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Cette thèse est intitulée :

Mixed Effects Trees and Forests
for Clustered Data

Présentée par Ahlem Hajjem
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RÉSUMÉ

Les méthodes d’arbres, qui sont des outils populaires et appréciés d’analyse et d’exploi-

tation de données, étaient à l’origine développées sous l’hypothèse de données indépendantes.

Les travaux antérieurs qui ont adapté ces méthodes aux données corrélées sont basés sur l’ap-

proche multivariée des mesures répétées. L’objectif principal de cette thèse est d’adapter la

méthode d’arbre standard aux données corrélées du fait de leur structure hiérarchique. Pour

cela, nous avons suivi une approche par les effets mixtes. Cette approche est plus flexible

en ce qui concerne les données puisque les observations corrélées sont perçues comme étant

imbriquées à l’intérieur des groupes et non pas comme des vecteurs de réponses multiples.

Cette thèse est composée de trois articles. Dans le premier article, nous procédons

à une extension de la méthode d’arbre de régression standard aux données hiérarchiques

avec une variable de réponse continue. Nous proposons alors une méthode d’arbre nommée

“mixed effects regression tree” (MERT). Dans le second article, nous procédons à une ex-

tension de la méthodologie MERT à d’autres types de réponses (réponses binaires, données

de comptage, réponses catégorielles ordonnées, réponses multicatégorielles nominales). Pour

cela, nous proposons une méthode d’arbre nommée “generalized mixed effects regression

tree” (GMERT). Nous proposons dans le troisième article la méthode de forêt aléatoire à

effets mixtes, nommée “mixed effects random forest” (MERF).

Les résultats des études de simulations menées dans les trois articles montrent qu’en

présence de corrélation intra-groupe, les nouvelles méthodes d’arbres sont préférables à celles

supposant l’indépendance des données.

Mots clés : Méthodes d’arbres, forêt aléatoire, données hiérarchiques, effets mixtes,

algorithme d’espérance-maximisation (EM), quasi-vraisemblance pénalisée (PQL).
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ABSTRACT

Tree based methods, which are very popular and appreciated data analysis tools, were

firstly developed under the assumption of independent data. Previous works adapting them

to correlated data are based on the multivariate repeated-measures approach. The main

goal of this thesis is to extend standard tree methods to clustered and hence correlated

data, using the mixed effects approach. This approach is more flexible in terms of data

requirements because the correlated observations are viewed as nested within clusters rather

than as vectors of multivariate repeated responses.

This thesis is composed of three articles. In the first paper, we propose the “mixed

effects regression tree” (MERT) method. It is an extension of the standard regression tree

method to the case of clustered data with continuously measured outcome. The second

paper presents the generalized mixed effects regression tree (GMERT) method, which is an

extension of MERT methodology to other types of outcomes (binary outcomes, counts data,

ordered categorical outcomes, and multicategory nominal scale outcomes). We propose in

the third paper the “mixed effects random forest” (MERF) method, which is an extension of

the standard random forest method to the case of clustered data with continuously measured

outcome.

The results of the simulations studies conducted in the three papers show that, when

cluster-correlation is present, the new tree methods are preferable over the standard ones

assuming independence of the data.

Keywords : Tree based methods, random forest, clustered data, mixed effects, expectation-

maximization (EM) algorithm, penalized quasi-likelihood (PQL) algorithm.
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CONCLUSION GÉNÉRALE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

BIBLIOGRAPHIE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



vi

LISTE DES TABLEAUX

1.I Data generating processes (DGP) for the simulation study. . . . . . . . . . . . . . . 26

1.II Results of the 100 simulation runs in terms of recovering the right tree structure and

the predictive mean square error (PMSE). . . . . . . . . . . . . . . . . . . . . . . . . 27

1.III Results of the 100 simulation runs for the estimation of the observation-level variance

(the true value is σ2 = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.IV Results of the 100 simulation runs for the estimation of the cluster-level variance-

covariance components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.I Data generating processes (DGP) for the simulation study. . . . . . . . . . . . . . . 55

2.II Results of the 100 simulation runs in terms of the predictive probability mean abso-

lute deviation (PMAD) and the predictive misclassification rate (PMCR). . . . . . . 57

3.I Data generating processes (DGP) for the simulation study. . . . . . . . . . . . . . . 71

3.II Results of the predictive mean squared error (PMSE) of MERF, SRF, MERT, SRT,

LME, and LM models based on 100 simulation runs. . . . . . . . . . . . . . . . . . . 72

3.III Relative difference (RD∗) in PMSE between MERF and each one of the alternative

models : SRF, MERT, SRT, LME, and LM. . . . . . . . . . . . . . . . . . . . . . . . 72



vii

LISTE DES FIGURES

1.1 Behavior of different key elements of the mixed effects regression tree algorithm

through the iteration process for fitting the random intercept model to one sample

from DGP 6, i.e. small fixed effect with a random intercept structure with D = d11 =

0.5 and σ2 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.2 Mixed effects regression tree structure used for the simulation study. . . . . . . . . . 31

1.3 The first three levels of the standard regression tree for the data example on first-

week box office revenues (on the log scale). When the condition below a node is true

then go to the left node, otherwise go to the right node. The complete tree has 44

leaves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4 The first three levels of the random intercept regression tree for the data example on

first-week box office revenues (on the log scale). When the condition below a node is

true then go to the left node, otherwise go to the right node. The complete tree has

28 leaves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1 Generalized mixed effects tree structure used for the simulation study, with g(.) being

the logit link function and g(.)−1 the inverse-logit or logistic function. . . . . . . . . 56

3.1 Distribution over the 100 simulation runs of the relative difference in PMSE between

MERF and SRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Distribution over the 100 simulation runs of the relative difference in PMSE between

MERF and MERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 Distribution over the 100 simulation runs of the relative difference in PMSE between

MERF and SRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Distribution over the 100 simulation runs of the relative difference in PMSE between

MERF and LME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



viii

3.5 Distribution over the 100 simulation runs of the relative difference in PMSE between

MERF and LM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



ix

REMERCIEMENTS
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INTRODUCTION GÉNÉRALE

Les méthodes d’arbres sont des techniques traditionnelles d’analyse et d’exploitation de

données. Elles sont devenues populaires grâce à l’algorithme CART (classification and regression

trees) de Breiman et al. (1984). Comparativement aux modèles de régression paramétriques, ces

méthodes ont plusieurs avantages : Elles peuvent analyser facilement des grandes bases de données

comprenant un nombre élevé de covariables, elles peuvent détecter de façon automatique les in-

teractions potentielles entre ces dernières, et elles sont robustes face aux problèmes d’observations

extrêmes et de colinéarité.

Les méthodes d’arbres supposent l’indépendance des données. Or, cette hypothèse n’est cer-

tainement pas satisfaite dans le cas de données hiérarchiques. Ces dernières sont souvent obtenues

par un échantillonnage multiniveaux, où les observations sont imbriquées à l’intérieur d’unités de

niveau supérieur (groupes). Elles sont communément présentes dans plusieurs champs de recherche

(e.g., Raudenbush and Bryk, 2002 ; Goldstein, 2003 ; Fitzmaurice, Laird, and Ware, 2004). La

structure hiérarchique de ces données implique que les observations provenant d’un même groupe

sont souvent plus similaires entre elles que les observations provenant de groupes différents. Sou-

vent, ces données comprennent deux types de covariables, celles décrivant l’observation au niveau

hiérarchique inférieur et celles décrivant le groupe, et incluent deux sources de variations, intra- et

inter- groupes. Des effets fixes mais aussi aléatoires servent à expliquer, au moins partiellement, ces

deux sources de variabilité.

L’objectif principal de cette thèse est d’adapter les méthodes d’arbres standards aux données

hiérarchiques, et ce en suivant une approche par les effets mixtes (fixes et aléatoires). Les travaux

antérieurs (Segal, 1992 ; Zhang, 1998 ; Abdolell, Leblanc, Stephens, and Harrison, 2002 ; Lee, 2005)

qui ont étendu les méthodes d’arbres dans le but d’accommoder la dépendance des données sont

basés sur l’approche multivariée des mesures répétées. L’approche par les effets mixtes est plus

flexible en termes de données parce que les observations corrélées sont perçues comme étant im-

briquées à l’intérieur des groupes plutôt que comme des vecteurs de réponses multiples. Il y a un

avantage à suivre cette approche puisqu’elle permet : 1) d’analyser des données où les groupes



2

sont de tailles inégales, 2) de considérer les covariables du niveau observation dans le processus

d’embranchement, ce qui permet de séparer les observations provenant d’un même groupe dans des

noeuds différents, et 3) d’inclure des effets aléatoires.

Trois articles font l’objet de cette thèse. Dans le premier article, nous proposons une exten-

sion des méthodes d’arbres standards aux données hiérarchiques avec une variable réponse conti-

nue. Nous avons nommé cette extension “mixed effects regression tree” (MERT). Nous l’avons

implémenté en utilisant un algorithme d’arbre standard à l’intérieur du cadre bien connu de l’al-

gorithme “espérance-maximisation” (EM). Nous l’avons aussi illustré en analysant des données sur

les revenus du box-office de la première semaine des films présentés dans la province de Québec au

Canada sur la période allant de 2001 à 2008. Les résultats de la simulation montrent que la perfor-

mance prédictive de MERT est meilleure que celle de l’arbre de régression standard, en particulier

lorsque les effets aléatoires sont importants.

Dans le deuxième article, nous proposons une extension de la méthodologie d’arbre de

régression à effets mixtes (MERT), qui est conçue pour une réponse continue, à d’autres types de

réponses (réponses binaires, données de comptage, réponses catégorielles ordonnées, réponses mul-

ticatégorielles nominales). Nous avons nommé cette extension “generalized mixed effects regression

tree” (GMERT). Cette méthode utilise la quasi-vraisemblance pénalisée (PQL) pour l’estimation et

l’algorithme espérance-maximisation (EM) pour la computation. Les résultats de l’étude de simu-

lation menée pour le cas de réponse binaire montrent qu’en présence d’effets aléatoires la méthode

GMERT a une performance prédictive nettement meilleure que celle de l’arbre de classification

standard.

Par ailleurs, la performance prédictive d’un seul arbre peut souvent être améliorée au dépend

de l’interprétabilité en utilisant un ensemble d’arbres. Le bagging et la forêt aléatoire en général

(Breiman, 1996, 2001) sont des méthodes ensemblistes très connues et très puissantes dans le cas

des arbres. Sur la base des conclusions des deux premiers articles, il est devenu clair que l’appli-

cation directe de l’algorithme standard de forêt aléatoire aux données hiérarchiques impliquerait

nécessairement une performance prédictive moins qu’optimale de la part de chaque arbre individuel

à l’intérieur de la forêt. Ainsi, nous proposons dans le troisième article une méthode de forêt aléatoire

à effets mixtes. Nous avons nommée cette méthode “mixed effects random forest” (MERF). Il s’agit

d’une extension de la méthode standard de forêt aléatoire aux données hiérarchiques avec une
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réponse continue. Nous l’avons implémentée en utilisant un algorithme standard de forêt aléatoire

à l’intérieur de l’algorithme EM. Les résultats de la simulation menée dans cet article sont promet-

teurs et montrent que le gain sur le plan prédictif suite à l’utilisation de MERF à la place de la

forêt standard augmente en fonction de l’importance des effets aléatoires.



ARTICLE I

MIXED EFFECTS REGRESSION TREES FOR CLUSTERED DATA

Ahlem Hajjem, François Bellavance and Denis Larocque

...

Department of Management Sciences

HEC Montréal, 3000, chemin de la Côte-Sainte-Catherine,

Montréal, QC, Canada H3T 2A7
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1.1 Abstract

This paper presents an extension of the standard regression tree method to clustered data. Previous

works extending tree methods to accommodate correlated data are mainly based on the multivariate repeated-

measures approach. We propose a “mixed effects regression tree” method where the correlated observations

are viewed as nested within clusters rather than as vectors of multivariate repeated responses. The proposed

method can handle unbalanced clusters, allows observations within clusters to be splitted, and can incorporate

random effects and observation-level covariates. We implemented the proposed method using a standard tree

algorithm within the framework of the expectation-maximization (EM) algorithm. The simulation results

show that the proposed regression tree method provide substantial improvements over standard trees when

the random effects are non negligible. A real data example illustrates the proposed method.

Keywords : Tree based methods, clustered data, mixed effects, expectation-maximization (EM)

algorithm.

1.2 Introduction

Clustered data, often obtained by multistage sampling with observations nested within

higher-level units (clusters), is common throughout many areas of research (e.g., Raudenbush

and Bryk, 2002 ; Goldstein, 2003 ; Fitzmaurice, Laird, and Ware, 2004). The data structure

consists of individuals nested within groups. These data may include two types of covariates,

observation-level and cluster-level covariates, and involve two sources of variation, within

and between clusters. Usually, observations that belong to the same cluster tend to be more

similar to each other than observations from different clusters. The focus of this paper is

to extend the standard regression tree methods to clustered data and therefore take into

account the correlation between observations within a cluster.

Tree based methods became popular with the CART (classification and regression

trees) paradigm (Breiman, Friedman, Olshen, and Stone, 1984). They provide many advan-

tages compared to parametric models : They can handle large data sets with many covariates,

they are robust to outliers and collinearity problems, and they detect automatically potential

interactions between covariates.
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If a standard tree algorithm is directly applied to clustered data, any tree node could

include observations belonging to different clusters, and the question of which summary

response value should be attached to them arises, i.e. overall average response or cluster-

specific average response within each node. Furthermore, the inclusion of the observation-

level and cluster-level covariates as candidates in the splitting process is not always enough

to ensure that the nested structure of the data is fully taken into account. Not considering

the clustered aspect of the data in the splitting process constitutes an evident loss of likely

valuable information. To that end, statistical models to analyze clustered data often imply

an additional random-effect component in addition to the fixed-effect component. The larger

the random effects, the harder it will be for a standard tree algorithm to find the right tree

structure, which should affect negatively the prediction accuracy. This will be illustrated in

the simulation study in Section 1.4.

To legitimize the application of standard tree methodology to clustered data, one could

remove the random or cluster-specific component, and then apply a standard tree algorithm,

such as CART, only to the fixed or population-averaged component. This constitutes the

key point of the regression tree approach presented in this paper, named “mixed effects

regression tree”. It is an extension of standard regression trees to clustered data that can

appropriately deal with random effects.

The proposed mixed effects regression tree method have the following characteristics :

1. It can handle clusters with different numbers of observations (unbalanced clusters).

2. It allows the inclusion of observation-level and cluster-level covariates in the splitting

process, and consequently, observations from the same cluster can be separated into

different nodes during the tree growing process.

3. It allows observation-level covariates to have random effects.

Previous extensions of tree based methods to accommodate the correlation structure

induced by clustered data were developed for longitudinal settings (e.g., Segal, 1992 ; Zhang,

1998 ; Yu and Lambert, 1999 ; Abdolell, Leblanc, Stephens, and Harrison, 2002 ; Lee, 2005 ;

Ghattas and Nerini, 2007). These extensions do not allow observations within a cluster (i.e.
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repeated observations over time for a given subject) to be splitted into different nodes.

This paper presents and evaluates an extension of regression trees for clustered data.

The remainder of this article is organized as follows : Section 1.3 describes the proposed

mixed effects regression tree approach ; Section 1.4 presents a simulation study to evaluate

the performance of the method ; Section 1.5 illustrates the application of the method with a

real data set ; Section 1.6 discusses a number of related issues.

1.3 Mixed Effects Regression Tree Approach

Statistical model for clustered data typically include two components : A fixed or

population-averaged and a random or cluster-specific component. The basic idea behind the

proposed mixed effects regression tree is to dissociate the fixed from the random effects. We

use a standard regression tree to model the fixed effects and a node-invariant linear structure

at each terminal node of the tree to model the random effects. The method is implemen-

ted using a standard tree algorithm within the framework of the expectation-maximization

(EM) algorithm (Dempster, Laird, and Rubin, 1977 ; McLachlan and Krishnan, 1997). More

precisely, the linear estimation of the fixed component in the linear mixed effects (LME)

model (Harville, 1976, 1977 ; Laird and Ware, 1982) is replaced by a standard regression tree

algorithm. Let’s first briefly review the LME model and the EM algorithm.

1.3.1 EM Algorithm for the Linear Mixed Effects Model

The LME model is generally written in the following form :

yi = Xiβ + Zibi + εi,

bi ∼ Nq(0, D), εi ∼ Nni(0, Ri), (1.1)

i = 1, ..., n,

where yi = [yi1, ..., yini ]
T is the ni× 1 vector of responses for the ni observations in cluster i,

Xi = [xi1, ..., xini ]
T is the ni × p matrix of fixed-effects covariates, Zi = [zi1, ..., zini ]

T is the
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ni × q matrix of random-effects covariates, εi = [εi1, ..., εini ]
T is the ni × 1 vector of errors,

bi = (bi1, ..., biq)
T is the q × 1 unknown vector of random effects for cluster i, and β is the

p× 1 unknown vector of parameters for the fixed effects. The total number of observations

is N =
∑n

i=1 ni. The covariance matrix of bi is D while Ri is the covariance matrix of εi.

The usual LME model also assumes that bi and εi are independent and normally distributed

and that the between-clusters observations are independent. Hence, the covariance matrix of

the vector of observations yi in cluster i is Vi = Cov(yi) = ZiDZ
T
i +Ri, and V = Cov(y) =

diag(V1, . . . , Vn), where y = [yT1 , ..., y
T
n ]T . We will further assume that the correlation is

induced solely via the between-clusters variation, that is, Ri is diagonal (Ri = σ2Ini , i =

1, ..., n). This assumption is suitable for a large class of clustered data problems (Raudenbush

and Bryk, 2002, page 30).

The parameters in LME models can be estimated by the method of maximum likeli-

hood (ML) implemented with the EM algorithm. This algorithm addresses the problem of

maximizing the likelihood by considering it like a missing data problem. More precisely, the

yi are the observed data and the bi are the missing data. Thus, the complete data are (yi, bi),

i = 1, ..., n, while β, σ2, and D are the parameters to be estimated. The general technique

is to calculate the expected values of the missing objects, given current parameter estimates

(expectation step), and then to use those expected values to update the parameter estimates

(maximization step). These two steps are repeated until convergence.

The major cycle for the ML-based EM-algorithm, as described in §2.2.5 of Wu and

Zhang (2006), is as follows :

Step 0. Set r = 0. Let σ̂2
(0) = 1, and D̂(0) = Iq.

Step 1. Set r = r + 1. Update β̂(r) and b̂i(r)

β̂(r) =

(
n∑
i=1

XT
i V̂

−1
i(r−1)Xi

)−1( n∑
i=1

XT
i V̂

−1
i(r−1)yi

)
,

b̂i(r) = D̂(r−1)Z
T
i V̂
−1
i(r−1)

(
yi −Xiβ̂(r)

)
, i = 1, ..., n,

where V̂i(r−1) = ZiD̂(r−1)Z
T
i + σ̂2

(r−1)Ini , i = 1, ..., n.
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Step 2. Update σ̂2
(r), and D̂(r) using

σ̂2
(r) = N−1

n∑
i=1

{
ε̂Ti(r)ε̂i(r) + σ̂2

(r−1)[ni − σ̂2
(r−1)trace(V̂i(r−1))]

}
,

D̂(r) = n−1

n∑
i=1

{
b̂i(r)b̂

T
i(r) + [D̂(r−1) − D̂(r−1)Z

T
i V̂
−1
i(r−1)ZiD̂(r−1)]

}
,

where ε̂i(r) = yi −Xiβ̂(r) − Zib̂i(r), N =
∑n

i=1 ni.

Step 3. Repeat steps 1 and 2 until convergence.

1.3.2 EM Algorithm for the Mixed Effects Regression Trees

The proposed mixed effects regression tree model is :

yi = f(Xi) + Zibi + εi,

bi ∼ Nq(0, D), εi ∼ Nni(0, Ri), (1.2)

i = 1, ..., n,

where all quantities are defined as in Section 1.3.1 except that the linear fixed part Xiβ in

(1.1) is replaced by the function f(Xi) that will be estimated with a standard tree based

model. The random part, Zibi, is still assumed linear.

The mixed effects tree algorithm is the ML-based EM-algorithm in which we replace

the linear structure used to estimate the fixed part of the model by a standard tree structure.

The algorithm is as follows :

Step 0. Set r = 0. Let b̂i(0) = 0, σ̂2
(0) = 1, and D̂(0) = Iq.

Step 1. Set r = r + 1. Update y∗i(r), f̂(Xi)(r), and b̂i(r)

i) y∗i(r) = yi − Zib̂i(r−1), i = 1, ..., n,

ii) Let f̂(Xi)(r) be an estimate of f(Xi) obtained from a standard tree algorithm with

y∗i(r) as responses and Xi, i = 1, . . . , n, as covariates. Note that the tree is built
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as usual using all N individual observations as inputs along with their covariate

vectors,

iii) b̂i(r) = D̂(r−1)Z
T
i V̂
−1
i(r−1)

(
yi − f̂(Xi)(r)

)
, i = 1, ..., n,

where V̂i(r−1) = ZiD̂(r−1)Z
T
i + σ̂2

(r−1)Ini , i = 1, ..., n.

Step 2. Update σ̂2
(r), and D̂(r) using

σ̂2
(r) = N−1

n∑
i=1

{
ε̂Ti(r)ε̂i(r) + σ̂2

(r−1)[ni − σ̂2
(r−1)trace(V̂i(r−1))]

}
D̂(r) = n−1

n∑
i=1

{
b̂i(r)b̂

T
i(r) + [D̂(r−1) − D̂(r−1)Z

T
i V̂
−1
i(r−1)ZiD̂(r−1)]

}
,

where ε̂i(r) = yi − f̂(Xi)(r) − Zib̂i(r).

Step 3. Repeat steps 1 and 2 until convergence.

In words, the algorithm starts at step 0 with default values for b̂i, σ̂
2, and D̂. At step

1, it first calculates the fixed part of the response variable, y∗i , i.e., the response variable

from which we remove the current available value of the random part. Second, it estimates

the fixed component f̂(Xi) using a standard tree algorithm with y∗i as responses and Xi as

covariates. Third, it updates b̂i. At step 2, it updates the variance components σ̂2 and D̂

based on the residuals after the estimated fixed component f̂(Xi) is removed from the raw

data yi It keeps iterating by repeating steps 1 and 2 until convergence.

The convergence of the algorithm is monitored by computing, at each iteration, the

following generalized log-likelihood (GLL) criterion :

GLL(f, bi|y) =
n∑
i=1

{[yi − f(Xi)− Zibi]TR−1
i [yi − f(Xi)− Zibi]

+ bTi D
−1bi + log |D|+ log |Ri|}.

(1.3)

At each iteration, a single large tree is built and a subtree is selected using a pruning and

cross-validation method. Doing so introduces instability over the iteration process. Indeed,

a small change in the updated data (i.e., y∗i(r)) could produce a selected subtree with a
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different number of leaves (terminal nodes). In order to give insight about the behavior of

GLL, Figure 1.1 shows the iteration process for one data set in one simulation run from the

simulation study described in more details in the next section. The GLL decreases sharply

at the beginning and stabilizes around iteration 40, but its value jumps once in a while from

iteration 50 to 200 (Figure 1.1d). These jumps occur when there is a change in the number

of leaves of the tree (Figure 1.1a). We also observe these jumps in the estimated variance

parameters (Figure 1.1c) and in the mean squared errors (Figure 1.1b). This is mainly due

to the instability associated with the choice of a single subtree at each iteration. All subtree

structures in this simulation run are exactly the same except that those with only three

terminal nodes do not have the split on the variable X2 (see Figure 1.1).

—————————-

Insert Figure 1.1 about here

—————————-

In practice, we suggest the following method to stop the iteration process and select a

final subtree model. First, we impose a minimum number of iterations to avoid early stopping

(e.g. 50), then we keep iterating until the absolute change in GLL is less than a given small

value (e.g. 1E-06). Once the stopping criterion is reached, we let the process continue for

an additional pre-determined number of iterations (e.g. 50 in Figure 1.1). We then find the

most frequent (modal value) number of leaves for the selected subtrees in the sequence of

additional iterations. The final subtree model chosen is the one corresponding to the last

iteration where the number of leaves is equal to the modal value. In the example presented

in Figure 1.1, the subtree model selected is the one in the very last iteration, a tree with

four leaves since it is the most frequent number of leaves in the 50 additional iterations after

the GLL stabilizes.

This algorithm is similar in terms of computational complexity to bagged trees (Brei-

man, 1996). While the latter uses bootstrap replicates of the learning data set, the proposed
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algorithm iteratively computes updated data sets in terms of the response variable (i.e., y∗i(r)).

Both algorithms fit a standard regression tree to each one of the modified data sets. This

process entails no additional challenge in terms of computational complexity if it uses one of

the available and efficient implementation of a standard regression tree algorithm. Updating

the learning data set at each iteration in the proposed algorithm for mixed effects regression

trees is not too demanding since we have closed form expressions for the estimators of the

random effects bi and of the variance components σ2 and D. Note however that the number of

bootstrap samples is arbitrarily fixed in advance in the bagging algorithm, while the number

of iterations depends on the speed of convergence of the proposed EM algorithm for mixed

effects regression trees. Many factors may affect this convergence (e.g. : sample size, initial

values, instability of standard regression trees). The main disadvantage of the EM algorithm

is that it may require a large number of iterations before reaching the stopping criteria.

To predict the response for a new observation that belongs to a cluster among those

used to fit the mixed effects regression model, we use both its corresponding population-

averaged tree prediction and the predicted random part corresponding to its cluster. For a

new observation that belongs to a cluster not included in the sample used to estimate the

model parameters, we can only take the corresponding population-averaged tree prediction.

There exist a number of other nonlinear or nonparametric methods to model the fixed

part f(Xi) and/or the random part Zibi in (1.2) (e.g., Davidian and Giltinan, 1995 ; Zhang

and Davidian, 2004 ; Zhang, 1997 ; Wu and Zhang, 2006). These alternatives may be more

suitable in some applications. Tree methods are however attractive because they propose

easily interpretable models and are able, through their automatic detection of possible signi-

ficant interactions between covariates, to represent complex relationships.

1.4 Simulation

In this section, we investigate the performance of the mixed effects regression trees

in comparison to standard trees. The proposed method was implemented in R (R Deve-

lopment Core Team, 2007) using the function rpart (Therneau and Atkinson, 1997). This
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function implements cost-complexity pruning based on cross-validation after an initial large

tree is grown. The default settings of rpart are used ; the largest tree is grown and pruned

automatically using the 1-SE rule of Breiman and al. (1984).

Within the mixed tree approach, we force the first 50 iterations, then we keep iterating

while the absolute change in GLL is not less than 1E-06 or we reach a maximum of 1000

iterations. Once the stopping criterion is met, we run an additional 50 iterations. The mixed

tree model chosen is the one corresponding to the last iteration where the number of leaves

is equal to the modal value over the last 50 mixed tree models.

To compare the performance of the standard and mixed effects regression tree methods,

we evaluate both their ability to find the true tree structure used to generate the data,

and their predictive accuracy measured by the predictive mean squared error (PMSE). In

addition, we look at how well are estimated the variance-covariance components at the

observation-level (σ2) and at the cluster-level (D) with the mixed effects regression tree

approach.

1.4.1 Simulation Design

The simulation design used has a hierarchical structure of 100 clusters with 55 obser-

vations generated in each cluster. The first five observations in each cluster form the training

sample, and the other 50 observations are left for the test sample. Consequently, the trees

are built with 500 observations (100 clusters of 5 observations). Three random variables, X1,

X2, and X3, are first generated independently with a uniform distribution in the interval

[0, 10] ; they serve as predictors. The response variable y is generated based on the following

fixed tree rules along with the random components :

Leaf 1. If x1ij ≤ 5 and x2ij ≤ 5 then yij = µ1 + zTijbi + εij,

Leaf 2. if x1ij ≤ 5 and x2ij > 5 then yij = µ2 + zTijbi + εij,

Leaf 3. if x1ij > 5 and x3ij ≤ 5 then yij = µ3 + zTijbi + εij,

Leaf 4. if x1ij > 5 and x3ij > 5 then yij = µ4 + zTijbi + εij,
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where bi and εi are generated according to N(0, D) and N(0, I) respectively, for i = 1, ..., 100

and j = 1, ..., 55. Each observation j in cluster i falls into only one of the four terminal nodes

with mean response value equal to µ1, µ2, µ3, or µ4 respectively (see Figure 1.2).

—————————-

Insert Figure 1.2 about here

—————————-

—————————-

Insert Table 1.I about here

—————————-

We consider 14 different data generating processes (DGP), summarized in Table 1.I.

Two different scenarios are selected for the fixed components. In the first scenario, the means

of the four terminal nodes are widely spread with µ1 = −20, µ2 = −10, µ3 = 10 and µ4 = 20,

while in the second scenario, they are closer with µ1 = 10, µ2 = 11, µ3 = 12 and µ4 = 13.

The random components are generated based on the following three different scenarios :

1. No random effects (NRE), i.e. D = 0.

2. Random intercept (RI), i.e. zij = 1 for i = 1, ..., 100, and j = 1, ..., 55, and D = d11 > 0.

3. Random intercept and covariate (RIC) which is a RI with a linear random effect for

X1. More precisely, zij = [1, x1ij] for i = 1, ..., 100, j = 1, ..., 55, and D =

d11 d12

d21 d22

,

d11 > 0 and d22 > 0.

In all cases, the within-cluster variance σ2 is set to 1. An equivalent alternative would

be to fix the terminal nodes means while varying the σ2 value so that large fixed effects

coincide with small values for σ2 and small fixed effects coincide with large values for σ2.

We consider two levels for the between-clusters covariance matrix D. In the RI case, we
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use D = d11 = 0.25 and 0.5 which are equivalent to an intra-cluster correlation coefficient

of 0.20 and 0.33 respectively. In the RIC case, we have two additional conditions based

on the value of the correlation between the random components, d12/
√
d11 + d22 = 0 and

d12/
√
d11 + d22 = 0.5 ; in the first correlation scenario, d11 = d22 = 0.25, and in the second

d11 = d22 = 0.5.

We adjusted three models for each DGP scenario : 1) a standard (STD) tree model,

2) a random intercept (RI) tree model, and 3) a random intercept and covariate (RIC) tree

model. The true model is the one corresponding to the DGP used to generate the data.

Overall, we built 42 regression tree models (14 scenarios × 3 models). The simulation results

are obtained by means of 100 runs.

1.4.2 Simulation Results

Firstly, we evaluate the performance of the approaches in terms of recovering the right

tree structure. Here, an estimated tree is considered to be right if it has the same structure

as the model generating the data, i.e. if its first split is on X1, then the left side of the tree

splits on X2, while the right side of the tree splits on X3, and the number of terminal nodes

equals four (Figure 1.2). We do not consider the cut-off values for the splits in assessing the

true structure of the tree.

The results are presented in Table 1.II. In all scenarios where the means of the terminal

nodes are very different (i.e. large fixed effect : DGPs 1, 3, 4, 7, 8, 11, and 12), both the

proposed approach (RI and RIC tree) and the standard tree algorithm succeed in finding the

right tree structure. However, when the difference between the means of the terminal nodes

is small, the higher the intra-cluster correlation is the harder it is for all methods to find the

right tree structure (see DGPs 5 vs 6, 9 vs 10, and 13 vs 14). In all of these cases however,

RIC tree results are closer to the true data partition compared to partitions obtained from

the RI tree or the standard tree. For DGPs 9, 10, 13 and 14, the standard tree has never

identified the right tree structure, while the RIC tree approach does best with recovery rates

of 64%, 60%, 68%, and 67%, respectively.
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—————————-

Insert Table 1.II about here

—————————-

The performance of the methods is also judged based on their predictive accuracy

measured by the predictive mean squared error :

PMSE =

∑100
i=1

∑50
j=1(yij − ŷij)2

5000
,

where ŷij is the predicted response for observation j in cluster i in the test set. Recall that

the trees are built with 100 clusters of 5 observations each but the PMSE is computed on

5000 observations in the test set (50 observations in each cluster). The average, median,

minimum, maximum and standard deviation of PMSE over the 100 runs were calculated,

and the results are presented in Table 1.II.

All three methods have exactly the same average performance when the data are un-

correlated (DGPs 1 and 2). But in all cases with a random component (DGPs 3 to 14), the

proposed mixed effects approach does better than the standard tree algorithm even with

the wrong specification of the random component part. Again, the higher the intra-cluster

correlation the more difficult it is for the standard tree to predict accurately the response

variable, but not for the mixed effects approach which handles appropriately this correla-

tion. The improvement of the new approach over the standard tree algorithm is often large,

especially when a random covariate effect is present (DGPs 7 to 14). For example, in DGP

14, the RIC tree has an average PMSE of 1.42 compared to 21.6 for the standard tree.

—————————-

Insert Table 1.III about here

—————————-
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Table 1.III gives the summary statistics of the estimated variance at the observation-

level. If we compare the estimated value of σ2 to its true value of 1 we can conclude that

the proposed mixed effects approach is very efficient even when the random structure is

over-specified, i.e. the RIC tree always estimates σ2 correctly. However, in cases where the

fitted model is a RI tree while the true model is a RIC tree, the mixed effects approach

seems to retrieve some of the cluster-level variance of the omitted random component in the

estimation of the observation-level variation σ2. The higher the variance components of D

the more important is the inflation of the estimated σ2.

—————————-

Insert Table 1.IV about here

—————————-

Table 1.IV gives the summary statistics of the estimated variance-covariance compo-

nents at the cluster-level. First, under-specification of the random structure seems to be

harmful while over-specification is not. The estimates of d11 are inflated in cases where the

fitted model is a RI tree while the true model is a RIC tree ; the higher the magnitude of

the intra-cluster correlation the more important is the inflation of the d11 estimates. Second,

in the in-depth analysis of the simulation run under DGP 6 (Figure 1.1), we observe that

the MSE improves until about iteration 40 (Figure 1.1b), which is the point in the iteration

process where good estimates of the variance components are reached. Notice also that the

tree at the first iteration corresponds to a standard tree. It has only three leaves with a

PMSE equal to 1.65 while the final RI tree model selected recovers the true tree structure

with four leaves and has a PMSE equal to 1.25.

1.5 Data Example

In this section, we illustrate the proposed tree method using a real data set on first-

week box office revenues of movies presented in the province of Quebec in Canada from
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2001 to 2008. The unit of analysis is a screen showing the new movie during its first week of

release. The importance of the first-week revenues is well-known in the industry. Typically, it

represents about 25 % of the total box office of a general public film (Simonoff and Sparrow,

2000). The total number of observations (screens) is 60175. This data includes information on

2656 movies and each movie is treated as a cluster. These clusters are highly unbalanced with

an average size of 22.7 screens per movie (minimum = 1 ; first quartile = 1 ; median = 8 ;

third quartile = 47 ; maximum = 93).

1.5.1 Description of Observation and Cluster Level Covariates

We have three covariates at the screen-level (observation-level) and eight at the movie-

level (cluster-level). The three screen-level covariates are : (1) Language (1-French Version ;

2-Original English Version ; 3-Original French Version ; 4-Original Version with Subtitles),

(2) Region (1-Montréal ; 2-Montérégie ; 3-Québec City ; 4-Laurentides ; 5-Lanaudière ; 6-

Others), and (3) Theater owner (1-Independent ; 2-Cinéplex ; 3-Guzzo ; 4-Ciné-entreprise ;

5-Famous Players ; 6-Cinémas R.G.F.M. ; 7-Cinémas Fortune ; 8-AMC).

The eight movie-level covariates are : (1) Movie critics’ rating, an ordinal covariate

taking on values from 1 (the best) to 7 (the worst), (2) Movie length, a continuous covariate

ranging between 70 to 227 minutes, (3) Movie genre (1-Comedy ; 2-Drama ; 3-Thriller ; 4-

Action/Adventure ; 5-Science fiction ; 6-Cartoons ; 7-Others), (4) Visa, the assigned movie

classification (1- General ; 2-Thirteen years old ; 3-Sixteen years old ; 4-Eighteen years old),

(5) Month of movie release, (6) Movie distributer (1-Vivafilm ; 2-Sony ; 3-Warner ; 4-Fox ; 5-

Universal ; 6-Paramount ; 7-Disney ; 8-Christal Films ; 9-Films Séville ; 10-DreamWorks ; 11-

MGM ; 12-TVA Films ; 13-Equinoxe ; 14-Others), (7) Country of origin (1-USA ; 2-Québec ;

3-France ; 4-Rest of Canada ; 5-Other countries), and (8) Size, total number of screens for a

movie in its first-week, commonly used as a proxy for the marketing effort.

Using a learning sub-sample of 30018 screens within the 2656 movies, we fitted the

following three models : 1) a standard regression tree (SRT) model, 2) a random intercept

regression tree (RIRT) model, and 3) a random intercept linear regression (RILR) model. As
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commonly done in box office prediction studies, we model the log transform of the first-week

box office revenues since it has a distribution highly skewed to the right. We also took the

logarithm of the covariate Size to lessen its asymmetry and improve the fit of the RILR

model. Note that the latter asymmetry has no effect for the SRT and RIRT models but

affects the linear mixed effects model.

1.5.2 Results

All covariates are statistically significant in the RILR model (results not shown), but

only eight covariates (Size, Region, Theater, Language, length, Month, rating) are retained

in the SRT model and only four (Size, Region, Theater, Language) are retained by the

algorithm in the RIRT model. The SRT structure is larger than the RIRT structure, i.e.,

the standard regression tree has 44 leaves while the random intercept regression tree has

28 leaves. However, the RIRT is not a subtree of the SRT ; the first splits of the two trees

are identical, but their second splits use different partitions based on the same movie-level

covariate Region (i.e. Region = 2; 4; 5; 6 vs. Region = 2; 4; 6, respectively). Figures 1.3 and

1.4 show the first three levels of the fitted SRT and RIRT, respectively.

—————————-

Insert Figure 1.3 about here

—————————-

—————————-

Insert Figure 1.4 about here

—————————-

The RIRT model has the smallest in-sample MSE (0.44). The MSE of the SRT model

and of the RILR model are 0.86 and 0.54, respectively. Thus, in-sample, the RIRT reduces
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the MSE of the SRT model by 48.93% and reduces the MSE of the RILR model by 18.30%.

Using the test sub-sample of 30157 screens within 1920 movies, the RIRT model also has

the best predictive performance ; its PMSE is 0.53 while the PMSE of the SRT and RILR

models are 0.90 and 0.62, respectively. Thus, the RIRT reduces the PMSE of the SRT model

by 41.63% and reduces the PMSE of the RILR model by 14.94%.

1.6 Discussion

Statistical models for clustered data typically include two components : A fixed or

population-averaged and a random or cluster-specific component. If these two components

have an underlying linear and additive structure, and if the normality assumption is rea-

sonable, the LME models are appropriate. If the linear assumption is too restrictive, other

structures may be more suitable to represent the true underlying relationship between the

covariates and the response variable.

There exist a number of nonlinear and/or nonparametric methods that are based on the

mixed effects modeling approach and that have relaxed partially or completely the linearity or

normality assumptions of LME models. We mention for example, the nonlinear mixed effects

models (Davidian and Giltinan, 1995), the generalized additive mixed effects model (Zhang

and Davidian, 2004), and the multivariate adaptive splines for the analysis of longitudinal

data (Zhang, 1997). These methods may be more suitable to represent the underlying true

relationship with the dependent variable in some applications.

The proposed mixed effects regression tree method relaxes the linearity assumption

of the fixed component of LME models. As for the standard regression tree, this method is

attractive because it proposes easily interpretable models that can be graphically displayed

which make them easily understandable by non statisticians, and is able, through its auto-

matic detection of possible significant interactions between covariates, to represent complex

relationships.

Others have extended tree methods to clustered data, but mainly in the context of
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longitudinal studies. Segal (1992) extended the regression tree methodology to repeated

measures and longitudinal data by modifying the split function to accommodate multiple

responses. He developed several split functions based either on deviations around clusters

subgroup mean vectors or on two-sample statistics measuring clusters subgroup separation.

One of his objectives was the identification of clusters subgroups, i.e., subgroups of growth

curves. Hence, all the observations in a cluster end up in the same terminal node and describe

the growth curve corresponding to that terminal node. Zhang (1998) treated the multivariate

binary response case in a similar setting. Lee (2005) suggested a tree-based method that can

analyze any type of multiple responses. His tree algorithm fits a marginal regression tree

at each node using the generalized estimating equations, then separates clusters into two

subgroups based on the sign of their Pearson’s residual average. By using a likelihood ratio

test statistic from a mixed model as the splitting criterion, Abdolell et al. (2002) were able

to lift the requirements that subjects have an equal number of repeated observations. Others

extended and applied these multivariate tree approaches to functional data, i.e. data where

the response is a high-dimensional vector. The basic idea is to reduce the dimensionality

then fit a multivariate tree to the reduced multivariate response (e.g. Yu and Lambert,

1999 ; Ghattas and Nerini, 2007).

All the latter extensions of tree based methods to handle correlation induced by the

data structure do not allow observation-level covariates to be candidates in the splitting

process and, consequently, all repeated observations from a given subject remain together

during the tree building process and can not be splitted across different nodes. This is

different from the method proposed here which can split observations within clusters since

observation-level covariates are candidates in the splitting process. Moreover, the proposed

tree method can appropriately deal with the possible random effects of observation-level

covariates.

Although the focus in this paper is on the most common form of clustered data,

i.e. individuals nested within groups, the proposed mixed effects regression tree approach

can be applied to analyze longitudinal data. Indeed, we can adjust a tree growth model
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where the time period and other time-varying covariates, as well as baseline measures (e.g.,

characteristics of the subject’s background, or of an experimental treatment) are used as

candidates in the splitting process. However, the proposed tree algorithm assumes that the

correlation structure is solely induced via the between-cluster variation. For data sets with

a short time series, Bryk and Raudenbush (1987) noted that this assumption is often most

practical and unlikely to distort the results. For other circumstances, one needs to adapt the

EM algorithm to generalize the approach to alternative covariance structures. To this end,

Jennrich and Schluchter (1986) described an hybrid EM scoring algorithm that could be

used to adapt the EM algorithm presented in Section 1.3.2 for the mixed effects regression

tree model in order to allow alternative within-subject covariance structures.

The main drawback of standard regression trees is their instability, i.e. a slight change

in the training sample can lead to a radically different tree model. One solution to improve the

predictive accuracy of trees is the use of ensemble methods such as bagging (Breiman, 1996)

and forest of trees (Breiman, 2001). This observation applies also to mixed effects regression

trees and the proposed method should be a good candidate for ensemble algorithms.

1.7 Conclusion

We proposed a simple approach to extend the standard regression tree methods to

clustered data. Simulation results showed that, as it is the case in the parametric frame-

work, improper handling of the correlation induced by clustered data may result in the true

relationship between variables not being identified by a standard tree algorithm. The mixed

effects regression trees can be used as a modeling tool in their own right, or as an explora-

tory tool for finding better predictive models. Past studies (e.g., Kuhnert, Do, and McClure,

2000) suggested that usual tree model could be used as a precursor to a parametric model.

This is also true for mixed effects regression tree models that can be used as a precursor to

a parametric mixed effects model. The standard tree methodology has some advantages in

comparison to parametric simple regression modeling approach (e.g., handling of large data

sets with many variables, handling outliers and collinearity problems, etc.), and all of these
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advantages carry over naturally to the mixed effects regression tree methodology.

In the light of the simulation results and the example, the proposed mixed effects

regression tree approach seems to be more appropriate for clustered data than standard

tree procedures, particularly when the random effects are non negligible. This method is

appropriate for clustered data where the outcome is continuous. Extending it to other kind

of outcomes, e.g. binary, would be important for practitioners. Also, further investigations

about the robustness of the method when its main assumptions are seriously violated (i.e.

the fixed component is non piecewise constant, the random component is non linear, the

fixed and random components are non additive, the errors are non normal) and when the

tree structure is more complex than the one used in the simulation study, remain to be done.

An R program implementing the mixed effect regression tree procedure is available

from the first author.
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Table 1.I Data generating processes (DGP) for the simulation study.

DGP
Data Structure

Fixed Component Random Component
Effect µ1 µ2 µ3 µ4 Structure d11 d22 d12

1 Large -20 -10 10 20 No random
effect

0.00 0.00 0.00
2 Small 10 11 12 13

3
Large -20 -10 10 20

Random
intercept

0.25 0.00 0.00
4 0.50 0.00 0.00
5

Small 10 11 12 13
0.25 0.00 0.00

6 0.50 0.00 0.00

7
Large -20 -10 10 20

Random
intercept and
covariate X1 with
0 correlation

0.25 0.25 0.00
8 0.50 0.50 0.00
9

Small 10 11 12 13
0.25 0.25 0.00

10 0.50 0.50 0.00

11
Large -20 -10 10 20

Random
intercept and
covariate X1 with
0.5 correlation

0.25 0.25 0.125
12 0.50 0.50 0.25
13

Small 10 11 12 13
0.25 0.25 0.125

14 0.50 0.50 0.25
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Table 1.II Results of the 100 simulation runs in terms of recovering the right tree structure and
the predictive mean square error (PMSE).

DGP
Fixed
effect

Random
effect

Fitted
tree
model∗

% of trees with
the right tree
structure

PMSE

Avg. Med. Min Max Std

1 Large
No
random
effect

STD 100 2.14 1.95 1.04 6.10 0.97
RI 100 2.14 1.95 1.04 6.10 0.97
RIC 100 2.15 1.96 1.04 6.10 0.97

2 Small
STD 95 1.04 1.03 0.96 1.21 0.04
RI 97 1.04 1.03 0.96 1.21 0.04
RIC 97 1.04 1.04 0.96 1.21 0.04

3

Large

Random
intercept

STD 100 2.43 2.09 1.26 5.49 1.01
RI 100 2.29 1.96 1.14 5.38 1.01
RIC 100 2.29 1.96 1.14 5.38 1.01

4
STD 100 2.61 2.37 1.39 5.95 0.91
RI 100 2.24 1.94 1.11 5.53 0.91
RIC 100 2.25 1.94 1.11 5.53 0.91

5

Small

STD 77 1.31 1.30 1.18 1.52 0.07
RI 91 1.16 1.15 1.07 1.33 0.05
RIC 91 1.17 1.16 1.08 1.33 0.05

6
STD 60 1.58 1.59 1.35 1.82 0.10
RI 86 1.20 1.18 1.08 1.37 0.06
RIC 88 1.20 1.19 1.08 1.37 0.06

7

Large
Random
intercept
and
covariate
with 0
correlation

STD 100 10.95 10.99 7.62 14.96 1.62
RI 100 4.90 4.70 3.25 7.91 1.02
RIC 100 2.48 2.22 1.30 5.68 0.94

8
STD 100 19.49 19.13 13.15 28.68 2.69
RI 100 7.44 7.08 5.00 13.98 1.42
RIC 100 2.69 2.41 1.32 8.17 1.25

9

Small

STD 0 10.28 9.95 7.10 14.58 1.45
RI 6 3.93 3.91 3.05 4.96 0.38
RIC 64 1.41 1.40 1.23 1.61 0.10

10
STD 0 18.90 18.65 14.30 26.44 2.59
RI 0 6.46 6.31 4.90 9.99 0.91
RIC 60 1.46 1.46 1.25 1.82 0.11

11

Large
Random
intercept
and
covariate
with 0.5
correlation

STD 100 12.25 11.85 8.65 18.47 2.15
RI 100 4.96 4.59 3.40 10.10 1.45
RIC 100 2.57 2.11 1.30 7.28 1.33

12
STD 100 21.52 21.19 15.45 30.98 2.85
RI 100 7.10 6.91 5.21 12.22 1.11
RIC 100 2.34 2.06 1.27 6.76 0.90

13

Small

STD 0 11.75 11.47 9.04 17.92 1.70
RI 5 4.01 4.00 2.82 5.50 0.41
RIC 68 1.39 1.38 1.21 1.72 0.10

14
STD 0 21.60 21.51 15.80 28.85 2.91
RI 1 6.45 6.40 4.96 8.59 0.79
RIC 67 1.42 1.41 1.20 1.77 0.11

∗ STD : Standard tree model ; RI : Random intercept tree model ; RIC : Random intercept and covariate tree model
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Table 1.III Results of the 100 simulation runs for the estimation of the observation-level variance
(the true value is σ2 = 1).

DGP Fixed effect Random effect
Fitted tree
model∗

σ̂2

Avg. Med. Min Max Std

1 Large No
random
effect

RI 0.98 0.98 0.74 1.14 0.07
RIC 0.96 0.95 0.73 1.13 0.07

2 Small
RI 0.98 0.98 0.81 1.16 0.08

RIC 0.96 0.97 0.80 1.15 0.08

3
Large

Random
intercept

RI 0.99 1.00 0.83 1.15 0.08
RIC 0.98 0.98 0.79 1.15 0.08

4
RI 0.99 0.99 0.83 1.16 0.07

RIC 0.98 0.97 0.80 1.15 0.07

5
Small

RI 0.98 0.98 0.83 1.14 0.07
RIC 0.96 0.97 0.80 1.14 0.07

6
RI 1.00 1.00 0.84 1.25 0.08

RIC 0.99 0.99 0.81 1.25 0.08

7
Large

Random
intercept
and
covariate
with 0
correlation

RI 3.09 3.09 2.29 4.46 0.36
RIC 0.98 0.99 0.82 1.21 0.09

8
RI 5.11 5.07 3.42 7.29 0.71

RIC 1.01 1.00 0.79 1.38 0.09

9
Small

RI 3.29 3.25 2.34 4.49 0.39
RIC 1.03 1.02 0.83 1.33 0.10

10
RI 5.32 5.11 3.85 8.76 0.82

RIC 1.02 1.01 0.82 1.31 0.10

11
Large

Random
intercept
and
covariate
with 0.5
correlation

RI 3.07 3.02 2.35 4.10 0.38
RIC 1.00 1.00 0.79 1.18 0.08

12
RI 5.14 5.07 3.65 7.35 0.77

RIC 1.00 1.00 0.82 1.25 0.09

13
Small

RI 3.28 3.24 2.23 5.22 0.42
RIC 1.00 1.01 0.78 1.21 0.09

14
RI 5.30 5.16 4.03 6.91 0.78

RIC 1.01 1.02 0.83 1.24 0.09

∗ STD : Standard tree model ; RI : Random intercept tree model ; RIC : Random intercept and covariate tree model
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Figure 1.2 Mixed effects regression tree structure used for the simulation study.
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Figure 1.3 The first three levels of the standard regression tree for the data example on first-week
box office revenues (on the log scale). When the condition below a node is true then go to the left
node, otherwise go to the right node. The complete tree has 44 leaves.
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Figure 1.4 The first three levels of the random intercept regression tree for the data example on
first-week box office revenues (on the log scale). When the condition below a node is true then go
to the left node, otherwise go to the right node. The complete tree has 28 leaves.
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2.1 Abstract

This paper presents the generalized mixed effects regression tree (GMERT) method, an extension

of the mixed effects regression tree (MERT) methodology designed for continuous outcomes to other types

of outcomes (e.g., binary outcomes, counts data, ordered categorical outcomes, and multicategory nominal

scale outcomes). This extension uses the penalized quasi-likelihood (PQL) method for the estimation and

the expectation-maximization (EM) algorithm for the computation. The simulation results in the binary

response case show that, when random effects are present, the proposed generalized mixed effects regression

tree method provides substantial improvements over standard classification trees.

Keywords : Tree based methods, clustered data, mixed effects, penalized quasi-likelihood (PQL)

algorithm, expectation-maximization (EM) algorithm.

2.2 Introduction

Tree based methods are a classic data mining technique. These methods became po-

pular with the CART (classification and regression tree) algorithm (Breiman, Friedman,

Olshen, and Stone, 1984). They have many advantages compared to parametric methods.

For instance, they are able to detect automatically possible significant interactions between

covariates, and they propose easily interpretable models that can be graphically displayed.

However, when the data are clustered (i.e., observations nested within clusters) with cova-

riates at the observation- and at the cluster-level, the standard tree algorithm is no longer

appropriate. A number of extensions of standard tree methods to the case of clustered data

were proposed in the literature.

Segal (1992) extended the regression tree methodology to repeated measures and lon-

gitudinal data (i.e., repeated observations nested within subjects) by modifying the split

function to accommodate multiple responses. All the observations in a cluster end up in the

same terminal node and describe the growth curve corresponding to that terminal node.

Zhang (1998) proposed two splitting criteria for the case of multiple binary responses. These

extensions require that subjects have an equal number of repeated observations. By using a

likelihood ratio test statistic from a mixed model as the splitting criterion, Abdolell, Leblanc,
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Stephens, and Harrison (2002) were able to lift this requirement. Lee (2005) suggested a tree-

based method that can analyze continuous or discrete multiple responses. His tree algorithm

fits a marginal regression tree at each node using generalized estimating equations, then

separates clusters into two subgroups based on the sign of their Pearson’s residual average.

All the above extensions of tree based methods to handle the correlation induced by the

data structure (i.e., repeated observations nested within subjects) do not allow observation-

level (i.e., time-varying) covariates to be candidates in the splitting process and, consequently,

1) no random or subject-specific effect of these covariates is allowed, and 2) all repeated

observations from a given subject remain together during the tree building process and can

not be splitted across different nodes. Hajjem, Bellavance, and Larocque (2008) proposed a

mixed effects regression tree (MERT) method. It is an extension of the standard regression

tree method to the case of clustered data where individuals are nested within groups. In

contrast to the above extensions, this tree method can appropriately deal with the possible

random effects of observation-level covariates and can split observations within clusters since

observation-level covariates are candidates in the splitting process. Moreover, it does not

require that the clusters have an equal number of observations. However, MERT was designed

for a continuous response.

Following the logic of the generalized linear mixed models (GLMMs) (e.g., Breslow and

Clayton, 1993), and adjusting for some new issues that arise in tree modeling framework, we

propose a tree based method, named “generalized mixed effects regression tree” (GMERT),

which is suitable for other types of outcomes (e.g., binary outcomes, counts data, ordered

categorical outcomes, and multicategory nominal scale outcomes). Basically, the GMERT

algorithm is a repeated call to a weighted MERT algorithm. The proposed GMERT method

can handle unbalanced clusters, allows observations within clusters to be splitted, and can

incorporate random effects and observation-level covariates.

This paper presents and evaluates the proposed generalized mixed effects regression

tree method. The remainder of this article is organized as follows : Section 2.3 describes the
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proposed approach ; Section 2.4 presents a simulation study to evaluate its performance of

the method ; Section 2.5 discusses a number of related issues.

2.3 Generalized Mixed Effects Regression Tree

The basic idea behind the proposed generalized mixed effects regression tree method

is to replace the linear structure used to model the fixed effects component in the GLMM’s

linear predictor with a regression tree structure, while the random component is still repre-

sented using a linear structure as in GLMMs. For the estimation of the GMERT model,

we use the penalized quasi-likelihood (PQL) method (Breslow and Clayton, 1993), and for

the computation we use the expectation-maximization (EM) algorithm (Dempster, Laird,

and Rubin 1977 ; McLachlan and Krishman 1997). Let’s first review the key components of

GLMM and the PQL algorithm.

2.3.1 PQL Algorithm for the Generalized Linear Mixed Models

Let yi = [yi1, ..., yini ]
T denote the ni × 1 vector of responses for the ni observations

in cluster i. Let Xi = [xi1, ..., xini ]
T denote the ni × p matrix of fixed-effects covariates,

and Zi = [zi1, ..., zini ]
T denote the ni × q matrix of random-effects covariates. Let bi denote

the q × 1 unknown vector of random effects for cluster i. Then, conditional on the bi, the

GLMM assumes that the response vector yi follows a distribution from the exponential family

(McCullagh and Nelder, 1989) with density f(yi|bi, β) where β is common for all the clusters

and is the p × 1 unknown vector of parameters for the fixed effects. The total number of

observations is N =
∑n

i=1 ni. Let µi = E(yi|bi) and Cov(yi|bi) = σ2vi(µi), where σ2 is a

dispersion parameter that may or may not be known and vi(µi) = diag[v(µi1), ..., v(µini)]

with v(.) being a known variance function. This formulation implies that the correlation

is completely induced via between-clusters variation , i.e. given bi, the observations are

assumed independent. This assumption is suitable for a wide range of applications (Breslow

and Clayton, 1993). Let ηi = g(µi) where g(µi) = [g(µi1), ..., g(µini)]
T with g(.) being a

known link function. The GLMM is often written in the following form (see for example,
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§2.4.1 of Wu and Zhang, 2006) :

ηi = Xiβ + Zibi, (2.1)

bi ∼ Nq(0, D), i = 1, ..., n,

where D is the variance-covariance matrix of random effects. Estimation of the parameters in

GLMM is not as simple as for the linear mixed effects (LME) model (Harville, 1976). When

the errors at the observation-level are non normally distributed and the random effects

at the cluster-level are assumed multivariate normal, the integration needed to obtain the

likelihood is not available in closed form (e.g., Raudenbush and Bryk, 2002, page 456). An

approximation via the linearization, known as the penalized quasi likelihood (PQL) approach,

was developed and implemented in a number of mixed effects modeling softwares such as the

glmmPQL function (Venables and Ripley, 2002) of R (R Development Core Team, 2007),

HLM6 (Raudenbush, Bryk, Cheong, Congdon, and du Toit, 2004), and SAS GLIMMIX

procedure (SAS Institute Inc., 2008). This method linearizes the non linear response variable

yi with a first-order Taylor series expansion. The resulting pseudo-response variable yli =

g(µi) + (yi − µi)g
′
(µi), where g′(.) is the first derivative of g(.) (g′(µi) = v−1

i (µi) for the

canonical link function), follows approximately a normal distribution. Hence, the integration

is available in a closed form, and the maximization of the likelihood can be done using

available estimation and computation algorithms, such as the method of maximum likelihood

(ML) implemented within the EM algorithm framework (ML-based EM algorithm). The

resulting LME pseudo-model is defined as follows :

yli = Xiβ + Zibi + ei (2.2)

where bi and ei are assumed independent and normally distributed and the between clusters

observations are assumed independent. Consequently, based on the above pseudo-model,

we have V = Cov(yl) = diag(Cov(yli), ..., Cov(yln)), where yl = [yTl1, ..., y
T
ln]T , the covariance

matrix of within-cluster observations vector yli for the ith cluster is Vi = Cov(yli) = ZiDZ
T
i +

Ri where Ri = diag[σ2vijg
′(µij)

2] with vij = V ar(yij|bi) and σ2 is a dispersion parameter
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which can be estimated from the usual residual sum of squares or fixed to 1 if the assumed

distribution does not have a scale parameter and no under- or over-dispersion parameter is

to be estimated.

Using the weights Wi = diag(wij) with wij = (vijg
′(µij)

2)−1 and wij = vij for the

canonical link function, we derive the following weighted LME pseudo-model

W
1
2
i yli = W

1
2
i Xiβ +W

1
2
i Zibi +W

1
2
i ei (2.3)

with Cov(W
1
2
i yli) = W

1
2
i ZiD(W

1
2
i Z)Ti +σ2Ini . This weighted LME pseudo-model can be fitted

using the ML-based EM algorithm.

The PQL algorithm is detailed below.

MACRO STEP 0. Set M = 0. Given initial estimates of the mean values, µ̂
(0)
ij , j =

1, ..., ni, fit a weighted LME pseudo-model using the linearized pseudo responses, y
(0)
li ,

and the weights, W
(0)
i = diag(w

(0)
ij ).

Micro Step 0. Set m = 0. Let σ̂2
(0) = 1, and D̂(0) = Iq.

Micro Step 1. Set m = m+ 1. Update β̂(m) and b̂i(m)

β̂(m) =

(
n∑
i=1

(W
1
2

(M)

i Xi)
T V̂ −1

i(m−1)W
1
2

(M)

i Xi

)−1( n∑
i=1

(W
1
2

(M)

i Xi)
T V̂ −1

i(m−1)W
1
2

(M)

i y
(M)
li

)
,

b̂i(m) = D̂(m−1)(W
1
2

(M)

i Zi)
T V̂ −1

i(m−1)

(
W

1
2

(M)

i y
(M)
li −W

1
2

(M)

i Xiβ̂(m)

)
,

where V̂i(m−1) = W
1
2

(M)

i ZiD̂(m−1)(W
1
2

(M)

i Zi)
T + σ̂2

(m−1)Ini , i = 1, ..., n.

Micro Step 2. Update σ̂2
(m), and D̂(m) using

σ̂2
(m) = N−1

n∑
i=1

{
ε̂Ti(m)ε̂i(m) + σ̂2

(m−1)[ni − σ̂2
(m−1)trace(V̂i(m−1))]

}
,

D̂(m) = n−1

n∑
i=1

{
b̂i(m)b̂

T
i(m) + [D̂(m−1) − D̂(m−1)(W

1
2

(M)

i Zi)
T V̂ −1

i(m−1)W
1
2

(M)

i ZiD̂(m−1)]
}
,

where ε̂i(m) = W
1
2

(M)

i y
(M)
li −W

1
2

(M)

i Xiβ̂(m) −W
1
2

(M)

i Zib̂i(m).
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Micro Step 3. Repeat steps 1 and 2 until convergence in terms of the generalized

log-likelihood value :

GLL(β, bi|y) =
n∑
i=1

{ε̂Ti(m)(σ̂
2
(m)Ini)

−1ε̂i(m) + b̂Ti(m)D̂
−1
(m)b̂i(m) + log |D̂(m)|+ log |σ̂2

(m)Ini|}.

MACRO STEP 1. Set M = M + 1. Set η̂
(M−1)
i = ŷ

(M−1)
li = Xiβ̂ + Zib̂i, where β̂ and b̂i

are the estimated values at the micro level convergence of the previous macro iteration.

Set µ̂
(M)
i = g−1(η̂

(M−1)
i ), and fit a new weighted LME pseudo-model using the updated

y
(M)
li and W

(M)
i , i.e. repeat the micro steps 0 to 3 using as initial values for σ̂2, and D̂,

their micro-level convergence values in the previous macro iteration.

MACRO STEP 2. Repeat macro step 1 until convergence of η̂i.

The PQL algorithm is a doubly iterative process (i.e., micro iterations within macro

iterations). At each macro iteration, the linearized response variable and the weights are

updated. The micro iterations represent the iterative fitting process of a standard LME

model where the current linearized response variable and weights values serve as the response

variable and the weights, respectively.

2.3.2 PQL Algorithm for the Generalized Mixed Effects Regression Trees

The proposed generalized mixed effects regression tree (GMERT) model can be written

as :

ηi = f(Xi) + Zibi, (2.4)

bi ∼ Nq(0, D), i = 1, ..., n,

where all quantities are defined as in Section 2.3.1 except that the linear fixed part Xiβ in

(2.1) is replaced by the function f(Xi) that will be estimated with a standard regression tree

model. The random part, Zibi, is still assumed linear.

Following the PQL approach used to estimate the GLMM, we can derive a MERT
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pseudo-model from the above GMERT model, exactly as the LME pseudo-model derived

from the GLMM. More precisely, a first-order Taylor-series expansion yields the linearized

response variable, yli = g(µi) + (yi − µi)g
′
(µi), and the MERT pseudo-model is defined as

follows :

yli = f(Xi) + Zibi + ei. (2.5)

The GMERT algorithm is basically the PQL algorithm used to fit GLMMs where the

weighted LME pseudo-model is replaced by a weighted MERT pseudo-model. Consequently,

the fixed-part f(Xi) is estimated with a standard regression tree model while the random

part, Zibi, is still estimated using a linear structure. The GMERT algorithm is detailed

below.

MACRO STEP 0. Set M = 0. Given initial estimates of the mean values, µ̂
(0)
ij , j =

1, ..., ni, fit a weighted MERT pseudo-model using the linearized pseudo responses,

y
(0)
li , and the weights, W

(0)
i = diag(w

(0)
ij ).

Micro Step 0. Set m = 0. Let b̂i(0) = 0, σ̂2
(0) = 1, and D̂(0) = Iq.

Micro Step 1. Set m = m+ 1. Update y∗li(m), f̂(m)(Xi) and b̂i(m)

i) y∗li(m) = y
(M)
li − Zib̂i(m−1),

ii) Let f̂(m)(Xi) an estimate of f(Xi) obtained from a standard regression tree

algorithm with y∗li(m) as responses, Xi as covariates, and Wi as weights, i =

1, . . . , n . Note that the tree is built as usual using all N observations as

inputs along with their covariate vectors but with the specified weights (see

the appendix in Section 2.7 for details),

iii) b̂i(m) = D̂(m−1)(W
1
2

(M)

i Zi)
T V̂ −1

i(m−1)

(
W

1
2

(M)

i yMli −W
1
2

(M)

i f̂(m)(Xi)
)

,

where V̂i(m−1) = W
1
2

(M)

i ZiD̂(m−1)(W
1
2

(M)

i Zi)
T + σ̂2

(m−1)Ini , i = 1, ..., n.
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Micro Step 2. Update σ̂2
(m), and D̂(m) using

σ̂2
(m) = N−1

n∑
i=1

{
ε̂Ti(m)ε̂i(m) + σ̂2

(m−1)[ni − σ̂2
(m−1)trace(V̂i(m−1))]

}
,

D̂(m) = n−1

n∑
i=1

{
b̂i(m)b̂

T
i(m) + [D̂(m−1) − D̂(m−1)(W

1
2

(M)

i Zi)
T V̂ −1

i(m−1)W
1
2

(M)

i ZiD̂(m−1)]
}
,

where ε̂i(m) = W
1
2

(M)

i y
(M)
li −W

1
2

(M)

i f̂(m)(Xi)−W
1
2

(M)

i Zib̂i(m).

Micro Step 3. Repeat steps 1 and 2 until convergence in terms of the generalized

log-likelihood value :

GLL(f, bi|y) =
n∑
i=1

{ε̂Ti(m)(σ̂
2
(m)Ini)

−1ε̂i(m) + b̂Ti(m)D̂
−1
(m)b̂i(m) + log |D̂(m)|+ log |σ̂2

(m)Ini|}.

MACRO STEP 1. Set M = M + 1. Set η̂
(M−1)
i = ŷ

(M−1)
li = f̂(Xi) + Zib̂i, where f̂ and

b̂i equal their estimated values at the micro level convergence of the previous macro

iteration. Set µ̂
(M)
i = g−1(η̂

(M−1)
i ) and fit a new weighted MERT pseudo-model using

the updated y
(M)
li and W

(M)
i , i.e., repeat the micro steps 0 to 3 using as initial values

for b̂i, σ̂
2, and D̂, their micro-level convergence values in the previous macro iteration.

MACRO STEP 2. Repeat macro step 1 until convergence of η̂i.

The GMERT model can be used to get the predicted response for a new observation

that belongs to a cluster among those used to fit this model as well as for a new observation

that belongs to a cluster not included in the sample used to fit this model. To predict the

response for a new observation that belongs to a cluster among those used to fit the gene-

ralized mixed effects regression tree model, we use both its corresponding fixed component

prediction and the predicted random part corresponding to its cluster. This is a cluster-

specific estimate. For a new observation that belongs to a cluster not included in the sample

used to estimate the model parameters, we can only use its corresponding fixed component

prediction (i.e., the random part is set to 0).
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2.3.3 GMERT Model in the Binary Response Case

For clustered data with a binary response variable, i.e., yij = µij + εij with E(εij) = 0

and V ar(εij) = σ2vij = σ2µij(1 − µij), the commonly used parametric model is the mixed

effects logistic regression model with the logit link function, namely

ηij = g(µij) = logit(µij) = ln[
µij

1− µij
] = xTijβ + zTijbi. (2.6)

The conditional expectation µij = E(yij|bi, xij) = P (yij = 1|bi, xij) is the conditional pro-

bability of success given the random effects and covariate values. This model can also be

written as follows :

P (yij = 1|bi, xij) = g−1(ηij), (2.7)

where g−1(ηij) = 1
1+exp(−ηij) is the logistic cumulative distribution function.

The GMERT model in the binary response case (i.e., mixed effects classification tree)

and its corresponding MERT pseudo-model are respectively defined as follows :

ηij = ln[
µij

1− µij
] = f(xij) + zTijbi, (2.8)

ylij = ηij + eij, (2.9)

where eij = (yij − µij)g′(µij), g′(µij) = [µij(1 − µij)]−1, and V ar(eij) = σ2[µij(1 − µij)]−1.

The weights to be used in the GMERT algorithm are wij = µij(1− µij).

The GMERT model can be used to get a predicted probability of success for a new

observation that belongs to a cluster among those used to fit this model or for a new ob-

servation that belongs to a cluster not included in the sample used to fit this model. If the

new observation j belongs to a cluster i in the first category, then its predicted probability

of success µ̂ij equals 1

1+exp(−f̂(xij)−zTij b̂i)
, where f̂(xij) is its predicted fixed component that
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results from the fixed tree rules and zTij b̂i is its predicted random part corresponding to its

cluster. However, if the new observation j belongs to a cluster i in the second category, then

its predicted probability µ̂ij equals 1

1+exp(−f̂(xij))
(i.e., the random part is set to 0).

2.4 Simulation

In this section, we investigate the performance of the GMERT method for binary

outcomes in comparison to standard classification trees. The proposed GMERT method was

implemented in R by means of a repeated call to the MERT algorithm. The latter uses the

function rpart (Therneau and Atkinson, 1997). This function implements cost-complexity

pruning based on cross-validation after an initial large tree is grown. In order to ensure that

initial trees are sufficiently large, we set the complexity parameter to zero (i.e., cp = 0 means

that any split that does not decrease at all the overall lack of fit is also attempted). Though

there is a clear waste of computing time when not pruning off splits that are clearly not

worthwhile, doing so ensure that the two methods to be compared were given equal chance

to fit the data. In addition, we fixed the value of other parameters to reasonable (i.e., given

the true tree model and the generated data sample to be used) and equal levels. That is,

we set to five the maximum depth of any node of the final tree (i.e., maxdepth = 5), to

50 the minimum number of observations that must exist in a node in order for a split to

be attempted (i.e., minsplit = 50 ), and to 10 the minimum number of observations in any

terminal node (i.e., minbucket = 10). The largest tree is grown then pruned automatically

based on minimum ten-folds cross-validated error.

For GMERT models, we used the following schema to stop the macro-micro iteration

process and select a final model. Within each macro iteration, we follow the MERT algorithm

convergence process. More precisely, we first impose a minimum of 50 micro iterations to

avoid early stopping, then we keep iterating until either the absolute change in the generalized

log-likelihood, GLL, is less than 1E-06 or we reach a maximum of 200 micro iterations. Once

the stopping criterion is reached, we let the process continue for an additional 50 micro

iterations. We then find the most frequent (modal value) number of leaves for the selected
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subtrees in the sequence of additional iterations. The final subtree model chosen at the micro

iteration level, is the one corresponding to the last micro iteration where the number of leaves

is equal to the modal value.

At the macro iteration level, we keep iterating until either the absolute change in η̂i is

less than 1E-10 or we reach the maximum of 15 macro iterations. Once the stopping criterion

is reached, we let the process continue for an additional 5 macro iterations. We then find

the most frequent (modal value) number of leaves for the selected micro iteration subtrees

in the sequence of additional macro iterations. The final GMERT model chosen is the one

corresponding to the last macro iteration where the number of leaves is equal to the modal

value.

To compare the performance of standard and mixed effects classification trees, we eva-

luate their predictive accuracy measured by the predictive mean absolute deviation in terms

of the estimated probability (PMAD) and the predictive misclassification rate (PMCR).

2.4.1 Simulation Design

The simulation design used has a hierarchical structure of 100 clusters with 60 obser-

vations each. The first ten observations in each cluster form the training sample, and the

other 50 observations are left for the test sample. Consequently, the trees are built from

1000 observations (100 clusters of 10 observations). Eight random variables, X1 to X8, inde-

pendent and uniformly distributed in the interval [0, 10] are generated. Only the first five are

used predictors. The conditional or cluster-specific probabilities of success, µij, are generated

based on the following fixed tree rules along with the random component :

Leaf 1. If x1ij ≤ 5 and x2ij ≤ 5 then µij = g−1(g(ϕ1) + zTijbi),

Leaf 2. If x1ij ≤ 5 and x2ij > 5 and x4ij ≤ 5 then µij = g−1(g(ϕ2) + zTijbi),

Leaf 3. If x1ij ≤ 5 and x2ij > 5 and x4ij > 5 then µij = g−1(g(ϕ3) + zTijbi),

Leaf 4. If x1ij > 5 and x3ij ≤ 5 and x5ij ≤ 5 then µij = g−1(g(ϕ4) + zTijbi),

Leaf 5. If x1ij > 5 and x3ij ≤ 5 and x5ij > 5 then µij = g−1(g(ϕ5) + zTijbi),
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Leaf 6. If x1ij > 5 and x3ij > 5 then µij = g−1(g(ϕ6) + zTijbi),

where g() is the logit link function, ϕ1 to ϕ6 are the typical probabilities of success (i.e.,

probability of success when the random effects bi equal zero), and bi ∼ N(0, D), for i =

1, ..., 100, j = 1, ..., 60 (see figure 2.1). Each observation j in cluster i falls into only one of

the six terminal nodes with a typical probability equal to ϕ1, ..., ϕ6 respectively. The binary

response values yij are generated according to a Bernoulli distribution using the rbinom

function of R with the size parameter fixed to one (i.e. one trial) and the prob parameter

fixed to µij (i.e. the generated conditional probability of success).

—————————-

Insert Figure 2.1 about here

—————————-

We consider 10 different data generating processes (DGP), summarized in Table 2.I.

Two different scenarios are selected for the fixed components. In the large fixed effects

scenario, the probabilities are chosen so that when there is no random effect, the standard

classification tree is able to recover the true number of leaves most of the time (i.e., about

95% of times). In the small fixed effects scenario, the probabilities are chosen so that when

there is no random effect, the standard classification tree is much less able to recover the

true number of leaves (i.e., about 55% of times only).

—————————-

Insert Table 2.I about here

—————————-

The random components are generated based on the following three different scenarios :

1. No random effects (NRE), i.e. D = 0.
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2. Random intercept (RI), i.e. zij = 1 for i = 1, ..., 100, and j = 1, ..., 60, and D = d11 > 0.

3. Random intercept and covariate (RIC) which is a RI with a linear random effect for

X1. More precisely, zij = [1, x1ij] for i = 1, ..., 100, j = 1, ..., 60, and D =

d11 d12

d21 d22

,

d11 > 0, d22 > 0, and d12 = d21 = 0.

Within each fixed effects scenario with random effects, we consider two levels (low and

high) for the between-clusters covariance matrix D. More precisely, we consider that the

random effect is small (large) when it results in about 10% (30%) of the observations’ classes

being shifted from 1 to 0 or vice versa.

We adjust three models for each DGP scenario : 1) a standard (STD) classification

tree model, 2) a random intercept (RI) classification tree model, and 3) a random intercept

and covariate (RIC) classification tree model. The true model corresponds to the DGP used

to generate the data. In addition, using the glmmPQL function of R, we fitted for each DGP

scenario a parametric mixed effects logistic regression model (MElog) that uses the true

model leaves’ indicators as predictors and the true random effects structure. Clearly, this

model is not a real competitor since it is not possible in practice to specify this parametric

structure without knowing the true underlying data generating process. The MElog model

only serves as a benchmark for comparing the performance of the GMERT model. Overall,

we built 40 models (10 scenarios × 4 models). The simulation results are obtained by means

of 100 runs.

2.4.2 Simulation Results

Firstly, the performance of the methods is judged based on their predictive accuracy

on the test set as measured by : 1) the predictive mean absolute deviation (PMAD) in terms

of the estimated probability, and 2) the predictive misclassification rate (PMCR), i.e.,

PMAD =

∑100
i=1

∑50
j=1 |µij − µ̂ij|
5000

,
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PMCR =

∑100
i=1

∑50
j=1 |yij − ŷij|
5000

,

where µ̂ij and ŷij are, respectively, the predicted probability and the predicted class of

observation j in cluster i in the test data set. Secondly, we compare the performance of the

GMERT approach to the MElog benchmark results.

The misclassification rate depends to some extent on the classification strategy and the

cutpoint value used to classify the observations, in particular, when the data has a nested

structure with clusters having different sizes in the training and the test data sets. The

adopted strategy consists in these steps :

1. Sort the distinct predicted probabilities of the observations in the training set (there

are, at most, number of clusters × number of terminal nodes distinct probabilities),

2. Classify the observations in the training set using in turn each one of these distinct

predicted probabilities as a cutpoint ; classify as class 1 each observation in the training

set that has a predicted probability equal to or higher than the cutpoint value,

3. Compute the proportions of class 1 that result from each one of the above cutpoint

values,

4. Find the predicted probability among those in step 1 that yields the closest proportion

of class 1 to the actual proportion of class 1 in the training set, and

5. Use this predicted probability as the cutpoint value in order to classify the observations

in the test set, i.e., classify as class 1 each observation in the test set that has a predicted

probability equal to or higher than this cutpoint value.

The average, median, minimum, maximum and standard deviation of the PMAD (co-

lumns 5 to 9) and the PMCR (columns 10 to 14) over the 100 runs were calculated and are

presented in Table 2.II.

—————————-

Insert Table 2.II about here
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—————————-

In terms of predictive accuracy (PMAD and PMCR), we note that when random

effects are present (DGPs 3 to 10), the mixed effects classification tree does better than the

standard classification tree even with a wrong specification of the random component part.

The highest difference in terms of PMAD and PMCR is observed when both the fixed and

the random effects are somewhat large (i.e., 21.65% and 17.2% in DGP 4, and 20.23% and

17.06% in DGP 8, respectively). The lowest difference in terms of PMAD and PMCR is

observed when both the fixed and the random effects are somewhat small (i.e., 1.85% and

0.33% in DGP 5, and 1.82% and 0.46% in DGP 9, respectively). In addition, when there is

no random effect (DGPs 1 and 2), the standard classification tree algorithm does slightly

better in terms of PMAD and PMCR than the proposed GMERT approach with the highest

difference being less than 2% (i.e., 1.08% and 1.15% in DGP 1, and 1.38% and 1.90% in

DGP 2, respectively).

The difference in predictive accuracy (PMAD and PMCR) between the benchmark

model MElog and the GMERT model reaches a minimum when the fixed effects are large

while the random effects are small (DGPs 3 and 7), and a maximum when both the fixed and

the random effects are small (DGPs 5 and 9). In terms of PMAD, this difference equals 0.80%

and 1.13% in DGPs 3 and 7 respectively, and 2.50% and 2.25% in DGPs 5 and 9 respectively.

In terms of PMCR, this difference equals 0.69% and 1.02% in DGPs 3 and 7 respectively,

and 2.50% and 2.34% in DGPs 5 and 9 respectively. When there is no random effects, the

difference in predictive accuracy between the benchmark model MElog and the GMERT

model is, as anticipated, higher when the fixed effects are small (the PMAD difference in

DGP 2 is 2.63 times the PMAD difference in DGP 1, and the PMCR difference in DGP 2 is

2.56 times the PMCR difference in DGP 1).
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2.5 Discussion

Earlier extensions of standard tree methods to the case of correlated data (Segal,

1992 ; Zhang, 1998 ; Abdolell, Leblanc, Stephens, and Harrison, 2002 ; Lee, 2005) do not

allow observation-level covariates to be candidates in the splitting process and, consequently,

1) no random or cluster-specific effect is allowed, and 2) all repeated observations from a

given subject remain together during the tree building process and can not be splitted across

different nodes. The MERT method (Hajjem et al., 2008) and the GMERT method proposed

in this paper can appropriately deal with the possible random effects of observation-level

covariates since these covariates are candidates in the splitting process. As a consequence,

the observations within clusters may be splitted.

The GMERT model is a cluster-specific or conditional model which yields cluster-

specific or conditional means estimates, µi = g−1(f̂(Xi)+Zib̂i), and not population-averaged

or marginal means estimates, E(µi).

Although the simulation study focused on the binary response case, the GMERT me-

thod can be tailored to other types of response variables (e.g., counts data, ordered catego-

rical outcomes, and multicategory nominal outcomes). Similarly to GLM, GMERT method

transforms the expected outcome using an appropriate link function according to the type

of the response variable and then equates it to a tree function of the fixed effects along with

a linear function of the random effects. Future research would be to look for a tree struc-

ture representation for the random component as well, which may be more suitable in more

complex problems.

2.6 Conclusion

In the present paper, we extended the mixed effect regression tree approach to other

types of outcomes (e.g., binary outcomes, counts data, ordered categorical outcomes, and

multicategory nominal scale outcomes).
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The simulation results in the binary case show substantial improvements of the pre-

dictive accuracy over the standard classification tree, whenever random effects are present.

However, the main limit of tree based method, including the one proposed here, is their in-

stability. Ensemble methods such as bagging (Breiman, 1996) and forest of trees (Breiman,

2001) can greatly improve the predictive performance of trees. Hence, further improvement

of the predictive accuracy of the GMERT method could be achieved if we use it as the base

learner in an ensemble algorithms. This remains for future work.

An R program implementing the generalized mixed effects regression tree procedure is

available from the first author.
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2.7 Appendix : Weighted Standard Regression Tree Within GMERT Algorithm

Here we clarify how the weights intervene in the standard regression tree fitted at each

micro iteration within the GMERT algorithm. At any micro iteration within a given macro

iteration, the standard regression tree uses the corresponding y∗li = yi−Zib̂i as the dependent

variable and Xi as the covariates, along with the weights Wi = diag(wij), with i = 1, ..., n

and j = 1, ..., ni.

Let T be the fitted standard regression tree, and let t be one of its nodes. Node t

contains a subset of Nt < N observations that belong to a subset of nt ≤ n clusters with

pseudo-responses y∗litjt , it = 1, ..., nt and jt = 1, ..., nit . Then, given the weights witjt of

observation jt in cluster it in node t, we have :

– The summary statistic to be attached to node t corresponds to its weighted response

average ȳ∗lt =
∑nt
it=1

∑nit
jt=1 witjty

∗
litjt∑nt

it=1

∑nit
jt=1 witjt

. This corresponds to the fitted value ŷ∗lt = f̂(Xit)

when t is a terminal node.

– The error of node t equals its weighted sums of squares or corrected deviance DEVt,

with DEVt =
∑nt

it=1

∑nit
jt=1 witjt(y

∗
litjt
− ȳ∗lt)2.

– The splitting criterion is the improvement or the percent change in the weighted

sums of squares for a given split of node t into two nodes tl and tr, i.e., Improve =

1− (DEVtl+DEVtr )

DEVt
.

– The cross-validated relative error corresponding to a given complexity parameter

value for the tree T is defined as follows : xerror =
∑n
i=1

∑ni
j=1 wij(y

∗
lij−ŷ

∗
l(−ij))

2

DEVroot
, with

ŷ∗l(−ij) being the predicted value for observation j in cluster i, from the standard

regression tree model that is fitted without this observation.
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Table 2.I Data generating processes (DGP) for the simulation study.

DGP
Data Structure

Fixed Component Random Component
Effect ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 Structure d11 d22

1 Large 0.10 0.20 0.80 0.20 0.80 0.90 No random
effect

0.00 0.00
2 Small 0.20 0.40 0.70 0.30 0.60 0.80

3
Large 0.10 0.20 0.80 0.20 0.80 0.90

Random
intercept

4.00 0.00
4 10.00 0.00
5

Small 0.20 0.40 0.70 0.30 0.60 0.80
0.50 0.00

6 4.00 0.00

7
Large 0.10 0.20 0.80 0.20 0.80 0.90 Random

intercept and
covariate

2.00 0.05
8 5.00 0.25
9

Small 0.20 0.40 0.70 0.30 0.60 0.80
0.25 0.01

10 2.00 0.05
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Figure 2.1 Generalized mixed effects tree structure used for the simulation study, with g(.) being
the logit link function and g(.)−1 the inverse-logit or logistic function.
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Table 2.II Results of the 100 simulation runs in terms of the predictive probability mean absolute
deviation (PMAD) and the predictive misclassification rate (PMCR).

DGP
Fixed
effect

Random
effect

Fitted
model∗

PMAD (%) PMCR (%)
Avg. Med. Min Max Std Avg. Med. Min Max Std

1 Large
No
random
effect

STD 3.09 3.05 1.48 6.38 0.97 15.71 15.67 13.92 18.20 0.79
RI 3.86 3.66 1.28 8.85 1.46 16.86 16.58 14.54 21.44 1.52
RIC 4.17 3.98 1.31 8.85 1.49 16.85 16.60 14.52 21.78 1.55
MElog 2.48 2.36 0.78 4.80 0.87 15.49 15.39 13.86 17.62 0.71

2 Small

STD 4.97 4.64 1.73 11.98 1.89 29.33 28.94 26.94 34.68 1.63
RI 6.35 5.95 2.23 13.36 2.81 31.23 30.41 26.74 38.82 2.83
RIC 6.32 5.82 2.43 12.52 2.68 31.00 30.18 26.66 38.68 2.70
MElog 2.73 2.72 0.86 5.34 0.82 27.72 27.76 26.22 29.12 0.68

3

Large

Random
intercept

STD 21.70 21.48 17.44 26.50 1.68 26.49 26.23 21.90 30.90 1.81
RI 9.20 9.12 7.10 12.13 0.99 19.82 19.78 17.36 22.18 1.11
RIC 9.69 9.58 7.10 14.87 1.20 20.08 20.02 17.82 22.86 1.16
MElog 8.40 8.48 6.26 9.94 0.62 19.13 19.13 16.56 21.24 0.87

4

STD 30.24 29.97 25.29 35.50 1.98 33.65 33.23 28.92 41.14 2.58
RI 8.59 8.52 6.80 11.42 0.84 16.45 16.46 12.20 20.16 1.16
RIC 9.37 9.27 7.28 13.61 1.05 16.93 16.85 14.50 20.06 1.15
MElog 7.59 7.57 6.06 9.14 0.65 15.69 15.73 11.82 18.34 1.07

5

Small

STD 12.56 12.36 10.40 15.97 1.30 31.70 31.36 29.06 36.44 1.67
RI 10.71 10.54 7.81 15.44 1.58 31.37 31.17 28.14 36.58 1.62
RIC 10.79 10.69 7.86 15.43 1.53 31.38 31.12 28.46 36.72 1.58
MElog 8.21 8.17 6.61 9.89 0.60 28.87 28.85 27.46 30.64 0.64

6

STD 26.77 26.80 21.53 30.53 1.47 39.32 39.21 34.96 46.10 2.35
RI 11.20 11.08 8.91 14.73 1.10 24.00 24.03 20.66 30.40 1.43
RIC 11.40 11.20 9.32 14.66 1.02 24.09 24.06 20.94 30.30 1.42
MElog 9.01 8.94 7.65 10.95 0.67 22.56 22.49 19.64 26.62 1.23

7

Large

Random
intercept
and
covariate

STD 20.37 20.48 16.33 23.62 1.24 25.31 25.34 21.76 28.30 1.21
RI 10.86 10.74 9.25 13.83 0.88 20.87 20.85 18.50 23.32 0.93
RIC 10.58 10.47 8.43 14.14 0.98 20.83 20.79 18.02 23.54 1.02
MElog 9.61 9.53 8.10 12.49 0.70 20.04 19.95 17.68 22.32 0.85

8

STD 30.90 30.92 27.43 35.56 1.60 34.34 33.97 30.06 42.52 2.37
RI 12.37 12.35 9.91 15.76 0.98 18.15 18.20 15.10 20.82 1.14
RIC 10.67 10.52 8.63 14.73 1.12 17.28 17.29 14.68 21.12 1.10
MElog 9.45 9.39 7.91 11.35 0.74 16.42 16.37 14.16 18.60 0.92

9

Small

STD 12.86 12.64 10.21 17.48 1.45 31.81 31.15 29.00 37.92 1.85
RI 11.12 10.73 8.87 16.57 1.62 31.36 30.93 28.12 36.82 1.86
RIC 11.04 10.62 8.50 16.19 1.65 31.35 30.83 28.24 36.12 1.85
MElog 8.79 8.73 7.77 10.44 0.50 29.01 28.99 26.98 30.78 0.71

10

STD 25.42 25.18 21.48 28.76 1.58 39.02 38.90 34.26 46.26 2.59
RI 13.11 13.05 10.67 15.86 1.16 25.98 25.89 22.42 29.12 1.4
RIC 12.54 12.48 10.23 15.16 1.09 25.84 25.72 22.74 29.82 1.38
MElog 10.41 10.34 8.89 12.84 0.71 24.24 24.39 21.24 26.94 1.19

∗ STD : Standard tree ; RI : Random intercept tree ; RIC : Random intercept and covariate tree ; MElog : Mixed effect logistic
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3.1 Abstract

This paper presents an extension of the well known random forest method to the case of clustered

data. The proposed “mixed effects random forest” method is implemented using a standard random forest

algorithm within the framework of the expectation-maximization (EM) algorithm. The simulation results

show that the proposed mixed effects random forest method provides substantial improvements over standard

random forest when the random effects are non negligible.

Keywords : Clustered data, mixed effects, regression tree, random forest.

3.2 Introduction

Tree based methods are well known and well appreciated by practitioners because they

often provide reasonable and easy to interpret models even when a large number of covariates

is present due to their ability to handle interactions automatically. However, the prediction

performance of a single tree can often be improved, at the expense of interpretability, by

using ensemble of trees. Bagging and the more general random forest algorithms (Breiman,

1996, 2001) are well known and very powerful ensemble methods for trees.

Using the mixed effects approach, Hajjem, Bellavance and Larocque (2008, 2010) ex-

tended the well known CART algorithm (Breiman, Friedman, Olshen and Stone, 1984) to

the case of clustered data. They proposed the mixed effects regression tree (MERT) algo-

rithm for a continuous outcome and the generalized mixed effects regression tree (GMERT)

algorithm for discrete outcomes in clustered data settings. Simulation results showed that

these methods provide substantial improvements over standard trees when the random ef-

fects are non-negligible. The key idea of MERT is to dissociate the fixed from the random

effects. It consists in the use of a standard regression tree algorithm within the framework

of the expectation-maximization (EM) algorithm. MERT is basically an iterative call to the

standard regression tree algorithm. At each iteration, the standard regression tree (SRT)

is applied to the original response from which the current estimate of the random effect

component is removed.
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Following the same idea, one possibility for generalizing the standard random forest to

clustered data consists in replacing the SRT within each iteration of the MERT algorithm

with a standard forest of regression trees. The goal of the present paper is to introduce this

new random forest method, named “mixed effects random forest” (MERF), and to investigate

its performance with a simulation study. For that matter, the predictive performance of

MERF will be compared to that of five alternative models, including the standard random

forest, by varying some key features related to the strength of both the total and the random

effects and to the dependence between the predictors. The main finding is that MERF seems

to be more appropriate than a standard random forest for clustered data, particularly when

the random effects are non-negligible.

The remainder of this article is organized as follows : Section 3.3 describes the proposed

MERF approach ; Section 3.4 presents a simulation study to evaluate the performance of

MERF ; Section 3.5 gives some concluding remarks.

3.3 Mixed Effects Random Forest Approach

We define the mixed effects random forest (MERF) of regression trees as follows :

yi = f(Xi) + Zibi + εi,

bi ∼ Nq(0, D), εi ∼ Nni(0, Ri), (3.1)

i = 1, ..., n,

where yi = [yi1, ..., yini ]
T is the ni× 1 vector of responses for the ni observations in cluster i,

Xi = [xi1, ..., xini ]
T is the ni × p matrix of fixed-effects covariates, Zi = [zi1, ..., zini ]

T is the

ni × q matrix of random-effects covariates, εi = [εi1, ..., εini ]
T is the ni × 1 vector of errors,

bi = (bi1, ..., biq)
T is the q×1 unknown vector of random effects for cluster i, and the unknown

function f(Xi) is estimated using a standard forest of regression trees. The random part,

Zibi, is assumed linear. The total number of observations is N =
∑n

i=1 ni. The covariance

matrix of bi is D while Ri is the covariance matrix of εi.
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We further assume that bi and εi are independent and normally distributed and that

the between-clusters observations are independent. Hence, the covariance matrix of the vec-

tor of observations yi in cluster i is Vi = Cov(yi) = ZiDZ
T
i + Ri, and V = Cov(y) =

diag(V1, . . . , Vn), where y = [yT1 , ..., y
T
n ]T . We will also assume that the correlation is induced

solely via the between-clusters variation, that is, Ri is diagonal (Ri = σ2Ini , i = 1, ..., n).

Basically, the MERF algorithm is the MERT algorithm (Hajjem et al., 2008) where

the single regression tree structure used to estimate the fixed part of the model is replaced

by an ensemble of unpruned regression trees (i.e. a forest). The out-of-bag estimates of the

standard forest are used to predict the response fixed part.

The MERF algorithm is as follows :

Step 0. Set r = 0. Let b̂i(0) = 0, σ̂2
(0) = 1, and D̂(0) = Iq.

Step 1. Set r = r + 1. Update y∗i(r), f̂(Xi)(r), and b̂i(r)

i) y∗i(r) = yi − Zib̂i(r−1), i = 1, ..., n,

ii) Let f̂(Xi)(r) be an estimate of f(Xi) obtained from the out-of-bag predictions of

a standard random forest algorithm with y∗i(r) as the training set responses, Xi,

i = 1, . . . , n, as the corresponding training set of covariates, and taking as inputs

a selected number of bootstrap training samples drawn with replacement from the

training set (y∗i(r), Xi), i = 1, ..., n.

iii) b̂i(r) = D̂(r−1)Z
T
i V̂
−1
i(r−1)

(
yi − f̂(Xi)(r)

)
, i = 1, ..., n,

where V̂i(r−1) = ZiD̂(r−1)Z
T
i + σ̂2

(r−1)Ini , i = 1, ..., n.

Step 2. Update σ̂2
(r), and D̂(r) using

σ̂2
(r) = N−1

n∑
i=1

{
ε̂Ti(r)ε̂i(r) + σ̂2

(r−1)[ni − σ̂2
(r−1)trace(V̂i(r−1))]

}
D̂(r) = n−1

n∑
i=1

{
b̂i(r)b̂

T
i(r) + [D̂(r−1) − D̂(r−1)Z

T
i V̂
−1
i(r−1)ZiD̂(r−1)]

}
,

where ε̂i(r) = yi − f̂(Xi)(r) − Zib̂i(r).
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Step 3. Keep iterating by repeating steps 1 and 2 until convergence.

In words, the algorithm starts at step 0 with default values for b̂i, σ̂
2, and D̂. At step

1, it first calculates the fixed part of the response variable, y∗i , i.e., the response variable

from which we remove the current available value of the random part. Second, the algorithm

takes bootstrap samples from the training set (y∗i , Xi) to build a forest of trees. To minimize

over fitting, the predicted fixed part f̂(xij) for observation j from cluster i is obtained with

the subset of trees in the forest that are build using the bootstrap samples not containing

observation j from cluster i (i.e. out-of-bag prediction). Third, it updates b̂i. At step 2, it

updates the variance components σ̂2 and D̂ based on the residuals after the estimated fixed

component f̂(Xi) is removed from the raw data yi It keeps iterating by repeating steps 1

and 2 until convergence.

The convergence of the algorithm is monitored by computing, at each iteration, the

following generalized log-likelihood (GLL) criterion :

GLL(f, bi|y) =
n∑
i=1

{[yi − f(Xi)− Zibi]TR−1
i [yi − f(Xi)− Zibi]

+ bTi D
−1bi + log |D|+ log |Ri|}.

(3.2)

To predict the response for a new observation that belongs to a cluster among those

used to fit the MERF model, we use both its corresponding population-averaged random

forest prediction and the predicted random part corresponding to its cluster. For a new ob-

servation that belongs to a cluster not included in the sample used to estimate the model

parameters, we can only take the corresponding population-averaged random forest predic-

tion.

3.4 Simulation

We investigate the performance of the proposed mixed effects random forest of re-

gression trees through a simulation study. We compare the predictive mean squared error

(PMSE) of the MERF to that of five alternative models, namely, 1) the standard random
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forest (SRF) of regression trees, 2) the mixed effects regression tree (MERT), 3) the standard

regression tree (SRT), 4) the linear mixed effect (LME) model, and 5) the linear model (LM).

We implemented the proposed MERF algorithm in R (R Development Core Team,

2007) using the package randomForest (Liaw and Wiener, 2002). The function randomFo-

rest implements Breiman’s random forest algorithm (based on Breiman and Cutler’s original

Fortran code) for classification and regression. Except for the parameter ntree which cor-

responds to the number of trees to grow within the forest, all the other default settings of

the function randomForest are used. To save overall computing time for the simulation, we

set the value of the parameter ntree to 300 instead of the default value of 500. Note that

this smaller number still ensures that every observation in the learning set gets predicted

by about 100 trees in each iteration since the out-of-bag set is formed by about 1/3 of the

original sample on average. The SRT and MERT models are also fitted with the default

settings of the function rpart (Therneau and Atkinson, 1997).

For MERF convergence, we suggest to force for a minimum number of iterations to

avoid early stopping then keep iterating until the absolute change in GLL is less than a

given small value (e.g. 1E-06). For the simulation, we however fixed the total number of

iterations to 300, regardless the behavior of GLL. Preliminary simulation runs showed that

GLL stabilizes between 50 and 250 iterations for the settings considered (see Subsection

§3.1). The final MERF model is the one at the last iteration. For MERT models, we force a

minimum of 50 iterations, then keep iterating while the absolute change in GLL is not less

than 1E-06 or we reach a maximum of 300 iterations. Once the stopping criterion is met,

we run an additional 50 iterations. The mixed tree model chosen is the one corresponding

to the last iteration where the number of leaves is equal to the modal value over the last 50

mixed tree models (Hajjem et al. 2008).

3.4.1 Simulation Design

The simulation design has a hierarchical structure of 100 unbalanced clusters and

5000 observations : 20 clusters with 10 observations, 20 with 30 observations, 20 with 50
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observations, 20 with 70 observations, and 20 with 90 observations. The first 10% of the

generated observations in each cluster form the training sample, and the other 90% are kept

for the test sample. Consequently, the trees are built with 500 observations nested within

100 unbalanced clusters having 1, 3, 5, 7, or 9 observations. The remaining 4500 observations

form the test set.

The data generating process is as follows. Nine random variables are first generated

from a multivariate normal distribution (X1, ..., X9) ∼ N9(0,Σ) with Σ chosen such that

all variables have unit variance and are correlated with σk,k′ = ρ for k 6= k′ ≤ 9. Then,

the continuous response variable y is generated according to the following non linear model,

using only the first three random variables :

yij = m× g(xij) + bi + εij, (3.3)

g(xij) = 2x1ij + x2
2ij + 4(x3ij > 0) + 2 log |x1ij|x3ij,

bi ∼ N(0, σ2
b ), εij ∼ N(0, σ2

ε),

i = 1, ..., 100, j = 1, ..., ni,

where m × g(xij) represents the response fixed part, with a non linear form and a variance

σ2
Fixed = m2σ2

g . The parameter m simply serves as a tuning parameter to control the magni-

tude of σ2
Fixed in the simulation design.

The proportion of total effects variability (PTEV) of the model in (3.3) is given by

PTEV =
σ2
Fixed + σ2

b

σ2
Fixed + σ2

b + σ2
ε

× 100, (3.4)

and the proportion of random effects variability (PREV) over total effects variability is

defined by

PREV =
σ2
b

σ2
Fixed + σ2

b

× 100. (3.5)

We consider 12 different data generating processes (DGP), summarized in Table 3.I. In all
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cases, the within cluster variance σ2
ε is fixed at 1. We selected the values of 0 and 0.4 for ρ,

90% and 60% for PTEV (i.e. small and large noise), and 10%, 30%, and 50% for PREV (i.e.

small, moderate, and large random effects).

—————————-

Insert Table 3.I about here

—————————-

Note that σ2
g depends only on the value of ρ. To estimate this variance, we conducted

for each value of ρ a simulation where g(xij) was generated one million times. The observed

variance was σ2
g = 12.49 when ρ = 0, and σ2

g = 15.94 when ρ = 0.4. We used these values of

σ2
g in equations (3.4) and (3.5) to obtain the values of m and σ2

b for each DGP in Table 3.I.

The simulation results are obtained by means of 100 runs.

3.4.2 Simulation Results

Table 3.II presents for each data generating process (DGP) the summary statistics

of the predictive mean squared error (PMSE) on the test set of the six fitted models. The

PMSE is computed as :

PMSE =

∑100
i=1

∑ni
j=1(yij − ŷij)2

4500
.

—————————-

Insert Table 3.II about here

—————————-

Table 3.III presents for each data generating process (DGP) the summary statistics of

the relative difference (RD) in PMSE between each alternative model and the MERF model :

RD =
PMSEAlternative − PMSEMERF

PMSEAlternative
× 100.
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—————————-

Insert Table 3.III about here

—————————-

Figures 3.1 to 3.5 show for each DGP the distribution of the RD.

—————————-

Insert Figure 3.1 about here

—————————-

—————————-

Insert Figure 3.2 about here

—————————-

—————————-

Insert Figure 3.3 about here

—————————-

—————————-

Insert Figure 3.4 about here

—————————-

—————————-

Insert Figure 3.5 about here

—————————-
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The primary interest of this simulation study is the comparison of MERF and SRF

(Figure 3.1). The main finding is that for a given value of PTEV and ρ, the benefit of MERF

over SRF increases as PREV increases. This can be seen by looking at the progression of

RD between DGP 1, 2 and 3 (PTEV = .9 and ρ = 0), between DGP 4, 5 and 6 (PTEV = .6

and ρ = 0), between DGP 7, 8 and 9 (PTEV = .9 and ρ = .4) and finally by looking at the

progression of RD between DGP 10, 11 and 12 (PTEV = .6 and ρ = .4). This result was

intuitively expected but this simulation study helps revealing how crucially the performance

of SRF depends on the PREV. The SRF is just not able to compensate for its omission of

taking the random effects into account and its performance worsen as the relative importance

of the random effects increases.

If we look into more details at the results, we can see that, except for few runs in

settings with relatively large noise and small random effects (i.e. PTEV = 60% and PREV

= 10% in DGPs 4 and 10), there is always some improvement (i.e. minimum RD > 0 ) of

MERF over each alternative model considered (Table 3.III, Figures 3.1 to 3.5). In all cases,

MERF did on average better (i.e. average RD > 0) than all the alternatives.

In all cases where the random effects are relatively small (i.e. PREV = 10% in DGPs 1,

4, 7, and 10), MERF average improvement over the alternative models vary between 16.02%

and 46.05%, except the ones over SRF which are much lower but still non negligible with

an average RD varying between 2.5%, and 10.65%. A failure to account for the correlation

among the observations may result in much less predictive performance, even in relatively

large noise and small random effects settings.

The most pronounced improvements of MERF over any alternative model appear in

settings with relatively small noise (i.e. PTEV = 90% in DGPs 1, 2, 3 and 7, 8, 9). In addition,

while the most pronounced improvements of MERF over models without random effect (i.e.

LM, SRT, and SRF) appear in settings with large random effects (i.e. PREV = 50% in

DGPs 3 and 9), the average RD between MERF and the other mixed effects models (i.e.

LME, and MERT) is higher in settings with small random effects (i.e. PREV = 10% in
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DGPs 1 and 7). This is expected since the alternative mixed effects models take into account

the dependence of the data and estimate the random effects, as MERF do. Hence, when a

considerable proportion of the response variability is explained by the random effects, the

gap between their performance and that of MERF gets smaller.

In comparison to MERF improvement over LME, MERF improvement over MERT

seems to be relatively less affected by the PREV (see Figures 3.2 and 3.4). One additional

and interesting point to notice is the relatively huge variability of the improvement over

MERT in comparison to that over LME ; the standard deviations of the improvement over

MERT are more than twice those of the improvement over LME (Table 3.II, Figures 3.2 and

3.4).

The effect of the correlation between the predictors on the relative improvement of

MERF is basically absent in large noise settings, and small in small noise settings with

different trends depending on the alternative models. The average improvements over SRF,

MERT, and SRT seem to be slightly higher when the predictors are correlated than when

they are independent. In contrast, the average improvement over LME seems to be slightly

higher when the predictors are independent than when they are correlated. There is no clear

effect in the case of the alternative LM.

3.5 Concluding Remarks

One key feature of the random forest approach is the need to resample the observations.

With independent observations, using the standard bootstrap by resampling the individual

observations works perfectly. However, things are not straightforward with clustered data.

One key assumption of the approach proposed in this paper is that the random effects

totally explain the intra-cluster correlation. Hence, the observations are independent once

the random effects have been removed. This allows the use of standard bootstrap resampling

after removing the random effects from the responses (see Step 1 ii of the algorithm). The

simulation results showed that this approach seems reasonable, at least in the scenarios used.

A possibility for future work would be to investigate the robustness of the proposed approach
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when the intra-cluster correlation is not entirely explained by the random effects.

Another entirely different approach would be to build directly a forest of MERTs. With

this approach, a bootstrap sample would be required for each individual MERT. However,

since the original observations are possibly correlated, taking a standard bootstrap sample

may not be the best choice. Bootstrapping directly clustered data can be done in different

ways (Field and Welsh, 2007). The three following strategies are possible : 1) resampling indi-

vidual observations (observation-bootstrap), 2) resampling entire clusters (cluster-bootstrap)

and 3) resampling of clusters and then of observations within them (two-stage-bootstrap).

One possibility for future work would be to investigate these strategies and compare them

to the approach proposed in this paper.

Finally, the proposed method is appropriate for a continuous outcome. Other types

of outcomes could be handled by using GMERT (Hajjem, Bellavance and Larocque, 2010)

instead of MERT. Specifically, one could replace the single weighted regression tree used to

estimate the pseudo-response fixed part in the doubly iterative GMERT algorithm with a

forest of weighted standard regression trees. Investigating this idea is left for future work.

The objective of this paper was to propose a way to build a forest of trees with clustered

data and to explore its performance. The results of the simulation study are promising and

the new approach could lead the way for future research on ensemble methods for clustered

data.

An R program implementing MERF is available from the first author.
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Table 3.I Data generating processes (DGP) for the simulation study.

DGP ρ PTEV∗ PREV∗∗ σ2
Fixed m σ2

b ICC∗∗∗

1

0.0

90
10 8.1 0.8 0.9 47.4

2 30 6.3 0.7 2.7 73.0
3 50 4.5 0.6 4.5 81.8
4

60
10 1.4 0.3 0.2 13.0

5 30 1.1 0.3 0.5 31.0
6 50 0.8 0.2 0.8 42.9

7

0.4

90
10 8.1 0.7 0.9 47.4

8 30 6.3 0.6 2.7 73.0
9 50 4.5 0.5 4.5 81.8
10

60
10 1.4 0.3 0.2 13.0

11 30 1.1 0.3 0.5 31.0
12 50 0.8 0.2 0.8 42.9

∗Proportion of Total Effects Variability =
σ2
Fixed+σ

2
b

σ2
Fixed

+σ2
b
+σ2

ε
× 100

∗∗Proportion of Random Effects Variability =
σ2
b

σ2
Fixed

+σ2
b

× 100

∗∗∗Intra Cluster Correlation =
σ2
b

σ2
b
+σ2

ε
× 100
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CONCLUSION GÉNÉRALE

Dans cette thèse par articles, nous avons proposé une approche simple pour rendre plus

appropriées les méthodes d’arbres et de forêts aléatoires standards lorqu’on veut les appliquer

aux données hiérarchiques. Il s’agit des arbres et des forêts aléatoires à effets mixtes.

Dans le premier article, nous avons proposé la méthode d’arbre nommée “mixed effects

regression tree” (MERT). Elle étend la méthode d’arbre de régression standard aux données

hiérarchiques avec une réponse continue. Sur la base d’une étude de simulation, nous avons

pu démontrer que ne pas tenir compte de la dépendance des données nuit à la capacité de

l’algorithme standard d’identifier le vrai lien entre la réponse et les covariables. En tenant

compte de cette dépendance, MERT réussit mieux ce défi. En modélisant la partie fixe de

la variable réponse par une structure d’arbre, MERT a assouplit l’hypothèse de la linéarité

de la partie fixe dans le modèle de régression linéaire à effets mixtes. En procédant toujours

par une structure d’arbre, des travaux futurs pourraient tenter d’assouplir aussi l’hypothèse

de la linéarité de la partie aléatoire, et/ou celle de l’additivité de ces deux parties.

Dans le deuxième article, nous avons proposé une méthode nommé “generalized mixed

effects regression tree” (GMERT). Elle étend la méthode MERT à d’autres types de réponses

(réponses binaires, données de comptage, réponses catégorielles ordonnées, réponses multi-

catégorielles nominales). Tout comme le modèle linéaire généralisé (McCullagh and Nelder,

1989), le modèle GMERT transforme la réponse espérée en utilisant une fonction de lien

appropriée selon le type de la variable réponse, et l’apparie à une fonction d’arbre des ef-

fets fixes en plus d’une fonction linéaire des effets aléatoires. Le modèle GMERT est par

conséquent un modèle conditionnel qui génère des estimations conditionnelles et non pas des

estimations marginales.
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Dans le troisième article, nous avons proposé une méthode de forêt aléatoire à effets

mixtes. Nous avons nommée cette méthode “mixed effects random forest” (MERF). Nous

l’avons implémenté en utilisant une forêt d’arbres de régression standards à l’intérieur de l’al-

gorithme EM. Plus précisément, à chaque itération de l’algorithme EM, les prédictions “out-

of-bag” d’une forêt aléatoire standard sont utilisées pour estimer la partie fixe de la variable

réponse mesurée sur une échelle continue. Il serait certainement utile d’étendre MERF à

d’autres types de réponses. Une idée simple serait de remplacer l’arbre de régression standard

pondéré, utilisé pour estimer la partie fixe de la pseudo-réponse dans l’algorithme double-

ment itératif GMERT, par une forêt d’arbres de régression standards pondérés. Il serait aussi

intéressant de comparer GMERT à une approche alternative qui consisterait dans la construc-

tion d’une forêt aléatoire d’arbres MERT en utilisant des stratégies de rééchantillonage

appropriées pour des données hiérarchiques, comme par exemple un rééchantillonnage au

niveau groupe, ou un rééchantillonnage en deux étapes, c.à.d, un rééchantillonnage au ni-

veau groupe suivi d’un rééchantillonnage au niveau observation à l’intérieur des groupes déjà

échantillonnés.

Les extensions antérieures des méthodes d’arbres standards aux données corrélées (Se-

gal, 1992 ; Zhang, 1998 ; Abdolell, Leblanc, Stephens, and Harrison, 2002 ; Lee, 2005) ne

permettent pas que les covariables du niveau observation entrent comme candidates dans

le processus d’embranchement, et par conséquent, 1) aucun effet aléatoire ou spécifique au

groupe n’est modélisable, et 2) toutes les observations provenant d’un même sujet restent

ensemble tout au long de ce processus et ne peuvent pas être séparées dans des noeuds

différents. La méthode d’arbre à effets mixtes que nous avons proposé traite de façon ap-

propriée les effets aléatoires potentiels des covariables du niveau observation. En plus, ces

dernières sont candidates dans le processus d’embranchement de l’arbre à effets mixtes. Par

conséquent, les observations intra-groupe pourraient être séparées dans des noeuds différents.

Toutefois, l’arbre à effets mixtes suppose que la corrélation découle uniquement de la varia-

tion inter-groupes. Il serait donc utile de la généraliser afin de permettre la modélisation de

structures alternatives de covariances intra-groupe. Une idée à investiguer serait de rempla-
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cer l’algorithme EM utilisé jusqu’ici par l’algorithme EM hybride de Jennrich et Schluchter

(1986).

Notre implémentation de l’arbre à effets mixtes fait en sorte que tous les avantages

de l’arbre standard comparativement aux modèles de régression paramétriques s’étendent

naturellement aux arbres à effets mixtes. Par exemple, tout comme les arbres standards, les

arbres à effets mixtes sont des modèles qui peuvent être représentés graphiquement et qui

sont facilement interprétables. Il faut néanmoins rester prudent et investiguer la robustesse de

cette approche lorsque certaines de ses hypothèses ne sont pas vérifiées, soient la non linéarité

de la partie aléatoire, la non additivité de la partie fixe et aléatoire, la non normalité des

erreurs, et/ou la présence d’une corrélation induite à la fois par la variation inter- et intra-

groupes.
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