∈S (

∑r
t=1 dit − Ii0)

+
/Q
⌉
. The following inequalities are also imposed:

r∑
t=1

∑
(i,j)∈δ(S)

xijt ≥ 2ρ(S, r) ∀S ⊆ Nc : |S| ≥ 2, r ∈ T. (3.60)

These constraints ensure that the total number of vehicles entering and leaving the

set of customers S from period 1 to period r must be su�cient to carry the demands

during these periods. Figure 3.1 illustrates constraints (3.60) when the minimum

number of vehicles required to satisfy the total demand to customers 1, 2 and 3 in

periods 1 and 2 is equal to two. Therefore, the inequality x011 + x021 + x031 + x012 +

x022 + x032 ≥ 4 is imposed.

3.4 Branch-and-Cut Approaches

Since all the formulations contain an exponentially large number of subtour elimi-

nation constraints, a natural way to solve the problems is to use a branch-and-cut

technique. In this process, the subtour elimination constraints, i.e., constraints (3.11)

for the F (ML)|k and F (OU)|k, and GFSECs for the F (ML)|nk and F (OU)|nk, are
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3.4. Branch-and-Cut Approaches

Figure 3.1: Illustration of Constraints (3.60)

dropped from the formulations and are added iteratively when they are violated at

each node of the branch-and-bound tree. In this section, we provide the details of our

branch-and-cut approaches for both types of formulations. For the variable selection,

we �rst branch on the y, z, and x variables, respectively. The branching priority is

given �rst to the y variables since the setups generally incur large �xed costs. The

next priority is given to the z variables because the x variables are more likely to be

integer because of the connectivity constraints (3.10) and (3.26). Also, the λ variables

can be easily set by inspection when all the z variables are �xed. Among the variables

with the same priority, we use the default settings in CPLEX 12.3 to select a speci�c

variable to branch on. The remaining parameters are set to their default values.

3.4.1 Branch-and-Cut for the Vehicle Index Formulations

To solve the vehicle index formulations F (ML)|k and F (OU)|k, we use an exact

separation algorithm that solves a minimum s − t cut problem to detect violated

subtour elimination constraints for each vehicle in each period. This is valid since

vehicle tours are distinguished by the vehicle index. Denote by z̄it and x̄ijt and

the current values of variables zit and xijt. At each node of the branch-and-bound

tree, if a subtour on a set of nodes S is found for vehicle k in period t, we add the

inequalities (3.11) with e = argmaxi∈S{z̄ikt} to the formulation. We have implemented

the separation algorithm described in Ruokokoski et al. (2010) and use the minimum

s − t cut algorithm of the Concorde callable library (Applegate et al., 2011). To

�nd a violated SEC, a graph G∗kt = (N∗kt, E
∗
kt) associated with a fractional solution

is constructed for a vehicle k in period t where N∗kt = {i ∈ N |z̄ikt > 0} and E∗kt =
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3.4. Branch-and-Cut Approaches

{(i, j) ∈ E|x̄ijkt > 0}. Then, the minimum s − t cut is solved for each customer

i ∈ N∗kt \ {0} by setting the plant node as the source node and the selected customer

i as the sink node. A violated SEC is identi�ed if the value of the minimum cut is

less than 2z̄ikt. This separation algorithm is more time consuming than the heuristic

used by Archetti et al. (2007, 2011) and Solyal� and Süral (2011), but it has proven

to be e�cient in our branch-and-cut algorithm.

We have also tested di�erent options for adding the subtour elimination constraints

to the formulation. The �rst option is to use constraints (3.11) and when a subtour

is detected, add the cut only for the speci�c vehicle for which it was violated. The

second option is to add this cut for all vehicles in the same period instead of adding

it for the speci�c vehicle only. The third option is to use an aggregated version of

constraints (3.11), which is also equivalent to (3.57):

∑
k∈K

∑
(i,j)∈E(S)

xijkt ≤
∑
k∈K

∑
i∈S

zikt −
∑
k∈K

zekt ∀S ⊆ Nc : |S| ≥ 2,∀e ∈ S,∀t ∈ T.

(3.61)

The results indicate that the �rst option was the best strategy, while the second

option was slightly worse and the third option was far worse than the other two.

3.4.2 Branch-and-Cut for the Non-Vehicle Index Formulation

The three di�erent subtour eliminations constraints, GFSECs ((3.28) and (3.53)),

SECs (3.57) and MGFSECs ((3.58) and (3.59)), are used for the formulations without

vehicle index. To detect SECs, we use the same separation algorithm as for the vehicle

index formulations described above to �nd and generate the cuts for each period t.

For the GFSECs, we use the four separation algorithms described by Lysgaard et al.

(2004) for the CVRP. One of these heuristics is in fact an exact separation procedure

when all xijt variables are integer. Denote by z̄it, x̄ijt, q̄it and λ̄ivt the current values

of variables zit, xijt, qit and λivt in the branch-and-bound tree. The CVRP solution

for the separation routine in period t can be constructed as follows. First, we consider

only the nodes for which z̄it > 0. Then, the weight of edge (i, j) is set to x̄ijt and the

delivery quantity for customer i is set to q̄it for F (ML)|nk or to
∑t−1

v=π(i,t) givtλ̄ivt for
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F (OU)|nk. Note that the maximum number of subsets produced by the separation

algorithms for each period t is limited to n per call. Then, the violated GFSECs are

added to the formulation.

For the MGFSECs, we developed a greedy heuristic separation algorithm. De-

note by z̄it the current solution values of variables zit. For each subset R ⊆ T ,

we consider the set of customers with
∑

t∈R z̄it > 0 and calculate the value si =∑
t∈R q̄it/

∑
t∈R dz̄ite (or si =

∑
t∈R
∑t−1

v=π(i,t) givtλ̄ivt/
∑

t∈R dz̄ite for F (OU)|nk), which
represents the average delivery quantity per visit to customer i during the period set

R. Customers are ranked in descending order of the value of si and stored in an

ordered list. Then, an empty set of customers S and an empty set of violated sets

ξ(S) are created. The separation algorithm starts by adding the �rst customer in the

ordered list to S and checks whether the MGFSEC of the set S is violated. The next

customer is then added to S and the algorithm checks for the MGFSEC again, and

so on. The violated MGFSECs are stored in ξ(S). If a violated MGFSEC is found

or all the customers in the ordered list have been added to S, the set is emptied and

the �rst customer in the ordered list is removed. The algorithm then starts again by

adding the new �rst customer in the ordered list to S. This process is repeated until

the ordered list is empty or n violated cuts are found. In our implementation, we

consider the subset R of all two and three consecutive periods in T .

The separation algorithm above can also be used to generate the cuts (3.60). We

�rst set R = {t : 1 ≤ t ≤ r},∀r ∈ T , or the set from time period 1 to r ∈ T , and
use the demand dit in place of the delivery quantity q̄it in the calculation of si. The

algorithm is then set to detect the cuts (3.60) instead of MGFSECs.

Because it is very time consuming to solve all separation problems at every node

of the branch-and-bound tree, we use the following cut generation strategy for the

non-vehicle index formulations. At the root node, all separation algorithms are called

to generate the GFSECs, SECs, MGFSECs and (3.60). At each further node of the

tree, only the GFSECs and SECs are considered in the following sequence: (1) the

separation algorithm for the SECs is called, (2) if there is no violated SECs, the

separation algorithms for the GFSECs are called.
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The process described above can signi�cantly improve the performance of the

algorithm since using GFSECs alone is ine�cient due to the fractional coe�cients.

Using the SECs can e�ciently eliminate subtours (even though the vehicle capacity

can still be violated), while adding GFSECs and MGFSECs can eliminate the routes

with exceeded vehicle capacity. The computational results in Section 3.6.2.2 show a

signi�cant performance improvement by using the three cuts together compared to

using GFSECs alone.

3.5 Heuristics for Setting Initial Upper Bound

We develop a heuristic to compute upper bounds used in the branch-and-cut algo-

rithms. This heuristic is based on the adaptive large neighborhood search (ALNS)

framework proposed by Ropke and Pisinger (2006) for the VRP. The basic idea of the

ALNS is to repeatedly destroy and repair a solution using several heuristic operators

to seek for improvement. These operators are probabilistically selected based on em-

pirical scores related to their success in terms of �nding improved solutions. We use

specialized operators to handle the binary variables, and the remaining continuous

variables are set by solving a network �ow model embedded into these operators. We

call this procedure an optimization-based adaptive large neighborhood search (Op-

ALNS). The details of the heuristic procedure and its adaptations for the variants of

the PRP are presented in Chapter 4.

3.6 Computational Experiments

The branch-and-cut algorithms were coded in C# on MonoDevelop 2.2 using CPLEX

12.3 under Scienti�c Linux 6.1. The experiments were performed on a workstation

with an Intel Xeon 2.67GHz processor and 24GB of RAM. A multiple core processor

where each core has the same speci�cations was also used for the parallel computing

experiments in Section 3.6.4. The Op-ALNS heuristic was coded in C# using Mi-

crosoft Visual Studio 2008 and executed on a workstation with a 2.10 GHz CPU and

2 GB of RAM under Windows XP.

In all tables, we report the average CPU times in seconds and the average number

of nodes in the columns CPU and Nodes, respectively. Column %LB shows the
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�nal lower bound as a percentage of the best upper bound found by all approaches.

Boldface letters are used to indicate the best results. If all instances of a given

problem size are solved to optimality, we put boldface letters on the smallest total

computing time, otherwise boldface letters are put on the best average percentage of

lower bounds.

3.6.1 Details of the Instances

We created two test sets, i.e., MVPRP and MVIRP, from the instances available

in the literature. For the MVPRP instances, there are two published datasets that

are used in several studies, i.e., Boudia et al. (2005) and Archetti et al. (2011),

but both datasets were designed for heuristics and the instances are too large for

our exact algorithms. We thus generated smaller instances for our computational

experiments. Because the Archetti et al. (2011) dataset takes into account many

di�erent aspects, e.g., inventory costs at customers, initial inventory at customers, and

varying transportation and production costs, while the Boudia et al. (2005) instances

have zero inventory cost at the customers and the problem sizes are generally too

large, we decided to use a subset of the Archetti et al. (2011) dataset to create our

own test set. The generated MVPRP dataset consists of instances with n = 10 to 50,

to 40 and to 30 customers for time horizons with l = 3, 6 and 9 periods, respectively.

The number of vehicles is set to m = 2 or 3 for the instances with n ≤ 25 and to

m = 3 or 4 for the instances with 25 < n ≤ 50. For the MVIRP instances, we adapted

the IRP instances for the single vehicle case presented in Archetti et al. (2007). Our

test set consists of the instances with 5 to 50 and to 25 customers for time horizons

with l = 3 and 6 periods, respectively. The number of vehicles is set using the same

method as for the MVPRP instances. There are 336 MVPRP instances and 600

MVIRP instances for both the ML and OU policy. The details of the instances are

provided in the Appendix.
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3.6.2 E�ect of Valid Inequalities

This section presents the analysis of the inequalities introduced in Section 3.3. These

experiments were conducted on the instances with n ≤ 15 and the computing time

limit was set to one hour. The detailed results are provided in the Appendix.

3.6.2.1 E�ect of Vehicle Symmetry Breaking Constraints on the Vehicle

Index Formulations

We analyze the e�ect of symmetry breaking constraints SBC0 alone and SBC0 to-

gether with one of the other constraints SBC1-SBC4 for the formulations F (ML)|k
and F (OU)|k. The average results on the MVPRP and MVIRP instances are shown

in Table 3.II. In our tests, we used the default settings of CPLEX which allow the

solver to detect and generate its own symmetry breaking constraints.

Table 3.II: Average Results with Di�erent SBCs on the MVPRP and MVIRP Instances

Problem # None SBC0 SBC0+1 SBC0+2 SBC0+3 SBC0+4

%LB CPU Nodes %LB CPU Nodes %LB CPU Nodes %LB CPU Nodes %LB CPU Nodes %LB CPU Nodes

MVPRP-ML

Optimal 40 99.9 659.9 6128 100.0 417.1 3574 100.0 216.2 1374 100.0 332.2 2664 100.0 161.6 1473 100.0 147.2 1367

Not optimal 8 97.8 3173.2 11151 97.9 2987.9 9386 98.1 2818.9 7307 97.9 2966.8 8425 98.1 2794.0 8121 98.1 2792.7 8564

Total 48 99.5 1078.8 6965 99.6 845.6 4543 99.7 650.0 2363 99.6 771.3 3624 99.7 600.4 2581 99.7 588.1 2567

MVPRP-OU

Optimal 44 100.0 244.3 2124 100.0 240.8 1802 100.0 134.5 903 100.0 232.6 1662 100.0 118.0 786 100.0 193.5 1208

Not optimal 4 97.6 3600.0 8421 97.5 3600.0 8978 97.7 3600.0 7974 97.3 3600.0 7991 98.2 3564.7 9041 97.8 3600.0 7893

Total 48 99.8 524.0 2648 99.8 520.7 2400 99.8 423.3 1492 99.7 513.2 2189 99.9 405.2 1474 99.8 477.4 1765

MVIRP-ML

Optimal 100 99.6 807.4 82297 99.9 607.9 66896 100.0 173.2 7751 99.9 520.4 55501 100.0 88.4 4568 100.0 98.9 4954

Not optimal 20 89.3 3600.0 36402 90.3 3600.0 36170 92.0 3600.0 34414 91.1 3600.0 37335 95.6 3261.5 41581 94.9 3438.3 45567

Total 120 97.9 1272.8 74648 98.3 1106.6 61775 98.7 744.3 12195 98.4 1033.7 52474 99.3 617.3 10737 99.1 655.5 11723

MVIRP-OU

Optimal 100 99.9 369.6 5518 99.9 288.6 3803 100.0 142.1 1977 100.0 269.6 3733 100.0 98.9 1460 100.0 104.6 1518

Not optimal 20 88.8 3600.0 29863 90.2 3600.0 31349 90.7 3600.0 26404 89.4 3600.0 29394 95.4 2981.2 23282 95.3 3025.4 24768

Total 120 98.1 908.0 9575 98.3 840.5 8394 98.4 718.4 6048 98.2 824.7 8009 99.2 579.3 5097 99.2 591.4 5393

Table 3.III provides a summary of the time reduction factors for each approach,

calculated as the average computing time spent to solve an instance size without using

any of our SBCs, divided by the average computing time of using each cut strategy.

A time factor equal to 2 means the algorithm spent on average only half the time by

using the SBC strategy compared to using no additional SBCs.

The results clearly show the bene�ts of using the SBCs compared to relying only

on those generated by CPLEX. The original formulation without any additional SBC
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Table 3.III: Summary of the Time Reduction Factors with Di�erent SBCs on Instances Solved to
Optimality

Problem Value SBC0 SBC0+1 SBC0+2 SBC0+3 SBC0+4

MVPRP-ML Min 1.16 1.62 1.29 1.65 1.48
Max 4.42 6.45 5.76 11.65 9.26
Avg 2.11 3.25 2.38 4.53 4.15

MVPRP-OU Min 0.93 0.91 0.76 0.98 0.99
Max 1.47 6.13 2.14 5.20 5.31
Avg 1.14 1.72 1.15 2.03 1.94

MVIRP-ML Min 0.94 1.24 1.12 1.39 1.59
Max 3.87 16.55 3.49 42.50 40.64
Avg 1.87 4.89 1.99 9.70 9.09

MVIRP-OU Min 0.80 0.62 0.43 1.50 1.36
Max 2.15 3.35 1.89 7.92 6.51
Avg 1.19 1.49 1.08 3.13 3.02

provides the worst results and adding SBC0 could generally improve the computing

times and reduce the number of nodes in the branch-and-bound tree. The combination

of SBC0 together with one of the other SBCs could further speed up the solution

process, except for SBC2 where some results are worse than using the CPLEX cuts

alone. The cut strategies SBC0+SBC3 and SBC0+SBC4 provide good results, but

SBC0+SBC3 is slightly better overall. The average time factor reductions obtained by

using SBC0+SBC3 within the maximum computing time limit of one hour are 4.53,

2.03, 9.70 and 3.13 for the MVPRP-ML, MVPRP-OU, MVIRP-ML and MVIRP-

OU instances, respectively. By adding SBC0+SBC3 to the F (ML)|k and F (OU)|k
formulations, the algorithm could also solve 36 instances that could not be solved to

optimality within one hour using the formulations without these inequalities. We thus

consider the formulations F (ML)|k and F (OU)|k with SBC0+SBC3 in the remaining

computational experiments.

3.6.2.2 E�ect of Valid Inequalities for the Non-Vehicle Index Formula-

tions

In this section, we analyze the e�ect of the valid inequalities that we implemented

for the formulations F (ML)|nk and F (OU)|nk. First, we evaluate the e�ects of the
valid inequalities on the lower bounds at the root node of the branch-and-bound

tree. To avoid misinterpretation due to the impact of the CPLEX cuts, we conducted

the experiments without these cuts. The average lower bounds are shown in Table
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3.IV. The numbers presented are equal to the average lower bounds at the root node

compared to the optimal solutions or the best upper bounds if the instances were not

solved to optimality. Each column shows the results of using each cut presented in

Section 3.3.2, where the columns None and All present the results without using any

additional cuts (i.e., only GFSECs (3.28) and (3.53) are applied) and with all cuts

together, respectively.

Table 3.IV: E�ects of the Valid Inequalities for the Non-Vehicle Index Formulations on Average
Lower Bounds at the Root Node for the MVPRP and MVIRP Instances

Problem Maximum Level (ML) Order-Up-To Level (OU)
None (3.55) (3.57) (3.58) (3.60) All None (3.56) (3.57) (3.59) (3.60) All

MVPRP 93.3 93.3 94.7 93.5 93.7 95.2 94.0 94.6 94.5 94.4 94.1 95.2
MVIRP 83.5 83.6 85.4 84.8 87.4 89.0 85.7 86.1 88.3 87.1 87.4 89.7

The results show that adding all the cuts together generally provides the best

lower bounds and it has more e�ect on larger instances. We can also observe that

the inequalities have more e�ect on the lower bound at the root node for the MVIRP

than for the MVPRP. Note that the average CPU times at the root node without

any additional inequalities for the MVPRP and MVIRP are 0.4 and 0.2 seconds,

respectively, and with all the inequalities are 1.3 and 0.5 seconds, respectively.

In Table 3.V, we report the average results of using all these cuts with our exact

algorithms. The results of the branch-and-cut without and with the additional valid

inequalities from Section 3.3.2 are shown in columns F (ML)|nk, F (OU)|nk and in

columns F (ML)|nk+, F (OU)|nk+, respectively.

Table 3.V: E�ects of the Valid Inequalities for the Non-Vehicle Index Formulations on the Branch-
and-Cut Algorithm for the MVPRP and MVIRP Instances

Problem Maximum Level (ML) Order-Up-To Level (OU)
# F (ML)|nk F (ML)|nk+ # F (OU)|nk F (OU)|nk+

%LB CPU Nodes %LB CPU Nodes %LB CPU Nodes %LB CPU Nodes

MVPRP
Optimal 32 100.0 397.3 28639 100.0 161.3 10337 40 100.0 109.7 7325 100.0 69.6 5105
Not optimal 16 98.9 3600.0 83703 99.3 2954.0 47366 8 98.8 3530.5 65816 98.9 3255.2 43935
Total 48 99.6 1464.9 46994 99.8 1092.2 22680 48 99.8 679.8 17073 99.8 600.6 11576

MVIRP
Optimal 80 99.9 215.8 36379 100.0 130.9 23356 80 100.0 66.1 5573 100.0 14.0 1215
Not optimal 40 95.4 3039.4 154296 96.5 3077.9 124501 40 95.0 3105.8 155052 96.5 3014.3 113077
Total 120 98.4 1157.0 75685 98.8 1113.2 57071 120 98.3 1079.4 55399 98.8 1014.1 38502
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We see that applying all the inequalities of Section 3.3.2 could provide signi�cant

improvements in the branch-and-cut procedure for both formulations F (ML)|nk and
F (OU)|nk in terms of lower bounds (both at the root node and �nal lower bounds),

computing times and the number of nodes in the branch-and-bound tree. We thus

used the formulations F (ML)|nk+ and F (OU)|nk+ in the further computational

experiments.

3.6.3 Comparison of the Vehicle Index and Non-Vehicle Index
Formulations

In this section, we compare the performance of the vehicle index formulations

F (ML)|k and F (OU)|k, and the non-vehicle index formulations F (ML)|nk and

F (OU)|nk using the full test sets. The Op-ALNS procedure as described in Sec-

tion 3.5 is used to calculate the initial upper bounds and these bounds are given to

CPLEX before the branch-and-cut algorithm starts. The computing time limit for

the branch-and-cut approaches was set to two hours in these experiments. The results

are provided in Tables 3.VI and 3.VII. The column hi in Table 3.VII indicates the

group of the MVIRP instances, i.e., low (L) or high (H) inventory costs. We report

the quality of the initial upper bounds using the Op-ALNS procedure next to the

results of the exact algorithms and the column %Di� indicates the percentage di�er-

ence of the total costs obtained by the Op-ALNS from the optimal objective value or

the best upper bound found by the vehicle index and non-vehicle index formulations

if the instances were not solved to optimality.
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Table 3.VI: Average Results on MVPRP Instances

n l m MVPRP-ML MVPRP-OU
F (ML)|k F (ML)|nk Op-ALNS F (OU)|k F (OU)|nk Op-ALNS
%LB CPU %LB CPU %DIFF CPU %LB CPU %LB CPU %DIFF CPU

10 3 2 100.0 0.2 100.0 0.1 0.4 4.6 100.0 0.4 100.0 0.1 0.0 4.2
10 3 3 100.0 0.6 100.0 0.3 1.1 4.3 100.0 0.6 100.0 0.2 0.0 4.4
15 3 2 100.0 2.5 100.0 8.6 0.9 6.6 100.0 17.6 100.0 54.2 2.0 5.8
15 3 3 100.0 26.6 100.0 35.4 1.0 6.6 100.0 17.6 100.0 234.4 1.0 6.7
20 3 2 100.0 2.6 100.0 4.0 1.0 9.8 100.0 59.6 100.0 91.5 1.5 7.4
20 3 3 100.0 51.1 100.0 70.9 0.8 10.0 100.0 692.5 100.0 1193.7 1.3 8.4

25 3 2 100.0 3.9 100.0 9.5 1.5 12.4 100.0 2854.8 99.5(4) 7200.0 1.9 11.1

25 3 3 100.0 85.8 100.0 589.5 1.4 14.3 98.4(4) 7200.0 98.8(4) 7200.0 2.5 14.3

30 3 3 100.0 194.2 99.9(1) 1954.5 0.9 23.7 97.8(4) 7200.0 98.0(4) 7200.0 1.7 19.9

30 3 4 100.0 2027.8 99.8(2) 4463.3 1.7 28.1 96.3(4) 7200.0 97.1(4) 7200.0 1.5 23.3

35 3 3 100.0 1221.2 99.5(2) 4279.9 2.4 36.7 95.6(4) 7200.0 96.0(4) 7200.0 0.0 28.8

35 3 4 99.0(3) 6515.4 99.0(4) 7200.0 2.1 43.0 94.6(4) 7200.0 95.4(4) 7200.0 0.5 37.7

40 3 3 99.7(1) 4097.6 99.4(4) 7200.0 1.3 51.7 97.6(4) 7200.0 97.8(4) 7200.0 0.6 32.0

40 3 4 98.3(3) 5970.7 98.9(4) 7200.0 0.8 52.4 95.3(4) 7200.0 95.8(4) 7200.0 0.0 42.9

45 3 3 99.1(3) 5647.0 99.4(4) 7200.0 0.6 67.5 96.7(4) 7200.0 97.0(4) 7200.0 0.2 45.9

45 3 4 97.2(4) 7200.0 97.8(4) 7200.0 0.5 72.1 95.0(4) 7200.0 95.7(4) 7200.0 0.0 56.7

50 3 3 99.3(2) 5243.6 99.3(4) 7200.0 1.2 90.4 96.2(4) 7200.0 96.5(4) 7200.0 0.0 59.2

50 3 4 98.3(3) 7058.4 98.5(4) 7200.0 0.4 85.1 94.5(4) 7200.0 95.1(4) 7200.0 0.0 65.9
10 6 2 100.0 1.9 100.0 0.6 0.6 7.3 100.0 0.5 100.0 0.3 0.1 9.5
10 6 3 100.0 12.5 100.0 15.1 0.4 8.4 100.0 1.3 100.0 0.2 0.1 14.0

15 6 2 100.0 97.5 99.8(1) 1940.9 1.0 13.8 100.0 8.6 100.0 35.3 0.4 14.1

15 6 3 100.0 1105.8 99.5(4) 7200.0 1.6 14.0 100.0 73.8 100.0 146.8 0.7 17.6

20 6 2 100.0 84.9 99.8(1) 2501.2 1.3 22.1 100.0 23.7 100.0 281.6 0.4 22.4

20 6 3 100.0 806.5 99.5(2) 3608.5 1.5 20.6 100.0 269.7 100.0 297.2 0.5 32.7

25 6 2 100.0 170.6 99.9(2) 3663.4 1.8 28.4 100.0 328.8 100.0 1552.4 1.2 30.1

25 6 3 99.9(1) 2811.0 99.4(2) 4150.6 1.7 34.2 99.3(4) 7200.0 99.4(4) 7200.0 1.6 48.4

30 6 3 99.4(2) 4347.1 99.3(4) 7200.0 1.4 52.3 100.0 1634.9 99.7(2) 4002.2 0.5 58.7

30 6 4 97.9(4) 7200.0 98.8(4) 7200.0 0.4 59.3 98.9(4) 7200.0 99.2(4) 7200.0 1.1 90.3
10 9 2 100.0 20.5 100.0 30.2 1.8 13.8 100.0 15.3 100.0 4.5 1.4 18.4
10 9 3 100.0 405.2 100.0 1095.9 1.8 12.9 100.0 75.3 100.0 35.5 1.3 26.7

15 9 2 99.6(2) 3797.7 99.4(4) 7200.0 1.6 24.1 100.0 887.1 99.4(2) 5143.6 1.2 28.2

15 9 3 97.4(4) 7200.0 98.7(4) 7200.0 1.9 25.7 98.6(2) 5612.0 98.8(4) 7200.0 1.5 55.7

20 9 2 100.0 1480.0 99.6(2) 5859.9 1.0 36.8 100.0 590.9 99.7(2) 4081.3 0.8 42.6

20 9 3 98.9(2) 4546.3 99.2(4) 7200.0 1.0 39.2 99.2(3) 6430.5 99.3(3) 5737.2 0.4 70.4

Optimal 100.0 371.5 99.9 1777.7 1.2 16.0 100.0 397.5 99.9 1281.8 0.9 19.1
Not optimal 98.8 5510.4 99.0 6965.4 1.1 53.6 96.9 7042.8 97.3 7102.5 0.8 46.1
Total 99.5 2336.4 99.6 3761.2 1.2 30.4 98.6 3329.3 98.8 3849.8 0.8 31.0
(−) indicates the number of instances (out of 4) that were not solved to optimality
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Table 3.VII: Average Results on MVIRP Instances.

n l m hi MVIRP-ML MVIRP-OU
F (ML)|k F (ML)|nk Op-ALNS F (OU)|k F (OU)|nk Op-ALNS
%LB CPU %LB CPU %DIFF CPU %LB CPU %LB CPU %DIFF CPU

5 3 2 L 100.0 0.1 100.0 0.1 1.3 3.5 100.0 0.0 100.0 0.1 0.5 3.4
5 3 3 L 100.0 0.3 100.0 0.2 0.5 3.7 100.0 0.0 100.0 0.1 0.9 3.8
10 3 2 L 100.0 1.3 100.0 3.3 3.0 5.5 100.0 2.0 100.0 3.0 2.8 6.6
10 3 3 L 100.0 8.3 100.0 19.2 4.1 6.0 100.0 4.8 100.0 4.4 1.1 7.4
15 3 2 L 100.0 4.4 100.0 26.7 2.2 7.9 100.0 5.4 100.0 26.7 6.1 8.1
15 3 3 L 100.0 38.5 100.0 1701.0 7.0 10.3 100.0 19.1 100.0 83.3 9.2 13.7

20 3 2 L 100.0 31.2 100.0 1054.5 6.1 10.9 100.0 67.1 99.8(1) 1791.9 6.3 10.6

20 3 3 L 100.0 386.8 96.9(3) 4540.2 5.3 11.6 100.0 509.0 98.4(2) 4400.1 9.9 14.1

25 3 2 L 100.0 71.0 99.1(1) 1837.9 5.4 18.0 100.0 127.8 100.0 503.6 10.6 4.6

25 3 3 L 100.0 978.3 96.2(5) 7200.0 6.1 17.2 100.0 1035.3 98.7(3) 5764.7 8.8 22.9

30 3 3 L 100.0 1962.3 94.5(4) 6091.3 7.2 24.8 100.0 3054.1 97.1(4) 6593.6 8.8 29.0

30 3 4 L 93.4(4) 6203.8 92.8(5) 7200.0 5.9 27.3 91.8(4) 6586.0 94.4(5) 7200.0 8.9 37.4

35 3 3 L 100.0 4124.9 94.1(5) 7200.0 6.5 32.7 96.4(3) 5262.4 96.1(5) 7200.0 9.9 41.3

35 3 4 L 90.4(5) 7200.0 91.5(5) 7200.0 5.2 36.1 86.9(5) 7200.0 91.5(5) 7200.0 6.9 51.6

40 3 3 L 97.3(3) 5699.9 94.1(5) 7200.0 7.4 47.0 97.1(4) 7078.1 95.9(4) 7200.0 8.5 47.7

40 3 4 L 86.7(5) 7200.0 90.3(5) 7200.0 1.9 49.9 83.9(5) 7200.0 89.5(5) 7200.0 5.4 62.0
5 6 2 L 100.0 4.0 100.0 15.6 3.6 5.7 100.0 1.5 100.0 4.6 2.8 5.9
5 6 3 L 100.0 140.9 100.0 273.3 3.3 6.8 100.0 0.2 100.0 3.6 1.4 7.6

10 6 2 L 100.0 168.2 98.5(2) 3017.7 4.2 9.7 100.0 219.6 99.3(1) 2295.7 8.2 9.7

10 6 3 L 96.7(2) 4877.0 96.4(4) 6083.8 3.8 11.4 99.1(1) 3704.9 97.4(2) 5449.0 5.3 12.0

15 6 2 L 100.0 950.5 96.3(4) 7200.0 3.9 18.0 100.0 736.1 96.4(4) 7200.0 10.1 16.5

15 6 3 L 96.1(5) 7200.0 92.9(5) 7200.0 4.1 18.8 93.5(5) 7200.0 92.3(5) 7200.0 8.7 20.6
5 3 2 H 100.0 0.1 100.0 0.1 0.9 3.2 100.0 0.1 100.0 0.1 0.0 3.3
5 3 3 H 100.0 0.3 100.0 0.1 0.5 3.7 100.0 0.0 100.0 0.1 0.0 4.0
10 3 2 H 100.0 1.5 100.0 6.1 2.1 5.3 100.0 2.1 100.0 3.0 0.9 6.2
10 3 3 H 100.0 9.8 100.0 29.7 2.6 6.0 100.0 4.9 100.0 5.7 2.2 7.1
15 3 2 H 100.0 4.4 100.0 42.0 2.0 7.8 100.0 6.3 100.0 37.5 4.0 9.4
15 3 3 H 100.0 33.6 100.0 980.9 4.0 8.5 100.0 16.5 100.0 39.1 3.8 13.9
20 3 2 H 100.0 30.5 100.0 1586.6 2.4 11.4 100.0 63.0 100.0 1766.1 3.6 11.9

20 3 3 H 100.0 373.7 98.6(3) 4746.9 4.6 11.3 100.0 570.5 99.3(1) 4099.1 6.1 15.9

25 3 2 H 100.0 56.6 99.7(1) 1800.1 2.8 16.8 100.0 122.5 100.0 1620.8 4.3 5.4

25 3 3 H 100.0 896.5 98.7(5) 7200.0 4.3 18.2 100.0 1121.3 99.4(3) 5350.0 5.0 22.0

30 3 3 H 100.0 1565.4 98.4(4) 6042.0 3.4 25.9 100.0 3052.5 98.6(4) 6826.9 6.5 28.2

30 3 4 H 98.0(3) 5967.8 97.4(5) 7200.0 2.7 29.0 96.7(4) 6182.1 97.9(5) 7200.0 4.5 34.8

35 3 3 H 100.0 2624.5 98.1(5) 7200.0 4.4 35.3 99.0(3) 5498.3 98.6(5) 7200.0 5.3 41.1

35 3 4 H 96.7(5) 7200.0 97.0(5) 7200.0 2.6 36.1 94.4(5) 7200.0 96.0(5) 7200.0 3.8 50.7

40 3 3 H 99.0(3) 5400.6 98.2(5) 7200.0 4.5 46.0 99.2(3) 6700.1 98.7(4) 6567.8 5.5 48.9

40 3 4 H 95.0(5) 7200.0 96.6(5) 7200.0 0.8 51.5 93.7(5) 7200.0 95.8(5) 7200.0 2.8 61.5
5 6 2 H 100.0 3.2 100.0 15.6 2.2 5.7 100.0 1.4 100.0 4.4 2.5 5.7
5 6 3 H 100.0 81.1 100.0 182.0 1.8 6.6 100.0 0.2 100.0 4.0 1.4 7.5

10 6 2 H 100.0 113.5 99.1(2) 3013.5 3.3 9.8 100.0 272.4 99.8(1) 2428.4 6.1 9.1

10 6 3 H 97.9(2) 4669.7 97.7(3) 5668.3 2.5 11.4 99.3(1) 3561.8 97.9(3) 5298.3 6.1 11.6

15 6 2 H 100.0 717.2 98.3(4) 7200.0 1.8 17.6 100.0 763.1 98.0(5) 7200.0 5.8 15.7

15 6 3 H 98.1(5) 7200.0 96.2(5) 7200.0 2.8 17.3 96.4(5) 7200.0 95.6(5) 7200.0 4.1 19.7

Optimal 100.0 480.7 99.0 2507.1 3.5 12.0 100.0 392.6 99.5 1935.4 4.7 11.0
Not Optimal 95.5 6334.9 95.1 6979.3 3.7 31.8 94.8 6269.5 95.5 6893.9 6.1 38.6
Total 98.8 2077.3 97.9 3726.8 3.6 17.4 98.3 2262.6 98.3 3513.1 5.1 19.8
(−) indicates the number of instances (out of 5) that were not solved to optimality
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The results in Tables 3.VI and 3.VII clearly indicate the performance of the two

formulation schemes. The vehicle index formulations F (ML)|k and F (OU)|k out-

performed the non-vehicle index formulations in �nding the optimal solution even

though the former requires many more variables. A possible reason is that the GF-

SECs, which are fractional, must be used for the non-vehicle index formulations,

whereas the SECs, in which the right hand sides are integer, are used for the vehicle

index formulations. The non-vehicle index formulations F (ML)|nk and F (OU)|nk,
however, could generally provide better lower bounds on the instances that were not

solved to optimality within two hours except for the MVIRP-ML instances. The aver-

age %LB of the non-vehicle index formulations after two hours is slightly better than

for the vehicle index formulations on the MVPRP instances, while the lower bounds

produced by the vehicle index formulations instances are better on the MVIRP-ML

and as good as the non-vehicle index formulation on the MVIRP-OU. The computing

times on the MVIRP instances increase in a greater ratio when the number of periods

increases compared to the MVPRP instances. The largest instance sizes that can be

solved to optimality are 35c/3p/3v for MVPRP-ML and MVIRP-ML, 30c/3p/3v for

MVIRP-OU and 25c/3p/2v for the MVPRP-OU.

The Op-ALNS could generally provide high quality solutions on the MVPRP in-

stances, where the deviations from the optimal solutions or best upper bounds are

1.2% and 0.8% for the MVPRP-ML and MVPRP-OU, respectively. The Op-ALNS

is not competitive for the smallest instances but it could provide a solution for most

instances within one minute. The results on the MVIRP are not as good as for the

MVPRP, but the Op-ALNS could still provide good quality solutions within a few sec-

onds. Since the Op-ALNS was originally developed for the PRP, where it has to take

the production and setup costs into account, the operators mainly attempt to �nd a

solution where production and distribution costs are minimized. In the IRP, however,

because a known production quantity is made available in each period, the algorithm

has to be modi�ed to put more emphasis on the inventory and distribution part. We

also found that by expanding the neighborhood (i.e., the number of customer-period

combinations) by 15-30%, the average solution quality can be further improved by
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approximately 1-2% but with double the average computing time. However, the cur-

rent setting is preferable since it has been shown in Chapter 4 that the Op-ALNS

procedure could handle small to very large PRP instances e�ectively. It is worth

noting that the Op-ALNS is much faster than the MVIRP heuristic presented by

Coelho et al. (2012a), which had an average computing time of 2,000 seconds for the

instances with three periods and of 8,000 seconds for the instances with six periods.

We also remark that, on the instances with n ≤ 15 that were solved to optimality,

setting the initial upper bounds in CPLEX leads to an average improvement of 11.8%

and 6.2% in computing time on the MVPRP and MVIRP instances, respectively.

3.6.4 Performance of the Branch-and-Cut Algorithm on
Multi-Core Processors

Nowadays, most computers have multiple core processors and modern solvers like

CPLEX have the capability to perform parallel optimization. In this section, we re-

port the results of experiments performed on an eight-core processor. We �rst show

the comparison of the average results by using single and multiple core processors

on the instances that were solved to optimality by the single core machine in the

previous section in Table 3.VIII. In the results for the eight-core processor, columns

CPU and WC show the average total aggregate CPU time of all cores and average

wallclock time, respectively. Because we did not run other tasks when running the

algorithm, the wallclock time is a good approximation of the maximum CPU time

spent on all cores. We also calculate the ratio of the aggregate CPU time and wall-

clock time (CPU/WC) in column C/W to show the bene�t of parallel computing

on multi-core processors. Since the main purpose of the experiments is to explore

the largest instances that could be solved to optimality using multi-core processors,

the formulations with a vehicle index are used as they are better at �nding optimal

solutions. The maximum computing time was set to 12 hours of wallclock time.
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Table 3.VIII: Average Results Using Single and Multi-Core Processors on MVPRP and MVIRP
Instances Solved to Optimality

Problem 1 Core 8 Cores %Change
CPU Nodes CPU WC C/W Nodes CPU Nodes

MVPRP-ML 371.5 1078 353.2 216.1 1.5 1171 -4.9 8.6
MVPRP-OU 397.5 2159 488.8 324.4 1.3 2564 23.0 18.8
MVIRP-ML 480.7 3795 548.1 302.9 1.6 3924 14.0 3.4
MVIRP-OU 392.6 1476 446.4 212.9 1.7 1714 13.7 16.1

We can see that using multiple cores could reduce the elapsed time spent to solve

the problems, but the aggregate CPU times and number of nodes generally increase

compared to the results on the single core machine. The detailed results of using

multi-core processors on all instances can be found in the Appendix. By using par-

allel computing, the algorithm could solve the instances up to 50c/3p/3v for the

MVPRP-ML, 35c/6p/3v for the MVPRP-OU, and 45c/3p/3v for the MVIRP-ML

and MVIRP-OU, and the average computing time was 2.1, 0.8, 4.5 and 5.6 hours,

respectively. The algorithm, however, still could not solve the MVPRP-OU instances

with 3 periods larger than 25c/3p/2v. These instances appear to be more di�cult to

solve compared to the instances with 6 periods because they have lower initial inven-

tory levels at customers as described in the Appendix. Therefore, larger quantities

must be delivered to customers during initial periods in the planning horizon to satisfy

the OU policy. The multi-core processors have more impact on the MVIRP instances

where the average CPU/WC ratio is 2.2 compared to 1.6 for the MVPRP, and the

maximum CPU/WC ratio of 4.1 could be achieved. Table 3.IX shows the summary of

the largest instances that were solved to optimality by using single and multiple core

processors. We also report the largest instance sizes for which the algorithm could

obtain a solution within 2% of optimality for the results produced by a single core

machine. The letter in parentheses indicates whether the solution was produced by

the vehicle index formulations (k) or the non-vehicle index formulations (nk) (only for

the single core as only the vehicle index formulations were solved on multiple cores).

Note that for the instances solved to optimality, we report the instance size where the

smaller instances were all solved to optimality, e.g., the instance size 20c/9p/2v on

the MVPRP-ML solved by the single core processor is not considered as the largest

since the instance size 15c/9p/2v is not solved to optimality.
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Table 3.IX: Summary of the Largest Instances Solved to Optimality Using Single and Multiple Core
Processors

Problem Maximum Level (ML) Order-Up-To Level (OU)
1 Core (2h) 8 Cores (12h) 1 Core (2h) 8 Cores (12h)

Optimal ≤ 2% Optimal Optimal ≤ 2% Optimal
MVIRP 35c/3p/3v (k) -same- 45c/3p/3v 30c/3p/3v (k) -same- 45c/3p/3v

15c/6p/2v (k) -same- 25c/6p/2v 15c/6p/2v (k) -same- 15c/6p/3v
MVPRP 35c/3p/3v (k) 50c/3p/4v (nk) 50c/3p/3v 25c/3p/2v (k, nk) 30c/3p/3v (nk) 25c/3p/2v

25c/6p/2v (k) 30c/6p/4v (nk) 30c/6p/3v 30c/6p/3v (k, nk) 30c/6p/4v (k, nk) 35c/6p/3v
10c/9p/3v (k, nk) 20c/9p/3v (k, nk) 20c/9p/2v 20c/9p/2v (k) 20c/9p/3v (k, nk) 25c/9p/2v

3.6.5 Results on Single-Vehicle Instances

We also tested the performance of the algorithms using the two formulation schemes

on the single-vehicle instances and the results are presented in the Appendix. We

observe that the single vehicle case is much easier to solve compared to the multiple

vehicle case. Most instances were solved to optimality within a few seconds and the

algorithms spent less than two minutes on average. We also performed the experi-

ments on the PRP instances with 14c/6p/1v and uncapacitated production used in

Archetti et al. (2011). All instances were now solved to optimality in a few seconds.

3.6.6 Results When Allowing Multiple Visits

In addition to these tests, we performed experiments on the cases where 2 and 3

visits per customer per period are allowed. The results are shown in the Appendix

A.2.4. By allowing up to 2 and 3 visits per customer per period, the total costs

on all the MVPRP instances remain the same compared to the case where a single

visit is allowed. There are very few solutions where multiple visits are used (about

0.25% on average) and their total cost is equal to the case of a single visit because the

problem has multiple optimal solutions. These multiple optimal solutions are found in

the instances with zero inventory holding costs at customers because some deliveries

can be made in advance and stored at customers without additional costs. In these

MVPRP instances, allowing multiple visits is not bene�cial because it generally incurs

a higher routing cost. However, one can possibly take advantage of this feature in the

case where customers have demands higher than the vehicle capacity. In this case,

more than one vehicle can be used to deliver su�cient quantities to these customers

instead of using carry-over inventories to satisfy the demands. For the MVIRP, the
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total costs slightly decreased (0.6% on average) when allowing a maximum of 2 or 3

visits while the number of multiple visits is approximately 5-6% of the total number of

visits. We could obtain slight improvements in the total costs in the MVIRP because

the production quantities at the plant, which are �xed, can be delivered to some

customers with lower inventory holding costs. Note that the average CPU time also

increased by approximately 26% and 38% when 2 or 3 visits are allowed, respectively.

3.7 Conclusion

We have studied the multi-vehicle variant of the production routing problem (PRP)

and the inventory routing problem (IRP). Two strong formulations, one with a vehicle

index and the other one without a vehicle index, were introduced. We proposed

several valid inequalities including symmetry breaking constraints to strengthen the

formulations and developed branch-and-cut approaches to solve the problems. We

also adapted the previously developed Op-ALNS heuristic for the PRP-ML to the

PRP-OU and IRP (both ML and OU) to determine the initial upper bounds for

our branch-and-cut algorithms. The Op-ALNS could generally provide high quality

solutions, especially for the PRP instances, within a few seconds. The results show

that the vehicle index formulations are superior in �nding optimal solutions, while the

non-vehicle index formulations could generally provide better lower bounds on larger

instances that were not solved to optimality within two hours. Finally, we could

solve the instances with up to 35 customers, 3 periods and 3 vehicles to optimality

for the IRP and PRP with the ML policy, and 30 (resp. 25) customers, 3 periods

and 3 vehicles for the IRP (resp. PRP) with the OU policy within two hours. By

using multi-core processors, we could further solve the instances with up to 45 and 50

customers, 3 periods and 3 vehicles for the IRP (both ML and OU) and PRP with the

ML policy, respectively, and the instances with 35 customers, 6 periods and 3 vehicles

are also solved for the PRP with the OU policy. We have thus �lled important gaps

in the literature concerning the exact solution of the IRP and PRP with multiple

vehicles.
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Chapter 4

Heuristic Algorithms for Production

Routing Problems

In this chapter, we present heuristics to compute solutions and upper bounds which

are also used in the branch-and-cut algorithms of the previous chapter. The heuristic

for the PRP-ML presented in Sections 4.1-4.3 and the computational results in Section

4.5 are part of the article 1 below, and the adaptations of the heuristic to the PRP-OU

and the IRP (both ML and OU) in Section 4.4 are part of the article 2.

1. Adulyasak, Y., Cordeau, J.-F., Jans, R. Optimization-Based Adaptive Large

Neighborhood Search for the Production Routing Problem. Transportation Sci-

ence (Article in Advance), 2012.

2. Adulyasak, Y., Cordeau, J.-F., Jans, R. Formulations and Branch-and-Cut

Algorithms for Multi-Vehicle Production and Inventory Routing Problems.

GERAD Tech Rep. G-2012-14. 40 pages. Submitted to INFORMS Journal

on Computing in April 2012 (Revision submitted in October 2012).

4.1 Introduction

In this chapter, we introduce a novel heuristic for the PRP. This heuristic is based on

the adaptive large neighborhood search (ALNS) framework �rst proposed by Ropke

and Pisinger (2006) for vehicle routing problems. ALNS itself extends the ideas of the

large neighborhood search introduced by Shaw (1997). ALNS repeatedly destroys a

part of the current solution and reconstructs it in the hope of achieving an improve-

ment. To this end, several heuristics are used to search the solution neighborhood and

they are randomly selected based on past success. ALNS has been very successful in

vehicle routing (see Ropke and Pisinger (2006), Pisinger and Ropke (2007), Azi et al.
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(2010), Laporte et al. (2010), Ribeiro and Laporte (2012)). However, applying ALNS

in the context of the PRP is more di�cult because the problem involves quantity

decisions as well as complicating constraints. To overcome this di�culty, the binary

variables indicating the customers to visit and the vehicle routes are handled by the

operators of the ALNS and a network �ow model is used to set the corresponding op-

timal continuous variables. Similar ideas were recently put forward by Coelho et al.

(2012c) to address the IRP with transshipment. In our approach, we use an enu-

meration scheme adapted from local branching techniques (Fischetti and Lodi, 2003)

to generate initial solutions with di�erent setup con�gurations. These solutions are

further explored in the ALNS part of the heuristic. Because of the complexity of the

problem, we introduce new types of operators, called selection and transformation,

that are speci�cally adapted to the multi-period structure of the PRP, in which the

number of deliveries to each customer is part of the decisions. We tested this new

heuristic on two di�erent sets of benchmark instances. The results show that the

proposed heuristic is very e�cient and generally outperforms all other heuristics for

the PRP reported in the literature.

The rest of this chapter is organized as follows. Section 4.2 presents a formulation

of the PRP-ML that is used in the heuristic procedure. The ALNS heuristic is then

described in detail in Section 4.3. This is followed by the adaptations of the heuristic

to the PRP-OU and the IRP (both ML and OU) in Section 4.4 and the computational

results in Section 4.5.

4.2 Mathematical Formulation

In this section, we �rst introduce the mathematical formulation that is used through-

out this chapter. Since the formulation used in the heuristic algorithm is di�erent

from the previous section and the shipment quantity variable with and without vehicle

index are required, we introduce the variable rit to represent the shipment quantity

to customer i in period t (instead of the variable qit) and retain variable qikt. We

further de�ne Mt = min{C,
∑l

j=t

∑
i∈Nc

dij} and M̃it = min{Q,Li,
∑l

j=t dij}. The

PRP is de�ned on a complete graph G = (N,A) where A = {(i, j) : i, j ∈ N, i 6= j}
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and we assume throughout that cij = cji, ∀(i, j) ∈ A. The remaining notation follow

the previous chapter. The formulation used in this section is as follows.

min
∑
t∈T

upt + fyt +
∑
i∈N

hiIit +
∑

(i,j)∈E

∑
k∈K

cijxijkt

 (4.1)

s.t.

I0,t−1 + pt =
∑
i∈Nc

rit + I0t ∀t ∈ T (4.2)

Ii,t−1 + rit = dit + Iit ∀i ∈ Nc,∀t ∈ T (4.3)

pt ≤Mtyt ∀t ∈ T (4.4)

I0t ≤ L0 ∀t ∈ T (4.5)

Ii,t−1 + rit ≤ Li ∀i ∈ Nc,∀t ∈ T (4.6)

rit =
∑
k∈K

qikt ∀i ∈ Nc,∀t ∈ T (4.7)

qikt ≤ M̃it

∑
j∈N

xijkt ∀k ∈ K, ∀i ∈ Nc,∀t ∈ T (4.8)

∑
i∈Nc

qikt ≤ Q ∀k ∈ K, ∀t ∈ T (4.9)∑
k∈K

∑
j∈N

xijkt = zit ∀i ∈ Nc,∀t ∈ T (4.10)

∑
j∈N

xjikt =
∑
j∈N

xijkt ∀k ∈ K, ∀i ∈ Nc,∀t ∈ T (4.11)

∑
j∈Nc

x0jkt ≤ 1 ∀k ∈ K, ∀t ∈ T (4.12)

∑
i∈S

∑
j∈S

xijkt ≤ |S| − 1 ∀S ⊆ Nc : |S| ≥ 2,∀k ∈ K, ∀t ∈ T (4.13)

pt, Iit, rit, qikt ≥ 0 ∀i ∈ N,∀k ∈ K, ∀t ∈ T (4.14)

yt, zit, xijkt ∈ {0, 1} ∀i, j ∈ N, ∀k ∈ K, ∀t ∈ T. (4.15)

The objective function (4.1) minimizes the total production, setup, inventory and

routing costs. Constraints (4.2) and (4.3) are the inventory �ow balance at the plant
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and at the customers, respectively. Constraints (4.4) are the setup forcing and pro-

duction capacity constraints: they force the setup variable to be one if production

takes place and limit the production quantity to the minimum of the production ca-

pacity and the total demand in the remaining periods. Constraints (4.5) and (4.6)

impose inventory limits at the plant and customer level, respectively. Constraints

(4.7) ensure that the total quantity shipped to each customer in each period is equal

to total delivery quantity to the customer from all vehicles. Constraints (4.8) allow

a positive delivery quantity from vehicle k to node i in period t only if this node is

visited by the vehicle in period t. The total quantity loaded in each truck can be at

most the truck capacity as speci�ed by (4.9). Constraints (4.10) enforce zit = 1 if

there is a truck leaving from customer i. These constraints together with constraints

(4.8) prevent split deliveries. Constraints (4.11) are the vehicle �ow conservation.

Each vehicle can leave from the depot at most once per period (4.12). Constraints

(4.13) eliminate subtours for each vehicle.

This basic PRP formulation contains a large number of binary and continuous

variables and cannot be solved e�ciently using general optimization software. In

preliminary testing, we observed that the problem with just 10 customers, 10 time

periods and one vehicle (although with di�erent subtour elimination constraints sim-

ilar to the Miller-Tucker-Zemlin constraints (Miller et al., 1960)) has more than 1,000

binary variables and takes more than an hour to solve with CPLEX. This formulation

is thus intractable for large size instances.

4.3 Adaptive Large Neighborhood Search (ALNS)

Heuristic

We �rst describe the structure of the heuristic for the PRP-ML in this section and

explain how this heuristic is adapted for the PRP-OU and the IRP (for both the ML

and OU) in Section 4.4.
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4.3.1 General Structure of the Heuristic

We propose a decomposition-based heuristic to solve the problem. The basic idea is

to reduce the complexity of the problem by decomposing it into several subproblems

which are easier to solve. The setup variables at the plant are handled in the ini-

tialization phase, where we construct a pool of several solutions with di�erent setup

schedules. Those solutions are then improved in the next phase by applying ALNS.

The binary zit and xijkt variables are handled by selection and transformation opera-

tors, while the optimal value of the remaining continuous variables can be determined

using a minimum cost network �ow algorithm. Since a decomposed part of the prob-

lem, i.e., the continuous variables, is handled by an exact optimization algorithm and

the rest of the problem is handled by the ALNS operators, we refer to our algorithm as

an optimization-based adaptive large neighborhood search (Op-ALNS). An overview

of the heuristic procedure is provided in Algorithm 4.1.

In the initialization phase, we generate a small set of initial solutions, repre-

sented by si, with di�erent production setup con�gurations. The purpose of generat-

ing several initial solutions is to explore di�erent parts of the search space and thus

to avoid being trapped in local optima. More importantly, it is also di�cult and time

consuming to change the production setups during the improvement process since it

generally a�ects the solution to a great extent, i.e., when a production setup decision

is changed, the delivery and routing decisions associated with that setup have to be

adjusted, and thus a�ect the other decisions. Additionally, since the production se-

tups generally incur large �xed costs, they form an important part of the objective

function value. To generate initial solutions in this step, we sequentially solve the de-

composed problems of the PRP, namely the production-distribution and the routing

problems, to determine a preliminary production and distribution plan. The solution

is stored and the algorithm starts constructing another initial solution with a di�er-

ent production setup con�guration using the setup move procedure which employs an

enumeration scheme adapted from the local branching technique (Fischetti and Lodi,

2003). This process is repeated until the maximum number of initial solutions nmaxs

is reached.
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Algorithm 4.1 Op-ALNS

sbest ← φ and S ← φ
1. Initialization Phase:

for i = 1→ nmaxs do
Generate a new initial solution si and add it to the initial solution set S
Apply setup move procedure

end for

2. Improvement Phase:

2A. Restricted false start

ψALNS ← 10
for all solution si ∈ S do

si, candidates, iterations← ALNS(si, ψALNS)
if f(si) < f(sbest) then

sbest ← si

end if
end for
Sort all solutions in S in descending order of total cost
2B. Full restart

total iterations ← 0 and total node candidates ← 0
ψALNS ←∞
while total iterations ≤ ψmax and total node candidates ≤ nmaxq do

si, candidates, iterations← ALNS(si, ψALNS)
if f(si) < f(sbest) then

sbest ← si

end if
total iterations ← total iterations + iterations
total node candidates ← total node candidates + candidates
i← i+ 1

end while

In the improvement phase, the algorithm tries to improve the initial solutions

from the previous phase using ALNS and network �ows. This process is represented

by ALNS(si, ψALNS) where ψALNS is the maximum number of iterations in the process

and si is the initial solution which is currently explored. The details of this process

are provided in Algorithm 4.2 in Section 4.3.3. At each iteration, a selection operator
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is applied to select some customer-period combinations and a transformation opera-

tor is used to modify the solution by removing and reinserting some or all of these

combinations. Each customer-period combination is referred to as a node candidate.

In the transformation procedure, once a move is performed, all the binary variables

are �xed and the resulting minimum cost �ow problem is solved to determine the

optimal �ow cost. This process returns the improved solution (si), the number of

iterations used in the process (iterations), and the number of combinations that are

examined in the process (candidates).

The improvement phase consists of a restricted false start and a full restart. Since

many initial solutions obtained by the initialization process might be infeasible or their

total cost may be very high, all the initial solutions are improved in the restricted

false start (process 2A) where a limited number of iterations are performed on each

of the generated initial solutions. The improved initial solutions are then sorted

in descending order of total cost at the end of this process. Next, some improved

initial solutions will be examined in the full restart process (process 2B). The process

starts by selecting an initial solution from the top of the initial solution pool. The

ALNS(si, ψALNS) continues until the stopping condition is reached. The best solution

is stored in sbest and the total iterations and total node candidates are updated.

Subsequently, the next initial solution is selected to be examined. The heuristic

procedure terminates when it reaches the maximum number of iterations ψmax or the

maximum number of explored node candidates nmaxq .

4.3.2 Initialization Phase

Initial solutions are generated by sequentially solving two decomposed problems,

namely the production-distribution (PD) and the routing (R) subproblems. The

�rst subproblem is used to determine a production, inventory and distribution plan,

and the second subproblem determines the routes to serve the customers according

to the distribution plan obtained from the �rst subproblem.
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4.3.2.1 Production-Distribution (PD) Subproblem

The PD subproblem contains the lot-sizing, inventory and customer shipment deci-

sions. To formulate the problem, we de�ne σi as the approximate cost of visiting

customer i, which we calculate as

σi = min{2c0i, min
j,k∈N,j 6=k

(cij + cik)}.

It is the minimum value between the cost of making a round trip from the pro-

duction facility and the cost to the nearest two neighbors of customer i. We solve the

PD problem with this cost in an attempt to approximately take transportation costs

into account, without explicitly modeling the routing decisions. A similar approach

was used by Bard and Nananukul (2009a) to generate initial solutions for their tabu

search algorithm. The production-distribution problem can be formulated as follows:

min
∑
t∈T

(
upt + fyt +

∑
i∈N

hiIit +
∑
i∈Nc

σizit

)
(4.16)

s.t., (4.2)-(4.6),(4.14)-(4.15), and

rit ≤ M̃itzit ∀i ∈ Nc,∀t ∈ T (4.17)∑
i∈Nc

rit ≤ mQ ∀t ∈ T. (4.18)

The objective function (4.16) minimizes the total production setup, unit produc-

tion, inventory and approximate transportation costs. Constraints (4.17) allow a

positive delivery quantity to node i only if this node is visited. Constraints (4.18)

ensure that the total quantity shipped in each time period does not exceed the total

capacity of all vehicles.

Although this formulation has a less complicated structure than the PRP formu-

lation because all routing constraints are removed, it is still di�cult to solve because

of its size and the number of binary variables it contains. However, it is not necessary

to solve the problem to optimality because the inventory, distribution and routing
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decisions will be largely modi�ed in the improvement phase. We thus employ a �x-

and-optimize scheme to solve the problem in two steps. In the �rst step, we �x all

customer visit variables (zit) to one and solve the model to obtain the production

setup decisions (yt). In the second step, all the production setup decisions are �xed

according to the solution obtained in the �rst step and we solve the resulting model

to determine the remaining variables, i.e., production quantity (pt), inventory quan-

tity (Iit), shipment quantity (rit) and shipment visits (zit). To avoid long computing

times, the solver is stopped when a solution within 1% of optimality is found, or the

number of nodes explored during the branch-and-bound process exceeds 5000. If no

feasible solution is found, the solver continues until a feasible solution is obtained.

In our experiments, a feasible solution could usually be obtained within a few sec-

onds for most instances and within a few minutes for the largest instances with 200

customers and 20 periods. Note that these settings do not signi�cantly a�ect the

solution quality and overall performance of the algorithm.

4.3.2.2 Routing (R) Subproblem

The solution from the PD subproblem can be interpreted as a set of delivery demands

to the customers in each period. In the subsequent step, we generate a routing plan for

the planned deliveries. These deliveries are made with a �eet of capacitated vehicles

and each vehicle can visit more than one customer. Since the demands in each period

are independent of each other, vehicle routes can be constructed independently for

each period. The routing solution obtained in this step might not be feasible because

constraints (4.18) do not guarantee that the total quantity to be delivered in a given

day can �t in the available vehicles when split deliveries are not allowed. Hence,

the number of vehicles might be exceeded. We allow this type of infeasibility by

using a dummy vehicle with unlimited capacity to carry those unsatis�ed demands,

with a unit penalty cost θ = 10 maxi∈N(hi). The unit penalty is used because a

larger delivery quantity is more di�cult to relocate. The penalty is ten times the

maximum inventory cost to ensure that it is large enough for the algorithm to �nish

with a feasible solution as the total cost can be reduced by moving the exceeded

delivery quantity to another period (which can incur smaller inventory costs than the
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penalty), while being low enough to allow some infeasible solutions during the search.

The decision variable δit is equal to one if customer i is served by the dummy vehicle

in period t.

Before solving this subproblem, we �x rit and zit according to the result from the

solved PD subproblem. The routing subproblem in each period t can be formulated

as a capacitated vehicle routing problem (CVRP):

min
∑
i∈N

(∑
j∈N

cij
∑
k∈K

xijkt + θr̄itδit

)
, (4.19)

subject to the routing constraints of the problem in each time period t corresponding

to (4.8)-(4.15) and

∑
k∈K

qikt + r̄itδit = r̄it ∀i ∈ Nc. (4.20)

Constraints (4.20) are equivalent to (4.7) but allow the dummy vehicle to serve

customers. Since the CVRP itself is a di�cult problem, we use the Clarke and Wright

(1964) savings heuristic to quickly obtain a solution. If the number of routes exceeds

the number of available vehicles, the routes are sorted in decreasing order of total

delivery quantity and the available vehicles are assigned to the routes from the top

of the list. The customers that belong to the unassigned routes are then assigned to

the dummy vehicle.

4.3.2.3 Setup Move Procedure

Once an initial solution has been generated, it is stored in the initial solution pool and

another initial solution with di�erent production setups will be generated. To this

end, we iteratively add inequalities inspired from local branching (Fischetti and Lodi,

2003) that force the model to produce a di�erent solution to the PD subproblem.

Let s be the solution index, where s = 1 designates the �rst initial solution without

any local branching inequality, and yst the value of the production setup variable yt in

solution s. The following local branching inequalities are added to the PD subproblem

76



4.3. Adaptive Large Neighborhood Search (ALNS) Heuristic

to generate solution s̄:

∑
yt|yst=1

(1− yt) +
∑

yt|yst=0

yt ≥ 1 s = 1, ..., s̄− 1. (4.21)

This inequality forces at least one of the production setup variables in each previ-

ous solution to be changed. In our implementation, the maximum number of initial

solutions in the pool is set to 10 to avoid excessive computing times.

4.3.3 Improvement Phase

The improvement procedure plays an important role to re�ne the initial solutions

generated in the initialization step. Since the PRP contains both binary and contin-

uous variables, developing a heuristic that handles both types of variables is di�cult.

For example, when a solution is modi�ed by removing a customer from a route and

inserting it in a di�erent period, one has to identify the new delivery quantity for

the customer, which may also a�ect the production, inventory, and other delivery

quantity decisions. In addition, unlike in the VRP where the removed nodes have

to be reinserted to obtain a feasible solution, it is not always necessary in the PRP

to reinsert the removed nodes because the demands can be satis�ed from available

inventory. Furthermore, the removed nodes can be inserted in multiple periods. To

address these issues, we use several move operators to handle the binary zit and xijkt

variables, and the remaining continuous variables are set by solving a network �ow

model.

Unlike the original ALNS framework which employs destroy and repair schemes,

we developed two di�erent sets of operators to solve the PRP. The �rst set of oper-

ators, called selection, is used to create an ordered list of node candidates. A node

candidate is de�ned as a combination of a customer i and time period t. These can-

didates are not removed from the solution in this step. Instead, an operator from the

second set, called transformation, is applied to examine the node candidates accord-

ing to the operator rules. The transformation operator will remove and reinsert one

or many node candidates in one or many time periods. The operator is repeated until

all node candidates in the list have been examined.
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During the transformation process, the operator performs two main steps to handle

the two di�erent parts of the problem separately. In the �rst step, the binary decisions

(zit, xijkt) are modi�ed (by removing and reinserting nodes) according to the operator

rules. Note that the production setup variables yt remain �xed according to the initial

solution which is currently considered. Then, those binary variables are �xed and

the continuous variables (pt, Iit, rit, qikt) are adjusted by solving the minimum cost

�ow problem (MCF). Since the transformation operator is repeated until all node

candidates in the list are examined, many new solutions can be generated at each

iteration and the solutions are accepted according to a simulated annealing criterion.

4.3.3.1 ALNS Framework

Our ALNS heuristic employs several simple heuristics to select the node candidates

and transform the solutions. The di�erent operators are probabilistically selected

according to weights calculated based on the success of each operator in terms of

improving solutions. We now describe the main elements of our ALNS implementation

by following the framework presented by Ropke and Pisinger (2006).

1. Large neighborhood: We de�ne a node candidate v as a pair (i, t) where i is a

customer and t is a time period. Given the current solution s, we select nq node

candidates to be put in the ordered list. One of the selection operators is chosen

to generate the ordered list of node candidates, and one of the transformation

operators is used to remove and reinsert some of these candidates. We use two

neighborhood de�nitions, i.e., a small and an extended search space, to select

the node candidates. The small search space randomly picks nq within the range

[1, λubκ], where 0 ≤ λub ≤ 1 and κ =
∑

i∈Nc

∑
t∈T z

s
it, i.e., total number of visits in

the current solution s. If the algorithm cannot �nd an improved feasible solution

for ω iterations, we expand the range of the search space to [λ′lbκ, λ
′
ubκ], where

0 ≤ λub ≤ λ′lb ≤ λ′ub ≤ 1. In our implementation, we use λub = λ′lb = 0.1 and

λ′ub = 0.4, which means the number of node candidates varies between 1 node and

10% of the total number of visits for the small search space, and between 10% and

40% of the total number of visits for the large search space. The large search space

is used when an improved feasible solution is not found for ω = 25 iterations.
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2. Adaptive search engine: Like in many other ALNS implementations, the choice

of the selection and transformation operators to be performed at each iteration is

controlled by a roulette-wheel mechanism. Denote by wi the weight of operator

i, Hs and Ht, the set of selection and transformation operators, respectively. One

selection and one transformation operator are selected independently at each itera-

tion. An operator i is selected with probability pi = wi/
∑

j∈Hk
wj, where Hk = Hs

for the selection operators and Hk = Ht for the transformation operators.

3. Adaptive weight adjustment: The weight of an operator i is calculated based on

two factors: (i) the average percentage of calls that the operator i can improve the

current solution and (ii) the average time per iteration that the operator requires.

All weights are set to 10 for the �rst 20 iterations. They are then recalculated

every 5 iterations. After the �rst 10 iterations, we also check if there is any

operator that is not used and select that operator to be performed to ensure that

all operations are called before recalculating the weights. Denote by τi and ηi the

number of times that the operator i is performed and is able to improve the current

solution, respectively, and by Ti/i the relative processing time factor, calculated

as the average time per iteration for operator i, divided by i, the lowest average

computing time among all operators in the same operator set. Let α be the weight

adjustment parameter. The weights are calculated as follows:

wi =
10µ

Ti/i
, where µ =

(
1 + α

ηi
τi

)
.

The weights are calculated based on the relative frequency with which the operator

can improve the solution. The parameter α de�nes the importance given to the

operators that can improve the solution, i.e., high α values encourage the algo-

rithm to concentrate on the operators that can frequently improve the solution,

thus promoting intensi�cation but reducing diversi�cation. The denominator Ti/i

represents the time e�ciency of the algorithm as some operators are more time

consuming than others. We use α = 3 in our study.

4. Acceptance and stopping criteria: After a new solution is obtained by solving

the MCF, we apply a simulated annealing (SA) criterion to decide whether this

79



4.3. Adaptive Large Neighborhood Search (ALNS) Heuristic

solution should be accepted. The algorithm always accepts an improved solution

and it also accepts a worse solution with probability ρ = exp
(
−100
T

(
f(s′)−f(s)

f(s)

))
,

where f(s) and f(s′) are the total cost of the current solution (s) and the new

solution (s′), respectively. The temperature T > 0 is calculated by the formula

T = Tn = cTn−1 at iteration n. We initially set T0 = 0.3 and c = 0.995. Note

that several new solutions can be found during one transformation process. The

current ALNS call stops when (i) the number of iterations for one initial solution

exceeds the maximum number of iterations (ψALNS) (this stopping criterion is only

used in the restricted false start where ψALNS = 10), (ii) the current solution has

not improved for ψA = 100 iterations, or (iii) the algorithm cannot �nd a better

solution than the best overall solution from all previous ALNS calls for ψB = 300

iterations. Then, the next initial solution from the pool is selected, the weights

and temperature are reset, and the ALNS is called again to improve the selected

solution. This process is repeated until a global termination condition is met,

i.e., (i) it reaches the maximum number of iterations ψmax = 1000 or (ii) the

cumulative number of examined node candidates is larger than or equal to 15,000

candidates. The latter condition is used to prevent too long computing times for

large instances.

The details of the ALNS process are provided in Algorithm 4.2.

4.3.3.2 Details of the Selection and Transformation Operators

We use several simple heuristics to explore the neighborhood and ensure both in-

tensi�cation and diversi�cation. In our ALNS heuristic, the selection operators are

employed to create the list of node candidates and the transformation operators are

used to transform the solution by examining the node candidates in the generated

ordered list and produce new solutions. The details of the operators are provided

below.

Selection operators. The selection operators select a number of node candidates

from the current solution and put them into an ordered list. In addition, if the

current solution has infeasible routes that require a dummy vehicle, we use the method

presented in Section 4.3.2.2 to assign customers to the dummy vehicle. The customers
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Algorithm 4.2 ALNS(si, ψALNS)

s← si

sfeas ← φ
iterations ← 0
candidates ← 0
Initialize operator weights and temperature T
while iterations ≤ ψALNS and iterations without improvement ≤ ψA and itera-
tions without new best solution ≤ ψB do

Select one selection and one transformation operator probabilistically
Determine nq, apply the selected selection to s to generate the ordered candi-
date list and update nq
while the number of node candidates in the list > 0 do

Select and transform the node candidate(s) from the list according to the
transformation operator rule
Fix the binary decisions, solve the MCF and apply the trimming process
to obtain a new solution s′

if f(s′) is feasible and f(s′) < f(sfeas) then
sfeas ← s′

end if
if f(s′) < f(s) or f(s′) is accepted by the SA criterion then

s← s′

end if
Remove the examined node candidates from the list according to the se-
lected transformation operator

end while
candidates ← candidates + nq
T ← cT
if iterations ≥ 20 and iterations is a multiple of 5 then

Update operator weights
end if
iterations ← iterations + 1

end while
return sfeas, candidates, iterations

that are served by the dummy vehicle are always added to the bottom of the list and

the number of node candidates nq is updated.

We propose seven selection operators which can be separated into two di�erent

types. The �rst type contains the operators that only select the node candidates
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while the second type are the operators that also slightly modify the solution before

selecting the node candidates. The purpose of the second type of operators is to

alter the solution before applying the transformation step, so as to provide further

diversi�cation. The details of the selection operators are as follows.

1. Selection by ranking: Five operators are used to select the nq node candidates

where nq is randomly chosen as described Section 4.3.3.1. For each visited customer

j in period t, an index sjt is calculated. Each operator uses a di�erent method to

calculate sjt. Those candidates are then ranked according to this index and those

that come �rst are selected to be inserted in the node candidate list. The details

of the operators are as follows.

(a) Random selection (S1): There is no ranking index in this operator and the

visited customers are randomly selected. The main purpose of this operator is

to avoid that the algorithm repeatedly chooses similar node candidates during

the search.

(b) Unit savings greedy selection (S2): The visited customers are selected accord-

ing to the relative unit travel cost savings by shortcutting the path. For a node

j with predecessor i and successor k in period t, the index sjt is calculated as

follows.

sjt =
cij + cjk − cik

max{ε, djt − Ij,t−1}
, where ε = 0.001.

The denominator represents the degree to which a delivery is needed to satisfy

the demand of customer j and the value cannot be less than ε. Node candidates

are ranked in descending order of this index. The purpose of this operator is

to �nd potential node candidates that can be easily removed without incurring

a stockout and can quickly improve the solution.

(c) Radius selection (S3): This operator is inspired by the Shaw removal scheme

(Shaw, 1997, Ropke and Pisinger, 2006) and aims to remove nodes that are

similar in some respect. In the �rst step, we select the visited customer j′

in period t′ that will reduce the routing cost the most when removed, i.e.,

(j′, t′) = argmaxj∈Nc,t∈T |zjt=1{cij+cjk−cik,∀i, k ∈ N\{j′}}, to be the reference
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node and put it in the node candidate list. We calculate the index as the

travel cost from the reference node j′ to each customer in period t′ including

the customers that are not visited, i.e., sit′ = cij′ ,∀i ∈ Nc\{j′} and rank them

in ascending order. Note that the node candidates in other periods t 6= t′ are

not considered in this operator. The purpose of this operator is to select the

nodes that are close to the reference node j′ to be inserted together.

(d) Maximum inventory utilization selection (S4): We rank the visited customers

by the inventory capacity utilizations, i.e., sjt = Ijt/Lj in descending order.

The purpose of this operator is to select the nodes that can reduce the tightness

of the inventory constraints in the current solution.

(e) Minimum delivery quantity selection (S5): The visited customers are ranked

by the delivered quantities to each customer in each period, i.e., sjt = rjt in

ascending order. The purpose of this operator is to get the node candidates

that can be removed without reinserting or can be reinserted easily.

2. Selection with modi�cation: These two operators are used to slightly modify the

solution and select some visited customers to be added to the ordered node candi-

date list. Note that the number of node candidates nq is not determined a priori

in these operators and it is updated after the ordered list is constructed. These

operators di�er from the transformation operators because they are mainly used

to alter some part of the solution to diversify the search, while the transformation

operators will remove and reinsert the nodes according to the provided list only.

The modi�ed solutions produced by these selection operators, however, may be

infeasible or have a much higher cost than the original solution.

(a) Random route duplication (S6): This operator randomly chooses a route in

any period between [1, l − 1] and duplicates it into the next period. If some

customers in the route are already visited in the next period, they will �rst be

removed from their current route before duplication. Next, the algorithm will

produce the list by selecting all the nodes that belong to the original route to

be the node candidates and order them according to their current sequence in

the selected route. The purpose of this operator is to increase the �exibility

of the routing part before calling the transformation operator.
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(b) Random period rerouting (S7): One period is randomly chosen and the routes

in that period are reconstructed. More precisely, we randomly draw one period

from those that use the maximum number of vehicles, and reconstruct the

routes by the savings algorithm. Then, all nodes that belong to the routes

which have a vehicle capacity utilization less than 75% in that period are added

to the node candidate list and ordered according to their current sequence in

the selected route. This process can generate a new routing solution since the

delivery quantities are frequently changed during the ALNS process and the

savings algorithm will generate di�erent routes. The purpose of this operator

is to quickly modify the routing part of the solution and try to re�ne it again

during the transformation process.

Transformation operators. We use seven transformation operators to examine

the node candidates and generate new solutions by removing and reinserting a subset

of the node candidates. The notation [α, β, γ] is used in order to describe these opera-

tors. The term α represents the number of node candidates that are inserted together

at once, the term β is the number of time periods in which the node candidates are

inserted, and the term γ is the maximum number of times that the selected transfor-

mation process has to be repeated to examine all candidates in the list. For example,

[1, 2, nq] represents a transformation operator that inserts one node candidate into

two time periods at the same time and the operator is performed nq times since only

one candidate is examined at once.

The examined node candidates are inserted in the routes according to the cheapest

insertion rule. After the insertion is done, all binary variables are �xed and the MCF

is solved to calculate the �ow cost. The transformation operators also use a process

called trimming to remove the nodes that are assigned to a route but not visited (i.e.,

customer i with zit = 1, but rit = 0) and the total cost is recalculated. The trimming

process is called after the new solution is obtained by solving MCF.

We denote by iv and tv the customer and the period of the selected node candidate

v, respectively. The transformation schemes can be classi�ed into three main groups

as follows.
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1. Single-node-multiple-periods transformation: The operators in this type will re-

move and insert one node candidate at a time in di�erent time periods. It starts

by selecting a node candidate v from the top of the list. Then a set of poten-

tial time period bundles for node v, denoted by Θv is constructed. Each member

Tv ∈ Θv represents a bundle of time periods in which the node will be inserted.

The operators will remove the node and reinsert it in each period of Tv. Once

the node has been inserted, the total cost is computed by solving the MCF and

calling the trimming process. The new solution is accepted according to the SA

criterion. This step is repeated until all time period bundles in the set Θv have

been considered. Then, the next node candidate v + 1 is selected to be examined

and the process is started again. We use φ to represent the null time period, i.e.,

the node is not reinserted in any time period. The details of the second step for

each operator are as follows.

(a) One-node, one-period transformation (T1) [1, 1, 4nq]: It removes and inserts

the selected candidate v into each time period bundle in the set Θv = {φ, {tv−
1}, {tv}, {tv+1}}, i.e., the node candidate is not reinserted (φ) or it is reinserted
into one of the time periods tv − 1, tv, tv + 1. The node candidate is inserted

in the route of a vehicle k with
∑

i∈Nc
qikt < Q.

(b) Two-adjacent-period transformation (T2) [1, 2, 3nq]: This operator removes

and inserts the node candidate into each time period bundle in the set Θv =

{φ, {tv−1, tv}, {tv, tv+1}}, i.e., none, two consecutive periods tv−1 and tv, and

two consecutive periods tv and tv+1. To avoid transforming a feasible solution

into an infeasible one, the candidate is inserted in the route of a vehicle k with∑
i∈Nc

qikt + rivt < Q if t = tv, and
∑

i∈Nc
qikt < Q if t 6= tv.

(c) Three-adjacent-period transformation (T3) [1, 3, 2nq]: Instead of inserting into

two adjacent periods, this operator removes and inserts the node candidate

into each time period bundle in the set Θv = {φ, {tv−1, tv, tv + 1}}, i.e., none,
and three consecutive periods tv − 1, tv, tv + 1 together at once. Similar to

the Two-adjacent-period transformation (T2) operator, the node candidate is

inserted in the route of a vehicle k with
∑

i∈Nc
qikt + rivt < Q if t = tv, and∑

i∈Nc
qikt < Q if t 6= tv.
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2. Multiple-nodes-single-period transformation: These operators remove and insert

multiple node candidates into one time period at a time. Given a selected node

candidate v, n′q ≤ nq node candidates (i.e., from node v to node v + n′q − 1 in the

node candidate list) are selected to be inserted together in period tv. We make a

list of all the distinct customers that belong to the selected node candidates. The

customers in this list are removed from period tv if they are present. The nodes are

inserted in any route k with
∑

i∈Nc
qiktv < Q and they are not necessarily inserted

in the same route. Then, the MCF and trimming processes are called respectively

to evaluate the cost, and the solution is accepted according to the SA criterion.

After that, the algorithm is repeated again to select the n′q candidates starting

from v + 1. The process is repeated until all nodes in the list are examined. The

details of the operators are as follows.

(a) Two-node transformation (T4) [2, 1, nq − 1]: This operator removes and rein-

serts n′q = 2 consecutive node candidates in the list together. If the number

of node candidates nq is smaller than 2, the operator T1 is called instead.

(b) Three-node transformation (T5) [3, 1, nq−2]: This operator removes and rein-

serts n′q = 3 consecutive node candidates in the list together. If the number

of node candidates nq is smaller than 3, the operator T4 is called instead.

3. Multiple-nodes-multiple-periods transformation: The operators in this category ex-

plore larger neighborhoods compared to the two above categories. These operators

are started by listing all the distinct customers and time periods that are present

in the list of the node candidates in sets. Let NC
q be the set of all the distinct

customers in the list of node candidates and Tq be the set of all the distinct time

periods in the list of node candidates. The details of the operators are as follows.

(a) All-node-greedy transformation (T6) [nq, |Tq|, 1]: It simply removes all node

candidates from the current solution and each of them is reinserted in the same

period which it was removed from in the hope of �nding a better assignment

of customers to routes (but possibly in a di�erent vehicle route). Then, the

MCF and trimming processes are called. The operator is only performed once

per call.
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(b) All-node, one-period transformation (T7) [|NC
q |, 1, |Tq|]: The earliest period

in the set Tq is selected and all customers in the set NC
q are removed and

sequentially reinserted into that period according to the order in the original

node candidate list produced by the selection operator. Then, the MCF and

trimming processes are called to assess the cost and the solution is accepted

according to the SA criterion. Afterwards, the next period in Tq is selected

and the process is repeated until all periods in the set Tq are examined.

4.3.3.3 Minimum Cost Flow Subproblem (MCF)

Every time the solution is changed during a transformation process, the MCF is called

to �nd the optimal values of the continuous variables that minimize the total unit

production and inventory costs. We denote by ȳt, z̄it and x̄ijkt the �xed production

setup, node visit and arc variables in a given solution, and by k′ the index of the

dummy vehicle. The MCF formulation is as follows:

min
∑
t∈T

(upt +
∑
i∈N

hiIit + θqik′t) (4.22)

subject to (4.2)-(4.6), (4.8)-(4.9), (4.14) but replace the binary variables with ȳt,

z̄it and x̄ijkt, and ∑
k∈K

qikt + qik′t = rit ∀i ∈ Nc. (4.23)

The objective function (4.22) minimizes the total unit production and inventory

holding costs plus the unit penalty costs of using the dummy vehicle. Constraints

(4.23) are equivalent to (4.7) but allow the dummy vehicle to serve customers.

4.3.3.4 Incumbent Solution Improvement

At each iteration, if a new overall best solution is found after a transformation process

is �nished, we try to further improve the solution by running the traveling salesman

problem (TSP) subroutine on each route individually. In this study, the TSP tours

are reconstructed by the GENIUS procedure (Gendreau et al., 1992) and improved
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by the 3-opt procedure (Lin, 1965). If a better solution is found, it is stored as the

new incumbent solution.

4.4 Adaptations of the Op-ALNS for the PRP-ML

to Other Variants

We explain how this algorithm is adapted for the MVPRP-OU and the MVIRP (both

ML and OU) in Sections 4.4.1 and 4.4.2, respectively. Note that only the initialization

phase of the original Op-ALNS is modi�ed in these adaptations. The computational

results of the Op-ALNS for the PRP and IRP with ML and OU policies can be found

in Section 3.6.3.

4.4.1 Adaptation of the Op-ALNS for the PRP-OU

Unlike the ML policy where the selection and transformation operators could handle

infeasible routes e�ectively by repeatedly reallocating delivery quantities, it is much

more di�cult to remove and reinsert node candidates from infeasible routes in the OU

policy since the delivery quantity is de�ned by the di�erence between the inventory

level and the TSL. Thus, it is easier to start from initial solutions with feasible routes

in the initialization process to ensure that feasible solutions can be obtained at the

end of the process. We simply solve the formulation with a vehicle index to take into

account the vehicle capacity for each vehicle separately. The �rst subproblem in the

initialization phase for the PRP-OU is as follows:

min
∑
t∈T

(upt + fyt + h0I0t +
∑
i∈Nc

∑
k∈K

σizikt) +
∑
t∈T ′

∑
i∈Nc

∑
k∈K

l+1∑
v=1

eitvλiktv (4.24)

subject to (3.4), (3.8), (3.12)-(3.13), (3.39)-(3.46).

The best version of the SBCs from Section 3.3.1 is also added to improve the

performance of the formulation. Note that the delivery quantity variable qikt is calcu-

lated as qikt =
∑l+1

v=1 gitvλ̄iktv. This problem is solved in an attempt to approximately

take transportation costs into account, without explicitly modeling the routing de-

cisions. Then, the routes for the vehicles are determined by solving the traveling
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salesman problem (TSP) for each vehicle individually. We construct the TSP tours

using the GENIUS procedure (Gendreau et al., 1992) and improve them by the 3-opt

procedure (Lin, 1965). Additionally, to solve the MCF for the OU policy, we set the

inventory level of a visited customer i in period t as Iit = Li − dit. The remaining of

the Op-ALNS algorithm for the OU policy is the same as for the ML policy.

4.4.2 Adaptation of the Op-ALNS for the IRP

To solve the IRP, the modi�cation in Section 3.2.4 must be applied �rst. Since

production setups are irrelevant for the IRP, we generate initial solutions with di�erent

customer visit decisions. Denote by z̄sit the value of the customer visit variable zit in

solution s. The original local branching inequality (4.21) is replaced with the following

inequality to generate an initial solution s̄:

∑
zit|z̄sit=1

(1− zit) +
∑

zit|z̄sit=0

zit ≥

⌈
0.25

∑
i∈Nc

∑
t∈T

z̄sit

⌉
s = 1, ..., s̄− 1 (4.25)

The inequality (4.25) forces at least 25% of the total customer visits over the horizon

to change. The maximum number of initial solutions in the pool is set to 10 for the

IRP and the other parts of the algorithm remain the same.

4.5 Computational Experiments

The performance of the Op-ALNS and its adaptations are presented in the previous

chapter in Section 3.6.3. In this section, we evaluate the e�ciency and robustness of

our Op-ALNS algorithm on large PRP instances presented in literature. We perform

experiments using two benchmark test sets. The details of the benchmarks are as

follows.

• The sets A1, A2 and A3 in Archetti et al. (2011) consist of instances with 6

time periods and 14, 50 and 100 customers with constant demand, no production

capacity and no plant inventory capacity, but with initial inventory at the plant and

customers. These test sets contain small to medium size problems. There are 96
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instance types and �ve instances per type, for a total of 96×5 = 480 instances per

set. Those instances are grouped into four classes with di�erent parameter settings.

With respect to the distribution part, there are two major groups of instances, i.e.,

the instance set A1 for the PRP with a single capacitated vehicle and sets A2 and

A3 with an unlimited number of capacitated vehicles. In our experiments, we set

the number of vehicles in sets A2 and A3 to a su�ciently large number.

• The sets B1, B2 and B3 in Boudia et al. (2005) consist of instances with 50,

100 and 200 customers and 20 time periods. There are 30 instances per set. The

size of these instances is larger than those of the Archetti et al. and they are

considered as large to very large size instances. In addition, unlike in the �rst

benchmark, constraints on the production capacity, plant inventory capacity and

maximum number of trucks are imposed. Customer demand is dynamic and there

is no inventory holding cost at the customers. According to the description given in

Boudia et al. (2007), production in period t becomes only available in period t+ 1,

but no inventory costs are incurred before the production becomes available. As a

consequence, the demand in period 1 must be satis�ed from the initial inventory

at the plant. In the experiments of Boudia et al. (2007) and Boudia and Prins

(2009), the initial inventory at the plant is set equal to the total customer demand

in the �rst period and no inventory holding cost is incurred for the initial inventory

between period 0 and 1 (Prins, 2012). To solve these instance sets, we simply set

the variable y1 = 0, which also enforces p1 = 0, i.e., the production made available

in period 1 is equal to zero and thus the customer demand in period 1 is satis�ed

by the initial inventory at the plant.

In these two benchmarks, the maximum inventory at customers are imposed after

demand comsumption, while constraints (4.6) in our formulation are imposed before

demand comsumption. Therefore, we simply set Li = L̄i+dit where L̄i is the original

value in the instances and this does not have any e�ect on the computational results.

The overview of these instances is presented in Tables 4.I and 4.II.

Our algorithm was coded in C# using Microsoft Visual Studio 2008 under Win-

dows XP. The experiments have been executed on a workstation with a 2.10 GHz
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Table 4.I: Overview of the Benchmark Instances

Benchmark Archetti et al. Boudia et al.

Instance set A1 A2 A3 B1 B2 B3

No. of instances 480 480 480 30 30 30

No. of periods 6 6 6 20 20 20

No. of customers 14 50 100 50 100 200

No. of trucks 1 ∞ ∞ 5 9 13

Demand C C C V V V

Production capacity ∞ ∞ ∞ C C C

Plant inventory capacity ∞ ∞ ∞ C C C

Customer inventory capacity C C C C C C

Initial inventory at plant 0 0 0 V V V

Initial inventory at customers V V V 0 0 0

Vehicle capacity C C C C C C

V - Varying, C - Constant, ∞- Unlimited

Table 4.II: Descriptions of the Archetti et al. Instance Classes

Class Type Descriptions

Class I 1-24 Standard instances

Class II 25-48 High production unit cost, (Class I) u×10
Class III 49-72 Large transportation costs, (Class I) Coordinates×5
Class IV 73-96 No customer inventory costs

Duo CPU and 2 GB of RAM, which is comparable to the workstations used in pre-

vious research. We used CPLEX 12.2 to solve the PD subproblems and the network

optimizer module in CPLEX to solve the MCF. We use a single run on each instance

since the results are relatively consistent between runs as shown in Section 4.5.3. In

order to demonstrate the e�ciency of our optimization-based ALNS approach, we

report the results obtained after the false start process, and during the full restart

process within 100, 500 and 1000 iterations in the columns Op-ALNS with <FS>,

<I-100>, <I-500> and <I-1000>, respectively.

4.5.1 Computational Results on the Archetti et al. Bench-
mark

We compare our approach to the heuristic H presented in Archetti et al. (2011).

According to the results of Archetti et al., the average optimality gap for the heuristic

H on the set A1 is 2.25%, 0.30%, 3.65% and 1.00% for the classes I, II, III and
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IV, respectively, and the overall gap is 0.91%. This is an excellent benchmark to

demonstrate the performance of our algorithm.

The summary of the results are provided in Table 4.III. We use boldface symbols

if the total cost obtained by Op-ALNS is lower than the solution in the literature,

and the symbol * to indicate the best solution. The number of new best solutions for

each problem type can be found in column New. The Op-ALNS is able to produce

better average results for classes I, II and IV of the instance set A1 (which uses a single

vehicle and has 14 customers) and for all four classes of the sets A2 and A3 (which use

multiple vehicles and have 50 and 100 customers, respectively). Our algorithm could

provide better average results for 11 out of the 12 di�erent class-set combinations and

there are 930 out of 1440 (65%) new best solutions found. For the multiple vehicle

test sets A2 and A3, Op-ALNS already provides on average a better solution in the

false start phase. The average cost details of the best solutions provided by Op-ALNS

after 1000 iterations are presented in Table 4.IV.

Table 4.III: Summary of the Average Total Costs Obtained by Di�erent Heuristics on the Archetti
et al. Instances

Prob Nc l Class Ins H Op-ALNS Op-ALNS Op-ALNS Op-ALNS New

set <FS> <I-100> <I-500> <I-1000>

A1 14 6 Class I 120 52729 52706 52464 52344 52332* 63

Class II 120 371325 371682 371237 371184 371184* 57

Class III 120 96532* 104492 102884 101652 100979 24

Class IV 120 202734 202924 202770 202718 202717* 67

Total 480 180830* 182951 182339 181975 181803 211

(1.2%) (0.8%) (0.6%) (0.5%)

A2 50 6 Class I 120 167879 166978 166398 166124 166109* 89

Class II 120 1282069 1279412 1278541 1278245 1278237* 95

Class III 120 224944 228997 226605 224903 224467* 62

Class IV 120 695540 692484 692135 692034 692027* 120

Total 480 592608 591968 590920 590327 590210* 366

(-0.1%) (-0.3%) (-0.4%) (-0.4%)

A3 100 6 Class I 120 307072 304069 303496 303178 303045* 100

Class II 120 2369957 2369857 2368206 2367385 2367299* 86

Class III 120 411237 417226 413610 411106 410451* 66

Class IV 120 1281771 1278241 1277784 1277602 1277560* 101

Total 480 1092509 1092348 1090774 1089818 1089589* 353

(-0.0%) (-0.2%) (-0.2%) (-0.3%)

* indicates the best solution

(-) indicates the % di�erence of the solution obtained by Op-ALNS compared to H
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Table 4.IV: Average Values of the Op-ALNS Best Solutions on the Archetti et al. Instances

Prob Class Total C.Inv P.Inv Trans Prod D.Qty N.Visits N.Vehs N.Setups

set

A1 Class I 52332 7640 2765 5812 36115 543.6 20.6 1.0 1.2

Class II 371184 7679 3387 6137 353980 543.6 21.2 1.0 1.0

Class III 100979 8014 2435 53040 37490 543.6 18.3 1.0 1.4

Class IV 202717 0 2529 5499 194689 543.6 18.7 1.0 1.0

Total 181803 5833 2779 17622 155568 543.6 19.7 1.0 1.2

A2 Class I 166109 20517 1922 15579 128091 2126.2 88.1 5.5 2.1

Class II 1278237 26825 11035 15967 1224410 2126.2 90.4 5.3 1.0

Class III 224467 23246 1574 70840 128808 2126.2 74.8 5.5 2.2

Class IV 692027 0 3018 14092 674917 2126.2 78.7 7.1 1.3

Total 590210 17647 4387 29119 539056 2126.2 83.0 5.9 1.7

A3 Class I 303045 37228 1791 28295 235731 4019.2 203.6 8.4 2.9

Class II 2367299 50949 22687 28103 2265560 4019.2 188.8 8.8 1.0

Class III 410451 43614 2258 129973 234606 4019.2 158.2 9.3 2.6

Class IV 1277560 0 3550 25202 1248808 4019.2 159.1 12.5 1.5

Total 1089589 32947 7572 52893 996176 4019.2 177.4 9.8 2.0

Costs Values

Total - Average total cost D.Qty - Average delivery quantity

C.Inv - Average inventory cost at customers N.Visits - Average number of customer visits

P.Inv - Average inventory cost at plant N.Vehs - Average number of vehicles used

Trans - Average transportation cost N.Setups - Average number of production setups

Prod - Average total production cost

Table 4.V provides a comparison of computing times for the H heuristic and the

Op-ALNS. The column N.Cuts is the average number of local branching inequalities

applied to obtain the setup schedule in the best solution. The column N.Nodes shows

the average number of node candidates that are examined, and the column N.MCF is

the average number of times that the MCF is called in the entire process. The solu-

tions obtained after the false start process are very good while this phase only takes

a relatively short computing time. It is worth noting that the computational times of

our Op-ALNS algorithm are less sensitive to the size of the instances compared to the

H procedure. The Op-ALNS is outperformed by the H heuristic only on the small

size instance set A1. The computing times of Op-ALNS with 100 iterations in the full

restart process are comparable to the computing times of H for the instance set A2,

while Op-ALNS can reach more than 500 iterations for the larger size instance set

A3 within a similar amount of computing time compared to H. Finally, it should be
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noted that our algorithm is more general than H, since H cannot handle production

capacities, which make the problem more complicated.

Table 4.V: Summary of the Average Computational Times in Seconds Obtained by Di�erent Heuris-
tics on the Archetti et al. Instances

Prob Class H1 Op-ALNS2 Op-ALNS2 Op-ALNS2 Op-ALNS2 N.Cuts N.Nodes N.MCF

set <FS> <I-100> <I-500> <I-1000>

A1 Class I - 1.7 2.4 5.2 9.2 0.6 3245 5478

Class II - 1.4 2.0 4.8 8.9 0.1 3304 5564

Class III - 1.7 2.2 5.2 9.2 2.6 2948 4902

Class IV - 1.5 2.2 4.8 8.7 0.5 3051 5211

Total - 1.6 2.2 5.0 9.0 0.9 3137 5289

A2 Class I 11.3 6.2 10.8 28.6 50.2 0.2 5877 12721

Class II 12.4 5.8 10.9 28.5 49.5 0.0 5891 12068

Class III 9.5 5.7 9.6 24.4 42.7 1.7 4890 10274

Class IV 10.9 5.5 9.7 25.7 44.1 0.8 5264 10396

Total 11.0 5.8 10.3 26.8 46.6 0.7 5481 11365

A3 Class I 188.0 24.4 47.5 136.1 249.1 1.9 9922 23862

Class II 216.7 21.2 42.8 124.7 221.1 0.0 9289 21597

Class III 167.8 20.5 38.2 106.7 190.8 3.9 7631 18348

Class IV 181.1 19.8 37.4 108.4 189.0 0.5 8043 17697

Total 188.4 21.5 41.5 119.0 212.5 1.6 8722 20376

- the computational times of the H procedure for the instance A1 are negligible
1 executed on 2.40 GHz PC
2 executed on 2.10 GHz Duo CPU PC

4.5.2 Computational Results on the Boudia et al. Benchmark

We next compare our results for the Boudia et al. benchmark with several other meta-

heuristic approaches, i.e., greedy randomized adaptive search procedure - GRASP

(Boudia et al., 2007), memetic algorithm with population management - MA|PM

(Boudia and Prins, 2009), reactive tabu search - RTS (Bard and Nananukul, 2009a),

and tabu search with path relinking - TSPR (Armentano et al., 2011). The previous

best solutions are provided by the TSPR procedure developed by Armentano et al.

Table 4.VI provides the summary of the average total costs of each heuristic and

Table 4.VIII provides the summary of the computational times. The Op-ALNS pre-

sented in this paper outperforms all other algorithms from the literature by providing

better average solutions. The Op-ALNS can �nd the solutions with lower average

total costs compared to the previous best known solutions even with just the false
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start process where the algorithm spends relatively short computing times compared

to the other heuristics. The algorithm can further improve the solution quality when

we allow 100, 500 and 1000 iterations in the full restart improvement phase. We

found 89 new best solutions or 99% of the total number of instances. For the larger

size sets B2 and B3, we found better solutions for every instance. Note that for the

sets B2 and B3, the algorithm stops after the maximum number of node candidates

(15,000 nodes) has been reached. It is worth noting that the relative improvement

of Op-ALNS compared to the solutions of Armentano et al. is higher for the larger

instances. The average cost details of the best solutions provided by Op-ALNS after

the algorithm terminates are given in Table 4.VII.

Table 4.VI: Summary of the Average Total Costs Obtained by Di�erent Heuristics on the Boudia
et al. Instances

Prob Nc l Ins GRASP MA|PM RTS TSPR Op-ALNS Op-ALNS Op-ALNS Op-ALNS New

set <FS> <I-100> <I-500> <I-1000>

B1 50 20 30 443264 393263 369662 361704 351448 348982 347260 346878* 29

(-2.8%) (-3.5%) (-3.9%) (-4.1%)

B2 100 20 30 791839 714627 712294 685898 641092 638976 637037 636962* 30

(-6.5%) (-6.8%) (-7.1%) (-7.1%)

B3 200 20 30 1070026 1001634 1034923 951638 881653 878511 876761* - 30

(-7.3%) (-7.6%) (-7.8%) -

* indicates the best solution

(-) indicates the % di�erence of the solution obtained by Op-ALNS compared to TSPR

Table 4.VII: Average Values of the Op-ALNS Best Solutions on the Boudia et al. Instances

Prob Total C.Inv P.Inv Trans Prod D.Qty N.Visits N.Vehs N.Setups

set

B1 346878 0 36206 109006 201667 206198.4 298.9 5.0 4.0

B2 636962 0 27924 207705 401333 454168.3 708.4 9.0 5.7

B3 876761 0 27532 249229 600000 828279.0 1090.9 13.0 5.0

4.5.3 Evaluation of the Op-ALNS Con�gurations

In this section, we report additional experiments to evaluate the performance of the

Op-ALNS using di�erent con�gurations. To avoid excessive computing times, we

selected subsets of the instances, i.e., the �rst instance in each class from the instance

type 1 of the sets A1, A2 and A3, and the �rst instance from the sets B1, B2 and
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Table 4.VIII: Summary of the Average Computational Times in Seconds Obtained by Di�erent
Heuristics on the Boudia et al. Instances

Prob GRASP1 MA|PM 1 RTS2 TSPR3 Op-ALNS4 Op-ALNS4 Op-ALNS4 Op-ALNS4 N.Cuts N.Nodes N.MCF

set <FS> <I-100> <I-500> <I-1000>

B1 93.5 172.7 330.6 317.0 121.4 157.5 298.4 481.3 2.5 11980 31180

B2 415.9 1108.1 975.6 1147.7 402.0 611.9 1404.6 1569.9 2.8 15022 39732

B3 1893.8 4098.5 2492.3 3926.4 1563.0 2846.3 5794.2 - 3.0 15036 39491
1 executed on 2.30 GHz PC
2 executed on 2.53 GHz PC
3 executed on 2.80 GHz PC
4 executed on 2.10 GHz Duo CPU PC

B3. This gives a total of 15 instances. First, the Op-ALNS is performed 10 times

using the default con�guration where all operators and the TSP subroutine are used.

The average total costs and computing times are calculated and used as the point

of reference. Then, several di�erent con�gurations, where one operator type or the

TSP subroutine is sequentially removed, are tested and compared with this reference.

The results are shown in Table 4.IX. The �rst group of rows shows the average %

cost deviation (%Dev), calculated as (f(sc)− f(ŝ)) /f(ŝ), where f(sc) and f(ŝ) are

the objective function values obtained by con�guration c and by the default setting,

respectively. The second group of rows shows the ratio of the average computing

time using the con�guration x (Tx) over the default con�guration (T0). A ratio equal

to 2 means that the con�guration x spends on average double the computing time

compared to the default con�guration. The columns 2-6 show the results of the Op-

ALNS when each operator type of the algorithm is removed, and column 7 is the

results when the TSP subroutine is removed.

Since the heuristic contains random elements, i.e., the selection of operators, the

simulated annealing acceptance mechanism and the random selection operator (S1 ),

di�erent runs can lead to di�erent solutions and di�erent costs. The impact of this

is evaluated by performing 10 runs on each instance and calculating the percent

coe�cient of variation (%CV), which is the ratio of the standard deviation to the mean

of the objective function values obtained in 10 runs using the default con�guration.

This information is reported in the last column. Note that we consider the results

obtained in the full restart process within 1000 iterations.
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Table 4.IX: Performance Evaluation of the Op-ALNS Using Di�erent Op-ALNS Con�gurations

Prob S.Rank S.Mod T.Periods T.Nodes T.Large TSP M.Runs

set S1-S5 S6-S7 T1-T3 T4-T5 T6-T7 %CV

%Dev A1 0.33 0.69 1.54 1.26 0.53 0.29 0.11

A2 0.79 0.04 0.18 0.14 0.00 0.03 0.12

A3 0.44 0.04 0.02 0.05 0.10 0.07 0.08

B1 1.53 0.74 -0.10 0.07 0.05 0.20 0.09

B2 0.07 0.04 0.28 0.32 0.00 -0.03 0.12

B3 0.25 0.06 0.09 -0.01 -0.03 0.11 0.14

Tx/T0 A1 1.58 0.64 0.60 0.73 1.57 0.97 11.71

A2 1.85 0.78 0.74 0.70 1.47 0.96 6.91

A3 1.18 0.92 0.76 0.72 1.24 0.99 4.74

B1 0.72 1.14 0.88 0.66 1.07 0.95 6.11

B2 0.67 0.98 0.72 0.56 1.36 1.01 3.91

B3 0.78 0.97 0.89 0.50 1.22 0.97 3.70

By removing each operator type, the results are generally worse than the default

con�guration where all operator types are used. The impact of removing each operator

type varies due to di�erent features of the problem sets. The selection by ranking (S1-

S5) and single-node-multiple-periods transformation (T1-T3) operators have the most

signi�cant impact on the solution quality when the operator type is removed. The

multiple-nodes-multiple-periods transformation (T6-T7) operator, however, is mostly

e�ective on the set A1. Additionally, the TSP subroutine could provide additional

improvements on the instance set A1 and B1 but the e�ect is negligible on the other

sets. The results on the multiple runs in the �nal column show that the algorithm

has no signi�cant impact from the randomness in the Op-ALNS because the %CV

of the total costs are very small, i.e., ranging between 0.08-0.14%. The variation of

the set B3 is slightly larger than the others since the algorithm terminates after the

maximum number of node candidates reached while it could perform less than 500

iterations in the full restart process

The number of node candidates in the selection by ranking (S1-S5) operator type

is proportional to the total number of visits, while the number of node candidates

in the selection with modi�cation (S6-S7) depends upon the number of customers in

the selected route(s). Consequently, the average computing times on the sets A1-

A3 signi�cantly increase when removing the selection by ranking operator type as

the number of nodes in the selection with modi�cation is generally larger, and the
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results are opposite when solving the sets B1-B3 where the number of node candidates

using the selection by ranking is smaller than the other type. The computing times

also decrease when either the single-node-multiple-periods transformation (T1-T3)

or the multiple-nodes-single-period transformation (T4-T5) transformation operator

type is removed since the algorithm could put more emphasis on the operators that

are less time comsuming, but the solution quality is worse compared to the default

con�guration. Removing the multiple-nodes-multiple-periods transformation (T6-T7)

operator, however, result in an increase in computing time because this operator type

is less time comsuming compared to the other two types. We also observe that the

computing time of the TSP subroutine is negligible so that we use the TSP subroutine

to ensure that the algorithm is robust. The %CV of the computing times, however,

are signi�cantly larger compared to the %CV of the total costs.

4.5.4 Analysis of the Selection and Transformation Operators

This section provides the performance analysis of the selection and transformation

operators used in the Op-ALNS. The summary of the performance of the operators

for the instance sets A1, A2 and A3 are provided in Tables 4.X and 4.XI, and for the

instance sets B1, B2 and B3 in Tables 4.XII and 4.XIII. We consider the number of

calls in both the false start and full restart process. With respect to the percentage of

calls that each selection operator can improve a solution, the Random selection (S1)

and the Unit savings greedy selection (S2) operators are the best for the instances

with multiple vehicles, while the Random Route Duplication (S6) is the best for

the single vehicle instances (A1). In the single vehicle case, the Op-ALNS cannot

take advantage of some operators that are mainly used to improve vehicle routes,

i.e., the operators S7 and T6 that can generally modify several routes at the same

time. For the transformation operators, the Two-adjacent-period transformation (T2)

generally perform well in most instances except the instance sets A1 and B1 where

the Three-node transformation (T5) and the Two-node transformation (T4) are the

best, respectively.

Table 4.XIV shows the performance of each operator type. The selection operators

in the Selection by ranking group are better in �nding a new solution. The main
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Table 4.X: Performance of Selection Operators for the Archetti et al. Instances

Prob Class Average number of calls Average % of calls to improve a solution

set S1 S2 S3 S4 S5 S6 S7 S1 S2 S3 S4 S5 S6 S7

A1 Class I 171 191 182 152 163 78 163 4% 5% 3% 3% 2% 7% 3%

Class II 168 193 180 152 169 79 160 4% 6% 3% 4% 2% 7% 4%

Class III 176 194 185 158 158 69 160 4% 6% 3% 3% 2% 6% 3%

Class IV 159 180 174 159 169 81 177 3% 5% 1% 2% 2% 6% 1%

Average 169 190 180 155 165 77 165 4% 5% 3% 3% 2% 7% 3%

A2 Class I 224 188 149 138 156 132 113 12% 11% 7% 9% 7% 5% 6%

Class II 234 187 153 131 155 127 113 14% 13% 9% 10% 9% 6% 8%

Class III 242 182 146 133 164 114 120 14% 12% 8% 9% 9% 3% 8%

Class IV 188 207 147 129 160 153 116 10% 11% 6% 8% 6% 7% 5%

Average 222 191 149 133 159 132 116 12% 12% 7% 9% 8% 5% 7%

A3 Class I 248 180 149 115 150 144 114 16% 13% 8% 12% 10% 7% 5%

Class II 243 182 163 111 155 137 110 18% 15% 11% 14% 12% 9% 7%

Class III 266 185 150 101 171 108 119 19% 15% 11% 14% 13% 6% 9%

Class IV 203 189 156 106 155 164 126 14% 12% 7% 11% 9% 9% 5%

Average 240 184 155 108 158 138 117 17% 14% 9% 13% 11% 8% 6%

Table 4.XI: Performance of Transformation Operators for the Archetti et al. Instances

Prob Class Average number of calls Average % of calls to improve a solution

set T1 T2 T3 T4 T5 T6 T7 T1 T2 T3 T4 T5 T6 T7

A1 Class I 161 88 144 260 55 290 102 4% 7% 7% 3% 11% 1% 3%

Class II 162 91 150 252 58 285 101 5% 8% 8% 3% 11% 1% 3%

Class III 146 83 128 284 46 308 106 6% 8% 8% 2% 11% 1% 3%

Class IV 157 93 142 271 51 287 99 3% 5% 5% 1% 8% 1% 3%

Average 156 89 141 267 53 293 102 4% 7% 7% 2% 10% 1% 3%

A2 Class I 200 152 120 205 117 161 146 8% 12% 14% 9% 11% 4% 6%

Class II 194 162 122 210 118 152 140 10% 14% 15% 11% 12% 4% 6%

Class III 229 137 110 205 106 165 148 10% 13% 15% 11% 12% 4% 6%

Class IV 206 124 123 204 110 177 156 7% 10% 14% 8% 9% 3% 7%

Average 207 144 119 206 113 164 147 9% 12% 14% 10% 11% 4% 6%

A3 Class I 161 182 154 208 172 107 116 11% 15% 12% 13% 11% 6% 4%

Class II 155 216 142 192 170 99 125 12% 17% 13% 15% 14% 8% 7%

Class III 179 180 140 211 172 104 115 13% 17% 13% 17% 14% 9% 7%

Class IV 161 128 153 219 181 127 132 10% 13% 11% 11% 9% 7% 6%

Average 164 176 147 208 174 109 122 12% 16% 12% 14% 12% 7% 6%

reasons are that this group can be expanded when the large search space is applied

and thus have more opportunity to improve a solution, and the modi�cation schemes

in the Selection with modi�cation operators generally lead to a worse solution. For the

transformation operators, the Single-node-multiple-periods transformation performs

well on the Archetti et al. instances which are the small to medium size instances,
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Table 4.XII: Performance of Selection Operators for the Boudia et al. Instances

Prob Average number of calls Average % of calls to improve a solution

set S1 S2 S3 S4 S5 S6 S7 S1 S2 S3 S4 S5 S6 S7

B1 255 198 143 141 129 117 115 15% 12% 8% 10% 7% 7% 3%

B2 127 126 93 81 84 96 77 18% 13% 10% 8% 9% 9% 5%

B3 82 80 66 60 52 56 49 13% 12% 10% 7% 7% 12% 3%

Table 4.XIII: Performance of Transformation Operators for the Boudia et al. Instances

Prob Average number of calls Average % of calls to improve a solution

set T1 T2 T3 T4 T5 T6 T7 T1 T2 T3 T4 T5 T6 T7

B1 168 161 156 231 185 89 109 7% 11% 8% 14% 12% 3% 8%

B2 109 128 92 108 116 70 63 12% 14% 9% 13% 14% 4% 4%

B3 71 104 58 63 63 42 44 6% 14% 8% 14% 11% 2% 6%

while both the Single-node-multiple-periods transformation and the Multiple-nodes-

single-period transformation have similar performances for the large to very large size

instances of Boudia et al.

Table 4.XIV: Average % of Calls Leading to an Improvement

Operator type Instance

Archetti et al. Boudia et al.

Selection

Selection by ranking 9% 11%

Selection with modi�cation 6% 6%

Transformation

Single-node-multiple-periods 10% 10%

Multiple-nodes-single-period 9% 13%

Multiple-nodes-multiple-periods 4% 5%

4.6 Conclusion

In this chapter, we have discussed the production routing problem (PRP) which is

a very complicated combinatorial problem that combines the multi-level lot-sizing

problem and the vehicle routing problem. We have developed an e�cient heuristic

using enumeration, adaptive large neighborhood search and network �ow techniques

to solve the problem. The experiments conducted on small to medium size instances

(Archetti et al., 2011) and on large to very large size instances (Boudia et al., 2005)
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show that our algorithm (Op-ALNS) outperforms the former heuristic approaches on

the two benchmark test sets and provides high quality solutions. This approach can

also be adapted to solve the PRP with multiple products where we can still handle

the binary variables representing setup and routing decisions by the enumeration

scheme and the operators of the ALNS. The MCF, however, has to be replaced by

a capacitated multi-commodity network �ow problem to determine the continuous

variables associated with the quantity decisions.
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Chapter 5

Production Routing Under Demand

Uncertainty

This chapter is based on the following article.

• Adulyasak, Y., Cordeau, J.-F., Jans, R. Benders Decomposition for Production

Routing under Demand Uncertainty. GERAD Tech Rep. G-2012-57. 35 pages.

Submitted to Operations Research in October 2012.

This chapter addresses the stochastic PRP (SPRP) with demand uncertainty in a

two-stage decision process. We introduce a novel approach based on Benders de-

composition to solve the problem. We further discuss the bene�ts of reoptimization

capabilities that can be useful in two practical settings in stochastic environments.

5.1 Introduction

Demand uncertainty is a major issue in supply chain management as some of the

information required for decision making is often known only approximately in the

form of forecasts. In these circumstances, solving a deterministic model using point

estimates can lead to wrong and costly decisions. One should thus explicitly take the

uncertainty into account in the decision process.

In this chapter, we consider the stochastic PRP (SPRP) under demand uncer-

tainty in a two-stage decision process, where the distribution of the demand is as-

sumed to be known. In the �rst stage, setup and customer visit decisions, as well

as the assignment of vehicles to customers in the case of multiple vehicles must be

determined. This is in line with real-world practice, where some decisions such as

production setups are decided in advance and these plans remain �xed in order to

avoid large disruptions (Hopp and Spearman, 2000). Planned visits must be com-

municated to the customers (and sometimes to the drivers) in advance in order to
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prepare the workforce, equipment and materials. The replenishment schedules are

hence also �xed before the delivery is made. The second stage involves production,

inventory and delivery quantity decisions made when the demand becomes known.

Since the decisions regarding customer visits and customer-vehicle assignments are

made in the �rst stage, the routing decisions consist of constructing a tour for each

vehicle to visit the set of assigned customers. This can be determined in the �rst

stage regardless of the demand realization in the second stage. If some demand is

left unmet at the end of a period, a unit penalty cost has to be paid. This penalty

cost can be viewed as the cost of purchasing and delivering the product from an out-

sourced manufacturer or an opportunity cost associated with the unmet demand. As

such, all tours are feasible since not all the demand has to be delivered by the regular

vehicles. This problem is an important variant and a practical enhancement to the

deterministic PRP and IRP and can also be seen as a generalization of these problems

when taking into account the uncertainty of demand. To the best of our knowledge,

this problem has not been discussed before. Most of the previous studies on the SIRP

consider a Markov decision process where all the decisions are taken independently in

each discrete time period and the outcomes of the decisions in each stage a�ect the

subsequent stage. These problems consist of �nding optimal decisions in each time

period, which lead to the minimal expected total cost in the planning horizon. The

only research studying a two-stage decision problem is the RIRP addressed by Solyal�

et al. (2012). They focused on robust optimization which attempts to �nd a solution

that is immune to any realization of demand. Their approach is appropriate when

the distribution of demand is unknown. However, since information such as historical

demands is typically available, one can construct demand pro�les and use a two-stage

stochastic model to solve the problem. Moreover, both the SPRP and SIRP concern

operational planning where the decision process is repeated a large number of times

over a long horizon. Instead of using robust optimization to �nd the solution with

the minimal worst case cost, one can possibly bene�t to a greater degree in the long

term by using the two-stage stochastic programming approach to �nd the solution

where the total expected operating cost is minimized.
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The main contributions of this chapter are fourfold. First, we introduce the two-

stage stochastic PRP and provide a standard formulation which is an extension of the

deterministic PRP formulation presented in Chapter 3. Second, we propose two Ben-

ders reformulations for the SPRP. In the �rst decomposition, the second-stage quan-

tity decision variables are projected out, while the routing variables are also projected

out in the second decomposition. Third, we develop exact algorithms for the Benders

reformulations based on a branch-and-cut framework, called branch-and-Benders-cut

(BBC), where the Benders cuts are used in conjunction with subtour elimination con-

straints. This algorithm is then compared to a classical Benders algorithm. Several

computational enhancements are proposed: lower bound lifting inequalities, scenario

group cuts and Pareto-optimal cuts, and extensive computational results are provided.

A comparison with an extension of the successful branch-and-cut (BC) approach for

the deterministic problems in Chapter 3 indicates the superiority of the best version

of the BBC approach using the �rst decomposition for problems with a large number

of scenarios. Fourth, we demonstrate the bene�ts of the reoptimization capabilities of

Benders decomposition for the SPRP in two stochastic environments, i.e., in a sample

average approximation method (SAA) and in a rolling horizon (RH) framework. In

these two settings, we obtain improvements in CPU time of 50% (for SAA) and 41%

(for RH) compared to the Benders approach without reoptimization, and of 83% (for

SAA) and 81% (for RH) compared to the branch-and-cut approach.

The rest of the chapter is organized as follows. Section 5.2 presents notation

and formulations for the SPRP. Section 5.3 describes the Benders decomposition

approaches to solve the problem. The details of the solution algorithms are provided

in Section 5.4. This is followed by the computational experiments in Sections 4.5 and

5.6, and by the conclusion.

5.2 SPRP Formulations

5.2.1 Notation

Let Ω denote the �nite set of demand scenarios (this set can be enumerated explicitly

if the number of possible demand realizations is not too large or it can be constructed
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by a sampling method). Also let ω ∈ Ω be the index of the demand scenarios. The

two-stage SPRP can be de�ned on a complete undirected graph G = (N,E). We

further use the following notation in addition to the previously de�ned notation in

Chapter 3.

Decision variables:

ptω production quantity in period t under scenario ω;

Iitω inventory at node i at the end of period t under scenario ω;

qiktω quantity delivered to customer i with vehicle k in period t under scenario ω;

eitω amount of unmet demand at customer i in period t associated with scenario ω.

Parameters:

σi unit cost of unmet demand of customer i;

ditω demand of customer i in period t under scenario ω (we assume throughout that

ditω ≤ Li,∀i ∈ Nc,∀t ∈ T,∀ω ∈ Ω);

ρω probability of scenario ω.

Let also Ii0ω = Ii0,∀ω ∈ Ω, Mtω = min
{
C,
∑l

j=t

∑
i∈Nc

dijω

}
and M ′

itω =

min
{
Li, Q,

∑l
j=t dijω

}
.

5.2.2 Two-Stage SPRP Formulation

We �rst present a two-stage SPRP formulation which is an extension of the formula-

tion used in the branch-and-cut approaches for the deterministic problems in Chapter

3. The SPRP can be formulated as follows:

min
∑
t∈T

fyt +
∑

(i,j)∈E

∑
k∈K

cijxijkt +
∑
ω∈Ω

ρω

(
uptω +

∑
i∈N

hiIitω +
∑
i∈Nc

σieitω

) (5.1)
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s.t.

I0,t−1,ω + ptω =
∑
i∈Nc

∑
k∈K

qiktω + I0tω ∀t ∈ T,∀ω ∈ Ω (5.2)

Ii,t−1,ω +
∑
k∈K

qiktω + eitω = ditω + Iitω∀i ∈ Nc,∀t ∈ T,∀ω ∈ Ω (5.3)

I0tω ≤ L0 ∀t ∈ T,∀ω ∈ Ω (5.4)

Iitω + ditω ≤ Li ∀i ∈ Nc,∀t ∈ T,∀ω ∈ Ω (5.5)

ptω ≤Mtωyt ∀t ∈ T,∀ω ∈ Ω (5.6)∑
i∈Nc

qiktω ≤ Qz0kt ∀k ∈ K, ∀t ∈ T,∀ω ∈ Ω (5.7)

qiktω ≤M ′
itωzikt ∀i ∈ Nc,∀k ∈ K, ∀t ∈ T,∀ω ∈ Ω (5.8)∑

k∈K

zikt ≤ 1 ∀i ∈ Nc,∀t ∈ T (5.9)∑
(j,j′)∈δ(i)

xjj′kt = 2zikt ∀i ∈ N, ∀k ∈ K, ∀t ∈ T (5.10)

∑
(i,j)∈E(S)

xijkt ≤
∑
i∈S

zikt − zekt ∀S ⊆ Nc : |S| ≥ 2,∀e ∈ S,∀k ∈ K, ∀t ∈ T

(5.11)

ptω, Iitω, qiktω ≥ 0 ∀i ∈ N, ∀k ∈ K, ∀t ∈ T,∀ω ∈ Ω (5.12)

yt, zikt ∈ {0, 1} ∀i ∈ N, ∀k ∈ K, ∀t ∈ T (5.13)

xijkt ∈ {0, 1} ∀(i, j) ∈ E : i 6= 0,∀k ∈ K, ∀t ∈ T (5.14)

x0jkt ∈ {0, 1, 2} ∀j ∈ Nc,∀k ∈ K, ∀t ∈ T. (5.15)

The objective function (5.1) minimizes the total cost of the �rst stage decisions

and the expected total cost of the second stage decisions. Constraints (5.2) and (5.3)

control the inventory �ow balance for each scenario at the plant and customers, re-

spectively. The maximum inventory level at the plant and customers is imposed by

constraints (5.4) and (5.5), respectively. Constraints (5.6) allow a positive production

quantity only if a setup is made; this quantity cannot exceed the minimum of the

production capacity and the total demand in the remaining periods. The delivery
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quantity in each vehicle cannot exceed the vehicle capacity imposed by constraints

(5.7) and a positive delivery quantity is allowed only if the customer is visited ac-

cording to constraints (5.8). Each customer cannot be visited more than once per

period following constraints (5.9). Constraints (5.10) require the number of edges

incident to be 2 if the node is visited and constraints (5.11) are subtour elimina-

tion constraints (SECs) for each vehicle. We remark that constraints (5.5) impose

the inventory capacity at customers when the delivery is made prior to demand con-

sumption. These constraints can also be written as Ii,t−1,ω +
∑

k∈K qiktω + eitω ≤ Li.

Note that this formulation becomes the vehicle index formulation for the determin-

istic PRP in Chapter 3 when the number of scenarios is equal to one and the extra

delivery quantity is forced to be zero.

The formulation (5.1)-(5.15), together with the inequalities (3.36)-(3.37) and the

valid vehicle symmetry breaking constraints SBC0 and SBC3 presented in Chapter

3, will be referred to as the basic formulation (BF ).

A simple modi�cation can be made to formulate the two-stage SIRP where the

production quantity in each period is �xed. Denote by Bt the production quantity

made available in each period. One can set all the production setup variables yt to

one (yt = ȳt = 1). Constraints (5.6) and the parameters M ′
itω are replaced with

ptω = Btȳt, ∀t ∈ T,∀ω ∈ Ω and min{Li, Q}, respectively. The rest of the formulation
remains unchanged.

5.3 Benders Decomposition Approaches

We now introduce exact algorithms based on the Benders decomposition scheme

(Benders, 1962) to solve the two-stage SPRP. In Benders decomposition, the orig-

inal problem is reformulated into a master problem, and a number of subproblems

which are typically easier to solve than the original problem. By using linear pro-

gramming duality, all the variables that belong to the subproblems are projected out

and the master problem contains the remaining variables and an arti�cial variable

representing a lower bound on the cost of the subproblem. In the original concept

of Benders decomposition, the problem is solved by a cutting plane algorithm. At

each iteration, the values of the master problem variables are �rst determined and
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the subproblems are solved by holding these variables �xed. If the subproblems are

feasible and bounded, an optimality cut is added to the master problem, otherwise a

feasibility cut is added. An upper bound can be computed from the subproblems and

a lower bound is obtained if the master problem is solved to optimality. The process

continues until an optimal solution is found or the optimality gap is smaller than a

given threshold value.

In the two-stage SPRP, we observe that the integer variables are the �rst-stage

decisions while the continuous variables belong to the second-stage. If the decisions

in the �rst stage are �xed, the resulting subproblem is a network �ow problem which

can be decomposed by scenario. This follows the original idea of applying Benders

decomposition to stochastic integer programs, also known as the L-shaped method

(see Van Slyke and Wets, 1969; Birge and Louveaux, 2011). In this section, we

present two di�erent Benders decomposition schemes. The �rst one projects out the

�ow variables of the second stage, i.e., production, inventory, delivery and unmet

demand quantities, while the second one also projects out the routing variables.

5.3.1 Benders Reformulation 1 (BR1)

The �rst Benders reformulation is constructed by separating the �rst-stage and

second-stage decisions into a master problem and subproblems, respectively. We

let x̄, ȳ and z̄ denote the vectors of �xed xijkt, yt and zikt variables, respectively.

One can observe that the second-stage decisions are independent of x̄. The expected

total cost of the second-stage decisions, denoted by υ(ȳ, z̄), can be calculated as

υ(ȳ, z̄) =
∑

ω∈Ω ρωυω(ȳ, z̄), where υω(ȳ, z̄) is the total second-stage cost of scenario ω

which can itself be obtained by solving the following primal �ow subproblem (PFS):

υω(ȳ, z̄) = min
∑
t∈T

(
uptω +

∑
i∈N

hiIitω +
∑
i∈Nc

σieitω

)
(5.16)

s.t. (5.12) and

I0,t−1,ω + ptω =
∑
i∈Nc

∑
k∈K

qiktω + I0tω ∀t ∈ T (5.17)
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Ii,t−1,ω +
∑
k∈K

qiktω + eitω = Iitω + ditω ∀i ∈ Nc,∀t ∈ T (5.18)

I0tω ≤ L0 ∀t ∈ T (5.19)

Iitω + ditω ≤ Li ∀i ∈ Nc,∀t ∈ T (5.20)

ptω ≤Mtωȳt ∀t ∈ T (5.21)∑
i∈Nc

qiktω ≤ Qz̄0kt ∀k ∈ K, ∀t ∈ T (5.22)

qiktω ≤M ′
itωz̄ikt ∀i ∈ Nc,∀k ∈ K, ∀t ∈ T. (5.23)

Due to the presence of the variables eitω, the PFS is always feasible because the

demand can be left unmet. Furthermore, since the cost parameters u, hi and σi

are �nite and due to constraints (5.17)-(5.20), any feasible solution of the PFS must

be bounded. We let α = (αtω|∀t ∈ T,∀ω ∈ Ω), β = (βitω|∀i ∈ Nc,∀t ∈ T,∀ω ∈
Ω), γ = (γtω ≥ 0|∀t ∈ T,∀ω ∈ Ω), θ = (θitω ≥ 0|∀i ∈ Nc, ∀t ∈ T,∀ω ∈ Ω),

δ = (δtω ≥ 0|∀t ∈ T,∀ω ∈ Ω), κ = (κktω ≥ 0|∀k ∈ K, ∀t ∈ T,∀ω ∈ Ω) and

ζ = (ζiktω ≥ 0|∀i ∈ Nc, ∀k ∈ K, ∀t ∈ T,∀ω ∈ Ω) be the vectors of the dual variables

associated with constraints (5.17)-(5.23), respectively, and let also αl+1,ω = 0 and

βi,l+1,ω = 0. The dual of the primal subproblem for each scenario ω, called the dual

�ow subproblem (DFS), can be formulated as follows.

υω(ȳ, z̄) = max −I00α1ω +
∑
i∈Nc

(di1ω − Ii0)βi1ω +
∑
i∈Nc

l∑
t=2

ditωβitω −
∑
t∈T

L0γtω

−
∑
t∈T

∑
i∈Nc

(Li − ditω)θitω −
∑
t∈T

Mtωȳtδtω −
∑
t∈T

∑
k∈K

Qz̄0ktκktω

−
∑
t∈T

∑
k∈K

∑
i∈Nc

M ′
itωz̄iktζiktω (5.24)

s.t. αtω − δtω ≤ u ∀t ∈ T (5.25)

−αtω + αt+1,ω − γtω ≤ h0 ∀t ∈ T (5.26)

−βitω + βi,t+1,ω − θitω ≤ hi ∀i ∈ Nc, ∀t ∈ T (5.27)

−αtω + βitω − κktω − ζiktω ≤ 0 ∀i ∈ Nc, ∀k ∈ K, ∀t ∈ T (5.28)
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βitω ≤ σi ∀i ∈ Nc,∀t ∈ T. (5.29)

Let ∆ω denote the polyhedron de�ned by constraints (5.25)-(5.29). Since the PFS

is always feasible and bounded, by strong duality, the DFS is feasible and bounded.

We further let ∆ =
⋃
ω∈Ω

∆ω and P∆ be the set of extreme points of ∆.

To formulate the Benders master problem, we de�ne πω(α,β,γ,θ) = −I00α1ω +∑
i∈Nc

(di1ω− Ii0)βi1ω +
∑

i∈Nc

∑l
t=2 ditωβitω−

∑
t∈T L0γtω−

∑
t∈T
∑

i∈Nc
(Li−ditω)θitω

and we introduce an arti�cial variable η representing the expected total �ow cost.

The original model (5.1)-(5.15) can be reformulated as follows.

min
∑
t∈T

fyt +
∑

(i,j)∈E

∑
k∈K

cijxijkt

+ η (5.30)

s.t. (5.9)-(5.11), (5.13)-(5.15) and

∑
ω∈Ω

ρω

(
−
∑
t∈T

Mtωδtωyt −
∑
t∈T

∑
k∈K

Qκktωz0kt −
∑
t∈T

∑
k∈K

∑
i∈Nc

M ′
itωζiktωzikt

+ πω(α,β,γ,θ)

)
≤ η ∀(α,β,γ,θ, δ, ζ,κ) ∈ P∆. (5.31)

This formulation, together with the valid inequalities (3.36)-(3.37), SBC0 and SBC3,

will be referred to as BMP1.

Observe that BMP1 contains a large number of Benders cuts (5.31) as well as the

SECs (5.11). Thus, a natural solution approach is to start from a relaxed BMP1 where

these constraints are dropped. Next, violated constraints are detected and iteratively

added to the problem. The solution approaches to handle this reformulation will be

explained in Section 5.4.

5.3.2 Benders Reformulation 2 (BR2)

Due to the presence of the SECs (5.11) in BMP1, the Benders master problem cannot

be solved by a standard branch-and-bound procedure as is done in a typical Benders
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decomposition algorithm. One alternative is to reformulate the problem by keeping

only the yt and zikt variables in the master problem, which results in two separate

Benders subproblems: the previous PFS plus the following subproblem associated

with the routing variables xijkt:

r(z̄) = min
∑
t∈T

 ∑
(i,j)∈E

∑
k∈K

cijxijkt

 (5.32)

s.t. (5.14)-(5.15) and

∑
(j,j′)∈δ(i)

xjj′kt = 2z̄ikt ∀i ∈ N, ∀k ∈ K, ∀t ∈ T (5.33)

∑
(i,j)∈E(S)

xijkt ≤
∑
i∈S

z̄ikt − z̄ekt ∀S ⊆ Nc : |S| ≥ 2,∀e ∈ S,∀k ∈ K, ∀t ∈ T. (5.34)

This subproblem can be separated by vehicle and time period, and reduces to

independent TSPs. The number of routing subproblems is then equal to the number

of vehicles dispatched during the planning horizon. Denote by Nkt
c (z̄) the set of

customers visited by vehicle k in period t corresponding to the �xed decision vector

z̄, i.e., Nkt
c (z̄) = {i|z̄ikt = 1} and Nkt(z̄) = Nkt

c (z̄) ∪ {0}. This subproblem can be

rewritten as r(z̄) =
∑

t∈T
∑

k∈K rkt(z̄), where rkt(z̄) is the total routing cost of vehicle

k in period t, which can be determined by solving the following problem:

rkt(z̄) = min
∑

(i,j)∈E

cijxijkt (5.35)

s.t. (5.14)-(5.15) and

∑
(j,j′)∈δ(i)

xjj′kt = 2z̄ikt ∀i ∈ N (5.36)

∑
(i,j)∈E(Skt)

xijkt ≤ |Skt| − 1 ∀Skt ⊆ Nkt
c (z̄) : |Skt| ≥ 2. (5.37)
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To dualize this model, we relax the integrality constraints (5.14) and (5.15) by

replacing them with the following constraints:

0 ≤ xijkt ≤ 1 ∀(i, j) ∈ E : i 6= 0 (5.38)

0 ≤ x0jkt ≤ 2 ∀j ∈ Nc. (5.39)

Model (5.35) and (5.36)-(5.39) will be referred to as the primal routing subproblem

(PRS).

Denote by ϕ = (ϕikt|∀i ∈ N,∀k ∈ K, ∀t ∈ T ), ϑ = (ϑSkt ≥ 0|∀k ∈ K, ∀t ∈
T,∀Skt ⊆ Nkt

c (z̄) : |Skt| ≥ 2), µ = (µijkt ≥ 0|∀(i, j) ∈ E : i 6= 0,∀k ∈ K, ∀t ∈ T ) and

µ0 = (µ0
jkt ≥ 0|∀j ∈ Nc,∀k ∈ K, ∀t ∈ T ) the vectors of the dual variables associated

with constraints (5.36)-(5.39), respectively. The dual routing subproblem (DRS) can

be formulated as follows.

rkt(z̄) = max
∑
i∈N

2z̄iktϕikt −
∑

Skt⊆Nkt
c (z̄):|Skt|≥2

(|Skt| − 1)ϑSkt

−
∑

(i,j)∈E:i 6=0

µijkt − 2
∑
j∈Nc

µ0
jkt (5.40)

s.t. ϕikt + ϕjkt −
∑

Skt:i,j∈Skt

ϑSkt − µijkt ≤ cij (i, j) ∈ E : i 6= 0 (5.41)

ϕikt + ϕjkt −
∑

Skt:i,j∈Skt

ϑSkt − µ0
jkt ≤ c0j (i, j) ∈ E : i = 0. (5.42)

Denote by Θkt the polyhedron de�ned by constraints (5.41)-(5.42), (5.36)-(5.39).

Since the cost cij is �nite, both the PRS and DRS are feasible and bounded. Let also

Θ =
⋃

k∈K,t∈T
Θkt and PΘ be the set of extreme points of Θ. To formulate the Benders

master problem, we introduce an arti�cial variable τ representing the total routing

cost and we de�ne ψkt(ϑ,µ,µ
0) = −

∑
Skt⊆Nkt

c (z̄):|Skt|≥2(|Skt|−1)ϑSkt−
∑

(i,j)∈E:i 6=0

µijkt−
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2
∑
j∈Nc

µ0
jkt. The following Benders master problem is obtained:

min
∑
t∈T

fyt + η + τ (5.43)

s.t. (5.9), (5.13), (5.31) and

∑
t∈T

∑
k∈K

(∑
i∈N

2ziktϕikt + ψkt(ϑ,µ,µ
0)

)
≤ τ ∀(ϕ,ϑ,µ,µ0) ∈ PΘ. (5.44)

This problem with the valid inequalities (3.19), SBC0 and SBC3 will be referred to

as BMP2. Note that BMP2 is equivalent to a relaxation of the original problem BF

in which integrality is not imposed on the xijkt variables. In Section 5.4.1, we explain

how an upper bound to the original formulation can be obtained in the classical

Benders algorithm when solving BR2. In Section 5.4.2, we further explain how an

optimal integer solution to the original problem can be guaranteed by the branch-

and-Benders-cut implementation with an embedded enumeration algorithm.

Both BR1 and BR2 can be easily modi�ed to handle the two-stage SIRP as follows.

First, all the production setup variables yt in the BMP1 and BMP2 must be set to one,

i.e., yt = ȳt = 1. Second, the production quantity variables ptω and the parameters

M ′
itω are substituted by ptω = Btȳt,∀t ∈ T,∀ω ∈ Ω and min{Li, Q}, respectively.

Finally, constraints (5.21) and the dual variables δtω are removed from the PFS and

DFS, respectively. The rest of the formulation remains unchanged.

5.4 Benders Decomposition Algorithms

In this section, we describe the algorithms we have developed to handle the Benders

reformulations BR1 and BR2. We �rst present the classical algorithm and then

introduce a Benders decomposition algorithm that is embedded in a branch-and-cut

framework to solve the SPRP.
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5.4.1 Classical Benders Decomposition Algorithm

In classical Benders decomposition, the master problem is solved to optimality at

each iteration to obtain a lower bound on the optimal objective function value of the

problem. Then, the subproblem is solved to generate a Benders cut and compute an

upper bound. This cut is added to the master problem and the process is repeated

until an optimal solution is found. In BR1, since the master problem BMP1 contains

the SECs, it must be solved by a branch-and-cut process. At each node of the branch-

and-bound tree, a so-called separation algorithm is applied to detect violated SECs

and these cuts are then added to the problem. As in the algorithm in Chapter 3, we

use the minimum s− t algorithm of the Concorde callable library (Applegate et al.,

2011) as the exact separation algorithm. For BR2, since the routing part is handled

by the PRS with the relaxed integrality constraints on the arc variables, the solution

can be fractional. In this case, even when the yt and zikt variables in the BMP2 take

integer values, the value of fȳt plus the cost of the subproblems does not provide a

valid upper bound on the original problem BF because of the fractional xijkt variables.

However, an upper bound can be computed by solving the integer PRS either exactly

or with a heuristic. We use the following heuristic to compute a valid upper bound

when a fractional solution is obtained. TSP tours are constructed by the GENIUS

procedure (Gendreau et al., 1992) and improved by 3-opt routes (Lin, 1965). This

process is adequate since our experiments have shown that fractional solutions rarely

occur and the gap between the heuristic solution and the optimal solution to the

integer PRS is usually negligible because the number of customers in each tour is

small. Note that even if we solve the integer PRS to optimality, a gap may still exist

between the lower bound of the BMP2 and the best upper bound found by solving

the integer PRS. If one wishes to guarantee an optimal solution using BR2, one can

instead embed the Benders decomposition algorithm in a branch-and-cut algorithm

as we will discuss in detail in the next section.

Denote by P ′ the set of extreme points obtained so far by solving the Benders sub-

problems, i.e., DFS for BMP1, and DFS and PRS for BMP2. Note that BMP is used

to represent the master problem (both BMP1 and BMP2). We de�ne Zb as the set of

integer and binary variable values obtained by solving the BMP (consisting of x, y, z
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for BMP1 and y, z for BMP2). Let BMP (P ′) be the Benders master problem with

the Benders cuts generated from P ′ and SP (Zb) be the Benders subproblems given

the set of �xed integer and binary variables Zb. Let also v(BMP (P ′)), v(SP (Zb))

and ξ(Zb) denote the objective function value of the Benders master problem, the

objective function value of the Benders subproblems, and the cost associated with

the �xed variables in the set Zb, respectively. We further de�ne ṽ(SP (Zb)) as the

objective function value of the heuristic solution if the solution of the PRS is frac-

tional in BR2, while we simply set ṽ(SP (Zb)) = v(SP (Zb)) for BR1 and also for BR2

if the solution of the PRS is not fractional. Note that the algorithm stops when an

optimal solution is found or a maximum CPU time is reached. The original Benders

decomposition (BD) algorithm is shown in Algorithm 5.1.

Algorithm 5.1 Original Benders Decomposition Algorithm (BD)

ub, gap←∞, lb← −∞ and b← 0
P ′ ← ∅
while stopping criterion not satis�ed do
Solve BMP (P ′) to obtain Zb

if v(BMP (P ′)) > lb then lb← v(BMP (P ′))
Solve SP (Zb) to obtain extreme points, generate Benders cuts and add to
BMP (P ′)
(for BMP2) Solve the TSP heuristic if x is fractional
if ξ(Zb) + ṽ(SP (Zb)) < ub then ub← ξ(Zb) + ṽ(SP (Zb))
gap← (ub− lb)/ub
b← b+ 1

end while

When applying a Benders decomposition technique to a mixed-integer problem,

one typically retains the integer variables in the BMP and solves the master problem

from scratch by a branch-and-bound procedure at each iteration. This process may be

highly ine�cient. Furthermore, for BR1 where the master problem also contains the

SECs, a branch-and-cut approach must be employed and the problem can be much

more di�cult to solve. To overcome these di�culties, we propose an alternative

implementation of the Benders decomposition.
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Table 5.I: Benders Cut Generation Strategies of the Benders Algorithms

Stage Benders Reformulation

BR1 BR2

BD BBC BD BBC

Any B&B Node S S - -

Integer - F, S - F,R

Optimal F n/a F,R n/a

No. of B&B Trees b 1 b 1

S - SECs

F - Benders �ow cuts

R - Benders route cuts

b - The number of iterations in Benders algorithm

5.4.2 Branch-and-Cut Based Benders Algorithm

Since Benders cuts generated from any solution of the master problem (including the

linear relaxation) are valid (McDaniel and Devine, 1977), one can generate Benders

cuts at any node of the branch-and-bound tree of the Benders master problem. This

way, Benders decomposition can be embedded in a standard branch-and-cut frame-

work where the Benders subproblems are solved and the generated Benders cuts are

added to the master problem at any node of the branch-and-bound tree of the master

problem. We refer to this approach as branch-and-Benders-cut (BBC). Other imple-

mentations of Benders decomposition in a branch-and-cut framework were discussed

by Codato and Fischetti (2006) and Fortz and Poss (2009) to deal with feasibility

cuts, as well as by Naoum-Sawaya and Elhedhli (2010) and de Camargo et al. (2011)

who employed an interior point method and an outer-approximation method to solve

the Benders reformulations, respectively. In our algorithm, to avoid generating a

large number of Benders cuts, the cuts are added to the branch-and-bound tree of

the master problem only when an integer solution of the BMP, i.e., a solution where

all the integrality constraints and the current Benders cuts of the BMP are satis�ed,

is found. The process is described in Algorithm 2. A comparison of the cut genera-

tion strategy of each algorithm is shown in Table 5.I. It describes the stage at which

each type of cuts is generated during the branch-and-bound process when solving

the Benders master problem. Note that the Benders �ow cuts (F) are generated by

solving the DFS and the Benders route cuts (R) are generated by solving the PRS in

our implementation.
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Algorithm 5.2 Branch-and-Benders-Cut (BBC) Algorithm

ub, gap←∞, lb← −∞ and b← 0
P ′ ← ∅
begin solving BMP (P ′) by a branch-and-bound and applying the following steps
at each node of the branch-and-bound tree
lb← the best overall lower bound of BMP (P ′)
(for BMP1) Solve the separation algorithm and add SECs to the BMP (P ′)
if stopping criterion not satis�ed and an integer solution found then
Set Zb using the integer solution
Solve SP (Zb) to obtain extreme points, generate Benders cuts and add to
BMP (P ′)
(for BMP2) Solve the TSP heuristic if x is fractional
if ξ(Zb) + ṽ(SP (Zb)) < ub then ub← ξ(Zb) + ṽ(SP (Zb))
gap← (ub− lb)/ub
b← b+ 1

endif
end

As shown in Table 5.I, in BD, the Benders cuts are only generated and added

when an optimal solution of the Benders master problem is found and the master

problem is then solved from scratch with a new branch-and-bound tree in the next

iteration. We thus explore b branch-and-bound trees for the master problem where b

is the number of iterations in the Benders algorithm. In the BBC, however, a single

branch-and-bound tree for the master problem is explored during the whole process.

The SECs are added at each node. Each time a new integer solution of the BMP is

found, the subproblems resulting from this integer solution are solved and Benders

cuts are added. The branch-and-bound process continues until it reaches a stopping

criterion. Both upper and lower bounds are computed at the nodes of the tree and

an optimal solution to the original formulation BF is found when the BMP has been

solved to optimality. This process follows the branch-and-cut framework.

The fact that one tree is explored in the BBC algorithm is also particularly useful

for BR2 when an integrality gap on the routing part exists and one must �nd an

optimal solution for the original problem. This can be done by adding a few steps

to the BBC. During the solution process, when a fractional PRS solution is found,
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the set Zb and the value ξ(Zb) + v(SP (Zb)) must be stored. This value is a lower

bound on the solution cost corresponding to the set Zb for the original formulation

and therefore the solution can be pruned later if this value exceeds the value of the

current best overall feasible solution (ub). At the end of the process, one has a

current best solution for the original problem and a (possibly empty) set of fractional

solutions including the integer solution of the BMP2 if it is fractional. Then, all the

remaining fractional solutions must be evaluated again by solving to optimality the

PRS with the imposed integrality constraints (5.14) and (5.15). The optimal solution

is then the best solution among all these solutions. A numerical example of the BBC

algorithm is provided in the Appendix C.

We also remark that this Benders cut generation strategy is di�erent from those

of Naoum-Sawaya and Elhedhli (2010) and de Camargo et al. (2011) since the Ben-

ders cuts are added only when an integer solution of the BMP is found in our BBC

algorithm, while Naoum-Sawaya and Elhedhli (2010) and de Camargo et al. (2011)

generate cuts at each node of the tree using a relaxed BMP solution. The latter

strategy, however, appears to be ine�cient for our problem as we show in the com-

putational results reported in Section 5.5.1.

5.4.3 Computational Enhancements

5.4.3.1 Lower Bound Lifting Inequalities

Since parts of the objective function (5.1) are projected out in the Benders reformu-

lations, the optimality gap may be large in the initial stage of the algorithm due to

the low quality of the lower bound. A large number of Benders cuts are thus needed

to close the gap. To address this issue, we can lift the lower bound of the Benders

master problem by using initial cuts, called lower bound lifting inequalities (LBL),

that contain some information about the parts of the original objective function that

are removed. First, we can add cuts to represent a lower bound on the �ow costs,

i.e., unit production, inventory and penalty costs. We observe that, for the periods

between two consecutive deliveries to a customer, the minimum �ow cost can be cal-

culated by considering the quantity that must be supplied between the two visits
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Figure 5.1: Inventory Level Corresponding to the Two Consecutive Visits in Periods 2 and 6

to satisfy the demand. Figure 5.1 illustrates the inventory level when customer i is

visited in period 2 and then in period 6 while the demand in each period is equal to

40 so that the minimum total quantity required to satisfy the demand between these

periods is equal to 160. Given the maximum inventory capacity Li = 100, this total

demand quantity can be separated into two parts, i.e., the amount A = 100 under

Li which can be supplied and can be also left unmet if the cost of this is lower, and

the amount B = 60 which cannot be supplied and has to be left unmet due to the

inventory capacity limit.

We de�ne the periods 0 and l+ 1 as dummy periods at the beginning and the end

of the planning horizon (used for calculation purposes) and di0ω = di,l+1,ω = 0, ∀i ∈
Nc,∀ω ∈ Ω. Let λivt be a binary variable equal to one if customer i is visited in

period v < t and the next visit is in period t, and the parameter φivt be the minimum

possible sum of unit production, inventory and penalty costs over the period v to t−1

associated with the variable λivt, calculated as,

φivt =
∑
ω∈Ω

ρω

 t−1∑
s=v

min
{
HP
ivsω, H

σ
ivsω

}
+ chivt + σi

(
t−1∑
s=v

disω − ϕiv

)+


where

HP
ivsω =

(hi(s− 1) + u) min
{
disω,

(
ϕi0 −

∑s−1
w=1 diwω

)+
}

if v = 0

(hi(s− v) + u) min
{
disω,

(
ϕiv −

∑s−1
w=v diwω

)+
}

if v > 0,
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Hσ
ivsω = σi min

disω,
(
ϕiv −

s−1∑
w=v

diwω

)+
 ,

ϕiv =

Ii0 if v = 0

Li if 0 < v < t ≤ l + 1
, and

chivt =

hi(t− 1)
(
Ii0 −

∑t−1
w=1 diwω

)+
if v = 0

hi(t− v)
(
Ii0 −

∑t−1
w=1 diwω

)+
if 0 < v < t ≤ l + 1.

Note that chivt is the inventory cost at customer i incurred over the period v to

t−1 for the part of the initial inventory that is not used up at the end of period t−1.

The following cuts can be added to the master problem:

l+1∑
t=1

t−1∑
v=0

∑
i∈Nc

φivtλivt − u
∑
i∈Nc

Ii0 ≤ η (5.45)

t−1∑
v=0

λivt =
∑
k∈K

zikt ∀i ∈ Nc,∀t ∈ T (5.46)

t−1∑
v=0

l+1∑
s=t

λivs = 1 ∀i ∈ Nc,∀t ∈ T ∪ {l + 1} (5.47)

λivt ∈ {0, 1} ∀i ∈ Nc,∀0 ≤ v < t ≤ l + 1. (5.48)

Constraint (5.45) provides a lower bound for the �ow cost. Constraints (5.46)

link the λivt and zikt variables and constraints (5.47) enforce that one replenishment

plan λivt be selected in each period. Although the new variables λivt are added

to the formulation, one can observe that when all the zikt variables are �xed, the

variables λivt can be easily set by inspection. These constraints can be added to both

formulations BMP1 and BMP2.

For BR2, where the routing cost is also projected out, we let χijkt be additional

routing variables. The following inequalities can be added to the BMP2:

∑
(i,j)∈E

∑
k∈K

cijχijkt ≤ τ (5.49)
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∑
(j,j′)∈δ(i)

χjj′kt = 2zikt ∀i ∈ N,∀k ∈ K, ∀t ∈ T (5.50)

χijkt ∈ {0, 1} ∀(i, j) ∈ E : i 6= 0,∀k ∈ K, ∀t ∈ T (5.51)

χ0jkt ∈ {0, 1, 2} ∀j ∈ Nc,∀k ∈ K, ∀t ∈ T. (5.52)

5.4.3.2 Scenario Group Cuts

In BR1 and BR2, the Benders subproblem is decomposed into many subproblems.

Many Benders cuts, one for each subproblem, can be added at once instead of just

one Benders cut to accelerate the convergence (Birge and Louveaux, 1988). However,

adding too many cuts at each iteration can lead to a decreased performance of the

Benders algorithm (de Camargo et al., 2008). In the SPRP, where the number of

subproblems is equal to the number of scenarios, the number of Benders cuts generated

at each iteration can be very large. To overcome this issue, we can instead create

groups of scenarios using some similarity and aggregate the Benders cuts in each group

to reduce the number of cuts added per iteration. To create scenario groups, we �rst

de�ne the number of scenario groups nG ≤ |Ω| and groups of scenarios G(g), indexed

by g. Then, the range between the maximum and minimum total demand among all

scenarios is calculated and separated equally into nG groups. For each scenario, if

the total demand falls into the total demand range of a group, the scenario is then

assigned to this group. Denote by ηg the expected total �ow cost corresponding to

group g. The variable η in the objective function (5.30) and (5.43) is replaced by∑nG

g=1 ηg and constraints (5.31) are replaced by the following constraints:

∑
ω∈G(g)

ρω

(
−
∑
t∈T

Mtωδtωyt −
∑
t∈T

∑
k∈K

Qκktωz0kt −
∑
t∈T

∑
k∈K

∑
i∈Nc

M ′
itωζiktωzikt

+ πω(α,β,γ,θ)

)
≤ ηg ∀1 ≤ g ≤ nG, ∀(α,β,γ,θ, δ, ζ,κ) ∈ P∆. (5.53)

In this way, we can control the number of Benders cuts added at each iteration.

For the formulation BMP2, where the routing subproblems have to be solved, we can
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also add the cut for each vehicle in each period separately. Let τkt be the routing cost

of vehicle k in period t. The variable τ in the objective function (5.43) is replaced

with
∑

t∈T
∑

k∈K τkt and constraints (5.44) are replaced with(∑
i∈N

2ziktϕikt + ψkt(ϑ,µ,µ
0)

)
≤ τkt ∀k ∈ K, ∀t ∈ T,∀(ϕ,ϑ,µ,µ0) ∈ PΘ. (5.54)

5.4.3.3 Pareto-Optimal Cuts

The performance of a Benders decomposition approach depends largely on the

quality of the cuts. Magnanti and Wong (1981) introduced the concept of non-

dominated cuts, called Pareto-optimal cuts. Let Y and Z be the sets of vectors

associated with the yt and zikt variables, respectively. For the �ow cut obtained

by the DFS corresponding to the scenario ω, the cut generated from the extreme

point (α1,β1,γ1,θ1, δ1, ζ1,κ1) dominates the cut generated from the extreme point

(α2,β2,γ2,θ2, δ2, ζ2,κ2) if and only if

−
∑
t∈T

Mtωδ
1
tωyt −

∑
t∈T

∑
k∈K

Qκ1
ktωz0kt −

∑
t∈T

∑
k∈K

∑
i∈Nc

M ′
itωζ

1
iktωzikt + πω(α1,β1,γ1,θ1) ≥

−
∑
t∈T

Mtωδ
2
tωyt −

∑
t∈T

∑
k∈K

Qκ2
ktωz0kt −

∑
t∈T

∑
k∈K

∑
i∈Nc

M ′
itωζ

2
iktωzikt + πω(α2,β2,γ2,θ2)

∀y ∈ Y,∀z ∈ Z,

with strict inequality for at least one point. Denote by YLP the polyhedron de�ned

by 0 ≤ yt ≤ 1,∀t ∈ T and ZLP the polyhedron de�ned by constraints (5.9) and

0 ≤ zikt ≤ 1,∀i ∈ N, ∀k ∈ K, ∀t ∈ T . Let ri(YLP ) and ri(ZLP ) be the relative interior

of YLP and ZLP , respectively. A Pareto-optimal cut can be computed by using the

dual solution obtained by solving the following subproblem, where y0 ∈ ri(YLP ) and

z0 ∈ ri(ZLP ):
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max −I00α1ω +
∑
i∈Nc

(di1ω − Ii0)βi1ω +
∑
i∈Nc

l∑
t=2

ditωβit −
∑
t∈T

L0γtω

−
∑
t∈T

∑
i∈Nc

(Li − dit)θitω −
∑
t∈T

Mtωy
0
t δtω −

∑
t∈T

∑
k∈K

Qz0
0ktκktω

−
∑
t∈T

∑
k∈K

∑
i∈Nc

M itωz
0
iktζiktω (5.55)

s.t. − I00α1ω +
∑
i∈Nc

(di1ω − Ii0)βi1ω +
∑
i∈Nc

l∑
t=2

ditωβit −
∑
t∈T

L0γtω

−
∑
t∈T

∑
i∈Nc

(Li − dit)θitω −
∑
t∈T

Mtωȳtδtω −
∑
t∈T

∑
k∈K

Qz̄0ktκktω

−
∑
t∈T

∑
k∈K

∑
i∈Nc

M itωz̄iktζiktω = υω(ȳ, z̄) (5.56)

(α,β,γ,θ, δ, ζ,κ) ∈ ∆ω. (5.57)

Constraints (5.56) and (5.57) ensure that we select a feasible dual solution that

was optimal for the original DFS objective function υω(ȳ, z̄). To generate a Pareto-

optimal cut, any core point (y0, z0), where y0 ∈ ri(YLP ) and z0 ∈ ri(ZLP ), can be

used (Magnanti and Wong, 1981). We employ a method similar to that of Cordeau

et al. (2001) to ensure that the core point lies within the relative interior of the master

problem polyhedron. The details of this method are provided in the Appendix C.

The generation of Pareto-optimal cuts usually improves the convergence of the

algorithm but requires solving two di�erent linear programs sequentially for each

subproblem, i.e., �rst the DFS to �nd υω(ȳ, z̄), and then the problem (5.55)-(5.57).

We expedite the process by using a network �ow algorithm to determine the value

υω(ȳ, z̄).
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5.5 Computational Experiments

We have performed experiments using the PRP instances introduced in Chapter 3,

which were themselves generated from the instances of Archetti et al. (2011). The

test set consists of instances with n = 10, 15, 20, 25 and 30 customers and l = 3 and

6 periods. There are four instances per instance size and each of them has di�erent

characteristics. More details on the instances are provided in the Appendix. We

generate scenarios by a Monte-Carlo simulation in which the demand in each period

is independent and varies in the range [d̄it(1−ε), d̄it(1+ε)], where d̄it is the demand of

the nominal case from the original test set. Unless stated otherwise, we assume that

the demands are uniformly distributed and the value of ε is set to 0.1 and 0.25, which

represents a maximum demand variation of 10% and 25%, respectively. We set the

cost of unmet demand σi proportional to the production and transportation costs,

calculated as σi = u + 5 [f/C + 2c0i/Q], where [x] denotes the nearest integer to x,

and the multiplier 5 is used to ensure that the cost of unmet demand is su�ciently

large. The vehicle capacity is calculated as Q =
⌊
1.5 maxi∈Nc{L̄i}/m

⌋
where L̄i is the

original value in the Archetti et al. test set. The sets S and L are used to represent

the instance sizes n = 10, 15 and n = 20, 25, 30, respectively. Columns Gap, CPU

and B.Cuts show the average optimality gap (%), the average CPU time in seconds

and the average number of generated Benders cuts, respectively. To indicate the

best results, boldface letters are put on the smallest average computing time if all

instances of a problem size are solved to optimality, otherwise they are put on the

best average optimality gap. The experiments were conducted on a workstation with

an Intel Xeon 2.67GHz processor and 24GB of RAM under Scienti�c Linux 6.1 using

CPLEX 12.3. The algorithms were coded in C and C# on MonoDevelop 3.0 under

OpenSUSE Linux 12.1. In all experiments, branching priority was given �rst to y

variables and then to z and x (for BR1) variables, respectively.

5.5.1 Performance of the Branch-and-Benders-Cut

This section explores the performance of the BBC algorithm and the e�ect of the

computational enhancements. We chose the test set with l = 3 for these experiments.
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The number of vehicles is set to one and the number of scenarios is set to 100 and

500. The maximum computing time is set to two hours for each instance.

5.5.1.1 Comparison Between the Original Benders Algorithm and the

Branch-and-Benders-Cut Algorithm

We �rst examine the performance of the BD and BBC algorithms for BR1 and BR2.

For the BBC, we also explore the performance of the following di�erent cut generation

strategies:

Every Benders cuts are generated at every node in the branch-and-bound tree;

Root/Integer Benders cuts are only generated at the root node and when an integer

solution of the BMP is found;

Integer Benders cuts are generated only when an integer solution of the BMP is

found.

Note that the Every strategy was used by Naoum-Sawaya and Elhedhli (2010) and

de Camargo et al. (2011) while the Integer is the strategy we proposed in Algorithm

5.2. The Root/Integer can be seen as a combination of the previous two strategies.

Tables 5.II and 5.III provide the average results for each instance set for BR1 and

BR2, respectively.

Table 5.II: Comparison of the BD and BBC Algorithms on BR1

Set |Ω| ε BD BBC

Every Root/Integer Integer

#Opt Gap CPU B.Cuts #Opt Gap CPU B.Cuts #Opt Gap CPU B.Cuts #Opt Gap CPU B.Cuts

S 100 0.10 8/8 0.0 1555.4 112.3 7/8 0.0 1748.6 9995.0 8/8 0.0 110.8 263.5 8/8 0.0 114.5 252.3

0.25 7/8 0.0 3062.3 178.6 7/8 0.0 1879.8 10642.9 8/8 0.0 106.3 360.4 8/8 0.0 203.5 328.5

500 0.10 8/8 0.0 1524.4 114.0 6/8 0.8 3189.8 3900.9 8/8 0.0 225.7 271.9 8/8 0.0 302.4 250.3

0.25 7/8 0.2 2816.4 144.4 4/8 1.6 3901.8 5015.9 8/8 0.0 316.8 324.5 8/8 0.0 287.8 268.6

Average 30/32 0.0 2239.6 137.3 24/32 0.6 2680.0 7388.7 32/32 0.0 189.9 305.1 32/32 0.0 227.1 274.9

L 100 0.10 0/12 7.4 7200.0 79.7 0/12 7.2 7200.0 34401.6 0/12 4.8 7200.0 3392.3 0/12 4.7 7200.0 2181.7

0.25 0/12 7.3 7200.0 83.4 0/12 7.7 7200.0 34209.6 0/12 5.7 7200.0 4022.5 0/12 4.8 7200.0 2435.7

500 0.10 0/12 7.6 7200.0 76.7 0/12 9.9 7200.0 10267.9 1/12 4.8 7131.8 2916.0 0/12 5.1 7200.0 2001.0

0.25 0/12 8.7 7200.0 88.3 0/12 10.6 7200.0 10240.8 0/12 6.0 7200.0 3360.1 0/12 5.2 7200.0 2371.2

Average 0/48 7.7 7200.0 82.0 0/48 8.9 7200.0 22280.0 1/48 5.3 7183.0 3422.7 0/48 4.9 7200.0 2247.4

Total 30/80 4.7 5215.8 104.1 24/80 5.6 5392.0 16323.5 33/80 3.2 4385.7 2175.7 32/80 3.0 4410.8 1458.4
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Table 5.III: Comparison of the BD and BBC Algorithms on BR2

Set |Ω| ε BD BBC

Every Root/Integer Integer

#Opt Gap CPU B.Cuts #Opt Gap CPU B.Cuts #Opt Gap CPU B.Cuts #Opt Gap CPU B.Cuts

S 100 0.10 2/8 7.3 5981.4 575.0 3/8 7.3 5271.4 42714.3 4/8 5.1 3994.3 9328.3 4/8 4.5 3906.0 8967.8

0.25 1/8 7.2 6348.0 607.8 4/8 7.3 5441.7 45463.0 4/8 5.7 3798.5 10305.8 4/8 5.1 3731.0 8429.3

500 0.10 2/8 6.9 6117.7 585.5 1/8 11.9 6639.7 17163.8 4/8 4.8 4105.7 6601.0 4/8 5.2 4089.8 5806.8

0.25 1/8 8.0 6370.7 608.5 1/8 10.7 6840.4 17860.0 4/8 5.5 4186.5 7321.5 4/8 6.2 4052.9 7102.3

Average 6/32 7.3 6204.5 594.2 9/32 9.3 6048.3 30800.3 16/32 5.3 4021.2 8389.1 16/32 5.3 3944.9 7576.5

L 100 0.10 0/12 25.0 7200.0 627.7 0/12 25.2 7200.0 34952.8 0/12 17.3 7200.0 13226.0 0/12 16.3 7200.0 13859.5

0.25 0/12 26.9 7200.0 480.0 0/12 25.7 7200.0 34744.8 0/12 19.0 7200.0 14767.7 0/12 13.8 7200.0 11261.7

500 0.10 0/12 25.3 7200.0 540.2 0/12 32.7 7200.0 11935.7 0/12 17.8 7200.0 8491.5 0/12 18.4 7200.0 8573.5

0.25 0/12 25.9 7200.0 692.7 0/12 34.4 7200.0 11605.5 0/12 19.0 7200.0 8235.3 0/12 18.8 7200.0 8312.2

Average 0/48 25.8 7200.0 585.1 0/48 29.5 7200.0 23309.7 0/48 18.3 7200.0 11180.1 0/48 16.8 7200.0 10501.7

Total 6/80 18.4 6801.8 588.8 9/80 21.4 6739.3 26305.9 16/80 13.1 5928.5 10063.7 16/80 12.2 5898.0 9331.6

Among the three Benders cut generation strategies for the BBC algorithm, the

Every strategy is the worst performing and is even worse than the BD algorithm.

The Root/Integer and Integer strategies have similar performance but the Integer is

better overall for both BR1 and BR2. The number of Benders cuts generated by

the Every strategy is much higher than those generated by Root/Integer and Integer.

When comparing the BBC with Integer and the BD algorithm, the results clearly

indicate the bene�ts of using the branch-and-cut framework to solve the Benders re-

formulations. The average optimality gaps after two hours of CPU time as well as

the computing times on the instances solved to optimality are improved considerably.

It should also be noted that the average number of Benders cuts in the BBC is much

larger than in the BD and this could strengthen the master problem and expedite

the process. For these reasons, we use only the BBC with Integer for the remaining

computational experiments. We also observe that the performance of BR2 is sig-

ni�cantly worse than BR1 because the routing parts are removed from the master

problem. However, since the methods presented in Section 5.4.3 can further improve

the quality of the cuts and the process, we still perform the experiments on BR2 using

the BBC to see the impact of the computational enhancements.

5.5.1.2 Impact of the Lower Bound Lifting Inequalities

Table 5.IV reports the performance of the BBC algorithm when the lower bound

lifting cuts (LBL) of Section 5.4.3.1 are added. The results show that the LBL
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substantially improves the performance of the Benders algorithm. For the instance

set S solved to optimality by BR1, the average computing time is reduced by 75%.

The average optimality gap is also signi�cantly decreased to approximately one third

of the previous average gap and the BBC algorithm could solve an additional 16 and

13 instances to optimality for BR1 and BR2, respectively. The results clearly indicate

the bene�ts of the LBL. These lower bound lifting inequalities are thus used in the

remaining parts of the computational experiments.

Table 5.IV: Average Results of the BBC Algorithms Using the Lower Bound Lifting Inequalities
(LBL)

Set |Ω| ε Benders Reformulation 1 (BR1) Benders Reformulation 2 (BR2)

None LBL None LBL

#Opt Gap CPU B.Cuts #Opt Gap CPU B.Cuts #Opt Gap CPU B.Cuts #Opt Gap CPU B.Cuts

S 100 0.10 8/8 0.0 114.5 252.3 8/8 0.0 27.0 97.1 4/8 4.5 3906.0 8967.8 7/8 0.0 1361.3 3471.0

0.25 8/8 0.0 203.5 328.5 8/8 0.0 33.5 124.1 4/8 5.1 3731.0 8429.3 8/8 0.0 845.7 2467.5

500 0.10 8/8 0.0 302.4 250.3 8/8 0.0 72.9 89.9 4/8 5.2 4089.8 5806.8 7/8 0.0 1855.9 3002.3

0.25 8/8 0.0 287.8 268.6 8/8 0.0 94.6 119.6 4/8 6.2 4052.9 7102.3 7/8 0.1 1515.7 2479.8

Average 32/32 0.0 227.1 274.9 32/32 0.0 57.0 107.7 16/32 5.3 3944.9 7576.5 29/32 0.0 1394.7 2855.1

L 100 0.10 0/12 4.7 7200.0 2181.7 4/12 1.7 5617.0 1762.8 0/12 16.3 7200.0 13859.5 0/12 5.4 7200.0 17612.2

0.25 0/12 4.8 7200.0 2435.7 4/12 1.7 5602.3 1904.9 0/12 13.8 7200.0 11261.7 0/12 5.9 7200.0 18055.5

500 0.10 0/12 5.1 7200.0 2001.0 5/12 1.6 5523.3 1535.7 0/12 18.4 7200.0 8573.5 0/12 5.9 7200.0 9058.3

0.25 0/12 5.2 7200.0 2371.2 3/12 2.1 6044.8 1873.4 0/12 18.8 7200.0 8312.2 0/12 6.3 7200.0 8933.2

Average 0/48 4.9 7200.0 2247.4 16/48 1.8 5696.8 1769.2 0/48 16.8 7200.0 10501.7 0/48 5.9 7200.0 13414.8

Total 32/80 3.0 4410.8 1458.4 48/80 1.1 3440.9 1104.6 16/80 12.2 5898.0 9331.6 29/80 3.6 4877.9 9190.9

5.5.1.3 Impact of the Scenario Group Cuts and Pareto-Optimal Cuts

The average results of di�erent settings are shown in Tables 5.V and 5.VI for BR1 and

BR2, respectively. Although we have tested several di�erent choices for the number

of groups in the scenario group cuts, we report results only for nG = 5 and nG =

|Ω| because a change of nG in a small range (e.g., less than 10) has little impact

on the performance. Note that the latter case (i.e., nG = |Ω|) is the same as the

multicut strategy proposed by Birge and Louveaux (1988). The multiple route cuts

(5.43)-(5.44) are also applied to BR2 when using the scenario group cuts. Table 5.VII

provides details on the average number of nodes (in thousands), and average number

of Benders cuts.
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Table 5.V: Average Results of the BBC Algorithm Using the Scenario Group Cuts and Pareto-
Optimal Cuts on BR1

Set |Ω| ε Single cut 5-Cut |Ω|-Cut
Non-Pareto Pareto Non-Pareto Pareto Non-Pareto Pareto

#Opt Gap CPU #Opt Gap CPU #Opt Gap CPU #Opt Gap CPU #Opt Gap CPU #Opt Gap CPU

S 100 0.10 8/8 0.0 27.0 8/8 0.0 50.9 8/8 0.0 25.4 8/8 0.0 38.4 8/8 0.0 33.5 8/8 0.0 35.1

0.25 8/8 0.0 33.5 8/8 0.0 46.9 8/8 0.0 23.8 8/8 0.0 41.3 8/8 0.0 40.3 8/8 0.0 51.5

500 0.10 8/8 0.0 72.9 8/8 0.0 151.3 8/8 0.0 82.5 8/8 0.0 131.7 8/8 0.0 256.5 8/8 0.0 210.8

0.25 8/8 0.0 94.6 8/8 0.0 180.5 8/8 0.0 75.9 8/8 0.0 158.4 8/8 0.0 243.8 8/8 0.0 299.3

Average 32/32 0.0 57.0 32/32 0.0 107.4 32/32 0.0 51.9 32/32 0.0 92.5 32/32 0.0 143.5 32/32 0.0 149.2

L 100 0.10 4/12 1.7 5617.0 6/12 1.3 5218.9 3/12 1.9 5665.8 6/12 1.2 5176.2 2/12 2.8 6301.5 4/12 1.7 6030.0

0.25 4/12 1.7 5602.3 5/12 1.6 5473.5 4/12 2.0 5756.3 4/12 1.5 5239.1 3/12 2.4 6116.6 2/12 2.0 6125.3

500 0.10 5/12 1.6 5523.3 4/12 1.7 6093.8 3/12 2.1 5781.4 5/12 1.6 5615.4 1/12 4.0 7049.1 2/12 3.4 6630.5

0.25 3/12 2.1 6044.8 2/12 2.4 6379.1 3/12 2.0 5927.1 3/12 1.9 6033.0 2/12 3.6 6971.1 2/12 3.3 6708.0

Average 16/48 1.8 5696.8 17/48 1.8 5791.3 13/48 2.0 5782.7 18/48 1.6 5515.9 8/48 3.2 6609.6 10/48 2.6 6373.5

Total 48/80 1.1 3440.9 49/80 1.1 3517.8 45/80 1.2 3490.4 50/80 0.9 3346.5 40/80 1.9 4023.2 42/80 1.6 3883.7

Table 5.VI: Average Results of the BBC Algorithm Using the Scenario Group Cuts and Pareto-
Optimal Cuts on BR2

Set |Ω| ε Single cut 5-Cut |Ω|-Cut
Non-Pareto Pareto Non-Pareto Pareto Non-Pareto Pareto

#Opt Gap CPU #Opt Gap CPU #Opt Gap CPU #Opt Gap CPU #Opt Gap CPU #Opt Gap CPU

S 100 0.10 7/8 0.0 1361.3 7/8 0.0 1547.4 8/8 0.0 367.3 8/8 0.0 285.6 6/8 0.1 2196.1 6/8 0.1 1950.2

0.25 8/8 0.0 845.7 8/8 0.0 930.7 8/8 0.0 260.8 8/8 0.0 230.8 7/8 0.2 1599.7 7/8 0.2 1195.2

500 0.10 7/8 0.0 1855.9 6/8 0.4 2320.4 8/8 0.0 506.5 8/8 0.0 776.5 4/8 1.0 3660.7 6/8 0.7 2859.3

0.25 7/8 0.1 1515.7 7/8 0.4 1922.0 8/8 0.0 386.1 8/8 0.0 705.6 4/8 1.2 3656.1 5/8 0.7 3380.3

Average 29/32 0.0 1394.7 28/32 0.2 1680.1 32/32 0.0 380.2 32/32 0.0 499.6 21/32 0.6 2778.1 24/32 0.4 2346.3

L 100 0.10 0/12 5.4 7200.0 0/12 5.4 7200.0 0/12 5.5 7200.0 0/12 5.0 7200.0 0/12 6.4 7200.0 0/12 6.1 7200.0

0.25 0/12 5.9 7200.0 0/12 5.6 7200.0 0/12 5.7 7200.0 0/12 5.3 7200.0 0/12 6.5 7200.0 0/12 6.0 7200.0

500 0.10 0/12 5.9 7200.0 0/12 6.2 7200.0 0/12 5.8 7200.0 0/12 5.7 7200.0 0/12 7.7 7200.0 0/12 7.3 7200.0

0.25 0/12 6.3 7200.0 0/12 6.7 7200.0 0/12 5.9 7200.0 0/12 6.0 7200.0 0/12 7.6 7200.0 0/12 7.4 7200.0

Average 0/48 5.9 7200.0 0/48 6.0 7200.0 0/48 5.7 7200.0 0/48 5.5 7200.0 0/48 7.1 7200.0 0/48 6.7 7200.0

Total 29/80 3.6 4877.9 28/80 3.7 4992.1 32/80 3.4 4472.1 32/80 3.3 4519.9 21/80 4.5 5431.3 24/80 4.2 5258.5

Table 5.VII: Average Number of Nodes (in Thousands) and Benders Cuts Using the Scenario Group
Cuts and Pareto-Optimal Cuts

Set Single cut 5-Cut |Ω|-Cut
Non-Pareto Pareto Non-Pareto Pareto Non-Pareto Pareto

kNodes B.Cuts kNodes B.Cuts kNodes B.Cuts kNodes B.Cuts kNodes B.Cuts kNodes B.Cuts

BR1 S 1.9 107.7 1.1 64.4 1.7 436.3 0.8 279.1 0.8 15584.4 6.0 12081.3

L 81.9 1769.2 56.2 1080.3 55.1 7105.8 37.2 4280.9 10.5 90631.3 9.9 75758.3

BR2 S 87.0 2855.1 52.9 1901.6 73.7 1929.4 43.8 1416.2 18.7 46649.6 18.2 42679.3

L 144.3 13414.8 68.5 6657.5 201.1 23247.3 152.1 14052.1 22.9 131657.8 21.7 114537.4

According to the results reported in Tables 5.V and 5.VI, the performance of the

|Ω|-cut indicates that a large number of scenario group cuts can lead to a signi�cant

increase in computational e�ort because the problem size is too large to be solved
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e�ciently. However, choosing an appropriate number of groups can lead to a better

performance compared to a single cut as one can see in the results on the set S for

both BR1 and BR2 and the set L for BR2. Pareto-optimal cuts can result in increased

computing time on the small instance set S but the gap on the large instance set L
generally decreases. Combining the 5-cut and Pareto-optimal cuts provides the best

results compared to the other options. Table 5.VII clearly explains the impact of the

scenario group cuts and Pareto-optimal cuts that lead to a faster convergence. The

number of Benders cuts when using the |Ω|-cut signi�cantly increases compared to the

single cut especially when the number of scenarios is large, while the number of Ben-

ders cuts grows to a much smaller extent when using the 5-cut. The Pareto-optimal

cuts, however, could reduce the number of generated Benders cuts compared to the

non-Pareto-optimal cuts on the instance set S solved to optimality and could provide

smaller gaps on the remaining instances while fewer Benders cuts are generated. We

also observe that, on the small instance set S, the number of times in which the Ben-

ders subproblems are called to generate a set of Benders cuts associated with a BMP

solution (ȳ, z̄) decreased by 52% and 20% for BR1 and decreased by 90% and 80% for

BR2 by using the |Ω|-cut and 5-cut, respectively, compared to the single cut. We can

also conclude that the performance of the BBC on BR1 is far superior to BR2. Thus,

we choose the BBC with LBL, 5-cut and Pareto-optimal cut of BR1 as the preferred

setting of the BBC algorithm for the remaining computational experiments.

5.5.2 Comparisons with the Branch-and-Cut Procedure (BC)

In this section, we compare the results of the BBC with a branch-and-cut algorithm

(BC) similar to the approaches of Archetti et al. (2007, 2011); Solyal� and Süral (2011);

Solyal� et al. (2012) to solve several variants of the deterministic PRP and IRP. We

adapted the branch-and-cut algorithm for the vehicle index formulation presented in

Chapter 3, which provided the best results for the deterministic problem, to deal

with stochastic version. This BC algorithm is applied to solve the formulation BF ,

where the SECs (5.11) are added in a branch-and-cut fashion following the approach

for the vehicle index formulations described in Section 3.4.1. The results are shown

in Table 5.VIII. Columns N.Cplex and N.SECs show the number of CPLEX cuts
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and SECs generated in the branch-and-bound tree, respectively. To better explore

the di�erences between the two approaches, we performed the test with a number of

scenarios |Ω| = 100, 200, 500 and 1000. Note that the average optimality gap was

computed only using instances where a feasible solution is found.

Table 5.VIII: Average Results of the BC and the BBC Algorithms

Set |Ω| ε BC BBC

#Opt Gap CPU Nodes N.Cplex N.SECs #Opt Gap CPU Nodes N.Cplex N.SECs B.Cuts

S 100 0.10 8/8 0.0 27.1 32.4 2873.3 74.3 8/8 0.0 38.4 704.5 14.8 196.4 270.0

0.25 8/8 0.0 30.5 43.1 2966.4 77.5 8/8 0.0 41.3 712.0 13.3 211.0 308.1

200 0.10 8/8 0.0 85.7 41.8 5569.5 76.0 8/8 0.0 60.7 849.4 18.8 209.6 250.6

0.25 8/8 0.0 88.4 42.8 6133.8 76.0 8/8 0.0 87.8 948.0 14.3 222.0 358.1

500 0.10 8/8 0.0 499.8 53.1 13413.3 87.5 8/8 0.0 131.7 988.9 20.8 212.1 241.9

0.25 8/8 0.0 475.2 47.8 15143.4 91.9 8/8 0.0 158.4 773.8 17.0 195.8 296.3

1000 0.10 8/8 0.0 2068.2 62.9 25796.9 93.5 8/8 0.0 281.3 700.4 18.1 202.6 292.5

0.25 8/8 0.0 1994.8 53.4 28207.3 91.1 8/8 0.0 357.6 856.3 17.1 237.9 366.9

Average 64/64 0.0 658.7 47.1 12513.0 83.5 64/64 0.0 144.7 816.6 16.8 210.9 298.0

L 100 0.10 12/12 0.0 669.8 425.8 6154.7 470.8 6/12 1.2 5176.2 47558.3 22.2 1910.2 4594.2

0.25 12/12 0.0 660.9 337.0 6603.4 455.9 4/12 1.5 5239.1 45597.8 22.0 1824.1 5073.3

200 0.10 12/12 0.0 1706.9 322.2 13051.6 436.0 6/12 1.4 5237.7 40121.6 21.6 1885.9 4060.0

0.25 12/12 0.0 1844.0 386.1 13072.0 452.8 5/12 1.7 5513.1 36761.8 24.4 1838.3 5033.8

500 0.10 7/12 0.4(3) 4957.6 161.1 30650.6 335.8 5/12 1.6 5615.4 28579.6 21.1 1714.2 3484.2

0.25 7/12 3.7(1) 5169.1 175.4 31821.2 332.5 3/12 1.9 6033.0 26865.2 21.6 1757.9 3972.1

1000 0.10 2/12 12.8(6) 6918.1 27.8 58806.1 108.1 4/12 2.1 6185.7 22172.7 22.7 1626.4 2634.2

0.25 2/12 13.0(7) 6860.6 21.6 57049.8 90.6 3/12 2.5 6307.3 19517.9 21.1 1494.3 2763.8

Average 66/96 3.7(17) 3598.4 232.1 27151.2 335.3 36/96 1.8 5663.4 33396.9 22.1 1756.4 3951.9

Total 130/160 2.2(17) 2422.5 158.1 21295.9 234.6 100/160 1.1 3455.9 20364.8 19.9 1138.2 2490.4
(−) the number of instance where a feasible solution could not be found

When the number of scenarios is not large (|Ω| = 100 and 200), the BC algorithm

can still solve the instances with n = 30 to optimality, while the BBC algorithm could

not �nd the optimal solution for the large instances within the time limit. When the

number of scenarios is larger (|Ω| = 500 and 1000), however, the BC is inferior to the

BBC and it could not even �nd a feasible solution for several instances. We observe

that the BBC is far less sensitive to the number of scenarios.

In addition to this test, we solved similar instances with more vehicles (m = 2) and

a longer planning horizon (l = 6) to see the impact of these parameters. The results

are provided in Table 5.IX. When the number of vehicles or time periods increases, the

performance of the BC algorithm drops signi�cantly. The BBC algorithm outperforms

the BC algorithm on most of the instances except on those with |Ω| = 100 and on

the instance set S with 6 periods and |Ω| = 200. The BC algorithm, however, cannot

handle the instances with |Ω| ≥ 500 and could not �nd a feasible solution for many
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of these instances. For the set L with |Ω| = 1000, the root node could not even be

processed within two hours.

Table 5.IX: Average Results of the BC and the BBC Algorithms on Instances with More Vehicles
and a Longer Horizon

Set |Ω| 2 vehicles (m = 2) 6 periods (l = 6)

BC BBC BC BBC

#Opt Gap CPU Nodes #Opt Gap CPU Nodes #Opt Gap CPU Nodes #Opt Gap CPU Nodes

S 100 16/16 0.0 144.6 84.4 16/16 0.0 74.7 1193.1 15/16 0.0 1229.0 1029.7 10/16 0.6 3519.5 29655.0

200 16/16 0.0 377.6 84.9 16/16 0.0 123.3 1286.6 14/16 0.2 2724.0 637.5 8/16 0.8 3843.4 23895.9

500 15/16 0.5 2755.7 100.8 16/16 0.0 214.9 1276.1 6/16 7.1 5893.5 155.1 8/16 1.3 4129.0 11724.4

1000 9/16 13.7(3) 4533.9 17.4 16/16 0.0 352.8 1261.2 0/16 19.0(14) 7200.0 4.5 8/16 1.5 4453.5 6582.5

Average 56/64 3.5 1953.0 71.9 64/64 0.0 191.4 1254.2 35/64 6.6 4261.6 456.7 34/64 1.1 3986.3 17964.5

L 100 16/24 0.6 3834.4 697.2 10/24 1.6 5451.9 21881.2 4/24 3.5 6403.6 1085.8 0/24 7.1 7200.0 17084.2

200 12/24 6.7 5368.2 286.6 8/24 1.9 5702.0 19840.0 3/24 13.3 6916.7 327.2 0/24 7.7 7200.0 12486.7

500 1/24 23.3(13) 7198.8 33.9 5/24 2.0 6167.5 16510.9 0/24 32.1(18) 7200.0 1.0 0/24 8.6 7200.0 6501.3

1000 0/24 n/a(24) 7200.0 0.0 6/24 2.3 6274.4 10856.0 0/24 n/a(24) 7200.0 0.0 0/24 9.7 7200.0 3721.6

Average 29/96 10.2(37) 5900.4 254.4 29/96 1.9 5899.0 17272.0 7/96 16.3(42) 6930.1 353.5 0/96 8.3 7200.0 9948.4

Total 85/160 7.5(40) 4321.4 181.4 93/160 1.2 3616.0 10864.9 42/160 12.4(42) 5862.7 394.8 34/160 5.4 5914.5 13154.8
(−) the number of instance where a feasible solution could not be found

It should also be noted that a large number of CPLEX cuts is generated when

solving the BC and the majority of them, approximately 90%, are �ow cover cuts that

strengthen the network structure of the problem. In Table 5.X, we further examine

the impact of turning o� CPLEX cuts on the instances with m = 1 and l = 3. The

results clearly show the impact of the CPLEX cuts for the BC algorithm. Without

these cuts, the performance of the BC algorithm decreases signi�cantly. The number

of optimal solutions found by the BC algorithm after two hours on the instance set

L decreased from 66 to 31 and the instances with |Ω| ≤ 200 were not solved to

optimality. This can be explained by the substantial increase in the average number

of nodes of the BC algorithm when the CPLEX cuts are not used. However, more

feasible solutions on large instances could be found because the BC explored a larger

number of nodes in the branch-and-bound tree. For the BBC, there is almost no

impact on the performance and the algorithm could also provide better results on the

instance set L with |Ω| = 200 compared to the BC when the CPLEX cuts are turned

o�.
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Stochastic Environments

Table 5.X: Performance of the BC and the BBC Algorithms without CPLEX Cuts

Set |Ω| BC BBC

with CPLEX cuts w/o CPLEX cuts with CPLEX cuts w/o CPLEX cuts

#Opt Gap CPU Nodes #Opt Gap CPU Nodes #Opt Gap CPU Nodes #Opt Gap CPU Nodes

S 100 16/16 0.0 28.8 37.8 16/16 0.0 37.0 242.1 16/16 0.0 39.9 708.3 16/16 0.0 39.9 714.9

200 16/16 0.0 87.1 42.3 16/16 0.0 102.5 283.4 16/16 0.0 74.2 898.7 16/16 0.0 63.4 754.7

500 16/16 0.0 487.5 50.4 16/16 0.0 522.7 307.3 16/16 0.0 145.1 881.3 16/16 0.0 155.3 828.3

1000 16/16 0.0 2031.5 58.1 16/16 0.0 2490.1 301.9 16/16 0.0 319.5 778.3 16/16 0.0 296.5 762.8

Average 64/64 0.0 658.7 47.1 64/64 0.0 788.1 283.7 64/64 0.0 144.7 816.6 64/64 0.0 138.8 765.2

L 100 24/24 0.0 665.4 381.4 15/24 0.8 3876.0 5035.1 10/24 1.4 5207.6 46578.0 10/24 1.4 5033.8 44197.3

200 24/24 0.0 1775.5 354.1 12/24 1.8 4781.5 2723.0 11/24 1.5 5375.4 38441.7 9/24 1.5 5479.1 41797.5

500 14/24 2.0(4) 5063.4 168.3 4/24 4.8 6434.8 984.9 8/24 1.8 5824.2 27722.4 8/24 1.9 5871.3 29406.7

1000 4/24 12.9(13) 6889.4 24.7 0/24 5.1(11) 7200.0 217.0 7/24 2.3 6246.5 20845.3 7/24 2.3 6294.8 24777.6

Average 66/96 3.7(17) 3598.4 232.1 31/96 3.1(11) 5573.1 2240.0 36/96 1.8 5663.4 33396.9 34/96 1.8 5669.7 35044.8

Total 130/160 2.2(17) 2422.5 158.1 95/160 1.9(11) 3659.1 1457.5 100/160 1.1 3455.9 20364.8 98/160 1.1 3457.3 21332.9
(−) the number of instance where a feasible solution could not be found

5.6 Reoptimization Capabilities of the Benders De-

composition Algorithm in Stochastic Environ-

ments

The reoptimization capabilities provided by Benders decomposition can be very useful

in �what-if� analyses (Geo�rion and Graves, 1974; Cordeau et al., 2006). In situations

where the changes made to the problem data a�ect only the master problem, the

previously generated Benders cuts are still valid and one can warm-start the algorithm

with these cuts. A new optimal solution is typically obtained in a few iterations.

Examples of this situation include forcing variables to take speci�c values or adding

logical constraints on the master problem variables. If one instead employs a branch-

and-cut algorithm, it must restart from scratch every time a change is made, which can

be very time consuming. Furthermore, if the changes a�ect only the objective function

but not the polyhedron of the Benders dual subproblem, one can also recalculate the

Benders cuts from the already generated extreme points. This is the case for the two-

stage SPRP, where changes in demand a�ect only the objective function of the DFS.

We now discuss how the reoptimization capabilities of the Benders algorithm can be

particularly useful in two practical settings, i.e., in a sample average approximation

(SAA) scheme and in a rolling horizon (RH) framework.
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In both cases, the procedure starts by solving the �rst problem from scratch using

the BBC and keeping the dual solutions generated during the solution process. When

the problem is reoptimized, Benders cuts corresponding to the new demand scenarios

(and also new initial inventory levels in RH) are computed using the dual solutions

that were already generated in the previous replications. These cuts are added to the

Benders master problem at the start of each replication. To avoid adding too many

cuts, we use a preprocessing step to select the cuts. This process starts by solving

the BMP without any Benders cuts to obtain an initial solution along with the values

of ηg. Then, the cuts with a non-negative left-hand-side value for the initial solution

are used as initial Benders cuts. The number of initial Benders cuts is limited to

5000. If the number of cuts exceeds the limit, those with the largest left-hand-side

value are selected �rst. In Table 5.XI, the results obtained by the BBC algorithm

with reoptimization are shown in Column BBC-ReOpt and the average percentage of

the number of initial Benders cuts in each replication is shown in Column %I.Cuts.

Column T.CPU indicates the average total time spent to solve all replications of

the same instance and boldface letters are put on the smallest time. Columns CPU,

Nodes and B.Cuts are the same as in the previous section and they show the average

results per replication.

5.6.1 Reoptimization for a Sample Average Approximation
Scheme

Sample average approximation (SAA) (Kleywegt et al., 2002b) is a Monte-Carlo

simulation-based sampling method developed to solve problems where the number

of scenarios is very large. It can also be applied to problems with continuous distri-

butions or with an in�nite number of scenarios. Given a large scenario set, denoted by

Ω′, which is intractable, the SAA consists of solving a number of smaller and tractable

problems with a sample of size |Ω| � |Ω′|. In the SAA process, one can calculate the

SAA gap which is the estimated di�erence between the solution obtained by solving

the replications of the sample size |Ω| and a statistical lower bound on the optimal

value for the large scenario set Ω′. This gap can be determined by a sample average

function. In practical applications, one can choose a sample size |Ω| and the number
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of replications |M | that are most appropriate for the problem in terms of solution

quality and computing time. In the SPRP, where di�erent demand scenarios are con-

sidered in each replication, one can take advantage of the reoptimization capabilities

of Benders decomposition to solve the problem more e�ciently. We provide more

details on the SAA scheme and steps to estimate the optimality gap in the Appendix

C.

Tests were performed with sample sizes |Ω| = 100, 200, 500 and 1000 and a number

of replications |M | = 100, 50, 20 and 10, respectively, which makes the total number of

evaluated scenarios equal to 10,000 for every sample size. Because the experiments in

this section focus on the bene�ts of the reoptimization capabilities, we performed the

tests on the instance set S with l = 3 and m = 1 to avoid excessive computing times.

In addition to the uniform distribution, experiments were also performed with normal

and gamma distributions with parameters chosen so that the current demand range

[d̄it(1− ε), d̄it(1 + ε)] corresponds approximately to a 99.5% con�dence interval. The

size of the large scenario set was chosen equal to |Ω′| = 10,000 to evaluate the SAA

gap. In the �rst set of experiments, we compared the results provided by di�erent

algorithms. Scenarios were generated a priori and all the algorithms were applied to

the same scenario sets to ensure a fair comparison. The results are provided in Table

5.XI.
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Table 5.XI: Performance of the Algorithms Using the SAA Method

Distribution |Ω| |M | ε BC BBC BBC-ReOpt

T.CPU CPU Nodes T.CPU CPU Nodes B.Cuts T.CPU CPU Nodes B.Cuts %I.Cuts

Uniform 100 100 0.10 2703.6 27.0 35.3 3622.7 36.2 750.0 259.6 2090.0 20.9 303.7 2571.7 97.4

0.25 2777.1 27.8 35.9 3972.9 39.7 776.7 289.1 2668.1 26.7 360.7 3135.2 97.1

200 50 0.10 4348.9 87.0 44.9 3140.4 62.8 742.4 258.6 1439.4 28.8 333.4 1904.5 96.2

0.25 4373.6 87.5 43.1 3686.3 73.7 801.1 302.0 1827.2 36.5 357.7 2427.8 96.1

500 20 0.10 9596.9 479.8 52.6 2778.8 138.9 787.8 264.4 1131.3 56.6 380.8 1007.4 91.5

0.25 9372.4 468.6 50.2 3160.5 158.0 773.9 300.1 1437.3 71.9 396.7 1287.6 91.5

1000 10 0.10 18891.8 1889.2 53.6 2531.7 253.2 819.7 268.4 1197.4 119.7 432.5 686.3 83.6

0.25 19639.4 1963.9 53.3 3223.0 322.3 808.7 339.0 1466.7 146.7 451.2 901.4 84.7

Average 8963.0 628.9 46.1 3264.5 135.6 782.5 285.1 1657.2 63.5 377.1 1740.3 94.5

Normal 100 100 0.10 2815.3 28.2 41.8 2898.9 29.0 597.7 210.5 1664.3 16.6 235.7 2390.4 97.6

0.25 2862.2 28.6 48.4 3444.1 34.4 791.7 244.7 2331.1 23.3 368.8 2662.7 97.1

200 50 0.10 4326.1 86.5 52.7 2596.0 51.9 613.9 215.4 1044.6 20.9 243.0 1486.1 96.4

0.25 4425.6 88.5 58.1 3188.0 63.8 843.9 260.4 1639.7 32.8 416.3 1986.4 95.9

500 20 0.10 9480.4 474.0 59.7 2377.4 118.9 644.6 230.3 940.0 47.0 278.0 865.0 91.5

0.25 9138.1 456.9 69.9 2712.2 135.6 839.7 260.5 1280.2 64.0 451.6 1138.6 91.6

1000 10 0.10 19107.4 1910.7 58.2 2244.3 224.4 670.9 241.7 1008.6 100.9 317.7 634.4 84.3

0.25 19069.0 1906.9 68.6 2663.6 266.4 943.6 286.4 1257.2 125.7 450.3 760.6 84.5

Average 8903.0 622.5 57.2 2765.6 115.5 743.2 243.7 1395.7 53.9 345.2 1490.5 94.5

Gamma 100 100 0.10 2654.1 26.5 37.1 2821.5 28.2 558.3 204.7 1536.4 15.4 213.5 2178.1 97.6

0.25 2759.2 27.6 34.6 3729.1 37.3 782.0 271.9 2385.5 23.9 338.6 3043.5 97.3

200 50 0.10 4058.4 81.2 44.3 2455.4 49.1 564.9 204.8 1022.1 20.4 213.4 1408.3 96.4

0.25 4305.7 86.1 42.4 3444.2 68.9 815.8 286.3 1705.3 34.1 373.8 2324.9 96.2

500 20 0.10 8992.3 449.6 56.5 2184.2 109.2 595.5 210.4 851.9 42.6 258.6 802.2 91.8

0.25 9520.2 476.0 54.0 3027.3 151.4 826.3 292.3 1281.0 64.1 389.4 1229.4 91.6

1000 10 0.10 18456.3 1845.6 59.0 2092.2 209.2 631.1 225.6 894.4 89.4 277.9 538.6 84.4

0.25 19368.8 1936.9 57.9 2718.1 271.8 786.4 292.9 1533.0 153.3 471.5 944.3 84.2

Average 8764.4 616.2 48.2 2809.0 115.6 695.0 248.6 1401.2 55.4 317.1 1558.7 94.6

Total Average 8876.8 622.5 50.5 2946.4 122.3 740.3 259.2 1484.7 57.6 346.4 1596.5 94.5

These results clearly indicate the bene�ts of reoptimization when solving the SPRP

in a SAA method. The BBC algorithm using reoptimization could reduce the average

total computing time by approximately 50% and 83% compared to the BBC without

reoptimization and BC, respectively. The average number of Benders cuts generated

by the BBC-ReOpt is signi�cantly larger than for the BBC. However, the majority

of them (94.5%) are the initial cuts generated from previous replications and only

5.5% of the number of Benders cuts or 87.7 cuts on average were newly generated at

each replication. To further demonstrate the bene�ts of reoptimization, Figure 5.2

shows the average computing time spent in each replication to solve the instances

with n = 15, ε = 0.10, |Ω| = 200 and a uniform distribution. The computing times

after the �rst replication are signi�cantly reduced when using the BBC-ReOpt.

To evaluate the impact of the sample size, we further performed experiments to

compare the solution quality obtained with di�erent sizes using the BBC-ReOpt.
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Figure 5.2: Computing Time Spent at Each Replication in the SAA Method

The results are shown in Table 5.XII. These tests follow the procedure presented

by Kleywegt et al. (2002b) in which scenarios are generated and the SAA gap is

calculated during the SAA process. We report the results at the end of the process

after all the replications are solved. Column ETC (%Abs) shows the average absolute

gap (%) computed by
∑|M |

i=1

(
(νi

Ω
− ν̂

Ω
)/νi

Ω

)
, where νi

Ω
is the expected total cost in

replication i corresponding to the objective function (5.1) and ν̂
Ω
is the SAA lower

bound. Column SAA (%Abs) indicates the average absolute SAA gap (%) computed

by εSAA(Ω,Ω′)/ν̂
Ω
, where εSAA(Ω,Ω′) is the SAA gap obtained by the SAA method

as discussed in the Appendix C. Column ± SAA (%) at 95% CI indicates the average

range of the gap (±%) at the 95% con�dence interval (CI) where it is computed with

the standard deviation of the SAA gaps and we assume that the gap is normally

distributed.
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Table 5.XII: Solution Quality and Computing Times of the SAA Using Di�erent Sample Size

ETC (%Abs) SAA (%Abs) ± SAA (%) at CI 95% T.CPU

Distribution |Ω| = 100 200 500 1000 100 200 500 1000 100 200 500 1000 100 200 500 1000

|M | = 100 50 20 100 100 50 20 100 100 50 20 100 100 50 20 100

Uniform ε =0.10 0.52 0.35 0.15 0.07 0.09 0.04 0.03 0.02 0.12 0.11 0.08 0.07 1769.1 1276.7 1113.0 1090.6

0.25 0.98 0.59 0.29 0.13 0.13 0.12 0.04 0.04 0.25 0.23 0.17 0.14 2259.1 1616.4 1374.2 1436.9

Average 0.75 0.47 0.22 0.10 0.11 0.08 0.04 0.03 0.19 0.17 0.13 0.11 2014.1 1446.6 1243.6 1263.7

Normal 0.10 0.06 0.05 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.02 0.02 0.01 1833.2 1365.6 1224.2 1228.4

0.25 0.10 0.06 0.04 0.03 0.02 0.02 0.01 0.01 0.03 0.02 0.02 0.01 2752.3 2079.1 1501.0 1600.0

Average 0.08 0.05 0.03 0.02 0.02 0.01 0.01 0.01 0.03 0.02 0.02 0.01 2292.7 1722.3 1362.6 1414.2

Gamma 0.10 0.03 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.02 0.01 0.01 0.01 1815.7 1315.5 1188.5 1256.0

0.25 0.09 0.08 0.04 0.03 0.01 0.02 0.01 0.01 0.03 0.03 0.02 0.02 2662.0 2009.1 1587.1 1801.0

Average 0.06 0.05 0.03 0.02 0.01 0.01 0.01 0.00 0.02 0.02 0.02 0.01 2238.8 1662.3 1387.8 1528.5

Total Average 0.30 0.19 0.09 0.05 0.04 0.03 0.02 0.02 0.08 0.07 0.05 0.05 2181.9 1610.4 1331.3 1402.2

We observe that the largest sample size |Ω| = 1000 can provide the best average

ETC gap as well as the best average SAA gap with the least variation compared to

the other sample sizes but the average computing time is larger than for the sample

size |Ω| = 500. The sample size |Ω| = 500 is, however, generally the best in terms of

the trade-o� between solution quality and computing time.

5.6.2 Reoptimization for the Dynamic and Stochastic PRP in
a Rolling Horizon Framework

In practice, dynamic planning problems are solved repeatedly over time as new in-

formation becomes available. This is often done in a rolling horizon framework: a

problem is solved using the information for a limited number of periods and in a

later period, the problem is solved again using updated information. Usually, there is

some overlap between the periods considered in two subsequent problems in order to

reduce the end of horizon e�ect. This version of the SPRP can be seen as a dynamic

and stochastic PRP (DSPRP).

In a rolling horizon, one must solve the problem repeatedly with updated initial

inventory levels and a new set of demand scenarios. Reoptimization can be particu-

larly useful in this context since the changes do not a�ect the Benders subproblem

polyhedron. To explore the bene�ts of the reoptimization of the BBC, we performed

experiments using the data set used in the previous section but extended to 52 time

periods (i.e., one year). We assume that the demand in the current period is more
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accurate with ε = 0.1 and the next periods are more uncertain with ε = 0.25. The

nominal demand is assumed to increase 5% for every quarter (i.e., every 13 periods).

The number of rolling periods to optimize is set to 3 and 4 and the overlapping period

is set to one, which results in a total number of times that the problem has to be

solved being equal to |M | = 26 and 17 for 3 and 4 rolling periods, respectively. We

assume that the initial inventory for the current rolling periods is equal to the rounded

expected value of the corresponding inventory level over all scenarios resulting from

the previous rolling periods. The total computing time per instance is limited to 30

hours and the experiments are performed on the instances with n = 10 since it is very

time consuming to solve larger instance sizes for the whole planning horizon (the total

computing time usually exceeds 30 hours).

The results are shows in Table 5.XIII and we indicate the variants by tr/to where

tr and to are the number of rolling and overlapping periods, respectively. According

to these results, the BBC-ReOpt could reduce the average total computing time by

approximately 41% and 81% compared to the BBC without reoptimization and BC,

respectively. We can also observe that the reduction in computing time is less for the

BBC using reoptimization in the rolling horizon framework compared to the results

of the SAA. This is due to the fact that, in each subsequent problem, demands are

computed from di�erent nominal cases and initial inventory levels are changed. Thus,

the initial cuts generated in the rolling horizon framework are not as strong as in the

SAA where demand scenarios of each customer are generated from the same demand

distribution.

Table 5.XIII: Performance of the Algorithms Using the Rolling Horizon Method

tr/to |M | |Ω| ε BC BBC BBC-ReOpt

T.CPU CPU Nodes T.CPU CPU Nodes B.Cuts T.CPU CPU Nodes B.Cuts %I.Cuts

3/1 26 100 0.10 485.8 18.7 54.0 962.6 37.0 1361.2 365.2 439.0 16.9 567.9 1674.4 91.3

200 0.10 1270.4 48.9 60.4 1658.5 63.8 1385.7 377.2 863.8 33.3 585.4 1611.6 91.0

500 0.10 6813.9 262.1 66.9 3569.3 137.3 1418.1 380.0 1853.7 74.0 615.7 1824.6 91.7

1000 0.10 26577.2 1022.2 69.5 6774.5 260.6 1300.3 395.6 3529.7 130.6 598.8 1740.2 91.1

Average 8786.8 338.0 62.7 3241.2 124.7 1366.3 379.5 1671.6 64.3 592.0 1712.7 91.3

4/1 17 100 0.10 889.7 52.3 133.1 2013.3 118.4 4733.2 914.2 1376.2 81.0 2931.0 3340.0 87.1

200 0.10 2655.0 156.2 133.7 3177.8 186.9 3913.4 879.3 1909.5 112.3 2474.3 3341.1 88.9

500 0.10 15110.2 888.8 140.3 6587.8 387.5 4024.9 862.2 4051.2 238.3 2485.8 3555.7 88.8

1000 0.10 65006.9† 3823.9 121.8 13537.6 796.3 4131.4 910.7 8489.2 499.4 2478.2 3714.9 88.1

Average 20915.4† 1230.3 132.2 6329.1 372.3 4200.7 891.6 3956.5 232.7 2592.3 3487.9 88.2

Total 14851.1† 784.1 97.5 4785.2 248.5 2783.5 635.6 2814.0 148.5 1592.1 2600.3 89.8
†15 (out of 68) instances were not solved to optimality and the average optimality gap is 0.4%
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5.7 Conclusion

We have addressed demand uncertainty in the production routing problem and pro-

posed Benders reformulations to handle the problem. The Benders algorithms are

implemented in a branch-and-cut framework, called branch-and-Benders-cut (BBC),

and several computational enhancements, namely, lower bound lifting inequalities,

scenario group cuts and Pareto-optimal cuts, are used to improve the performance of

the algorithms. The BBC with the best version of the Benders reformulation outper-

formed the branch-and-cut (BC) algorithm on the standard formulation when solving

instances with 500 and 1000 scenarios. The results also indicate that the perfor-

mance of the BBC does not depend on the CPLEX cuts, while the performance of the

branch-and-cut algorithm relies heavily on these cuts. We further discuss reoptimiza-

tion capabilities in the context of the sample average approximation method and the

dynamic and stochastic production routing problem in a rolling horizon framework.

The results show that reoptimization can substantially improve the performance of

the BBC and BC algorithms for which the computing time is reduced by 50% and

83%, respectively, for the sample average approximation method, and by 41% and

81%, respectively, for the rolling horizon framework.
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Chapter 6

Conclusion

This thesis addresses the production routing problem (PRP), which is an integrated

supply chain operational planning problem that jointly optimizes production, inven-

tory, distribution and routing decisions. The problem is also a generalization and

natural extension of the inventory routing problem (IRP) obtained by taking pro-

duction decisions into account. The PRP has been extensively studied in the past

two decades starting from Chandra and Fisher (1994) who explicitly discussed the

cost bene�t of integrating the production aspect into the IRP. In this thesis, we have

discussed several issues that have not been addressed in the previous literature. We

�rst introduced formulations and exact algorithms that can handle the PRP with

multiple vehicles and which can also be applied to the IRP. We next developed a

novel heuristic algorithm that can handle the PRP e�ciently and outperformed all

former approaches. Finally, we speci�cally addressed the PRP with demand uncer-

tainty and developed e�cient approaches to solve the problem. This section outlines

the contributions made in the thesis and future research opportunities.

In Chapter 2, we �rst presented a general perspective of integrated supply chain

operational planning problems and provided a brief review of the three integrated

problems, i.e., the lot-sizing problem with direct shipment, the IRP and the PRP, with

the PRP being a generalization of the other two. Next, we reviewed the models and

di�erent formulation schemes, followed by heuristics and exact algorithms that have

been proposed for the PRP. We found that, despite a growing body of literature, there

is still a lack of exact algorithms to e�ciently handle the PRP. We �nally discussed

studies that have addressed demand uncertainty in the PRP and related problems.

In Chapter 3, we introduced formulations and exact algorithms for the PRP with

multiple vehicles, which is an issue that has been neglected in the past due to its com-

plexity. Two formulation schemes, with and without a vehicle index, are proposed to



solve the PRP and IRP under both the maximum level (ML) and the order-up-to level

(OU) inventory replenishment policies. The vehicle index formulations are further im-

proved using symmetry breaking constraints, while the non-vehicle index formulations

are strengthened by several cuts. We developed branch-and-cut approaches to solve

the problems. The results show that the vehicle index formulations are superior in

�nding optimal solutions, while the non-vehicle index formulations are generally bet-

ter at providing good lower bounds on larger instances. IRP and PRP instances with

up to 35 customers, 3 periods and 3 vehicles can be solved to optimality within two

hours for the ML policy. By using parallel computing, the algorithms could solve

the instances for the same policy with up to 45 and 50 customers, 3 periods and 3

vehicles for the IRP and PRP, respectively. For the more di�cult IRP (resp. PRP)

under the OU policy, the algorithms could handle instances with up to 30 customers,

3 (resp. 6) periods and 3 vehicles on a single core machine, and up to 45 (resp. 35)

customers, 3 (resp. 6) periods and 3 vehicles on a multi-core machine. These results

thus �ll an important gap in the PRP and IRP literature.

In Chapter 4, we proposed a novel heuristic, called an optimization-based adap-

tive large neighborhood search (Op-ALNS), to solve large instances which cannot

be handled by the developed exact algorithms. In the Op-ALNS, binary variables

representing setup and routing decisions are handled by an enumeration scheme and

upper-level search operators, respectively, while continuous variables associated with

production, inventory and shipment quantities are set by solving a network �ow sub-

problem. Extensive computational experiments have been performed on benchmark

instances from the literature. The results show that our algorithm generally outper-

forms existing heuristics for the PRP and can produce high quality solutions in short

computing times. We further adapted the Op-ALNS to the PRP with the OU policy

and the IRP with the ML and OU policies and performed experiments to evaluate the

solution quality of the Op-ALNS on these variants. The Op-ALNS could provide high

quality solutions for the PRP instances with deviations from the optimal solutions of

1.2% and 0.9% for the ML and OU policies, respectively, while it could obtain good

quality solutions for the IRP in very short computing times compared to existing

approaches.
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In Chapter 5, we addressed the PRP with demand uncertainty, called the stochas-

tic PRP (SPRP), which is a practical enhancement to the deterministic PRP. We

considered the problem in a two-stage decision process. The decisions in the �rst

stage include production setups and customer visit schedules, while the production,

inventory and delivery quantities are determined in the second stage. We developed

exact solution approaches based on Benders decomposition together with several re-

�nements. Two di�erent Benders reformulation schemes were proposed. Furthermore,

we compared a standard implementation of the Benders algorithm to one that inte-

grates the Benders cuts within a branch-and-cut framework. This latter implemen-

tation is called branch-and-Benders-cut (BBC) and uses only one enumeration tree

for the Benders master problem. We also showed how this can be integrated with a

branch-and-cut algorithm for subtour elimination constraints. The Benders master

is further enhanced with lower bound lifting inequalities, scenario group cuts and

Pareto-optimal cuts. The best version of the Benders algorithm provides superior re-

sults to a branch-and-cut algorithm on the standard formulation when solving a large

number of scenarios while the performance of the branch-and-cut algorithm heavily

relies on the CPLEX cuts. We further exploit the reoptimization capability of the

Benders approach in two stochastic settings, namely, a sample average approximation

scheme to handle a large number of scenarios, and a rolling horizon framework for a

dynamic and stochastic variant of the PRP. The results show that the computing time

of the Benders algorithm using reoptimization is reduced by approximately 40-50%

and more than 80% compared to the Benders algorithm without reoptimization and

the branch-and-cut algorithm, respectively.

As an integration of several areas in production and distribution planning, there

are many future research directions that have not been explored. We summarize them

as follows:

Other variants of the LSP. As a major component of the PRP, one may consider

other interesting variants of the LSP. For example, the multi-product problem

where the production setup for each product must be done separately. Although

some heuristics have been proposed for this variant (Fumero and Vercellis, 1999

and Armentano et al., 2011), no studies have discussed exact methods to solve
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the problem. One can also consider the multi-product variant where production

startups must also be taken into account.

PRP with customer visit and delivery time windows. Time windows are one

of the most common issues in transportation operations. There are two di�er-

ent types of time windows that can be considered in the PRP. The �rst type,

called customer visit time windows, is imposed on periods where some customers

should be visited to satisfy operational requirements. The second type, called

delivery time window, is imposed during the day of delivery and is a well-known

variant of the VRP.

Robust PRP (RPRP). In stochastic environments, it is possible that a probabilis-

tic description of the uncertainty is not available and one cannot use the SPRP

to solve the problem. In this case, instead of minimizing the expected total

cost, one is interested in obtaining a solution that is immune to any realization

of the uncertainty in a given set and therefore the product availability must be

guaranteed.

Tactical PRP. In many applications, customers must be clustered and a driver is

assigned to serve a speci�c cluster. The cluster decisions are �xed for a long

term horizon. Examples of this variant can be found in Michel and Vanderbeck

(2012) and Coelho et al. (2012a). One possible approach is to decompose the

problem. The �rst problem is used to identify clusters, while the other problem

is a modi�ed PRP to determine the remaining decisions.

In this thesis, various contributions for the PRP have been made to support a grow-

ing interest in this research area and real-world industrial applications. There are,

however, still a number of interesting issues that have not been addressed. We are

encouraging researchers in this �eld to pursue further developments in this promising

research area.
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Appendix A

Supplement to Chapter 3

Section A.1 provides the details of MVPRP and MVIRP instances and Section A.2

presents the detailed results of the computational experiments discussed in Section

3.6 of Chapter 3. More details on the instances and the solutions can be found on

the website https://sites.google.com/site/YossiriAdulyasak/publications.

A.1 Details of the Instances

This section presents the details of the two test sets used in our computational ex-

periments.

A.1.1 Details of the MVPRP Instances

The Archetti et al. (2011) dataset consists of instances with six periods. Each problem

size contains four classes and each instance type has �ve instances with di�erent node

coordinates. The �rst class contains standard instances. The second and the third

classes are identical to the �rst but with higher unit production costs and higher

transportation costs, respectively. The fourth class consists of instances from the

�rst and second classes but with no customer inventory cost. We generated our

instances using those from the four classes to ensure that we consider di�erent problem

characteristics. Instances with 50 customers were used to generate our dataset. We

created instances from n = 10 to 50, to 40 and to 30 customers with an increment of

5 for time horizons with l = 3, 6 and 9 periods, respectively. The number of vehicles

is set to m = 2 or 3 for the instances with n ≤ 25 and to m = 3 or 4 for the

instances with 25 < n ≤ 50. There are four instances per problem size which results

in 42 × 4 = 168 instances in total or 168 × 2 = 336 instances for both the ML and

OU policy.
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The MVPRP instances are generated using the instances presented in Archetti

et al. (2011). We select the instances with 50 customers to generate our test bed.

The details are as follows.

1. Instance size. We create instances from n = 10 to 50, to 40 and to 30 cus-

tomers with an increment of 5 for the time periods l = 3, 6 and 9, respectively.

2. Customers: To generate a new instance with n customers, we select customer

numbers from 1 to n from the Archetti et al. instance. For the instances with

3 periods, initial inventory levels at customers are all reduced by a factor of 2

to prevent the case where initial inventory levels are already su�cient to satisfy

the demand during the full planning horizon. Also, since the target stock level

in the Archetti et al. test set is de�ned by the inventory after consumption, we

simply set Li = L̄i + dit, where L̄i is the original value in the Archetti et al.

test set. This does not have any e�ect since the values of dit for each customer

in the Archetti et al. test set are constant during the planning horizon.

3. Vehicles. Since the number of vehicles in the original instances is unlimited,

we set the number of vehicles equal to m = 2 or 3 for the instances with n ≤ 25,

and m = 3 or 4 for the instances with 25 < n ≤ 50. Similar to Archetti

et al., we set the vehicle capacity related to the maximum inventory level at the

customers. The vehicle capacity is calculated as Q =
⌊
1.5αmaxi∈Nc{L̄i}/m

⌋
,

where α = bn/10c + 1. In our test, this setting is appropriate since a smaller

vehicle capacity could lead to infeasible solutions, especially for the MVPRP-

OU.

4. Instance number. We generate four instances per instance size. Each instance

is taken from a di�erent instance class in the Archetti et al. dataset to ensure

that di�erent characteristics are captured. We select the original instance type

1, 25, 49 and 73 to create our test bed.

5. Production capacity. In the Archetti et al. dataset, they considered unca-

pacitated production and unlimited inventory capacity at the plant. Since we

also consider production capacity in our study, the production capacity is set to
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C =
⌊
2
∑

i∈Nc

∑
t∈T dit/l

⌋
and plant inventory capacity is set to L0 = bC/2c . In

our preliminary tests, we found that a smaller production capacity could lead

to stockouts in the MVPRP-OU.

We summarize the parameters of the instance set in Table A.I.

Table A.I: Characteristics of the MVPRP Instance Sets

n l m C L0 Q

10 3/6/9 2 304 152 198

10 3/6/9 3 304 152 132

15 3/6/9 2 470 235 198

15 3/6/9 3 470 235 132

20 3/6/9 2 540 270 283

20 3/6/9 3 540 270 189

25 3/6/9 2 700 350 283

25 3/6/9 3 700 350 189

30 3/6/9 3 768 384 228

30 3/6/9 4 768 384 171

35 3/6 3 948 474 276

35 3/6 4 948 474 207

40 3/6 3 1256 628 360

40 3/6 4 1256 628 216

45 3 3 1438 719 360

45 3 4 1438 719 207

50 3 3 1348 674 360

50 3 4 1348 674 270

A.1.2 Details of the MVIRP Instances

We have also adapted the IRP instances for the single vehicle case which are presented

in Archetti et al. (2007). This instance set was used in several studies, e.g., Archetti

et al. (2007, 2012); Solyal� and Süral (2011) and Coelho et al. (2012a,c). The set

consists of instances with 5 to 50 customers (with an increment of 5) with 3 periods,

and 5 to 30 customers with 6 periods. There are two main groups, i.e., low inventory

costs and high inventory costs, and �ve instances per instance size in each group. We

used the same method as Coelho et al. (2012a) to generate the MVIRP instances, i.e.,

the original vehicle capacity is divided by the desired number of vehicles and rounded

to the nearest integer value. We used the instances with 5 to 50 customers from the

instances with 3 periods and 5 to 25 customers from the instances with 6 periods in

our experiments. The number of vehicles is set using the same method as for the
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MVPRP instances. There are 30 × 10 = 300 instances in total or 300 × 2 = 600

instances for both the ML and OU policy.

As we mentioned earlier, the timing of the replenishment process in our paper and

Archetti et al. (2007) are di�erent. In Archetti et al., the inventory level is considered

at the beginning of the period. We denote by sit the beginning inventory level at

node i in period t and we can observe that

sit = Ii,t−1 ∀i ∈ N,∀t ∈ T. (A.1)

The following modi�cations are used to convert the instances of Archetti et al. (2007)

for our formulation. For ease of presentation, we use the variables without vehicle

index and they can be easily converted to vehicle index formulations using qit =∑
k∈K qikt.

First, in the Archetti et al. paper, the supplier can only use the inventory at the

beginning of the period to replenish the customers and the supplier must ensure that

the total amount shipped to retailers in a period cannot exceed the available amount

at the supplier in the beginning of that period, i.e.,

s0t ≥
∑
i∈Nc

qit ∀t ∈ T. (A.2)

Replacing s0t by I0,t−1 and from (3.22) and the production capacity constraints for

the IRP in Section 3.2.4, the constraints above can be rewritten as

I0t ≥ Bt ∀t ∈ T, (A.3)

and these constraints are added to our formulations.

Second, since the inventory costs are charged at the beginning of the period start-

ing from period one, where si1 = Ii0, the �xed cost
∑

i∈N hiIi0 is simply added to the

objective function in our formulations.

The other parts of the formulations remain unchanged.
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A.2 Detailed Computational Results of the Exact Al-

gorithms

The results on the e�ect of the valid inequalities are presented in Section A.2. Section

A.2 presents the results of the experiments performed on a multi-core processor and

Section A.2 presents the results on the single-vehicle instances.

A.2.1 Detailed Results on the E�ect of the Valid Inequalities

A.2.1.1 E�ect of Vehicle Symmetry Breaking Constraints on the Vehicle

Index Formulations

The results on the MVPRP and MVIRP instances that are solved to optimality are

shown in Tables A.II and A.III, respectively, and the results on the instances that

could not be solved to optimality are reported in Tables A.IV and A.V, respectively.

The column hi in Tables A.III and A.V indicates the group of the MVIRP instances,

i.e., low (L) or high (H) inventory costs.
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Table A.II: Results of Using Di�erent SBCs on the MVPRP Instances Solved to Optimality

n l m None SBC0 SBC0+1 SBC0+2 SBC0+3 SBC0+4

CPU Node CPU Node CPU Node CPU Node CPU Node CPU Node

MVPRP-ML

10 3 2 0.4 12 0.2 3 0.2 3 0.3 2 0.2 1 0.3 1

10 3 3 2.1 88 1.2 24 1.1 13 1.1 15 0.6 11 0.6 14

15 3 2 4.6 109 3.2 55 2.1 21 3.2 58 2.8 63 2.8 66

15 3 3 163.8 3614 54.9 884 34.7 486 55.6 839 33.6 537 28.7 486

10 6 2 9.0 343 3.2 31 4.0 40 3.2 33 1.7 20 2.4 34

10 6 3 137.8 3588 31.2 675 23.1 337 23.9 423 11.8 221 14.9 295

15 6 2 227.7 2435 190.7 1971 85.6 719 176.0 1438 91.2 957 94.4 873

15 6 3 2370.9(2) 12239 2036.2(2) 8669 1426.4(1) 5449 1615.6(1) 6709 926.7 5090 829.8 4586

10 9 2 83.0 1815 51.5 981 26.5 299 36.7 513 18.2 274 23.4 350

10 9 3 3600.0(4) 37039 1799.3(1) 22449 558.2 6377 1406.8(1) 16613 529.3 7557 474.8 6967

Average 659.9 6128 417.1 3574 216.2 1374 332.2 2664 161.6 1473 147.2 1367

MVPRP-OU

10 3 2 0.6 12 0.6 13 0.6 10 0.6 19 0.6 19 0.5 8

10 3 3 1.4 85 1.2 77 1.1 51 1.7 80 1.2 47 1.2 36

15 3 2 43.4 1775 38.1 1557 30.7 1037 56.7 2033 21.3 745 30.7 1064

15 3 3 62.1 1616 59.6 1395 68.4 1249 60.6 1166 20.0 328 18.1 287

10 6 2 0.7 7 0.6 3 0.6 5 0.7 3 0.6 4 0.6 3

10 6 3 2.3 24 2.0 13 2.1 15 2.0 11 1.7 11 1.5 8

15 6 2 15.4 165 13.6 136 14.7 101 15.0 119 10.8 86 13.0 123

15 6 3 188.7 1466 191.7 1372 97.5 540 165.7 1020 95.4 587 85.9 493

10 9 2 26.1 519 18.6 355 17.5 226 15.4 226 11.6 164 14.1 203

10 9 3 499.5 7228 339.7 4987 81.4 758 233.8 2448 96.2 915 94.0 973

15 9 2 1847.8(1) 10466 1982.8(2) 9917 1165.0 5943 2006.4(2) 11154 1038.4 5740 1868.6(1) 10087

Average 244.3 2124 240.8 1802 134.5 903 232.6 1662 118.0 786 193.5 1208
(−) indicates the number of instances (out of 4) were not solved to optimality
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Table A.III: Results of Using Di�erent SBCs on the MVIRP Instances Solved to Optimality

n l m hi None SBC0 SBC0+1 SBC0+2 SBC0+3 SBC0+4

CPU Node CPU Node CPU Node CPU Node CPU Node CPU Node

MVIRP-ML

5 3 2 L 0.3 145 0.2 76 0.2 45 0.2 63 0.2 31 0.2 34

5 3 3 L 3.7 2377 1.1 361 0.7 167 1.2 391 0.4 130 0.4 159

10 3 2 L 2.6 280 2.0 169 2.1 178 2.1 161 1.4 89 1.7 132

10 3 3 L 140.2 14127 51.9 4281 28.5 1850 42.3 2955 11.7 847 13.1 951

15 3 2 L 16.3 622 7.0 225 9.9 215 9.9 215 5.9 146 7.4 187

15 3 3 L 723.6 18118 186.8 4929 101.0 2180 225.1 5329 39.5 1060 41.7 1047

5 6 2 L 25.6 10400 17.7 6009 5.6 1854 11.7 4352 4.0 1177 4.0 1241

5 6 3 L 3600.0(5) 694135 3019.3(2) 645199 217.5 55557 2470.2(2) 503803 130.5 34304 117.7 32258

10 6 2 L 1048.9 53129 1111.7 50608 231.6 11070 550.3 23550 117.0 6229 168.7 7936

15 6 2 L 2956.0(3) 33269 2258.2(2) 24193 1408.5 15004 2269.1(1) 27991 718.8 10593 843.3 11515

5 3 2 H 0.3 123 0.3 86 0.2 52 0.3 53 0.2 20 0.1 28

5 3 3 H 2.9 1893 1.1 411 0.8 221 1.1 305 0.3 80 0.4 139

10 3 2 H 2.7 270 2.4 225 2.1 164 2.2 136 1.9 128 1.2 76

10 3 3 H 92.1 8841 38.2 2534 24.9 1653 45.0 2928 10.3 744 12.4 976

15 3 2 H 13.3 458 7.8 214 7.4 147 9.9 264 4.8 99 7.1 168

15 3 3 H 565.0 14989 174.5 4171 75.3 1662 162.1 4383 42.5 891 38.9 896

5 6 2 H 21.2 8365 16.1 5201 4.2 1274 9.0 3164 2.7 851 3.8 1113

5 6 3 H 3423.6(4) 713140 2561.2(1) 530888 219.7 42621 2326.6(2) 486730 80.6 21290 84.2 25457

10 6 2 H 763.6 38379 706.9 33873 164.5 8268 554.7 24460 118.4 6185 165.6 7878

15 6 2 H 2746.0(2) 32886 1993.5(2) 24270 958.9 10837 1714.7(1) 18797 476.8 6461 466.1 6888

Average 807.4 82297 607.9 66896 173.2 7751 520.4 55501 88.4 4568 98.9 4954

MVIRP-OU

5 3 2 L 0.1 2 0.1 0 0.1 0 0.2 0 0.0 0 0.1 0

5 3 3 L 0.1 5 0.1 3 0.2 0 0.2 4 0.0 0 0.0 0

10 3 2 L 3.6 336 3.3 277 3.3 221 4.2 328 2.4 156 2.7 182

10 3 3 L 15.1 806 10.7 483 13.7 531 16.8 673 5.2 171 5.5 205

15 3 2 L 10.8 239 10.4 220 10.0 181 15.7 286 6.8 104 7.8 140

15 3 3 L 111.0 1338 51.5 657 58.4 621 79.0 998 29.6 298 20.6 204

5 6 2 L 2.3 236 2.6 265 1.7 120 2.0 217 1.4 85 1.4 100

5 6 3 L 1.1 153 1.1 142 0.6 29 0.6 36 0.1 0 0.2 1

10 6 2 L 957.8 31479 607.4 19279 285.8 9416 553.7 18265 247.8 7758 279.2 9554

15 6 2 L 2764.9(2) 23445 1948.2(1) 15498 1182.7 9800 1920.3 16378 777.2 6281 757.4 6352

5 3 2 H 0.1 0 0.1 0 0.2 0 0.2 0 0.0 0 0.0 0

5 3 3 H 0.2 3 0.1 0 0.1 0 0.2 5 0.0 0 0.1 0

10 3 2 H 3.8 352 3.6 319 3.3 236 4.4 317 2.5 168 2.2 161

10 3 3 H 18.2 1010 10.4 544 8.7 331 12.5 507 5.5 192 6.5 246

15 3 2 H 11.9 276 9.5 230 11.5 212 12.9 299 6.4 118 7.8 128

15 3 3 H 94.9 1380 48.4 639 52.4 500 101.4 1244 21.3 216 23.6 242

5 6 2 H 2.2 262 2.5 263 1.6 100 2.2 230 1.4 101 1.1 86

5 6 3 H 0.6 37 0.8 80 0.7 30 0.6 21 0.2 0 0.2 1

10 6 2 H 772.4 27040 483.0 15476 280.2 9565 502.8 17132 265.5 8542 205.3 6690

15 6 2 H 2621.4(2) 21957 2578.0(2) 21691 927.6 7649 2163.0(2) 17711 605.2 5012 769.5 6077

Average 369.6 5518 288.6 3803 142.1 1977 269.6 3733 98.9 1460 104.6 1518
(−) indicates the number of instances (out of 5) were not solved to optimality
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Table A.IV: Results of Using Di�erent SBCs on the MVPRP Instances Not Solved to Optimality

n l m None SBC0 SBC0+1 SBC0+2 SBC0+3 SBC0+4

%LB Node %LB Node %LB Node %LB Node %LB Node %LB Node

MVPRP-ML

15 9 2 99.1(2) 15212 99.1(2) 11403 99.5(2) 8103 99.3(2) 10375 99.3(2) 8247 99.3(2) 8747

15 9 3 96.5(4) 7090 96.6(4) 7369 96.6(4) 6511 96.6(4) 6476 97.0(4) 7996 96.9(4) 8381

Average 97.8 11151 97.9 9386 98.1 7307 97.9 8425 98.1 8121 98.1 8564

MVPRP-OU

15 3 9 97.6(4) 8421 97.5(4) 8978 97.7(4) 7974 97.3(4) 7991 98.2(4) 9041 97.8(4) 7893
(−) indicates the number of instances (out of 4) were not solved to optimality

Table A.V: Results of Using Di�erent SBCs on the MVIRP Instances Not Solved to Optimality

n l m hi None SBC0 SBC0+1 SBC0+2 SBC0+3 SBC0+4

%LB Node %LB Node %LB Node %LB Node %LB Node %LB Node

MVIRP-ML

10 6 3 L 87.5(5) 59901 88.9(5) 56175 90.5(5) 55147 89.3(5) 58882 95.3(3) 68276 91.5(4) 70671

15 6 3 L 85.4(5) 13555 86.5(5) 15036 88.7(5) 12938 88.1(5) 13729 93.1(5) 16758 94.0(5) 17734

10 6 3 H 91.9(5) 58381 93.2(5) 59372 94.6(5) 56604 93.6(5) 63415 96.8(3) 64053 97.2(3) 75831

15 6 3 H 92.3(5) 13772 92.7(5) 14097 94.1(5) 12966 93.5(5) 13312 97.2(5) 17237 96.7(5) 18032

Average 89.3 36402 90.3 36170 92.0 34414 91.1 37335 95.6 41581 94.9 45567

MVIRP-OU

10 6 3 L 89.0(5) 47138 90.8(5) 48530 92.5(5) 41738 89.7(5) 45128 97.4(2) 32919 97.0(2) 35196

15 6 3 L 82.8(5) 12227 84.5(5) 12943 84.0(5) 11522 83.7(5) 13729 90.9(5) 12041 90.9(5) 13393

10 6 3 H 93.1(5) 47267 94.3(5) 50628 94.8(5) 40254 93.4(5) 45406 98.1(2) 35484 98.6(2) 38091

15 6 3 H 90.5(5) 12820 91.1(5) 13295 91.3(5) 12103 90.7(5) 13312 95.2(5) 12684 94.5(5) 12392

Average 88.8 29863 90.2 31349 90.7 26404 89.4 29394 95.4 23282 95.3 24768
(−) indicates the number of instances (out of 5) were not solved to optimality

A.2.1.2 E�ect of Valid Inequalities for the Non-Vehicle Index Formulations

The average lower bounds of each instance size are shown in Tables A.VI and A.VII.

The numbers presented are equal to the average lower bounds at the root node com-

pared to the optimal solutions or the best upper bounds if the instances were not

solved to optimality. Each column shows the results of using each cut presented in

Section 3.3.2, where the columns None and All present the results without using

any additional cuts (i.e., only GFSECs (3.28) and (3.53) are applied) and all cuts

together, respectively. Note that there are some cases where using all cuts produces

worse results than using one type of cut since heuristic separation algorithms are

employed for the non-vehicle index formulations.
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Table A.VI: E�ects of the Valid Inequalities on Lower Bounds at the Root Node on the MVPRP
Instances

n l m MVPRP-ML MVPRP-OU

None (3.55) (3.57) (3.58) (3.60) All None (3.56) (3.57) (3.59) (3.60) All

10 3 2 98.0 98.0 98.8 98.0 98.9 100.0 96.9 97.1 97.2 97.2 96.9 97.3

10 3 3 97.2 96.9 98.2 97.2 97.5 98.7 96.6 96.8 96.6 96.8 96.6 96.8

15 3 2 96.4 96.4 98.2 96.5 96.4 98.2 88.0 91.1 88.3 89.0 88.0 91.8

15 3 3 95.1 95.2 97.1 95.4 95.7 97.6 88.4 90.9 88.3 89.4 88.2 91.3

10 6 2 89.5 89.5 91.3 89.8 89.7 91.6 94.5 94.5 94.8 94.5 94.5 94.8

10 6 3 88.9 88.9 90.4 89.1 89.5 91.0 94.4 94.4 94.6 94.4 94.5 94.7

15 6 2 90.4 90.5 92.1 90.6 90.6 92.4 94.5 94.6 94.9 94.6 94.6 94.9

15 6 3 89.2 89.5 90.9 90.1 89.6 91.5 93.9 94.0 94.3 94.1 93.9 94.3

10 9 2 95.0 95.0 96.2 95.1 95.3 96.5 96.2 96.2 97.2 96.5 96.3 97.3

10 9 3 94.3 94.3 95.4 94.5 94.5 96.3 95.5 95.6 96.3 96.0 95.7 96.6

15 9 2 93.3 93.3 94.6 93.4 93.5 94.9 94.9 95.2 96.1 95.3 95.1 96.5

15 9 3 92.2 92.1 93.1 92.7 92.8 94.0 94.4 94.5 95.3 94.8 94.7 95.6

Average 93.3 93.3 94.7 93.5 93.7 95.2 94.0 94.6 94.5 94.4 94.1 95.2

Tables A.VIII and A.IX present the e�ects of using all these cuts on our exact

algorithms. The results of the branch-and-cut without and with the additional valid

inequalities are shown in columns F (ML)|nk, F (OU)|nk and in columns F (ML)|nk+,

F (OU)|nk+, respectively.

A.2.2 Detailed Results of the Branch-and-Cut Algorithm on
Multi-Core Processors

In this section, we present the detailed results of the branch-and-cut algorithm using

the vehicle index formulations on the remaining MVPRP and MVIRP instances in

Tables A.X and A.XI. We report the average total aggregate CPU time and average

wallclock time in hours (h) in columns CPU(h) and WC(h), respectively, while the

computing time of the Op-ALNS is reported in seconds (s). Column C/W shows

the ratio of the aggregate CPU time and wallclock time (CPU/WC). Note that the

average CPU/WC ratio is 1.6 and 2.2 for the MVPRP and MVIRP, respectively.
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Table A.VII: E�ects of the Valid Inequalities on Lower Bounds at the Root Node on the MVIRP
Instances

n l m hi MVPRP-ML MVPRP-OU

None (3.55) (3.57) (3.58) (3.60) All None (3.56) (3.57) (3.59) (3.60) All

5 3 2 L 86.6 86.6 87.6 86.8 92.9 93.9 92.1 92.0 93.7 92.5 94.1 95.8

5 3 3 L 83.2 83.7 84.3 84.7 88.2 89.5 86.6 86.0 87.1 86.2 88.3 88.8

10 3 2 L 86.0 86.0 86.9 86.0 90.7 91.3 81.0 82.1 84.7 82.7 83.2 85.2

10 3 3 L 78.8 79.9 83.7 81.0 88.1 89.1 82.3 83.5 87.0 85.8 85.5 89.5

15 3 2 L 86.3 86.5 89.4 86.5 90.1 92.1 80.2 81.5 86.5 81.6 82.1 85.4

15 3 3 L 81.4 81.4 86.2 81.8 85.4 88.9 80.7 81.3 87.7 82.0 81.4 86.9

5 6 2 L 75.1 75.6 76.4 79.5 82.4 83.1 83.4 85.0 86.3 86.2 86.3 87.8

5 6 3 L 82.3 83.0 83.8 83.9 87.3 86.4 85.4 84.5 84.5 85.0 85.8 86.6

10 6 2 L 72.8 73.3 74.8 75.5 78.1 79.4 80.0 80.0 81.8 82.5 84.1 86.6

10 6 3 L 73.2 72.8 75.6 76.9 80.1 82.7 76.6 78.1 80.8 81.5 80.9 83.2

15 6 2 L 72.2 71.9 75.7 73.2 74.7 79.2 81.1 81.4 85.2 82.4 82.4 87.2

15 6 3 L 69.9 69.2 72.7 71.8 71.3 77.6 75.8 75.3 78.8 77.2 76.1 81.1

5 3 2 H 91.5 91.5 92.2 91.7 95.5 96.0 94.6 94.6 95.7 95.0 96.1 97.2

5 3 3 H 88.6 88.6 89.4 89.0 92.0 93.0 90.4 90.1 90.9 90.2 91.8 92.2

10 3 2 H 93.3 93.3 93.8 93.3 95.7 95.7 90.1 90.6 92.0 90.9 91.1 92.4

10 3 3 H 88.8 89.3 91.4 89.9 93.2 94.2 89.7 90.5 92.6 92.0 91.4 94.3

15 3 2 H 94.0 94.1 95.5 93.9 95.4 96.6 90.6 91.2 93.6 91.2 91.4 93.1

15 3 3 H 91.0 91.1 93.4 91.2 92.5 94.5 90.1 90.2 93.8 90.9 90.6 93.6

5 6 2 H 84.7 85.7 85.4 87.2 88.0 88.8 89.2 90.3 91.1 90.9 91.0 92.1

5 6 3 H 88.8 88.4 88.8 89.0 91.0 90.3 89.5 88.9 88.9 89.1 89.7 90.3

10 6 2 H 83.7 84.1 85.3 86.4 87.3 87.8 87.8 87.8 88.9 89.4 90.4 91.8

10 6 3 H 83.2 81.9 85.0 85.9 86.8 89.1 84.6 84.9 87.4 88.2 87.1 89.5

15 6 2 H 85.8 85.6 87.5 86.4 86.8 89.3 90.0 90.1 92.2 90.8 90.8 93.3

15 6 3 H 83.5 83.4 85.3 84.2 84.5 86.9 86.0 86.2 87.9 87.1 86.6 89.8

Average 83.5 83.6 85.4 84.8 87.4 89.0 85.7 86.1 88.3 87.1 87.4 89.7

A.2.3 Detailed Results of the Exact Algorithms on Single-
Vehicle Instances

In this section, we test our branch-and-cut algorithms on the single vehicle PRP

and IRP instances from the literature to see the performance of the algorithms com-

pared to the multi-vehicle case in the previous section. Since the SBCs are dropped

when m < 2, the formulations F (ML)|k and F (OU)|k become equivalent to the

formulations proposed by Archetti et al. (2007, 2011) and Solyal� and Süral (2011),

respectively. We make a few remarks on the two formulation schemes for the single

vehicle case. Without additional valid inequalities, the constraints in the F (ML)|k
and F (OU)|k that do not appear in the F (ML)|nk and F (OU)|nk are constraints

(3.7) and (3.41) for the ML and OU, respectively, and constraints (3.11), while the
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Table A.VIII: E�ects of the Valid Inequalities on the Branch-and-Cut Algorithm on MVPRP In-
stances

n l m MVPRP-ML MVPRP-OU

F (ML)|nk F (ML)|nk+ F (OU)|nk F (OU)|nk+

%LB CPU Node %LB CPU Node %LB CPU Node %LB CPU Node

10 3 2 100.0 0.3 12 100.0 0.1 0 100.0 0.3 13 100.0 0.3 8

10 3 3 100.0 0.6 71 100.0 0.4 17 100.0 0.4 13 100.0 0.3 5

15 3 2 100.0 40.8 4203 100.0 15.6 918 100.0 329.8 17432 100.0 139.8 10223

15 3 3 100.0 275.0 30747 100.0 58.9 3039 100.0 967.3 39767 100.0 428.6 28676

10 6 2 100.0 6.9 716 100.0 1.0 6 100.0 0.5 5 100.0 0.3 0

10 6 3 100.0 40.6 4687 100.0 19.8 1506 100.0 0.6 5 100.0 0.7 6

15 6 2 99.4(4) 3600.0 100687 99.8(1) 1048.8 16217 100.0 75.3 2208 100.0 53.1 1333

15 6 3 98.9(4) 3600.0 77402 99.3(4) 3600.0 64402 100.0 322.4 10196 100.0 117.8 2802

10 9 2 100.0 182.4 10872 100.0 53.5 1907 100.0 15.7 566 100.0 9.0 200

10 9 3 99.7(3) 2767.0 125261 100.0 1454.5 77948 100.0 58.3 3045 100.0 43.6 1789

15 9 2 98.8(4) 3600.0 33291 99.4(4) 3600.0 27380 99.0(4) 3600.0 45068 99.3(3) 3600.0 34038

15 9 3 98.3(4) 3600.0 32155 98.6(4) 3600.0 23677 98.6(4) 3600.0 33266 98.6(4) 3600.0 23592

Optimal 100.0 397.3 28639 100.0 161.3 10337 100.0 109.7 7325 100.0 69.6 5105

Not optimal 98.9 3600.0 83703 99.3 2954.0 47366 98.8 3530.5 65816 98.9 3255.2 43935

Total 99.6 1464.9 46994 99.8 1092.2 22680 99.8 679.8 17073 99.8 600.6 11576
(−) indicates the number of instances (out of 4) were not solved to optimality

constraints (3.28) and (3.53) in the F (ML)|nk and F (OU)|nk, respectively, do not

appear in the F (ML)|k and F (OU)|k. With the valid inequalities in Section 3.3.2 for

the single vehicle case, all the constraints in F (ML)|k and F (OU)|k are included in

the F (ML)|nk and F (OU)|nk because the inequalities (3.55), (3.56) and (3.57) are

equivalent to (3.7), (3.41) and (3.11), respectively. Thus, the formulations F (ML)|nk
and F (OU)|nk become the F (ML)|k and F (OU)|k, respectively, plus additional valid
inequalities.

We test the single vehicle case using the MVPRP and MVIRP instances of the

previous section. For the single-vehicle PRP, we use the same method as described in

Section A.1 and simply set the number of vehicles to one when calculating the vehicle

capacity. For the single-vehicle IRP, the instances are actually the original single

vehicle IRP instances presented in Archetti et al. (2007). The results on the single-

vehicle PRP and IRP are shown in Tables A.XII and A.XIII, respectively. Column

Cuts shows the number of cuts generated in the branch-and-cut process.

We can see that the single-vehicle instances are much easier to solve and all in-

stances were solved to optimality. The vehicle index formulations are slightly better
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Table A.IX: E�ects of the Valid Inequalities on the Branch-and-Cut Algorithm on MVIRP Instances

n l m hi MVIRP-ML MVIRP-OU

F (ML)|nk F (ML)|nk+ F (OU)|nk F (OU)|nk+

%LB CPU Node %LB CPU Node %LB CPU Node %LB CPU Node

5 3 2 L 100.0 0.1 57 100.0 0.1 44 100.0 0.1 8 100.0 0.1 5

5 3 3 L 100.0 0.2 197 100.0 0.1 102 100.0 0.1 16 100.0 0.1 9

10 3 2 L 100.0 5.1 1125 100.0 3.9 754 100.0 4.2 1033 100.0 2.6 445

10 3 3 L 100.0 36.2 8666 100.0 25.0 4358 100.0 8.0 1779 100.0 5.2 726

15 3 2 L 100.0 125.0 10947 100.0 44.9 3117 100.0 210.7 18948 100.0 50.5 2643

15 3 3 L 99.1(1) 1382.1 89506 100.0 964.1 67451 100.0 289.0 20756 100.0 49.0 2248

5 6 2 L 100.0 17.6 10589 100.0 16.7 8827 100.0 3.0 1527 100.0 4.4 2275

5 6 3 L 100.0 297.6 195135 100.0 232.9 132762 100.0 2.4 1056 100.0 3.6 1614

10 6 2 L 97.2(2) 1789.8 149734 98.0(2) 1630.5 120769 97.7(2) 2008.1 180764 98.9(1) 1521.5 111403

10 6 3 L 95.4(4) 3332.8 306752 95.6(4) 3485.9 236854 95.4(4) 3284.0 291015 96.0(4) 3239.2 184098

15 6 2 L 92.7(5) 3600.0 93068 95.7(5) 3600.0 75164 91.9(5) 3600.0 86215 95.5(5) 3600.0 69853

15 6 3 L 90.9(5) 3600.0 75639 92.6(5) 3600.0 65202 89.3(5) 3600.0 77423 91.5(5) 3600.0 54325

5 3 2 H 100.0 0.1 44 100.0 0.1 24 100.0 0.1 11 100.0 0.1 1

5 3 3 H 100.0 0.2 153 100.0 0.1 61 100.0 0.1 23 100.0 0.1 3

10 3 2 H 100.0 5.4 1381 100.0 7.8 1535 100.0 5.4 1250 100.0 2.7 386

10 3 3 H 100.0 39.0 10468 100.0 22.0 3500 100.0 9.5 2208 100.0 4.4 651

15 3 2 H 100.0 123.5 10397 100.0 49.3 3593 100.0 293.9 22258 100.0 39.8 2032

15 3 3 H 99.4(1) 1187.9 87227 100.0 536.8 38901 100.0 227.0 15888 100.0 53.7 2721

5 6 2 H 100.0 16.9 9977 100.0 17.2 8707 100.0 2.7 1418 100.0 4.6 2301

5 6 3 H 100.0 215.6 146203 100.0 173.4 99959 100.0 2.1 988 100.0 2.7 1377

10 6 2 H 98.4(2) 1664.0 154960 99.0(2) 1566.8 114063 98.5(2) 2044.6 183224 99.6(1) 1669.2 123457

10 6 3 H 97.1(4) 3128.9 295580 97.1(4) 3540.2 242110 97.2(3) 3109.8 268698 97.1(4) 3284.1 234901

15 6 2 H 96.4(5) 3600.0 82539 98.0(5) 3600.0 78883 95.7(5) 3600.0 81206 97.6(5) 3600.0 68426

15 6 3 H 95.2(5) 3600.0 76099 96.0(5) 3600.0 62961 94.0(5) 3600.0 71871 95.4(5) 3600.0 58152

Optimal 99.9 215.8 36379 100.0 130.9 23356 100.0 66.1 5573 100.0 14.0 1215

Not optimal 95.4 3039.4 154296 96.5 3077.9 124501 95.0 3105.8 155052 96.5 3014.3 113077

Total 98.4 1157.0 75685 98.8 1113.2 57071 98.3 1079.4 55399 98.8 1014.1 38502
(−) indicates the number of instances (out of 5) were not solved to optimality

on small instances but the non-vehicle index formulations could signi�cantly reduce

computing times on some large instances. The non-vehicle index formulation outper-

forms on average the vehicle index formulation for the PRP, while both formulations

have a similar performance for the IRP.

Note that the IRP instances with 50c/3p/1v in Archetti et al. (2007) are now

solved to optimality. We can also observe that the PRP is more di�cult to solve

than the IRP for the single vehicle case, which is similar to the results presented by

Archetti et al. (2007) and Archetti et al. (2011) for the IRP and PRP, respectively.

We also ran the algorithm on the single-vehicle PRP instances with uncapaci-

tated production of Archetti et al. (2011) which consist of 480 PRP instances with
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Table A.X: Average Results on MVPRP Instances Using Muli-Core Processors

n l m MVPRP-ML MVPRP-OU
F (ML)|k Op-ALNS F (OU)|k Op-ALNS

%LB CPU(h) WC(h) CPU
WC

%DIFF CPU(s) %LB CPU(h) WC(h) CPU
WC

%DIFF CPU(s)
10 3 2 100.0 0.0 0.0 1.4 0.4 4.6 100.0 0.0 0.0 1.2 0.0 4.2
10 3 3 100.0 0.0 0.0 1.3 1.1 4.3 100.0 0.0 0.0 1.2 0.0 4.4
15 3 2 100.0 0.0 0.0 1.5 0.9 6.6 100.0 0.0 0.0 1.4 2.0 5.8
15 3 3 100.0 0.0 0.0 1.5 1.0 6.6 100.0 0.0 0.0 1.2 1.0 6.7
20 3 2 100.0 0.0 0.0 1.4 1.0 9.8 100.0 0.0 0.0 1.2 1.5 7.4
20 3 3 100.0 0.0 0.0 1.4 1.7 10.0 100.0 0.2 0.1 1.5 1.3 8.4
25 3 2 100.0 0.0 0.0 1.2 1.5 12.4 100.0 1.1 0.6 1.9 1.5 11.1
25 3 3 100.0 0.0 0.0 1.6 1.2 14.3 99.8(1) 20.9 7.6 2.8 2.9 14.3
30 3 3 100.0 0.0 0.0 1.5 1.8 23.7 98.6(4) 27.1 12.0 2.3 2.4 19.9
30 3 4 100.0 0.5 0.3 1.8 1.4 28.1 97.0(4) 22.7 12.0 1.9 2.2 23.3
35 3 3 100.0 0.3 0.2 1.5 2.4 36.7 96.2(4) 29.9 12.0 2.5 0.3 28.8
35 3 4 100.0 7.8 3.1 2.5 2.3 43.0 94.8(4) 19.8 12.0 1.6 0.4 37.7
40 3 3 100.0 1.5 0.8 1.8 1.3 51.7 98.0(4) 24.5 12.0 2.0 1.1 32.0
40 3 4 99.0(2) 15.9 7.8 2.0 0.6 52.4 95.7(4) 18.4 12.0 1.5 0.2 42.9
45 3 3 100.0 7.9 3.6 2.2 1.2 67.5 97.2(4) 20.9 12.0 1.7 0.8 45.9
45 3 4 97.9(3) 23.9 11.9 2.0 0.3 72.1 95.3(4) 18.7 12.0 1.6 0.0 56.7
50 3 3 100.0 3.3 2.1 1.6 1.4 90.4 96.5(4) 21.7 12.0 1.8 0.1 59.2
50 3 4 99.0(3) 16.5 9.8 1.7 1.6 85.1 94.7(4) 19.6 12.0 1.6 0.0 65.9
10 6 2 100.0 0.0 0.0 1.3 0.6 7.3 100.0 0.0 0.0 1.5 0.1 9.5
10 6 3 100.0 0.0 0.0 1.5 0.4 8.4 100.0 0.0 0.0 1.1 0.1 14.0
15 6 2 100.0 0.0 0.0 1.7 1.0 13.8 100.0 0.0 0.0 1.2 0.4 14.1
15 6 3 100.0 0.2 0.1 1.7 1.6 14.0 100.0 0.0 0.0 1.2 0.7 17.6
20 6 2 100.0 0.0 0.0 1.5 1.3 22.1 100.0 0.0 0.0 1.2 0.4 22.4
20 6 3 100.0 0.3 0.2 1.8 1.5 20.6 100.0 0.1 0.1 1.2 0.5 32.7
25 6 2 100.0 0.0 0.0 1.3 1.8 28.4 100.0 0.1 0.1 1.2 1.2 30.1
25 6 3 100.0 1.0 0.6 1.6 1.7 34.2 100.0 4.8 3.6 1.3 1.8 48.4
30 6 3 100.0 5.7 2.4 2.4 1.6 52.3 100.0 0.6 0.4 1.3 0.5 58.7
30 6 4 98.9(2) 15.1 7.6 2.0 1.3 59.3 100.0 7.3 5.2 1.4 1.3 90.3
35 6 3 99.3(2) 19.0 7.6 2.5 1.3 78.4 100.0 0.9 0.8 1.2 0.7 74.1
35 6 4 97.7(4) 21.5 12.0 1.8 0.8 78.4 98.9(3) 14.6 11.7 1.2 0.9 123.1
40 6 3 98.8(4) 20.5 12.0 1.7 0.8 110.2 99.6(2) 14.7 11.1 1.3 1.6 98.4
40 6 4 97.2(4) 19.7 12.0 1.6 0.1 109.5 97.7(4) 14.6 12.0 1.2 1.0 169.0
10 9 2 100.0 0.0 0.0 1.6 1.8 13.8 100.0 0.0 0.0 1.4 1.4 18.4
10 9 3 100.0 0.1 0.1 1.5 1.8 12.9 100.0 0.0 0.0 1.3 1.3 26.7
15 9 2 100.0 1.4 0.7 2.0 1.6 24.1 100.0 0.2 0.2 1.5 1.2 28.2
15 9 3 98.1(4) 18.5 12.0 1.5 1.7 25.7 99.8(1) 10.4 5.8 1.8 2.0 55.7
20 9 2 100.0 0.4 0.3 1.5 1.0 36.8 100.0 0.1 0.1 1.3 0.8 42.6
20 9 3 99.5(2) 9.8 6.3 1.6 1.3 39.2 99.7(1) 7.3 5.2 1.4 0.4 70.4
25 9 2 99.8(1) 8.3 4.9 1.7 0.6 56.4 100.0 0.8 0.6 1.2 0.5 65.4
25 9 3 98.3(4) 16.5 12.0 1.4 0.8 66.7 98.5(3) 12.0 9.9 1.2 0.6 129.8
30 9 3 97.8(4) 19.4 12.0 1.6 0.9 105.4 99.0(3) 14.7 10.8 1.4 1.0 136.5
30 9 4 95.9(4) 18.4 12.0 1.5 0.3 115.7 97.2(4) 15.3 12.0 1.3 0.1 238.2
Optimal 100.0 1.1 0.5 1.6 1.4 24.9 100.0 0.7 0.5 1.3 0.9 27.9
Not optimal 98.3 17.4 10.0 1.8 0.9 75.3 97.6 18.3 10.9 1.7 1.0 76.2
Total 99.4 6.5 3.7 1.7 1.2 41.7 98.9 8.7 5.2 1.5 0.9 49.7
n/a indicates the instance size was already solved to optimality using a single core processor
(−) indicates the number of instances (out of 4) were not solved to optimality

14 customers and 6 periods. Since these instances were designed to test a heuristic,

several di�erent parameter settings in terms of inventory, production and transporta-

tion costs are used to generate the test set. In Archetti et al. (2011), they consider

the PRP-ML with uncapacitated production, where the following valid inequalities
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for the uncapacitated lot-sizing problem are also added:

I0,t−1 ≤
∑
i∈Nc

l∑
j=t

dij(1− yt) ∀t ∈ T (A.4)

pt ≥
f

h0j
(yt−j + yt − 1) 2 ≤ t ≤ l, 1 ≤ j ≤ t− 1. (A.5)

These inequalities are also added in the F (ML)|k and F (ML)|nk formulations. The

results are shown Table A.XIV. Since there are 480 instances, we report the average

results of each class. Similar to the results on the single-vehicle instances in the

previous experiments, the vehicle index formulation is slightly better because the

instance size is relatively small. Note that all instances that were not solved to

optimality in Archetti et al. (2011) are solved to optimality with this implementation.

A.2.4 Results of the Exact Algorithms when Allowing Multiple
Visits

We further explore the results when multiple visits to a customer in each time pe-

riod is allowed. This can be done by replacing constraints (3.8) with the following

constraints:

∑
k∈K

zikt ≤ nv ∀i ∈ Nc, ∀t ∈ T,

where nv is the maximum number of visits to a customer in a time period. Note that

this modi�cation can be done for the F (ML)|k formulation only since the shortest

path constraints of the F (OU)|k formulation do not allow multiple visits. Also, this

feature cannot be incorporated in the non-vehicle index formulations.

We perform the tests on the MVPRP and MVIRP instances with n ≤ 30 and

m = 3 and the results are shown in Table A.XV. Column Cost index (%) shows

the average total cost in percentage of the cost when allowing maximum one visit

per period per customer, calculated by ĉnv/ĉ1, where ĉnv and ĉ1 are the total costs

obtained by allowing maximum nv visits and 1 visit per per period per customer,

respectively. Column Best indicates the number of instances in which the minimum
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cost is found in each setting. We found that, by allowing multiple visits per period,

all the total costs remain the same for the MVPRP while multiple visits are very

rarely used. The average CPU time, however, increased when the maximum number

of visits increased. For the MVIRP, more multiple visits are used while the cases

where nv = 2 and nv = 3 could provide slight improvements in the total costs (0.6%

on average). The average CPU time by using multiple visits increased compared to

the standard case with a single visit.
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Table A.XI: Average Results on MVIRP Instances Using Muli-Core Processors

n l m hi MVIRP-ML MVIRP-OU
F (ML)|k Op-ALNS F (OU)|k Op-ALNS

%LB CPU(h) WC(h) CPU
WC

%DIFF CPU(s) %LB CPU(h) WC(h) CPU
WC

%DIFF CPU(s)
5 3 2 L 100.0 0.0 0.0 1.5 1.3 3.5 100.0 0.0 0.0 1.2 0.5 3.4
5 3 3 L 100.0 0.0 0.0 1.5 0.5 3.7 100.0 0.0 0.0 1.1 0.2 3.8
10 3 2 L 100.0 0.0 0.0 1.5 3.0 5.5 100.0 0.0 0.0 1.5 2.1 6.6
10 3 3 L 100.0 0.0 0.0 1.6 4.1 6.0 100.0 0.0 0.0 1.5 1.7 7.4
15 3 2 L 100.0 0.0 0.0 1.5 2.3 7.9 100.0 0.0 0.0 1.5 5.5 8.1
15 3 3 L 100.0 0.0 0.0 1.5 7.0 10.3 100.0 0.0 0.0 1.6 6.7 13.7
20 3 2 L 100.0 0.0 0.0 1.6 5.0 10.9 100.0 0.0 0.0 1.9 5.8 10.6
20 3 3 L 100.0 0.1 0.1 2.0 4.9 11.6 100.0 0.2 0.1 2.0 10.0 14.1
25 3 2 L 100.0 0.0 0.0 1.5 5.4 18.0 100.0 0.0 0.0 1.9 9.1 4.6
25 3 3 L 100.0 0.4 0.2 2.0 6.0 17.2 100.0 0.2 0.1 1.9 8.8 22.9
30 3 3 L 100.0 0.9 0.5 1.9 7.3 24.8 100.0 0.9 0.4 2.2 9.4 29.0
30 3 4 L 100.0 19.5 6.2 3.1 8.1 27.3 100.0 15.6 4.5 3.4 11.4 37.4
35 3 3 L 100.0 1.1 0.6 1.7 6.0 32.7 100.0 4.5 1.6 2.9 10.8 41.3
35 3 4 L 97.6(2) 25.8 8.6 3.0 7.8 36.1 95.0(4) 40.5 10.2 4.0 10.6 51.6
40 3 3 L 100.0 2.9 1.5 1.9 8.4 47.0 100.0 3.5 1.5 2.4 10.8 47.7
40 3 4 L 94.2(4) 28.8 11.6 2.5 7.4 49.9 93.1(4) 40.0 11.9 3.4 13.1 62.0
45 3 3 L 100.0 12.7 5.2 2.5 10.9 107.4 100.0 17.2 5.3 3.3 10.5 98.5
45 3 4 L 91.3(4) 27.2 10.0 2.7 6.4 127.0 89.0(4) 43.9 12.0 3.7 8.7 122.3
50 3 3 L 95.1(5) 36.2 12.0 3.0 5.6 122.8 95.0(4) 44.9 11.8 3.8 10.9 119.5
50 3 4 L 79.3(5) 27.4 12.0 2.3 2.3 142.8 79.3(5) 36.5 12.0 3.0 4.6 136.0
5 6 2 L 100.0 0.0 0.0 1.6 3.6 5.7 100.0 0.0 0.0 1.2 2.7 5.9
5 6 3 L 100.0 0.0 0.0 1.4 3.3 6.8 100.0 0.0 0.0 1.2 1.2 7.6
10 6 2 L 100.0 0.0 0.0 1.8 4.2 9.7 100.0 0.1 0.0 2.0 7.5 9.7
10 6 3 L 99.5(1) 7.3 4.3 1.7 3.9 11.4 100.0 1.1 0.5 2.3 5.0 12.0
15 6 2 L 100.0 0.2 0.1 1.9 3.9 18.0 100.0 0.2 0.1 1.9 9.1 16.5
15 6 3 L 99.2(1) 11.3 5.8 1.9 4.5 18.8 100.0 16.9 5.5 3.1 10.3 20.6
20 6 2 L 100.0 1.4 0.7 2.0 6.2 29.0 99.6(1) 10.2 4.1 2.5 10.4 27.8
20 6 3 L 91.8(5) 22.3 12.0 1.9 4.8 34.3 84.1(5) 25.0 12.0 2.1 7.2 33.0
25 6 2 L 100.0 8.0 3.3 2.4 6.8 54.6 98.3(2) 16.2 6.4 2.5 9.3 46.4
25 6 3 L 90.0(5) 21.8 12.0 1.8 3.9 59.3 84.6(5) 26.2 12.0 2.2 6.3 56.2
5 3 2 H 100.0 0.0 0.0 1.4 0.9 3.2 100.0 0.0 0.0 1.7 1.1 3.3
5 3 3 H 100.0 0.0 0.0 1.5 0.5 3.7 100.0 0.0 0.0 1.2 0.1 4.0
10 3 2 H 100.0 0.0 0.0 1.5 2.1 5.3 100.0 0.0 0.0 1.4 0.9 6.2
10 3 3 H 100.0 0.0 0.0 1.6 2.6 6.0 100.0 0.0 0.0 1.5 2.3 7.1
15 3 2 H 100.0 0.0 0.0 1.5 2.0 7.8 100.0 0.0 0.0 1.6 4.2 9.4
15 3 3 H 100.0 0.0 0.0 1.5 4.0 8.5 100.0 0.0 0.0 1.6 3.5 13.9
20 3 2 H 100.0 0.0 0.0 1.6 2.3 11.4 100.0 0.0 0.0 1.8 3.3 11.9
20 3 3 H 100.0 0.1 0.1 1.7 4.6 11.3 100.0 0.1 0.1 2.0 5.5 15.9
25 3 2 H 100.0 0.0 0.0 1.6 2.8 16.8 100.0 0.0 0.0 1.8 4.1 5.4
25 3 3 H 100.0 0.3 0.2 1.8 4.3 18.2 100.0 0.3 0.2 2.0 3.9 22.0
30 3 3 H 100.0 0.5 0.3 1.8 3.4 25.9 100.0 1.3 0.6 2.3 6.0 28.2
30 3 4 H 100.0 11.7 3.8 3.1 3.6 29.0 100.0 18.3 5.2 3.5 5.4 34.8
35 3 3 H 100.0 0.8 0.5 1.9 4.4 35.3 100.0 3.4 1.2 2.7 5.0 41.1
35 3 4 H 99.2(2) 24.1 7.6 3.2 4.0 36.1 96.9(4) 38.3 10.2 3.7 4.7 50.7
40 3 3 H 100.0 2.8 1.6 1.8 4.6 46.0 100.0 2.9 1.1 2.5 6.3 48.9
40 3 4 H 98.1(4) 24.3 10.8 2.3 2.8 51.5 96.6(5) 38.7 12.0 3.2 5.8 61.5
45 3 3 H 100.0 9.0 3.9 2.3 4.7 110.2 100.0 20.4 5.9 3.5 5.8 98.6
45 3 4 H 97.0(4) 27.0 9.9 2.7 2.5 140.6 95.5(5) 40.6 12.0 3.4 4.9 119.3
50 3 3 H 98.5(5) 31.4 12.0 2.6 3.2 135.2 98.6(3) 41.0 10.1 4.1 3.0 120.9
50 3 4 H 93.1(5) 28.7 12.0 2.4 1.2 162.9 91.3(5) 35.3 12.0 2.9 1.8 137.0
5 6 2 H 100.0 0.0 0.0 1.6 2.2 5.7 100.0 0.0 0.0 1.3 2.4 5.7
5 6 3 H 100.0 0.0 0.0 1.4 1.8 6.6 100.0 0.0 0.0 1.3 1.3 7.5
10 6 2 H 100.0 0.0 0.0 1.7 3.3 9.8 100.0 0.1 0.0 1.9 5.7 9.1
10 6 3 H 99.4(1) 7.8 4.7 1.7 2.5 11.4 100.0 1.2 0.5 2.2 5.9 11.6
15 6 2 H 100.0 0.2 0.1 1.8 1.8 17.6 100.0 0.2 0.1 1.9 5.4 15.7
15 6 3 H 99.8(1) 9.4 4.7 2.0 2.8 17.3 100.0 16.5 6.0 2.7 4.7 19.7
20 6 2 H 100.0 1.1 0.5 2.1 4.2 32.3 99.8 11.6 4.6 2.5 4.7 27.5
20 6 3 H 96.2(4) 21.3 11.2 1.9 2.6 36.8 91.5(5) 24.8 12.0 2.1 2.5 34.1
25 6 2 H 100.0 5.9 2.4 2.5 2.3 54.1 99.0(2) 12.1 5.4 2.2 4.1 48.3
25 6 3 H 95.2(5) 22.2 12.0 1.8 2.0 54.9 91.8(5) 24.7 12.0 2.1 3.4 54.4
Optimal 100.0 2.1 0.9 1.8 4.1 22.0 100.0 3.0 1.0 2.0 5.3 20.0
Not optimal 95.2 22.5 9.6 2.3 3.9 69.4 93.8 28.9 9.7 2.9 6.4 72.7
Total 98.6 8.0 3.4 2.0 4.0 36.2 98.0 11.4 3.8 2.3 5.6 35.8
n/a indicates the instance size was already solved to optimality using a single core processor
(−) indicates the number of instances (out of 5) were not solved to optimality
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Table A.XII: Average Results on the Single-Vehicle PRP Instances

n l F (ML)|k F (ML)|nk F (OU)|k F (OU)|nk

CPU Nodes Cuts CPU Nodes Cuts CPU Nodes Cuts CPU Nodes Cuts

10 3 0.1 0 6 0.1 0 12 0.1 1 7 0.2 5 12

15 3 0.3 0 26 0.4 0 40 1.2 57 84 1.4 52 99

20 3 0.3 1 21 0.5 1 34 1.0 26 51 1.2 19 58

25 3 0.4 0 25 0.5 0 32 7.6 156 218 10.2 250 280

30 3 5.1 6 122 7.7 5 140 30.3 286 456 24.0 233 439

35 3 9.3 15 142 10.0 12 145 219.9 1730 1123 177.4 1674 1360

40 3 12.3 2 111 19.1 2 151 109.8 496 632 81.1 393 667

45 3 67.8 57 249 42.1 15 205 323.2 849 1386 238.6 736 1293

50 3 47.4 15 215 54.8 11 211 2114.9 4912 3190 1222.6 3205 3066

10 6 0.2 0 26 0.3 1 40 0.2 0 12 0.2 1 14

15 6 1.1 3 85 2.1 2 111 0.3 0 20 0.4 0 28

20 6 2.0 2 102 6.6 2 163 1.1 4 26 2.3 7 40

25 6 10.3 2 226 11.5 1 199 8.3 34 115 12.7 43 142

30 6 50.1 176 402 71.2 132 444 2.5 1 40 3.8 1 65

35 6 74.3 136 446 108.1 87 477 4.9 1 53 8.7 1 92

40 6 80.5 4 384 105.3 5 407 36.1 5 187 53.6 4 198

10 9 0.8 10 66 1.1 9 83 0.6 8 41 1.0 8 49

15 9 21.8 292 371 22.2 201 387 9.5 147 162 12.0 153 185

20 9 14.4 64 237 22.5 74 298 8.0 26 140 12.6 29 148

25 9 178.4 500 741 234.2 650 745 39.7 138 258 67.7 183 347

30 9 1715.6 4151 1504 899.8 1160 1496 91.9 67 578 150.4 77 706

Average 109.2 259 262 77.1 113 277 143.4 426 418 99.2 337 442
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Table A.XIII: Average Results on the Single-Vehicle IRP Instances

n l hi F (ML)|k F (ML)|nk F (OU)|k F (OU)|nk

CPU Nodes Cuts CPU Nodes Cuts CPU Nodes Cuts CPU Nodes Cuts

5 3 L 0.0 0 4 0.0 0 6 0.0 0 7 0.1 0 7

10 3 L 0.1 0 13 0.1 0 9 0.4 15 43 0.6 15 52

15 3 L 0.4 1 27 0.2 1 18 1.5 52 114 1.6 31 95

20 3 L 1.6 28 74 1.5 32 63 3.6 40 166 7.2 84 242

25 3 L 2.0 17 61 2.8 25 63 8.6 51 269 14.0 71 323

30 3 L 12.8 117 139 9.6 99 150 21.9 82 384 27.5 66 404

35 3 L 2.9 7 47 4.1 7 39 44.8 136 464 54.3 118 511

40 3 L 28.0 57 181 24.2 68 144 137.0 213 847 150.5 305 826

45 3 L 45.0 44 186 27.5 23 110 188.6 225 759 176.2 159 700

50 3 L 154.5 73 436 138.7 84 305 546.9 277 1448 487.9 218 1316

5 6 L 0.1 21 16 0.2 28 25 0.3 17 19 0.4 19 27

10 6 L 0.8 26 61 0.8 24 65 1.5 68 114 2.2 81 127

15 6 L 3.6 77 143 5.4 98 211 4.9 97 211 6.3 103 220

20 6 L 19.7 242 340 29.3 283 438 24.7 258 510 34.9 314 591

25 6 L 45.7 250 447 49.3 278 440 38.4 144 500 40.1 122 522

30 6 L 169.0 616 829 177.6 598 966 151.5 337 1056 188.8 426 1187

5 3 H 0.0 0 4 0.0 0 7 0.0 0 6 0.0 0 9

10 3 H 0.1 0 12 0.1 0 11 0.5 21 44 0.6 17 50

15 3 H 0.3 2 22 0.3 3 23 1.2 28 91 1.7 34 95

20 3 H 1.7 37 72 2.1 39 72 3.4 37 160 4.9 38 186

25 3 H 2.3 23 63 2.1 6 60 8.2 51 246 12.1 44 266

30 3 H 11.3 99 142 10.1 92 169 26.1 132 423 24.8 115 422

35 3 H 3.5 8 52 4.6 4 46 39.4 105 405 64.7 105 575

40 3 H 26.0 54 173 32.3 45 175 107.0 144 745 114.5 139 746

45 3 H 37.7 41 197 40.1 20 163 158.9 153 720 160.1 147 660

50 3 H 157.1 87 450 156.9 92 428 472.0 211 1296 462.2 231 1342

5 6 H 0.1 22 17 0.1 13 24 0.3 16 21 0.4 12 30

10 6 H 0.7 21 68 0.8 13 67 1.5 56 111 2.1 74 135

15 6 H 3.2 59 146 4.6 73 179 5.7 120 241 5.8 81 227

20 6 H 15.3 135 330 17.8 130 334 33.6 397 572 41.3 403 620

25 6 H 24.1 89 317 24.4 55 328 32.2 112 469 50.0 169 543

30 6 H 106.2 200 722 98.8 175 746 171.7 418 1105 134.0 272 1037

Average 27.4 76.6 181 27.1 75.2 183.9 69.9 125.4 424 71.0 125.4 440
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Table A.XIV: Results on Archetti et al. (2011) PRP-ML Instances with 14 Customers and 6 Periods.

Class F (ML)|k F (ML)|nk

CPU Nodes Cuts CPU Nodes Cuts

I 5.9 167 183 6.7 139 207

II 4.7 128 162 5.3 103 177

III 10.9 367 241 11.4 284 248

IV 6.8 208 202 8.0 183 223

Avg 7.1 217 197 7.9 177 214

Table A.XV: Results on MVPRP and MVIRP when Allowing Multiple Visits

Problem Maximum Cost index Best CPU Number of visits (%)

number of visits (%) (s) 1 2 3

PRP 1 100.00 30 87.5 100.00 n/a n/a

2 100.00 30 105.1 99.75 0.25 n/a

3 100.00 30 134.2 99.83 0.17 0.00

IRP 1 100.00 24 552.6 100.00 n/a n/a

2 99.40 58 729.5 94.26 5.74 n/a

3 99.40 60 683.0 94.64 5.15 0.21
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Appendix B

Supplement to Chapter 4

Tables B.I-B.VI show the detailed average results of the benchmark A (Archetti et al.,

2011) by problem type and each of them contains 5 instances. The number of new

solutions for each problem type can be found in the column New. Tables B.VII-B.IX

show the detailed results of the benchmark B (Boudia et al., 2005) for each instance.

Similar to the previous section, we use boldface symbols if the total cost obtained

by Op-ALNS is lower than the best solution in the literature, and the symbol * to

indicate the best solution. More details on the instances and the solutions can be

found on the website https://sites.google.com/site/YossiriAdulyasak/publications.
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Table B.I: Detailed average results of the set A1 (14 Customers) - number 1-48.

Total cost %di� from current best solutions New

Prob H Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS

type <FS> <I-100> <I-500> <I-1000> <FS> <I-100> <I-500> <I-1000>

1 35786* 36604 36219 36218 36218 2.3% 1.2% 1.2% 1.2% 0

2 36045* 36498 36411 36245 36245 1.3% 1.0% 0.6% 0.6% 0

3 36604* 37116 36971 36816 36795 1.4% 1.0% 0.6% 0.5% 1

4 73212 73190 73071 72937 72937* 0.0% -0.2% -0.4% -0.4% 3

5 73810 73593 73343 73250 73250* -0.3% -0.6% -0.8% -0.8% 5

6 74558 74161 73954 73912 73912* -0.5% -0.8% -0.9% -0.9% 5

7 28309 28557 28311 28217 28217* 0.9% 0.0% -0.3% -0.3% 2

8 28495 28731 28445 28445 28445* 0.8% -0.2% -0.2% -0.2% 3

9 29440 29525 29401 29395 29395* 0.3% -0.1% -0.2% -0.2% 3

10 65119 61992 61931 61931 61931* -4.8% -4.9% -4.9% -4.9% 5

11 64866 62864 62721 62721 62721* -3.1% -3.3% -3.3% -3.3% 5

12 66307 65109 64966 64964 64964* -1.8% -2.0% -2.0% -2.0% 3

13 38944* 40694 40111 39561 39461 4.5% 3.0% 1.6% 1.3% 0

14 39706* 40702 40538 40397 40397 2.5% 2.1% 1.7% 1.7% 1

15 41221* 42245 42061 41765 41704 2.5% 2.0% 1.3% 1.2% 0

16 75951* 76706 76521 76394 76394 1.0% 0.8% 0.6% 0.6% 2

17 76761 77434 76805 76615 76615* 0.9% 0.1% -0.2% -0.2% 3

18 78348* 78945 78708 78502 78502 0.8% 0.5% 0.2% 0.2% 2

19 31134* 32183 31977 31578 31578 3.4% 2.7% 1.4% 1.4% 2

20 31695* 32478 31928 31915 31907 2.5% 0.7% 0.7% 0.7% 2

21 33163* 33903 33794 33720 33611 2.2% 1.9% 1.7% 1.4% 2

22 67724 65540 65334 65334 65334* -3.2% -3.5% -3.5% -3.5% 5

23 68162 66612 66393 66291 66291* -2.3% -2.6% -2.7% -2.7% 5

24 70126 69575 69224 69141 69141* -0.8% -1.3% -1.4% -1.4% 4

25 209667* 210944 210367 210246 210246 0.6% 0.3% 0.3% 0.3% 0

26 209939* 210889 210556 210465 210465 0.5% 0.3% 0.3% 0.3% 0

27 210376* 210879 210647 210603 210603 0.2% 0.1% 0.1% 0.1% 1

28 536626 537183 536823 536595 536595* 0.1% 0.0% -0.0% -0.0% 2

29 537332 537147 536862 536816 536816* 0.0% -0.1% -0.1% -0.1% 5

30 537950 537645 537383 537383 537383* -0.1% -0.1% -0.1% -0.1% 5

31 202086* 202812 202314 202202 202202 0.4% 0.1% 0.1% 0.1% 2

32 202267* 202839 202555 202555 202555 0.3% 0.1% 0.1% 0.1% 1

33 203212 203406 203142 203107 203107* 0.1% 0.0% -0.1% -0.1% 3

34 528501 525535 525347 525347 525347* -0.6% -0.6% -0.6% -0.6% 5

35 528258 526202 526086 526086 526086* -0.4% -0.4% -0.4% -0.4% 5

36 529699 528416 528286 528286 528286* -0.2% -0.3% -0.3% -0.3% 3

37 212721* 215861 215252 215182 215182 1.5% 1.2% 1.2% 1.2% 0

38 213523* 216079 215265 214995 214995 1.2% 0.8% 0.7% 0.7% 1

39 214993* 216333 215821 215606 215606 0.6% 0.4% 0.3% 0.3% 1

40 539356* 541316 540264 540253 540253 0.4% 0.2% 0.2% 0.2% 1

41 540157 541098 540081 540065 540065* 0.2% -0.0% -0.0% -0.0% 3

42 541740* 542234 541965 541965 541965 0.1% 0.0% 0.0% 0.0% 2

43 204882* 207039 206001 205990 205990 1.1% 0.5% 0.5% 0.5% 1

44 205467* 206656 205969 205969 205969 0.6% 0.2% 0.2% 0.2% 1

45 206935* 207762 207437 207437 207437 0.4% 0.2% 0.2% 0.2% 2

46 531028 528942 528748 528741 528741* -0.4% -0.4% -0.4% -0.4% 5

47 531554 530011 529840 529840 529840* -0.3% -0.3% -0.3% -0.3% 5

48 533518 533136 532673 532673 532673* -0.1% -0.2% -0.2% -0.2% 3
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Table B.II: Detailed average results of the set A1 (14 Customers) - number 49-96.

Total cost %di� from current best solutions New

Prob H Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS

type <FS> <I-100> <I-500> <I-1000> <FS> <I-100> <I-500> <I-1000>

49 62233* 70513 69666 67808 67771 13.3% 11.9% 9.0% 8.9% 0

50 65434* 72447 71505 71183 70551 10.7% 9.3% 8.8% 7.8% 0

51 71018* 78757 77906 77464 76300 10.9% 9.7% 9.1% 7.4% 0

52 99002* 103563 103103 102448 102448 4.6% 4.1% 3.5% 3.5% 1

53 101673* 107564 106268 103494 103494 5.8% 4.5% 1.8% 1.8% 2

54 107892* 113871 113358 112861 112464 5.5% 5.1% 4.6% 4.2% 0

55 54058* 58456 58313 57153 57104 8.1% 7.9% 5.7% 5.6% 1

56 56922* 60545 59210 58235 58234 6.4% 4.0% 2.3% 2.3% 2

57 62479* 68769 68132 67186 66901 10.1% 9.0% 7.5% 7.1% 1

58 90406* 92099 91572 91410 91410 1.9% 1.3% 1.1% 1.1% 1

59 93196* 95329 95248 93962 93962 2.3% 2.2% 0.8% 0.8% 2

60 99464* 104531 104096 104096 104089 5.1% 4.7% 4.7% 4.6% 1

61 91043* 106203 101917 100350 100350 16.7% 11.9% 10.2% 10.2% 1

62 97162* 114882 110954 107528 104326 18.2% 14.2% 10.7% 7.4% 0

63 108344* 126152 124305 121159 117566 16.4% 14.7% 11.8% 8.5% 0

64 127563* 137538 136336 134500 131804 7.8% 6.9% 5.4% 3.3% 1

65 133615* 144858 138194 137975 137152 8.4% 3.4% 3.3% 2.6% 2

66 145850* 155434 150855 149930 149930 6.6% 3.4% 2.8% 2.8% 3

67 82868* 91294 89906 88163 87521 10.2% 8.5% 6.4% 5.6% 1

68 88285* 97683 95834 94304 94073 10.6% 8.6% 6.8% 6.6% 1

69 98829* 108521 106493 105546 105112 9.8% 7.8% 6.8% 6.4% 1

70 119167* 123995 122557 121104 121098 4.1% 2.8% 1.6% 1.6% 1

71 124633* 129341 128032 127632 127312 3.8% 2.7% 2.4% 2.1% 1

72 135642* 145457 145449 144163 142528 7.2% 7.2% 6.3% 5.1% 1

73 23691 23604 23501 23501 23501* -0.4% -0.8% -0.8% -0.8% 4

74 24066* 24132 24070 24066 24066* 0.3% 0.0% 0.0% 0.0% 2

75 25022* 25707 25642 25628 25598 2.7% 2.5% 2.4% 2.3% 1

76 58367 57196 57172 57172 57172* -2.0% -2.0% -2.0% -2.0% 5

77 58937 58332 58181 58166 58166* -1.0% -1.3% -1.3% -1.3% 5

78 60704* 61285 61161 61149 61149 1.0% 0.8% 0.7% 0.7% 1

79 26583* 27094 27009 26959 26959 1.9% 1.6% 1.4% 1.4% 1

80 27507* 27716 27575 27525 27525 0.8% 0.3% 0.1% 0.1% 2

81 28623* 29702 29505 29236 29227 3.8% 3.1% 2.1% 2.1% 2

82 61261 60426 60423 60423 60423* -1.4% -1.4% -1.4% -1.4% 5

83 62249 61791 61676 61676 61676* -0.7% -0.9% -0.9% -0.9% 4

84 64309* 65771 65552 65455 65455 2.3% 1.9% 1.8% 1.8% 1

85 197463 197578 197295 197295 197295* 0.1% -0.1% -0.1% -0.1% 4

86 197838 197987 197853 197796 197796* 0.1% 0.0% -0.0% -0.0% 3

87 198794* 199678 199466 199392 199392 0.4% 0.3% 0.3% 0.3% 1

88 521759 520576 520535 520535 520535* -0.2% -0.2% -0.2% -0.2% 5

89 522329 521756 521576 521573 521573* -0.1% -0.1% -0.1% -0.1% 5

90 524096* 524830 524737 524652 524652 0.1% 0.1% 0.1% 0.1% 1

91 200355* 200798 200667 200665 200665 0.2% 0.2% 0.2% 0.2% 1

92 201279 201473 201205 201009 201009* 0.1% 0.0% -0.1% -0.1% 4

93 202395* 203869 203673 203503 203503 0.7% 0.6% 0.5% 0.5% 1

94 524653 524096 523824 523824 523824* -0.1% -0.2% -0.2% -0.2% 5

95 525641 525395 525186 525129 525129* 0.0% -0.1% -0.1% -0.1% 4

96 527701* 529395 528992 528912 528912 0.3% 0.2% 0.2% 0.2% 0

Avg 180830* 182951 182339 181975 181803 1.2% 0.8% 0.6% 0.5% 211
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Table B.III: Detailed average results of the set A2 (50 Customers) - number 1-48.

Total cost %di� from current best solutions New

Prob H Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS

type <FS> <I-100> <I-500> <I-1000> <FS> <I-100> <I-500> <I-1000>

1 111142 111025 110415 110194 110194* -0.1% -0.7% -0.9% -0.9% 5

2 112138 111914 111452 111344 111344* -0.2% -0.6% -0.7% -0.7% 5

3 114514 113822 113426 113385 113385* -0.6% -1.0% -1.0% -1.0% 5

4 232117 232680 232065 231719 231715* 0.2% -0.0% -0.2% -0.2% 4

5 233384 233838 233391 233145 233145* 0.2% 0.0% -0.1% -0.1% 3

6 235759 235774 235432 235414 235414* 0.0% -0.1% -0.1% -0.1% 3

7 91607 91631 90789 90456 90456* 0.0% -0.9% -1.3% -1.3% 4

8 91737* 92491 92255 92023 92023 0.8% 0.6% 0.3% 0.3% 2

9 93917* 94460 94094 94060 94060 0.6% 0.2% 0.2% 0.2% 2

10 211665 205500 205404 205315 205315* -2.9% -3.0% -3.0% -3.0% 5

11 211008 206542 206514 206514 206514* -2.1% -2.1% -2.1% -2.1% 5

12 212683 209203 209106 209054 209054* -1.6% -1.7% -1.7% -1.7% 5

13 120795* 122369 121605 121245 121184 1.3% 0.7% 0.4% 0.3% 2

14 122216* 124390 123333 123024 122995 1.8% 0.9% 0.7% 0.6% 0

15 127897 128448 127865 127236 127112* 0.4% 0.0% -0.5% -0.6% 4

16 240333 242056 240491 239740 239740* 0.7% 0.1% -0.2% -0.2% 4

17 243371 244019 243235 242907 242907* 0.3% -0.1% -0.2% -0.2% 3

18 248541 249014 247791 247723 247723* 0.2% -0.3% -0.3% -0.3% 2

19 98637 100621 99489 97999 97999* 2.0% 0.9% -0.6% -0.6% 4

20 101752 102216 101030 100604 100602* 0.5% -0.7% -1.1% -1.1% 3

21 106330 106861 106206 105804 105804* 0.5% -0.1% -0.5% -0.5% 4

22 218948 213040 212829 212775 212629* -2.7% -2.8% -2.8% -2.9% 5

23 222183 215312 215292 215289 215289* -3.1% -3.1% -3.1% -3.1% 5

24 226431 220247 220039 220006 220006* -2.7% -2.8% -2.8% -2.8% 5

25 720389 720343 719550 719412 719412* 0.0% -0.1% -0.1% -0.1% 5

26 721422 721558 720944 720638 720638* 0.0% -0.1% -0.1% -0.1% 5

27 723653 723505 722946 722781 722781* 0.0% -0.1% -0.1% -0.1% 5

28 1856295 1855162 1854341 1853939 1853871* -0.1% -0.1% -0.1% -0.1% 5

29 1857632 1857080 1855924 1855350 1855335* 0.0% -0.1% -0.1% -0.1% 5

30 1860048 1859112 1858226 1858056 1858056* -0.1% -0.1% -0.1% -0.1% 5

31 697989 698133 697688 697334 697223* 0.0% 0.0% -0.1% -0.1% 5

32 699413 699385 698575 698432 698432* 0.0% -0.1% -0.1% -0.1% 5

33 701478 701833 700750 700439 700439* 0.1% -0.1% -0.1% -0.1% 5

34 1828171 1814660 1814454 1814338 1814338* -0.7% -0.8% -0.8% -0.8% 5

35 1831926 1815701 1815610 1815610 1815610* -0.9% -0.9% -0.9% -0.9% 5

36 1832113 1818037 1817832 1817797 1817797* -0.8% -0.8% -0.8% -0.8% 5

37 729581* 732852 731343 730306 730306 0.4% 0.2% 0.1% 0.1% 1

38 731219* 735939 734231 733465 733465 0.6% 0.4% 0.3% 0.3% 1

39 736006* 738403 737225 736748 736748 0.3% 0.2% 0.1% 0.1% 1

40 1863404 1864927 1863636 1862905 1862905* 0.1% 0.0% -0.0% -0.0% 4

41 1867045 1866567 1865638 1865377 1865377* 0.0% -0.1% -0.1% -0.1% 5

42 1871014 1871670 1870141 1869943 1869943* 0.0% 0.0% -0.1% -0.1% 4

43 705334* 707790 706461 706233 706233 0.3% 0.2% 0.1% 0.1% 0

44 707738* 709812 708853 708603 708603 0.3% 0.2% 0.1% 0.1% 2

45 712176* 714411 712956 712884 712884 0.3% 0.1% 0.1% 0.1% 2

46 1836554 1823326 1822754 1822462 1822462* -0.7% -0.8% -0.8% -0.8% 5

47 1837671 1825488 1825036 1825014 1825014* -0.7% -0.7% -0.7% -0.7% 5

48 1841394 1830200 1829866 1829824 1829824* -0.6% -0.6% -0.6% -0.6% 5
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Table B.IV: Detailed average results of the set A2 (50 Customers) - number 49-96.

Total cost %di� from current best solutions New

Prob H Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS

type <FS> <I-100> <I-500> <I-1000> <FS> <I-100> <I-500> <I-1000>

49 147245 150579 148867 147036 146885* 2.3% 1.1% -0.1% -0.2% 3

50 152864 156498 154976 153289 152850* 2.4% 1.4% 0.3% -0.0% 2

51 164246* 168206 165904 164684 164414 2.4% 1.0% 0.3% 0.1% 2

52 267056 269044 267273 265573 265498* 0.7% 0.1% -0.6% -0.6% 3

53 273852 274217 271971 271084 271084* 0.1% -0.7% -1.0% -1.0% 3

54 285729 286694 285160 283709 283473* 0.3% -0.2% -0.7% -0.8% 3

55 120446* 125405 123455 122396 121603 4.1% 2.5% 1.6% 1.0% 1

56 127804 131277 128567 128056 127548* 2.7% 0.6% 0.2% -0.2% 1

57 139491* 143245 140710 139842 139511 2.7% 0.9% 0.3% 0.0% 2

58 240508 236240 235443 234692 234692* -1.8% -2.1% -2.4% -2.4% 5

59 247618 241597 240877 240714 240714* -2.4% -2.7% -2.8% -2.8% 5

60 259026 253656 253129 252871 252871* -2.1% -2.3% -2.4% -2.4% 5

61 184494* 196694 194400 192075 192017 6.6% 5.4% 4.1% 4.1% 0

62 197563* 205861 203692 201916 201462 4.2% 3.1% 2.2% 2.0% 1

63 220629* 231307 226364 224272 224261 4.8% 2.6% 1.7% 1.6% 0

64 305026* 312300 310802 307379 306756 2.4% 1.9% 0.8% 0.6% 2

65 319038 322927 321141 319315 318089* 1.2% 0.7% 0.1% -0.3% 3

66 341606* 349446 345513 341640 341640 2.3% 1.1% 0.0% 0.0% 3

67 158277* 173745 165893 163697 163027 9.8% 4.8% 3.4% 3.0% 1

68 169990* 183552 179799 175475 173593 8.0% 5.8% 3.2% 2.1% 2

69 193984* 206670 201947 200746 199122 6.5% 4.1% 3.5% 2.6% 0

70 278033 275528 273597 272581 272557* -0.9% -1.6% -2.0% -2.0% 5

71 290009 287866 287301 284135 284135* -0.7% -0.9% -2.0% -2.0% 5

72 314116 313384 311735 310503 309402* -0.2% -0.8% -1.2% -1.5% 5

73 77974 77197 76980 76887 76863* -1.0% -1.3% -1.4% -1.4% 5

74 79234 78326 78172 78120 78120* -1.1% -1.3% -1.4% -1.4% 5

75 82270 80676 80523 80521 80488* -1.9% -2.1% -2.1% -2.2% 5

76 195134 192585 192440 192330 192330* -1.3% -1.4% -1.4% -1.4% 5

77 196947 193594 193530 193446 193446* -1.7% -1.7% -1.8% -1.8% 5

78 200769 195958 195808 195808 195808* -2.4% -2.5% -2.5% -2.5% 5

79 85392 85042 84493 84144 84130* -0.4% -1.1% -1.5% -1.5% 5

80 88075 87089 86627 86577 86577* -1.1% -1.6% -1.7% -1.7% 5

81 92810 92168 91559 91109 91033* -0.7% -1.3% -1.8% -1.9% 5

82 204185 200697 200096 200032 200032* -1.7% -2.0% -2.0% -2.0% 5

83 205559 203044 202670 202596 202570* -1.2% -1.4% -1.4% -1.5% 5

84 209703 207708 207376 207113 207113* -1.0% -1.1% -1.2% -1.2% 5

85 681071 678781 678547 678448 678448* -0.3% -0.4% -0.4% -0.4% 5

86 682086 679869 679652 679604 679604* -0.3% -0.4% -0.4% -0.4% 5

87 684877 682268 682057 682008 682008* -0.4% -0.4% -0.4% -0.4% 5

88 1801653 1795588 1795465 1795445 1795445* -0.3% -0.3% -0.3% -0.3% 5

89 1802527 1796604 1796537 1796536 1796536* -0.3% -0.3% -0.3% -0.3% 5

90 1806032 1798984 1798852 1798852 1798852* -0.4% -0.4% -0.4% -0.4% 5

91 688473 687285 686304 686264 686264* -0.2% -0.3% -0.3% -0.3% 5

92 690933 689758 689142 688920 688920* -0.2% -0.3% -0.3% -0.3% 5

93 695258 694271 693811 693631 693631* -0.1% -0.2% -0.2% -0.2% 5

94 1811928 1804420 1803750 1803749 1803749* -0.4% -0.5% -0.5% -0.5% 5

95 1814102 1806440 1806143 1806044 1806044* -0.4% -0.4% -0.4% -0.4% 5

96 1815969 1811258 1810716 1810641 1810641* -0.3% -0.3% -0.3% -0.3% 5

Avg 592608 591968 590920 590327 590210* -0.1% -0.3% -0.4% -0.4% 366
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Table B.V: Detailed average results of the set A3 (100 Customers) - number 1-48.

Total cost %di� from current best solutions New

Prob H Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS

type <FS> <I-100> <I-500> <I-1000> <FS> <I-100> <I-500> <I-1000>

1 203837 200932 200506 200364 200339* -1.4% -1.6% -1.7% -1.7% 5

2 205823 203186 202801 202690 202505* -1.3% -1.5% -1.5% -1.6% 4

3 209930 207840 207506 207375 207355* -1.0% -1.2% -1.2% -1.2% 4

4 424668 422951 422237 422036 421609* -0.4% -0.6% -0.6% -0.7% 4

5 426709 424444 424065 423976 423951* -0.5% -0.6% -0.6% -0.6% 4

6 429843 429371 429068 428985 428985* -0.1% -0.2% -0.2% -0.2% 4

7 166160 166297 165852 165374 165353* 0.1% -0.2% -0.5% -0.5% 4

8 169153 168174 167798 167724 167724* -0.6% -0.8% -0.8% -0.8% 4

9 174620 173739 173323 172925 172756* -0.5% -0.7% -1.0% -1.1% 4

10 383901 375202 374872 374834 374834* -2.3% -2.4% -2.4% -2.4% 5

11 386738 376772 376718 376641 376641* -2.6% -2.6% -2.6% -2.6% 5

12 393261 382199 381934 381887 381887* -2.8% -2.9% -2.9% -2.9% 5

13 220312 219959 218833 218325 218235* -0.2% -0.7% -0.9% -0.9% 4

14 224492 224721 223563 223273 222975* 0.1% -0.4% -0.5% -0.7% 4

15 234290 234744 233631 233046 232930* 0.2% -0.3% -0.5% -0.6% 4

16 440834 439635 438333 437764 437591* -0.3% -0.6% -0.7% -0.7% 4

17 443582 444278 443633 443028 442954* 0.2% 0.0% -0.1% -0.1% 4

18 453472 454973 454343 453787 453347* 0.3% 0.2% 0.1% 0.0% 3

19 180038 181501 180440 180049 179631* 0.8% 0.2% 0.0% -0.2% 3

20 185450 186197 185702 185237 184689* 0.4% 0.1% -0.1% -0.4% 3

21 195769 196504 195621 194467 194348* 0.4% -0.1% -0.7% -0.7% 4

22 398836 388737 388285 387987 387929* -2.5% -2.6% -2.7% -2.7% 5

23 403532 392286 391971 391948 391948* -2.8% -2.9% -2.9% -2.9% 5

24 414468 403005 402877 402553 402553* -2.8% -2.8% -2.9% -2.9% 5

25 1330842* 1335123 1334136 1333711 1333711 0.3% 0.2% 0.2% 0.2% 4

26 1333933* 1335814 1335359 1335135 1335112 0.1% 0.1% 0.1% 0.1% 4

27 1338874* 1341212 1340297 1340000 1340000 0.2% 0.1% 0.1% 0.1% 4

28 3431183* 3438882 3436893 3434891 3434656 0.2% 0.2% 0.1% 0.1% 4

29 3433231* 3440899 3439355 3438014 3437944 0.2% 0.2% 0.1% 0.1% 4

30 3438241* 3446924 3445494 3444000 3443932 0.3% 0.2% 0.2% 0.2% 4

31 1291166* 1293807 1292418 1291373 1291243 0.2% 0.1% 0.0% 0.0% 4

32 1292485* 1296851 1295237 1294321 1293987 0.3% 0.2% 0.1% 0.1% 4

33 1297691* 1301155 1299675 1299018 1299017 0.3% 0.2% 0.1% 0.1% 4

34 3382493 3359099 3358635 3358590 3358590* -0.7% -0.7% -0.7% -0.7% 4

35 3382040 3360795 3360674 3360647 3360647* -0.6% -0.6% -0.6% -0.6% 4

36 3387158 3366447 3366029 3365921 3365921* -0.6% -0.6% -0.6% -0.6% 4

37 1347052* 1353810 1351810 1351393 1351364 0.5% 0.4% 0.3% 0.3% 2

38 1351738* 1358624 1356393 1355921 1355921 0.5% 0.3% 0.3% 0.3% 1

39 1361323* 1368371 1365944 1364622 1364533 0.5% 0.3% 0.2% 0.2% 3

40 3445419* 3455163 3452321 3450388 3450184 0.3% 0.2% 0.1% 0.1% 4

41 3448846* 3458010 3456636 3455612 3455578 0.3% 0.2% 0.2% 0.2% 4

42 3457897* 3472264 3468394 3465713 3465485 0.4% 0.3% 0.2% 0.2% 4

43 1303028* 1310379 1307813 1306593 1306245 0.6% 0.4% 0.3% 0.2% 2

44 1308437* 1315667 1312173 1311414 1311284 0.6% 0.3% 0.2% 0.2% 3

45 1318013* 1326202 1322178 1321095 1320962 0.6% 0.3% 0.2% 0.2% 3

46 3393407 3374419 3373496 3373419 3373419* -0.6% -0.6% -0.6% -0.6% 4

47 3397753 3377742 3377399 3377311 3377311* -0.6% -0.6% -0.6% -0.6% 4

48 3406711 3388904 3388179 3388128 3388128* -0.5% -0.5% -0.5% -0.5% 4
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Table B.VI: Detailed average results of the set A3 (100 Customers) - number 49-96.

Total cost %di� from current best solutions New

Prob H Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS

type <FS> <I-100> <I-500> <I-1000> <FS> <I-100> <I-500> <I-1000>

49 266982* 272974 270521 267889 267705 2.2% 1.3% 0.3% 0.3% 2

50 282368 283963 281278 279636 279046* 0.6% -0.4% -1.0% -1.2% 4

51 305103 308916 304665 302852 302692* 1.2% -0.1% -0.7% -0.8% 3

52 486203 486176 484763 482968 482374* -0.0% -0.3% -0.7% -0.8% 3

53 501738 498393 497183 495983 495503* -0.7% -0.9% -1.1% -1.2% 4

54 525235 522708 521388 520687 519271* -0.5% -0.7% -0.9% -1.1% 4

55 220444* 229262 224815 222435 222402 4.0% 2.0% 0.9% 0.9% 2

56 233338* 241217 238944 236277 234847 3.4% 2.4% 1.3% 0.6% 2

57 256709* 263874 262167 261048 260041 2.8% 2.1% 1.7% 1.3% 2

58 438271 430873 429239 427059 426682* -1.7% -2.1% -2.6% -2.6% 5

59 451326 444065 442330 440620 440427* -1.6% -2.0% -2.4% -2.4% 4

60 474444 469439 467559 466103 465949* -1.1% -1.5% -1.8% -1.8% 4

61 335314* 351022 348517 345459 343234 4.7% 3.9% 3.0% 2.4% 1

62 361350* 375601 371189 367495 366176 3.9% 2.7% 1.7% 1.3% 1

63 410028* 430360 423798 420479 418485 5.0% 3.4% 2.5% 2.1% 2

64 552990* 561902 559494 556003 556003 1.6% 1.2% 0.5% 0.5% 3

65 578930 586793 580584 576882 576694* 1.4% 0.3% -0.4% -0.4% 3

66 627085* 637770 632819 630680 629662 1.7% 0.9% 0.6% 0.4% 3

67 287624* 305050 297355 292894 292647 6.1% 3.4% 1.8% 1.7% 1

68 308413* 331633 325526 319001 317849 7.5% 5.5% 3.4% 3.1% 0

69 358909* 381375 374666 371290 371091 6.3% 4.4% 3.4% 3.4% 0

70 505587 500393 495203 493022 492953* -1.0% -2.1% -2.5% -2.5% 5

71 525305 524308 521348 519015 518321* -0.2% -0.8% -1.2% -1.3% 4

72 575984 575348 571279 570768 570768* -0.1% -0.8% -0.9% -0.9% 4

73 142234 139644 139397 139392 139354* -1.8% -2.0% -2.0% -2.0% 5

74 143539 141910 141791 141647 141604* -1.1% -1.2% -1.3% -1.3% 4

75 149071 147301 147042 146947 146900* -1.2% -1.4% -1.4% -1.5% 4

76 358306 350528 350459 350231 350193* -2.2% -2.2% -2.3% -2.3% 5

77 357617 352841 352725 352657 352608* -1.3% -1.4% -1.4% -1.4% 4

78 363981 358267 357876 357739 357739* -1.6% -1.7% -1.7% -1.7% 4

79 155127 152782 152421 151946 151932* -1.5% -1.7% -2.1% -2.1% 5

80 158823 157957 157430 157254 157224* -0.5% -0.9% -1.0% -1.0% 4

81 169366 168381 167853 167474 167203* -0.6% -0.9% -1.1% -1.3% 4

82 371576 363549 363199 362871 362825* -2.2% -2.3% -2.3% -2.4% 5

83 373758 368188 367842 367538 367523* -1.5% -1.6% -1.7% -1.7% 5

84 384356 378740 378303 378143 377756* -1.5% -1.6% -1.6% -1.7% 4

85 1257213 1254851 1254298 1254136 1254136* -0.2% -0.2% -0.2% -0.2% 4

86 1258627 1256423 1256282 1256260 1256260* -0.2% -0.2% -0.2% -0.2% 4

87 1262940 1262133 1261478 1261408 1261408* -0.1% -0.1% -0.1% -0.1% 4

88 3324944 3320838 3320158 3320044 3320044* -0.1% -0.1% -0.1% -0.1% 4

89 3326391 3322243 3322124 3322121 3322121* -0.1% -0.1% -0.1% -0.1% 4

90 3330552 3327987 3327573 3327557 3327557* -0.1% -0.1% -0.1% -0.1% 4

91 1270777 1270126 1269115 1268279 1268246* -0.1% -0.1% -0.2% -0.2% 4

92 1274350 1273343 1272897 1272890 1272890* -0.1% -0.1% -0.1% -0.1% 4

93 1284854 1284550 1283273 1283000 1283000* -0.0% -0.1% -0.1% -0.1% 4

94 3340334 3335770 3335034 3334864 3334864* -0.1% -0.2% -0.2% -0.2% 4

95 3346257 3339123 3338757 3338754 3338754* -0.2% -0.2% -0.2% -0.2% 4

96 3357505 3350310 3349496 3349305 3349305* -0.2% -0.2% -0.2% -0.2% 4

Avg 1092509 1092348 1090774 1089818 1089589* -0.0% -0.2% -0.2% -0.3% 353
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Table B.VII: Detailed results of the instance set B1 (50 Customers).

Total cost %di� from current best solutions

Ins MA|PM RTS TSPR Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS

<FS> <I-100> <I-500> <I-1000> <FS> <I-100> <I-500> <I-1000>

1 378378 398795 373550 348656 346999 343588 343588* -6.7% -7.1% -8.0% -8.0%

2 403913 373374 369303 361205 358313 357680 357680* -2.2% -3.0% -3.1% -3.1%

3 409573 353058 343960* 350482 348727 345584 345584 1.9% 1.4% 0.5% 0.5%

4 399220 361176 354935 347876 345975 343096 343096* -2.0% -2.5% -3.3% -3.3%

5 422279 364819 357718 352234 349423 348270 348270* -1.5% -2.3% -2.6% -2.6%

6 407122 368082 367426 353839 353224 353224 353224* -3.7% -3.9% -3.9% -3.9%

7 414977 369963 363049 354466 352356 350847 350847* -2.4% -2.9% -3.4% -3.4%

8 379744 370822 364096 351383 349891 349891 349891* -3.5% -3.9% -3.9% -3.9%

9 407935 379379 374301 360673 355905 352559 350651* -3.6% -4.9% -5.8% -6.3%

10 396258 370655 363462 341463 339257 338837 338837* -6.1% -6.7% -6.8% -6.8%

11 402475 354025 352689 340887 337607 337607 337607* -3.3% -4.3% -4.3% -4.3%

12 358702 354981 351572 345503 344288 344003 343774* -1.7% -2.1% -2.2% -2.2%

13 371030 365432 361130 349799 346342 343004 342681* -3.1% -4.1% -5.0% -5.1%

14 406114 363404 353829 355776 352579 351877 351877* 0.6% -0.4% -0.6% -0.6%

15 373076 367659 361234 356600 354042 352749 351130* -1.3% -2.0% -2.3% -2.8%

16 379404 360534 356096 352768 350218 346237 344017* -0.9% -1.7% -2.8% -3.4%

17 406353 398442 389912 358963 352491 349582 349582* -7.9% -9.6% -10.3% -10.3%

18 401179 368533 361888 360090 354951 353211 353211* -0.5% -1.9% -2.4% -2.4%

19 406893 377073 368279 353187 350587 350587 350587* -4.1% -4.8% -4.8% -4.8%

20 398508 372141 364818 349125 347339 344176 343576* -4.3% -4.8% -5.7% -5.8%

21 397112 374743 370731 343918 340713 339136 337984* -7.2% -8.1% -8.5% -8.8%

22 358749 347329 335477 339743 336848 332674 332674* 1.3% 0.4% -0.8% -0.8%

23 407369 362619 360303 354172 351442 349456 349355* -1.7% -2.5% -3.0% -3.0%

24 369784 375022 359697 343776 341859 340057 340012* -4.4% -5.0% -5.5% -5.5%

25 411556 374682 361125 355535 354638 353163 350535* -1.5% -1.8% -2.2% -2.9%

26 408704 366167 358213 355124 353467 352237 352237* -0.9% -1.3% -1.7% -1.7%

27 366197 375261 360714 344520 343440 340832 340647* -4.5% -4.8% -5.5% -5.6%

28 401032 373155 362754 345993 342970 341061 341019* -4.6% -5.5% -6.0% -6.0%

29 384282 379320 371205 369262 368313 367812 367423* -0.5% -0.8% -0.9% -1.0%

30 369959 369223 357664 346408 345268 344754 344754* -3.1% -3.5% -3.6% -3.6%

Avg 393263 369662 361704 351448 348982 347260 346878* -2.8% -3.5% -3.9% -4.1%
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Table B.VIII: Detailed results of the instance set B2 (100 Customers)

Total cost %di� from current best solutions

Ins MA|PM RTS TSPR Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS

<FS> <I-100> <I-500> <I-1000> <FS> <I-100> <I-500> <I-1000>

1 714401 711671 698538 639206 635154 633535 633535* -8.5% -9.1% -9.3% -9.3%

2 722047 694694 663692 641533 640920 640920 640920* -3.3% -3.4% -3.4% -3.4%

3 677598 683270 667862 631518 630169 626364 626168* -5.4% -5.6% -6.2% -6.2%

4 710552 718252 688698 626929 625060 623816 623816* -9.0% -9.2% -9.4% -9.4%

5 733040 731260 708950 650730 650535 645350 645335* -8.2% -8.2% -9.0% -9.0%

6 696146 744927 688060 634773 634088 633468 633468* -7.7% -7.8% -7.9% -7.9%

7 705322 695728 663719 630570 625995 624866 624682* -5.0% -5.7% -5.9% -5.9%

8 679210 706058 661189 627557 625355 622243 621973* -5.1% -5.4% -5.9% -5.9%

9 699518 705035 679439 638534 636533 634924 634924* -6.0% -6.3% -6.6% -6.6%

10 705778 696521 676606 638073 636102 635594 635594* -5.7% -6.0% -6.1% -6.1%

11 709122 711895 697770 642361 638365 636948 636948* -7.9% -8.5% -8.7% -8.7%

12 755726 703162 669059 647338 645784 645019 645019* -3.2% -3.5% -3.6% -3.6%

13 695466 721066 682208 637910 636368 633971 633971* -6.5% -6.7% -7.1% -7.1%

14 718260 698548 673717 639592 637694 636407 636171* -5.1% -5.3% -5.5% -5.6%

15 736041 711506 684363 644342 642593 639156 639156* -5.8% -6.1% -6.6% -6.6%

16 715209 714873 678969 643905 643112 642220 641644* -5.2% -5.3% -5.4% -5.5%

17 737832 702314 690434 655364 653512 651782 651782* -5.1% -5.3% -5.6% -5.6%

18 723413 720238 698709 641060 638127 636631 636631* -8.3% -8.7% -8.9% -8.9%

19 720218 748734 700400 649480 647811 646046 646046* -7.3% -7.5% -7.8% -7.8%

20 724727 729099 707717 663569 661841 659157 659097* -6.2% -6.5% -6.9% -6.9%

21 724328 738746 702766 645868 640986 637662 637662* -8.1% -8.8% -9.3% -9.3%

22 701506 702849 685149 653058 651954 651954 651954* -4.7% -4.8% -4.8% -4.8%

23 710033 712717 691659 631617 630273 627739 627739* -8.7% -8.9% -9.2% -9.2%

24 734327 727741 707566 646945 645543 645202 645202* -8.6% -8.8% -8.8% -8.8%

25 725446 725869 711439 646600 644016 641643 641643* -9.1% -9.5% -9.8% -9.8%

26 718939 700719 694508 636446 634025 630061 630030* -8.4% -8.7% -9.3% -9.3%

27 715068 686382 659865 629629 625496 623147 623147* -4.6% -5.2% -5.6% -5.6%

28 685117 700980 653260 633835 630575 627640 627565* -3.0% -3.5% -3.9% -3.9%

29 722571 725030 708137 647602 646374 645068 644471* -8.5% -8.7% -8.9% -9.0%

30 721850 698942 682501 636809 634925 632569 632569* -6.7% -7.0% -7.3% -7.3%

Avg 714627 712294 685898 641092 638976 637037 636962* -6.5% -6.8% -7.1% -7.1%
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Table B.IX: Detailed results of the instance set B3 (200 Customers)

Total cost %di� from current best solutions

Ins MA|PM RTS TSPR Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS Op-ALNS

<FS> <I-100> <I-500> <I-1000> <FS> <I-100> <I-500> <I-1000>

1 996151 1030684 951277 895166 891180 890195* - -5.9% -6.3% -6.4% -

2 978373 1010158 898671 877999 875578 874170* - -2.3% -2.6% -2.7% -

3 986147 1016681 929493 878190 874533 870588* - -5.5% -5.9% -6.3% -

4 962937 1042854 953349 879897 879052 876436* - -7.7% -7.8% -8.1% -

5 970638 1023680 941598 873178 868228 866448* - -7.3% -7.8% -8.0% -

6 965646 1025262 935639 885610 883897 883797* - -5.3% -5.5% -5.5% -

7 980562 1038746 967666 888909 885014 882653* - -8.1% -8.5% -8.8% -

8 1014809 1066068 988430 874503 872089 871609* - -11.5% -11.8% -11.8% -

9 967738 1018420 920347 861212 857984 855020* - -6.4% -6.8% -7.1% -

10 1093230 1035240 990212 877964 875189 871739* - -11.3% -11.6% -12.0% -

11 1008080 1037705 942341 881462 880409 879384* - -6.5% -6.6% -6.7% -

12 998951 1035350 929992 887589 886232 885161* - -4.6% -4.7% -4.8% -

13 984918 1063024 949453 895239 892511 888886* - -5.7% -6.0% -6.4% -

14 964301 1024491 947613 886077 883983 881609* - -6.5% -6.7% -7.0% -

15 981167 1026787 946464 879939 875989 873130* - -7.0% -7.4% -7.7% -

16 1017777 1033656 965143 883321 878215 877192* - -8.5% -9.0% -9.1% -

17 1073640 1022250 969354 878438 873935 872275* - -9.4% -9.8% -10.0% -

18 1003670 1063306 969355 887448 884647 882181* - -8.4% -8.7% -9.0% -

19 997348 1065705 968497 884680 883594 880700* - -8.7% -8.8% -9.1% -

20 981788 1027134 931517 879213 876107 874986* - -5.6% -5.9% -6.1% -

21 974384 1044771 957666 879386 875416 875395* - -8.2% -8.6% -8.6% -

22 1065780 1045790 978963 876062 872850 872284* - -10.5% -10.8% -10.9% -

23 1070520 1027042 981539 892064 887369 885757* - -9.1% -9.6% -9.8% -

24 978491 1045014 952625 874739 872294 870611* - -8.2% -8.4% -8.6% -

25 1029327 1024239 921784 887814 884761 882360* - -3.7% -4.0% -4.3% -

26 961728 1043128 953756 871228 865240 864760* - -8.7% -9.3% -9.3% -

27 1028006 1030753 971152 892641 889707 888957* - -8.1% -8.4% -8.5% -

28 1011689 1032478 936095 875459 869403 868974* - -6.5% -7.1% -7.2% -

29 1015741 1019371 962296 878833 875770 875568* - -8.7% -9.0% -9.0% -

30 985496 1027915 936838 885333 884163 880018* - -5.5% -5.6% -6.1% -

Avg 1001634 1034923 951638 881653 878511 876761* - -7.3% -7.6% -7.8% -
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Appendix C

Supplement to Chapter 5

This is the online supplement of the paper: Benders Decomposition for Production

Routing under Demand Uncertainty. Section C.1 provides a numerical example of

the BBC algorithm. The details of the approach to generate a core point for Pareto-

optimal cuts are shown in Section C.2. Section C.3 provides the details of the SAA

method. More details on the instances and the solutions can be found on the website

https://sites.google.com/site/YossiriAdulyasak/publications.

C.1 Numerical Example of the Branch-and-Benders-

Cut Algorithm

We give a numerical example of the BBC algorithm, speci�cally for the case when the

Benders subproblem contains integer variables. Note that the variable de�nition in

this section is only used for this example and these variables are not related to other

sections.

Example. The BBC algorithm is applied to solve the following problem:

P : min 6x1 + 10x2 + y1 + 2y2

−15x1 − 22x2 + 5y1 + 8y2 ≤ 0

y1 + y2 ≥ 1.5

x1, x2 ∈ {0, 1}

y1, y2 ∈ {0, 1, 2}.
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Given that x1 and x2 are �xed to x̄1 and x̄2, respectively, and the integrality

constraints on the variables y1 and y2 are relaxed, the following primal subproblem

(PSP) is obtained:

PSP : min y1 + 2y2

5y1 + 8y2 ≤ 15x̄1 + 22x̄2

y1 + y2 ≥ 1.5

0 ≤ y1 ≤ 2

0 ≤ y2 ≤ 2.

Denote by λ1 to λ4 the dual variables associated with the �rst to the last constraint

of the primal subproblem, respectively. The dual subproblem (DSP) can be written

as follows.

DSP : max −(15x̄1 + 22x̄2)λ1 + 1.5λ2 − 2λ3 − 2λ4

−5λ1 + λ2 − λ3 ≤ 1

−8λ1 + λ2 − λ4 ≤ 2

λ1, λ2, λ3, λ4 ≥ 0.

Let ∆ be the polyhedron de�ned by the constraints of the dual subproblem. Also

let P∆ and Q∆ be the set of extreme points and extreme rays of ∆, respectively.

Denote by η an arti�cial variable representing the lower bound on the cost of the

subproblem. The Benders master problem is as follows.

BP : min 6x1 + 10x2 + η

−15λ1x1 − 22λ1x2 + 1.5λ2 − 2λ3 − 2λ4 ≤ η ∀(λ1, λ2, λ3, λ4) ∈ P∆

−15λ1x1 − 22λ1x2 + 1.5λ2 − 2λ3 − 2λ4 ≤ 0 ∀(λ1, λ2, λ3, λ4) ∈ Q∆

x1, x2 ∈ {0, 1}.
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Note that BP is a relaxation of the original problem P . Recall that Zb = {x̄1, x̄2}
is the set of binary variable values x1 and x2 and ξ(Zb) = 6x̄1 + 10x̄2, υ(SP (Zb))

is the objective function obtained by solving the DSP . We also let BPi denote

the relaxed Benders master problem (i.e., the integrality constraints on x1 and x2

variables are relaxed) at node i in the branch-and-bound tree. Next we explain in

detail all the steps in the BBC solution process of this problem. The illustration of

the branch-and-bound tree is shown in Figure C.1.

1. The upper bound (ub) and the lower bound (lb) of the original problem P are

set to ∞ and 0, respectively. At the root node (node 0), the following problem

is solved:

BP0 : min 6x1+10x2

0 ≤ x1 ≤ 1

0 ≤ x1 ≤ 1.

The solution x1 = 0, x2 = 0 is obtained and it satis�es the integrality con-

straints. We set Z0 = {0, 0} and solve the DSP. Since the DSP is unbounded,

we obtain the extreme ray direction (0.2, 1, 0, 0) and generate a Benders feasi-

bility cut. The BP0 becomes

BP0 : min 6x1+10x2

−3x1 − 4.4x2 + 1.5 ≤ 0

0 ≤ x1 ≤ 1

0 ≤ x1 ≤ 1.

We solve the BP0 and the solution x1 = 0.5, x2 = 0, and the objective function 3

is obtained. We can also set lb = 3 because there is only one active node. Since

x1 is fractional, branching is performed on this variable and node 1 (x1 = 0)

and node 2 (x1 = 1) are created.
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2. At node 1, the following problem is solved:

BP1 : min 6x1+10x2

−3x1 − 4.4x2 + 1.5 ≤ 0

x1 = 0

0 ≤ x1 ≤ 1

0 ≤ x1 ≤ 1.

The solution x1 = 0, x2 = 0.3409 is obtained. Therefore, node 3 (x2 = 1) is

created.

3. We assume that the search follows the depth-�rst-search scheme. Then, at node

3, the following problem is solved:

BP1 : min 6x1+10x2

−3x1 − 4.4x2 + 1.5 ≤ 0

x1 = 0

x2 = 1

0 ≤ x1 ≤ 1

0 ≤ x1 ≤ 1.

The solution x1 = 0, x2 = 1 is obtained. We set Z1 = {0, 1} and solve the DSP.

The extreme point (0, 1, 0, 0), the solution y1 = 1.5 and y2 = 0 and υ(SP (Z1)) =

1.5 are obtained. Since y1 is fractional, we store the solution Z1 together with

its lower bound on the objective function value ξ(Z1)+υ(SP (Z1)) = 10+1.5 =

11.5. To obtain an upper bound, we simply round up the value of y1 to 2 and

this solution is feasible. We set ub = 12 which is also a valid upper bound for

the original problem P . Since both x1 and x2 are now �xed, there is no further

branching to be performed on this node. The Benders optimality cut generated

from the extreme point, i.e., 1.5 ≤ η, is added to the Benders master and the

process continues at node 2.
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4. At node 2, the following problem is solved:

BP2 : min 6x1 + 10x2 + η

−3x1 − 4.4x2 + 1.5 ≤ 0

1.5 ≤ η

x1 = 1

0 ≤ x1 ≤ 1

0 ≤ x1 ≤ 1.

The solution x1 = 1, x2 = 0 is obtained. We set Z2 = {1, 0} and solve the

DSP. The extreme point (0, 1, 0, 0), the solution y1 = 1.5 and y2 = 0 and

υ(SP (Z2)) = 1.5 are obtained, which also gives the same Benders cut 1.5 ≤ η.

Since y1 is fractional, we store the solution Z
2 together with its lower bound on

the objective function value ξ(Z2) + υ(SP (Z2)) = 6 + 1.5 = 7.5. To obtain an

upper bound, we round up the value of y1 to 2 and ub = 8. Also, since the lower

bound of the solution Z1, i.e., ξ(Z1) + υ(SP (Z1)) = 11.5 > ub, the solution Z1

can be pruned. Then, node 4 (x2 = 1) is created.

5. At node 4, the following problem is solved:

BP4 : min 6x1 + 10x2 + η

−3x1 − 4.4x2 + 1.5 ≤ 0

1.5 ≤ η

x1 = 1

x2 = 1

0 ≤ x1 ≤ 1

0 ≤ x1 ≤ 1.

The solution x1 = 1, x2 = 1 is obtained and we set Z3 = {1, 1}. However, since
ξ(Z3) + υ(SP (Z3)) ≥ ξ(Z3) = 16 > ub. This solution can be pruned and the
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Figure C.1: Illustration of the branch-and-bound tree

process is stopped since there is no active node in the tree. We can also update

the lower bound lb = 7.5.

6. After the process, we obtain the ub = 8 and also the solution Z2 = {1, 0}. Then,
the integrality constraints on y1 and y2 variables are imposed and the following

problem is solved to optimality:

min y1 + 2y2

5y1 + 8y2 ≤ 15(1) + 22(0)

y1 + y2 ≥ 1.5

y1, y2 ∈ {0, 1, 2}.

This gives the solution {y1, y2} = {2, 0} and the objective function correspond-

ing to the original problem P : 6(1) + 10(0) + 1(2) + 2(0) = 8. This becomes the

optimal solution.
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C.2 Approach to Determine a Core Point for the

Pareto-optimal Cut

We follow a procedure similar to that of Cordeau et al. (2001) to determine a core

point for the Pareto-optimal cuts. Recall that d̄it is the nominal demand value and

let ε̂ be a positive small value. We solve the problem with one scenario |Ω| = 1

associated with the nominal demand value without the routing variable to determine

a core point y0 ∈ ri(YLP ) and z0 ∈ ri(ZLP ). The problem is the following.

max
∑
t∈T

%yt +
∑
i∈N

∑
k∈K

∑
t∈T

%zikt

s.t. (5.2)-(5.9) and,

yt − ε̂%yt ≥ 0 ∀t ∈ T

yt + ε̂%yt ≤ 1 ∀t ∈ T

zikt − ε̂%zikt ≥ 0 ∀i ∈ N,∀k ∈ K, ∀t ∈ T

zikt + ε̂%zikt ≤ 1 ∀i ∈ N,∀k ∈ K, ∀t ∈ T

%yt , %
z
ikt ∈ {0, 1} ∀i ∈ N,∀k ∈ K, ∀t ∈ T.

One can ensure that the core point lies in the relative interior of YLP and ZLP . The

problem is typically easy to solve and the optimal solution can be obtained in less

than one second by using CPLEX. Additionally, it is not necessary to obtain the

optimal solution as a feasible solution of the problem is su�cient.

C.3 Details on Sample Average Approximation (SAA)

Method for the SPRP

We adapt the SAA procedure of Kleywegt et al. (2002b) to calculate the approximate

optimality gap (SAA gap) as follows.

1. A sample size |Ω| and the number of replications |M | are determined. A larger

sample size |Ω′| � |Ω| is also selected to compute the estimated objective value
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of the optimal solution of the SAA problem. The probability of the scenario ω

associated with the sample size |Ω| is equal to ρω = 1/|Ω|,∀ω ∈ Ω

2. For s = 1→ |M |, do the following steps:

(a) Generate a sample Ω and solve the problem to obtain the objective value,

denoted by νs
Ω
, and the optimal solution, denoted by Z

s
(which consists of

the vectors x̄, ȳ and z̄) , of the replication s.

(b) Use the solution Z
s
to obtain an upper bound on the optimal solution

for the generated large sample size |Ω′|, denoted by ν
Ω′

(Z
s
), which can be

calculated as

ν
Ω′ (Z

s
) =

∑
t∈T

fȳt +
∑

(i,j)∈E

∑
k∈K

cij x̄ijkt +
∑
ω∈Ω′

ρω

uptω +
∑
i∈N

hiIitω +
∑
i∈Nc

σieitω

 .

Denote by Ẑ
s
the solution providing the best value of the upper bound

ν
Ω′

(Ẑ
s
) found after s replications. Let also x̂, ŷ and ẑ denote the vectors

corresponding to the solution Ẑ
s
. The variance of this estimated upper

bound can be calculated as

σ2

Ω′
(Ẑ

s
) =

1

|Ω′|(|Ω′| − 1)

∑
ω∈Ω′

(
Gω(Ẑ

s
)− ν

Ω′
(Ẑ

s
)
)2

where

Gω(Ẑ
s
) =

∑
t∈T

fŷt +
∑

(i,j)∈E

∑
k∈K

cijx̂ijkt + uptω +
∑
i∈N

hiIitω +
∑
i∈Nc

σieitω

 .

(c) Compute the average of the objective values obtained in the previous step,

denoted by ν̂sΩ, and their corresponding variance as follows

ν̂s
Ω

=
1

s

s∑
i=1

νiΩ

σ2
ν̂s
Ω

=
1

s(s− 1)

s∑
i=1

(νi
Ω
− ν̂s

Ω
)2.
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The value ν̂sΩ is a statistical lower bound for the optimal solution of the

sample Ω′.

(d) Compute the SAA gap, denoted by εSAA(Ω,Ω′) and the variance of the

gap as follows.

εSAA(Ω,Ω′) = ν
Ω′

(Ẑ
s
)− ν̂s

Ω

σ2
εSAA(Ω,Ω′) = σ2

Ω′
(Ẑ

s
) + σ2

ν̂s
Ω
.

The best value of εSAA(Ω,Ω′) and its corresponding σ2
εSAA(Ω,Ω′) are kept

track of during the process.

3. Choose the solution Ẑ
s
as the best solution.
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