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Résumé

Dans plusieurs contextes, la logistique permet d’atteindre des avantages concur-

rentiels et des économies de coûts. Pour certaines entreprises, la logistique représente

même leur compétence de base (soit les prestataires logistiques). Dans ce contexte, le

système de réapprovisionnement géré par le fournisseur (RGF) est l’un des systèmes

les plus à jour permettant aux entreprises d’atteindre des performances supérieures.

En vertu d’une stratégie de RGF, les décisions liées au réapprovisionnement et à la

distribution sont centralisées au niveau du fournisseur, ce qui entraine une réduction

globale des coûts logistiques. Afin de faire fonctionner un système RGF, un Problème

de Tournées et d’Approvisionnement (PTA) doit être résolu, en optimisant simul-

tanément la gestion des stocks et les tournées des véhicules sur plusieurs périodes.

Notre but est d’introduire deux nouveaux concepts, appelés flexibilité et régularité,

dans le cadre du PTA.

La flexibilité sera prise en compte en considérant la possibilité de partager des

stocks entre différents sites, ce qui rend le concept de transbordement applicable

dans le contexte du PTA. Elle est également utile pour réagir rapidement à des

fluctuations de demande dans un environnement dynamique et stochastique. Les

problèmes de transbordement sont typiquement caractérisés par des mouvements de

marchandises entre des entités de même niveau, comme les clients. Ils permettent

au système de partager les risques de rupture de stock et d’accroitre la flexibilité du

décideur en augmentant le nombre de sources à partir desquelles les marchandises

peuvent être transférées. Le Problème de Tournées et d’Approvisionnement avec

Transbordement (PTAT) est ensuite présenté. Il s’agit d’un problème pour lequel

le décideur a la possibilité de planifier les mouvements de transbordement afin de

minimiser le coût total du système. Ce problème se pose, par exemple, lorsque la

résolution d’un Problème de Tournées et d’Approvisionnement Stochastique (PTAS)

est considérée dans le cadre d’un horizon glissant où l’on utilise les prévisions de

demande au cours des prochaines périodes comme une approximation de la demande

future qui est incertaine. Nous présentons une formulation qui permet des transbor-

dements, soit par le fournisseur à ses clients ou entre les clients. Nous développons



Résumé ii

un algorithme de séparation et coupes capable de résoudre des instances de petite

et moyenne tailles. Nous présentons également une heuristique de recherche adap-

tative à grand voisinage (RAGV) pour résoudre de plus grandes instances. Cette

heuristique manipule les tournées des véhicules alors que le problème qui consiste

à déterminer les quantités à livrer ainsi que les mouvements de transbordement est

résolu par un algorithme de flot dans un réseau. Notre approche permet de résoudre

quatre variantes du problème: le PTA et le PTAT, avec réapprovisionnement flexible

jusqu’au niveau maximal et avec réapprovisionnement fixé au niveau maximal. Une

évaluation exhaustive de la performance de notre heuristique est effectuée.

La régularité aidera à améliorer la qualité du service, bénéficiant à la fois au

fournisseur et aux clients en leur offrant des services plus réguliers. L’intégration

des caractéristiques de régularité dans le cadre du PTA est aussi proposée. Celles-ci

peuvent être utilisées pour améliorer la qualité du service offert par des solutions du

PTA, rendant l’environnement moins tumultueux tout en fournissant des opérations

plus stables à la fois pour le fournisseur et pour les clients. Nous analysons ensuite les

PTA multi-véhicules (PTAM). Alors que les solutions qu’ils produisent ont tendance

à avantager à la fois le fournisseur et ses clients, résoudre les PTAM uniquement en

fonction de considérations de coût peut causer des inconvénients aux deux parties.

Ceux-ci sont liés à la taille de la flotte et à la charge des véhicules, à la fréquence des

livraisons, ainsi qu’aux quantités livrées. L’utilisation de plusieurs véhicules dont la

capacité est peu utilisée, des visites très fréquentes ou rares pour un même client, et

des fluctuations élevées dans les quantités à livrer constituent quelques exemples de

tels inconvénients. Afin d’atténuer ces problèmes, nous introduisons le concept de

régularité dans les solutions du PTA, augmentant ainsi la qualité du service. Nous

avons formulé le PTAM comme un programme linéaire en variables mixtes et avons

proposé un algorithme de séparation et coupes ainsi qu’une matheuristique pour sa

résolution. Cette heuristique applique un système de RAGV dans laquelle certains

sous-problèmes sont résolus exactement. L’algorithme proposé génère des solutions

offrant un bon compromis entre le coût et la qualité. L’effet des politiques de gestion

de stocks, des décisions de routage et des tailles de livraison est analysé.

Finalement, nous étendons notre analyse à la version dynamique et stochastique

du PTA (PTAS). Nous intégrons les notions de flexibilité et de régularité dans la

modélisation et la résolution du problème et nous analysons l’impact de politiques dif-

férentes, dans un contexte dans lequel toutes les informations ne sont pas disponibles

pour le décideur. Nos politiques de travail sont basées sur un schéma d’horizon glis-

sant. Nous comparons les effets de transbordement permettant d’atténuer les rup-

tures de stock et d’envisager des estimations des besoins futurs dans le processus de
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décision. Nous étudions aussi l’impact de l’introduction des critères de régularité sur

la qualité du service.

La thèse est structurée comme suit. Après un chapitre introductif et de moti-

vation, nous présentons une revue de littérature sur les thèmes pertinents, suivie de

trois chapitres sur le problème des tournées et d’approvisionnement avec transborde-

ment, le problème de tournées et d’approvisionnement avec régularité et le problème

de tournées et d’approvisionnement dans un contexte dynamique et stochastique.

Des conclusions et pistes de recherche sont présentées dans le dernier chapitre.

Mots clés: Problème de tournées et d’approvisionnement; flexibilité; régularité;

heuristique; RAGV; déterministe; stochastique.
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Abstract

In many contexts, logistics is used to enable competitive advantages and cost

savings. For some companies, logistics itself is its core competency (i.e., logistics

providers). In this context, vendor-managed inventory (VMI) systems are one of the

most up-to-date strategies allowing companies to reach a superior performance. Un-

der a VMI strategy, the replenishment and distribution making process is centralized

at the supplier’s level, leading to an overall reduction of logistics costs. In order to

operate a VMI system, an Inventory-Routing Problem (IRP) has to be solved, simul-

taneously making inventory management and routing decisions over several periods.

Our purpose is to introduce two new concepts, called flexibility and consistency,

within the context of the IRP.

Flexibility will be added through the possibility of sharing inventory among lo-

cations, making the concept of transshipment available within inventory-routing. It

is also useful to react quickly to changes in the demand in a dynamic and stochastic

environment. Transshipment problems are typically characterized by movements of

goods among entities of the same level, such as customers. They allow the system to

share stockout risks and to increase the flexibility of the decision maker by increas-

ing the number of sources from which goods can be transferred. We then introduce

the Inventory-Routing Problem with Transshipment (IRPT), a problem in which the

decision maker has the option to plan transshipment movements so as to minimize

the total system cost. This problem arises, for instance, when solving stochastic

Inventory-Routing Problems (SIRP) in a rolling horizon framework where one uses

demand forecasts for the next time periods as approximations of the unknown de-

mand. We present a formulation that allows transshipments, either from the supplier

to customers or between customers. We develop a branch-and-cut algorithm capa-

ble of solving small and medium size instances. We also propose an adaptive large

neighborhood search heuristic to solve larger instances. This heuristic manipulates

vehicle routes while the remaining problem of determining delivery quantities and

transshipment moves is solved through a network flow algorithm. Our approach can

solve four different variants of the problem: the IRP and the IRPT, under maxi-
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mum level and order-up-to level policies. We perform an extensive assessment of the

performance of our heuristic.

Consistency will help offer higher quality of service, benefiting both supplier and

customers with more regular services. We also propose the inclusion of consistency

features within the IRP framework. They can be used to improve the quality of

service offered through the IRP solutions, making the environment less noisy and

providing smoother operations, both to the supplier and to the customers. Later,

we analyze the multi-vehicle IRP (MIRP). Whereas the solutions they yield tend

to benefit both the vendor and customers, solving MIRPs solely based on cost con-

siderations may lead to inconveniences to both parties. These are related to the

fleet size and vehicle load, to the frequency of the deliveries, and to the quantities

delivered. The use of many vehicles with very low capacity utilisation, very frequent

or rare visits to the same customer, and ever changing delivery quantities are some

examples of such inconveniences. In order to alleviate these problems, we introduce

the concept of consistency in IRP solutions, thus increasing quality of service. We

formulate the multi-vehicle IRP as a mixed integer linear program and we propose a

branch-and-cut algorithm and a matheuristic for its solution. This heuristic applies

an ALNS scheme in which some subproblems are solved exactly. The proposed algo-

rithm generates solutions offering a good compromise between cost and quality. We

analyze the effect of different inventory policies, routing decisions and delivery sizes.

Finally, we extend our analysis to the study of the dynamic and stochastic version

of the problem (SIRP). We integrate the notions of flexibility and consistency to the

modeling and solution of this problem and we evaluate the impact of different policies

in a context in which not all information is available to the decision maker. Our

policies are developed in the context of a rolling horizon scheme. We compare the

effects of allowing transshipments to mitigate stockouts and to consider estimates of

future demands in the decision making process. We also study the impact of applying

consistency policies on quality of service.

The thesis is structured as follows. After an introductory and motivational chap-

ter, we present the literature review of the related themes, followed by three chap-

ters on the inventory-routing problem with transshipment, the consistent inventory-

routing problem and the dynamic and stochastic inventory-routing. Conclusions and

directions for future work are presented in the last chapter.

Keywords: Inventory-routing problem; flexibility; consistency; heuristic; ALNS;

deterministic; stochastic.
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Resumo

Em muitas situações a logística é uma ferramenta que aumenta a vantagem com-

petitiva e diminui os custos. Para algumas empresas, a própria logística é a sua

competência central (como para os provedores logísticos). Neste contexto, o sistema

de estoque gerenciado pelo fornecedor (EGF) é uma das estratégias mais atuais que

permite que as empresas obtenham um melhor desempenho. Sob uma estratégia

de EGF os processos de reposição e distribuição são centralizados pelo fornecedor,

gerando uma redução dos custos logísticos. Para a operação de um sistema EGF,

um Problema de Estoques e Roteamento (PER) deve ser resolvido, otimizando si-

multaneamente um problema de gerenciamento de estoques e um problema de rotea-

mento de veículos, por vários períodos. O objetivo desta tese é introduzir dois novos

conceitos no contexto do PER, chamados de flexibilidade e consistência.

A flexibilidade será adicionada com a possibilidade de compartilhar estoque entre

vários locais, tornando o conceito de transbordo disponível para o PER. Ela também

é útil para possibilitar uma reação rápida às mudanças na demanda em um ambiente

dinâmico e estocástico. Os problemas de transbordo são normalmente caracteriza-

dos pelo transporte de bens entre elos de mesmo nível, como os varejistas. Eles

permitem que todo o sistema compartilhe os riscos de falta de estoque e aumentam

a flexibilidade do tomador de decisões ao aumentar o número de fontes de onde os

produtos podem ser transferidos. Em seguida, introduzimos o Problema de Estoque

e Roteamento com Transbordo (PERT), problema este onde o tomador de decisões

tem a opção de planejar transbordos para minimizar o custo de operação do sistema.

Esta situação ocorre, por exemplo, quando Problemas de Estoque e Roteamento

Estocásticos (PERE) são resolvidos em um ambiente de horizonte rolante, onde se

utilizam previsões de demanda para os próximos períodos como aproximações de

uma demanda futura desconhecida, tornando-o determinístico no curto prazo. Apre-

sentamos uma formulação que permite transbordos, tanto a partir do fornecedor para

os varejistas quanto entre os varejistas. Desenvolvemos um algoritmo de branch-and-

cut capaz de resolver instâncias de tamanho pequeno e médio. Também propomos

uma heurística de busca em grande vizinhança adaptativa (BGVA) para resolver
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instâncias maiores. Esta heurística manipula as rotas dos veículos enquanto a deter-

minação das quantidades a serem entregues, bem como os movimentos de transbordo

são resolvidos através de um algoritmo de fluxo em grafo. Nossa abordagem permite

solucionar quatro variantes do problema: o PER e o PERT, obedecendo estraté-

gias de ressuprimento flexível com nível máximo e de ressuprimentos fixo ao nível

máximo. Nós efetuamos uma extensa avaliação do desempenho da heurística.

A consistência ajudará a oferecer uma melhor qualidade no serviço, beneficiando

tanto o fornecedor quanto os clientes com serviços mais regulares. A inclusão de

caracterésticas de consistência no contexto do PER também é proposta. Elas podem

ser usadas para melhorar a qualidade do serviço oferecido pelas soluções do PER

ao tornar o ambiente menos tumultuado, gerando operações mais estáveis, tanto

para o fornecedor quanto para os clientes. Depois, analisamos o PER com múltiplos

veículos (PERM). Apesar de as soluções geradas tenderem a beneficiar tanto dis-

tribuidores quanto varejistas, a resolução do PERM considerando apenas os custos

pode gerar inconvenientes para as duas partes, relacionados ao tamanho da frota

utilizada e a carga em cada veículo, à frequência das entregas e às quantidades en-

tregues. O uso de vários veículos com baixa utilização da capacidade, visitas muito

frequentes ou raras ao mesmo cliente, e quantidades de entrega em constante mu-

dança são alguns exemplos de tais inconvenientes. Para contornar estes problemas,

introduzimos o conceito de consistência nas soluções do PER, aumentando assim a

qualidade do serviço oferecido. Formulamos o PERM como um programa linear in-

teiro misto e propomos um algoritmo de branch-and-cut e uma heurística baseada na

formulação matemática para a sua solução, que utiliza um esquema de BGVA onde

alguns subproblemas são resolvidos de maneira exata. O algoritmo proposto gera

soluções que oferecem um bom equilíbrio entre custo e qualidade. Nós avaliamos os

efeitos de diferentes estratégias de gerenciamento de estoque, decisões de roteamento

e tamanho das entregas.

Finalmente, a análise é extendida para o estudo da versão dinâmica e estocástica

do problema (PERE). A integração de noções de flexibilidade e de consistência é feita

na modelagem e resolução do problema, avaliando o impacto de diversas estratégias

de ressuprimento em um contexto onde nem toda a informação está disponível no

momento da tomada de decisão. Nossas estratégias são baseadas em um esquema

de horizonte rolante. Comparamos os efeitos de permitir transbordos para reduzir

as faltas de estoque e de considerar previsões sobre a demanda futura no proceso de

tomada de decisão. O impacto da aplicação das políticas de consistência na qualidade

do serviço também são estudadas.

Esta tese está estruturada da seguinte maneira: após um capítulo introdutivo
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e motivacional, uma revisão da literatura dos temas relacionados é apresentada,

seguida por três capítulos sobre o problema de estoques e roteamento com transbordo,

o problema de estoques e roteamento com consistência, e o problema de estoques e

roteamento dinâmico e estocástico. Conclusões e sugestões para trabalhos futuros

são apresentadas no último capítulo.

Palavras-chave: Problema de estoque e roteamento; consistência; flexibilidade;

heurística; BGVA; determinístico; estocástico.
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Chapter 1

Introduction

Logistics is now widely recognized as a value adding center in organizations through

product availability, consistency of deliveries, accuracy in inventory and demand

management, and ease of placing orders. Vendor-managed inventory (VMI) is one

of the most up-to-date examples of value added through logistics.

In VMI systems, the replenishment and distribution making process is centralized

at the supplier’s level, based on specific inventory and supply chain policies and

constitutes a streamlined approach to inventory management. The application of

this policy leads to an overall reduction of logistics costs (Lee and Seungjin, 2008)

and is often described as a win-win situation: suppliers save on distribution and

production costs since they can combine and coordinate demands and shipments for

different customers, and customers gain by not allocating resources to controlling and

managing inventories. The supplier then has to make three simultaneous decisions:

1) when to serve a given customer, 2) how much to deliver, and 3) how to combine

customers into routes.

The drawback of VMI is that it requires the solution of a very difficult combi-

natorial optimization problem, called the Inventory-Routing Problem (IRP), itself

a combination of two well-studied problems: inventory management and vehicle

routing. According to Andersson et al. (2010) “no commercially available systems

provide decision support for combined inventory management and routing”. Scien-

tific research on the IRP is relatively recent compared to that on other optimization

problems, such as the Vehicle Routing Problem (VRP). Speranza and Ukovich (1994)

note the existence of distinct extensive literature reviews on transportation and on

inventory management problems, but relatively few studies exploit their integration.

This is still true to this day. A quick search on the ABI/INFORM Global database

shows over 580 scholarly publications on the VRP, but less than 70 on the IRP. Re-

cent reviews on the IRP found fewer than a hundred papers addressing the combined
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VRP-inventory management problem (Andersson et al., 2010; Cordeau et al., 2007).

Most previous research is on standard versions of the IRP with deterministic

demand, single vehicle, single product, operating policy aimed at minimizing the

combined inventory-distribution cost.

Our aim is to treat a broader version of the problem. More specifically we will

focus on two aspects that have been mostly neglected in previous work. The first,

called flexibility will be added through the possibility of sharing inventory among

locations, thus allowing transshipments within inventory-routing. It is also useful

to react quickly to demand changes in a dynamic and stochastic environment. The

second aspect, called consistency, will help offer higher quality of service, benefiting

both supplier and customers with more regular services.

Gaining flexibility through transshipments has already been studied in the con-

text of inventory management. Under this policy, goods may be shipped to a cus-

tomer, either directly from the supplier, or from another customer. This happens,

for example, between stores belonging to the same chain which can ship merchan-

dise to one another when unforeseen demand variations occur (Axsäter, 1990; Dada,

1992; Lee, 1987; Nonås and Jörnsten, 2005, 2007; Paterson et al., 2011). Trans-

shipments have been studied within the context of inventory management since the

seminal paper of Allen (1958). A good analysis is presented in Herer et al. (2002).

To the best of our knowledge, transshipment has not yet been formally integrated

within the context of inventory-routing. Planned transshipments can also be used

to redistribute inventory among customers so as to reduce handling costs, as is the

case in the retail industry (Paterson et al., 2011) and in companies that make use

of external freight carriers for part of their distribution (Nonås and Jörnsten, 2007).

Transshipments may be beneficial in a deterministic context in which no shortages

occur because they may yield an overall reduced distribution and inventory hold-

ing cost. This is the case, for example, when vehicle capacity and storage limits

at customer locations restrict the amounts that can be delivered to these customers

at each time period. Deterministic subproblems also arise when solving stochastic

inventory-routing problems in a rolling horizon framework where one uses demand

forecasts for the next time periods as approximations of the unknown demand. This

is the context in which our problem is defined. Mercer and Tao (1996) provide an

example of an inventory-routing system used by the supermarket chain Tesco, in the

United Kingdom, where deliveries are made from a factory to several warehouses,

and lateral transshipments can take place between warehouses. Obviously, the ad-

dition of transshipment within inventory-routing adds a layer of complexity to an

already difficult problem.
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Our treatment of consistency will extend some concepts previously presented

within the VRP framework. We will add regularity features to the IRP by consid-

ering not only cost, but also quality of the service. Given that companies need not

only provide cost effective solutions to their customers, but also high quality ser-

vice, consistent solutions can be partly achieved by incorporating quality of service

features in IRP solutions, which should yield a competitive advantage. This can be

accomplished, for example, through the application of workforce management poli-

cies (Barlett and Ghoshal, 2002; Smilowitz et al., 2012; Groër et al., 2009). Thus, one

would expect that regularly assigning the same driver to customers will help create

a bond that can benefit both parties. Drivers will gain an increased familiarity with

the region and the customer sites assigned to them, and will thus develop a more

personal rapport with the customers. Another example of consistency is the spacing

of deliveries to customers. To ensure smoother operations, visits should ideally be

spread out evenly over the planning horizon. This type of requirement is often mod-

eled as constraints in the context of the periodic Vehicle Routing Problem (VRP)

(Christofides and Beasley, 1984; Francis et al., 2008) but it has not yet been imposed

in the IRP. Finally, the quantities delivered to customers can also be controlled in or-

der to avoid large variations over time, which are negatively perceived by customers

(Beamon, 1999). Such regularity features will make the time interval between vis-

its, the quantities delivered and the vehicle utilisation more consistent, thus offering

higher service quality. We propose limiting the use of many vehicles with very low

loads, avoiding very frequent or rare visits to the same customer, and ensuring that

delivery quantities do not fluctuate too much over time. We also evaluate the impact

of ensuring more stable operations not only on the cost of the final solution, but also

in terms of the solution process.

Finally, we extend our analysis to the study of the dynamic and stochastic version

of the problem (DSIRP). In this version of the problem, demand is dynamically

revealed over time but one can exploit its statistical distribution in the solution

process. We integrate the notions of flexibility and consistency to the modeling

and resolution of this problem and we evaluate the impact of different policies in a

context in which not all information is available to the decision maker. Our policies

are developed in the context of a rolling horizon scheme. We compare the effects

of allowing transshipments to mitigate stockouts and to consider estimates of future

demands in the decision making process. We also study the impact of applying

consistency policies on quality of service.

As we can see, both flexibility and consistency have been presented in different

contexts, but their integration within the IRP is first seen in this thesis.
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The remainder of this thesis is organized as follows. In Chapter 2 we present

a survey of the literature and review several variants of the IRP that have arisen

since this problem was first introduced by Bell et al. (1983). These include the IRP

with a single customer (Bertazzi and Speranza, 2002; Dror and Ball, 1987; Speranza

and Ukovich, 1996), the IRP with multiple customers (Archetti et al., 2007; Bell

et al., 1983; Chien et al., 1989; Kleywegt et al., 2002), the stochastic IRP (Kleywegt

et al., 2002, 2004; Minkoff, 1993), the IRP with direct deliveries (Gallego and Simchi-

Levi, 1990, 1994; Hall, 1992; Kleywegt et al., 2002; Mishra and Raghunathan, 2004),

the multi-item IRP (Bausch et al., 1998; Qu et al., 1999; Sindhuchao et al., 2005;

Speranza and Ukovich, 1994), and the IRP with heterogeneous fleet (Chien et al.,

1989; Christiansen, 1999; Persson and Göthe-Lundgren, 2005). There are so many

ways of modeling and solving IRPs that different authors rarely define the problem

in exactly the same way. In addition, real-life problems combining vehicle routing

and inventory management concerns are often dynamic or stochastic. We provide a

classification of the different variants, models and algorithms. We will also review

the relevant literature about transshipments, as we will integrate it within the IRP

framework in Chapter 3.

Then, in Chapter 3 we introduce the concept of transshipment within inventory-

routing. Under this problem, goods may be shipped not only from the supplier to

customers, but also among customers. This occurs, for example, between stores

belonging to a same chain (Nonås and Jörnsten, 2005, 2007) which can ship mer-

chandise to one another if it is needed and economically interesting. From a practical

point of view, the use of a transshipment option contributes to lead-time and cost

reductions.

We then analyze several consistency features in Chapter 4. Specifically, we study

how much the solution cost increases if one ensures consistency in the deliveries.

This consistency can be related to the quantities delivered to customers, to the time

interval between consecutive visits to the same customer or to the vehicle capacity

utilization. In this chapter we also extend the benchmarks available to the single

vehicle IRP by considering a multi-vehicle framework.

Chapter 5 is devoted to the study of the dynamic and stochastic IRP, a problem

where information is not completely available at the moment when decisions are

made. We combine the flexibility and consistency concepts introduced earlier to the

dynamic and stochastic IRP. Flexibility is obviously important in a dynamic and

stochastic environment, due to its nature: it is needed to adapt the delivery plans to

the ever changing nature of the demand; transshipments can also act as a means to

protect retailers against demand fluctuations. Consistency is also important because
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in a dynamic context, the customers’ actions are likely to be more variable than in the

deterministic case and the consistency measures studied in Chapter 4 may therefore

act as a way to protect the retailers against variations in service delivery. We evaluate

the impact of different replenishment policies, the availability of information and the

use of transshipments to mitigate the effects of stockouts.

Finally, Chapter 6 summarizes the main contributions of this thesis and points

to some potential research directions.



Chapter 2

Literature review

Chapter information

An article partly based on this chapter was submitted for publication in Trans-

portation Science: L. C. Coelho, J.-F. Cordeau, G. Laporte. Thirty Years of Inventory-

Routing. Technical Report, CIRRELT-2012-52, Montreal, 2012.

In this chapter we present a survey of the literature and review several variants

of the IRP. We also review the relevant literature on transshipment problems arising

in inventory management in so far as it can be relevant to the IRP. We also describe

some consistency features that have been used in vehicle routing and could also be

applied to the IRP.

2.1 Introduction

In the last decades we have witnessed significant changes in the role of logistics

management and an increased attention to this area. From a cost center, logistics

is now seen as a value adding center, through product availability, consistency of

deliveries, more precise inventory and demand management, ease of placing orders

among other elements of the logistics service. Vendor-Managed Inventory (VMI)

provides an efficient mechanism for adding value through logistics. It is a streamlined

approach to inventory management: it connects a vendor (or supplier) closely to

the customers (or buyers), with the former making the replenishment decisions for

products supplied to the latter, based on specific inventory and supply chain policies

(Angulo et al., 2004; Simchi-Levi et al., 2005; Lee and Seungjin, 2008).

VMI is often described as a win-win situation: vendors save on distribution

and production costs as they are able to combine and to coordinate demands and
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shipments for different customers; buyers save by not allocating efforts to controlling

and managing inventories. The supplier has to make three simultaneous decisions:

1. when to serve a given customer;

2. how much to deliver to this customer, when he is served;

3. how to combine customers into routes.

The drawback of VMI is that it requires the solution of a very difficult mathe-

matical problem, called the Inventory-Routing Problem (IRP), a combination of two

well-studied problems: (1) inventory management and (2) vehicle routing.

Table 2.1 shows how the IRP variants can be classified, according to eight criteria,

based on Andersson et al. (2010), but not limited to their classification, namely time,

demand, structure, routing, inventory policy, inventory decisions, fleet composition

and fleet size.

Table 2.1: Classification used for the inventory-routing problem

Criteria Possible options

Time Finite Inifinite

Demand Deterministic Stochastic Dynamic

Structure One-to-one One-to-many Many-to-many

Routing Direct Multiple Continuous

Inventory policy Unconstrained Order-up-to level

Inventory decisions Lost sales Back-order Non-negative

Fleet composition Homogeneous Heterogeneous

Fleet size Single Multiple Unconstrained

Source: Adapted from Andersson et al. (2010)

In Table 2.1, time refers to the horizon taken into account by the IRP model. It

can either be a finite horizon or an infinite horizon planning period. Demand from

the customers can be either deterministic, stochastic or dynamic, and this is one

of the major criteria as it defines a great part of the problem. Also, the number

of suppliers and customers may change, thus the structure can be one-to-one when

there is only one supplier serving one customer, one-to-many in the most common

case with one supplier and several customers, and the less studied case many-to-many

with several suppliers and several customers. This last configuration will only be cited

in this research since there are substantially fewer papers studying this case. Routing
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options can be direct shipping, when there is only one customer in a route, multiple

in the case where there are several customers being served by one vehicle on the

same route, and continuous in cases where there is no central depot, like in several

maritime applications. Inventory policies define pre-established rules to replenish

customers. The options found in the literature are either unconstrained policies or a

fixed policy called the order-up-to level. Inventory decisions determine how inventory

management is modeled. If the inventory is allowed to become negative, then back-

ordering occurs and the corresponding demand will be served when new shipments

are delivered. If there is no back-order, then extra demand is considered as lost

sales, and in both cases there may be a penalty for the stockout. In deterministic

contexts, one can also restrict the inventory to be non-negative. Finally, the last

two criteria refer to fleet composition and size. The fleet can either be homogeneous

or heterogeneous, and the number of vehicles available may be fixed at one, fixed

at many, or unconstrained. Each one of the following mentioned papers lies within

some of these categories, and they will be classified accordingly.

Specific versions of the IRP include, but are not limited to the IRP with single

customer (Dror and Ball, 1987; Speranza and Ukovich, 1996; Bertazzi and Speranza,

2002; Solyalı and Süral, 2008), the IRP with multiple customers (Archetti et al.,

2007; Bell et al., 1983; Chien et al., 1989; Kleywegt et al., 2002), the stochastic

IRP (Minkoff, 1993; Kleywegt et al., 2002, 2004), the IRP with direct deliveries

(Gallego and Simchi-Levi, 1990, 1994; Hall, 1992; Kleywegt et al., 2002; Mishra and

Raghunathan, 2004; Bertazzi, 2008), the multi-item IRP (Bausch et al., 1998; Qu

et al., 1999; Sindhuchao et al., 2005; Speranza and Ukovich, 1994), and the IRP

with heterogeneous fleet (Chien et al., 1989; Christiansen, 1999; Persson and Göthe-

Lundgren, 2005), among others.

When the customers and the vendor belong to the same corporation, it can be

beneficial to consider the possibility of transshipments, a situation where customers

may ship goods between each other when someone has excess and someone else faces

a shortage. This option makes it considerably more difficult to solve the problem,

because instead of solving it for the three above-mentioned questions, one must

also consider the possibility of transshipping, as a way to save money on inventory

(placing less inventory in the system would be possible since shortage risks would

be shared) and on routing (smaller quantities would need to be shipped from the

supplier).

The purpose of this chapter is to develop a comprehensive review of the related

IRP literature, with attention to the opportunities offered by transshipments. It

contributes to the current state of knowledge by offering a broader review than some
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of the recent review papers (Moin and Salhi, 2007; Cordeau et al., 2007; Bertazzi

et al., 2008; Andersson et al., 2010). Specifically, we present some formulations

and algorithms used to solve the problem. We also suggest that the integration of

transshipments into the IRP may lead to savings and add flexibility to the decision

maker.

The remainder of the chapter is organized as follows. Sections 2.2 and 2.3 for-

mally define the deterministic IRP and the stochastic IRP, respectively. Section 2.4

is dedicated to some mathematical formulations of the problem, while Section 2.5

points to different solution approaches. Section 2.6 presents the literature review of

transshipments in inventory-routing. Some discussions about the relevant literature

and our conclusions are made in Section 2.8.

2.2 The Deterministic Inventory-Routing Problem

We now formally introduce the IRP. The problem is defined on a graph G = (V,A)

where V = {0, ..., n} is the vertex set and A is the arc set. Vertex 0 represents the

supplier and the vertices of V ′ = V \{0} represent customers. Both the supplier

and customers incur unit inventory holding costs hi per period (i ∈ V), and each

customer has an inventory holding capacity Ci. The length of the planning horizon

is p and, at each time period t ∈ T = {1, ..., p}, the quantity of product made

available at the supplier is rt. We assume the supplier has enough inventory to meet

all the demand during the planning horizon and that inventories are not allowed to

be negative. The variables It0 and Iti are defined as the inventory levels at the end

of period t, respectively at the supplier and at customer i. At the beginning of the

planning horizon the decision maker knows the current inventory level of the supplier

and of all customers (I0
0 and I0

i for i ∈ V ′), and has full knowledge of the demand dti
of each customer i for each time period t.

There is a set K = {1, ...,K} of vehicles available with capacity Qk. Each vehicle

is able to perform one route per time period to deliver products from the supplier to

a subset of customers. A routing cost cij is associated with arc (i, j) ∈ A.
The objective of the problem is to minimize the total inventory-distribution cost

while meeting the demand for each customer. The replenishment plan is subject to

the following constraints:

• the inventory level at each customer can never exceed its maximum capacity.

• inventory levels are not allowed to be negative.

• the supplier’s vehicles can perform at most one route per time period, each
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starting and ending at the supplier.

• the vehicles’ capacity cannot be exceeded.

The solution to the problem should determine which customers to serve in each

time period using which of the supplier’s vehicles, how much to deliver to each visited

customer as well as which routes to use.

Obviously, the IRP defined above is deterministic and static because consumption

rates are fixed and known beforehand. In real life the supplier does not always know

in advance exactly how much each customer will consume (stochastic demand), nor

is this consumption static (dynamic demand).

2.3 The Stochastic Inventory-Routing Problem (SIRP)

The basic idea behind the SIRP is the same as in the IRP, except that the level

of realism and the difficulty of solving the problem are increased, given that some

data are known only in a probabilistic sense and realizations of such data are re-

vealed gradually to the decision maker. The unkown data can be the demand, the

traveling time, the traveling cost, etc. It is easy to observe that many characteristics

of the problem are stochastic in real life. These include demand, traveling times,

vehicle loading and unloading times, even the availability of the road network. In

the stochastic version of the IRP, instead of knowing the consumption rate for each

customer, the supplier knows (or estimates) a probability distribution for customer

consumption. In this sense, the problem is no longer deterministic and future de-

mands are uncertain. In the classical version of the SIRP, customer demands are

mutually independent.

The stochasticity added to the problem creates a probability that shortages will

occur. In order to discourage shortages, a penalty is imposed whenever a customer

runs out of stock, and this penalty is usually modeled as being proportional to the

amount of unsatisfied demand. Unsatisfied demand is typically considered as lost

demand, that is, there is no backlogging. Since decisions are made based on partially

available information, decisions can lead to expensive course-correcting measures.

The knowledge of the decision maker with respect to the dynamic problem can

vary according to the problem at hand. The data can be completely unknown and

periodically revealed, but usually the decision maker knows the information in some

statistical way, such as a probability distribution estimated from historical data.

The objective remains the same as in the deterministic case, but is written so as

to accommodate the stochastic and unknown future parameters: the supplier wants
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to choose a distribution policy that minimizes its expected discounted value (revenue

minus costs) over the planning horizon, which can be finite or infinite.

Whereas most real problems are indeed stochastic, there still exists plenty of

research on deterministic models. Exceptions to this rule are traditionally SIRP-

related studies involving the oil and gas industry (Bard et al., 1998; Federgruen

and Zipkin, 1984; Moin and Salhi, 2007; Trudeau and Dror, 1992) and maritime

applications (Bausch et al., 1998; Christiansen et al., 2004; Ronen, 1993, 2002).

2.4 Mathematical models for the IRP

We now present different formulations used to model the problem. Specifically,

we show the linear programming formulation of the IRP in Section 2.4.1, the dynamic

programming formulation of the SIRP in Section 2.4.2 and the robust programming

formulation for the SIRP in Section 2.4.3.

2.4.1 Linear programming formulation of the IRP

Mixed-integer models for the IRP have been around for decades, but due to

the complexity of the problem, it is only recently that a very simple version of the

problem was solved to optimality by integer linear programming. Using a branch-

and-cut algorithm, Archetti et al. (2007) have solved the deterministic multi-retailer

case with a single vehicle using the order-up-to level policy as described in Bertazzi

et al. (2002). Computational results show the problem was solved optimally within

two hours of CPU time instances with up to 50 retailers for when the time horizon

is three periods and up to 30 customers with a six-period horizon. Previously, linear

programming has been used as a heuristic tool by Campbell et al. (1998). In this

section, we present both formulations and algorithms.

The algorithm proposed by Campbell et al. (1998) consists of a two-phase integer

programming approach. In the first phase, the period and quantity to be delivered to

each customer are computed. Then, in the second phase customers are put together

into routes. Obviously the optimality of the second phase is limited by the choices

made in the first phase. The model definition and formulation are as follows. Let

di denote the constant usage rate of customer i, Lti = max {0, tdi − I0
i } denote a

lower bound on the total volume to be delivered to customer i by period t, and

U ti = tdi + Ci − I0
i be an upper bound on the total volume that can be delivered to

customer i by period t. Then, if qti represents the delivery volume to customer i on

period t, to prevent stockouts and exceeded inventory capacity one must ensure that
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Lti ≤
∑

1≤s≤t
qsi ≤ U ti i ∈ V ′ t ∈ T . (2.1)

The total volume that can be delivered on a single period is constrained by

a combination of capacity and time windows. Since vehicles are allowed to make

more than one trip per period, a way to model the problem based on the resource

constraints follows. Let R be a set of all possible delivery routes r, Tr the duration

of route r (as a fraction of a period), and cr the cost of executing route r. Let xtr
be a binary variable indicating whether route r is used in period t or not, and qtir be

a continuous variable representing the delivery volume to customer i on route r in

period t. Let Q denote the vehicle capacity and m the time available for a vehicle

to perform its routes in a single period.

The problem can then be formulated as follows.

minimize
∑
t

∑
r

crx
t
r (2.2)

subject to

Lti ≤
∑

1≤s≤t

∑
r:i∈r

qtir ≤ U ti i ∈ V t ∈ T (2.3)

∑
i:i∈r

qtir ≤ Qxtr r ∈ R t ∈ T (2.4)

∑
r

Trx
t
r ≤ m t ∈ T . (2.5)

Constraints (2.4) ensure that the vehicle capacities are not exceeded, while con-

straints (2.5) ensure that the time available to perform the routes are sufficient. This

model is difficult to solve due to the high number of possible routes, and also be-

cause of the length of the planning horizon. Considering a small set of routes and

aggregating periods towards the end of the horizon makes the model more compu-

tationally efficient. The output of this first phase specifies how much to deliver to

each customer in each period of the planning horizon. This information becomes

the input of a standard algorithm for the Vehicle Routing Problem with Time Win-

dows which is solved for each period in the second phase. Since decisions are taken

separately in the two phases, the second phase can only be optimal with respect to

the solution obtained from phase one. In other words, their integration may not be

optimal. Besides, this model takes good care of time constraints but does not include

any consideration for the inventory holding costs.

The first solvable model for a reasonably sized IRP to optimality was developed

by Archetti et al. (2007). It considers a single vehicle to serve all customers, and the
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replenishment policy is the order-up-to level, as described in Bertazzi et al. (2002).

The model works with the following binary variables: xtij is equal to 1 if and only if

customer j immediately follows customer i on the route of the supplier’s vehicle in

period t. Let the quantity of product delivered from the supplier to each customer

i at each time period t be qti , and let zt0 be a binary variable equal to one if and

only if there is a route to perform in that period. Finally, let zti be a binary variable

equal to one if the retailer i is served at time t, and zero otherwise. The problem

formulated by Archetti et al. (2007) consists in minimizing the following objective

function:

minimize
∑
t∈T

h0I
t
0 +

∑
i∈V ′

∑
t∈T

hiI
t
i +

∑
i∈V

∑
j∈V

∑
t∈T

cijx
t
ij , (2.6)

subject to the following constraints:

1. Inventory at the supplier. The inventory level at the supplier at the end of

period t is given by its previous inventory level (period t−1), plus the quantity

rt made available in period t, minus the total quantity shipped to the customers

using the supplier’s vehicle in period t:

It0 = It−1
0 + rt −

∑
i∈V ′

qti t ∈ T . (2.7)

2. Stockout at the supplier. These constraints impose that the supplier’s inventory

cannot be negative:

It0 ≥ 0 t ∈ T . (2.8)

3. Inventory at the customers. Likewise, the inventory level at each retailer in

period t is given by its previous inventory level in period t−1, plus the quantity

qti delivered by the supplier’s vehicle in period t, minus its demand in period t,

that is:

Iti = It−1
i + qti − dti i ∈ V ′ t ∈ T . (2.9)

4. Stockout at the customers. These constraints guarantee that for each customer

i ∈ V ′ the inventory level Iti remains non-negative at all time:

Iti ≥ 0 i ∈ V ′ t ∈ T . (2.10)

5. Quantities delivered. These sets of constraints ensure that the quantity deliv-

ered by the supplier’s vehicle to each customer i ∈ V ′ in each period t ∈ T will
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fill the customer’s inventory capacity if the customer is served, and will be zero

otherwise:

qti ≥ Cizti − It−1
i i ∈ V ′ t ∈ T ; (2.11)

qti ≤ Ci − It−1
i i ∈ V ′ t ∈ T ; (2.12)

qti ≤ Cizti i ∈ V ′ t ∈ T . (2.13)

If customer i is not visited in period t, then constraints (2.13) mean that the

quantity delivered to it will be zero (while constraints (2.11) and (2.12) are

still respected). If, otherwise, customer i is visited in period t, then constraints

(2.13) limit the quantity delivered to the customer’s inventory holding capacity,

and this bound is tightened by constraints (2.12), making it impossible to de-

liver more than what would exceed this capacity. Constraints (2.11) model the

OU replenishment policy, ensuring that the quantity delivered will be exactly

the bound provided by constraints (2.12).

6. Vehicle capacity: these constraints guarantee that the vehicle’s capacity is not

exceeded: ∑
i∈V ′

qti ≤ Q t ∈ T . (2.14)

7. Routing: these constraints guarantee that a feasible route is determined to

visit all customers served in period t:∑
i∈V

qti ≤ Qzt0 t ∈ T ; (2.15)

∑
j∈V ′,j<i

xtij +
∑

j∈V ′,j>i

xtji = 2zti i ∈ V ′ t ∈ T ; (2.16)

∑
i∈τ

∑
j∈τ,j<i

xtij ≤
∑
i∈τ

zti − ztk τ ⊆ V t ∈ T . (2.17)

8. Integrality and nonnegativity:

qti ≥ 0 i ∈ V t ∈ T ; (2.18)

xtij ∈ {0, 1} i, j ∈ V, i 6= j t ∈ T ; (2.19)

xti0 ∈ 0, 1, 2 i ∈ V t ∈ T ; (2.20)

zti ∈ 0, 1 i ∈ V ′ t ∈ T . (2.21)
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If one’s intention is to solve the IRP without the order-up-to level policy, then one

should remove constraints (2.11)−(2.13), or alternatively include constraints (2.12)

in order to have a maximum allowed inventory level at each retailer. Archetti et al.

(2007) have also derived some valid inequalities to make the model more efficient,

and were able to solve instances with up to 50 retailers in a three-period horizon.

This model, despite considering a single vehicle to serve the customers, is some-

what more general than others because it considers not only inventory holding costs

at the customers, but also at the supplier. This model was later improved by Solyalı

and Süral (2011) by using a stronger formulation and a heuristic to provide an upper

bound to the branch-and-cut algorithm.

2.4.2 Dynamic programming formulation of the SIRP

A dynamic programming model for the SIRP was introduced by Campbell et al.

(1998), where only transportation and stockout costs are taken into account. To

simplify the model, no inventory holding costs are incurred. At the beginning of each

period the supplier knows the inventory level at each of the customers and decides

which customers to visit, how much to deliver to each of them, how to combine

them into routes and which routes to assign to each of the available vehicles. The

components of their Markov decision process are the following:

• The state x is the current inventory at each customer and the state space X is

[0, C1]× [0, C2]× . . .×[0, Cn]. Let Xt ∈ X denote the state at time t.

• The action space A(x) for each state x is the set of all itineraries that satisfy the

tour constraints (such as vehicle capacities and customer inventory capacities).

Let A ≡
⋃
x∈X A(x) denote the set of all possible itineraries. Let At ∈ A(Xt)

denote the itinerary chosen at time t.

• The Markov transition function Q obtained from the known demand probabil-

ity distribution. For any state x ∈ X and any itinerary a ∈ A(x) the transitions

follow

P [Xt+1 ∈ B | Xt = x,At = a] =

∫
B

Q[dy | x, a]. (2.22)

• The only costs taken into account are transportation costs, which depend on

the vehicle tours, and a stockout penalty cost. Let c(x, a) denote the expected

daily cost if itinerary a ∈ A(x) is chosen and the process is in state x.

• Let α ∈ [0, 1) denote the discount factor. The objective is to minimize the

expected total discounted cost over an infinite horizon. Let V ∗(x) denote the



2.4. Mathematical models for the IRP 16

optimal expected cost given that the initial state is x, i.e.,

V ∗(x) ≡ inf
{At}∞t=0

E

[ ∞∑
t=0

αtc(Xt, At) | X0 = x

]
. (2.23)

The actions are restricted in the sense that At depends only on the history of

the system; when one decides which itinerary to choose, one does not know what the

future holds. Under certain usual conditions, equation (2.23) can be written as

V ∗(x) ≡ inf
a∈A(x)

c(x, a) + α

∫
X

V ∗(y)Q[dy | x, a]

 . (2.24)

Equation (2.24) can only be solved using classical dynamic programming algo-

rithms if the state space X is small, which is not the case for practical instances of

the SIRP. Campbell et al. (1998) state that it is possible to solve the problem by

approximating the value function V ∗(x) with a function V̂ (x, β), where β is a vector

of parameters.

This is the approach followed by Kleywegt et al. (2002, 2004) who, as in Camp-

bell et al. (1998) use a Markov decision process to formulate the SIRP. Here, n cus-

tomers must be served from a warehouse, using m homogeneous vehicles of capacity

Cv. Each customer i has an inventory capacity Ci, and the problem is modeled in

discrete time t = 0, 1, 2, . . . , usually days. Inventory at each customer i at any given

time t is denoted Xt
i and is known to the supplier. Customer demands are stochas-

tic and independent from each other, and the supplier knows the joint probability

distribution of their demands, which does not change with time. The supplier must

decide which customers to visit, how much to deliver to their local inventories, how

to combine customers into routes and which routes to assign to each vehicle. The

set of admissible decisions is constrained by vehicle and customer capacities, driver

working hours, possible time windows at the customers, and by any other constraint

imposed by the system or the application.

Although demands are stochastic, the cost of each decision is known to the sup-

plier. Thus, Kleywegt et al. (2002, 2004) define the following costs:

• Traveling costs cij on the arcs (i, j) of the network.

• Shortages, if they occur, are proportional to the amount of unsatisfied demand

si at customer i and cost si(pi). In this model unsatisfied demand is lost.

• Inventory holding costs are incurred on the existing inventory xi at customer i

plus the amount delivered to this customer, qi, and are equivalent to (xi+qi)hi.
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• Finally, if the supplier delivers qi at customer i, then he earns a revenue of

ri(qi).

The problem is formulated so as to maximize the expected discounted value over

an infinite horizon as a discrete time Markov decision process as follows. Let Xit

denote the inventory level at customer i at time t. Thus x is the current inventory

at each customer and the state space X is [0, C1] × [0, C2]× . . .×[0, Cn]. Let Xt =

(X1t, X2t, . . . , Xnt) denote the state at time t. The action space A(x) for each state

x is the set of feasible decisions, that is, the ones that satisfy the constraints of the

problem such as vehicle and customer capacities and any other constraint needed.

Let At ∈ A(Xt) denote the decision made at time t. Let kij(a) denote the number of

times that arc (i, j) is traversed while executing decision a, for any a and arc (i, j).

Finally, for any customer i, let qi(a) denote the quantity delivered to customer i

while executing decision a.

Let dit denote the demand at customer i at time t. Since there is no backlogging,

the usage cannot be higher than the amount available. In the way Kleywegt et al.

(2002) formulate the problem, the customer’s inventory plus the amount delivered are

available for use in the same period. Thus the amount of product used by customer

i at any time t is given by min{dit, Xit + qi(At)} and the shortage at customer i at

any time t is Sit = max{0, dit − (Xit + qi(At))}.
Recently, Bertazzi et al. (2012) have also proposed a dynamic programming model

for the SIRP, even though the model is later solved heuristically. This is due to the

fact that the problem is more general than that studied in Kleywegt et al. (2002) and

Kleywegt et al. (2004), especially with respect to the routing aspect. Kleywegt et al.

(2002) study the case with direct deliveries only, Kleywegt et al. (2004) limits the

routing to at most three customers per route, whereas Bertazzi et al. (2012) consider

the more general case.

2.4.3 Robust programming formulation of the SIRP

Robust optimization is an approach to deal with uncertainty where, in the ex-

treme case, no information is available of the parameter probability distributions.

This is done by optimizing the problem ensuring feasibility for all possible realiza-

tions of the bounded uncertain parameters, also called a minimax solution. Usually

studies on the SIRP assume one knows the probability distribution of demand, which

is generally not true. Such probability distribution has to be somehow estimated or

forecast in order to use the models just described. Robust optimization can be used

to cope with real-life situations where one does not have that information in advance.
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Solyalı et al. (2012) propose such an approach, which will be detailed in this section.

Their model presents the following description: a supplier distributes a single

product to n customers, using a vehicle of capacity C, over a finite discrete time

horizon p. The dynamic uncertain demand at each customer i ∈ V = {1, . . . , n}
in period t ∈ T = {1, . . . , p} is dit. The probability distribution of the demand is

unknown, but one knows that it can take any value in the interval [d̄it− d̂it, d̄it+ d̂it],

where d̄it is the nominal value (point estimate), and d̂it is the maximum deviation for

the demand of i in period t. An inventory holding cost is incurred at the customers,

equal to hit per unit at customer i in period t. Backlogging is allowed and each unit

backlogged in period t at customer i costs git, where git > hit. There is a fixed vehicle

dispatching cost ft for using the vehicle in period t. If the vehicle leaves customer

i ∈ V ′ = V ∪ {0} heading to customer j it incurs a cost cij , and these transportation

costs are symmetric.

The problem is formulated as follows. Let qitk be the total inventory cost of

replenishing customer i in period t ∈ T to satisfy its demand in period k ∈ T ;
qi,T+1,k be the total inventory cost of not meeting the demand of customer i in

period k ∈ T ; let witk be the fraction of the demand of customer i in period k ∈ T
delivered in period t ∈ T ; and let wi,T+1,k be the fraction of the unsatisfied demand

of customer i in period k ∈ T . Additionally let yit be 1 if customer i is replenished

in period t ∈ T and 0 otherwise; y0t be 1 if the vehicle is used in period t ∈ T and

0 otherwise; and xijt(i > j) be the number of times the edge (i, j) is traversed in

period t ∈ T . Then, the robust IRP can be formulated as follows:

minimize
∑
t∈T

fty0t +
∑
i∈V ′

∑
j∈V ′,j<i

∑
t∈T

cijxijt +
∑
i∈V

p+1∑
t=1

p∑
k=1

dikqiktwitk (2.25)

subject to

p+1∑
t=1

witk = 1 i ∈ V k ∈ T ; (2.26)

witk ≤ yit i ∈ V t, k ∈ T dik > 0; (2.27)∑
i∈V

p∑
k=1

dikwitk ≤ Cy0t t ∈ T ; (2.28)

∑
j∈V ′,j<i

xijt +
∑

j∈V ′,j>i

xjit = 2yit i ∈ V ′ t ∈ T ; (2.29)

∑
i∈S

∑
j∈S,j<i

xijt ≤
∑
i∈S

yit − ykt S ⊆ V t ∈ T k ∈ S; (2.30)

yit ≤ y0t i ∈ V t ∈ T ; (2.31)
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xijt ∈ {0, 1} i, j ∈ V, j < i t ∈ T ; (2.32)

xi0t ∈ {0, 1, 2} i ∈ V t ∈ T ; (2.33)

yit ∈ {0, 1} i ∈ V ′ t ∈ T ; (2.34)

witk ≥ 0 i ∈ V k ∈ T 1 ≤ t ≤ p+ 1, (2.35)

where qitk =
k−1∑
l=t

hil if t ≤ k and qitk =
t−1∑
l=k

gil if t > k.

The objective function (2.25) is the sum of the fixed vehicle dispatching, trans-

portation, inventory holding and shortage costs. Constraints (2.26) specify that

the demand of customer i in period k is either met from periods 1 through p, or

lost. Constraints (2.27) allow the vehicle to serve customer i in period t only if

a replenishment to customer i takes place in period t. Contraints (2.28) ensures

that the vehicle capacity is not exceeded. Constraints (2.29) are degree constraints,

guaranteeing that if i is visited in period t, then there are two edges incident to it.

Constraints (2.30) are subtour elimination constraints. Constraints (2.31) ensure the

vehicle starts its tour from the supplier. Constraints (2.32)−(2.34) and (2.35) are

integrality constraints and nonnegativity constraints, respectively.

If dik is replaced by d̄it for i ∈ V, t ∈ T , then it is called the nominal formulation,

since it does not incorporate any robustness. It is not trivial to derive the robust

formulation, and the reader is referred to Solyalı et al. (2012) for details. Their final

robust formulation ensuring feasibility for any dik ∈ [d̄it − d̂it, d̄it + d̂it] is

minimize
∑
t∈T

fty0t +
∑
i∈V ′

∑
j∈V ′,j<i

∑
t∈T

cijxijt +
∑
i∈V

p+1∑
t=1

p∑
k=1

qitkw
′
itk (2.36)

subject to (2.29)−(2.34) and to

∑
i∈V

p∑
k=1

w
′
itk ≤ Cy0t t ∈ T ; (2.37)

w
′
itk ≥ 0 i ∈ V k ∈ T 1 ≤ t ≤ p+ 1; (2.38)
p+1∑
t=1

w
′
itk ≥ d̄it + d̂it i ∈ V k ∈ T ; (2.39)

w
′
itk ≤ (d̄it + d̂it)yit i ∈ V t ∈ T k ∈ T , (2.40)

where w′
itk = dikwitk. Using this formulation the authors have solved instances with

up to seven periods and 30 customers within a reasonable computing time.
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2.5 Algorithms for the IRP

There exist so many algorithms for the IRP that it is difficult to find two authors

solving the problem in exactly the same way. Due to this high fragmentation, even

categorizing the literature becomes a hard task. The assumptions and definitions

are almost unique for each one of the papers reviewed. In addition, most real-life

IRPs are either dynamic, stochastic, or work with a long term horizon. These three

characteristics add enormous difficulty to the problem, and common assumptions

involve static demand (be it deterministic or stochastic) and a short term solution.

Previous literature reviews have analyzed the IRP from different standpoints. For

instance, Baita et al. (1998) study what they call Dynamic Routing-and-Inventory

Problems, which are “characterized by the simultaneous relevance of routing and in-

ventory issues in a dynamic environment”. Since they consider the dynamics of the

problem, they are concerned with time: whether decisions are taken on the frequency

domain, that is, decision variables are replenishment frequencies, or headways be-

tween shipments, or conversely decisions are taken on the time domain − schedule

of shipments, routes and quantities.

Campbell et al. (1998) prefer to view the IRP through the solution approaches

developed to solve it. Moin and Salhi (2007) sort the papers according to their

planning horizon (single period, multi period and infinite horizon), but classify the

SIRP separately. Andersson et al. (2010) also classify according to the planning

horizon, but include both stochastic and deterministic cases inside this arrangement.

Due to the difficulty of this problem, which is obviously NP -hard as it contains

the CVRP, most papers propose heuristics and especially metaheuristics to solve it.

To cite a few, Ribeiro and Lourenço (2003) proposed an Iterated Local Search heuris-

tic, Zhao et al. (2008) developed a Variable Neighborhood Search mechanism, Camp-

bell and Savelsbergh (2004) put forward a Greedy Randomized Adaptive Search

scheme and Boudia and Prins (2009) presented a memetic algorithm.

We organize our literature review on algorithms in three parts. In the first

we discuss the classical configuration with deterministic demand and one product.

The second part will present algorithms for one product with stochastic demand,

while the last part will present an overview of several other configurations, including

multi-product, split deliveries, among others. After each section we present a table

summarizing the main papers in the area, organized by authors and date. At the end

a different table is presented, summarizing all papers mentioned in previous tables,

but organized by their features.
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2.5.1 Deterministic case, one product

In the early 1980s some studies have started to incorporate inventory concerns

within the existing vehicle routing literature. These were mostly variations of VRP

models and heuristics developed to accommodate inventory costs. The first such

paper is due to Bell et al. (1983), which was followed by Federgruen and Zipkin

(1984), Blumenfeld et al. (1985), Burns et al. (1985), Dror et al. (1985), Dror and

Levy (1986), Dror and Ball (1987), Anily and Federgruen (1990). Most of those

papers considered consumption rate at the customers as known and deterministic.

Despite the large number of papers on distribution and inventory matters before this

period, the combination of these two features remained very difficult to solve, not only

because of computer power, but also because of the algorithms developed for large

and complex combinatorial problems, such as the ones involving both distribution

systems and inventory management optimization at the same time.

For instance, Bell et al. (1983) have analyzed the case where only transportation

costs are included, but inventory levels must be met at the customers. Since in

their case original demands were stochastic (they used forecasts to make them seem

deterministic to the model), more details will be provided in the next section.

A short term solution is presented in Dror et al. (1985) and in Dror and Ball

(1987) (who also studied the stochastic version), based on the assignment of cus-

tomers to so-called optimal replenishment periods, and then calculating the expected

increase in cost if the customer is visited in another period. Dror et al. (1985) offered

the first algorithmic comparison for the IRP. In their paper, they handle the problem

with two major simplifications: (1) once a customer is visited, the amount of product

delivered fills the customer’s capacity (order-up-to level policy), and (2) customers

are only visited once during the planning period (e.g. one week). They create two

subsets out of the customers set, one containing customers that must be visited, the

other containing customers that could be visited. They solve the problem in two

phases as follows. For the customers that must be visited, they calculate the costs

of visiting the customer earlier than the latest period possible. For customers that

could be visited, they compute the future cost difference between visiting or not this

customer. Based on these costs, customers are assigned to periods, and VRPs are

solved for each period, followed by a node interchange improvement. They consid-

ered a deterministic version of the problem, and proposed two algorithmic solutions.

The first one assigns customers to periods in a first step, and then solves a VRP

for each period. The other first assigns customers not only to periods, but also to

vehicles, so that the second part needs only solve one TSP for each period and each
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vehicle. In both cases an integer program is solved to assign customers to vehicles,

minimizing transportation and inventory costs. The second part of algorithm works

with the output of the first part, which was obtained heuristically and there is no

guarantee of its quality.

Building on the idea of adapting previous VRP algorithms and heuristics, Dror

and Levy (1986) have proposed a node interchange algorithm for a weekly IRP. They

have generated an initial solution to a VRP, keeping track of vehicle capacities and

customer inventories, improving the initial solution presented in Dror et al. (1985).

Burns et al. (1985) have developed formulas based on the trade-offs between

transportation and inventory costs, using an approximation of traveling costs. They

show that when using direct shipping the optimal shipment size is the Economic

Order Quantity (EOQ). In order to serve many customers within one route, the

vehicle must carry a full truckload, with the trade-off being influenced by the number

of customers served in the route, due to the use of approximations of the local distance

traveled within delivery regions.

Dror and Ball (1987) simplify the problem by fixing the amount delivered to

each customer in order to fill up its inventory capacity (order up-to-level policy),

and in this sense, the amount delivered only depends on the period of the delivery

since their approach is deterministic. They have simplified real stochastic demands

to a deterministic approach using three different variables: one to penalize early

deliveries to customers with sufficient inventory, another to motivate deliveries to

customers that are not restrictive (not required by the constraints), and the last one

to identify customers that must be served within the planning horizon. Finally, their

solution involves assigning customers to one period of the planning horizon through

a generalized assignment algorithm, solving the VRP for each period of the planning

horizon and finally trying to improve the solution by promoting interchanges not

only within routes but also within periods.

A different approach is used in Anily and Federgruen (1990) for the deterministic

IRP with an infinite horizon. Customers are divided into regions, and whenever a

customer is to be visited, all customers within that region are visited as well. Gallego

and Simchi-Levi (1990) evaluate the long-term effectiveness of direct shipping on a

system with one warehouse and multiple retailers. The direct shipping proved to be

94% effective whenever the vehicle capacity is at least 71% used.

Allowing vehicles to perform more than one route per period, Aghezzaf et al.

(2006) have modified the approach used by Anily and Federgruen (1990). Using

column generation, new multi-tours (columns) are created using an extension of the

savings algorithm. Inventories at the customers are replenished following an EOQ



2.5. Algorithms for the IRP 23

policy. In Raa and Aghezzaf (2009) this work is extended with the addition of some

driving time constraints.

Abdelmaguid and Dessouky (2006) have proposed a genetic algorithm to a dy-

namic deterministic version, which is shown to outperform the previously proposed

construction heuristic by Abdelmaguid (2004).

With limited inventory at the warehouse as in Federgruen and Zipkin (1984),

Chien et al. (1989) formulate a mixed-integer linear model, considering customer se-

lection, resource allocation and vehicle routing with heterogeneous fleet. A heuristic

is used to solve the problem. It first generates vehicles routes based on previously

solved inventory allocation and makes customers assignments. An improvement al-

gorithm is then applied. Also allowing backlogging, Abdelmaguid et al. (2009) derive

a constructive and improvement heuristic for the multi-period single-item version of

the problem. These are two of the few papers to use backlogging for unsatisfied

demand.

Some of the above mentioned papers (for instance Anily and Federgruen (1990),

Blumenfeld et al. (1985), Burns et al. (1985)) consider continuous decision variables

for the delivery times. Under this assumption, the optimal replenishment time may

be non-integer, an impractical solution for most suppliers. Roundy (1985) studies

the case with several retailers, direct deliveries and discrete time, defining frequency

based policies proven to be within 2% of the optimum in the worst case. In this

model, costs are linear for inventory holding and fixed for ordering, which includes

delivery costs.

Bertazzi et al. (2002) study the case with multiple retailers, still with determin-

istic demand rates and the order-up-to level policy, decreasing the flexibility of the

decision maker, but simplifying the set of possible decisions of the problem. The

problem is solved heuristically in steps. The first step creates a feasible solution,

and the second one improves it as long as a given minimum improvement is made to

the total cost function. This is achieved by removing all possible customer pairs and

computing a series of shortage paths to determine the periods in which the customers

should be reinserted. They consider both inventory and transportation costs and it

is relevant to note that the supplier also incurs inventory costs in their model, which

was generally not considered in other papers.

Campbell and Savelsbergh (2004) use the same two-phases idea, but in their

allocation problem they group customers into clusters which can be served by one

vehicle. The allocation phase then determines how much to deliver to each customer,

and a VRPTW is solved for the first periods of the planning horizon.

Savelsbergh and Song (2008) solve a problem in which a single producer cannot
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usually meet the demand of its customers, and customers who are so far away that

the tours cannot fit in one period. This leads to the formulation of a problem with

several suppliers, who must be visited one after another, in trips lasting longer than

one period. This problem is called the IRP with continuous moves and is solved

through a local search algorithm applied on a solution obtained by a randomized

greedy heuristic.

Within a cyclic planning context in which demands are deterministic and there-

fore a long-term distribution pattern can be derived, Raa and Aghezzaf (2008) de-

velop an algorithm allowing vehicles to perform multiple tours, possibly with different

frequencies. Customers are partitioned over vehicles using a column generation algo-

rithm, and the actual assignment of customers to tours is done by a greedy heuristic.

Tests are performed on random instances containing up to 100 customers.

Maritime applications of the ship routing and inventory management can be

found in Christiansen (1999), and in Christiansen and Nygreen (1998a,b), among

others. Deterministic cases are studied and solved using Lagrangian relaxation.

These problems show the special feature of having several suppliers as well as several

retailers (many-to-many structure), exploring continuous routing.

The first paper to offer an exact algorithm to the IRP is due to Archetti et al.

(2007). These authors considered the case with only one vehicle, no backlogging

and using the order up-to-level inventory policy. They developed a branch-and-cut

and derived several valid inequalities for the problem. Also using a branch-and-

cut algorithm, Solyalı and Süral (2011) have improved their results with an exact

mixed-integer programming formulation and developed a MIP based heuristic for the

problem.

When the planning horizon is not limited and one is concerned with solving the

problem over the long-run (infinite horizon problem), the objective can no longer be

the minimization of total costs over the horizon, and in such a case two approaches

have been used (Andersson et al., 2010). The first one considers the minimization of

average daily costs using repeatable policies. For instance, this is the approach used

in Anily and Federgruen (1990). The alternative is a full dynamic programming

formulation, which uses a discount factor, decreasing the importance of costs and

revenues associated with later time periods. Kleywegt et al. (2002, 2004); Adelman

(2004), among others, use this approach, which will be seen in details in the next

section.

With the aim of finding the Pareto-optimal solutions, Geiger and Sevaux (2011b)

plan the tactical level of the IRP, compare different solutions with respect to the

two opposing terms in the objective function. When a customer is visited very
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often, its inventory cost is low but routing becomes expensive, and vice versa. This

is important when considering changes in one of the terms, for example when fuel

prices change or when focusing towards “green” logistics solutions.

A comparison of two MILP formulations is proposed by Aksen et al. (2012) for

an application of the IRP related to waste vegetable oil collection. These authors

derive lower bounds by partially relaxing integrality in their model, and observe that

the solutions obtained are on average within 3.28% of optimality.

Finally, a powerful hybrid heuristic is presented in Archetti et al. (2012). It

operates with a combination of a tabu search embedded within four neighborhood

searches and two MIPs to further refine the solutions. Their results show that the

heuristic performs very well on benchmark instances, with an optimality gap usually

below 0.1%.

Table 2.2 presents the main papers cited in this section.

2.5.2 Stochastic case, one product

The IRP becomes more realistic when one considers that customers have a

stochastic demand instead of a fixed usage rate. As a result, linear programming

is no longer the preferred approach to solve this version of the problem, dynamic

programming being the choice of most researchers.

Bell et al. (1983) have proposed a linear programming model to solve a determin-

istic simplification of the problem. They use heuristics to generate forecasts of the

unknown demand. Possible delivery routes are created heuristically, and continuous

variables represent the amount to be delivered. Their mixed-integer programming

formulation used about 100,000 to 200,000 binary variables, 300,000 to 600,000 con-

tinuous variables and about 100,000 to 200,000 constraints. Using Lagrangian relax-

ation, they were able to decompose the problem into one knapsack problem for each

vehicle and their solution was proved to be within 2% of the optimum. However, the

heuristic used to generate forecasts was very simple, based on a simple exponential

smoothing model tested with only 10 different values for the smoothing parameter.

Federgruen and Zipkin (1984) have modified the VRP heuristic proposed by

Fisher and Jaikumar (1981) to accommodate inventory and shortage costs in a ran-

dom demand environment. Stochasticity is treated within the objective function

which is nonlinear and contains three terms: the routing cost, the assignment of

customers to vehicles, and the amount delivered to each of them. Their heuristic,

based on fixing the assignment of customers to one of the vehicles from the hetero-

geneous fleet, generated good solutions within reasonable computing time, since the
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problem is decomposed into an inventory allocation problem and a TSP for each

vehicle. They also derived an exact algorithm for the problem using generalized

Benders decomposition.

Using a different approach, Golden et al. (1984) determine which customers to

visit before solving the routing problem. Based on degrees of urgency, all customers

with inventory below a given threshold are considered as potential customers to be

visited. A modified TSP with time constraints is then solved in order to decide which

customers to actually visit, depending on their urgency. The selected ones are put

into routes by solving a VRP with the Clarke and Wright (1964) algorithm, and if

the VRP is not feasible due to time constraints, the preceding TSP is solved again

with tighter constraints.

As opposed to what Dror et al. (1985) did for the deterministic IRP, i.e. eventually

including a customer in a route even if it was not its optimal replenishment period,

Bard et al. (1998) determine the optimal replenishment interval for each customer.

If the optimal replenishment time of a customer falls outside the planning horizon

being considered, then the latter is extended to include this customer. Their model

considers random consumption and there are available satellite facilities where the

vehicles can refill. Modifying an earlier paper by Dror et al. (1985), Trudeau and

Dror (1992) introduce unknown stochastic demands and route failures when the load

of the vehicle is insufficient to serve the next customers in the route. The problem

is solved heuristically by selecting possible customers to visit, assigning them to

periods and routing vehicles using the Clarke and Wright heuristic. Inter- and intra-

period improvements are performed afterwards. The authors compare three different

approaches for the selection of the customers’ replenishment periods.

Aghezzaf (2008) studies the case with normally distributed customer demands

and travel times with constant averages and bounded standard deviations. He uses

robust optimization to determine the distribution plan through a non-linear mixed-

integer programming formulation which is feasible for all possible realizations of

demand and travel times. Monte-Carlo simulation is used to improve the plan’s

critical parameters (replenishment cycle times and safety stock levels).

Given the size and the complexity of the SIRP, Minkoff (1993) proposes a heuristic

approach based on a Markov decision model to a problem somewhat similar to the

IRP, called the Dispatch Delivery Problem. He simplifies the value function, making

it a sum of smaller value functions, one for each customer, and solves the problem

heuristically. This model is one of the few to work with an unconstrained fleet.

Berman and Larson (2001) also use dynamic programming to solve the case where

the demand probability distributions are known, adjusting the amount of goods
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delivered to each customer, in order to minimize the expected sum of delivering too

early or too late, of delivering less than the customer’s capacity and of traveling back

to the depot with the remaining products.

Also using dynamic programming, Kleywegt et al. (2002) include constraints for

the number of vehicles available, and allow only direct deliveries. Immediate reward

functions are composed of individual customer immediate rewards (revenue minus

the sum of travel, inventory and shortage costs). The optimal expected value is the

total discounted sum of all rewards. Since there are more customers than vehicles,

one should decide which customers to serve. Their dynamic programming algorithm

is shown to outperform linear programming on all instances. This work was later

extended by Kleywegt et al. (2004) to handle multiple deliveries per trip, allowing

up to three deliveries per route. In Adelman (2004) there is no limit to the number

of customers to be served in a route, except for the limits resulting from maximal

route duration and vehicle capacity. His approach is a little different and works as

follows. Using a value function not made up of individual customer values, but of

marginal transportation costs, Adelman (2003, 2004) compare stockout costs with

replenishment policies, choosing the one that maximizes the value. A linear program

is derived from the value function, and its optimal dual prices are used to calculate

the optimal policy of the semi-Markov decision process. The deterministic case is

solved in Adelman (2003), and the stochastic case is dealt with in Adelman (2004).

Hvattum and Løkketangen (2009) and Hvattum et al. (2009) solve the problem

heuristically, capturing the stochastic information over a short horizon. In Hvattum

and Løkketangen (2009) the problem is solved using a GRASP which successively

increases the volume delivered to customers. Hvattum et al. (2009) state that it is

sufficient to capture the stochastics of the SIRP over a finite horizon and they do

it through scenario trees. Their heuristic is based on a top-down GRASP which

starts at the root node and continues recursively, taking advantage of the knowledge

gathered in previous constructions through the principle of marginal conditional

validity (Glover, 2000; Hvattum et al., 2005).

Bertazzi et al. (2012) formulate the SIRP using dynamic programming. They

solve it approximately using a hybrid rollout algorithm approximating the cost-to-go

function with a linear program model.

Geiger and Sevaux (2011a) have studied a problem with unknown demand vary-

ing ± 10% around a mean value. They proposed several policies based on deliv-

ery frequencies for each customer. They provide the Pareto front approximation of

such policies when moving from a total routing-optimized solution to an inventory-

optimized one. In order to solve the problem for many periods, they apply the
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Record-to-Record Travel heuristic of Li et al. (2007).

Finally, column generation is applied to the tactical solution of an IRP in Michel

and Vanderbeck (2012). In this study, customer demands are stochastic and are

clustered to be served by different vehciles. Routing costs are approximated, since

the actual routing problem is considered to be operational and solved at a later stage.

The proposed method yields solutions within approximately 6% of optimality.

Table 2.3 presents the main papers cited in this section.

2.5.3 Other variants

As stated earlier, there exist numerous variations of the IRP. In this section we

will mention the most important ones and some related literature.

Since the VMI provides advantages for both the supplier and retailers, it is nat-

ural to think that integrating one more element of the supply chain may lead to

an even better performance. This extra element may be external (the supplier

of the supplier) or another department of the actual supplier, such as the pro-

duction level. This leads to the production-inventory-routing problem, also called

production-distribution problem. Blumenfeld et al. (1985) consider distribution, in-

ventory and production set-up costs, using three different configurations between

suppliers and buyers: (1) direct links, (2) via a consolidation terminal, and (3) a

combination of both. Demands and costs are still deterministic and constant in

their work. The interested reader is directed to Chandra and Fisher (1994); Fumero

and Vercellis (1999); Bertazzi et al. (2005); Bard and Nananukul (2009, 2010) and

Archetti et al. (2011). In the same vein, Javid and Azad (2010) have proposed

a broader mechanism that simultaneously optimizes location, allocation, capacity,

inventory and routing decisions in a supply chain network design under stochastic

demands. They propose a mathematical formulation which obviously can only be

solved for relatively very small instances. They also propose a heuristics based on a

tabu search combined with simulated annealing.

Another variation of the IRP is the one that handles several products at once.

Speranza and Ukovich (1994, 1996) study the case with pre-determined frequencies

for a multi-product flow on a single link. Bertazzi et al. (1997) later expanded these

studies to handle multiple customers. Every customer is analyzed individually, and

those with the same optimal frequency are aggregated for the calculation of routes.

Federgruen et al. (1986) have extended the work by Federgruen and Zipkin (1984) to

allow multiple products, in their case, perishable items. This is done with a penalty

for unsold out-of-date items. Carter et al. (1996) have proposed a two-phase heuristic
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to solve the multi-product version of the problem. They solve an allocation problem

first, where they choose when and how much to deliver to customers, and they then

construct the delivery routes. In their work the allocation problem is first solved with

capacity constraints equivalent to the total vehicle capacity, followed by a VRPTW

to determine the routes. A multi-item IRP with demand uncertainty and a fleet of

homogeneous vehicles is studied by Huang and Lin (2010) who solve it by means of

an ant colony optimization algorithm. A particular case of the multi-item IRP is

analyzed by Popović et al. (2012) in which different types of fuel are delivered to a

set of customers by vehicles with compartments. The problem is solved by means

of variable neighborhood search heuristic since the proposed MILP can only handle

the smallest instance from a practical application.

A variation of the multi-product version, which also considers multiple suppliers

but only one customer, was analyzed by Moin et al. (2011). The authors obtain lower

and upper bounds after solving a linear mathematical formulation with a commercial

solver and then generate better upper bounds by means of a genetic algorithm. The

problem is defined with several suppliers, each offering a different product, and with

an assembly plant where the items should be delivered by a fleet of homogeneous

vehicles to satisfy a known demand. An extension of the previous structure, the

many-to-many one was studied by Ramkumar et al. (2012) who proposed a MILP to

a multi-item multi-depot IRP. However, computational results show the limitations

of the method as instances with only two vehicles, two products, two suppliers, three

customers and three periods could not be solved to optimality in eight hours of

computing time.

Maritime applications are also common in inventory-routing. A deterministic

maritime multi-product IRP, with several loading ports with variable production

is considered in Persson and Göthe-Lundgren (2005). The solution method used

is based on column generation with the use of valid inequalities. Not limited by

frequency-based policies, Bertazzi and Speranza (2002) develop a model for the ship-

ment of many products through a single link, considering both routing and inventory

costs, yet with deterministic and constant demand rates. Qu et al. (1999) formulate

the stochastic multi-product case with an iterative algorithm, alternating between

an inventory problem which determines the points to visit, and a routing problem,

to compute routing costs which are fed back to the inventory problem. A similar

problem with deterministic demands and vehicle and capacity constraints was solved

by Stacey et al. (2007). A tactical approach is studied by Grønhaug et al. (2010).

These authors are concerned with the bulk transportation of liquefied natural gas

from many liquefaction plants to several regasification terminals using a heteroge-
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neous fleet of specialized ships. In this version of the problem, the load of the ships

evaporates at a constant rate, and the supply as well as the demand are variable.

A multiple product version of a similar problem is analyzed by Christiansen et al.

(2011), who also deal with a many-to-many structure and a heterogeneous fleet of

capacitated ships. The largest instance they solve contains five ships, 12 suppliers,

49 customers and 11 products, and is solved over 14 periods. The algorithm pro-

posed by these researchers is based on genetic search. A practical industry problem

is studied in Song and Furman (2012) in which an optimization-based heuristic is

developed. The problem at hand is deterministic and has a many-to-many configu-

ration. The algorithm developed can solve instances with up to five suppliers, five

customers and nine ships over 60 periods. Complicating constraints such as time

windows and the cost structure of the problem, which is typical of the maritime

environment (i.e. demurage and overage rates), make the algorithm very flexible to

handle real-life instances. Stålhane et al. (2012) seek a long term efficient solution in

which multiple products are delivered in a one-to-many structure. Given the nature

of the problem, described as a liquefied natural gas application, direct deliveries are

usually considered. The aim is to find good annual delivery plans for the fleet of het-

erogeneous ships. A problem in which customers present varying storage capacities

as well as multiple production sites where both production and consumption rates

are variable is studied by Engineer et al. (2012). The authors propose a branch-and-

price-and-cut algorithm. Due to the complexity of the problem, only small instances

can be solved. An extension of the fix-and-relax heuristic is applied by Uggen et al.

(2011). It works by iteratively solving the problem with integer variables for the first

and more important periods, and LP relaxed integer variables for the remaining pe-

riods; once this iteration is complete, the first set of variables is then fixed, a new set

of variables are set to be integer again and the algorithm iterates. The authors have

tested their implementation on LNG instances arising in the maritime IRP context.

The classical road-based IRP is considered in Liu and Lee (2011), who also add

time windows. Their algorithm is designed with a combination of variable neigh-

borhood search and tabu search. However, the effectiveness of the algorithm cannot

be completely assessed because their comparison is made against three algorithms

designed for the VRPTW.

Another specific case is the IRP with direct deliveries, as the one studied by

Kleywegt et al. (2002) and by Bertazzi (2008). Direct deliveries simplify the problem

since one is not concerned about making efficient routes for several customers. It is

shown to be effective when economic order quantities for the customers are close to

the vehicle capacities (Gallego and Simchi-Levi, 1990, 1994). Li et al. (2010) have
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developed an analytic method for performance evaluation of this delivery strategy,

whose effectiveness can be represented as a function of system parameters.

Following the work of Savelsbergh and Song (2008) who developed their model

to the IRP with continuous moves with several loading and unloading points, Chris-

tiansen (1999) and Christiansen and Nygreen (1998a,b) have considered an applica-

tion of the maritime ship routing and inventory management problem. The prob-

lem was formulated and solved using Dantzig-Wolfe decomposition, where both ship

schedules and inventory decisions can be expressed as columns. Christiansen and

Fagerholt (2002) and Christiansen and Nygreen (2005) have later extended the de-

terministic problem by allowing soft inventory and time windows constraints, as a

way to overcome uncertainty and stochasticity which are intrinsic to the problem.

For a comprehensive review of ship routing and scheduling, the reader is referred to

Christiansen et al. (2004) and to Christiansen et al. (2007).

Another version of the IRP is concerned with split deliveries, that is, the demand

of any given customer can be satisfied by more than one vehicle. This increases the

flexibility of the system and may lead to reduced transportation costs. Chandra and

Fisher (1994) proposed a multi-period multi-product problem with split deliveries.

Their two phase heuristic solution procedure was proved to generate infeasible so-

lutions, and only yielded lower bounds to the problem (Yu et al., 2007). Fumero

and Vercellis (1999) also worked on split deliveries for a production, inventory and

routing multi-period problem for a single item, and solved it by using Lagrangian

relaxation. Yu et al. (2008) improved previous works on split deliveries by adding

extra valid inequalities to reduce the solution space and by developing a more robust

Lagrangian relaxation approach. The relaxed problem can be approximately solved,

and their solutions are used to construct feasible routes from the original problem.

Policy based heuristics are also present in the literature. Power-of-two policies

are analyzed by Herer and Roundy (1997); a fixed partition policy combined with a

tabu search heuristic is studied by Zhao et al. (2007); for a multi-product problem,

Viswanathan and Mathur (1997) have developed a stationary nested joint replen-

ishment policy. A review of matheuristics for the IRP is provided in Bertazzi and

Speranza (2012).

Some real-life features are added in the study presented in Benoist et al. (2011),

such as multi-plants, resources that must be combined to make a route (driver, trailer,

tractor), driver working hours constraints, and two kinds of resupply (order-based

and forecast). The problem was modeled with a surrogate objective function to take

into account the long-term cost, since the problem is solved over a rolling horizon

using simple moves on a randomized local search.
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Table 2.4 presents the main papers cited in this section. Tables 2.5 and 2.6

summarize some of the features just discussed for the deterministic and stochastic

IRP, respectively.

As can be seen, previous research have given little attention to flexibility and

none to consistency, which are the main themes of this thesis. However, there have

been some work on transshipment outside the IRP framework, which can benefit the

IRP. Here we review the relevant transshipment literature in Section 2.6. Existing

research on consistency issues have been mostly conducted in the context of the VRP

and will be mentioned in Chapter 4.

2.6 Transshipments in inventory management

Although there does not appear to exist any literature related to transshipments

in an IRP context, there exists some research about it in inventory management,

as a means of sharing inventory among several locations, also sharing the risks of

stockout.

Transshipments are movements of goods through an intermediate location, before

the shipment to the final destination. In supply chain management, this possibility

often arises when there is a need to change the means of transportation or to com-

bine small loads into a larger one. However, transshipment can also be a valuable

option in the following situation. Let a company have several retailers with on-site

inventory, all served by a central warehouse as we have assured so far for the IRP. If

retailer A faces a high demand and low inventory situation, while retailer B still has

enough inventory, it may be interesting to ship goods from B to A, without the need

to dispatch a vehicle to serve A from the warehouse, possibly incurring an emergency

cost. The assumption is that transshipments will reduce total cost for the whole sys-

tem (considering that the supplier and the retailers belong to the same chain), while

increasing service level (Tagaras, 1999). Thus, transshipments will be treated in this

section as an operational solution towards cost reduction, with possible applications

to the IRP, as opposed to the tactical approach given by Herer et al. (2002) who

treat transshipments as a solution leading to increased supply chain agility. Different

definitions of transshipments exist, such as the one used by Dondo et al. (2009) who

studies a pickup and delivery problem in which good can be transferred from one

vehicle to another. The same problem is also studied by Qu and Bard (2012) who

proposes a GRASP with adaptive large neighborhood search for its solution.

The literature can usually be categorized according to the following criteria. The

list is not extensive as those are the categories believed to be the most important for
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the IRP:

• number of locations that are able to ship goods: since the problem is complex

from the mathematical point of view, the number of locations operating as

intermediate inventories is relevant;

• the lead time (Tagaras, 1989; Tagaras and Cohen, 1992) and cost (Robinson,

1990) for a replenishment from the warehouse, compared to those same param-

eters when using the transshipment option;

• whether the transshipment has a preventive (Das, 1975; Diks and de Kok, 1996;

Jönsson and Silver, 1987; Mercer and Tao, 1996) or emergency (Cohen et al.,

1986; Lee, 1987; Axsäter, 1990; Dada, 1992; Tagaras, 1999; Suakkaphong and

Dror, 2011) purpose, and so, if it is decided before or after demand is observed;

• the measure of performance: cost or service level (Herer et al., 2002).

Unless specified, all papers mentioned below consider that the decisions are cen-

tralized by a “parent firm”, instead of being local decisions. This is important because

the parent firm would be concerned about the overall system performance, instead

of optimizing each part of it.

The transshipment literature dates back to the 1950s when Allen (1958) devel-

oped a model to redistribute inventory at the beginning of each period to each of

the n locations facing normally distributed demands. The decisions are centrally

coordinated, and any shortage during the period is lost. Gross (1963) develops this

model a little further with the possibility to buy additional units of the goods and

by generalizing the demand at the retailers to any distribution, instead of only the

normal one as done by Allen (1958). However, in these two models all parameters

are the same for all retailers. Karmarkar and Patel (1977) generalize this assumption

allowing retailer-specific values.

Krishnan and Rao (1965) have analyzed the case where locations are identi-

cal both in cost and demand, whereas Robinson (1990) have later extended this

approach to a two-location model with non-identical costs, introducing a linear pro-

gramming based heuristic for the multi-location model. According to Nonås and

Jörnsten (2007), this is a general rule found in literature: analytical results for the

two-location model (e.g. Tagaras (1999); Rudi et al. (2001)) or heuristics methods

for the n location model (e.g. Karmarkar and Patel (1977); Robinson (1990)).

For the two-location model, Tagaras (1999) derives a set of assumptions which

make the full transshipments, called complete pooling, an optimal policy. Complete
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pooling assumes that the retailers are willing to transfer any excess inventory to

others with a shortage until either the shortage or the excess is eliminated. Herer

and Rashit (1999) have also studied the two-location problem but with special cost

characteristics: in their model, there are a fixed and a joint replenishment costs.

Finally, Chen et al. (2012) show that when lead times are very long and the supplier

has only one chance to supply goods to its two retailers, i.e. at the beginning of the

selling season, there exists a unique optimal transshipment policy for the subsequent

periods. Moreover, transshipments are shown to increase both supplier and retailers’

expected profit as well as retailers’ service levels.

Rudi et al. (2001) study the two-location model where there is local decision

making, that is, each retailer is interested in maximizing its own profit, since he

is not part of a corporation trying to maximize the whole system profit. For the

retailer alone, the possibility of transshipments affects the way he will manage his

inventory, since there exists the possibility of holding lower inventory levels while

still benefiting from the safety offered by transshipments if ever the demand turns

out to be higher than expected. In Suakkaphong and Dror (2011) it is even shown

that it can be benefical to transship inventory regardless of local demand, if this

increases the overall profit of the system. The case in which customers sharing their

inventory with each other through transshipments do not belong to the same chain,

but rather compete for customers is further analyzed by Zou et al. (2010). These

authors show that transshipments are not a viable option if companies are close

competitors, allowing customers to easily switch to one another in case of stockouts.

Satır et al. (2012) also study this system configuration in an decentralized service

parts network, and analyze the effects of different levels of inventory sharing as well

as that of information sharing. Under the same framework in which retailers are

competitors, Mateo et al. (2012) propose a game theory methodology which allows

each retailer to sell surplus inventory to other retailers. This is shown to increase

one’s own profit margin while cooperating with one’s competitor.

In the literature devoted to heuristics, Robinson (1990), besides solving to op-

timality the problem with two customers (two location problem), approximates the

optimal solution for the n location model by discretizing the demand distribution

and solving a large linear programming problem heuristically. Tayur (1995) also dis-

cretizes demand distribution for the n location model, but his gradient approach is

faster and the size of the resulting problem is smaller. Herer et al. (2006) used Monte

Carlo simulation in order to derive an order-up-to S policy for the non-identical multi

location transshipment problem.

Wee and Dada (2005) review several models that specify where the goods should
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be shipped from, if one of the following scenarios occur:

• if there is no central depot and all transshipments should start from a retailer.

• if there is a warehouse, but transshipments should start from a retailer, if some

has excess inventory.

• if there is a warehouse, and transshipments should start from it, unless it has

no inventory.

• if the transshipment is not allowed to start from a retailer, only from the

warehouse.

• and finally if it is not allowed to perform transshipments in the system.

The exact formulation described below was initially proposed by Nonås and Jörn-

sten (2005) and further developed in Nonås and Jörnsten (2007) to include a penalty

in case the final customer demand cannot be satisfied. We will describe the most

general one.

The description and notation used is the following. Consider n retailers belonging

to the same corporation selling a seasonal product. They have to determine, before

the season starts and before knowing the actual demand Di of each store i, a quantity

Qi to keep in inventory for the coming season. Demands are supposed to be stochastic

and unknown, but their probability distributions are supposed to be known and

continuous.

For each unit store i sells, it receives a revenue ri, strictly greater than the unit

ordering cost ci. If after the season ends, store i still has units in inventory, it can sell

them back to the factory or put them on sale for a salvage value si, which is smaller

than the ordering cost ci. Also, if store j faces a shortage during the season, it is

possible to ship goods to it from another store i having a surplus of the product, at

a unit cost τij , and it is assumed that the transportation time is negligible. Let Tij
represent the amount of products sold at location j from the inventory at location

i. Naturally, Tii is the amount sold at location i from its own inventory and τii is

set to zero. If there is a shortage at location i and there is no location with surplus

inventory to transship from, then location i incurs a penalty cost pi.

In order to formulate a model with complete pooling, three assumptions have to

be made on some of the above described parameters. These assumptions are common

in real life applications and similar ones can be found in the literature (Tagaras, 1999;

Herer and Rashit, 1999; Robinson, 1990). They are the following:

rj − τij ≥ si i, j = 1, . . . , n; (2.41)
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ri ≥ rj − τij i, j = 1, . . . , n; (2.42)

si ≥ sj − τij i, j = 1, . . . , n; (2.43)

ci + τij ≥ cj i, j = 1, . . . , n. (2.44)

Inequality (2.41) implies that it is always better to transship excess goods to a

location with a shortage than to sell them at the salvage cost. Constraints (2.42)

and (2.43) mean that it is never optimal to transship between two shortage locations

or between two surplus locations, respectively. Finally, it is better to order from the

factory than to order from any other location, as stated by inequality (2.44).

Still according to Nonås and Jörnsten (2007), if all retailers belong to same

company, it would be optimal to maximize the total aggregated profit instead of

individual ones. This is made possible when decisions are centrally coordinated, and

the maximum aggregate profit for all n locations is

maximize π = max

{
n∑
i=1

−ciQi + EK̄[Q,D]

}
, (2.45)

where K̄ is the maximum income given order quantities Q and realized demands D.

Since the complete pooling is the policy being used, all units transshipped are sold

at the receiving location. Thus,

K̄[Q,D]=maximize
n∑

i=1

[
n∑

j=1
rjTij−

n∑
j=1

τijTij+si

(
Qi−

n∑
j=1

Tij

)
−pi

(
Di−

n∑
j=1

Tij

)]
(2.46)

subject to
n∑
j=1

Tij ≤ Qi i = 1, . . . , n; (2.47)

n∑
j=1

Tij ≤ Di i = 1, . . . , n; (2.48)

Tij ≥ 0 i, j = 1, . . . , n. (2.49)

Equation (2.46) defines the maximum income, and its right-hand side is the

income derived from all products sold at locations j coming from the inventory at

location i. Again, if i and j are the same, then it refers to its own inventory. It

is made up of the selling revenue, minus transshipments costs, plus salvage costs,

minus any eventual penalty costs. Constraints (2.47) make it impossible to sell more

than the inventory, and constraints (2.48) state that one cannot sell more than its

demand. Constraints (2.49) are simply non-negativity constraints.

Adapting equations (2.45) and (2.46), by extracting
n∑
i
siQi and

n∑
i
piDi from K̄,

makes it possible to reformulate the model as:

maximize π = max

{
−

n∑
i=1

[(ci − si)Qi] + piE[Di] + EK[Q,D]

}
(2.50)
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where

K[Q,D] = max
n∑
i=1

n∑
i=1

(rj + pj − τij − si)Tij (2.51)

subject to
n∑
j=1

Tij ≤ Qi i = 1, . . . , n; (2.52)

n∑
j=1

Tij ≤ Di i = 1, . . . , n; (2.53)

Tij ≥ 0 i, j = 1, . . . , n. (2.54)

The transshipment problem can be solved heuristically by discretizing the con-

tinuous demand distribution. Several authors use this procedure (Robinson, 1990;

Tayur, 1995; Nonås and Jörnsten, 2005, 2007). Tayur (1995) showed that there is

no minimal number of discrete demand points that can guarantee the solution to

be within a given error bound of the optimal one. Nonetheless, Nonås and Jörn-

sten (2005) compared the accuracy of several discretization scenarios against the one

with 30,000 points, and concluded that there is a significant improvement when the

discretization moves from 100 points as compared to 30,000, and also from 1,000 to

30,000. However, when using a discrete distribution with 10,000 points, the average

improvement when using 30,000 is never above 0.5%.

The transshipment problem was also recently solved exactly using stochastic pro-

gramming by Gong and Yücesan (2012) for problems with negligible transshipment

lead times, stochastic demand and a specific inventory policy.

2.7 Consistency in vehicle routing

Consistency in the context of the IRP does not seem to have been studied in the

manner we propose in this thesis. Here, the OU policy, already studied in the IRP

(see e.g. Bertazzi et al. (2002)), is viewed as a consistency feature (see Chapter 4).

However, traditionally it has been imposed as a way to simplify the problem, linking

the decisions regarding when to deliver and how much to deliver to a customer into

only one, in order to make the problem more computationally tractable.

However, consistency as we define it has arisen in the context of the VRP in the

past. The concept of driver consistency was first introduced by the work of Groër

et al. (2009). It was studied in the context of the periodic VRP (PVRP), in which

besides the constraints of a CVRP one considers that a set of customers have to be

visited, one or several times, over a given planning horizon. A list of possible sets of

visiting days for each customer is given. In the consistent PVRP, one must ensure
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that each customer is always visited by the same driver, so as to develop a personal

rapport that over time should lead to a better relationship between the customer and

the driver. We call this feature driver consistency, as different types of consistency

will be proposed and analyzed in Chapter 4. Moreover, the vehicle operation would

benefit from the driver’s increased familiarity with the region and the customer

site. According to the authors, imposing such constraints yields solutions having a

higher cost and requiring slightly more vehicles than in the inconsistent solutions.

Obviously, all consistent solutions are feasible for the more general problem.

There also exist papers that incorporate workforce management within the PVRP,

for example by assigning territories to drivers as Christofides and Beasley (1984),

Beasley (1984) and Zhong et al. (2007). This is an indirect way to enforce driver

consistency. Recently, Smilowitz et al. (2012) have analyzed the trade-off between

workforce management and travel distance goals in a multi-objective PVRP.

2.8 Discussion and future work

Given the diversity of versions of the IRP, it is difficult to develop a proper

literature review analyzing evolutions and comparing methods used to assess and

solve the problem over the years. Several approaches have been developed for the

IRP, none outperforming the others in a manner that it would be preferred by most

researchers. Moreover, there still seems to be room for different methods. Added to

this, there does not yet exist a set of instances universally used to benchmark the

proposed algorithms, making it difficult to compare their effectiveness and efficiency.

Due to the intrinsic difficulty of the problem, exact methods are barely used, and

one can find several heuristics to tackle different IRPs. However, one cannot find

consensus about what to solve optimally and what to solve heuristically. For instance

Bell et al. (1983) used heuristics to generate forecasts and possible routes, Dror et al.

(1985) and Dror and Ball (1987) used them to choose replenishment periods, Anily

and Federgruen (1990) to determine the set of customers to be visited, and so on.

Despite these differences, most papers have one point in common: they consider

that the problem is solved only once (i.e. it is static) with known (or deterministic)

data. However, there exist several situations where the problem must be solved in

a dynamic fashion, i.e. as new information is revealed. In such contexts, one may

wish to make use of forecasts (typically of demands) based on statistical information.

Assessing the expected value of information is an interesting research question in a

dynamic setting. An emerging solution paradigm proposed to deal with uncertainty

is robust optimization which constructs an a priori solution under an uncertainty
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budget in order to yield a solution capable of withstanding variants in inputs (Solyalı

et al., 2012).

Other practical issues usually involve omitted constraints, such as time windows

to perform deliveries at the customer sites, drivers’ working hours, a possible hetero-

geneous fleet of vehicles, multiple source problems (when the supplier has more than

one warehouse), multi-product, and of course, the integration of all these constraints

within one solvable model. Furthermore, it is not trivial to obtain parameters such

as inventory holding costs and penalties, since some of them are hard to measure and

sometime intangible. These parameters are essential to model real-life applications,

and solutions can drastically change as a result of variations in their values.

The VMI is also concerned with the relationship of supplier and retailer, but

one may want to consider the integration of production, storage and transporta-

tion, managing inventory costs at all three levels, and integrating them into that all

transportation and production costs.

The use of transshipments can lead to added flexibility but to increased com-

putational difficulty. To the best extent of the knowledge gained in this research,

one cannot find references in the literature to the combination of IRP and trans-

shipments. The resulting problem is likely to be huge and unsolvable exactly, but

heuristics may be successful. Likewise, quality of service features can probably be

introduced in the IRP through the use of consistency attributes. Despite the exis-

tence of some research about the consistent VRP, its integration within the IRP has

yet to be developed.

This chapter has provided a review of the IRP as part of the overall logistics

management system. The integration of the inventory and routing aspects is proved

to reduce costs, especially when it is coordinated at the various echelons of the supply

chain, possibly through a VMI system.

Some researchers have attempted to solve the problem exactly as seen in Section

2.5.1. Nevertheless, there is still a long way to go in order to put into practice most

of the knowledge developed, especially because one cannot compare the algorithms

each study proposes, and one does not yet know the best way to solve each version of

the problem. This is due to the fact that it is only recently that a set of benchmark

instances has been introduced and shared among researchers.

More coordination and cooperation than what is usually found in VMI is possible.

This can possibly be achieved through transshipments, as well as inventory sharing

and risk sharing. This integration should be addressed and tested to confirm or refute

this hypothesis, taking into account not only cost parameters but also the efficiency

of the proposed solution methods, since it is unlikely that an exact algorithm can be
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developed to solve the IRP with transshipments in the near future.

Nevertheless, transshipment and consistency have not yet been integrated within

the IRP. In a deterministic context, transshipments can still reduce distribution costs

and consistency can be used as a means of improving the quality of service. In a

dynamic and stochastic environment, they can act as a way to reduce stockout risks,

yet offering good consistent decisions over time. These are the main topics that we

aim to introduce and analyze in this thesis.



Chapter 3

The Inventory-Routing Problem

with Transshipment

Chapter information

An article based on this chapter was published in Computers & Operations Re-

search: L. C. Coelho, J.-F. Cordeau, G. Laporte. The Inventory-Routing Problem

with Transshipment. Computers & Operations Research, 39(11):2537−2548, 2012.

An article partly based on the exact algorithm presented in Section 4.3 was

published in Computers & Operations Research: L. C. Coelho, G. Laporte. Exact

Solutions for Several Classes of Inventory-Routing Problems. Computers & Opera-

tions Research, 40(2):558−565, 2013.

In this chapter we analyze how IRP solutions can be made more flexible. To this

end, we introduce the concept of transshipment within inventory-routing.

3.1 Introduction

In addition to the features of the IRP described in Chapter 2, which makes

possible the application of a VMI strategy, this chapter introduces the concept of

transshipment within inventory-routing. Under this policy, goods may be shipped

to a customer, either directly from the supplier, or from another customer. This

happens, for example, between stores belonging to the same chain which can ship

merchandise to one another when unforeseen demands variations occur (Axsäter,

1990; Dada, 1992; Lee, 1987; Nonås and Jörnsten, 2005, 2007; Paterson et al., 2011).
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To the best of our knowledge, transshipment has not yet been formally integrated

within the context of inventory-routing. Planned transshipments can also be used

to redistribute inventory among customers so as to reduce handling costs, as is the

case in the retail industry (Paterson et al., 2011) and in companies that make use

of external freight carriers for part of their distribution (Nonås and Jörnsten, 2007).

Transshipments may be beneficial in a deterministic context in which no shortages

occur because they may yield an overall reduced distribution and inventory holding

cost. This is the case, for example, when vehicle capacity and storage limits at

customer locations restrict the amounts that can be delivered to these customers

at each time period. Deterministic subproblems also arise when solving stochastic

inventory-routing problems in a rolling horizon framework where one uses demand

forecasts for the next time periods as approximations of the unknown demand. This

is the context in which our problem is defined. Mercer and Tao (1996) provide an

example of an inventory-routing system used by the supermarket chain Tesco, in the

United Kingdom, where deliveries are made from a factory to several warehouses, and

lateral transshipments can take place between warehouses. Note that the concept of

transshipment also appears in a different way in Shen et al. (2011). The latter paper

describes a three-level supply chain consisting of suppliers, transshipment ports and

customers, but no transshipment takes place among customers.

As pointed out by Laporte (2009), relatively medium-size instances of the VRP

cannot be solved exactly using exact methods. Incorporating inventory management

issues and transshipments makes the problem significantly harder. We have devel-

oped a branch-and-cut algorithm to evaluate the problem exactly and an adaptive

large neighborhood search (ALNS) heuristic for it. The latter was initially put for-

ward by Ropke and Pisinger (2006a) in the context of the VRP and extends a concept

initially proposed by Shaw (1997). The algorithm we propose is designed to handle

the specific features of the IRPT. It is flexible and can easily handle the OU and ML

replenishment policies.

The main scientific contributions of this chapter are the introduction of a trans-

shipment option within the context of inventory-routing, the development of an exact

algorithm to solve it and the development of a powerful and flexible ALNS heuristic

to solve four variants of the problem: the IRPT with transshipment (IRPT) and

the IRP without transshipment (IRP), under an OU or an ML replenishment policy.

More specifically, we show that ALNS provides a powerful algorithmic framework

capable of simultaneously handling the routing, scheduling and transshipment de-

cisions inherent to the IRPT. In addition, we demonstrate on benchmark instances

the advantage of allowing transshipments. The four variants will be referred to as
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IRPT-OU, IRPT-ML, IRP-OU and IRP-ML.

The remainder of the chapter is organized as follows. In Section 3.2 we introduce

and describe the IRP. Section 3.3 presents two mixed-integer linear programming

formulations for the four variants of the problem considered in the chapter, and for a

restriction in which routing is fixed, followed by a branch-and-cut algorithm in Sec-

tion 3.4. Our ALNS algorithm is presented in Section 3.5, followed by computational

results, in Section 3.6, and by our conclusions in Section 3.7.

3.2 Problem description

We now formally introduce the IRPT. The problem is defined on a graph G =

(V,A) where V = {0, ..., n} is the vertex set and A = {(i, j) : i, j ∈ V, i 6= j} is the
arc set. Vertex 0 represents the supplier and the vertices of V ′ = V \{0} represent
customers. Both the supplier and customers incur unit inventory holding costs hi per

period (i ∈ V), and each customer has an inventory holding capacity Ci. The length

of the planning horizon is p and, at each time period t ∈ T = {1, ..., p}, the quantity
of product made available at the supplier is rt. We assume the supplier has enough

inventory to meet all the demand during the planning horizon and that inventories

are not allowed to be negative, i.e., the supplier can only ship what he holds in stock

with no backlogging option. At the beginning of the planning horizon the decision

maker knows the current inventory level of the supplier and of the customers (I0
0 and

I0
i ), and receives the information on the demand dti of each customer i for each time

period t. Throughout the paper, we assume that the quantity rt becoming available

at the supplier in period t can be used for deliveries to customers in the same period,

and that the quantities qti received by customer i in period t can be used to meet the

demand in that period.

A single vehicle of capacity Q is available. This vehicle is able to perform one

route at the beginning of each time period to deliver products from the supplier to

a subset of customers. A routing cost cij is associated with arc (i, j) ∈ A. Whereas

many distribution systems make use of several vehicles, most research in the field

of inventory-routing still considers only one vehicle, and there are indeed practical

applications in which a single vehicle is used at a given echelon of the supply chain,

such as in the case study described by Mercer and Tao (1996).

Transshipments can be made later in the time period. A transshipment can start

from any customer in a subset R ⊆ V ′, i.e., these customers can dispatch goods to

other customers as needed. Direct deliveries from the depot are also allowed. Trans-

shipments and direct deliveries can occur when it is profitable to ship goods from the
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depot to a customer on a special request basis, or from customer i ∈ R to customer

j ∈ V ′. This can be done by subcontracting to a carrier who will pickup goods either

at the supplier or from any transshipment point. These outsourced deliveries are only

made by direct shipping and the unit cost associated with transshipping products

from i to j is bij . For the sake of simplicity, throughout this chapter we will use the

word transshipment indiscriminately when refering both to lateral transshipments

and direct deliveries.

It is possible that both the supplier’s vehicle and the subcontractor visit the

same customer within the same time period: the supplier’s vehicle first delivers

to the customer according to the OU or to the ML policy, and the subcontractor

may later deliver to that customer according to the ML policy. The total quantity

delivered to a customer in a given period guarantees that no shortages occur and

that the capacity is not exceeded at the end of the period. However, the customer’s

capacity may be temporarily exceeded during that period. We also assume that all

orders and deliveries can be performed during the same time period, which means

that lead times are negligible.

The objective of the problem is to minimize the total cost while meeting the

demand for each customer in each period. The replenishment plan is subject to the

following constraints:

• the inventory level of a customer at the end of a period cannot exceed the

maximal available inventory capacity;

• inventories are not allowed to be negative, i.e., all demand must be met by

previous inventory plus deliveries performed during the time period considered;

• if the supplier’s vehicle visits a customer in a time period, an OU or an ML

replenishment policy applies;

• the supplier’s vehicle can perform at most one route per time period, starting

and ending at the supplier;

• the vehicle capacity cannot be exceeded.

The solution to the problem should determine (1) which customers to serve in

each time period using the supplier’s vehicle, (2) which route to use in each time

period, and (3) how much to transship from every i ∈ R ∪ {0} to every j ∈ V ′ in
each time period. We assume that the following sequence of events takes place:

• At the start of the planning horizon the quantities I0
i (i ∈ V) and dti (i ∈ V ′, t ∈

T ) are known.
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• At every period t ∈ T routes are performed and quantities qti are delivered,

transshipments wtij take place, demands dti occur, and inventory levels Iti are

measured.

3.3 Mathematical models

We now introduce directed and undirected models for several versions of the

IRPT.

3.3.1 Directed model for the IRPT-OU

The model works with the following binary variables: xtij is equal to 1 if and only

if customer j immediately follows customer i on the route of the supplier’s vehicle

in period t. Let wtij be the amount of product delivered directly from i ∈ R∪{0} to
customer j ∈ V ′ at period t using the outsourced carrier. Let Iti denote the inventory

level at vertex i ∈ V at the end of period t ∈ T . We denote by qti the quantity

of product delivered from the supplier to customer i in time period t. The model

also uses continuous variables vti to enforce the VRP subtour elimination contraints

(Desrochers and Laporte, 1991; Kara et al., 2004). They represent the sum of the

deliveries made by the vehicle in period t after visiting customer i.

In the IRPT, the total cost to be minimized is the sum of inventory holding costs

at the supplier and at the customers, of routing costs for the supplier’s vehicle and

of transshipment costs:

min
∑
t∈T

h0I
t
0 +

∑
i∈V ′

∑
t∈T

hiI
t
i +

∑
i∈V

∑
j∈V

∑
t∈T

cijx
t
ij +

∑
i∈R∪{0}

∑
j∈V ′

∑
t∈T

bijw
t
ij . (3.1)

As is standard in vehicle routing, travel costs are distance-dependent and are un-

related to the vehicle load. However, transshipment costs are distance- and volume-

dependent because this is sometimes how outsourced carriers define the terms of

their contracts.

The constraints are as follows.

3.3.1.1 Inventory definition at the supplier

The inventory level at the supplier at the end of period t ∈ T is given by the

inventory level at the end of period t−1, plus the quantity rt made available in

period t, minus the total quantity shipped to the customers using the supplier’s

vehicle in period t, minus the total quantity transshipped to the customers in

period t:
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It0 = It−1
0 + rt −

∑
i∈V ′

qti −
∑
i∈V ′

wt0i t ∈ T . (3.2)

3.3.1.2 Stockout constraints at the supplier

These constraints impose that the supplier’s inventory at the end of period t

cannot be negative:

It0 ≥ 0 t ∈ T . (3.3)

3.3.1.3 Inventory definition at the customers

Likewise, the inventory level at each retailer in period t is given by its previous

inventory level in period t− 1, plus the quantity qti delivered by the supplier’s

vehicle in period t, plus the total quantity transshipped in period t, minus the

total quantity transshipped to other customers in period t, minus its demand

in period t, that is:

Iti = It−1
i + qti +

∑
j∈R∪{0}

wtji −
∑
j∈V ′

wtij − dti i ∈ V ′ t ∈ T . (3.4)

3.3.1.4 Transshipment origins

The transshipment quantities wtij must be set to zero if i is not in the set R:

∑
j∈V ′

wtij = 0 i 6∈ R t ∈ T . (3.5)

3.3.1.5 Stockout constraints at the customers

These constraints guarantee that for each customer i ∈ V ′ the inventory level

Iti remains non-negative at all time:

Iti ≥ 0 i ∈ V t ∈ T . (3.6)

3.3.1.6 Maximal inventory level at the customers

These constraints guarantee that for each customer i ∈ V ′ the inventory level

Iti remains below the maximum level Ci at the end of each period:

Iti ≤ Ci i ∈ V t ∈ T . (3.7)
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3.3.1.7 Quantities delivered

These sets of constraints ensure that the quantity delivered by the supplier’s

vehicle to each customer i ∈ V ′ in each period t ∈ T will fill the customer’s

inventory capacity if the customer is served, and will be zero otherwise:

qti ≥ Ci
∑
j∈V ′

xtij − It−1
i i ∈ V ′ t ∈ T ; (3.8)

qti ≤ Ci − It−1
i i ∈ V ′ t ∈ T ; (3.9)

qti ≤ Ci
∑
j∈V

xtij i ∈ V ′ t ∈ T . (3.10)

If customer i is not visited in period t, then constraints (3.10) mean that the

quantity delivered to it will be zero (while constraints (3.8) and (3.9) are still

respected). If, otherwise, customer i is visited in period t, constraints (3.10)

limit the quantity delivered to the customer’s inventory holding capacity, and

this bound is tightened by constraints (3.9), making it impossible to deliver

more than what would exceed this capacity. Constraints (3.8) model the OU

replenishment policy, ensuring that the quantity delivered will be exactly the

bound provided by constraints (3.9).

3.3.1.8 Vehicle capacity

These constraints guarantee that the vehicle’s capacity is not exceeded:

∑
i∈V ′

qti ≤ Q t ∈ T . (3.11)

3.3.1.9 Routing constraints

These constraints guarantee that a feasible route is designed to visit all cus-

tomers served in period t:

a) Flow conservation constraints: these constraints impose that the number

of arcs entering and leaving a vertex should be the same:

∑
i∈V

xtij =
∑
i∈V

xtji j ∈ V t ∈ T . (3.12)

b) A single vehicle is available:

∑
i∈V

xti0 ≤ 1 t ∈ T . (3.13)
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c) Subtour elimination constraints:

vti − vtj +Qxtij ≤ Q− qtj i ∈ V ′ j ∈ V ′ t ∈ T ; (3.14)

qti ≤ vti ≤ Q i ∈ V ′ t ∈ T . (3.15)

3.3.1.10 Integrality and nonnegativity constraints

vti , q
t
i , w

t
ji ≥ 0 i ∈ V ′ j ∈ R ∪ {0} t ∈ T ; (3.16)

xtij ∈ {0, 1} i, j ∈ V, i 6= j t ∈ T . (3.17)

3.3.2 Adaptations to IRPT-ML, IRP-OU and IRP-ML

The IRPT-OU model just described can be modified to enforce the ML replen-

ishment policy by dropping constraints (3.8). Similarly, to forbid transshipments one

only has to set all wtij variables equal to zero. Thus, all four versions of the IRPT

can be modeled through the same formulation.

3.3.3 Network flow model for the IRPT with fixed routes

If one fixes routing variables xtij , the remaining problem reduces to a network flow

problem defined by the Iti , q
t
i and w

t
ij variables. The flow conservation equations are

given by (3.2) and (3.4). The lower and upper bounds on the flows are defined by

(3.3) and (3.6)−(3.10). Vehicle capacity constraints (3.11) still define an upper bound

on the quantity delivered by the vehicle, even though the customers to be visited are

fixed. Constraints (3.12)−(3.14) are not relevant in the flow models because their

variables are fixed.

Figure 3.1 depicts the network flow model for a small network with two customers

and two time periods. The supplier and the customers are represented by vertices

replicated for each time period, plus one extra set of vertices for initial inventories,

and one extra set for the decisions made at the last time period. The supplier

and each customer carry their inventories between successive time periods. The

corresponding solid arcs in the figure have unit inventory holding costs, and the flows

on these arcs are bounded above by the customers’ inventory capacities (infinite for

the supplier). At each period t the supplier receives rt units of the product and

customer i has a demand equal to dti.

The vehicle is represented by one vertex at each period, receiving a zero cost arc

from the supplier at the same period with a flow up to Q units, and is then connected
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Figure 3.1: Network flow problem for two customers and two time periods.

to each customer receiving a delivery at that period. This is a routing decision made

prior to applying the network flow algorithm. They are dashed at period 2, assuming

that the routing heuristic has decided to only visit customer 2. We have added dotted

arcs representing transshipment options from the supplier and from every customer

to every other customer. For the sake of clarity, Figure 1 only shows these arcs for

period 1, but these are actually present in all periods. This allows the network flow

solution to serve a given customer through a transshipment if a later routing delivery

would violate vehicle capacity, or if any inventory constraint is not satisfied by the

routing decisions.

The OU policy is enforced by fixing the flow on the arcs linking customers in

different successive time periods: once customer i is visited in period t, the arc

connecting it to itself at the next period has a flow equal to Ci − dti. The network

flow algorithm only computes the quantities delivered from all transshipment arcs

since the quantities delivered by the supplier are fixed by the OU policy. When the

ML replenishment policy is in place, no extra action is needed.

3.3.4 Undirected model for the IRPT

Assuming that the transportation cost matrix is symmetric, we consider an undi-

rected formulation in order to reduce the number of variables. Thus, the model works
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with the undirected routing variables xtij which represent the number of times edge

(i, j) is used on the route of the supplier’s vehicle in period t. We also introduce

variables yti equal to one if and only if node i (the supplier or a customer) is visited

at time t, and zero otherwise. The variables wtij , I
t
i and qti are the same as in the

previous formulations. Then the problem can be formulated as

min
∑
i∈V

∑
t∈T

hiI
t
i +

∑
i∈V

∑
j∈V,j<i

∑
t∈T

cijx
t
ij +

∑
i∈V

∑
j∈V ′

∑
t∈T

bijw
t
ij , (3.18)

subject to (3.2)−(3.7) and to:

1. Quantities delivered

qti ≥ Ciyti − It−1
i i ∈ V ′ t ∈ T ; (3.19)

qti ≤ Ci − It−1
i i ∈ V ′ t ∈ T ; (3.20)

qti ≤ Ciyti i ∈ V ′ t ∈ T . (3.21)

2. Routing constraints ∑
i∈V ′

qti ≤ Qyt0 t ∈ T . (3.22)

∑
j∈V,j<i

xtij +
∑

j∈V,j>i
xtji = 2yti i ∈ V t ∈ T . (3.23)

∑
i∈S

∑
j∈S ,j<i

xtij ≤
∑
i∈S

yti − ytk S ⊆ V ′ t ∈ T ; (3.24)

for some k ∈ S .

3. Integrality and nonnegativity constraints

qti , w
t
ji ≥ 0 i ∈ V ′ j ∈ V t ∈ T ; (3.25)

xti0 ∈ {0, 1, 2} i ∈ V ′ t ∈ T ; (3.26)

xtij ∈ {0, 1} i, j ∈ V ′ t ∈ T ; (3.27)

yti ∈ {0, 1} i ∈ V t ∈ T . (3.28)

As in the previous section, the ML case is modeled by relaxing constraints (3.19).

Archetti et al. (2007) have introduced several classes of inequalities for the IRP.

Some of these, namely (17), (18), (19), (21) do not hold in the presence of transship-

ment. Others, like (22), (23), (24) are still valid for the IRPT, both for the OU and

the ML cases. We list them here:
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xti0 ≤ 2yti i ∈ V t ∈ T ; (3.29)

xtij ≤ yti i, j ∈ V t ∈ T ; (3.30)

yti ≤ yt0 i ∈ V ′ t ∈ T ; (3.31)

Constraints (3.29) and (3.30) are referred to as logical inequalities. They enforce

the condition that if the supplier is the successor of a customer in a route in period t,

i.e. xti0 = 1 or 2, then i must be visited, i.e. yti = 1. A similar reasoning is applied to

customer j in inequalities (3.30). Constraints (3.31) include the supplier in a vehicle

route if any customer is visited in that period.

Constraints (20) of Archetti et al. (2007) are modified as follows for the IRPT:

t∑
l=1

yti ≥

t−1∑
l=1

dti − I0
i −

∑
j∈V

t∑
l=1

wtji +
∑
j∈V ′

t∑
l=1

wtij

Ci
i ∈ V t ∈ T . (3.32)

Through constraints (3.32) one ensures that customer i has to be visited at least

the number of times correspondent to the right-hand side of the inequality. Note

that the right-hand side could be rounded up, but this would make the formulation

non-linear.

3.3.5 Model with fixed and variable transshipment costs for the

IRPT

A meaningful variant of this problem is the one considering a fixed cost for

the use of transshipments. This can be achieved through a small modification of

the previous model by introducing a new parameter γ equal to the fixed cost of

performing a transshipment, and a binary variable ztij equal to one if and only if a

transshipment takes place in period t from location i to j. Then, the following term

must be added to the objective function (3.18):

∑
i∈V

∑
j∈V ′

∑
t∈T

γztij , (3.33)

and the following constraints are added to the model:

wtij ≤ ztijCj i ∈ V j ∈ V ′ t ∈ T ; (3.34)

ztij ∈ {0, 1} i ∈ V j ∈ V ′ t ∈ T . (3.35)
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Constraints (3.34) ensure that a transshipment can only take place if its as-

sociated binary variable is set to one, while constraints (3.35) impose its integer

condition.

3.4 Branch-and-cut algorithm

The IRPT is NP-hard since it contains the VRP as a special case. If the problem

size is relatively small, the undirected formulation can be solved exactly by branch-

and-cut as follows. At a generic node of the search tree, a linear program defined

by (3.18), (3.2)−(3.7) and (3.19)−(3.23) is solved, a search for violated subtour

elimination constraints (3.24) is made and some of these constraints are generated

and introduced into the current program which is then reoptimized. This process is

repeated until a feasible or dominated solution is reached, or until there are no more

cuts to be added and then branching on a fractional variable occurs.

3.4.1 Solution improvement algorithm

The purpose of the Solution Improvement algorithm (SI), is to approximate the

cost of a new solution resulting from vertex removals and reinsertions. It is solved

whenever the branch-and-cut search identifies a new best solution. Using an idea

proposed by Archetti et al. (2012), we simplify and approximate the routing costs

resulting from vertex removals and reinsertions as follows. Let ati represent the

routing cost reduction if customer i is removed from the route at period t, which

obviously visits customer i; let bti represent the routing cost if customer i is inserted

in the route at period t, which obviously does not already visit customer i; finally,

let rti be a binary parameter equal to 1 if and only if customer i is visited in the

current route at period t. Also define the following binary variables: let uti be equal

to 1 if and only if customer i is removed from the existing route at period t, and let

vti be equal to 1 if and only if customer i is inserted in the route at period t. This

subproblem is then to

(SI) minimize
∑
t∈T

h0I
t
0 +

∑
i∈V ′

∑
t∈T

hiI
t
i −

∑
i∈V ′

∑
t∈T

atiu
t
i +

∑
i∈V ′

∑
t∈T

btiv
t
i (3.36)

subject to (3.2)−(3.7) and to:

qti ≤ Ci − It−1
i i ∈ V t ∈ T (3.37)

qti ≤ (rti − uti + vti)Ci i ∈ V ′ t ∈ T (3.38)
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vti ≤ 1− rti i ∈ V ′ t ∈ T (3.39)

uti ≤ rti i ∈ V ′ t ∈ T (3.40)∑
i∈V ′

uti +
∑
i∈V ′

vti ≤ β t ∈ T (3.41)

∑
i∈V ′

qti ≤ Q t ∈ T (3.42)

qti ≥ 0 i ∈ V ′ t ∈ T (3.43)

uti, v
t
i ∈ {0, 1} i ∈ V ′ t ∈ T . (3.44)

The objective function (3.36) minimizes the total inventory, removal and insertion

cost. Constraints (3.37)−(3.38) enforce the ML policy. Constraints (3.39) ensure

that if a customer is already present in a route, it cannot be reinserted in the same

route. Likewise, constraints (3.40) guarantee that only those customers belonging to

a route can be removed from it. Constraints (3.42) ensure that the vehicle capacity

is respected. If the incumbent solution is changed by more than one customer, then

this model only provides an approximation of the actual routing costs. For this

reason, we have decided to limit the number of insertions and removals that could

take place in the solution of SI, and we have added constraints (3.41) to limit the

number of insertions and removals per route to a small value β.

We provide a simplified formal description of the method in Algorithm 3.1.

3.4.2 Implementation details

We offer a few remarks and comments regarding the implementation of the algo-

rithm. We have implemented both the directed and the undirected formulations, but

none outperforms the other significantly. We have opted for the edge formulation

because it requires considerably fewer variables and this becomes a relevant issue on

large instances.

In order to solve the LP relaxation at each node we use the dual simplex algo-

rithm. In our tests it has shown to outperform the primal simplex method.

A major difference between our implementations and that of Archetti et al. (2007)

is that we do not compute an upper bound at the beginning of the search. Archetti

et al. (2007) uses the heuristic of Bertazzi et al. (2002), which is known to produce

reasonably good starting solutions in very short time. We, in contrast, apply an

algorithm to further improve integer solution found during the search, thus helping

find better solutions faster. This algorithm, described in Section 3.4.1 is an approx-

imation of the true routing costs.
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Algorithm 3.1 Proposed branch-and-cut algorithm
1: At the root node of the search tree, generate and insert all valid inequalities

(3.29)−(3.32) into the program.

2: Subproblem solution. Solve the LP relaxation of the node.

3: Termination check:

4: if there are no more nodes to evaluate then

5: Stop.

6: else

7: if The current solution is a new best solution then

8: Apply the SI algorithm to the incumbent solution.

9: if the SI algorithm yields an improved solution then

10: Update the solution vector at the branch-and-cut level

11: end if

12: end if

13: Select one node from the branch-and-bound tree.

14: end if

15: while the solution of the current LP relaxation contains subtours do

16: Identify the connected components using the separation procedure of Padberg

and Rinaldi (1991).

17: Add all violated subtour elimination constraints (3.24).

18: Subproblem solution. Solve the LP relaxation of the node.

19: end while

20: if the solution of the current LP relaxation is integer then

21: Go to the termination check.

22: else

23: Branching: branch on one of the fractional variables.

24: Go to the termination check.

25: end if
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3.5 Adaptive large neighborhood search heuristic

A heuristic is needed for instances of realistic size. Because the problem combines

several dimensions (routing, scheduling, inventory management and transshipment),

a powerful metaheuristic is required for its solution. Such a metaheuristic is the

ALNS framework recently proposed by Ropke and Pisinger (2006a) for the VRP and

applied to a number of other contexts (Bartodziej et al., 2009; Hewitt et al., 2010;

Laporte et al., 2010; Pepin et al., 2009). This type of algorithm is highly suitable for

the problem at hand because of its generality and flexibility. It can simultaneously

handle several families of hard constraints and it conducts a highly diversified search

through the multiplicity of its operators and through the use of a random mechanism

for their selection.

We now describe our ALNS heuristic. The algorithmic framework is made up of

five main components.

1. Large neighborhood: At each iteration, a number of customers are removed

from their current route and are eventually reinserted. This fixes the decisions

regarding routing, and the problem is passed to a network flow solver to opti-

mize all remaining decisions simultaneously (minimize total costs taking into

account inventory holding costs, transshipments and delivery quantities), as

described in Section 3.3.3.

2. Adaptive search engine: The choice of which operator to apply at a given

iteration is governed by a roulette-wheel mechanism in which each operator is

assigned a weight depending on its past performance. Let ωi be a measure of

how well operator i has performed in the past; then given h operators with

weights ωi, operator j will be selected with probability ωj/
h∑
i=1

ωi.

3. Adaptive weight adjustment: The search is divided into segments of ϕ iter-

ations each, and weights are computed by taking into account the performance

of the operators during the last segment. Each operator is assigned a weight

and a score. Initially, all weights are equal to one and all scores are equal to

zero. At each iteration, scores are updated as follows: if an operator finds a

new best solution, its score is increased by σ1; if it finds a solution better than

the incumbent, its score is increased by σ2; if the solution is not better but

is still accepted, the score is increased by σ3. Obviously σ1 ≥ σ2 ≥ σ3 ≥ 0.

After ϕ iterations, the weights are updated considering the scores obtained in

the last segment and the scores are reset to zero. To do so, let πi and oij be,

respectively, the score of the operator i and the number of times operator i



3.5. Adaptive large neighborhood search heuristic 61

has been used in the last segment j, normalized by a factor νi ≥ 1 reflecting

the computational effort it requires (see Ropke and Pisinger (2006b)). The

normalization factor νi multiplies oij , and therefore decreases the weight of

operator i, so that the more time consuming operators are applied less fre-

quently. The values used for the normalization factors are all equal to one

in our implementation, except for three cases where different values are used.

These are provided in Sections 4.2.3, 4.2.4 and 4.2.12. The updated weights

are then

ωi :=

ωi if oij = 0

(1− η)ωi + ηπi/νioij if oij 6= 0,
(3.45)

where η ∈ [0, 1] is called the reaction factor, controlling how quickly the weight

adjustment reacts to changes in the operator performance.

4. Periodic postoptimization: At the end of each segment, we apply a 2-opt

procedure to each vehicle route.

5. Acceptance and stopping criteria: As in Ropke and Pisinger (2006a),

we use an acceptance criterion based on simulated annealing. Given a solu-

tion s, a neighbor solution s′ is accepted if z(s′) < z(s), and with probability

e−(z(s′)−z(s))/τ otherwise, where z(s) is the solution cost defined by (3.1) and

τ > 0 is the current temperature. The temperature starts at τstart and is

decreased by a cooling rate factor φ at each iteration, where 0 < φ < 1. To

avoid long computations for large and difficult instances, we limit the running

time to one hour and also to a maximum number of iterations, as described

in Section 3.5.3. The use of simulated annealing not only prevents the search

mechanism from cycling, but it also provides an added diversification effect.

3.5.1 Initial solution

The initial solution is generated by randomly selecting 75% of the customers and

randomly assigning each of them to a period of the planning horizon. Their insertion

in the routes follows the cheapest insertion rule. Our computational experiments

have shown that the initial solution does not have a significant impact on the overall

solution cost or on the running time.
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3.5.2 List of operators

Unlike related problems such as the VRP, where every removal is accompanied

by an insertion, one may decide to remove a vertex from some periods and not

reinsert it back. This partial solution will still be feasible when transshipments

are allowed. Moreover, in the IRPT, it is feasible and sometimes optimal not to

create any route because transshipments can always be made. This observation has

motivated us not to use the traditional destroy and repair framework of Shaw (Shaw,

1997) and Pisinger and Ropke (Pisinger and Ropke, 2007) in which each destroy

operator is always followed by a repair operator, but to keep the option of making

only a removal or only an insertion. In the operators described in Sections 3.4.2.3,

3.4.2.4 and 3.4.2.12, it is implicitly assumed that solution costs are computed through

the network flow algorithm of Section 3.3.3 once a route is fixed. In Sections 3.4.2.2,

3.4.2.6 3.4.2.8 and 3.4.2.11, the best insertion position is found by computing the

insertion cost at each position in the route, which has linear complexity with respect

to the number of customers in the route. In what follows, ρ is an integer randomly

drawn from the interval [1, n] using a semi-triangular distribution with a negative

slope.

3.5.2.1 Randomly remove ρ

This operator randomly selects one period and randomly removes one customer

from it. The complexity of this operator is O(1). It is repeated ρ times. This

operator is useful for refining the solution since it does not change it much

when ρ is small (which happens frequently). However, it still yields a major

transformation of the solution when ρ is large.

3.5.2.2 Randomly insert ρ

This operator randomly selects unrouted customers, up to a maximum of ρ,

and one random period for each of them. It inserts the customer in the best

position in the route of the selected period. The complexity of each insertion

is O(n).

3.5.2.3 Remove worst ρ

This operator removes the customer that will save the most when removed,

considering the total routing, inventory and transshipment cost. It is repeated

ρ times. Because a network flow problem must be solved for each customer,

the complexity of each removal is O(nf(n)), where f(n) is the complexity of

solving the min-cost network flow problem. The normalization factor used for

this operator is 50.
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3.5.2.4 Insert best ρ

This operator is analogous to the previous one. It is repeated ρ times by

computing the cheapest insertion with respect to total costs.

3.5.2.5 Shaw removal

Following the ideas developed by Ropke and Pisinger (2006a) and by Shaw

(1997), this operator removes customers that are relatively close to each other.

Specifically, this heuristic randomly selects one period from the planning hori-

zon and one customer served in this period, computes the distance distmin to

the closest customer also being served by the same route, and removes all cus-

tomers within 2distmin units from the selected route. The complexity of this

operator is O(n).

3.5.2.6 Shaw insertions

This operator is similar to the Shaw removal in the sense that it selects similar

customers to be inserted together. It selects one period and one customer not

served in that period. The heuristic then computes distmin and all customers

within a 2distmin distance are inserted in the same period, always following

the cheapest insertion rule. The complexity of this operator is O(n).

3.5.2.7 Remove ρ customers

This operator removes a customer from all routes where it appears. Its com-

plexity is O(p) since each customer appears in at most p routes. It is repeated

ρ times. The motivation for this operator is to allow these customers to be

assigned to different sets of periods.

3.5.2.8 Insert ρ customers

This operator iteratively selects ρ customers and assigns them to the best

position of the vehicle route in several randomly selected periods if the customer

is not yet present in these periods. Its complexity is O(np) since each selected

customer will be inserted in at most p periods. The motivation is to diversify

the search towards unexplored areas of the search space by allowing customers

to be served in different periods from the ones currently selected.

3.5.2.9 Empty one period

This operator randomly selects one period and removes all customers from it.

It is implemented in O(1) time. The motivation is to allow different periods

to have opened routes.
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3.5.2.10 Swap routes

This operator randomly selects two periods and swaps their routes. It is im-

plemented in O(1) time.

3.5.2.11 Randomly move ρ

This operator selects one period and one customer being served in this period,

removes it and serves it in the best possible position in a different randomly

selected period. Its complexity is O(n). It is repeated ρ times.

3.5.2.12 Multiple interchanges

This operator is used only in IRP-OU and IRPT-OU since we observed that for

these variants the remaining operators were not sufficient: due to the OU policy,

the insertion of a customer in the incumbent solution has a great impact on the

inventory costs and on vehicle loads. This operator performs interchanges like

the heuristic of Bertazzi et al. (2002) summarized in Chapter 2, but differs from

the original algorithm in three ways: 1) in order to limit the computational

burden, it does not iterate as long as improvements can be obtained, but stops

after n/2 iterations; 2) it does not restart from an empty solution at each

call, but is initiated from the current solution; 3) it applies some improvement

procedures to take transshipments into account as they were not present in the

original algorithm: if a customer has a lower inventory cost than that of the

supplier, products are transshipped to that customer if the trade-off is positive,

while respecting its inventory holding capacity; transshipments are combined

to an early period if this yields savings, and routes from the last two periods are

replaced by transshipments, since one could save on inventory holding costs if

the OU policy did not have to be enforced. Delivery quantities are determined

as in Bertazzi et al. (2002) by computing shortest paths on acyclic networks

Ni, one for each customer i. Each node of Ni corresponds to a discrete time

instant between 0 and p + 1, and arc (t, t′) is defined if no stockout occurs

at customer i whenever it is not visited in the interval [t, t′]; the quantity

delivered to i at each time period will be that to fill the customer capacity

and the arcs cost is the sum of the inventory and routing costs associated

with visiting customer i in the interval [t, t′]. Algorithm 3.2 provides a formal

description of this operator. This operator can be implemented in O(n2p2)

time if Dijkstra’s algorithm (Dijkstra, 1959) is used to compute the shortest

paths. The normalization factor used for this operator is 20.
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Algorithm 3.2 Multiple interchanges operator
1: Sort the set of customers V ′ in the non-decreasing order of the ratio between Ci

and
∑
t∈T

dti/p. Relabel them accordingly.

2: Let z(s) be the cost of the incumbent solution s.

3: iterations← 0.

4: while iterations < n/2 and improvements are made do

5: for i = 1, . . . , n do

6: for j = n, . . . , 1 and j 6= i do

7: s′ ← s.

8: Remove customers i and j from s′.

9: Create an acyclic network Nj for customer j.

10: Solve the shortest path over Nj from 0 to p+ 1 and insert customer j in

the periods represented by the selected nodes.

11: Transship goods to j up to Uj if the trade-off (transshipping cost − in-

ventory cost) is positive.

12: Combine transshipments to j to an early period if this yields savings.

13: Replace deliveries from the last two periods by transshipments.

14: Repeat steps 9 to 13 for customer i.

15: if z(s′) < z(s) then

16: s← s′;

17: end if

18: end for

19: end for

20: end while

21: return s.
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3.5.3 Parameter settings and pseudocode

We now describe our ALNS pseudocode and the parameters that govern the

algorithm. We have tested different combinations for the parameters during a tuning

phase, mostly through an ad hoc trial and error phase in the development of the

heuristic. The starting temperature τstart is set to 30,000 and the cooling rate φ

is 0.9994, which yields roughly 25,000 iterations, our desired number of repetitions.

The stopping criterion is satisfied when the temperature reaches 0.01, when 25,000

iterations have been performed, or when 3,600 seconds have elapsed. Adjusting

the cooling mechanism based on the number of iterations alone may not work for

large instances which require more computing time per iteration. In such cases,

the temperature may be too high when the time limit is reached. This is why we

decrease it not only on the basis of the iteration count, but also on the basis of the

elapsed computation time. In our implementation, the segment length ϕ was set

to 200 iterations and the reaction factor η was set to 0.7, that is, new weights will

be composed by 70% of the performance on the last segment and 30% by the last

weight value. Scores are updated with σ1 = 10, σ2 = 5 and σ3 = 2. At the end of

each segment we also perform the periodic postoptimization described in item 4 at

the beginning of Section 3.5.

Algorithm 3.3 shows the pseudocode for our ALNS.

3.5.4 ALNS applied to the IRPT-OU

In this section we briefly describe how our ALNS is implemented for the IRPT-

OU. Once the ALNS has fixed the routing variables, the remaining problem is mod-

eled as a network flow problem and solved by means of a specialized minimum cost

network flow algorithm, as described in Section 3.3. It is easy to see that if all trans-

shipment variables are set to zero, the problem reduces to IRP-OU which yields an

upper bound on the IRPT-OU optimum.

In Figure 3.1, this corresponds to fixing the flow on the horizontal inventory

conservation arcs to meet the OU policy, i.e. Iti = Ci − dti if customer i is set to be

visited by the vehicle.

3.5.5 ALNS applied to the IRPT-ML

This version of the problem is similar to the IRPT-OU except that the arcs

connecting customers between successive time periods do not force the flow to respect

the OU policy. The network flow algorithm determines the quantities delivered by the

vehicle and from all transshipment arcs. Once again, if all transshipment variables
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Algorithm 3.3 ALNS heuristic
1: Initialize: set all weights equal to 1 and all scores equal to 0.

2: sbest ← s← initial solution.

3: τ ← τstart.

4: while τ > 0.01 and time < 3,600 and iterations < 25,000 do

5: s′ ← s.

6: Select an operator using the roulette-wheel mechanism based on the current weights.

7: Apply the operator to s′ and update the number of times it is used.

8: if z(s′) < z(s) then

9: s← s′;

10: if z(s) < z(sbest) then

11: sbest ← s;

12: update the score for the operator used with σ1;

13: else

14: update the score for the operator used with σ2;

15: end if

16: else if s′ is accepted by the simulated annealing criterion then

17: s← s′;

18: update the score for the heuristic used with σ3.

19: end if

20: if the iteration count is a multiple of ϕ then

21: update the weights of all operators and reset their scores.

22: perform an intra-route 2-opt to improve the sequence of customers.

23: end if

24: if time > 1,200 and iterations < 25,000/3 then

25: φ← (0.01/τ)1/(2·iterations);

26: end if

27: if time > 2,700 and iterations < 25,000/2 then

28: φ← (0.01/τ)1/(iterations/2);

29: end if

30: τ ← φτ ;

31: end while

32: return sbest;
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are zero, the problem reduces to an IRP-ML which yields an upper bound on the

IRPT-ML optimum. This variant entails no changes in the network depicted in

Figure 3.1.

3.5.6 ALNS applied to the IRP-OU

We have applied our algorithm to the IRP-OU without any structural change. To

avoid passing an infeasible problem to the network flow algorithm (for instance when

vehicle capacity would be exceeded or when a stockout would occur at a customer

due to it not being served as often as required), we have kept all transshipment

arcs from the supplier and from every customer to every other customer, with large

artificial costs; this means that feasible solutions can always be reached, but at very

high cost if transshipments are used. These costs act as penalties in the objective

function when the vehicle capacity is exceeded or when the master level heuristic

does not add all customers to the current solution.

The remaining problem is then similar to the IRPT-OU: decisions regarding

routings are fixed by the ALNS algorithm and modeled as a network flow problem

with one vertex representing the vehicle for each period, and arcs leaving the vehicle

vertex and arriving at each selected customer. The vehicle vertex receives an arc

from the supplier with up to Q units of flow. The OU policy is modeled on the

network of Figure 3.1 by fixing the flow on the horizontal arcs connecting customers

in successive time periods: once customer i is visited in period t, the arc linking to

it in the next period has a flow equal to Ci−dti. In order to prevent transshipments,

but still allow feasible solutions to be reached irrespective of the routing decisions,

all transshipment arcs are assigned a high unit cost.

3.5.7 ALNS applied to the IRP-ML

Modeling the IRP-ML as a network flow problem is similar to the IRP-OU, except

that arcs connecting the customers in successive time periods have a minimum flow

equal to 0. The vehicle vertex is fed from the supplier with up to Q units and the

minimum-cost network flow algorithm decides on how much to deliver to each of the

customers selected from the master level heuristic. Dummy arcs are again inserted

to penalize unvisited customers and solutions in which the vehicle capacity would

be exceeded. It is easy to see that the IRP-OU yields an upper bound on the IRP-

ML optimum as we just relaxed one constraint of the former problem. The only

modification on the network of Figure 3.1 concerns the cost of transshipment arcs as

in the previous case.
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3.6 Computational results

Our ALNS algorithm was coded in C++ using Microsoft Visual Studio 2008. We

used the scaling push-relabel algorithm for the minimum-cost flow problem developed

by Goldberg (1997) to solve the second level problem. It was run on an Asus F8s Intel

T7700 Core2Duo 2.4GHz and 4 GB RAM laptop PC. The branch-and-cut algorithm

was coded in C++ using IBM Concert Technology and CPLEX 12.3 with six threads.

Its computations were executed on a grid of Intel Xeon™ processors running at 2.66

GHz with up to 48 GB of RAM installed per node, with the Scientific Linux 6.1

operating system.

To evaluate the performance of our algorithms, we have used the instances of the

IRP generated and solved to optimality by Archetti et al. (2007). These instances are

divided into two classes according to their inventory cost, as in Archetti et al. (2007).

In low cost instances, inventory holding costs are selected randomly in the interval

[0.01, 0.05]; in high cost instances, inventory holding costs are selected randomly

in the interval [0.1, 0.5]. We report average statistics over five instances for each

combination. The instance data are identical to those of Archetti et al. (2007), but

we now allow transshipments, as described in Section 3.3.

There are no previously reported solutions for the IRPT since we are introducing

the problem in this paper. We have compared our ALNS algorithm against the

optimal solutions obtained with the model described in Section 3.4. In Tables 3.1

and 3.2 we report the optimal solutions obtained by the branch-and-cut algorithm

and the solution values obtained by the ALNS heuristic for the IRPT-OU, as well

as the gaps with respect to the best known lower bounds on the optimal solutions,

found by the branch-and-cut algorithm. Results for the IRPT-ML are reported in

Tables 3.3 and 3.4. For full results on all instances, the reader is referred to Coelho

et al. (2011a) and to Appendix A.1 for heuristic solutions and Appendix A.3 for

exact solution values.

Out of the 160 instances tested, our branch-and-cut algorithm was able to match

the solution values on 61 and improved the solution values on 99 of them. It was

able to provide optimal solutions for most of the instances.

We have also applied our algorithms to the traditional IRP (without transship-

ment) by setting the transshipment cost sufficiently large (bij = cij) so as to avoid

the use of transshipment in the final solution. Our branch-and-cut algorithm was

able to quickly obtain optimal solutions for the single-vehicle case. It is difficult if

not impossible to make a clear comparison with the solution times obtained exactly

by Archetti et al. (2007) and heuristically by Archetti et al. (2012) due to differences
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Table 3.1: Average results for the IRPT-OU − p = 3 and transshipment cost bij = 0.01cij

Branch-and-cut ALNS

Instance # solved UB gap (%) time (s) z gap (%) time (s)
Lo

w
in
ve
nt
or
y
co
st

absn05 5 745.39 0.00 0.2 745.39 0.00 6.56

absn10 5 1616.12 0.00 1.0 1617.51 0.08 29.55

absn15 5 1851.14 0.00 1.6 1864.70 0.73 82.24

absn20 5 2328.91 0.00 5.0 2442.44 4.87 183.28

absn25 5 2608.80 0.00 8.6 2724.67 4.44 389.10

absn30 5 3002.36 0.00 17.2 3341.49 11.29 635.79

absn35 5 3232.49 0.00 44.8 3522.66 8.97 895.11

absn40 5 3350.06 0.00 88.6 3795.60 13.29 1577.21

absn45 5 3563.46 0.00 253.4 4078.89 14.46 2350.23

absn50 5 3915.22 0.00 1006.6 4581.07 17.00 2898.06

Average 5 0.00 142.7 7.51 904.71

H
ig
h
in
ve
nt
or
y
co
st

absn05 5 1664.38 0.00 0.4 1664.38 0.00 8.06

absn10 5 4044.12 0.00 1.0 4044.12 0.00 30.12

absn15 5 5069.51 0.00 1.4 5116.21 0.92 74.63

absn20 5 6865.59 0.00 3.8 6927.36 0.89 151.21

absn25 5 8591.75 0.00 7.2 8754.03 1.88 350.23

absn30 5 10585.63 0.00 15.6 10867.17 2.65 521.52

absn35 5 11161.39 0.00 34.6 11367.04 1.84 930.08

absn40 5 12146.58 0.00 201.2 12563.16 3.42 1577.64

absn45 5 13527.38 0.00 262.8 13921.34 2.91 2244.01

absn50 5 14943.66 0.00 752.0 15560.06 4.12 3375.50

Average 5 0.00 128.0 1.86 926.30

Table 3.2: Average results for the IRPT-OU − p = 6 and transshipment cost bij = 0.01cij

Branch-and-cut ALNS

Instance # solved UB gap (%) time (s) z gap (%) time (s)

Lo
w

in
ve
nt
or
y
co
st

absn05 5 2561.85 0.00 1.0 2561.85 0.00 16.23

absn10 5 4011.20 0.00 4.2 4095.55 2.10 70.29

absn15 5 4744.54 0.00 18.0 4881.79 2.89 208.08

absn20 5 5755.46 0.00 673.0 6276.32 9.05 491.31

absn25 4 6335.43 0.19 10845.0 6806.59 7.65 805.16

absn30 1 7092.57 2.99 35330.4 7981.14 16.11 1650.37

Average 4.16 0.53 7811.9 6.30 540.24

H
ig
h
in
ve
nt
or
y
co
st

absn05 5 4759.54 0.00 0.6 4760.94 0.02 14.98

absn10 5 7990.54 0.00 3.2 8038.53 0.60 65.29

absn15 5 10858.99 0.00 16.6 11027.72 1.55 156.07

absn20 5 13735.66 0.00 379.2 14278.32 3.95 442.43

absn25 4 16000.70 0.20 11170.2 16867.70 5.64 906.47

absn30 2 19738.40 0.39 31120.6 20492.18 4.26 1718.08

Average 4.33 0.09 7115.0 2.67 550.55
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Table 3.3: Average results for the IRPT-ML − p = 3 and transshipment cost bij = 0.01cij

Branch-and-cut ALNS

Instance # solved UB gap (%) time (s) z gap (%) time (s)
Lo

w
in
ve
nt
or
y
co
st

absn05 5 744.89 0.00 0.2 744.89 0.00 5.28

absn10 5 1577.31 0.00 0.8 1586.91 0.60 14.52

absn15 5 1840.07 0.00 1.2 1849.83 0.53 30.64

absn20 5 2278.04 0.00 4.0 2290.55 0.54 56.74

absn25 5 2578.75 0.00 8.4 2579.18 0.01 92.04

absn30 5 2964.08 0.00 12.6 2985.99 0.73 165.20

absn35 5 3200.62 0.00 29.0 3448.17 7.73 248.74

absn40 5 3310.14 0.00 58.6 3361.80 1.56 348.93

absn45 5 3519.90 0.00 107.0 3697.61 5.04 461.71

absn50 5 3861.28 0.00 520.0 4071.09 5.43 760.30

Average 5 0.00 74.1 2.22 218.41

H
ig
h
in
ve
nt
or
y
co
st

absn05 5 1660.27 0.00 0.2 1660.27 0.00 5.98

absn10 5 3999.03 0.00 0.8 4011.81 0.31 15.36

absn15 5 5054.50 0.00 1.2 5061.92 0.14 33.76

absn20 5 6818.76 0.00 3.4 6869.26 0.74 57.73

absn25 5 8557.89 0.00 6.4 8562.59 0.05 91.26

absn30 5 10533.45 0.00 11.4 10557.63 0.22 159.13

absn35 5 11121.67 0.00 23.8 11309.46 1.68 282.47

absn40 5 12095.24 0.00 57.4 12165.28 0.57 360.83

absn45 5 13458.36 0.00 121.6 13699.96 1.79 627.96

absn50 5 14892.42 0.00 579.2 15004.18 0.75 939.87

Average 5 0.00 80.5 0.63 257.43

Table 3.4: Average results for the IRPT-ML − p = 6 and transshipment cost bij = 0.01cij

Branch-and-cut ALNS

Instance # solved UB gap (%) time (s) z gap (%) time (s)

Lo
w

in
ve
nt
or
y
co
st

absn05 5 2554.45 0.00 0.6 2558.37 0.15 10.90

absn10 5 3978.71 0.00 3.8 4095.10 2.92 36.70

absn15 5 4724.20 0.00 14.0 4834.73 2.34 80.68

absn20 5 5715.93 0.00 348.0 6020.83 5.33 174.24

absn25 5 6294.01 0.00 6183.4 6808.40 8.17 295.30

absn30 4 7034.53 0.57 31961.0 7466.89 6.76 671.24

Average 4.83 0.09 6418.4 4.28 211.51

H
ig
h
in
ve
nt
or
y
co
st

absn05 5 4742.19 0.00 0.6 4748.31 0.12 13.28

absn10 5 7940.05 0.00 2.8 7961.72 0.27 37.91

absn15 5 10819.69 0.00 9.8 10949.14 1.19 88.45

absn20 5 13678.28 0.00 279.8 14152.04 3.46 179.70

absn25 5 15937.70 0.00 11677.6 16320.18 2.40 329.51

absn30 4 19661.20 0.07 34255.6 20235.5 3.00 787.47

Average 4.83 0.01 7704.3 1.74 239.38
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in CPLEX versions and on the hardware used. However, on instances with 30 cus-

tomers and six time periods, our algorithm took on average 70 seconds compared

to 1570 seconds of Archetti et al. (2007) and 1922 seconds of Archetti et al. (2012).

Our heuristic algorithm was also able to solve most of the short period instances

with several vehicles. We have used the same time limit of 3,600s. In Tables 3.5 and

3.6, our results are compared to those of Archetti et al. (2012) and of Bertazzi et al.

(2002) on these IRP-OU instances. Our results are significantly better than those

of Bertazzi et al. (2002) but slightly worse than those of Archetti et al. (2012). The

instances reported in the BPS (Bertazzi et al., 2002) column were in fact generated

and solved by Archetti et al. (2012) using the code of Bertazzi et al. (2002). The

CPU times for the solution of these instances are not provided but are reported to

be very small (a few seconds for n ≤ 100 and less than three minutes for n ≤ 200).

We have also tested our algorithm with the IRP-ML and the gaps to the optimal

solutions were slightly larger than those observed in the IRP-OU. The machines used

in Archetti et al. (2012) and in our experiments are different; according to SPEC

(SPEC) our computer is approximately 30% faster than the one used by Archetti

et al. (2012).

We have evaluated the impact of the transshipment cost on the solution and

its cost. To this end, we have gradually increased the transshipment cost, and we

have solved a subset of instances under the IRPT-OU and IRPT-ML policies using

the ALNS heuristic. The results of these experiments are reported in Tables 3.7

and 3.8. It can be seen that solution values become much closer to those of the

traditional IRP when the transshipment cost increases from bij = 0.01cij to 0.05cij ,

and several instances make no use of transshipment when bij is set equal to 0.10cij .

Transshipments start to be economically interesting when the cost of outsourcing

the delivery of ten units does not exceed the cost of transporting one unit with the

supplier’s vehicle, all other costs being identical. It should be noted, however, that

this conclusion may not extend to real-life instances which are often different from

artificial ones.

Moreover, we have performed tests to assess the impact of individual operators in

our ALNS heuristic. We have examined the impact of removing individual operators

for a subset of 32 instances, including small, medium and large ones, with three

and six time periods. Specifically, we have selected the first instance of each size:

n = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 for p = 3, and n = 5, 10, 15, 20, 25, 30 for p = 6,

both for low and high inventory costs. The results of the experiments for the IRPT-

ML are summarized in Table 3.9.

Removing some operators can have a major impact both on solution quality and
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Table 3.5: Average heuristic results for the IRP-OU − p = 3

ABLS BPS ABHS ALNS

Instance z* z gap (%) z gap (%) time1 (s) z gap (%) time2 (s)

Lo
w

in
ve
nt
or
y
co
st

absn05 1418.75 1465.75 2.88 1418.75 0.00 3 1418.75 0.00 10.71

absn10 2228.66 2245.61 0.78 2228.72 0.00 12.8 2228.66 0.00 35.28

absn15 2493.47 2555.21 2.56 2493.47 0.00 41.4 2493.47 0.00 99.32

absn20 3053.01 3176.91 3.83 3053.55 0.02 104.2 3055.58 0.09 239.76

absn25 3451.14 3552.08 2.99 3451.14 0.00 258.8 3451.86 0.02 572.28

absn30 3643.21 3774.20 3.60 3643.99 0.02 515.00 3645.70 0.07 1072.47

absn35 3846.86 4022.04 4.46 3848.46 0.04 808.80 3850.83 0.10 1439.28

absn40 4125.70 4394.94 6.46 4128.50 0.07 1168.60 4140.16 0.35 2755.72

absn45 4270.61 4594.91 7.60 4276.89 0.14 1460.00 4283.33 0.30 3417.87

absn50 4810.86 5090.68 5.81 4831.97 0.44 2280.60 4841.26 0.64 2675.47

Average 4.09 0.07 665.32 0.15 1231.81

H
ig
h
in
ve
nt
or
y
co
st

absn05 2354.17 2393.09 1.31 2354.17 0.00 4.60 2354.17 0.00 9.45

absn10 4690.46 4774.67 1.74 4691.02 0.01 13.20 4691.02 0.01 34.62

absn15 5736.90 5858.66 2.18 5738.11 0.02 46.60 5740.66 0.07 97.09

absn20 7619.91 7870.47 3.30 7620.59 0.01 104.20 7626.94 0.09 224.24

absn25 9460.74 9554.62 1.06 9460.74 0.00 222.00 9476.04 0.17 446.47

absn30 11320.63 11460.87 1.21 11342.08 0.17 431.60 11354.66 0.28 890.16

absn35 11828.80 12096.13 2.25 11842.24 0.09 833.40 11848.90 0.19 1600.56

absn40 13011.45 13315.08 2.26 13011.45 0.00 1293.60 13043.95 0.26 2767.76

absn45 14317.82 14669.39 2.49 14322.96 0.04 1534.40 14392.04 0.52 3010.08

absn50 15948.78 16198.76 1.57 15975.00 0.17 2830.20 16077.86 0.81 2987.26

Average 1.93 0.05 731.38 0.24 1206.76

time1: run on an Intel Dual Core 1.86GHz and 3.2 GB RAM

time2: run on an Intel Core2Duo 2.4GHz and 4 GB RAM
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Table 3.6: Average heuristic results for the IRP-OU − p = 6

ABLS BPS ABHS ALNS

Instance z* z gap (%) z gap (%) time1 (s) z gap (%) time2 (s)

Lo
w

in
ve
nt
or
y
co
st

absn05 3299.97 3348.43 1.64 3299.97 0.00 17.80 3299.97 0.00 20.92

absn10 4832.87 4899.85 1.36 4832.87 0.00 76.80 4832.87 0.00 95.88

absn15 5566.37 5803.08 4.27 5566.37 0.00 337.40 5582.80 0.28 337.70

absn20 6833.27 7035.02 2.95 6838.41 0.08 837.80 6857.90 0.39 797.63

absn25 7454.14 7913.47 6.19 7471.41 0.23 1720.00 7487.80 0.45 1610.54

absn30 7847.37 8214.21 4.64 7892.28 0.56 3321.00 7888.56 0.53 3031.66

Average 3.50 0.14 1051.80 0.27 982.38

H
ig
h
in
ve
nt
or
y
co
st

absn05 5538.01 5555.91 0.34 5538.01 0.00 19.80 5538.91 0.02 22.82

absn10 8872.41 9036.86 1.87 8872.41 0.00 90.40 8872.41 0.00 106.84

absn15 11721.83 11852.95 1.20 11721.83 0.00 289.00 11738.50 0.14 370.67

absn20 14863.85 15179.46 2.09 14882.83 0.13 746.60 14883.49 0.13 1021.13

absn25 17170.80 17534.01 2.12 17191.87 0.12 1781.40 17223.47 0.31 2221.46

absn30 20657.29 21180.91 2.55 20705.65 0.25 3164.60 20752.32 0.48 3399.49

Average 1.69 0.08 1015.30 0.18 857.06

time1: run on an Intel Dual Core 1.86GHz and 3.2 GB RAM

time2: run on an Intel Core2Duo 2.4GHz and 4 GB RAM

Table 3.7: Average increase of the solution cost when the transshipment cost increases from bij = 0.01cij to

0.05cij for the IRPT-OU

Set of instances Avg gap (%) to the IRP-OU Avg gap (%) to the IRP-OU

when bij = 0.01cij when bij = 0.05cij

p = 3, low inventory cost −20.38 −2.31
p = 3, high inventory cost −11.89 −1.39
p = 6, low inventory cost −10.25 −0.19
p = 6, high inventory cost −6.06 0.00

Table 3.8: Average increase of the solution cost when the transshipment cost increases from bij = 0.01cij to

0.05cij for the IRPT-ML

Set of instances Avg gap (%) to the IRP-ML Avg gap (%) to the IRP-ML

when bij = 0.01cij when bij = 0.05cij

p = 3, low cost −18.21 −0.06
p = 3, high cost −9.63 −0.21
p = 6, low cost −10.75 −0.09
p = 6, high cost −4.96 0.21
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Table 3.9: Average increase (%) of the solution cost when individual operators are removed from the ALNS

algorithm - IRPT-ML

Operator removed 1 2 3 4 5 6 7 8 9 10 11

Average increase (%) 0.47 1.63 0.52 1.38 0.26 0.39 0.94 0.16 2.46 0.35 0.09

on running time. Specifically, operators that require solving a network flow problem

frequently are time consuming. Removing them reduces the CPU time significantly

at the expense of a slight decrease in solution quality. Also, operators that increase

the diversification of the solution (using randomness) are very fast. They do not

impact the CPU time, and may even deteriorate solution quality on some instances.

In our preliminary tests we have performed such analyses in order to fine tune some

operators and change those that were too time consuming or that did not have a

positive impact on the solution. From this analysis, it seems that operator 9 is the

most critical and operator 11 is the least critical.

We have also profiled the code of our heuristic algorithm using GNU gprof to

identify how the computing time was distributed in the algorithm. To this end, we

have solved the subset of instances applied in Tables 3.7−3.9 and found that nearly

50% of the time is spent instantiating and solving network flow problems. Even

though this percentage is high, solving network flow problems is still much faster

than the alternative, i.e. solving integer linear programs using a general purpose

solver. Some functions that are executed at every iteration, sometimes several times,

are also time consuming. These include copying solutions (to keep the selected ones

and to restore the previous ones over the unaccepted ones), and calculating the cost

of a solution. Each of these two functions consumes approximately 10% of the total

computing time. The time used by each ALNS operator is roughly the same. This

is due to the fact that most of the operators are simple, to the adaptive mechanism

inherent to the method, and to the normalization used to the most complex operators,

as described in Section 3.5. In general, each ALNS operator uses 1 to 3% of the CPU

time over the selected instances.

We also wanted to identify how well some operators would perform if taken in

isolation. To this end, we have executed the code with only the few operators we

wanted to assess. We offer in Table 3.10 a summary with three different analyses:

randomness only, best (worst) insertion (removal) only, and mixed operators only

(those that apply removals and insertions simultaneously). These tests were per-

formed on the IRPT-OU on a subset of instances including small, medium and large
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ones.

Table 3.10: Average increase of the solution cost (%) when only a subset of operators are used

Randomness Best/worst Mixed

only only only

Average % increase 0.21 24.58 1.42

Finally, we have conducted experiments on the case with fixed and variable trans-

shipment costs using the model presented in Section 3.3.5. To this end, we have

selected 10 instances (all instances with six periods and 15 customers) and we have

set various combinations of fixed cost γ and variable cost β, totalling 160 new tests.

Table 3.11 presents averages over the 10 instances under an ML policy for the num-

ber “#q” of regular deliveries, the average size “Avg q” of the deliveries, the number

“#w” of transshipments, the average size “Avg w” of the transshipped quantities,

and the running time “Time (s)” in seconds.

Table 3.11: Trade-offs between variable (β) and fixed (γ) transshipment costs and their impact on the

quantities delivered

Fixed Variable
# q Avg q # w Avg w Time (s)

cost γ cost β

0.00

0.00 0.0 0.0 264.7 91.0 0.0

0.01 27.2 128.5 19.6 31.6 1338.7

0.10 38.7 99.2 0.7 5.7 1041.3

1.00 39.2 97.9 0.0 0.0 1660.6

1.00

0.00 0.0 0.0 76.9 107.6 76.1

0.01 27.2 128.5 16.6 36.6 586.9

0.10 38.9 98.7 0.5 4.6 627.3

1.00 39.3 98.1 0.0 0.0 671.1

10.00

0.00 0.0 0.0 48.0 119.6 403.4

0.01 28.0 126.8 13.2 40.8 1104.6

0.10 38.9 98.7 0.4 10.5 536.8

1.00 39.2 97.9 0.0 0.0 90.1

100.00

0.00 9.0 113.9 29.0 105.0 202.9

0.01 37.1 102.9 1.9 27.5 811.5

0.10 39.2 98.0 0.0 0.0 147.4

1.00 39.2 97.9 0.0 0.0 40.0
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The first column presents the fixed transshipment cost, with four options for the

variable transshipment costs. The topmost case reduces to the problem without any

transshipment costs. In this extreme case, all deliveries are made through transship-

ments. From a computational point of view, this case is the easiest, as reflected by its

relatively low running time. As the fixed or variable transshipment cost increases,

fewer transshipments are performed, and the quantities transshipped are smaller.

The difficulty of the problem does not seem to be directly related to the fixed or

variable transshipment costs.

3.7 Conclusions

We have introduced a new variant of the Inventory-Routing Problem, in which

planned transshipments are allowed. This problem is very difficult to solve exactly.

To generate good solutions, we have developed a branch-and-cut scheme and a pow-

erful ALNS heuristic capable of solving four variants of the problem: IRP-OU, IRPT-

OU, IRP-ML and IRPT-ML. Comparative tests on a large set of artificial instances

have shown that our heuristic can produce high quality solutions within reasonable

computing times. We have also shown that the use of transshipment can reduce

solution cost significantly on these instances, depending on the ratio between the

unit transshipment cost and the cost of using the supplier’s vehicle.



Chapter 4

Consistency in Multi-Vehicle

Inventory-Routing

Chapter information

An article based on this chapter was published in Transportation Research Part

C : L. C. Coelho, J.-F. Cordeau, G. Laporte. Consistency in multi-vehicle inventory-

routing. Transportation Research Part C, 24(1):270−287, 2012.

An article partly based on the exact algorithm presented in Section 4.3 was

published in Computers & Operations Research: L. C. Coelho, G. Laporte. Exact

Solutions for Several Classes of Inventory-Routing Problems. Computers & Opera-

tions Research, 40(2):558−565, 2013.

In this chapter we analyze the impact of incorporating regularities to the IRP

framework. To this end, we integrate and extend the concept of consistency within

inventory-routing.

4.1 Introduction

Whereas VMI policies are clearly beneficial from a system’s perspective, they

may sometimes result in inconveniences both to the supplier and to the customers.

This is the case, for example, when very small deliveries take place on consecutive

days, followed by a very large delivery, after which the customer is not visited for a

long period. Another example, this time undesirable for the supplier, is that it could

be optimal to dispatch a mix of almost full and almost empty vehicles, which does
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not yield a proper load balancing and may irritate some drivers.

Companies need not only provide cost effective solutions to their customers, but

also high quality service. This can be partly achieved by incorporating quality of

service features in IRP solutions, which should yield a competitive advantage. To

this end, we introduce the concept of consistency in the IRP in order to reflect some

common quality of service standards. This can be achieved, for example, through

the application of workforce management policies (Barlett and Ghoshal, 2002; Groër

et al., 2009; Smilowitz et al., 2012). Thus, one would expect that regularly assigning

the same driver to customers will help create a bond that can benefit both parties.

Drivers will gain an increased familiarity with the region and the customer sites

assigned to them, and will thus develop a more personal rapport with the customers.

Another example of consistency is the spacing of deliveries to customers. To ensure

smoother operations, visits should ideally be spread out evenly over the planning

horizon. This type of requirement is often modeled as constraints in the context

of the periodic Vehicle Routing Problem (VRP) (Christofides and Beasley, 1984;

Francis et al., 2008) but it has not yet been imposed in the IRP. Finally, the quantities

delivered to customers can also be controlled in order to avoid large variations over

time, which are negatively perceived by customers (Beamon, 1999). In this paper,

we consider six different consistency features in IRP solutions:

1. Quantity consistency: any delivery performed to a customer must lie within

certain customer-dependent intervals, to avoid large variations. From the cus-

tomers’ point of view, delivery size is important. If deliveries are too small,

then customers will have to receive frequent visits, which is inconvenient and

time-consuming. Deliveries that are too large may create congestion in the

warehouse.

2. Vehicle filling rate: a vehicle can only be used if its filling rate lies within a

certain interval.

3. Order-up-to (OU) policy: this is a common IRP constraint (see e.g Archetti

et al. (2007, 2011, 2012); Bertazzi et al. (2002); Coelho et al. (2012a)) which can

be viewed as a consistency feature. It states that whenever a visit is performed

to a customer, the delivery should fill the customer’s inventory capacity.

4. Driver consistency: this requirement means that each customer is assigned to

one driver.

5. Driver partial consistency: one shortcoming of the previous feature is that it
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may cause a vehicle to serve very few customers and thus its effect may be very

costly. We relax this rule by allowing some deliveries not to be subject to it.

6. Visit spacing: we impose a minimum and a maximum interval between two

consecutive visits to the same customer.

Some of these features (e.g. 1 and 6) should depend on the stability of the de-

mand. If the demand is highly variable, customers would expect deliveries to be

variable as well, because consistency would then make little sense. However, it is

known (Barrat, 2003; Olson and Xie, 2010) that the application of VMI requires

some demand stability, which legitimates the consistency features we propose. It

is also relevant to note that some of the six consistency features cannot be used in

combination with some others. For example, 4 is stronger than 5; the OU policy

cannot always be enforced if features 1, 2, or 6 are implemented; other combinations

of the consistency features, like 1 and 2, may yield infeasible solution for some pa-

rameter values. The choice, application and parameters regulating each consistency

feature should be the object of discussion and negotiation between customers and

the supplier, as is the case of any VMI strategy (Erhun and Keskinocak, 2011).

The concept of driver consistency has already been applied by Groër et al. (2009)

to a version of the VRP in which customers receive visits on prespecified days. The

authors have proposed a model ensuring that the same customer is always served by

the same driver as a means of improving quality of service, but the application of

this constraint to the IRP is new and more complicated because the visit days are

endogenous and because of the inventory management issues involved.

We model and solve the basic multi-vehicle version of the problem (MIRP) con-

sidered in Archetti et al. (2007), Archetti et al. (2012) and Bertazzi et al. (2002) to

which we incorporate the consistency features just described. Although the MIRP

has previously been studied, the variety of assumptions has left a gap in the lit-

erature in the sense that one cannot find benchmarks to a common version of the

problem. For instance, to cite some recent contributions to the MIRP literature and

their different assumptions, Abdelmaguid and Dessouky (2006) allow backorders and

use a non-linear transportation cost function which depends on the quantity deliv-

ered, Dauzère-Pérès et al. (2007) have studied the stochastic version of the problem,

and Yu et al. (2008) did not include supplier inventory costs. Here we define and

solve benchmark instances of the MIRP derived from those of Archetti et al. (2007,

2012) for the single vehicle case, with and without consistency requirements. Our

algorithm can also solve the consistent VRP with capacity constraints.

The main scientific contributions of this chapter are to add consistency require-
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ments to the basic MIRP and to develop a branch-and-cut scheme as well as a

matheuristic for this version of the MIRP, called the consistent MIRP. The remain-

der of the paper is organized as follows. In Section 4.2 we formally describe the basic

MIRP and we present a mixed-integer linear programming formulation for it and

for the consistent MIRP. Section 4.3 describes the branch-and-cut algorithm we have

developed and Section 4.4 describes our heuristic algorithm which combines adaptive

large neighborhood search and the exact solution of mixed integer linear programs.

These algorithms can solve the basic MIRP and the consistent MIRP defined by any

meaningful combination of the six features just introduced. This is followed by the

results of extensive computational experiments in Section 4.5, and by conclusions in

Section 4.6.

4.2 Formal problem description and mathematical mod-

els

We now formally introduce the basic MIRP. The problem is defined on a graph

G = (V,A), where V = {0, ..., n} is the vertex set and A = {(i, j) : i, j ∈ V, i 6= j}
is the arc set. Vertex 0 is a depot at which the supplier is located and the vertices

of V ′ = V \{0} represent customers. The problem is defined over a planning horizon

of length p and, at each time period t ∈ T = {1, ..., p}, the quantity of product

made available at the supplier is equal to rt. A unit inventory holding cost hi is

incurred by customer i and by the supplier at each period, and customer i has an

inventory holding capacity Ci. We assume the supplier has enough inventory to meet

all the demand during the planning horizon and that inventories are not allowed to

be negative. The variables It0 and Iti are defined as the inventory levels at the end

of period t, respectively at the supplier and at customer i. At the beginning of the

planning horizon the decision maker knows the current inventory level of the supplier

and of all customers (I0
0 and I0

i for i ∈ V ′), and has full knowledge of the demand dti
of each customer i for each time period t.

A set K = {1, ...,K} of vehicles are available. We denote by Qk the capacity

of vehicle k. Each vehicle is able to perform one route per time period, from the

supplier to a subset of customers. A routing cost cij is associated with arc (i, j) ∈ A.
The objective of the problem is to minimize the total routing and inventory

holding cost while meeting the demand for each customer. The replenishment plan

is subject to the following constraints:

• at the end of period t, the inventory at a customer location cannot exceed its
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maximum capacity;

• inventories are not allowed to be negative;

• the supplier’s vehicles can each perform at most one route per time period;

• each route starts and ends at the depot;

• the vehicle capacities cannot be exceeded.

The solution to the problem specifies which customers to serve at each time

period, which vehicle to use on each route, how much to deliver to each visited

customer, and how to sequence customers on the vehicle routes. Throughout the

paper, we assume that the quantity rt becoming available at the supplier in period

t can be used for deliveries to customers in the same period, and that the quantities

qkti received by customer i in period t can be used to meet the demand in that period.

Our model belongs to the same family as those of Bertazzi et al. (2002) and

Archetti et al. (2007, 2012) for the single vehicle IRP and of Coelho et al. (2012a)

for the single vehicle IRPT. It works with the following binary variables: xktij is equal

to 1 if and only if vertex j immediately follows vertex i on the route of vehicle k

in period t, and ykti is equal to 1 if and only if customer i is visited by vehicle k in

period t. We denote by qkti the quantity of product delivered from the supplier to

customer i using vehicle k in time period t. The model also uses continuous variables

wkti to enforce the VRP subtour elimination constraints (Desrochers and Laporte,

1991; Kara et al., 2004). They represent the sum of the deliveries made by vehicle k

in period t after visiting customer i.

4.2.1 Mixed integer linear program for the basic MIRP

The mathematical model for the basic MIRP is as follows:

(MIRP) minimize
∑
t∈T

h0I
t
0 +

∑
i∈V ′

∑
t∈T

hiI
t
i +

∑
i∈V

∑
j∈V

∑
k∈K

∑
t∈T

cijx
kt
ij (4.1)

subject to

It0 = It−1
0 + rt −

∑
i∈V ′

∑
k∈K

qkti t ∈ T (4.2)

It0 ≥ 0 t ∈ T (4.3)

Iti = It−1
i +

∑
k∈K

qkti − dti i ∈ V ′, t ∈ T (4.4)
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Iti ≥ 0 i ∈ V ′, t ∈ T (4.5)

Iti ≤ Ci i ∈ V ′, t ∈ T (4.6)∑
k∈K

qkti ≤ Ci − It−1
i i ∈ V ′, t ∈ T (4.7)

∑
k∈K

qkti ≤ Ci
∑
j∈V

∑
k∈K

xktij i ∈ V ′, t ∈ T (4.8)

∑
i∈V ′

qkti ≤ Qk t ∈ T , k ∈ K (4.9)

qkti ≤ ykti Ci i ∈ V ′, t ∈ T , k ∈ K (4.10)∑
j∈V

xktij =
∑
j∈V

xktji = ykti i ∈ V ′, t ∈ T , k ∈ K (4.11)

∑
j∈V ′

xkt0j ≤ 1 k ∈ K t ∈ T (4.12)

∑
k∈K

ykti ≤ 1 i ∈ V ′, t ∈ T (4.13)

wkti − wktj +Qkx
kt
ij ≤ Qk − qktj i ∈ V ′, j ∈ V ′, t ∈ T , k ∈ K (4.14)

qkti ≤ wkti ≤ Qk i ∈ V ′, t ∈ T , k ∈ K (4.15)

qkti ≥ 0 i ∈ V ′, j ∈ V, t ∈ T , k ∈ K (4.16)

xktij , y
kt
i ∈ {0, 1} i, j ∈ V, i 6= j, t ∈ T , k ∈ K. (4.17)

In this model, the objective function is the sum of inventory costs at the supplier

and customer locations, and of routing costs. Constraints (4.2) define the inventory

at the supplier carried at the end of period t. Constraints (4.3) forbid stockouts at

the supplier. Constraints (4.4) and (4.5) are similar to (4.2) and (4.3) but apply to

the customers. Constraints (4.6) define the maximum inventory level at customer

locations, while constraints (4.7) and (4.8) ensure that the quantity delivered to cus-

tomer i at period t will not exceed the customer’s inventory capacity if the customer

is served, and will be zero otherwise. Constraints (4.9) mean that vehicle capacities

are never exceeded. Constraints (4.10)−(4.15) impose linking and routing conditions.

In particular, constraints (4.14) ensure the consistency of the load of each vehicle

along its route and prevent subtours. Finally, constraints (4.16) and (4.17) enforce

the non-negativity and integrality requirements.

4.2.2 Modeling the features of the consistent MIRP

We now formally describe the features of six versions of the consistent MIRP and

we show how they can be modeled separately or jointly.
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4.2.2.1 Quantity consistency

A way to ensure that all deliveries to a given customer will be consistent over

time is to force the delivery amounts to lie within an interval [gl, gu] around a target

value equal to the average demand of the customer over the planning horizon:

ykti gl
∑
t∈T

dti/p ≤ qkti ≤ ykti gu
∑
t∈T

dti/p i ∈ V ′, k ∈ K, t ∈ T . (4.18)

4.2.2.2 Vehicle filling rate

To balance the load between vehicles and to avoid dispatching vehicles with very

low loads, we impose a vehicle filling rate constraint which specifies that a vehicle can

only be used if the total quantity it delivers fills at least a fraction γ of its capacity.

This is achieved by adding the following constraint to the basic model:

∑
i∈V ′

qkti ≥ γ
∑
i∈V ′

xkt0iQk k ∈ K, t ∈ T . (4.19)

4.2.2.3 Order-up-to policy

Under an OU inventory policy, the decisions of when and how much to deliver

to a customer are linked: whenever a customer is visited, the quantity delivered

must fill the customer’s inventory capacity. The OU policy is imposed through the

constraints

qkti ≥ Ci
∑
j∈V

xktij − It−1
i i ∈ V ′, k ∈ K, t ∈ T . (4.20)

4.2.2.4 Driver consistency

Driver consistency is modeled with an extra binary variable zki equal to 1 if and

only if vehicle k visits customer i. Then, three sets of constraints are added to the

basic model:

∑
k∈K

zki = 1 i ∈ V ′ (4.21)

ykti ≤ zki i ∈ V ′, k ∈ K, t ∈ T (4.22)

zki ∈ {0, 1} i ∈ V ′, k ∈ K. (4.23)

Constraints (4.21) ensure that exactly one vehicle is assigned to each customer

over the planning horizon. Constraints (4.22) allow deliveries only from the vehicle

assigned to the customer.
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4.2.2.5 Driver partial consistency

It may sometimes be preferable to apply a partial consistency policy by which

a large number of deliveries follow the driver consistency rule, but in some cases

the rule may be relaxed. We have modeled this policy by adding to the objective

function a penalty term proportional to the number of extra vehicles assigned to

each customer, beyond their regular vehicle. We have introduced a binary variable

ski indicating whether an extra vehicle k is assigned to customer i, and we impose

the following sets of constraints to the basic model:

∑
k∈K

zki = 1 i ∈ V ′ (4.24)

ykti ≤ zki + ski i ∈ V ′, k ∈ K, t ∈ T (4.25)

ski , z
k
i ∈ {0, 1} i ∈ V ′, k ∈ K. (4.26)

Constraints (4.24) assign a first vehicle to each customer, while constraints (4.25)

allow additional vehicles to be assigned to the same customer. We then add a penalty

term

α
∑
i∈V ′

∑
k∈K

ski (4.27)

to the objective function (4.1). By adjusting the parameter α, one can control how

restrictive the driver partial consistency policy will be.

4.2.2.6 Visit spacing

One may also want to enforce a minimum and maximum time interval between

two consecutive visits to the same customer, since it may be undesirable to visit the

same customer on several successive days or to leave a customer unvisited for a long

period. Adding the following constraints to the basic model will ensure that at least

one visit will take place every (Mi + 1) periods, and no more than one visit will take

place in any (mi + 1) successive periods:

∑
k∈K

t+mi∑
l=t

ykli ≤ 1 i ∈ V ′, t ∈ {1, ..., p−mi} (4.28)

∑
k∈K

t+Mi∑
l=t

ykli ≥ 1 i ∈ V ′, t ∈ {1, ..., p−Mi}. (4.29)

In practice, both Mi and mi should depend on the capacity and on the demand

of customer i.
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4.3 A branch-and-cut algorithm

We have developed a branch-and-cut algorithm which works on top of an undi-

rected formulation of the problem as in the previous chapter. This formulation is

designed to consider multiple vehicles. In case the fleet is homogeneous, it yields

much symmetry. We tighten this formulation by imposing the following symmetry

breaking constraints valid for the case where the vehicle fleet is homogeneous:

ykt0 ≤ y
k−1,t
0 k ∈ K\{1} t ∈ T (4.30)

ykti ≤
∑
j<i

yk−1,t
j i ∈ V k ∈ K\{1} t ∈ T . (4.31)

Constraints (4.30) ensure that vehicle k cannot leave the depot if vehicle k− 1 is

not used. This symmetry breaking rule is then extended to the customer vertices by

constraints (4.31) which state that if customer i is assigned to vehicle k in period t,

then vehicle k − 1 must serve a customer with an index smaller than i in the same

period. These constraints are inspired from those proposed by Fischetti et al. (1995)

for the capacitated vehicle routing problem and by Albareda-Sambola et al. (2011)

for a plant location problem.

This formulation can handle the basic MIRP as well as all the consistency features

as described in Section 4.2.2. Note that the basic MIRP has been recently solved by

means of a similar branch-and-cut algorithm by Adulyasak et al. (2012) as a special

case of the Production-Routing Problem (PRP).

4.4 A matheuristic for the consistent MIRP

The MIRP is NP-hard since it generalizes the capacitated VRP. As a result,

the models described in Section 4.2 can only be used for the exact solution of rela-

tively small and medium size instances. For this reason, we have opted to solve the

problem heuristically. The heuristic we have developed can solve the basic MIRP

and any meaningful combination of the six versions of the consistent MIRP just de-

fined. It applies an Adaptive Large Neighborhood Search (ALNS) scheme in which

some subproblems are solved exactly as MILPs. It can therefore be described as

a matheuristic (Maniezzo et al., 2009), i.e. as a hybridization of a heuristic and of

a mathematical programming algorithm. The concept of ALNS was put forward

by Ropke and Pisinger (2006a) in the context of the capacitated VRP. It has since

be successfully applied to several related problems such as the vehicle scheduling

problem (Bartodziej et al., 2009; Pepin et al., 2009), the fixed charged network flow
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problem (Hewitt et al., 2010), the stochastic arc routing problem (Laporte et al.,

2010) and several classes of vehicle routing problems (Ropke and Pisinger, 2006b).

Matheuristics have already been applied to other types of vehicle routing includ-

ing the works of Prins et al. (2007), Tarantilis et al. (2009) and Wolfler Calvo and

Touati-Moungla (2011).

4.4.1 Adaptive Large Neighborhood Search

Our ALNS heuristic follows the general framework proposed by Ropke and Pisinger

(2006a) and works as follows. At each iteration, a number of customers are removed

from their current route by a destroy operator and are eventually reinserted back

elsewhere by a repair operator. The choice of an operator is governed by a roulette-

wheel mechanism. Each operator i is assigned a weight ωi whose value depends on

its past performance, as well as a score. Given h operators with weights ωi, operator

j will be selected with probability ωj/
h∑
i=1

ωi. Initially, all weights are equal to one

and all scores are equal to zero. At each iteration, the score of the selected operator

is increased by σ1 if it finds a new best solution, by σ2 if it finds a solution better

than the incumbent, and by σ3 if the solution is not better but is still accepted.

Obviously σ1 ≥ σ2 ≥ σ3 ≥ 0. The search is divided into segments of ϕ iterations

each, after which the weights and scores are updated as follows. Let πi and oij be,

respectively, the score of operator i and the number of times it has been used in the

last segment j, normalized by a factor νi ≥ 1 reflecting the computational effort it

requires (see Coelho et al. (2012a); Ropke and Pisinger (2006b)). The normalization

factor νi multiplies oij , and therefore decreases the weight of operator i, so that the

more time consuming operators are applied less frequently. The values used for the

normalization factors are all equal to one in our implementation, except for two cases

where different values are used. These are provided in Sections 3.1.1 and 3.1.2. The

updated weights are then

ωi :=

ωi if oij = 0

(1− η)ωi + ηπi/νioij if oij 6= 0,
(4.32)

where η ∈ [0, 1] is called the reaction factor, controlling how quickly the weight

adjustment reacts to changes in the movement performance (see Section 4.4.3). All

scores are reset to zero.

As in Ropke and Pisinger (2006b) we use the same acceptance criterion as in

simulated annealing: given a solution s, a neighbor solution s′ is accepted if z(s′) <

z(s), and with probability e−(z(s′)−z(s))/τ otherwise, where z(s) is the solution cost



4.4. A matheuristic for the consistent MIRP 88

and τ > 0 is the current temperature. The temperature is initialized at τstart and is

decreased by a cooling rate factor φ at each iteration, where 0 < φ < 1.

Our computational tests have shown that the initial solution does not have a

significant impact on the overall solution cost or on the running time. We there-

fore initialize the search with a randomly generated solution by assigning a random

number of customers to random periods and vehicles. This initial solution is not nec-

essarily feasible. Our algorithm also works if the initial solution is empty, in which

case the destroy operators do not initially apply.

4.4.1.1 Destroy operators

1. Randomly remove ρ: This operator randomly selects one period and one

vehicle and removes one randomly selected customer from it. It is repeated ρ

times. The operator is useful for refining the solution, since it does not change

it much when ρ is small (which happens frequently), but still yields a major

transformation when ρ is large.

2. Remove worst ρ: This operator removes the customer that will save the most

when removed, considering the total routing and inventory cost. It is applied

ρ times. Its normalization factor is 20.

3. Shaw removal: Following the ideas developed in Ropke and Pisinger (2006a)

and Shaw (1997), this operator removes customers that are relatively close to

each other. Specifically, it randomly selects one vehicle, one period and one

customer served in this period, it computes the distance distmin to the closest

customer also being served by the same route, and it removes all customers

within 2distmin units from the selected route.

4. Avoid consecutive visits: This operator is based on our observation that

good solutions often do not contain visits to the same customer on two consec-

utive periods. Then, the operator verifies whether any customer is visited on

two consecutive periods and removes the latest visit.

5. Empty one period: This operator selects one random period and empties all

routes performed during that period.

6. Empty one vehicle: This operator selects one random vehicle and empties

all routes performed by this vehicle.
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4.4.1.2 Repair operators

1. Randomly insert ρ: This operator randomly inserts ρ customers into the

current solution. Specifically, it selects one random customer, one random

vehicle and one random period, and inserts the customer into the route of that

vehicle in that period if it is not already routed in the same period. This

operator is applied ρ times.

2. Insert best ρ: This operator is analogous to the previous one. It is applied ρ

times by computing the cheapest insertion with respect to the total cost. The

normalization factor used for this operator is 20.

3. Shaw insertions: This operator is similar to the Shaw removal operator in

the sense that it selects similar customers to be inserted together. It selects

one vehicle, one period and one customer not served in that period by any ve-

hicle. The operator then computes distmin and all customers within a 2distmin

distance are inserted in the same route, always following the cheapest insertion

rule.

4. Swap ρ customers: This operator selects two customers from two different

routes and swaps their assignments, following the cheapest insertion rule. It is

also applied ρ times.

4.4.2 Exact subproblem solutions

Our matheuristic embeds the exact solution of two subproblems. The first one,

called Delivery Quantities (DQ), optimizes the delivery quantities associated with a

given set of vehicle routes. It is solved every time a new routing solution is computed

by the ALNS mechanism. It uses a binary parameter x̄ktij equal to one if and only

if customer j follows customer i in the route of vehicle k in period t. As shown in

Coelho et al. (2012a), DQ can be formulated as the following network flow problem:

(DQ) minimize
∑
t∈T

h0I
t
0 +

∑
i∈V ′

∑
t∈T

hiI
t
i (4.33)

subject to

It0 = It−1
0 + rt −

∑
i∈V ′

∑
k∈K

qk,ti t ∈ T (4.34)

Iti = It−1
i +

∑
k∈K

qk,ti − d
t
i i ∈ V ′, t ∈ T (4.35)

It0 ≥ 0 t ∈ T (4.36)
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Iti ≥ 0 i ∈ V ′, t ∈ T (4.37)

Iti ≤ Ci i ∈ V ′, t ∈ T (4.38)∑
k∈K

qkti ≤ Ci − It−1
i i ∈ V ′, t ∈ T (4.39)

∑
k∈K

qkti ≤ Ci
∑
j∈V

∑
k∈K

x̄ktij i ∈ V ′, t ∈ T (4.40)

∑
i∈V ′

qkti ≤ Qk t ∈ T , k ∈ K. (4.41)

Constraints (4.34) and (4.35) define the flow conservation conditions. Lower and

upper bounds on the flows are defined by (4.36)−(4.40). Vehicle capacity constraints

(4.41) still define an upper bound on the quantity delivered by the vehicle, even

though the customers to be visited are now fixed.

The goal of the second subproblem, called Solution Improvement (SI), is to find

the best solution that results from removal and reinsertion operations to a given

solution and to evaluate its cost. To limit computational effort, the number of

operations is limited, and approximate removal and insertion costs are used. This

problem is no longer a network flow problem. It is solved every θ iterations or

whenever a new best solution has been identified. Using an idea proposed by Archetti

et al. (2012), we simplify and approximate the routing costs resulting from vertex

removals and reinsertions as follows. Let akti represent the routing cost reduction if

customer i is removed from the route of vehicle k at period t, which obviously visits

customer i; let bkti represent the routing cost if customer i is inserted in the route of

vehicle k at period t, which obviously does not already visit customer i; finally, let

rkti be a binary parameter equal to 1 if and only if customer i is visited in the current

route of vehicle k at period t. Also define the following binary variables: let ukti be

equal to 1 if and only if customer i is removed from the existing route of vehicle k at

period t, and let vkti be equal to 1 if and only if customer i is inserted in the route

of vehicle k at period t. This subproblem is then to

(SI) minimize
∑
t∈T

h0I
t
0 +

∑
i∈V ′

∑
t∈T

hiI
t
i −

∑
i∈V ′

∑
k∈K

∑
t∈T

akti u
kt
i +

∑
i∈V ′

∑
k∈K

∑
t∈T

bkti v
kt
i

(4.42)

subject to (2)−(6) and

qkti ≤ Ci − It−1
i i ∈ V ′, k ∈ K, t ∈ T (4.43)

qkti ≤ (rkti − ukti + vkti )Ci i ∈ V ′, k ∈ K, t ∈ T (4.44)



4.4. A matheuristic for the consistent MIRP 91

vkti ≤ 1− rkti i ∈ V ′, k ∈ K, t ∈ T (4.45)

ukti ≤ rkti i ∈ V ′, k ∈ K, t ∈ T (4.46)∑
i∈V ′

ukti +
∑
i∈V ′

vkti ≤ β k ∈ K, t ∈ T (4.47)

∑
i∈V ′

qkti ≤ Qk k ∈ K, t ∈ T (4.48)

qkti ≥ 0 i ∈ V ′, t ∈ T , k ∈ K (4.49)

ukti , v
kt
i ∈ {0, 1} i ∈ V ′, t ∈ T , k ∈ K. (4.50)

The objective function (4.42) minimizes the total inventory, removal and insertion

cost. Constraints (4.43)−(4.44) are similar to (7)−(8) and enforce the ML policy.

Constraints (4.45) ensure that if a customer is already present in a route, it cannot be

reinserted in the same route. Likewise, constraints (4.46) guarantee that only those

customers belonging to a route can be removed from it. Constraints (4.48) ensure

that vehicle capacities are respected. If the incumbent solution is changed by more

than one customer, then this model only provides an approximation of the actual

routing costs. For this reason, we have decided to limit the number of insertions and

removals that could take place in the solution of SI, and we have added constraints

(4.47) to limit the number of insertions and removals per route to a small value β.

Unlike a destroy and repair mechanism which usually means that decisions are made

in two successive steps, SI removes and reinserts vertices by taking both decisions at

the same time.

4.4.2.1 Quantity consistency

Guaranteeing a minimum and a maximum delivery quantity to each customer is

controlled by adding the following constraints to SI, which ensures that the quantities

delivered lie within their specified intervals:

qkti ≥ (rkti − ukti + vkti )gl
∑
t∈T

dti/p i ∈ V ′, k ∈ K, t ∈ T (4.51)

qkti ≤ (rkti − ukti + vkti )gu
∑
t∈T

dti/p i ∈ V ′, k ∈ K, t ∈ T . (4.52)

4.4.2.2 Vehicle filling rate

To ensure a minimum vehicle filling rate in SI, the following constraints are added.

They use new binary variables ykt equal to 1 if and only if vehicle k is used in period

t:
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ykt ≥ zkti i ∈ V ′, k ∈ K, t ∈ T (4.53)∑
i∈V ′

qkti ≥ γyktQk k ∈ K, t ∈ T (4.54)

ykt ∈ {0, 1} k ∈ K, t ∈ T . (4.55)

4.4.2.3 Order-up-to policy

The OU policy is handled through the following constraints:

qkti ≥ (rkti − ukti + vkti )Ci − It−1
i i ∈ V ′, k ∈ K, t ∈ T . (4.56)

These constraints ensure that if a delivery to a customer is performed, the quantity

delivered should be at least equal to the difference between its current inventory

and its inventory holding capacity. Together with constraints (4.43) and (4.44), they

ensure that the quantity delivered will exactly fill the customer’s inventory capacity.

4.4.2.4 Driver consistency

The driver consistency requirement is modeled in SI by means of an extra binary

variable zki equal to 1 if and only if vehicle k visits customer i, as it was defined in

Section 4.2.2.4. Then, three sets of constraints are added to the SI model:

∑
k∈K

zki = 1 i ∈ V ′, k ∈ K (4.57)

rkti − ukti + vkti ≤ zki i ∈ V ′, k ∈ K, t ∈ T (4.58)

zki ∈ {0, 1} i ∈ V ′, k ∈ K. (4.59)

Constraints (4.57) ensure that exactly one vehicle is assigned to each customer, while

constraints (4.58) only allow deliveries from the vehicle assigned to that customer.

4.4.2.5 Driver partial consistency

The driver partial consistency is also modeled in SI with a binary variable ski and

a penalty in the objective function, as above. The variable ski will be equal to one if

and only if an extra vehicle k is assigned to customer i. The required constraints are

∑
k∈K

zki = 1 i ∈ V ′, k ∈ K, t ∈ T (4.60)

rkti − ukti + vkti ≤ zki + ski i ∈ V ′, k ∈ K, t ∈ T (4.61)
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ski , z
k
i ∈ {0, 1} i ∈ V ′, k ∈ K. (4.62)

The penalty to the objective function is added in the same fashion as in Section

4.2.2.5.

4.4.2.6 Visit spacing

The imposition of minimum and maximum intervals between visits is modeled

by adding the following sets of constraints to the SI model:

∑
k∈K

t+mi∑
l=t

(rkri − ukli + vkri ) ≤ 1 i ∈ V ′, t ∈ {1, ..., p−mi} (4.63)

∑
k∈K

t+Mi∑
l=t

(rkri − ukli + vkri ) ≥ 1 i ∈ V ′, t ∈ {1, ..., p−Mi}. (4.64)

4.4.3 Parameter settings

We now describe the parameters that govern our algorithm. We have tested

different combinations for the parameters during a tuning phase. We have evaluated

how the algorithm performed with different numbers of iterations. To this end, we

have run it 5,000, 10,000, 15,000, 20,000, 25,000, 30,000, 40,000 and 50,000 iterations

on a small subset of instances. We then computed the average solution gap that each

number of iterations provided with respect to the best solution found. Since the drop

of the average gap is steep when the algorithm reaches 50,000 iterations and only

equal to 0.12% we have decided to run the algorithm for 50,000 iterations without a

time limit. Figure 4.1 depicts the performance just described.
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Figure 4.1: Average solution gap over different number of iterations.
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The starting temperature τstart is set to 30,000 and the cooling rate φ is 0.999701,

which yields roughly 50,000 iterations. The stopping criterion is satisfied when the

temperature reaches 0.01 or when 50,000 iterations have been performed. We have

decided not to stop the algorithm after a predetermined running time because we

wanted to evaluate the impact of the different policies themselves, not an algorithmic

performance. The segment length ϕ was set to 200 iterations and the reaction factor

η was set to 0.8, that is, new weights will reflect 80% of the performance of the last

segment and 20% of the last weight value. Scores are updated with σ1 = 10, σ2 =

5 and σ3 = 2. A trade-off must be made between the CPU consumption and the

quality of each operator of the ALNS, as well as how often SI is solved. We have

evaluated this trade-off and decided to solve this subproblem with β = 10 every

θ = 40 ALNS iterations, which proved to be a good compromise between computing

time and solution quality.

4.4.4 Special rules

The algorithm can handle all six consistency features without modifications.

However, its performance can be improved if some adjustments are made to bet-

ter handle some features.

The first adjustment consists in applying the avoid consecutive visits operator

only to the basic MIRP, since it could conflict with some of the consistency features

proposed, thus decreasing the effectiveness of the algorithm. For example, it may

pay to visit some customers on two consecutive periods if this helps achieve a bet-

ter vehicle filling rate. Similarly, a later visit to a customer can be anticipated if

this reduces routing costs (due to geographical proximity) or if this improves driver

consistency. After some tests and considerations, we realized that whenever this

operator is applied, it directs the search towards good neighborhoods, leading to

better solutions. The idea is that a good solution should not visit the same customer

on consecutive days, considering that it usually has sufficient inventory to meet its

demand and that the number of vehicles and their capacity are limited, and their use

is expensive. We have evaluated the impact of the avoid consecutive visits operator

during the search, by running the algorithm on a subset of instances, both with and

without this operator. The results of this experiment are depicted in Figure 4.2. It is

clear from Figure 4.2 that the operator has a positive impact on the search process.

The average percentage gap with respect to the best solution value found in this

experiment is always smaller when the operator is applied. This operator is a direct

result of the visit spacing consistency feature. We have tried different ideas from
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other consistency features, but none proved to be as effective for the general case.
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Figure 4.2: Impact of the avoid consecutive visits operator.

The second modification relates to implementation details of the different con-

sistency features proposed. For some variants of the main problem, we have made

slight modifications to the ALNS operators and to the associated network flow model

in order to take into account the specifics of the variant under consideration. In or-

der to enforce the driver consistency rule, we have modified the ALNS operators to

allow insertions of customers only in vehicles that had already visited them earlier

in the current solution. For the driver partial consistency rule, the only modification

needed was related to the computation of the solution cost, in order to take into ac-

count the number of vehicles assigned to each customer. For the visit spacing case,

the only modifications were made to the insertion operators of the ALNS, as was the

case for the driver consistency feature. The OU policy was modeled directly into the

remaining network flow problem as in Coelho et al. (2012a), as were the minimum

and maximum delivered quantity in the quantity consistency requirements. For the

vehicle filling rate case, we have opted to solve SI after each ALNS iteration to help

regain feasibility since in this case many ALNS operations yield infeasible solutions.

The third adjustment concerns the SI subproblem. Since it provides an approx-

imation of the true routing costs, it is possible that after applying it to a solution,

the output has a higher solution cost than the input. For this reason, we only accept

the SI solution if it is better than the solution to which it was applied.
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4.4.5 Summary of the algorithm

Algorithm 4.1 provides the pseudocode of our matheuristic.

4.5 Computational experiments

The matheuristic algorithm just described was coded in C++. We have used the

scaling push-relabel algorithm developed by Goldberg (1997) for the minimum-cost

flow problem to solve DQ, and IBM Concert Technology and CPLEX 12.2 as the

solver for SI. Computations were executed on a grid of Dual Core AMD Opteron(tm)

Processor 275 machines running at 2.20 GHz, each with 12 GB of RAM installed,

running a Linux operating system. The branch-and-cut algorithm was coded in C++

using IBM Concert Technology and CPLEX 12.3 with six threads. Computations

were executed on a grid of Intel Xeon™ processors running at 2.66 GHz with up to

48 GB of RAM installed per node, with the Scientific Linux 6.1 operating system.

To evaluate the performance of the algorithms, we have adapted to the multi-

vehicle case the 160 small single vehicle IRP instances of Archetti et al. (2007, 2012).

These were used in Archetti et al. (2012); Bertazzi et al. (2002); Coelho et al. (2012a)

to evaluate single vehicle algorithms for the IRP and are made up of instances with

up to three time periods and 50 customers, and six time periods and 30 customers.

These instances are described as small-n-low or small-n-high, where the last field

refers to a low or high inventory holding cost. There are five instances for each

combination and we report average statistics over these. The second set is more

recent and contains 60 larger instances proposed in Archetti et al. (2012), with up

to six time periods and 200 customers. They are described as large-n-low or large-

n-high. There are 10 instances for each combination and we again report average

values. We have adapted these instances to account for multiple vehicles by dividing

the original vehicle capacity by the number of vehicles considered. Whereas our

formulation and algorithm can handle heterogeneous fleet, all our tests are conducted

with a homogeneous fleet, which reduces the number of parameters to consider. We

have tested our algorithm on the smaller set with two and three vehicles, and on the

larger set with two to five vehicles. In total, we have solved 160 × 2 + 60 × 4 = 560

instances for the basic MIRP. In the case of the consistent MIRP, we have solved

instances with three vehicles. Since we have defined six versions of this problem,

this means that an additional 6 × (160 + 60) = 1,320 instances were solved. For

full results on all instances the reader is referred to Coelho et al. (2011b) and to

Appendix A.2 for heuristic solutions, and to Appendix A.3 for exact solution values.
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Algorithm 4.1 Matheuristic pseudocode
1: Initialize weights of removal and insertion operators to 1 and scores to 0.

2: sbest ← s← initial solution.

3: τ ← τstart.

4: while τ > 0.01 and iterations < 50,000 do

5: s′ ← s.

6: Select a destroy and a repair operator using the roulette-wheel and apply it to

s′.

7: Fix routing decisions, solve DQ to determine the delivery quantities.

8: if f(s′) < f(s) then

9: s← s′;

10: if f(s) < f(sbest) then

11: Solve the SI model associated with s;

12: sbest ← s;

13: increase the score of the operators by σ1;

14: else

15: increase the score of the operators by σ2;

16: end if

17: else

18: if s′ is accepted by the simulated annealing criterion then

19: s← s′;

20: increase the score of the operators by σ3.

21: end if

22: end if

23: if the iteration count is a multiple of ϕ then

24: update the weights of all operators and reset their scores.

25: end if

26: if the iteration count is a multiple of θ then

27: solve the SI model associated with s.

28: end if

29: end while

30:

31: return sbest;
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4.5.1 Stability test

We have first analyzed the stability of the heuristic algorithm by running the same

instance five times and then calculating its coefficient of variation (CV ) which is a

normalized and dimensionless measure of dispersion of a probability distribution.

The lower the value of CV , the more stable the algorithm is. The coefficient of

variation is computed as CV = S/X̄, where X̄ is the sample average and S is the

sample standard deviation.

For each of eight variants of the MIRP and 16 combinations of n and p, we have

selected an instance and solved it five times, yielding a total of 640 runs. For each

instance we have computed the CV over the five runs. The eight variants and the

average CV values of the 16 instances of each variant are reported in Table 4.1.

Results indicate that the average CV values are very small (typically no more than

0.01), which is a strong indication of the stability of our algorithm. Given this, we

feel justified to run each instance only once in the subsequent tests.

Table 4.1: Average coefficients of variations over five runs of 16 instances for each of eight MIRP variants

Scenario CV

Basic MIRP, K = 2 0.01

Basic MIRP, K = 3 0.01

Quantity consistency, K = 3 0.02

Vehicle filling rate, K = 3 0.01

Order-up-to, K = 3 0.01

Driver consistency, K = 3 0.01

Driver partial consistency, K = 3 0.01

Visit spacing, K = 3 0.00

Average 0.01

4.5.2 Computational experiments for the basic MIRP

We have then run our algorithms on a special case of the MIRP with only one

vehicle (K = 1). This problem has already been solved exactly by means of a

branch-and-cut algorithm by Archetti et al. (2007) and is a good starting point to

evaluate the performance of our heuristic. Our branch-and-cut could find all optimal

solutions in very short running time. We provide in Table 4.2 a comparison between

the optimal solutions and the solutions provided by our heuristic for this case. In

this table the first column shows the name of the instance; the second presents the
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average of the optimal solutions obtained in Archetti et al. (2007); the last three

columns show the average solution obtained by our heuristic, the percentage gap

with respect to the optimal one and the running time of our algorithm in seconds.

As can be seen, our heuristics yields quasi-optimal solutions on most instances, and

the average optimality gap over 160 instances is only 0.37%.

We also provide in Tables 4.3 and 4.4 the average optimal solution values yielded

by our branch-and-cut and by our ALNS-based heuristic over the five small basic

MIRP instances with two and three vehicles for p = 3 and p = 6, respectively.

Gaps are reported with respect to the best known lower bound. Note that running

times cannot be directly compared as the algorithms were run on different machines.

However, as expected the running time for large instances is very high for the exact

algorithm, while it remains acceptable for the heuristic one. In addition, we have run

our ALNS heuristic over the 10 large basic MIRP instances with two to five vehicles,

and p = 6. Table 4.5 contains average solution values for each size. For relatively

small size instances, our exact method is able to find good solutions. We present in

Table 4.6 computational results of our branch-and-cut algorithm on a subset of these

instances.

In a second stream of experiments, we have studied the impact of symmetry

breaking constraints on the solution of homogeneous instances. We have introduced

a new set of heterogeneous instances in order to make comparisons with the homo-

geneous case. To our knowledge we are the first to solve heterogeneous instances of

the MIRP. To this end, we have run a small subset of instances for all three cases

with three and four vehicles. We have opted not to change the overall capacity when

the vehicles are heterogeneous, but to split it differently among the vehicles. For

K = 3 the first vehicle accounts for 50% of the original capacity, the second vehi-

cle holds 30% of the original capacity and the third vehicle has 20% of the original

capacity. For K = 4 the percentage of the original capacity of each vehicle is 40,

25, 20 and 15. Average results are shown in Table 4.7. They indicate that imposing

symmetry breaking constraints in the homogeneous MIRP has a significant effect

on the reduction of the optimality gap and on computing times. As a result, more

instances can be solved optimally. Heterogeneous MIRPs are much easier to solve

than homogeneous instances without symmetry breaking constraints. However, they

are more difficult than homogeneous instances with these constraints. Note that the

CPLEX symmetry breaking reductions parameter was not changed, thus allowing

CPLEX to determine which degree of its symmetry breaking should apply.
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Table 4.2: Average heuristic solution values for the single vehicle IRP

Periods Instance z∗ z gap (%) time (s)

p = 3

small-5-low 1275.86 1275.86 0.00 15.6

small-10-low 1910.92 1910.92 0.00 40.4

small-15-low 2207.76 2207.76 0.00 66.8

small-20-low 2665.58 2665.58 0.00 89.6

small-25-low 2987.90 2994.30 0.21 134.0

small-30-low 3292.93 3296.73 0.11 192.2

small-35-low 3448.84 3461.41 0.36 249.6

small-40-low 3703.82 3731.74 0.75 306.4

small-45-low 3867.48 3899.92 0.83 373.8

small-50-low 4327.15 4379.75 1.21 502.0

small-5-high 2199.89 2199.89 0.00 21.4

small-10-high 4337.97 4337.97 0.00 46.2

small-15-high 5435.80 5435.80 0.00 74.0

small-20-high 7225.69 7225.69 0.00 95.0

small-25-high 8982.07 8988.46 0.07 136.8

small-30-high 10918.30 10925.18 0.06 189.4

small-35-high 11411.67 11427.08 0.13 237.0

small-40-high 12541.05 12577.12 0.28 313.2

small-45-high 13865.33 13898.74 0.24 362.6

small-50-high 15410.82 15445.44 0.22 464.8

p = 6

small-5-low 3136.90 3136.90 0.00 63.4

small-10-low 4612.50 4612.50 0.00 143.6

small-15-low 5418.55 5471.16 0.97 254.0

small-20-low 6625.35 6672.08 0.70 386.4

small-25-low 7261.77 7316.62 0.75 513.6

small-30-low 7710.01 7835.27 1.62 784.2

small-5-high 5354.20 5354.20 0.00 68.0

small-10-high 8601.91 8601.91 0.00 143.2

small-15-high 11543.04 11602.04 0.51 249.2

small-20-high 14594.13 14714.86 0.82 347.4

small-25-high 16913.97 17096.76 1.08 535.0

small-30-high 20410.65 20648.68 1.16 737.2

Average 0.37
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Table 4.5: Average ALNS solution values for the large basic MIRP instances, p = 6

Instance
Number of vehicles

K = 2 K = 3 K = 4 K = 5

large-50-low 13049.91 14249.57 18450.18 21260.23

large-100-low 25546.13 23591.50 34722.01 37561.98

large-200-low 46524.72 48225.70 63351.94 73145.96

large-50-high 32585.83 33926.45 37972.05 39836.93

large-100-high 60773.11 64562.34 72772.20 75192.23

large-200-high 121982.72 132976.90 141319.30 144866.10

Table 4.6: Average branch-and-cut computational results on the larger instance set, K = 2 and 3

Instance
K = 2 K = 3

# best gap (%) time (s) # best gap (%) time (s)

large-50-6-high 10 4.00 86400.0 0 15.72 86400.0

large-100-6-high 1 32.57 86400.0 0 56.09 86400.0

large-50-6-low 10 10.94 86400.0 0 36.22 86400.0

large-100-6-low 0 66.49 86400.0 0 77.56 86400.0

Average 5.25 28.50 86400.0 0.00 46.39 86400.0

Table 4.7: Computational results on the MIRP with an homogeneous fleet (with and without symmetry

breaking constraints) and with an heterogeneous fleet

K Instance

Homogeneous, with Homogeneous, without
Heterogeneous

symmetry breaking symmetry breaking

# solved gap (%) time (s) # solved gap (%) time (s) # solved gap (%) time (s)

3

small-5-3-low 5 0.00 4.6 5 0.00 3.0 5 0.00 2.6

small-10-3-low 5 0.00 17.4 5 0.00 47.6 5 0.00 14.0

small-15-3-low 5 0.00 31.4 5 0.00 2218.8 5 0.00 121.6

small-20-3-low 5 0.00 220.8 2 5.03 13698.4 5 0.00 161.6

small-25-3-low 5 0.00 574.2 3 1.30 21467.6 4 1.49 15681.2

small-30-3-low 5 0.00 1285.8 3 4.71 18211.6 2 3.36 19044.2

small-35-3-low 5 0.00 1935.8 1 5.67 30285.0 4 2.90 18449.8

Average 5 0.00 581.4 3.42 2.38 12276.0 4.28 1.10 7639.28

4

small-5-3-low 5 0.00 4.0 5 0.00 31.0 5 0.00 4.6

small-10-3-low 5 0.00 40.8 3 1.82 9346.8 5 0.00 25.0

small-15-3-low 5 0.00 119.0 1 5.48 18586.6 5 0.00 1082.0

small-20-3-low 5 0.00 5544.4 0 14.12 27856.2 4 2.26 9040.8

small-25-3-low 5 0.00 4665.8 0 16.32 28606.2 3 4.68 24302.0

small-30-3-low 2 2.90 29714.8 0 12.61 43200.0 1 8.60 38771.0

small-35-3-low 2 5.49 31756.2 0 12.11 43200.0 1 5.46 43200.0

Average 4.14 1.19 10263.5 1.28 8.92 24403.8 3.42 3.00 16632.2
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4.5.3 Computational experiments for the consistent MIRP

We also report in Tables 4.8 to 4.13 the heuristic solution values of the consistent

MIRP for each of the six features described in Section 4.2.2. The last line provides

the average percentage increase of each consistent MIRP solution value with respect

to the basic MIRP solution values (column K = 3 in Tables 4.3−4.5). Specifically,

Tables 4.8 to 4.10 report statistics for each set of the low inventory cost instances,

starting with three periods and five customers, and going up to six periods and 200

customers, when compared to the solution obtained by our heuristics for the general

problem. Tables 4.11 to 4.13 provide statistics for the high inventory cost instances.

The parameters we have used to run the tests for each type of consistency are the

following:

• Quantity consistency: each delivery performed to any customer must lie within

one and three times the average demand of the customer, that is gl = 1.0 and

gu = 3.0.

• Vehicle filling rate: each dispatched vehicle must be at least 50% filled, i.e. γ =

0.5.

• Driver partial consistency: we have tested several different values for the

penalty parameter, as reported later; for these tables, we provide results with

α = 10.

• Visit spacing: a customer may not be visited more than once in every two

periods and should be visited at least once in every three periods, i.e. mi = 1

and Mi = 2. We did not need to consider customer-dependent values since the

instances were generated taking the capacity/demand ratio into account.

The following conclusions can be drawn from Tables 4.8 to 4.13. We have shown

that imposing restrictions on the quantities delivered increases the solution cost by

at least 1% and by up to 27% in some sets of instances when one forces the delivered

quantity to meet customer-dependent intervals, or by as much as 20% when the OU

policy is enforced. Simplifying the decision process by applying the OU inventory

policy increases the solution cost by more than 9% on average. This finding is

consistent with the observation made in Archetti et al. (2007) for the IRP, in Coelho

et al. (2012a) for the IRP with transshipment, and in Archetti et al. (2011) for the

integrated production-distribution problem.

Imposing a high vehicle capacity utilization rate seems to be the most expensive

consistency feature we have tested, especially on instances with many customers. On
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the other hand, imposing consistency in the assignment of drivers to customers does

not change the solution cost if the planning horizon is short, since many customers

are served only once. However, allowing some of the deliveries to deviate from the

driver consistency rule appears to be a very good feature, since most of the deliveries

will still benefit from the driver consistency policy. We believe that the negative

average cost increase (an actual cost reduction) shown in Table 4.13 is due to noise,

since it only happened on the two largest instance sets and by a small percentage.

Adjusting the cost parameter associated with the penalty for assigning more than

one vehicle to the same customer can have a major impact both on the consistency

of the assignments and on the overall cost. In our tests, the driver consistency and

partial consistency policies do not increase solution cost by much.

Ensuring minimum and maximum intervals between successive visits to the same

customer usually does not change the solution cost by more than 1.5%, but can

be as high as 17% in some cases. Finally, it is also noteworthy that inventory

holding costs play a major role not only in the values of the solutions obtained,

but also on the performance of the algorithm. From our experiments, the gaps of

the different consistency features were larger on the low inventory cost set for all

but three cases. This is due to the fact that when inventory costs are low, routing

decisions are relatively more important. Generating a good route is significantly

harder than obtaining a good inventory replenishment policy, thus the larger gaps

when inventory costs are less important.

Based on the findings presented above, we have solved to optimality a subset

of the MIRP instances with quantity consistency, the driver consistency and the

OU features. Results are summarized in Table 4.14, in which we show the average

gap between the best lower and upper bounds and the average running time in

seconds. For the sake of comparison we also present the average percentage increase

in cost when the upper bounds are compared to those of the basic case without the

consistency feature, as presented in Table 4.3. Note that the % increase columns of

Table 4.14 are computed over exact solution values, whereas those of Table 4.8 for

the same instances were computed for heuristic solution values. However, the results

of Table 4.14 are consistent with those of Table 4.8.

Finally, we have conducted experiments to better understand the structure of

the solutions in terms of number of routes deployed, number of visits per customer,

quantities delivered and average vehicle utilization. Note that these statistics are

related to each other. Indeed when vehicle utilization increases, so does the quantity

delivered, and fewer visits and routes are needed. In order to quantify these aspects,

we have solved the 10 instances containing 15 customers and six periods, allowing
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Table 4.14: Average computational results on the small instances set under consistency features

Instance
Quantity consistency Driver consistency OU

gap (%) time (s) % increase gap (%) time (s) % increase gap (%) time (s) % increase

small-5-3-low 0.00 2.8 8.58 0.00 4.0 3.18 0.00 0.6 10.77

small-10-3-low 0.00 12.6 0.35 0.00 26.2 0.48 0.00 14.2 5.33

small-15-3-low 0.00 29.0 0.00 0.00 596.6 0.00 0.00 36.4 6.64

small-20-3-low 0.00 112.6 0.00 3.32 13839.8 0.00 0.00 431.0 9.73

small-25-3-low 0.00 387.4 0.00 3.61 13592.4 0.11 0.00 2752.4 9.59

small-30-3-low 0.00 696.2 0.00 3.12 24191.4 0.09 0.77 10886.2 8.61

small-35-3-low 0.00 1139.0 0.00 0.51 25433.6 0.00 1.76 14799.0 9.53

Average 0.00 339.9 1.27 1.50 11097.7 0.55 0.36 4131.4 8.60

the use of two vehicles under an ML inventory policy. We have then run the same

instances under the quantity consistency, the driver consistency and the OU policy

consistency features. We provide averages in Table 4.15, presenting the number

“# routes” of vehicles dispatched, the number “# visits” of total visits performed,

the average size “Avg q” of the deliveries, and the average “Avg %Q” of vehicle

utilization. The results indicate that the structure of the solutions, notably the

number of dispatched vehicles and quantities delivered do not change considerably

when different consistency features are applied. In other words, consistency features

seem to affect the cost of the solutions, but not their structure.

Table 4.15: Average computational results on the structure of the solutions with consistency features

Cases # routes # visits Avg q Avg %Q

Basic 7.0 39.0 98.4 87.6

Quantity consistency 7.0 39.7 96.6 87.6

Driver consistency 7.2 38.9 98.6 85.5

OU policy consistency 7.4 38.8 100.0 83.9

4.5.4 Sensitivity analyses for the consistent MIRP

We have performed some sensitivity analyses on a number of consistency param-

eters. While some consistency features are hard constraints, like the OU policy and

the driver consistency, all others are subject to the influence of parameters that can

affect the cost of a solution.

Obviously for the driver partial consistency feature, the choice of the value of



4.5. Computational experiments 109

the parameter α is highly related to the performance of the consistency feature itself

and to the cost of the solutions it yields. Thus, we have also evaluated how the

driver partial consistency case responds to different values of the penalty parameter

α. Specifically, we have used α = 0.1, 1, 10 and 100. We then observed how

many vehicle assignments were made in the final solution, as well as the cost of the

solution. As expected, the number of extra vehicles increased in the instances with

six time periods, compared with the solutions obtained for the three-period instances.

This is due to the fact that many customers were served only once in the shorter

horizon instances and automatically respected the driver consistency rule. Also, the

number of vehicle assignments decreased to close to one per customer as the value

of α increased. Figure 4.3 depicts the average number of vehicle assignments and

solution cost per customer.
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Figure 4.3: Average number of vehicles and cost of the solution per customer for the consistent MIRP with

partial driver consistency.

We have also performed sensitivity analyses for the three remaining consistency

features. More precisely, we have evaluated how the solution cost is affected by

changes in the parameters of the quantity consistency, the vehicle filling rate and

the visit spacing features. In particular, for the quantity consistency feature we have

performed tests with a loose and with a tight interval; for the vehicle filling rate, we

have tested with a lower and a higher vehicle utilization; for the visit spacing, we

have run tests with more frequent deliveries and with more spaced deliveries. Results

of the experiments on a subset of instances and the values chosen for the parameters

are presented in Tables 4.16−4.18. The directions of the cost increases and decreases

are small and consistent with the directions of the changes of the parameters.
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Table 4.16: Sensitivity analyses for the quantity consistency feature

gl = 0, gu = 4 gl = 1, gu = 2

Average % cost increase −1.22 3.11

Table 4.17: Sensitivity analyses for the vehicle filling rate consistency feature

γ = 30 γ = 70

Average % cost increase −3.15 0.49

4.5.5 Final computational comments

To conclude this section, it is worth making a number of comments on our com-

putational experiments. We have profiled the code of our heuristic algorithm using

GNU gprof to identify how the computing time was distributed in the algorithm.

Our experiments show that approximately 65% of the running time is spent solving

network flow problems. This subproblem must be solved several times during the

application of some of the ALNS operators, since these need to evaluate the cost of

intermediate solutions, and also at the end of each iteration to compute the cost of

the new solution. Even though this percentage is high, solving network flow problems

is still faster than solving integer linear programs using a general purpose solver. The

SI subproblem is solved less often but is more time consuming, taking approximately

7% of the running time. In our experiments we have observed that on average 69%

of the calls to SI have led to improvements. Several simple functions that are used

very often, usually several times at each iteration, such as identifying the cheapest

insertion position, instantiating the DQ and the SI subproblems, removing customers

from routes, copying solutions and updating weights and scores, among others, each

account for only a few percents of the total running time.

As mentioned in Section 4.4.3 we have opted not to stop the algorithm after

a predetermined running time because we wanted to evaluate the relative impact

of each policy, and not show how the algorithm performed on any particular one.

Thus, even though some computational times are large, our experiments enable us

to derive insights on how much each policy would cost to the decision maker, and

Table 4.18: Sensitivity analyses for the visit spacing consistency feature

mi = 0, Mi = 3 mi = 2, Mi = 2

Average % cost increase −0.66 0.89
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once he makes his decision, a specific algorithm can be applied to obtain a solution

for that particular policy in less time. Specifically, the driver consistency rule yields

a high average running time, due to the constraint added to the SI subproblem, with

140,000 seconds on average for the large instances. One particular instance of the

driver partial consistency rule ran for almost 30,000 seconds. Simpler models, such

as the basic MIRP or the OU policy had an average running time of 2,000 seconds for

the small instances with three periods and of 8,000 seconds for the small instances

with six periods. On the larger instances, both policies yielded an average of 14,000

seconds.

4.6 Conclusions

We have incorporated six consistency features in the MIRP. One of these is the

well-known OU replenishment policy, and another is the concept of driver consis-

tency already introduced in the context of the multi-period VRP. We have extended

the branch-and-cut scheme introduced in Chapter 3 to account for multi-vehicles as

well as all consistency features. We have also developed a matheuristic composed of

an ALNS enhanced by the exact solution of two types of MILPs. The first one is a

network flow model used to compute delivery quantities associated with a given set

of routes. The second one provides an approximation of the cost of a new solution

obtained by applying vertex removals and reinsertions to a given solution. The al-

gorithm is sufficiently flexible to handle the basic MIRP as well as any meaningful

combination of the six consistency features we have considered. However, the per-

formance improves when some adjustments are made for certain features. Extensive

computational tests on benchmark instances have shown that introducing some of

these features can increase the average solution cost significantly, by up to 40% when

imposing a high vehicle capacity utilization, or can cost as little as less than 1% when

controlling the interval between successive visits to the same customer. Our study

clearly illustrates the costs and benefits of incorporating consistency features in the

basic MIRP.



Chapter 5

Dynamic and Stochastic

Inventory-Routing

Chapter information

An article based on this chapter was submitted for publication in Transporta-

tion Science: L. C. Coelho, J.-F. Cordeau, G. Laporte. Dynamic and Stochastic

Inventory-Routing. Technical Report, CIRRELT-2012-37, Montréal, 2012.

In this chapter, we integrate the concepts of flexibility and of consistency within

the framework of inventory-routing. Specifically, we consider a dynamic and stochas-

tic environment, where we compare different policies.

5.1 Introduction

From an operational perspective, the VMI strategy is based on the solution of a

difficult combinatorial optimization problem called the Inventory-Routing Problem

(IRP), which integrates inventory management and vehicle routing decisions over

several periods. The IRP has received increased attention in recent years. Several

heuristics (Bertazzi et al., 2002; Archetti et al., 2012; Coelho et al., 2012a) as well

as exact algorithms (Archetti et al., 2007; Solyalı and Süral, 2011; Coelho and La-

porte, 2013) have been proposed for the single vehicle version of the problem. The

multi-vehicle case (MIRP) has also been solved heuristically (Coelho et al., 2012b)

and exactly (Adulyasak et al., 2012; Coelho and Laporte, 2013). In addition, an

extended version of the MIRP incorporating several consistency features has been

solved heuristically and exactly by Coelho et al. (2012b) and Coelho and Laporte
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(2013), respectively. However, the studies described in these papers deal with a static

and deterministic version of the problem in which all information is available when

decisions are made. Literature reviews on the IRP can be found in Campbell et al.

(1998), Cordeau et al. (2007) and Andersson et al. (2010).

Dynamic problems are frequently encountered in practice. They reflect real-life

situations in which one has to make decisions without full knowledge of future events.

Examples of such problems arise in the context of the Dynamic Vehicle Routing Prob-

lem in which customer demands are gradually revealed over time (Berbeglia et al.,

2010; Wen et al., 2010; Pillac et al., 2011). In Dynamic and Stochastic Inventory-

Routing Problems (DSIRP), customer demand is known in a probabilistic sense,

thus yielding a dynamic and stochastic problem. In the IRP literature, dynamic

problems have been studied by Kleywegt et al. (2002, 2004) who applied dynamic

programming, and by Hvattum and Løkketangen (2009) and Hvattum et al. (2009)

who used scenario trees and a progressive hedging algorithm. Recently, Bertazzi

et al. (2012) have formulated the stochastic IRP as a dynamic program and have

solved it by means of a hybrid rolling horizon algorithm. This algorithm estimates

unknown demands on the basis of their past average, and then solves a deterministic

instance.

Solving a dynamic problem consists of proposing a solution policy as opposed to

computing a static output (Berbeglia et al., 2010). A possible policy is to optimize

a static instance whenever new information becomes available. The drawback of

such a method is that it is often very time consuming to solve a large number of

instances. A more common policy is to apply the static algorithm only once and

then reoptimize the problem through a heuristic whenever new information is made

available. A third policy, which can be combined with either of the first two, is to

take advantage of the probabilistic knowledge of future information and make use of

forecasts. In this chapter we use forecasts in combination with the first policy. For

more information on the solution of dynamic problems, see Psaraftis (1998); Ghiani

et al. (2003) and Berbeglia et al. (2010).

The deterministic algorithms developed by Coelho et al. (2012a) allow the solu-

tion of DSIRPs within a rolling horizon framework, where one uses demand forecasts

as an approximation of the future unknown demand. As noted by Özer (2011), the

use of past information can become an important aspect of the inventory manage-

ment process provided it is properly used. Demand forecasts are typically needed for

practical inventory control systems, the most common approach being the extrap-

olation of historical data based on the statistical analysis of time series (Axsäter,

2006).
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Our aim is to describe and compare several solution policies for the DSIRP in

which the objective is to minimize the total inventory, distribution and shortage costs.

There are key differences between our approach and previous ones, in particular that

of Bertazzi et al. (2012). One of these lies in the fact that we develop and compare

several policies to solve the same problem, instead of only one. In particular, we

are able to evaluate the performance of our method on inventory policies that are

more general than the (hard constraint) assumption made in that study. Moreover,

we propose a method that can make use of historical data in order to take into

account future unknown demands, thus being able to efficiently solve instances in

which the demand presents a trend or seasonalities, which was not previously the

case. We also consider a dynamic environment in which some information arrives

over time and is used in a rolling horizon framework. In addition, as in Coelho et al.

(2012a), we allow the use of lateral transshipments between customers as a means to

avoid stockouts when demand is high. Finally, we evaluate the impact of imposing

some consistency features to the solutions of dynamic and stochastic instances of

the IRP, thus extending the scope of the study of Coelho et al. (2012b). In addition

to proposing an efficient and flexible solution methodology for the DSIRP, one of

our main scientific contributions is to evaluate the value of demand forecasts and

transshipments.

The remainder of the chapter is organized as follows. In Section 5.2 we formally

define the DSIRP and we describe in Section 5.3 the strategies we have developed to

solve it. Implementation details are provided in Section 5.4. This is followed by the

results of extensive computational experiments in Section 5.5, and by conclusions in

Section 5.6.

5.2 Problem description

We now formally introduce the DSIRP. The problem is defined on a graph G =

(V,A), where V = {0, ..., n} is the vertex set and A = {(i, j) : i, j ∈ V, i 6= j} is

the arc set. Vertex 0 is a depot at which the supplier is located and the vertices of

V ′ = V \{0} represent customers. The problem is defined over an horizon of length p

and at each time period t ∈ T = {1, ..., p} the demand dti of customer i is a random

variable Dt
i . In practice, the demand is not known by the decision maker who has

to estimate it on the basis of historical data. We assume the decision maker can use

any kind of forecast and input this information into the algorithmic framework we

provide. The decision maker realizes the actual values of dti at the end of each period

t. A unit inventory holding cost hi is incurred by customer i and by the supplier at
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each period, and customer i has an inventory holding capacity Ci. We assume the

supplier has enough inventory to meet all the demand during the planning horizon.

If the demand of customer i is higher than its inventory level, it is then lost and a

unit shortage penalty pi is incurred. At the beginning of the planning horizon the

decision maker knows the inventory level I0
0 and I0

i of the supplier and customer i,

respectively.

As is common in the IRP literature, we assume that a single vehicle of capacity

Q is available (Bertazzi et al., 2002; Archetti et al., 2007, 2012; Bertazzi et al., 2002,

2012; Coelho et al., 2012a). The vehicle is able to perform one route per time period,

from the supplier to a subset of customers. A routing cost cij is associated with arc

(i, j) ∈ A. We also consider that the supplier uses an order-up-to inventory policy.

This policy has been widely used in IRPs and related problems (Bertazzi et al., 2002;

Archetti et al., 2007, 2012; Adulyasak et al., 2012; Coelho et al., 2012a) and ensures

that whenever a customer is visited, the quantity delivered is that needed to fill its

inventory capacity. To ensure the feasibility of such a policy, given that there is only

one capacitated vehicle available, we assume direct deliveries can take place from

the supplier to any customer, by subcontracting to a carrier, to allow for planned

deliveries to meet the OU requirements. In addition, after the demand is realized, if

a customer faces a shortage it can arrange a lateral emergency transshipment from

another customer if this is feasible. Both types of outsourced deliveries (direct deliv-

eries and lateral emergency transshipments) are only made by direct shipping and the

unit cost associated with direct deliveries or transshipments from i to j is βcij , where

β > 0. As is standard in vehicle routing, travel costs are distance-dependent and are

unrelated to the vehicle load. However, direct delivery and transshipment costs are

distance- and volume-dependent because this is often how outsourced carriers define

the terms of their contracts.

Regarding temporal issues, we consider that the decision maker first decides which

customers to replenish in each period as well as the associated vehicle route and the

direct shipments, if any. After demand is revealed, lateral transshipments may be

arranged if any customer faces a shortage.

The variables and constraints of the model are as follows. Let Iti be the inventory

level at customer i at the end of period t, qti the quantity delivered to customer i

in period t using the supplier’s vehicle, wtij the quantity carried by the outsourced

carrier from customer i to customer j in period t, and lti the lost demand at customer

i in period t due to insufficient inventory. The inventory level at the end of period t

at customer i is then
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Iti = It−1
i + qti +

∑
j∈V

wtji −
∑
j∈V ′

wtij − dti + lti i ∈ V ′ t ∈ T ′. (5.1)

The objective is to minimize the total inventory, shortage, routing an transship-

ment costs over the planning horizon, that is

minimize
∑
t∈T

∑
i∈V

hiI
t
i +

∑
t∈T

∑
i∈V ′

pil
t
i + βcij

∑
t∈T

∑
i,j∈V ′

wtij + crt , (5.2)

where crt represents the cost of the route performed in period t ∈ T , which can be

obtained by solving a Traveling Salesman Problem over all the customers visited in

period t.

5.3 Solution policies

The problem can be solved under a proactive policy or under a reactive policy,

depending on whether demand forecasts are made or not. For each of these two

policies emergency lateral transshipments can be allowed or not. This yields a total

of four policies, which are all implemented in a rolling horizon fashion.

5.3.1 Reactive policies

Under reactive policies, which are sometimes called “wait and see”, one observes

the state of the system in order to make the next decision regarding routing and de-

livery. Formally, a reactive policy is defined as an (s, S) replenishment system under

which whenever the inventory reaches the reorder point s, it triggers a replenishment

order to bring the inventory position up to level S. The reorder point s should con-

sider the delivery lead time and the stockout risk resulting from the stochasticity of

the demand.

5.3.1.1 Routing only

Under this policy, deliveries are performed by the supplier’s vehicle and no emergency

lateral transshipment takes place when a customer runs out of inventory. Routing

decisions are based solely on a customer-dependent threshold si and on its inventory

level. If the inventory level at customer i is below si when the actual demand is

realized at the end of period t, then customer i is selected to be served in period

t + 1. The threshold can be updated after each period. The replenishment level

Si usually depends on ordering and holding costs and is set to bring the inventory

level up to a target value. This inventory policy has been widely studied and used



5.3. Solution policies 117

in other IRP studies (Bertazzi et al., 2002, 2012; Archetti et al., 2012; Coelho et al.,

2012b,a). As noted by Bertazzi et al. (2012) and Coelho et al. (2012b), the OU

policy is also relevant from a practical point of view and simplifies the decision

making process while ensuring the stability and consistency of the replenishments.

As in these studies, we also assume that the target level meets the customer inventory

capacity. As mentioned, in order to ensure that this rule is always met and to avoid

infeasibilities due to insufficient vehicle capacity, direct deliveries are allowed to take

place from the depot. This ensures that all customers i whose inventory level is

below the threshold si will have their inventories filled to their capacity in the next

period.

5.3.1.2 Routing and transshipment

This policy allows lateral transshipments between customers as an emergency mea-

sure against stockouts. The decision regarding whether or not to visit customer i is

dependent on the threshold si as before. The inventory policy applied still follows

an OU policy in which direct deliveries are allowed to take place from the sup-

plier. After these decisions have been made, demand is revealed. If a customer runs

out of inventory when its demand is realized, lateral transshipments can take place

whenever they are possible and economically interesting. Lateral transshipments are

allowed only as an emergency measure, i.e. they cannot be used to move inventory

to a location having a lower holding cost. This policy is in line with the description

of emergency transshipments provided by Nonås and Jörnsten (2007) and Paterson

et al. (2011).

5.3.2 Proactive policies

A proactive policy not only observes the state of the system but also attempts to

anticipate its future state by forecasting the demand and by using this information

in the planning process.

5.3.2.1 Routing only

This policy makes use of forecasts as a means of taking into account future demand

but does not allow lateral transshipments. Once forecasts are obtained, the problem

can be solved as a deterministic IRP. Direct deliveries from the supplier to the

customers are allowed to ensure the feasibility of the OU policy. Under this policy,

we first compute an f -period forecast for each of the customers, on the basis of their

historical demands. A prediction interval that makes use of probabilistic information
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is computed for each customer. Forecasts are then used as a proxy for the unknown

demands and initial inventory levels are set equal to the last known inventory level of

each customer. The problem can then be solved heuristically as a deterministic IRP.

The algorithm provides an f -period plan, of which only the first-period solution

is implemented. Demands are then realized, new forecasts are computed and the

process is reiterated.

5.3.2.2 Routing and transshipment

As an extension of the previous policy, in this case lateral transshipments are allowed

to take place after the demand is realized.

5.4 Algorithms

In this section we describe the four algorithms resulting from the solution policies

described in Section 5.3.

5.4.1 Reactive policies

We first describe the two algorithms proposed to implement the reactive policies,

with or without the use of lateral transshipments.

5.4.1.1 Routing only

The first decision made under this policy regards the level of the inventory at which

the reorder point si of customer i is set. It is equal to an estimate of the expected

demand during the lead time L, plus a safety stock dependent on demand variability,

lead time and target service level. We denote the estimate of the expected demand

µi of customer i per period by µ̂i and that of its standard deviation σi by σ̂i. These

values as well as the resulting threshold can be updated at every period. Following

classical inventory management practices (Eppen and Martin, 1988), and assuming

independent and normally distributed demands, si can be computed as

si = Lµ̂i + zα

√
σ̂i

2L, (5.3)

where α is the probability of a stockout and zα is the α-order quantile of the demand

distribution. The quantity 1− α is usually referred to as the service level.

The selection of customers to serve with the supplier’s vehicles and through direct

deliveries, as well as the quantities delivered by each option yields an NP-hard prob-

lem. However, since these decisions should be taken only once for every period, and
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given the size of the instances considered in this study, we have decided to solve this

problem exactly by means of a mixed-integer linear program (MILP). The problem

is defined as follows.

If the inventory level of customer i is below its threshold si, the total quantity

that must be delivered is then the one needed to fill its capacity (i.e. an OU policy

applies); otherwise no delivery is made. This quantity defines the parameter d′i. We

then solve the following MILP, called Routing-Direct (RD), in order to decide which

customers are visited by the supplier’s vehicle, which ones are visited through direct

deliveries (and combinations of these two options), and the quantities delivered by

each mode. When the routing cost matrix cij is symmetric, as is the case in our

computational experiments, we work with an undirected formulation in order to

reduce the number of variables. Thus, the routing variables xij(i < j) are equal to

the number of times edge (i, j) is traversed. We also introduce binary variables yi,

equal to one if and only if vertex i (the supplier or a customer) is visited by the

supplier’s vehicle. We denote by qi the quantity delivered by the supplier’s vehicle

and by wi the quantity delivered through direct deliveries to customer i. The problem

can then be formulated as follows:

(RD) minimize
∑
i∈V

∑
j∈V,i<j

cijxij + β
∑
i∈V

wic0i, (5.4)

subject to

qi + wi = d′i i ∈ V ′ (5.5)∑
i∈V ′

qi ≤ Q (5.6)

qi ≤ Qyi i ∈ V ′ (5.7)∑
j∈V,i<j

xij +
∑

j∈V,j<i
xji = 2yi i ∈ V (5.8)

∑
i∈S

∑
j∈S,i<j

xij ≤
∑
i∈S

yi − ym S ⊆ V ′, for some m ∈ S (5.9)

qi, wi ≥ 0 i ∈ V ′ (5.10)

xi0 ∈ {0, 1, 2} i ∈ V ′ (5.11)

xij ∈ {0, 1} i, j ∈ V ′ (5.12)

yi ∈ {0, 1} i ∈ V. (5.13)

The objective function (5.4) defines the minimization of routing and direct de-

livery costs. Constraints (5.5) state that the total delivered quantity d′i is equal
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to the quantity qi delivered by the supplier’s vehicle, plus the quantity wi supplied

by means of a direct delivery. Constraints (5.6) ensure that the vehicle capacity is

not exceeded, while constraints (5.7) guarantee that only customers assigned a visit

can have quantities delivered by the supplier vehicle. Constraints (5.8) and (5.9)

are degree constraints and subtour elimination constraints, respectively. Constraints

(5.10)−(5.13) enforce the integrality and non-negativity conditions on the variables.

The RD model can be simplified by preprocessing all customers with zero d′i and

removing the corresponding variables.

Algorithm 5.1 provides a pseudocode of this policy implementation.

Algorithm 5.1 Pseudocode: Routing only
1: for t = 0 to p− 1 do

2: for i = 1 to n do

3: Compute si on the basis of the past demand.

4: if Iti < si then

5: Include i in the set of customers that follow an OU policy in period t+ 1.

6: end if

7: end for

8: Solve RD to define direct deliveries destinations and quantities.

9: end for

5.4.1.2 Routing and transshipment

The implementation of this policy is like the previous one except that after the solu-

tion has been computed, demands are revealed and lateral transshipments are allowed

to take place. These are computed by means of the following min-cost network flow

problem. This model, called Transshipment Origins-Destinations (TOD), optimizes

the quantities as well as origins and destinations of the lateral transshipments. Note

that in this model the parameter I0
i represents the initial inventory of customer i at

the beginning of each time slice of the rolling horizon, unlike the initial inventory

of the instance being solved as it was defined in Section 5.2. It is solved once per

period, after demands are realized. The problem is defined as follows:

(TOD) minimize β
∑
i∈V ′

∑
j∈V ′

cijwij +
∑
i∈V ′

pili +
∑
i∈V ′

Iihi (5.14)

subject to

Ii = I0
i +

∑
j∈V ′

wji −
∑
j∈V ′

wij + li i ∈ V ′ (5.15)
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0 ≤ Ii ≤ Ci i ∈ V ′ (5.16)

0 ≤ li ≤ −min{0, I0
i } i ∈ V ′ (5.17)

0 ≤ wij ≤ min{max{0, I0
i },−min{0, I0

j }} i, j ∈ V ′. (5.18)

The objective function (5.14) minimizes the total lateral transshipment, lost de-

mand and inventory costs. Constraints (5.15) ensure flow conservation by stating

that the final inventory of customer i is the sum of its initial inventory, plus all quan-

tities transshiped to i, minus all quantities transshiped from i to other customers,

plus the lost demand. Constraints (5.16) set bounds on the final inventory. Con-

straints (5.17) define bounds on the lost demand of customer i: if its initial inventory

is non-negative, then no demand can be lost, and both bounds are zero; otherwise,

a minimum of zero and a maximum of I0
i units can be lost. Likewise, constraints

(5.18) impose bounds on the flows of transshipment arcs. There are four possible

combinations of inventory levels for i and j, all of which can be handled by these

constraints:

1. I0
i ≥ 0 and I0

j ≥ 0: the inner min{0, I0
j } is zero, setting the right-hand side

of the constraint to zero. No transshipment should occur only to relocate

inventory, since j does not need an emergency transshipment;

2. I0
i ≥ 0 and I0

j < 0: the inner min{0, I0
j } is I0

j since this quantity is negative;

the outer min{I0
i , I

0
j } is then the minimum between the availability I0

i and the

requirement −I0
j . This is then the upper bound on the arc of the emergency

transshipment from i to j;

3. I0
i < 0 and I0

j ≥ 0: both inner functions return zero; the upper bound is then

also zero, since j does not need an emergency transshipment and i does not

have a surplus;

4. I0
i < 0 and I0

j < 0: the max function returns zero and the inner min function

returns −I0
j ; the outer function then becomes min{0, I0

j } which returns zero as

the upper bound flow on the arc flow, since i does not have enough inventory

to supply to j.

We depict in Figure 5.1 a simple example of this network flow problem. The

flow on the small dashed arcs equals the initial inventory level at customer i. Note

that this number represents the surplus available at vertex i. If I0
i is negative, it

will enable customer i to have a lost demand. Then the flow over the large dashed

arcs lies in the interval [0,−min{0, I0
i }] and represents the lost demand of customer
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i. Note that if I0
i is positive, the flow on this arc is set to zero; if I0

i is negative,

it represents the lost demand and lies between zero and −I0
i , i.e. this is the case in

which all the excess demand is lost. The costs of these arcs are equal to pi. The

solid arcs represent the inventory carried at customer i at the end of the period. The

flows on these arcs are bounded by [0, Ci] and their associated costs are hi. Finally,

the dotted arcs in the middle represent transshipments. They are defined between

any pair of vertices (i, j), in both directions, and their cost is βcij . The flows on

these arcs lie in the interval
[
0,min{max{0, I0

i },−min{0, I0
j }}

]
.
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Figure 5.1: Example of the network flow problem solved to decide of transshipment quantities, origins and

destinations.

The pseudocode corresponding to this policy is described in Algorithm 5.2.

5.4.2 Proactive policies

We now describe the two algorithms used to implement the proactive policies.

5.4.2.1 Routing only

This policy makes use of forecasts on future demand to help make current decisions.

The first decision relates to the choice of a forecasting method. There exist sev-

eral methods for forecasting future demand based on time series analysis. For an

overview, see Makridakis et al. (1998). In this chapter we apply the exponential

smoothing technique which assigns exponentially smaller weights to past observa-

tions. This is a simple yet powerful method capable of identifying changes in the

mean, trend or seasonalities in time series. It provides a point forecast, i.e. a single
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Algorithm 5.2 Pseudocode: Routing and transshipment
1: for t = 0 to p− 1 do

2: for i = 1 to n do

3: Compute si on the basis of the past demand.

4: if Iti < si then

5: Include i in the set of customers that follow an OU policy in period t+ 1.

6: end if

7: end for

8: Solve RD to define direct deliveries destinations and quantities.

9: Reveal demands of period t+ 1.

10: for i = 1 to n do

11: if Iti + qt+1
i − dt+1

i < 0 then

12: Allow transshipments to customer i.

13: end if

14: end for

15: Solve TOD to define transshipments origins/destinations and quantities.

16: end for

value representing the expected future demand, or a prediction interval, i.e. a point

forecast and an estimated variance (see Hyndman et al. (2008)).

The second decision regards the length f of the forecasting and rolling horizon. A

compromise must be made between a short horizon which yields faster computations

but lower solution quality, and a longer horizon which considers more information

but requires more extensive computations. In Section 5.5.3.5 we examine the impact

of f on the solution process.

Finally, the third decision is how to incorporate future demand forecasts in an

IRP heuristic. We have adapted the work of Coelho et al. (2012a) which uses an

adaptive large neighborhood search (ALNS) matheuristic and provides very good

results on benchmark static instances. This heuristic is described in Section 5.4.3 and

can handle both the OU policy or the more general maximum level (ML) inventory

policy, which does not force the deliveries to fill the customer capacity. Once forecasts

are available, the dynamic problem reduces to a static one.

Algorithm 5.3 provides the pseudocode of this policy.

5.4.2.2 Routing and transshipments

This policy works much like the previous one, except that after vehicle routes are

created for all periods of the rolling horizon and the first of them is implemented, de-
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Algorithm 5.3 Pseudocode: Routing only
1: for t = 0 to p− 1 do

2: for i = 1 to n do

3: Compute an f -period forecast model for i based on past demand observa-

tions.

4: end for

5: Apply the ALNS-based heuristic to the reduced f -period problem.

6: Implement the route obtained for the first period.

7: end for

mands are revealed and lateral transshipments are allowed as an emergency measure

against shortages. The way these transshipments are computed follows the same

min-cost network flow problem, as in Section 5.4.1.2. The pseudocode of this policy

is presented in Algorithm 5.4.

Algorithm 5.4 Pseudocode: Routing and transshipments
1: for t = 0 to p− 1 do

2: for i = 1 to n do

3: Compute an f -period forecast model for i based on past demand observa-

tions.

4: end for

5: Apply the ALNS-based heuristic to the reduced f -period problem.

6: Implement the route obtained for the first period.

7: Reveal demands of period t+ 1.

8: for i = 1 to n do

9: if Iti + qt+1
i − dt+1

i < 0 then

10: Allow transshipments to customer i.

11: end if

12: end for

13: Solve TOD to define the transshipments’ origins, destinations and quantities.

14: end for

5.4.3 ALNS matheuristic

The algorithm proposed by Coelho et al. (2012a) is an implementation of the

ALNS algorithm originally proposed by Ropke and Pisinger (2006a) for the Vehicle

Routing Problem and already successfully applied to a number of other contexts

(Pepin et al., 2009; Bartodziej et al., 2009; Hewitt et al., 2010; Laporte et al., 2010).
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In this implementation, some subproblems are solved exactly as min-cost network

flow problems. It can therefore be described as amatheuristic (Maniezzo et al., 2009),

i.e. as a hybridization of a heuristic and of a mathematical programming algorithm.

This algorithm is highly suitable for the problem at hand because of its generality

and flexibility. It provides a highly diversified search through the multiplicity of

its operators and through the use of a random mechanism for their selection. This

implementation uses a subset of the operators used in Coelho et al. (2012a) and runs

for fewer iterations in order to make it faster. Because of the dynamic nature of our

problem, we must indeed be able to run it several times for a single instance. The

impact of this implementation choice is analyzed in Section 5.5.3.

In summary, the algorithm of Coelho et al. (2012a) creates different vehicles

routes at each ALNS iteration by removing and reinserting customers into vehicle

routes. This is done by selecting one of several simple operators to explore different

neighborhoods of the incumbent solution. Such operators include random insertions

or removals, best insertions or removals, cluster insertions or removals, emptying

routes, swapping routes and moving customers assignments. After vehicle routes

have been created, the remaining problem is that of determining delivery quantities

and transshipment origins, destinations and quantities, while minimizing the total

inventory-distribution cost. This problem is solvable efficiently and exactly using a

min-cost network flow algorithm and can easily handle both the ML and OU policies.

This approach was shown in Coelho et al. (2012a) to generate IRP solutions with

value lying within 0.50% of optimality.

Each operator i is assigned a weight ωi whose value depends on its past per-

formance and on its score. Given h operators with weights ωi, operator j will be

selected with probability ωj/
h∑
i=1

ωi. Initially, all weights are equal to one and all

scores are equal to zero. Operators are rewarded according to the their past perfor-

mance: they receive a high reward σ1 if they yield a new best solution, a medium

reward σ2 if their solution is better than the incumbent one, or a low reward σ3 if

the solution they provide is worse but still accepted. Initially, all operators have the

same probability of being selected. After ϕ iterations, scores are computed taking

into account the rewards accumulated as follows. Let πi and oij be, respectively, the

score of operator i and the number of times it has been used in the last segment j.

The updated weights are then

ωi :=

ωi if oij = 0

(1− η)ωi + ηπi/oij if oij 6= 0,
(5.19)
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where η ∈ [0, 1] is called the reaction factor, controlling how quickly the weight

adjustment reacts to changes in the movement performance. All scores are reset to

zero.

New solutions are accepted or rejected according to a simulated annealing crite-

rion: given a solution s, a neighbor solution s′ is accepted if z(s′) < z(s), and with

probability e−(z(s′)−z(s))/τ otherwise, where z(s) is the solution cost and τ > 0 is the

current temperature. The temperature is initialized at τstart and is decreased by a

cooling rate factor φ at each iteration, where 0 < φ < 1.

We have used the following destroy and repair operators. In what follows, all

insertions are performed following the cheapest insertion rule and ρ is an integer

randomly drawn from the interval [1, n] using a semi-triangular distribution with a

negative slope.

• Destroy operators

– Randomly remove ρ: This operator randomly selects one period and

removes one randomly selected customer from it. It is repeated ρ times.

– Shaw removal: Following the ideas developed by Ropke and Pisinger

(2006a) and Shaw (1997), this operator removes customers that are rela-

tively close to each other. Specifically, it randomly selects one period and

one customer served in this period, it computes the distance distmin to

the closest customer also being served by the same route, and it removes

all customers within 2distmin units from the selected route.

– Empty one period: This operator selects one random period and re-

moves all customers assigned to it.

– Remove one customer: This operator randomly selects one customer

and removes all its assignments to any periods.

• Repair operators

– Randomly insert ρ: This operator randomly inserts ρ customers into

the current solution. Specifically, it selects one random customer and one

random period, and inserts it into the route in that period if it is not

already present. This operator is applied ρ times.

– Shaw insertions: This operator is similar to the Shaw removal operator

in the sense that it selects similar customers to be inserted together. It

selects one period and one customer not served in that period. The oper-

ator then computes distmin and all customers within a 2distmin distance

are inserted in the same route.
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– Swap ρ customers: This operator selects two customers from two dif-

ferent periods and swaps their assignments. It is also applied ρ times.

– Insert one customer several periods: This operator selects one cus-

tomer and randomly assigns it to several periods of the planning horizon.

The operators just described generate the selection of visited customers as well

as their sequence in the vehicle route. The remaining problem is that of determining

delivery quantities and transshipment origins, destinations and quantities, which can

be solved very efficiently by means of a min-cost network flow algorithm.

Given that the ALNS algorithm is invoked several times in a rolling horizon

fashion, it had to be tuned to be extremely streamlined and fast. This drove us

to the following settings for the operators and parameters after a tuning phase.

The starting temperature τstart is set to 20,000 and the cooling rate φ is 0.9993.

The stopping criterion is satisfied when the temperature reaches 0.01, that is, when

approximately 20,000 iterations have been performed. In our implementation, the

segment length ϕ was set to 200 iterations and the reaction factor η was set to 0.7,

that is, new weights will be composed by 70% of the performance on the last segment

and 30% by the last weight value. Scores are updated with σ1 = 10, σ2 = 5 and σ3

= 2.

At the end of each segment we also perform a 2-opt periodic postoptimization.

Algorithm 5.5 presents a simplified pseudocode for this heuristic. For algorithmic

and implementation details, the reader is referred to Coelho et al. (2012a).

5.5 Computational experiments

In this section we provide some implementation specifications, we describe the

generation procedure for the test instances and we present results of extensive com-

putational experiments. These are described in Section 5.5.3.1 for the base case and

in Sections 5.5.3.2 to 5.5.3.7 for several alternative configurations.

5.5.1 Implementation specifications

All computations were performed on a grid with 630 nodes available and running

the Scientific Linux 6.1 operating system. Each vertex is equipped with two Intel

Westmere-EP X5650 hexa-core processors running at 2.67 GHz and with 24 GB or

48 GB of RAM memory.

Our algorithm was coded in C++ and makes use of only one processor. The

min-cost network flow problem was implemented using the LEMON graph template
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Algorithm 5.5 ALNS heuristic - simplified pseudocode
1: Initialize: set all weights equal to 1 and all scores equal to 0.

2: sbest ← s← initial solution.

3: τ ← τstart.

4: while τ > 0.01 do

5: s′ ← s.

6: Select a destroy and a repair operator and apply them to s′.

7: Fix routing decisions, solve the remaining network flow problem.

8: if z(s′) < z(s) then

9: s← s′;

10: if z(s) < z(sbest) then

11: sbest ← s;

12: else if s′ is accepted by the simulated annealing criterion then

13: s← s′;

14: end if

15: end if

16: if the iteration count is a multiple of ϕ then

17: update the weights and reset the scores of all operators.

18: perform an intra-route 2-opt.

19: end if

20: τ ← φτ ;

21: end while

22: return sbest;
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library (Dezső et al., 2011) running the network simplex algorithm for its internal

computations. Forecasts were carried out using the forecast package (Hyndman and

Khandakar, 2008; Hyndman et al., 2012) available for R Language and Environment

for Statistical Computing (R Development Core Team, 2011) and embeded within our

C++ code using the RInside classes (Eddelbuettel and François, 2012). We allowed

the software to run in its default settings, searching through all the 30 variants of

the exponential smoothing models described in Hyndman et al. (2008). We made

use of the 50 past periods immediately before the current period as historical data

for the chosen forecasting method.

Given that the lead time is equal to one (all deliveries are performed in the next

period) and its standard deviation is zero, the value of si used in equation (5.3) is

then

si = µ̂i + zασ̂i. (5.20)

Using the last known demand as an expectation of future demand is equivalent to

a naïve forecast method in which the next period forecast is equal to the last known

value, this being the simplest adaptive forecasting method (Goetschalckx, 2011).

5.5.2 Instance generation

We have generated instances following some of the standards used for the in-

stances generated for the IRP by Archetti et al. (2007, 2011), namely the mean

customer demand, initial inventories, vehicle capacity and geographical location of

the vertices are the same as in their tests. Instances were generated with 50 past

periods of demand information before the future p periods such that it can used as

historical data. Our set is generated according to the following data:

• number of customers n: 5k where k = 1, 2, 3, 5, 10, 15, 20, 25, 30, 40;

• horizon p: equal to 5, 10 or 20 periods;

• demand distributions: mean demand µi is generated as an integer random

number following a discrete uniform distribution in the interval [10, 100], and

standard deviation σi as an integer random number following a discrete uni-

form distribution in the interval [2, 10]. The demands are generated following

a normal distribution with these parameters. If a negative demand value is

generated, it is substituted by zero;

• product availability at the supplier: mean production r̄ is generated as an

integer random number following a discrete uniform distribution in the interval
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[100n, 140n], and σ0 as an integer random number following a discrete uniform

distribution in the interval [2, 10]. The production is generated following a

normal distribution with these parameters. They are used only to account for

inventory costs at the supplier, as in Archetti et al. (2007);

• maximum inventory level Ci: µigi, where gi is randomly selected from the set

{2, 3, 4};

• starting inventory level I0
0 :

∑
i∈V ′

Ci;

• starting inventory level I0
i : Ci − µi;

• inventory holding cost h0: 0.01;

• inventory holding cost hi (i > 0): randomly generated from a continuous

uniform distribution in the interval [0.02, 0.10];

• shortage penalty: pi = 200hi;

• vehicle capacity Q: 3
2

∑
i∈V ′

µi;

• distance/cost cij : b
√

(Xi −Xj)2 + (Yi − Yj)2 + 0.5c, where the points (Xi, Yi)

are the coordinates of vertex i and are obtained randomly from a discrete

uniform distribution in the interval [0, 500].

This set of instances will be called the stationary data set since the mean of the

demand distribution is stationary. We have also generated other sets of instances

in order to evaluate the dynamics of real-life demand, which often presents some

seasonality. Indeed, Bhatnagar and Teo (2009) show that the key challenges faced

in practical supply chains are related to, among others, non-stationary demand and

inventory imbalances. To this end, we have generated the following two extra sets of

instances, called seasonal and correlated.

In the seasonal data set each customer presents an independent seasonal pattern

every five periods. This simulates the weekly variations of orders that are likely to

occur. In its lower state, the demand is allowed to be as low as 40% of the usual

demand, and as high as 200% at its peak. Seasonalities are independent so that, on

average, they should cancel each other and the supplier should not face an overall

high or low demand on any given day. In the correlated data set, on the other

hand, all customers present the same seasonality pattern, that is, all have their lower

and higher demands in the same period. This way the supplier faces a bottleneck

of its vehicle capacity when the demand is high and has spare capacity when the
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demand is low. All else is kept unchanged from the standard stationary data set.

We should mention that computing the reorder point with equation (5.20) assumes

that demands of consecutive periods are independent, which is no longer the case in

the presence of seasonality. However, we believe that computing the reorder point

in this approximate way does not have a major impact on the results.

For each of the three data sets, and each of the 30 combinations of n and p, we

have generated five instances, yielding 150 instances in each set, for a total of 450

instances. Their nomenclature follows the rule dirp-n-p-1 through dirp-n-p-5. In Sec-

tion 5.5.3 we provide summaries aggregating instances by their size: those with less

than 50 customers are labeled small, those containing between 50 and 100 customers

are calledmedium, and those with more than 100 customers are called large instances.

These sets of instances are available at the URL http://www.leandro-coelho.com/

instances/. For full results on all instances the reader is referred to Appendix A.4.

5.5.3 Computational results

We now report the results of our extensive computational experiments. The

OU policy is first used to allow fair comparisons; the ML policy will be analyzed

later. The transshipment cost β was set to 0.01 as in Coelho et al. (2012a) and 95%

prediction intervals were used, as in Goodwin et al. (2010). We first present results

for the base case, and later we provide analyzes for a number of variations of the

problem and of the algorithm.

5.5.3.1 Results for the base case

We first provide results for the base case defined with the standard data set in

Table 5.1 for the cases without and with lateral transshipments. For each method

we present the solution cost, the average running time and the average lost demand

per customer per period. Regarding the use of forecasts, one should consider that

the value added by forecasting a stationary time series is no better than using the

naïve method employed by the reactive policy (Darrat and Zhong, 2000). Never-

theless, some conclusions can be drawn from Table 5.1. On average the solution

cost is lower and there is significantly less lost demand. More interestingly, allowing

transshipments has a twofold effect: first this helps satisfy the demand by decreasing

the average lost demand under both the reactive and proactive policies; second, by

decreasing the lost demand, it also lowers the average solution cost. Finally, the com-

putational cost of forecasting and solving the ALNS heuristic for many customers

and several periods is not negligible.
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Table 5.1: Summary of computational results for the Dynamic and Stochastic Inventory-Routing Problem

on the standard data set

Transshipment
Instance Reactive policy Proactive policy

size Solution Time (s) Avg. lost Solution Time (s) Avg. lost

No

small (n < 50) 14974.17 0.0 0.62 14224.84 47.2 0.10

medium (50 ≤ n ≤ 100) 39546.01 4.3 0.41 32774.85 453.3 0.00

large (n > 100) 64854.75 408.5 0.46 64784.85 3781.0 0.00

Average 39791.64 137.6 0.50 37261.51 1427.2 0.03

Yes

small (n < 50) 14382.67 0.0 0.00 8586.53 46.9 0.05

medium (50 ≤ n ≤ 100) 37720.58 4.4 0.00 27743.95 452.7 0.00

large (n > 100) 61455.93 498.4 0.00 56506.38 3934.4 0.00

Average 37853.06 167.6 0.00 30945.62 1478.0 0.02

In Table 5.2 we provide results for the base case defined with the seasonal data

set. Our first observation is that the average running time is higher than in the

standard data set. This reflects the difficulty of solving these instances. The value of

lateral transshipments is corroborated, as in the standard case: allowing transship-

ments reduces the average lost demand per customer per period while significantly

decreasing the solution cost. Finally, comparing policies in Table 5.2 shows that a

more streamlined policy helps prevent stockouts. However, in both cases the average

cost of the proactive policy is slightly higher than under the reactive policy.

Table 5.2: Summary of computational results for the Dynamic and Stochastic Inventory-Routing Problem

on the seasonal data set

Transshipment
Instance Reactive policy Proactive policy

size Solution Time (s) Avg. lost Solution Time (s) Avg. lost

No

small (n < 50) 15994.92 0.1 0.41 14510.22 48.4 0.00

medium (50 ≤ n ≤ 100) 40953.04 5.5 0.38 41071.74 499.7 0.00

large (n > 100) 70442.24 758.3 0.41 73252.94 4734.7 0.00

Average 42463.40 254.6 0.40 42944.97 1760.9 0.00

Yes

small (n < 50) 15515.02 0.1 0.00 14160.04 48.1 0.00

medium (50 ≤ n ≤ 100) 39164.04 5.8 0.00 40433.81 501.1 0.00

large (n > 100) 66093.51 751.5 0.00 68918.08 4739.1 0.00

Average 40257.52 252.5 0.00 41170.64 1762.8 0.00

Finally, we provide the results for the base case defined with the correlated data

set in Table 5.3. When demands are correlated and peaks occur simultaneously,

emergency transshipments are still a powerful tool to mitigate lost demand, relo-

cating inventory and making the system more robust, yet decreasing the average

solution values. The use of forecasts helps reduce routing costs and stockouts.
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Table 5.3: Summary of computational results for the Dynamic and Stochastic Inventory-Routing Problem

on the correlated data set

Transshipment
Instance Reactive policy Proactive policy

size Solution Time (s) Avg. lost Solution Time (s) Avg. lost

No

small (n < 50) 15546.15 0.1 0.43 16466.03 48.3 0.00

medium (50 ≤ n ≤ 100) 42940.79 14.4 0.48 40867.58 503.8 0.00

large (n > 100) 75067.20 1506.5 0.47 71152.13 4727.4 0.00

Average 44518.05 507.0 0.46 42828.58 1759.8 0.00

Yes

small (n < 50) 15132.41 0.2 0.00 14822.28 48.2 0.00

medium (50 ≤ n ≤ 100) 40526.86 15.4 0.00 40224.01 502.9 0.00

large (n > 100) 70536.52 1749.1 0.00 68844.68 4713.8 0.00

Average 42065.26 588.2 0.00 41296.99 1755.0 0.00

Tables 5.1−5.3 show the solution values produced by the proactive policies are

sometimes worse than those generated by the reactive policies, especially on large in-

stances. A possible explanation is that the algorithm developed for the reactive poli-

cies solves the routing problem exactly, whereas the one proposed for the proactive

policies relies on the ALNS matheuristic to sequence the customers. Even though

this heuristic has been shown in earlier studies to provide good solutions (Coelho

et al., 2012b,a), this time the number of customers is much larger. In particular,

the large instances push the algorithm to its limit, and the ALNS implementation

is streamlined to be executed several times in a rolling horizon fashion, which could

explain the decrease in the solution quality. We further analyze the effect of running

the ALNS algorithm in Section 5.5.3.2.

In addition to the analyses presented so far, we have investigated a number of

other scenarios using the best of the proposed policies, i.e. the one described in

Section 5.3.2.2.

5.5.3.2 Increasing the number of ALNS iterations

We first analyze the quality of the solutions obtained for the problem solved at

each period when the ALNS heuristic is allowed to perform twice the original number

of iterations, thus also roughly doubling the execution time. We now allow the ALNS

to iterate 40,000 times. Average solutions for the proactive policy without and with

transshipments are shown in Table 5.4. We see that allowing more computing time

improves the average solution cost. For the case without transshipments, improve-

ments are on average larger than 5%. This shows that these policies perform well

if the algorithm used to solve the problem at each period is able to identify high

quality solutions.
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Table 5.4: Summary of solutions when applying the OU inventory policy for the Dynamic and Stochastic

Inventory-Routing Problem on the standard data set with longer ALNS iterations

Instance
Without transshipments With transshipments

Solution Time (s) Avg. lost Increase (%) Solution Time (s) Avg. lost Increase (%)

small (n < 50) 9131.45 67.1 0.10 −7.20 8355.69 67.4 0.05 −2.16
medium (50 ≤ n ≤ 100) 30137.81 888.3 0.00 −4.39 26891.26 880.5 0.00 −4.23
large (n > 100) 60051.36 9248.9 0.00 −3.76 55530.30 9196.0 0.00 −2.08

Average 33106.87 3401.4 0.03 −5.12 30259.08 3381.3 0.02 −2.82

5.5.3.3 Applying an ML inventory policy

We have also implemented an ML inventory policy which relaxes the OU rule.

Under this policy, the ALNS heuristic optimizes the quantities delivered while re-

specting the vehicle and the customer capacities. A summary of results on the

standard data set is provided in Table 5.5. Specifically, we compute the average cost

savings with respect to the OU policy when such a policy is applied, as well as the av-

erage lost demand (per customer per period) both without and with transshipments.

Applying the ML policy yields reductions in solution costs and in lost demands.

Table 5.5: Summary of cost savings when applying the ML inventory policy for the Dynamic and Stochastic

Inventory-Routing Problem on the standard data set

Instance
Without transshipments With transshipments

Solution Time (s) Avg. lost % increase over OU Solution Time (s) Avg. lost % increase over OU

small (n < 50) 10225.93 46.3 0.24 −0.78 7926.71 44.6 0.16 −9.96
medium (50 ≤ n ≤ 100) 30360.66 452.7 0.01 −1.50 26527.05 444.1 0.01 −3.78
large (n > 100) 61250.17 3860.1 0.01 −0.49 54292.38 4100.1 0.00 −4.19

Average 33945.59 1453.0 0.09 −0.92 29582.05 1529.6 0.06 −5.97

5.5.3.4 Varying the inventory holding costs

The inventory holding cost parameters play an important role in changing the

balance between making more frequent deliveries or holding higher average invento-

ries. To this end, we have analyzed two different scenarios: one in which inventory

holding costs are doubled, and another in which they are halved. We present in

Table 5.6 the results of these experiments. For all situations tested the variations

occurred as expected, exhibiting a positive correlation between the inventory holding

cost and the solution cost. Moreover, multiplying or dividing the inventory cost by

two does not change the conclusion that the proactive policy still performs better

than the reactive one.
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Table 5.6: Summary of cost savings when varying the inventory holding costs for the Dynamic and Stochastic

Inventory-Routing Problem on the standard data set

Inventory
Instance

Reactive policy Proactive policy

cost Solution Time (s) Avg. lost % increase Solution Time (s) Avg. lost % increase

Halved
small (n < 50) 14036.64 0.1 0.00 −2.52 8011.02 47.3 0.08 −8.29
medium (50 ≤ n ≤ 100) 39703.27 18.9 0.00 −4.86 30366.73 721.7 0.00 −6.72

Average 26869.95 9.5 0.00 −3.69 19188.87 384.5 0.04 −7.51

Doubled
small (n < 50) 15074.69 0.1 0.00 4.66 9291.39 47.4 0.05 8.26

medium (50 ≤ n ≤ 100) 45346.88 19.3 0.00 8.45 36087.193 707.3 0.00 10.62

Average 30210.79 9.7 0.00 6.55 22689.29 377.4 0.02 9.44

5.5.3.5 Increasing the length f of the planning horizon

We now evaluate the impact on the final solution cost of using a larger planning

horizon. To this end, we have doubled to six the length f of the horizon used

in the forecasts and in the ALNS, and we have solved a subset of instances from

the standard data set. The fact that the ALNS matheuristic has to make twice as

many decisions should be taken into account. In other words, keeping the number

of ALNS iterations fixed, solution quality degradation is most likely to occur when

doubling the length of the horizon. As a result, it makes sense to apply the idea

used in Section 5.5.3.2 which consists of running the ALNS over a longer number

of iterations. The average cost increases (or savings, when negative) are shown in

Table 5.7. As expected, solution quality deteriorates with a longer horizon and

computation times approximately double. Horizons of less than three periods make

little sense since the main advantage of the proactive policy is to plan ahead and

avoid visits to the same geographical area over consecutive periods, which is unlikely

when f is very small.

Table 5.7: Summary of the impact on cost when time slices f are doubled (to six periods) under an OU

inventory policy for the Dynamic and Stochastic Inventory-Routing Problem on the standard data set

Instance
Without transshipments With transshipments

Solution Time (s) Avg. lost % increase over OU Solution Time (s) Avg. lost % increase over OU

small (n < 50) 15553.77 62.8 0.04 0.25 10322.57 63.1 0.02 0.09

medium (50 ≤ n ≤ 100) 45963.58 1337.8 0.00 0.22 38864.04 1341.1 0.00 0.16

Average 30758.67 700.3 0.02 0.24 24593.31 702.1 0.01 0.12

5.5.3.6 Varying the service level

The percentage of the unknown demand covered against stockouts also plays an

important role in the decision making process. We have varied the service level
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parameter, which directly affects the safety stock level of the proactive policy. We

have run the algorithm on a subset of instances with a service level equal to 90%

and to 99%, and we have summarized the results in Table 5.8. As the table shows, a

lower service level means that customers are more likely to face a stockout, translating

into increased transshipment costs; on the other hand, a higher service level protects

customers against demand variations and emergency transshipments are then no

longer needed as often, thus decreasing the total solution cost.

Table 5.8: Summary of cost savings when varying the service level for the Dynamic and Stochastic Inventory-

Routing Problem on the standard data set

Instance
Low service level (1− α = 90%) High service level (1− α = 99%)

Solution Time (s) Avg. lost % increase Solution Time (s) Avg. lost % increase

small (n < 50) 8774.46 47.0 0.07 3.57 8145.81 47.4 0.03 −10.77
medium (50 ≤ n ≤ 100) 32257.77 702.2 0.00 −0.48 33566.23 738.6 0.00 2.55

Average 20516.12 374.6 0.03 1.54 20856.02 393.0 0.01 −4.11

5.5.3.7 Implementing consistency features in a dynamic environment

From a business and practical perspective, the decision making process is not

only driven by costs but by quality of customer service. Our analysis has so far

focused on cost minimization, disregarding other factors which may affect quality

of service. Some of these factors were studied by Coelho et al. (2012b) who have

analyzed the effect of incorporating different consistency features into IRP solutions.

For example, it may be undesirable to dispatch an almost empty vehicle, or one

would not like to frequently deliver small amounts to the same customer since this

is time consuming for both parties. To this end, we have run a subset of instances

subject to two consistency features next described.

We first apply the vehicle filling rate consistency feature ensuring that the vehicle

is only used if it is at least γ% full, under the policy described in Section 5.3.2.2.

We have tested the ML inventory policy with γ equal to 30, 50 and 70. Table

5.9 provides the average cost increase and the average lost demand (per customer

per period) with respect to the base case. Running times are highly stable and, in

general, as the requirement for the vehicle load increases, so does the solution cost.

Adding this requirement to a deterministic environment (Coelho et al., 2012b) did

not produce an increase of this magnitude.

Second, we apply a quantity consistency feature requiring that a customer can

be visited only if the quantity delivered to it is at least twice its average demand.

Results provided in Table 5.10 show that this policy yields a significant average cost
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Table 5.9: Summary of the analysis for the Dynamic and Stochastic Inventory-Routing Problem with the

vehicle filling rate consistency on the standard data set

Instance
γ = 30 γ = 50 γ = 70

Solution Time (s) Avg. lost % increase Solution Time (s) Avg. lost % increase Solution Time (s) Avg. lost % increase

medium
41233.80 707.8 0.00 31.06 41680.54 731.4 0.00 31.39 42474.15 744.6 0.00 34.22

(50 ≤ n ≤ 100)

increase with respect to the base case, and with respect to the average lost demand

(per customer per period). Once more, ensuring consistent solutions over time turns

out to be very costly in a dynamic environment, even though computational times

are practically unchanged. Moreover, a slight increase in the average lost demand is

observed when the quantities delivered to the customers are somewhat restricted.

Table 5.10: Summary of the analysis for the Dynamic and Stochastic Inventory-Routing Problem with the

quantity consistency feature on the standard data set

Instance set
Under quantity consistency

Solution Time (s) Avg. lost % increase in cost

medium (50 ≤ n ≤ 100) 48892.78 702.0 0.26 53.38

5.5.4 Final remarks

The two main features analyzed in these chapter are now summarized. First, the

use of demand forecasts has proved a powerful asset for the solution of the DSIRP.

However, it requires the use of an optimization algorithm that can sometimes take

very long to run if high quality solutions are expected. Nevertheless, our implemen-

tation of the ALNS as a means of solving each periodic problem has proved to be

very efficient and flexible in the sense that we have solved the problem under two

inventory policies and with two consistency features.

The second option considered in this chapter concerns the use of lateral trans-

shipments. Even if there are relatively few stockouts when transshipments are not

considered, allowing them further reduces stockouts as well as the total cost. From an

algorithmic point of view, enabling transshipments does not make the problem more

difficult to solve since these can easily be integrated within the min-cost network

flow problem which is used to compute the delivery quantities.

We have also analyzed the cost breakdown into its routing, inventory, direct deliv-

eries and transshipments, and penalty components. Corroborating our preliminary

findings from Sections 5.5.3.1 and 5.5.3.2, we found that routing costs are signifi-
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cantly reduced under proactive policies. This is due to the fact that when forecasts

are used, the algorithm can avoid consecutive and costly visits to the same geo-

graphical area, yielding a better equilibrium between routing and inventory costs, in

addition to reducing the use of emergency deliveries.

Finally, it is important to note that thanks to our choice of policies and to the

algorithm design, the solution quality does not deteriorate when instances with very

long horizons are solved. If a 20-period instance were to be solved by dynamic or

stochastic programming, it is likely that it would be intractable, which is not the

case for the rolling horizon algorithms we have developed.

5.6 Conclusions

We have successfully solved the dynamic and stochastic version of the IRP under

different policies. The first one uses a reactive framework, in which future visiting

decisions are based only on the current state of the inventory of the customers. We

have also implemented a more involved policy under which demand forecasts are

used to support future decisions. In both cases, we have solved the problem without

and with lateral transshipments as a means of reducing lost demand and diminishing

total costs. We have implemented these policies in a rolling horizon fashion. We have

shown through extensive computational experiments that the algorithms proposed

perform very well and allow the proactive policies to take advantage of stochastic in-

formation in the form of demand forecasts. We have shown that increasing the length

of the rolling horizon does not have a positive impact on the overall solution qual-

ity. In contrast, increasing the computation time of the subproblem associated with

each period significantly improves solution quality. We have analyzed the impact

of different inventory holding costs and service levels. Our experiments have shown

that solution costs are correlated with the inventory holding cost for all policies.

Imposing a high service level ensures that customers are protected against demand

variations, which avoids unnecessary emergency transshipments and reduces lost de-

mand. Decreasing the service level even slightly negatively impacts the solution cost.

Moreover, we have considered the inclusion of consistency features in the solutions

of the DSIRP. Our experiments show that ensuring consistent solutions over time

under a dynamic and stochastic environment is much more expensive than under a

deterministic setting.
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Conclusions

In this thesis we have introduced, modeled and solved several types of inventory-

routing problems. In particular, we have identified opportunities for increased flexi-

bility and consistency within these problems, and have developed heuristic and exact

algorithms for their solution. In the next paragraphs we outline our main findings

as well as suggestions for future research.

We have proposed a comprehensive literature review in Chapter 2. The history

of the inventory-routing problem, which dates back from 1983, was presented, along

with a number of variants of the problem, their motivations, applications and solution

procedures. However, the flexibility and consistency issues, which are the subject of

this thesis, have not yet been addressed in any systematic way.

We have introduced the inventory-routing problem with transshipment in Chap-

ter 3. Transshipments allow the supplier to streamline its distribution system, while

granting the customers the advantage of sharing inventory, and thus reducing the

risk of stockout. Our analysis was conducted on the single-vehicle case. We have

developed an exact branch-and-cut algorithm which was applied to a mixed integer

linear programming formulation of the problem. Since this algorithm ceases to be

practical for large instances, we have also developed a powerful matheuristic for the

same problem. This heuristic works in two steps. It first applies an adaptive large

neighborhood search (ALNS) procedure to create vehicle routes. These are then used

as inputs to an exact min-cost network flow problem which computes quantities to

be delivered to each customer as well as transshipment origins and destinations.

In Chapter 4 we have incorporated six different consistency features into the

IRP, and we have extended our analysis to the multi-vehicle version of the problem.

These consistency features lead to solutions with higher quality of service for the

customers, and more balanced vehicle loads for the supplier. They relate to the

quantities delivered, the frequency of the deliveries and the workforce management.
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We have again proposed an exact algorithm and a heuristic for these variants. The

exact algorithm is an extension of the branch-and-cut method developed in Chapter

3. It can handle all proposed consistency features, either as constraints or as a penalty

in the objective function. The heuristic is an extension of the ALNS procedure of

Chapter 3 in which two subproblems are solved exactly. The first is the min-cost

network flow problem for the computation of quantities delivered, and the second

computes better upper bounds on the solution cost through the solution of a mixed

integer linear program. All consistency features were implemented within the ALNS

operators and in the network flow algorithm, the combination of which has proved

to be highly flexible and efficient.

Finally, in Chapter 5 we have combined the two main ideas developed in this

thesis and we have applied them to a context in which not all information is available

when decisions are made. However, some probabilistic knowledge on future demands

is available. This leads to a stochastic and dynamic inventory-routing problem. We

have proposed four different policies for its solution, depending on whether demand

forecasts are used in the solution process and on whether transshipments are allowed.

All policies work within a rolling horizon framework in which smaller problems are

solved iteratively whenever new information becomes available.

We view the main scientific contributions of this thesis as the introduction, mod-

eling and optimization of meaningful variants of the classical IRP which allows for

more flexible and consistent solutions. Flexibility enlarges the solution space, which

yields lower cost solutions. Consistency leads to more realistic yet more costly solu-

tions through the incorporation of restrictions into the problem. However, we have

shown that the cost increase resulting from the introduction of consistency features

tends to be relatively low. This study is also the first to investigate the benefits

of incorporating forecasts and flexibility features within a dynamic and stochastic

setting. From a methodological point of view, we have increased the scope and size

of instances that can be solved optimally and we have developed heuristics which can

often compute solutions with a measurable and high degree of accuracy. We believe

our work opens up new research avenues and provides decision makers with better

tools to handle some complex distribution management problems.

This thesis also contains some limitations. As in many operations research stud-

ies, we have made a number of assumptions to simplify the problem and make it

tractable from a modeling and computational aspect. For instance, in most parts of

this thesis we have ignored the stochasticity present in travel times, demand, and

available vehicle capacity. From a computational perspective, large instances remain

difficult to solve, even for powerful heuristic methods. This clearly calls for better
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algorithms.

We have identified a number of meaningful extensions to this thesis. The most

interesting extension is probably the multi-product version of the inventory-routing

problem. Modeling this problem would require a large increase in the number of

variables, parameters and constraints, probably making it significantly harder to

solve. We believe the ALNS framework put forward in this thesis can serve as a

starting point as it was shown to be extremely flexible and it can handle such an

extended model with relatively small modifications. Second, a number of other VRP

extensions also make sense in the context of the IRP. One of these, in line with

the concept of consistency, is the imposition of a constraint requiring customers

to be visited at approximately the same time over different periods. This differs

from the classical time windows setting in that one would not impose time windows

for visits, but the optimization process would be free to determine visit times to

the same customers, as long as they do not vary too much over time. Finally,

multi-mode IRPs also represent a rich research area given that distribution is often

carried out with company owned and leased vehicles, or with various combinations

of transportation modes, some of which have fixed schedules and some are more

flexible (see, e.g. Moccia et al. (2011)). The range of options available in this context

is clearly very wide.

The IRP was introduced approximately 30 years ago and has since evolved into

a rich research area. We believe this thesis has helped fill some gaps in this body of

knowledge and will stimulate other researchers to pursue the study of this fascinating

field.



Appendix A

Electronic appendix

In this appendix we provide electronic files with results for the full computational

experiments carried out in this thesis. All files can be downloaded at http://www.

leandro-coelho.com/instances/thesis.

A.1 Full results for the Inventory-Routing Problem with

Transshipment

In this section we provide links to the files containing the data set and detailed

solution values for all instances of the IRPT.

http://www.leandro-coelho.com/instances/thesis/irpt/

A.2 Full results for the Consistent Multi-Vehicle Inventory-

Routing Problem

In this section we provide links to the files containing the data sets and detailed

solution values for all instances of the Basic Multi-Vehicle IRP and of the Consistent

MIRP.

http://www.leandro-coelho.com/instances/thesis/consistent-mirp/

A.3 Full results for the Exact Solutions of Inventory-

Routing Problems

In this section we provide links to the files containing detailed exact solution

values for all instances of the IRP.

http://www.leandro-coelho.com/instances/thesis/exact_irp/

http://www.leandro-coelho.com/instances/thesis
http://www.leandro-coelho.com/instances/thesis
http://www.leandro-coelho.com/instances/thesis/irpt/
http://www.leandro-coelho.com/instances/thesis/consistent-mirp/
http://www.leandro-coelho.com/instances/thesis/exact_irp/
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A.4 Full results for the Dynamic and Stochastic Inventory-

Routing Problem

In this section we provide links to the files containing detailed solution values for

all instances of the DSIRP.

http://www.leandro-coelho.com/instances/thesis/dsirp/

http://www.leandro-coelho.com/instances/thesis/dsirp/
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