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RÉSUMÉ 

Les méthodes d'arbres sont souvent utilisées dans des études comportant des temps de 

survie avec censure. Les méthodes existantes ont été développées pour traiter des temps 

de survie mesurés sur une échelle continue avec des covariables ne variant pas dans le 

temps. Par contre, des temps de survie mesurés sur une échelle discrète et des covariables 

pouvant varier dans le temps sont souvent présents en pratique. Cette thèse est formée de 

trois articles. 

La méthode de base est présentée dans le premier article. Il s'agit d'une méthode 

spécifiquement adaptée au cas de variable de survie à temps discret. 

Dans le second article, nous étendons la méthode de base afin d'inclure des covariables 

variant dans le temps. Cette méthode permet aussi d'avoir des effets variant dans le 

temps. Nous présentons un exemple où nous étudions les facteurs reliés à la faillite à 

l'aide d'un échantillon de firmes américaines. 

Finalement, le troisième article présente une revue des développements des méthodes 

pour données de survie avec censure. 

Mots-clés : Arbres de survie; Données censurées à droite; Analyse de survie à temps 

discret; Forêts de survie; Covariables variant dans le temps; Effet variant dans le temps; 

Bagging; Données de faillite. 
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SUMMARY 

Tree-based methods are frequently used in studies with censored survival time. The 

existing methods are tailor-made to deal with a survival time variable that is measured 

continuously and almost ail of them cannot handle time-varying covariates. However, 

survival variables measured on a discrete scale and time-varying covariates are often 

encountered in practice. This thesis is composed of three articles. 

In the first one, we propose our basic method which is a new tree construction method 

specifically adapted to discrete-time survival variables. The splitting procedure can be 

seen as an extension, to the case of right-censored data, of the entropy criterion for a 

categorical outcome. 

In the second article, we extend the basic method to include time-varying covariates 

which are frequently encountered in practice. This method can accommodate 

simultaneously time-varying covariates and time-varying effects. We apply the new 

method to study the factors related to bankruptcy with a sample of United States fimis 

that conducted an Initial Public Offerings between 1990 and 1999. 

Finally, the third article presents a non-technical review of the developments of tree-

based methods for the analysis of survival data with censoring. 

Keywords: Survival trees; CART; Time--varying covariate; Right--censored data; 

Discrete-time survival analysis; Survival forests; Time-varying covariate; Time--varying 

effect; Bagging; Banlcniptcy data; 
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La première application de méthodes d'arbres est apparue avec Morgan et Son-

quist (1963) dans le contexte de la régression. Cependant, l'importante contribution 

théorique et appliquée de Breiman et al. (1984) a rendu ces méthodes très populaires 

tant pour l'exploration de données que pour le développement de modèles prévision-

nels. Par l'entremise d'un algorithme de partitionnement récursif, un arbre partitionne 

l'espace des covariables afin de créer des classes homogènes par rapport à la variable 

réponse. À l'origine, les méthodes d'arbres ont été développées pour modéliser une 

variable réponse catégorielle univariée (arbre de classification) ou continue (arbre de 

régression). Cependant, elles ont été étendues à une large variété de situations dont 

les données longitudinales (Segal, 1992), les données multivariées (Zhang, 1998) et 

les données censurées ( Gordon et Olshen, 1985). Cette dernière extension est connue 

sous le nom d'arbre de survie. 

En général, un arbre de survie sert à regrouper les individus (ou unités statistiques) 

en classes homogènes par rapport au comportement de survie. Ce regroupement peut 

être utilisé afin d'identifier les facteurs de pronostique. En outre, un arbre de survie 

peut fournir des estimations des probabilités de survie et de la fonction de risque en 

fonction des covariables. 

Les premières applications des arbres de survie sont apparues avec Gordon et 01- 

shen (1985). Depuis ce temps, plusieurs méthodes ont été développées mais les travaux 

se sont concentrées sur le cas où la variable représentant le temps de survie est conti-

nue. Cependant, les variables de survie mesurées sur une échelle discrète sont souvent 

présentes en pratique. Par ailleurs, la quasi-totalité des méthodes d'arbres de survie 

traitent le cas de covariables qui sont fixes dans le temps. Seulement Bacchetti et 

Segal (1995) et Huang, Chen et Soong (1998) ont proposé des méthodes d'arbres de 

survie qui permettent l'incorporation de covariables qui varient dans le temps. Pour-

tant, on rencontre en pratique de nombreuses situations comportant des covariables 



3 

qui varient dans le temps. Une telle situation est l'étude des facteurs reliés aux faillites 

des entreprises. 

De nombreuses méthodes statistiques ont été utilisées pour prévoir ou prévenir un 

stress financier. Les plus fameuses ont été l'analyse discriminante (Altman, 1968), la 

régression linéaire (Meyer et Pifer, 1970), la régression logistique (Ohlson, 1980), les 

modèles probit (Zmijweski, 1984), les arbres de décision ( Frydman , Altman et Kao, 

1985) et les réseaux de neurones (Fanning et Cogger, 1994). Cependant, ces études 

utilisent des modèles à une période dans le sens que la faillite ou non d'une entreprise 

est mesurée à un seul moment. Ils tentent alors de prévoir la faillite dans un horizon 

de temps fixe (allant de un à trois ans habituellement). Les études plus récentes ont 

utilisés des modèles d'analyse de survie afin de pouvoir inclure plusieurs périodes par 

entreprise. 

Deux raisons principales ont motivé cette recherche : (1) le fait qu'il n'y a pas de 

méthodes d'arbre développées spécifiquement pour les temps de survie mesurés selon 

une échelle discrète lorsque le nombre de périodes est relativement petit et (2), la 

nécessité d'avoir une méthode permettant d'inclure des covariables qui varient dans 

le temps. Cette méthode pourra alors être une alternative intéressante aux méthodes 

utilisées dans la prévision de la faillite ou du stress financier des entreprises. 

Cette thèse est formée de trois articles et est organisée comme suit. Dans le pre-

mier article, nous proposons une nouvelle méthodologie d'arbre de survie spécialement 

adaptée aux temps de survie mesurés selon une échelle discrète avec un petit nombre 

de périodes. Notre critère de séparation est basée sur l'approche de maximum de vrai-

semblance pour un modèle de survie paramétrique à temps discret. La taille de l'arbre 

est choisie selon un algorithme d'élagage combiné avec une validation croisée basée 

sur le bootstrap. Une investigation de la performance de la méthode proposée est 

effectuée via une simulation. De plus, une illustration pratique de cette méthode est 
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faite en analysant des données sur le tabagisme chez les adolescents, présentée dans 

l'étude de Mâsse et Tremblay (1997). Dans le deuxième article, nous proposons une 

méthode d'arbre de survie à temps discret qui admet des covariables qui varient dans 

le temps. Cette méthode généralise la méthode du premier article. Elle est appliquée 

à un échantillon d'entreprises américaines qui ont effectuée un premier appel public 

à l'épargne entre 1990 et 1999. Le troisième article présente une revue détaillée des 

méthodes d'arbres de survie proposées dans la littérature. Il se concentre sur les élé-

ments fondamentaux tels les critères de séparation et les méthodes de sélection d'un 

arbre final. Il met aussi l'accent sur les développements récents tels les méthodes pour 

données de survie multivariées, l'utilisation de méthodes d'ensemble avec les arbres de 

survie ainsi que certains sujet précis comme les covariables et les effets variant dans 

le temps. Nous terminons la thèse par une conclusion générale. 
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ABSTRACT 

Tree-based methods are frequently used in studies with censored survival time. Their 

structure and ease of interpretability make them useful to identify prognostic fac-

tors and to predict conditional survival probabilities given an individual's covariates. 

The existing methods are tailor-made to deal with a survival time variable that is 

measured continuously. However, survival variables measured on a discrete scale are 

often encountered in practice. We propose a new tree construction method specif-

ically adapted to such discrete-time survival variables. The splitting procedure can 

be seen as an extension, to the case of right-censored data, of the entropy criterion 

for a categorical outcome. The selection of the final tree is made through a pruning 

algorithm combined with a bootstrap correction. We also present a simple way of 

potentially improving the predictive performance of a single tree through bagging. A 

simulation study shows that single trees and bagged-trees perform well compared fo 

a parametric model. A real data example investigating the usefulness of personality 

dimensions in predicting early onset of cigarette smoking is presented. 

Keywords: Discrete-time survival analysis; Survival tree; Bagging; Maximum likeli-

hood; Bootstrap. 
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1. INTRODUCTION 

Tree-based methods have appeared with Morgan and Sonquist (1963) in the regres-

sion setting. However, the popularity of these methods has increased greatly with the 

important theoretical and practical contribution of Breiman, Friedman, Olshen and 

Stone (1984) coupled with the availability of the computing resources needed to ap-

ply them. Such recursive partitioning methods have been introduced as alternatives 

to classical parametric models like linear regression and discriminant analysis. Some 

advantages of tree-based methods are that they work on fewer assumptions compared 

to classical counterparts, they can automatically detect certain types of interactions, 

they can handle missing data and they produce sets of rules that can easily be un-

derstood and interpreted. Originally, tree-based methods were developed to model 

a univariate categorical response (classification tree) or a univariate continuous re-

sponse (regression tree) but they have been extended to a wide variety of situations 

over the last two decades, e.g. for longitudinal data (Segal, 1992), for multivariate 

binary responses (Zhang, 1998) and for the case of interest in this paper, censored 

survival data, as discussed next. 

A survival tree can serve to obtain a grouping of individuals, in terms of the values 

taken by their covariates, such that each group has a distinct survival behavior. Such 

a grouping can then be used to identify prognostic factors. Moreover, a survival tree 

can also be used to obtain survival probability estimates for new patients based on 

their covariate pattern. 

The first wave of tree-based methods for survival data began with Gordon and 

Olshen (1985) who proposed to partition the data by using different measures of 

distance (e.g. .U, Hellinger) between two survival curves. Ciampi, Thiffault, Nakache, 

and Asselain (1986), Segal (1988) and LeBlanc and Crowley (1993) used the two- 
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sample log-rank statistic to assess separation between two nodes. In their discussion, 

Therneau, Grambsch and Fleming (1990) proposed to use martingale residuals from 

a Cox model as inputs for a regression tree algorithm. Davis and Anderson (1989) 

considered an exponential log-likelihood loss function for node splitting while LeBlanc 

and Crowley (1992) used a full likelihood approach. 

Many of these survival tree algorithms were compared in Radespiel-Tr6ger, Raben-

stein, Schneider and Lausen (2003) and Radespiel-TD5ger, Gefeller, Rabenstein and 

Hothorn (2006). More recently, Keles and Segal (2002) provided an analytic relation-

ship between the logrank and the martingale residual sum-of-squares split functions. 

Jin, Lu, Stone and Black (2004) proposed a new splitting method by using a de-

gree of separation index based on the variance of mean survival time. Su and Tsai 

(2005) proposed a hybrid model that combines a Cox's proportional hazards model 

and a tree. Combinations of several trees with bagging was proposed in Hothorn, 

Lausen, Benner and Radespiel-Trdger (2004) and with random forest and boosting 

in Hothorn, Bühlmann, Dudoit, Molinaro and Van Der Laan (2006) and Ishwaran, 

Kogalur, Blackstone and Lauer (2008). For the case of multivariate survival data, Su 

and Fan (2004) and Gao, Manatunga and Chen (2004) proposed methods based on 

frailty models and Molinaro, Dudoit and Van Der Laan (2004) are providing a uni-

fied methodology for right-censored data that includes the multivariate case. Finally, 

Fan, Su, Levine, Nunn and LeBlanc (2006) extended the LeBlanc and Crowley (1993) 

method to correlated survival data. 

The previous studies about survival trees were mainly developed to deal with a 

continuous survival time variable. However, discrete survival time variables occur of-

ten in practice. When the number of observed times is large and flot too many ties are 

present, then treating them as continuous would be a reasonable approach. However, 



9 

when the number of observed times is small, then some specifically adapted methods 

are needed. The discrete-time proportional odds model proposed in Cox (1972) was 

made available to a large field of practitioners by Singer and Willett (1993). This 

popular model possesses many advantages: i) the hazards can be interpreted as con-

ditional probabilities and not just as rates, ii) its basic assumption about proportional 

odds can easily be relaxed, iii) it can be fitted using any logistic regression software 

and, iv) it can easily accommodate time-varying covariates. For instance, Mâsse and 

Tremblay (1997) used this model to relate personality dimensions measured on boys 

at age 6 to the onset of cigarette smoking, alcohol abuse and other drug use during 

adolescence. This study will be revisited in this paper. 

The fact that no tree-based methods were developed specifically to model a cen-

sored discrete-time survival variable when the number of observed time is small was 

the main motivation for this work. In this paper, we are (1) proposing a complete 

methodology to handle such situations with a tree-based approach based on maxi-

mum likelihood, (2) investigating the performance of the method through a simulation 

study, and (3) illustrating the use of the method by reanalyzing the data from Mâsse 

and Tremblay (1997). The paper is organized as follows. The tree construction algo-

rithm is described in details in Section 2. More specifically, that section reviews the 

basic assumptions about the data, describes the splitting rules used for tree-building, 

explains how to select a final tree with a pruning and selection procedure and de-

scribes how to aggregate many trees through bagging. Section 3 presents the results 

from the simulation study that evaluates the performance of the proposed method. 

The real data example is presented in Section 4 followed by some concluding remarks. 
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2. TREE CONSTRUCTION 

2.1. Data description and notation 

Data is available for N individuals and the independent vectors (Ti , 6, xi ), for i = 

1, . . . , N, are observed. The observed discrete survival time for the e h  individual, 

is assumed to be a positive integer without loss of generality. The censoring indicator 

62;  is defined as usual by 6 = 0 if the observed time of individual i is right-censored 

and Si  = 1 if the true time-to-event is observed. The vector of covariates for individual 

is xi  = (xi]. , , xip ). These covariates can be a mix of continuous and categorical 

variables as both types of variables are allowed in the tree construction. As it is usually 

done, we assume that the true censoring time and true time-to-event are independent 

given the covariates. However, we are not making any type of proportional odds 

assumptions as needed in the basic discrete-time proportional odds model. 

Let U G {1, 2, ...} be the real time-to-event for an individual chosen at random 

in the population under study. For j = 1,2, ..., we denote the discrete-time hazards 

by h(j), the survival probabilities by S(j) and the probabilities of events by 'F(j). 

Namely, 

h(.1) = P(U = jjU > .1), S(j) = P(U > 	and IT(j) = P(U = j). 	(1) 

For a given individual, these quantities depend on the covariate vector but we 

use this simplified notation since no confusion is possible. Assume that K is the 

maximum observed time for a given data set. A well-known model to analyze discrete-

time survival data is the discrete-time proportional odds (DTPO) model (Singer and 

Willett, 1993). This model relates the hazards to the covariates as follows: 
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log (  h(i)  	= 	+ a2D2(i) + • • • +aKDK(i) -F 	 Opxp, (2) 

for j = 1,. . . , K, where the Dk Ces are indicator variables indexing the time periods 

that are defined by Dk(j) = 1 if k = j and 0 otherwise. The intercept parameters 

ai, • • • , aK define the baseline of hazard in each time period and the coefficients 

describe the effects of covariates on the baseline hazard function. One nice feature of 

this model is that the parameters can easily be estimated by maximum likelihood by 

using any logistic regression software with an appropriately modified data set. See 

Singer and Willett (1993) for a description of the model and its extensions and how 

to use it in practice. Note that the basic model assumes proportional odds but this 

assumption can be relaxed by introducing interactions terms between the covariates 

and the indicator variables. 

2.2. Splitting rule 

Tree-based methods partition the covariates space by splitting it recursively with rules 

based on covariates. Two components are needed in a tree construction algorithm: 

i) a splitting rule and ii) a method to select one tree from the sequence of trees 

generated by the splitting rule. This subsection describes the first component while 

the second component will be the subject of the following subsection. It is assumed 

that the reader is familiar with the basic CART method and its associated terminology 

(Breiman et al., 1984). 

As for the basic CART method, only binary splits on one covariate are considered. 

For a continuons covariate x, the possible splits take the form x < c where c is a 

specified cutpoint. For a categorical covariate x, the possible splits take the form 
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x E , ck} where {c i , , ck} is a subset of possible values of x. At a given 

node, ah l possible splits on all covariates are considered and a "best" split is chosen 

according to a criterion. 

By adding a subscript to identify the individuals, we define hi (j), S(j) and zi (j) 

as in (1), for i = 1,. . . N. In this paper, we propose a splitting rule based on maximum 

likelihood in the spirit of Su, Wang and Fan (2004). Basically, the chosen split will 

be the one that maximizes the likelihood of a particular two-node model as described 

next. 

Let t be a node of the tree. Let n t  be the number of observations and J(t) the set 

of indices of the observations that are in node t. The likelihood at node t can then be 

written as 

L(t) = H 
ieJ(t) 

Without any covariate, which amounts to using the intercept only model 

log ( 	
j)

) = 	+ a2D2(j)  + • • + ŒKDK(j), — h( 

the log-likelihood evaluated at the maximum likelihood estimates (MLEs), i.e. the 

observed log-likelihood, is given by 

11(t) _-= Etna (j)ln(ii(j)) 	nto (j) ln(Ê(j))} 	 ( 5 ) 

where nto (j) and nti (j) are the number of individuals in node t for which Tz  = j and 

= 0 and 1 respectively, and where *(j) and ,'(j) are the MLEs of 7r(j) and S(j). 

See Section 10.2 of Singer and Willett (2003). They are also provided in the Appendix 

Al for the sake of completeness. 

Note that when the node contains only true times to event (i.e. no censored 

(3)  

(4)  
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observations), then n10 (j) = 0, ii(j) = nti(i)/nt and (5) reduces to 

nt 	 (j)lr((i)), 
J=1 

which is the well-known entropy criterion used for a categorical response variable 

without censoring. See Section 9.2.3 of Hastie, Tibshirani and Friedman (2001). 

Now we wish to split the node t into two nodes. Let / denote the indicator 

function. For a candidate split, let C be the binary variable defining the split. For 

example, C = /(x < c) would be a candidate split on a continuous covariate while 

C = /(x E would be candidate split on a categorical covariate. Following 

the split, the node t would be divided into a left node tL  containing the subset of node 

t for which C = 1 and a right node tR  containing the subset of node t for which C = O. 

One possibility would be to model the two nodes as 

log ( 11(i) 	= Di + • + cexpx (i) + OC, — h(j) (6) 

to fit it and then use the log-likelihood computed at the MLEs as a criterion. But this 

has two features that are undesirable for a tree mode!. Firstly, computing the MLEs 

of this model require the use of numerical methods as standard logistic regression. 

This could be computationally demanding for large data sets with a large number 

of covariates since the MLEs would have to be obtained at many candidate splits. 

Secondly, this model imposes proportional odds with respect to C which is an unap-

pealing assumption for a "nonparametric" model like a tree. A simple way to get rid 

of these two features of the same time is to add interaction terms between C and the 
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indicator variables thus modeling the two nodes as 

log ( h(i)  
— h(j) = 	(j) + + ceKDK (j) + ,31  CD]. ( j) + • + /3KCDK  (j). (7) 

By doing so, it is straightforward to see that the contributions of the left and right 

nodes observations to the likelihood function are completely separated. Thus, fitting 

model (7) is equivalent to fitting an intercept model (4) separately in each node. 

This lifts the proportional odds assumption, allowing the variable C to have a time-

varying effect. Moreover, it speeds up computations since numerical methods become 

unnecessary. The total observed log-likelihood of this two-node model with the split 

C is then 

ii(tL) + ii(tR) = 

(j) 1*L  (.1)) + nô(i) in( L (i))) 77, 1(./) in(* ? (i)) + n(j) in( R (i))), 
j=1 

  

where 746(j), 	(j) and ,..'‘'L (j) are defined as for (5) but with only the observa- 

tions from the left node tL  and are defined similarly for the right node t R . The chosen 

best split is then the one for which //(tL ) + //(tR ) is maximum. Equivalently, the best 

split is the one with the maximum value of 

g(t) = —2(11(t) — (11(t') +11(t R )) 
	

( 8 ) 

which is the likelihood ratio statistic for comparing the single node model (parent 

node) to the two-node mode! (children nodes). We will refer to g(t) as the splitting 

statistic for node t from now on. 

One drawback of using (7) as the two-node model is that the number of parameters 

is 2K as opposed to K+1 with the main effect two-node model (6). Since K < 4 in the 
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cases considered in this paper, only the splitting rule based on (7) was implemented 

and investigated. But the more parsimonious model could be useful for larger values of 

K despite its two undesirable features. However, when K is large, another possibility 

is to simply treat the observed times as continuous and use one of the available tree 

methods for such data. Hence, our method is really aimed at the case where K is 

small. Then using (7) is appealing since, once again, it does not impose proportional 

odds and it can be computed quickly. Hence, the proposed method lets the data speak 

without imposing unnecessary assumptions right from the start. 

2.3. Pruning and selection of the final tree 

The growth of a tree can in principle be continued as long as there are enough ob-

servations in a node to allow it to be splitted further. In practice, fully grown trees 

tend to overfit the data and this is why some sort of stopping criterion is needed. The 

selection of a single tree is a difficult problem because of its discrete nature and most 

methods will exhibit high variability with finite samples. Note that when the tree 

method is used as an exploratory tool, then choosing a single tree is not necessary. 

However, if a single tree must be chosen, we are proposing a pruning approach, as 

in CART, in which a large tree is grown, then pruned back to produce a sequence of 

nested trees from which one member is selected as the final tree. More specifically, 

we are proposing to use the pruning and selection method of LeBlanc and Crowley 

(1993) and Fan et al. (2006) which we now describe the basic ideas. The technical 

aspects of the method is left for the Appendix. For a given tree A, let W(A) denote 

the set of interior nodes (i.e., ail nodes except the terminal nodes). The sum of ail 
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splitting statistics for the tree A is 

G(A) = 	g(t). 	 (9) 
tEW(A) 

The performance of A will be evaluated by the split-complexity measure 

Ca (A) = G(A) — alW(A)I 	 (10) 

where 1W(A)1 is number of interior nodes of A and a is a nonnegative penalty term. 

For a given value of a, the larger G,(A) is, the better A is. We define G(Am ) to be 0 

where Am  is the root-only tree. When a = 0, the largest tree is the best according to 

(10) and, when a ---> oo, the root-only tree would eventually be the one maximizing 

(10). Starting from a large tree A o , it is possible to obtain a sequence of nested 

trees {A0 , A 1 , ... , Am } and a corresponding sequence of a values 0 = ao < ai < 

• • • < am  < Do such that Am  is the tree maximizing (10) for any a in the interval 

[am , am+i ). Details on how to obtain the sequence of trees and a values are given in 

Appendix A2. 

In principle, the final tree is the one, among {A0 , A 1 , ... , AM}, that maximizes 

(10). But for this, a value of a must be selected. In LeBlanc and Crowley (1993) 

and Fan et al. (2006), the split statistic at a given node has asymptotically a xî 

distribution. They suggest to use an a value in the interval [2, 4]. Their argument 

is that a = 2 is in the spirit of the AIC criterion while a---= 4 corresponds roughly 

to using a 0.05 significance level for the xï distribution (the 0.95 quantile is in fact 

3.84). From that point of view, a = 2 corresponds to the 0.84 quantile. In our 

case, the split statistic g (t) has a x2K  distribution asymptotically since the two-node 

model possesses K more parameters than the one node model. Hence, we suggest 
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selecting the penalty term based on an appropriate x2K  quantile. Taking a quantile 

in the interval [0.85, 0.95] would be the equivalent of the suggestion made by LeBlanc 

and Crowley (1993). In the simulation study of the next section, we used the 0.90 

quantile. 

Once the penalty term is chosen, there is still one problem associated with the use 

of G(A). The initial tree and the sequence of nested trees are obtained from the same 

sample. Using the same sample again to compute the G(A)'s is likely to produce too 

large (optimistic) values since the tree building algorithm seeks to maximize them of 

each node. Corrected and "honest" values of the G(A)'s are thus needed. 

For large sample sizes, it is possible to split the original sample into a training and 

a test samples. The training sample is used to grow an initial large tree and prune 

it to obtain the sequence of nested trees. Then the split statistics are recomputed 

with the test sample to produce corrected values G ( c) (A). To maximize the use of 

the data when the sample size is small or moderate, a bootstrap correction method 

is preferred. This is also the approach proposed in LeBlanc and Crowley (1993) and 

Fan et al. (2006). This method is explained in Appendix A2 and it also produces 

(bootstrap) corrected values G ( c) (A). Once corrected values are calculated, whether 

from split samples or from bootstrap resampling, they are then used in conjunction 

with the chosen penalty term to select a final tree with the split complexity measure 

(10). Namely, the chosen tree is the one, among {A0 , A 1 , , Am }, which maximizes 

G( c) (A) — all4/(A)1. 	 (11) 

Once the final tree is selected, final estimates of the quantities of interest (hazard, 

survival probabilities and so on) can be obtained from all data points. 
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2.4. Bagging 

Bagging is an ensemble method that works by averaging together the outputs from 

many trees built with bootstrapped data sets obtained from the original data. The 

method was introduced by Breiman (1996) and was successfully applied to many 

problems. Its main benefit is usually to reduce the variance associated with a single 

tree but the price to pay is that bagged trees are not as easily interpreted as a single 

tree. Hothorn et al. (2004) used bagging with survival data. To predict a new 

observation, their algorithm aggregates ail training observations falling into the same 

terminal nodes as the one to be predicted and then computes the Kaplan-Meier curve 

of these observations. 

In this paper we use bagging in a slightly different way compared to Hothorn et 

al. (2004) in the sense that the estimated probabilities of event are computed for 

each tree, then averaged over the trees and finally estimated survival probabilities are 

computed from these averaged probabilities. More specifically, our bagging algorithm 

works as follows: 

1. Draw B bootstrap samples from the original data set. 

2. For each bootstrap data set, grow a tree with the splitting rule described in 

Section 2.2. No pruning is performed. The splitting is stopped when a minimum 

node size is reached. In general, this size should depend on the number of 

censored and uncensored observations in the training sample. For simplicity, 

in the applications of this paper, a node is not splitted further and becomes a 

terminal node when it contains less than 40 observations. 

To obtain estimated survival probabilities for a new observation: 
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1. Throw down the observation in each of the B trees. Let îr b (j) denote the estimate 

of z(j), j = 1,. . . , K, obtained from the le tree, b=1,...,B. 

2. Let ii- (j) = +3  EbB_ I  frb (j) denote the final bagged estimate of 7(j). 

3. The bagged estimate of the survival probabilities are then calculated recursively 

as ,'(1) = 1— ii(1), and Ê(j) = Ê(j —1) — ii(j) for j = 2, ... , K. 

A more elaborate version of bagging called random forests (Breiman, 2001, Hothorn 

et al., 2006 and Ishwaran et al., 2008), in which only a random subset of covariates 

is selected at each node, could also easily be implemented. This method has been 

shown empirically to often be superior to bagging (Hamza and Larocque, 2005) and 

it also speeds up computations by reducing the number of splits to be evaluated. But 

straight bagging was used in this paper since the situations considered involve only a 

small number of covariates. 

3. SIMULATION STUDY 

3.1. Description of the study 

The relative performance of three models is investigated in this section. These models 

are i) a single tree selected with the bootstrap correction method, ii) bagging with 

100 trees and iii) the DTPO model defined in (2) using ail covariates. The tree 

building algorithm is implemented in Ox (Doornik, 2002), while maximum likelihood 

estimation of the DTPO model is implemented in R (R Development Core Team, 

2007). 

Four different data generating processes (DGP) were used. The first one is a 

proportional odds model of the form (2) and the other three are tree-based models. 
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For each DGP, the observed time is either 1, 2 , 3 or 4, i.e. K = 4. In ail cases, 

the covariates are generated independently of each other as uniform random variables 

in the interval [0, 10]. To add noise, three additional unrelated covariates were also 

generated for each DGP. For instance, if a DGP is defined with 2 covariates, then a 

total of five covariates were given to the models. 

DGP 1 is defined through model (2) and is given by 

log ( 	
j) 11(i)  	= 3Di + D2(j) — D4 (i) ± 	- 2X2  for j = 1, 2, 3, 4. — h( 

For this DGP, we used a real censoring time variable with vector of probabilities 

(.05, .1,15, .7). 

DGPs 2, 3 and 4 are tree-based models whose shapes and real survival probabilities 

and hazards in each terminal node are provided in figures 1, 2 and 3. The vector of 

probabilities for the real censoring time is the saine in each terminal node for those 

three DGP and is given by (.04, .08, .12, .76). 
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<5 >5 

Period Survival Hazard Period Survival Hazard 
1 0.90 0.10 1 0.65 0.35 
2 0.70 0.22 2 0.40 0.38 
3 0.45 0.36 3 0.20 0.50 
4 0.10 0.78 4 0.10 0.50 

Figure 1: DGP 2 for the simulation study 
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< 5 1 	>5 

Period Survival Hazard 
1 0.65 0.35 
2 0.40 0.38 
3 0.20 0.50 
4 0.10 0.50 

Period Survival Hazard Period Survival Hazard 
1 0.90 0.10 1 0.77 0.23 
2 0.70 0.22 2 0.54 0.30 
3 0.45 0.36 3 0.31 0.43 
4 0.10 0.78 4 0.08 0.74 

Figure 2: DGP 3 for the simulation study 

<5 >5 
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<5 >5 

<5 >5 

Period Survival Hazard Period Survival Hazard Period Survival Hazard Period Survival Hazard 
1 0.90 0.10 1 0.95 0.05 1 0.65 0.35 1 0.55 0.45 
2 0.70 0.22 2 0.85 0.11 2 0.40 0.38 2 0.20 0.64 
3 0.45 0.36 3 0.70 0.18 3 0.20 0.50 3 0.05 0.75 
4 0.10 0.78 4 0.50 0.29 4 0.10 0.50 4 0.02 0.60 

Figure 3: DGP 4 for the simulation study 

With these parameters, the proportions of censored observations is about 19% 

18%, 25% and 26% for DGP 1, 2, 3 and 4 respectively. 

For each DGP, 1000 samples of size n = 600 were generated and the three models 

were fitted to each sample. The performance of any given model was evaluated through 

three criteria. But since the conclusions reached by following any of these criteria were 

very similar, we will only present the results for one of them, the mean absolute error 

(MAE) defined by 

(12) 

where S(j) is the real survival probability for time j and '(j) is an estimation of 

S(j) from a fitted model. For each DGP and each generated sample, an estimate of 

MAE was obtained with an independent test set (flot used in model fitting) of size 

5000. These estimates were then averaged over the 1000 samples to produce the final 

performance criterion. The other two criteria that produced similar conclusions are 

1/4 e(j) - S(j)) 2  and 1/4 E..; 1 ('(j)- s(j))271-(i). 

For the single tree, the chosen penalty term in (11) is 7.78, the 0.90 quantile of the 
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x l  distribution. The bootstrap correction was performed with 30 samples each time. 

3.2. Results 

The results of the simulation are summarized in Table 1 and Figure 4. They present 

the boxplots of the MAE for the 1000 simulated samples for each DGP and model 

and some summary statistics. 
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Figure 4: Results from the simulation study 
Each graph provides the distribution of the estimated mean absolute error 
(MAE) for the 1000 simulated data sets for each data generating process (DGP). 
The three competing methods are a single tree selected with the pruning and 
bootstrap method, bagging with 100 trees and a discrete-time proportional odds 
(DTPO) model using ail covariates. 
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Table 1: Summary statistics for the mean absolute error (MAE) for the simu-
lation study (1000 runs) 
Ah l entries are multiplied by 100. 

DGP Model Average Std Error 
Single tree 6.15 0.015 

1 Bagging 4.89 0.014 
DTPO 2.25 0.019 

Single tree 2.17 0.023 
2 Bagging 5.30 0.016 

DTPO 6.50 0.013 
Single tree 4.58 0.044 

3 Bagging 5.45 0.016 
DTPO 5.80 0.014 

Single tree 5.37 0.042 
4 Bagging 5.67 0.016 

DTPO 10.37 0.009 

As expected, the DTPO model is the one with smallest MAE for DGP 1. It 

has an average MAE of 0.0225. Bagging follows in second place with an average 

MAE of 0.0489. The single tree achieves the best performance for the three other 

DGPs which is not surprising since they are tree-based DGPs. The DTPO model 

is doing consistently a poor job for the more complex tree DGP (DGP 4). Bagging 

always cornes in second place in ah l DGPs. We should not be disappointed by the 

performance of bagging in this simulation study because three of the four DGPs are 

tree-based models. It is then natural that a single tree does better than bagging. But 

when the DGP is not a tree, like for DGP 1, then bagging does better than a single 

tree. Moreover, when we move from DGP 2 to DGP 4, that is, from a simple tree 

DGP to a more complex tree DGP, then bagging gets doser and doser to the single 

tree. 
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4. DATA EXAMPLE AND CONCLUDING REMARKS 

4.1. Onset of cigarette smoking 

In this section, we provide an example illustrating the use of the proposed tree-based 

method. The data corne from a longitudinal study on white boys from low socioeco-

nomic French-speaking schools in the city of Montréal in the province of Québec in 

Canada. These data were analyzed in Mâsse and Tremblay (1997). Only a general de-

scription of the study is provided here and we refer the reader to the original paper for 

more details. One purpose of the study was to investigate the relation between three 

personality dimensions, novelty-seeking, harm-avoidance and reward dependence, and 

the onset of cigarette smoking, alcohol abuse and other drug use in boys. The possible 

values for the personality dimension variables are 1 (low), 2 (medium) and 3 (high). 

According to Cloninger's theory (Cloninger, 1987), higher scores of novelty-seeking, 

lower scores of harm-avoidance and lower scores of reward dependence are hypoth-

esized to be predictors of early onset of alcohol-seeking behavior but other authors 

have shown that they are also related to other types of substances used and abused 

in adolescents. For our example, only the onset of cigarette smoking is treated. The 

three Cloninger's personality dimensions scores are available when the boys were 6 

years old. The outcome of interest, whether the boys had smoked cigarettes, for the 

first time, in the past 12 months were assessed at ages 13, 14 and 15. Mâsse and 

Tremblay (1997) had 656 subjects for their analysis but our sample contains 740 boys 

since information on new subjects were made available after their initial study was 

concluded. The data are treated as discrete-time survival data with three time periods 

(13, 14 and 15 years old). By age 15 years, 40.3% (298 out of 740) of the boys re-

ported having smoked a cigarette and the 59.7% who did not are considered censored 
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Table 2: Results for the onset of cigarette smoking example 
Three discrete-time proportional odds (DTPO) models are presented. For each 
model, the first value is the estimate of the parameter and the value between 
parentheses is its estimated standard error. The first model contains al! covariates. 
The second model is the one selected by the AIC criterion. The third model is 
the one selected by the BIC criterion. A * indicates a p-value<0.01. 

Parameter Full model 
Model 

AIC mode! BIC model 
al (age 13) -1.76(0.27*) -1.83(0.21*) -2.16(0.18*) 
a2 (age 14) -2.23(0.28*) -2.31(0.23*) -2.64(0.20*) 
c:£ 3  (age 15) -1.41(0.27*) -1.48(0.21*) -1.82(0.18*) 

Novelty-seeking 0.26(0.07*) 0.26(0.07*) 0.24(0.07*) 
Harm avoidance -0.19(0.07*) -0.19(0.07*) 

Reward dependence -0.03(0.07) 
AIC 1625.6 1623.8 1629.0 
BIC 1659.0 1651.6 1651.2 

observations. 

Mâsse and Tremblay (1997) analyzed the data through a DTPO model (2). Even 

though the covariates are trichotomous, they were modeled as linear effects by Mâsse 

and Tremblay (1997) and we are also doing so to reproduce their analysis. Three 

DTPO models were fitted to the data and Table 2 presents the results. The first 

model in Table 2 is the equivalent of the fifth model reported in Table 1 of Mâsse and 

Tremblay (1997). Since we are doing the analysis with a different sample, our coeffi-

cients differ slightly from the ones of the original study but the signs and significance 

(at a 5% level) of the parameters are identical. Only novelty-seeking and harm avoid-

ance are significantly related to cigarette smoking and their effects are in accordance 

with Cloninger's theory. The second and third models are the ones selected by the 

AIC and BIC criteria respectively. We see that only novelty-seeking is retained by 

the BIC criterion. 



n=422 
Splitting statistic=5.50 

n=318 
Splitting statistic=6.51 

NS=1 NS=2 or 3 

HA=1 HA=3 HA=2 or 3 HA=1 or 2 

Age 
Node 1 

Survival Hazard Age 
Node 2 

Surv•val Hazard 
13 0.877 0.123 13 0.812 0.187 
14 0.836 0.047 14 0.690 0.152 
15 0.657 0.214 15 0.552 0.199 

Nocle 0 
Age 	Survival 	Hazard 
13 0.841 0.159 
14 0.753 0.105 
15 0.597 0.206 

n=740 
Splitting statistic=25.54 

Age 
Node 3 

Surv•val Hazard Age 
Node 4 

Survival Hazard Age 
Node 5 

Survival Hazard Age 
Node 6 

Survival Hazard 
13 0.835 0.165 13 0.919 0.081 13 0.781 0.219 13 0.851 0.149 
14 0.785 0.061 14 0.888 0.034 14 0.645 0.179 14 0.742 0.127 
15 0.608 0.226 15 0.706 0.204 15 0.504 0.218 15 0.608 0.181 

n=158 n=160 n=228 n=194 

Figure 5: A discrete-time survival tree for the onset of cigarette smoking exam-
ple 
NS stands for Novelty-seeking and HA for Harm-avoidance. The tree with the 
two terminal nodes 1 and 2 (the stump) is the one retained by the pruning and 
bootstrap selection method. 

29 
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We then built a tree using the method proposed in this paper. With a penalty 

term of 6.25, the 0.90 quantile of the x  distribution, and 100 bootstrap samples, the 

simple stump (the tree with two terminal nodes) was selected as the best tree. But 

for illustration purpose, a larger tree with four terminal nodes in presented in Figure 

5. The best tree does a single split on the covariate novelty-seeking. Boys with higher 

values (2 or 3) of novelty-seeking are more at risk of onset of cigarette smoking than 

those with the value 1, in accordance with Cloninger's theory. Even though the two 

other splits are not retained for the final tree, it is interesting to see that they are 

made with the covariate harm avoidance in accordance with the theory. Indeed, lower 

values of harm avoidance increase the risk in both splits. 

Unlike what we did for the simulation study, we can not directly use the MAE (12) 

to compare models since the true S is unknown. Instead we used an empirical version 

of the MAE in conjunction with V-fold cross-validation. For the Vth  cross-validation 

iteration (y = 1, , V), let Ê7'(j) be the estimated value of S(j), obtained from 

the training sample, for the ith  observation in the test sample. The cross-validated 

empirical MAE is then 

, 	v 1 
m, 

MAE, = 	— 
v=1 	iET,, j= 

(j) - I(Tiv > .1)1 

where T is the test sample for iteration y , mv  is its size and y 	its i th  observation. It 

is important to say that each model was rebuilt entirely in each iteration. This means 

that the whole tree construction (building, pruning and selection via bootstrapping) 

was performed in each iteration using the training sample. By using 10-fold cross 

validation, it turns out that the cross-validated empirical MAE is only slightly lower 

(MAE„ = 0.367) for the full DTPO model (the first one in Table 2) compared to a 

tree model (MAE„ = 0.369). We also assessed the performance of bagging with 100 
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trees who did slightly better than the two other models (MAE„ = 0.366). 

To investigate the stability of the selected tree model, we tried different values for 

the penalty term. It turns out that the model is very stable since the stump with 

novelty-seeking would also be selected for ail a values in the interval [0.04, 20.2]. This 

and the fact that only novelty-seeking is retained by the BIC criterion in the DTPO 

model seem to indicate that this covariate is the main one associated with the risk of 

onset of cigarette smoking in this population. 

4.2. Concluding remarks 

In conclusion, a new and complete methodology to build a tree for discrete-time 

survival data has been described in this paper. The splitting criterion of the proposed 

method reduces to the entropy criterion when there is no censoring. Hence, the new 

method can be seen as an extension of the classical classification tree method to the 

case of right-censored data. The simulation study has shown that the new method 

works well and its use was illustrated with a real data example. This methodology is 

mostly aimed at the case where the number of observed times is small since they could 

be treated as continuous otherwise. The method does not impose the proportional 

odds assumption frequently encountered in parametric and semi-parametric models. 

This has two benefits: i) time-varying effects for splitting variables are automatically 

incorporated and ii) the computation time is greatly reduced since the evaluation of 

the splitting criterion is based on a closed form expression. 

A referee pointed out that using the two-node proportional odds (PO) model (6) 

is also possible in practice especially since fast score tests are available. The referee 

added that using such a model may be useful for power reasons since it contains 

less parameters. Thus, if the PO assumption holds, more accurate estimators could 
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be obtained especially lower in the tree where less observations are available. These 

comments are pertinent and interesting and certainly could justify future work. We 

think that not having to assume PO blindly is one of the main appeal of the proposed 

method. However, we think that one possibility would be to use a method where, of 

each node, a decision to use either a PO or a non PO model to split the node could be 

based on an objective criterion that would automatically check the PO assumption. 

Such a hybrid method could potentially combine the best of both worlds but we leave 

its investigation for future work. 
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APPENDIX 

Al — Maximum likelihood estimates of the hazards, the survival probabil-

ities and the probabilities of event for the intercept only model (4): 

For a general data set (ri , (Si , x i ), j = 1, , N, for which e {1, ... ,10, let no (j) 

and n1 (j)  be the number of individuals for which Ti  = j and 8, = 0 and 1 respectively. 

For j = 1,. . . , K, the number of individuals at risk at time j is 

n 	 if j = 1 

n — E3kili (no (k) + n i (k)) if j > 1. 

The maximum likelihood estimates can be recursively defined as follows: 

= 	
ni(j)/r(j) if r(i) > 0 

î/(i)  
0 	 if r(j) = 0, 

= 	- 1 )( 1  - 

A2 — Technical details for the pruning and selection of a single tree in 

Section (2.3): 

The technical details to implement the pruning and bootstrap corection for the 

selection of the final tree are briefly described here. The reader is referred to LeBlanc 
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and Crowley (1993) or Fan et al. (2006) for a more complete description. 

Firstly, here is how to get the sequence of pruned subtrees. We start with the 

large tree Ao . For any internai node t of Ao , let A0 (t) denote the branch with t as 

its root node. The weakest link of Ao  is the node such that G(A0 (t))/1147(A 0 (t))1 is 

the smallest among ail internai nodes of A o . Define a i  to be this smallest value. Let 

Ai  be the subtree of Ao  after pruning off the branch with the weakest link as its root 

node. The same process of finding the weakest link and pruning the corresponding 

branch is applied to Ai  to produce a value a 2  and a new subtree A2. Thus, starting 

from the large tree Ao , the pruning process can proceed recursively until the tree with 

only one node (root node), A m , is reached. From LeBlanc and Crowley (1993), Am  is 

the smallest subtree that maximizes Ga , see (10), for ail a in the interval [a m , am+i ). 

The geometric mean 

rn 
	arnarn,±1 
	 (13) 

is then assigned as the representative a value for A m . 

Secondly, here is how to get a bootstrap corrected value for G(A) in (9). Draw B 

bootstrap samples from the original sample. Using the b th  sample, Sb, grow and prune 

a large tree. For m = 1,. . . , M, let Ab (am' ) denote the pruned subtree, in the sequence 

of subtrees constructed with Sb, corresponding to a'm  of (13), i.e., corresponding to the 

representative a value for the tree A m  from the original sequence of pruned subtrees 

for the original sample. The bootstrap corrected value of G(A m ) is then 

Gc(A,n ) = G(Am ) — (G(Ab(atrn); Sb, Sb) — G(Ab(aini); Sb, S)) 
b=1 

where G(A; Si, S2 ) denotes the value of G(A) when the tree is built with the sample 

Si  and the splitting statistics are recomputed with the sample 82. 



Paper 2: Discrete-Time Survival Trees and Forests 
with Time-Varying Covariates: Application to 

Bankruptcy Data 

Imad Bou-Hamad, Denis Larocque and Hatem Ben-Ameur 

Department of Management Sciences 
HEC Montréal, 3000, chemin de la Côte-Sainte-Catherine, 

Montréal, QC, Canada H3T 2A7 



39 

ABSTRACT 

Discrete-time survival data with time-varying covariates are often encountered in prac-

tice. One such example is bankruptcy studies where the status of each firm is available 

on a yearly basis. Moreover, these studies often use financial and accounting based 

ratios to predict bankruptcy. These ratios are also yearly measures and hence are 

time-varying. In this paper, we propose a new survival tree method for discrete-time 

survival data with time-varying covariates. This method can accommodate simulta-

neously time-varying covariates and time-varying effects. The new method is applied 

to a sample of United States firms that conducted an Initial Public Offerings between 

1990 and 1999. 

Keywords: Bankruptcy data; Discrete-time survival analysis; Survival forests; Time-

varying covariate. 
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1. INTRODUCTION 

The analysis and prediction of corporate financial distress and bankruptcy are impor-

tant problems that generated many theoretical and empirical research over the last 

four decades. The use of financial and accounting based ratios to predict bankruptcy 

goes back to Beaver (1966). Since then, many modeling techniques using these ratios 

have been proposed. Some popular ones are the multivariate discriminant analysis 

(Altman, 1968), linear regression (Meyer and Pifer, 1970), logistic regression (Ohlson, 

1980), probit model (Zmijewski, 1984), classification tree (Frydman, Altman and Kao, 

1985) and neural network (Fanning and Cogger, 1994). However, the methods above 

do not take in consideration the change of firms characteristics over time and hence 

are called static or single-period models. More precisely, only one set of covariates 

recorded at a single period in time is used to model bankruptcy at a fixed moment 

in the future (usually between one to three years later). Since bankruptcies are rare 

events, samples are usually collected over a a long period. Consequently, several years 

of data are available on the firms of interest. By using only the covariates at a single 

period, static models waste a lot of information. 

Shumway (2001) handled the problem of change through time using a discrete-time 

hazard model that allows the use of many years of data for each firm. A discrete-time 

approach is appropriate since the usual covariates (ratios) and the bankruptcy indica-

tor are yearly measures. Moreover, the discrete-time approach can easily incorporate 

time-varying covariates. This approach has been extended since then. For instance, 

De Leonardis and Rocci (2008) proposed a discrete-time survival model with frailty to 

allow for unobserved heterogeneity and Nam, Kim, Park and Lee (2008) incorporated 

macroeconomic dependencies. These studies showed the benefits of a multiple-period 

approach over a single-period approach since they report better predictive accuracies. 

However, they are ail based more or less on the same parametric logit or log-log for- 
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mulation for the hazard function. Other approaches might produce better results. 

Survival trees is another modeling strategy that will be investigated in this paper. 

Tree-based methods (Morgan and Sonquist, 1963, Breiman, Friedman, Olshen and 

Stone, 1984), and survival trees (Gordon and Olshen, 1985) in particular are flow well 

established techniques that are popular among practitioners. Even though a single 

tree is often a very useful descriptive and predictive tool in itself, the development 

of ensemble methods like bagging (Breiman, 1996), and random forests (Breiman, 

2001) unleashed ail their potential predictive power when a tree is used as the base 

learner. Many survival tree methods were proposed in the last twenty years. Some 

use the log-rank statistic as a splitting criterion (Ciampi, Thiffault, Nakache and As-

selain, 1986, Segal, 1988, and LeBlanc and Crowley, 1993), while others use likelihood 

approaches to derive a splitting criterion (Davis and Anderson, 1989, LeBlanc and 

Crowley, 1992). Other methods include Molinaro, Dudoit and Van Der Laan, (2004), 

Jin, Lu, Stone and Black (2004) and Su and Tsai (2005). Recently, extensions to 

multivariate and correlated data were proposed (Su and Fan, 2004, Gao, Manatunga 

and Chen, 2004, and Fan, Su, Levine, Nunn and LeBlanc, 2006). Finally, ensem-

ble methods applied to survival trees were studied in Hothorn, Lausen, Benner and 

Radespiel-Triiger (2004), Hothorn, Biihlmann, Dudoit, Molinaro and Van Der Laan 

(2006) and Ishwaran, Kogalur, Blackstone and Lauer (2008). 

These methods were mainly developed for continuous-time survival variables. A 

method designed for discrete-time variables was proposed in Bou-Hamad, Larocque, 

Ben-Ameur, Mâsse, Vitaro and Tremblay (2009). However, only time independent 

covariates can be incorporated with this approach. 

Since time-varying covariates are common in practice, it is surprising that very 

little work has been devoted to the topic of extending survival trees to allow them to 

incorporate such covariates. Segal (1992) underlined that no convincing technique for 
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defining splits on time-varying covariates has been developed. The only strategy that 

had been implemented at that time consisted in replacing the time-varying covariate 

with a low—order polynomial approximation. In particular, linear summaries have 

been used where each time-varying covariate is first regressed against time within 

individuals. The intercept and slope for each individual are then used as covariates. 

Obviously, such a method is only reasonable when the linear regression adequately 

captures the time-varying covariate, but a serious limitation arises when the number 

of observations per subject is small since the intra-individual regressions will be impre-

cise. Later, Bacchetti and Segal (1995) proposed to handle time-varying covariates by 

decomposing each subject survival experience into pseudo-subjects according to the 

values of the splitting rules. More precisely, when considering to split a node of the 

tree, a subject can be splitted apart across the two children nodes. The time window 

where the splitting rule is true would go to one node (say the left node), and the time 

window where it is false would go to the other node (say the right node). A discrete 

version of this method is basically the one retained in this paper, and will be discussed 

into more details in Section 2.2. Finally, Huang, Chen and Soong (1998) proposed a 

piecewise exponential survival tree method that accommodates time-varying covari-

ates. This method assumes that the distribution of the survival time for a subject is 

given by a piecewise exponential distribution with k pieces and, as the Bacchetti and 

Segal (1995) method, allows subjects to be splitted across different nodes. However, 

these developments are aimed at continuous-time survival data. 

The goal of this paper is to extend the discrete-time survival tree method intro-

duced in Bou-Hamad et al. (2009) to the case of time-varying covariates and provide 

an application to bankruptcy data. 

The rest of the paper is organized as follows. In Section 2, we describe the basic 

tree building method and show how single trees can be combined to form a survival 
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forest. The bankruptcy data application is detailed in Section 3. Section 4 presents 

concluding remarks. 

2. DESCRIPTION OF THE TREE BUILDING METHOD 

The proposed tree method is an extension of the one introduced in Bou-Hamad et al. 

(2009) and is built around a discrete-time proportional odds (DTPO) model that was 

popularized by Singer and Willett (1993). 

2.1. Data description and discrete-time hazard models 

Data on N independent subjects are available. For subject i, we observe (Ti , Si , x,) 

consisting of 1) a discrete survival time (E {1, 2, ...}), 2) a censoring indicator. S t  

taking a value of 1 if the true time-to-event is observed and 0 if it is right-censored, 

and 3) a set of values for p covariates xi . Some covariates can be time independent 

and some others can be time-varying. We will denote by xki (j) the value of the eh  

covariate at time j for subject i. Even thought we use the same notation for ail 

covariates, it is clear that xki (j) remains constant for ail j for a time independent 

covariate. Denoting by Ui  the real time-to-event for subject i, which is unobserved for 

the censored subjects, and suppressing the dependence on the covariates to simplify 

the notation, we define 

hi (j) = P(Ui  jU > j), Si (j) = P(Ui  > j), and zi (j) = P(Ui  =j) 	(1) 

as the hazards, the survival probabilities and the probabilities of events, respectively. 

We also make the usual assumption that Ui  and the true censoring time are indepen-

dent given the covariates. 

Assume that K is the maximum observed time for the data. The basic DTPO 

model, as described in Singer and Willett (1993), is 



44 

hi (j)  
log ( 	

— (j) = aiDit(3) + • + 	D Ki(7) Oixiz(1) 	•-• f3pxpi(j), 	(2) 1 	ht   

where the Dkz (j)'s are indicator variables indexing the time periods that are defined 

by D(j) = 1 if k = j and 0 otherwise. Fitting this model by maximum likelihood is 

easy when we realize that the likelihood function of (2) is equivalent to an indepen-

dent Bernoulli trials model with transformed data with a logistic dependence on the 

covariates (see page 171 of Singer and Willett, 1993). Hence, any logistic regression 

software can be used to fit this model. Moreover, the proportional odds assumption 

can be easily relaxed by introducing interaction terms between a covariate and the 

time indexing indicators. For instance, with only one covariate C, which may be 

time-varying, the resulting model would be 

log ( 	 

( 3 ) 

This model is important because, as we will see in the next subsection, it is the one we 

use to derive the splitting criterion for the tree building algorithm. With this model, 

not only can a time-varying covariate be used, but its effect is also allowed to be time 

dependent. 

Note that the baseline effect of time is modeled in the most flexible way in (2) 

since each time period has its own parameter. It is possible to simplify the model 

and specify a linear or constant time effect. For instance, Shumway (2001) used a 

constant time effect in his bankruptcy model. 

In general, the log-likelihood function of a discrete-time survival model can be 

written as 

LL = 	Si  ln(rri  (Ti )) + (1 — (5i ) ln(Si  (Ti )). 	 (4) 
i=1 
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Moreover, the maximum likelihood estimates (MLEs) of the hazards in model (2) 

but without covariates, that is the model 1og(h i (j)/(1 — hi (j))) aiD12(i) + • • • + 

ceK DKj (j), are given by 

h0) = 	for 	= 1, 	, K. , 	 (5) 

where e(j) is the number of subjects that experienced the event at time j, and r(j) is 

the number of subjects that were at risk at time j. Defining '(0) = 1, the MLEs of 

the survival and probability functions are then obtained as Ê(j) =(j — 1)(1 — h(j)) 

and fr(j) = Ê(j —1) — (j). 

2.2. Tree building 

We assume the reader is familiar with the basic terminology used with tree based 

methods (Breiman et al., 1984). The first important aspect concerning tree building 

is the splitting criterion. This criterion will be used to partition the sample according 

to binary rules based on the covariates. If a single tree is needed, the usual procedure 

consists in building a large tree, to prune some branches off and to select one tree 

among a nested sequence of pruned trees as will be described in this subsection. 

Another strategy is to use trees as the basic model in an ensemble method like bagging 

and random forests. With this strategy, many trees are built (usually without pruning) 

and combined as described in the next subsection. 

Let x be any covariate (time-varying or flot). If x is continuous or ar least ordinal, 

any splitting variable will have the form Ci (j) = /(xi (j) < e) where / is the indicator 

function and xi (j) is the value of x at time j for subject i. For a categorical covariate, 

any splitting variable will have the form Ci (j) =- /(xi (j) E {ci, ..., 	where C1 , . • • , 

are possible values of x. For the retained splitting variable, the observations for which 

Ci (j) = 1 would go to the right node while the ones for which Ci (j) = 0 would 
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go to the left node. Note that we are now using the word "observation" and flot 

"subject". This is because we must now shift to a "subject-period" data set point 

of view (Singer and Willett, 1993) where each subject has one une of observation 

for each period where he is at risk. Usually, this means that a subject has one une 

of observation for each period until he experiences the event or is censored. If the 

splitting variable is defined through a time independent variable, then the condition 

is either true or false for all periods. Hence, ah l the observations (lines in the subject-

period data set) for this subject would go to the same node. However, if the splitting 

variable is defined through a time-varying variable, it is possible that the condition is 

true for some periods and false for the others. Hence, some observations could go to 

one node and some others could go to the other node which means that the subject 

could be splitted across the two children nodes. 

The splitting criterion we are proposing is based on the observed log-likelihood of 

model (3) where the C variable is now a splitting variable as above. Since C is an 

indicator variable, the contribution to the total likelihood of the observations for which 

C 1 is separated from the contribution of the observations for which C = O. Hence, 

fitting the model amounts to fit two separate models, one using the observations for 

which C = 1 (right node) and one for the others (left node). But these are intercepts 

only models (one parameter for each time period) and the MLE's of the hazards, 

survival function and probability function are given by (5) and below. Note that we 

are only using the observations that are in the right (left) node to compute the MLEs 

of the right (left) node. The splitting criterion is then given by (4) by plugging in the 

values of the MLEs. 

The tree building can noW be described as follows. Start with all observations 

(all hues in the subject-period data set) in the root node. Compute the value of the 

splitting criterion (observed LL) for ail possible splitting variables constructed with 
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ail possible covariates. The optimal split is the one with the maximum value for the 

splitting criterion. Using the optimal splitting variable, split the observations across 

the two children nodes. Split the right node with the same procedure using only 

the observations in the node and do the same for the left node. Repeat the process 

recursively until a stopping criterion is reached. For instance, do not split a node 

further when it contains less than a predetermined number of observations. 

It is clear that in the end, any given subject can be splitted across many nodes. 

This is also happening with the method proposed in Bacchetti and Segal (1995). 

However, their approach was aimed at a continuous time survival variable and the 

effect of the splitting variable remained time-invariant. With our method the effect 

of the splitting variable depends on the period due to the interactions between this 

variable and the time indicators. Hence, our method imposes less assumptions. As a 

side effect, it also allows a closed form expression for the splitting criterion and thus 

speeds up the computations which is important when the number of observations and 

covariates are large. However, more parameters need to be estimated and this can 

become impractical when the number of periods is large. But in this case, it would 

be possible to treat the survival variable as a continuous one and use one the many 

available survival tree methods for continuous data. Another possibility is to base the 

splitting criterion on a restricted model. Model (3) used in this paper is basically the 

most general model. At the other extreme, the simplest one would be 

log 
 (

hi(3)  = /O+ 1— h i (j) 
(6) 

with time-independent effects for both the period and the splitting variable. Any 

intermediate model between the two extreme ones (3) and (6) are also possible. But 

these models would require numerical computations of the MLE's and computation 

time could become an issue. When the data contains only time independent covariates, 
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the splitting criterion reduces to the one of Bou-Hamad et al. (2009). Hence the 

method proposed here is a direct extension of the earlier method that allows the use 

of time-varying covariates. 

If a single tree must be chosen, we are proposing to use the same pruning and 

selection method as in Bou-Hamad et al. (2009). It is basically based on the split 

complexity measure of LeBlanc and Crowley (1993) combined with the bootstrap. 

The reader is referred to section 2.3 of Bou-Hamad et al. (2009) for more details. 

2.3. Bagging and survival forests 

It is now well-known that averaging many trees through an ensemble method pro-

duces often a better model than a single tree; Breiman (1996, 2001) and Hamza and 

Larocque (2005) for classification and regression trees and Hothorn et al. (2004), 

Hothorn et al. (2006) and Ishwaran et al. (2008) for survival trees. Bagging was 

studied in Bou-Hamad et al. (2009). In this paper, we will present the slightly more 

general concept of a survival forest. 

The general method goes as follows: 1) Draw B bootstrap samples from the original 

data, 2) Grow a tree for each bootstrap sample. At each node, select of random k 

out of p covariates where k e {1, . . , pl is a parameter chosen by the analyst at the 

start. No pruning is performed. The splitting is stopped when a minimum node size 

is reached. 

To obtain estimated hazards, survival probabilities and probabilities for the ith  

observation of the data to be scored: 

1. Let the observation fall into each tree. Let iiii(j) denote the estimate of n i (j), 

j = 1,..., K, obtained from the bth  tree, b =1,... , B. 

2. Let 'fri (j) = 	bB 	denote the final ensemble estimate of 7ri (j). 

3. The ensemble estimate of the survival probabilities are then calculated recursively 
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as Êi (j) = Êi (j — 1) — îrj(j) and hi (i) = 	— 1) for j = 1,..., K, where 

= 1. Note that hi (j) is defined to be 0 when É'i (j — 1) = 0. 

Selecting ail the covariates in each node amounts to perform bagging which is a 

particular case of the random (survival) forests. 

3. APPLICATION TO BANKRUPTCY DATA 

3.1. Description of the data 

Our study focuses on United States firms that conducted IPOs (Initial Public Offer-

ings) between 1990 and 1999. IPOs are often used by smaller, younger companies 

seeking the capital to expand, but can also be done by large privately owned com-

panies looking to become publicly traded. IPOs were the most prevalent form of 

securities issued to raise capital in the United States in the last decade (1990-2000) 

( Ghosh, 2006). The Sample was collected from the COMPUSTAT database. The 

target variable is bankruptcy. All firms that filed for bankruptcy under Chapter 7 

or 11 are considered bankrupt. The covariates are financial ratios. Since there is a 

substantial quantity of accounting statements, there is a huge number of ratios that 

can be calculated. However, financial ratios are usually grouped into five categories 

(Ross, Westerfield, Jordan and Roberts, 2002, section 3.3): 1) short-term solvency 

or liquidity ratios, 2) turnover or activity ratios, 3) financial leverage or long-term 

solvency ratios, 4) profitability ratios, and 5) market value ratios. One ratio has 

been selected from each class to represent it. The candidate ratio is the one which 

was mostly used in previous studies as indicated in the review paper by Bellovary, 

Giacomino and Akers (2007). The selected ratios are: 

• R1  = Current Assets/Current Liabilities 

• R2  = Sales/Total Assets 
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• R3 = Total Debt/Total Assets 

• R4 = Net Income/Total Assets 

• R5 = Market Value of Equity/Book Value of Total Debt. 

Each firm is followed yearly starting from its initial IPO until 2004. Hence, the 

ratios are available on a yearly basis, and are treated as time-varying covariates. 

In order to make the modeling exercise realistic, the ratios are used to model the 

bankruptcy indicator (1=yes, 0=no) at an horizon of three years. Hence, we are 

trying to relate the values of the ratios in a given year to the bankruptcy indicator 

three years later. The sample has 1143 firms, 189 of them went bankrupt during the 

study period. However, since 174 of the 189 bankruptcies occurred between years 3 

and 8 after the IPO, only this six years period is retained for the final analysis. The 

15 remaining bankruptcies, which are scattered among the eight remaining years, do 

not convey enough information to allow accurate estimations. In the end, the data 

set contains 6202 firm-year observations. The tree building algorithm is implemented 

in Ox (Doornik, 2002), and the maximum likelihood estimation of the DTPO model 

is implemented in R (R Development Core Team, 2007). 

Table 1 presents the empirical risks for the six periods under study. Note that the 

first une of the table (3 years after the IPO) includes the firms that went bankrupt in 

years 1, 2 or 3 after the IPO. 

Table 2 presents summary statistics for the five retained covariates (ratios). The 

distributions of the ratios are skewed, especially for R 1  and R5, and this is why various 

transformations were performed on them as described below. 

3.2. Results 

Three types of models are fitted to the data and compared: 1) DTPO models, 2) 

single trees and, 3) survival forests. 



Table 1: Empirical risks for the bankruptcy data 

Year after 
IPO 

Number of firms 
at risk 

Number of 
bankruptcies Risk (%) 

3 1143 35 3.06 
4 1108 41 3.70 
5 1067 34 3.19 
6 1033 29 2.81 
7 1004 18 1.79 
8 986 17 2.01 

Table 2: Summary statistics for the ratios (n=6202) 

Ratio Min Max Mean Median Std 
R 1  0.046 258.27 3.84 2.29 6.26 
R2 0.000 15.96 1.09 0.92 0.98 
R3 0.005 9.34 0.47 0.42 0.44 
R4 -23.99 1.69 -0.10 0.03 0.64 
R5 0.000 749.84 14.15 3.71 37.46 

The parameter estimates of some DTPO models are presented in Table 3. The ba-

sic model using the original ratios is in the second column, but according to the AIC 

and BIC criteria, this model is inferior to the other three models that use transformed 

ratios. To alleviate the skewness effect, the first transformation uses truncated ratios 

(third column in Table 3). The ratios were truncated of their 95% quantile, i.e., any 

value above the quantile was brought back down to the quantile value. The ratio 

R4  was also truncated above its 5% quantile value because it is also skewed to the 

left. In another model (fourth column in Table 3), the transformation log(R i  + 2) for 

= 1, 2, 3, 5 and log(—R4  + 2) were used. However, according to the AIC and BIC 

criteria, the best result was obtained for what we call the "MAD-log" transformation 

(last column in Table 3). This transformation is defined as follows. First we stan-

dardize the ratio by subtracting the median and dividing by the MAD (mean absolute 

deviations), which are highly robust location and scale measures. Then we apply the 

transformation sign(x) log(lx1 + 1) to the standardized data. As for the the other two 
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Table 3: Four DTPO models for the bankruptcy data 
The first value is the parameter estimate, the second one is the estimated standard error and the 
third one is the p-value. 

Parameter 
Original 
Ratios 

Transformed ratios 
Truncated 	log 	MAD-log 

al (Year 3) -3.22 -3.90 -2.91 -3.67 
0.18 0.39 0.85 0.19 

<0.001 <0.001 <0.001 <0.001 
a2 (year 4) -3.16 -3.98 -3.00 -3.82 

0.17 0.37 0.83 0.19 
<0.001 <0.001 <0.001 <0.001 

a3 (year 5) -3.35 -4.32 -3.27 -4.16 
0.18 0.37 0.83 0.20 

<0.001 <0.001 <0.001 <0.001 
a4 (year 6) -3.55 -4.49 -3.52 -4.39 

0.19 0.38 0.84 0.22 
<0.001 <0.001 <0.001 <0.001 

a5 (year 7) -4.10 -4.88 -4.00 -4.83 
0.26 0.42 0.87 0.27 

<0.001 <0.001 <0.001 <0.001 
a6 (year 8) -3.98 -4.85 -3.93 -4.78 

0.26 0.43 0.87 0.28 
<0.001 <0.001 <0.001 <0.001 

R1 -0.038 -0.022 -0.241 -0.116 
0.046 0.051 0.283 0.132 
0.409 0.663 0.395 0.378 

R2 -0.001 0.198 -0.034 0.138 
0.039 0.110 0.305 0.098 
0.977 0.071 0.910 0.156 

R3 0.060 0.934 -0.078 0.046 
0.025 0.390 0.583 0.124 
0.016 0.017 0.894 0.710 

R4 -0.020 -3.676 2.611 -0.826 
0.006 0.288 0.340 0.068 
0.001 <0.001 <0.001 <0.001 

R5 -0.168 -0.062 -1.049 -0.749 
0.046 0.016 0.161 0.133 

<0.001 <0.001 <0.001 <0.001 
AIC 1499.0 1343.0 1419.8 1331.8 
BIC 1573.0 1417.1 1493.9 1405.8 
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transformations, the MAD-log transformation is monotonic. Hence the sign of the 

effects are comparable across ail models. For the MAD-log model, only R4 and R5 are 

significant with negative eiTects. Thus, higher risks of bankruptcy are associated with 

lower values of R4 (Net Income/Total Assets) and R5 (Market Value of Equity/Book 

Value of Total Debt). We also investigated if a year effect was present by incorpo-

rating the year of the IPO as a covariate but it turns out to be non-significant in ail 

models. 

The proposed tree method was then applied to the data. The tree presented in 

Figure 1 is the one obtained after pruning and selecting the best one with 30 bootstrap 

samples. The number of observations, the number of bankruptcies and the estimated 

risk and survival functions are reported in each node. Only the ratios R3 and R4 are 

used in the final tree. In accordance with the MAD-log DTPO model, lower values 

of R4 are associated with an increase risk of bankruptcy. Node 5 contains the riskier 

covariate pattern. It is formed by firm-years such that R4 < —0.447 and R3 > 0.36945. 

The fact that higher values of R3 are associated with a higher risk is also apparent in 

the MAD-log model but its effect is flot significant (p-value=0.124) there. 



»ode 0 
Year 	 Survive! 	 Hazard 

3 96.94 3.06 
4 93.35 3.70 
5 90.38 3.19 
6 87.84 2.81 
7 86.26 1.79 
8 84.53 2.01 

n=6202 (174) 

Year 
node 1 
Survive' Hazard Year 

node 2 
Survive! Hazard 

3 94.65 5.35 3 98.75 1.25 
4 88.09 6.93 4 97.50 1.27 
5 82.15 6.75 5 97.50 0.00 
6 78.01 5.04 96.77 0.74 
7 75.42 3.31 7 96.40 0.38 
8 72.41 4.00 8 96.18 0.22 

n=2864 (151) 
	

n=3338 (23) 

Your 
node 
Servi Viti Hazard `lem. 

node 4 
S,trviviil Hazard 

3 98.60 1.40 3 89.55 10.46 
4 97.40 1.22 4 77.87 13.04 
5 94.13 3.35 5 70.23 9.81 
6 91.91 2.36 65.28 7.04 
7 91.91 0.00 7 61.69 5.50 
8 91.30 0.67 8 58.00 5.98 

n-=1323 (21) 

 

n=1541 (130) 

   

Year 
node 5 
Sarvival Hazar ■ I Year 

node 6 
Survival Hazard 

3 72.41 27.54 3 92.15 7.85 
4 46.86 35.30 4 85.97 6.70 
5 40.71 13.15 5 78.38 8.82 

36.04 11.48 6 73.81 5.83 
7 29.63 17.78 7 71.41 3.25 
8 25.50 13.95 8 68.32 4.33 

n=290 (55) n=1251 (75) 

R4 < 0.02095 	 R4 > 0.02095 

R3 < 0.36945 
	

R3 > 0.36945 

R4 < -0.447 I R4 > -0.447 

Figure 1: A single survival tree for the bankruptcy data 
The estimated hazard and survival functions are reported in percent. "Year" is the number of 
years after the IPO. In each node, the total number of firm-year observations is given as "n=" 
and the number of bankruptcies is given between parentheses. 
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A single tree provides a convenient descriptive tool that may help to refine a para-

metric model. However, we are more interested here in comparing the two approaches 

(trees versus DTPO models). Hence, it is important to investigate the out-of-sample 

performance of the models. To do so, the model above along with forests of survival 

trees are now compared using ROC curves and a summary of the curves, the area 

under the ROC curve (AUC), via a cross-validation scheme. The 1143 firms were 

randomly divided into ten groups (10-fold cross-validation) in such a way that each 

group contains about 10% of the firms. But we did it in a stratified way such that each 

group contains also about 10% of the bankruptcies. Then the usual cross-validation 

paradigm was used for each model to be compared. More precisely, risk estimates 

were obtained for ah l observations in a group by fitting the model with the remaining 

groups. In the end and for each model, we have one out-of-sample estimated risk for 

each firm-year observation. These estimated risks are then used to compute the ROC 

curves and AUC. 

For the survival forest approach only the model when we select three out of five 

ratios in each node will be presented and discussed since it is the one that gave the best 

results. But straight bagging (choosing ah l ratios in each node) and the other survival 

forests provided very similar results. Each forest was built with 100 trees. Moreover, 

for the transformed ratios, only the MAD-log transformation will be presented as it 

is the best one in these out-of sample comparisons as it was also with the AIC and 

BIC criteria. Hence, we will be comparing four models: 1) the DTPO model with the 

original ratios, 2) the DTPO model with the MAD-log ratios, 3) the single tree and 

4) the survival forest (with 100 trees) with three out of five ratios selected at random 

in each node. 

Figure 2 presents the overall ROC curves for the four models. The corresponding 

AUC are reported in the upper part of Table 4. It is seen that the MAD-log DTPO 
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model and the survival forest are better than the other two. The DTPO model with 

the original ratios seems to be the worse model and the single tree lies somewhere in 

between this one and the two top models. The AUC for each period are also reported 

in Table 4. The MAD-log and survival forest models are always the top two models 

in each period, the MAD-log being in first place for four out of six periods. 



1 ORIGINAL RATIOS 

2 MAD-LOG RATIOS 
y 	 3 SINGLE TREE 

	 4 SURVIVAL FOREST .7 
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0.0 
	

0.2 
	

0.4 
	

0.6 
	

0.8 
	

1.0 

1-Specificity 

Figure 2: ROC curves for the out-of-sample risk estimates with the bankruptcy data 
Four models are represented: DTPO models with the original and MAD-log ratios, a single tree 
and a survival forest with 100 trees. 
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Table 4: Area Under the ROC curves (AUC) for the out-of-sample risk estimates with the 
bankruptcy data 

Year after 
IPO 

DTPO 
Original 	MAD-log 

Trees 
Single 	Forest 

Ah l years 
combined 

0.720 0.814 0.757 0.810 

3 0.703 0.802 0.591 0.760 
4 0.750 0.834 0.718 0.828 
5 0.745 0.850 0.763 0.855 
6 0.666 0.742 0.690 0.727 
7 0.744 0.821 0.774 0.844 
8 0.727 0.804 0.715 0.781 

Overall, the MAD-log transformation provided a better model than the one using 

the original ratios. However, finding a good transformation is flot a trivial task. 

We tried many transformations here and were fortunate to find what seems to be a 

reasonable one. At the same time, the performance of the survival forest is very close 

to the one of the MAD-log model. But the advantage of the survival forest approach 

lies in the fact that almost no intervention from the analyst is needed. 

4. CONCLUDING REMARKS 

The motivating data for this work was bankruptcy data. Modeling bankruptcy data 

has a long history and the studies evolved from using single-period approaches fo 

multiple-period approaches through survival analysis models. Discrete-time survival 

analysis methods are most often used because the status of each firm along with the 

usual covariates are yearly measures. 

At the same time, survival trees became a widely accepted alternative to (serni) 

parametric models for the analysis of time-to-failure data. However, the methods 

were mainly developed under a continuous survival variable framework. It is only 

recently (Bou-Hamad et al., 2009) that a survival tree method specifically adapted for 

a discrete-time variable was proposed. However, this method could only incorporate 
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time independent covariates. Hence, the method could flot be applied to bankruptcy 

data studies that incorporate time-varying covariates such as annual financial and 

accounting based ratios. The purpose of this work was thus to generalize the Bou-

Hamad et al. (2009) method to be able to use such time-varying covariates. One of 

benefits of the proposed method is that it allows both time-varying effects and time-

varying covariates to be incorporated at the same time. Morever, since the splitting 

criterion has a closed-form, computation time is flot an issue and we can easily build 

many trees to construct a forest of trees for instance. 

Trees can be useful in a large variety of situations. A single tree can be an inter-

esting descriptive tool in itself. Moreover, it can provide insights on the interactions 

among the covariates and help the analyst in the parametric model-building process. 

Sometimes a single tree can also be a good predictive tool. However, it is often the 

case that the combination of many trees will offer a better predictive performance than 

a single tree. Forest of trees (with bagging as a special case) are such methods that 

often provide very good out-of-sample predictive accuracies. Moreover, these methods 

are basically "off-the-shelf' since very little input from the analyst is needed. Dis-

covering important interactions and/or finding appropriate covariate transformations 

is flot a trivial task when using more classical parametric models and often involves 

a trial-and-error approach that needs many inputs from the analyst. Moreover, the 

variability involved with such ad-hoc model selection is rarely taken into account (be-

cause it is a difficult task) when we estimate the performance of a model. But the 

price to pay with methods like forest of trees is that the interpretation of the model 

is more difficult. If interpretation is of the foremost importance, than a model like a 

survival forest can at least serve as a benchmark to compare the performance of more 

interpretable models. 

There are many possibilities for future work. For instance, improving the inter- 
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pretability of forests of trees is still an ongoing research topic. In the context of this 

paper, an added difficulty cornes from the fact that the effects of the covariates are 

time dependent. Another direction would be to develop a boosting approach adapted 

to discrete-time survival data with time-varying covariates using the tree method in-

troduced in this paper. Finally, another possibility would be to compare the splitting 

criterion proposed in this paper to other ones based on restricted models like (6). 

Specifically the performance of different methods, including existing ones for contin-

uous survival variables, could be investigated as the number of period increases in 

order to provide guidelines to practitioners. 
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ABSTRACT 

This paper presents a non—technical account of the developments of tree—based 

methods for the analysis of survival data with censoring. This review describes the 

initial developments, which mainly extended the existing basic tree methodologies to 

censored data, to more recent work that are focusing on more complex models, more 

specialized methods and more specific problems including multivariate data, the use 

of time—varying covariates, survival data on a discrete scale, and ensemble methods 

applied to survival trees. 

Keywords : Survival trees ; CART ; Time—varying covariate ; Right—censored data; 

Discrete—time ; Ensemble methods ; Time—varying effect ; Bagging ; Survival forest. 
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1. INTRODUCTION 

Studies involving time—to—event data are numerous and arise from ail areas of re-

search. The presence of censored data (most often right—censored) characterizes most 

of these studies and many statistical methods were developed to deal specifically with 

this problem. The Cox proportional hazard regression model and its extensions are 

very popular models to study survival variables with censoring. Survival trees are 

popular nonparametric alternatives to (semi) parametric models. They offer great 

flexibility for data exploration and can naturally group subjects according to their 

survival behavior based on their covariates. Prognostic groups can then be derived 

more easily from survival trees as opposed to regression type models. Moreover, sur-

vival trees are ideal candidates for combination through an ensemble method leading 

to very powerful predictive tools. 

The development of survival trees followed a steady growth from the mid 80's up 

to the mid 90's, where the goal was mainly to extend the existing tree methods to the 

case of survival data with censoring. A review of survival trees up to 1995 appears in 

LeBlanc and Crowley (1995). Once the basic survival tree methods were established, 

the research moved into many different directions. One direction was to treat more 

complex situations like multivariate and correlated survival data. Another direction 

was to study the use of ensemble methods with survival trees. Also, another one was 

to deal with specific topics related to survival studies like time—varying covariates and 

time—to—event variables measured on a discrete scale. 

Survival trees have been applied in numerous studies but, until now, mainly in 

the medical area. As a matter of fact, the vast majority of the articles that will be 

discussed in this review include examples of applications in various medical studies. 

The rest of this section describes the basic tree methodology and the survival 

data setup. Section 2 focuses on the basic survival tree methodologies. In Section 3, 
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the more recent developments and extensions are presented. Finally, some concluding 

remarks are given in Section 4. 

1.1. Basic Tree Building Method 

Initially, tree—based methods were developed to model a categorical or a continuous 

outcome using a set of covariates from a sample of data without censoring. They were 

introduced by Morgan and Sonquist (1963) but really became popular in the 80's 

due in great part to the development of the CART (Classification and Regression 

Tree) paradigm described in the monograph by Breiman, Friedman, Olshen and Stone 

(1984). The reader is assumed to be familiar with the basic ideas and terminology 

around tree—based methods as only a brief description is provided here. The basic 

idea of a tree is to recursively partition the covariates space to form groups (nodes in 

the tree) of subjects which are similar according to the outcome of interest. This is 

often achieved by minimizing a measure of node impurity. For a categorical response, 

the Gini and the entropy measures of impurity are popular while the sum of squared 

deviations from the mean is the most often used measure for a continuous outcome. 

The basic approach focuses on binary splits using a single covariate. For a conti-

nuous or an ordinal covariate X, a potential split has the form X < c where c is a 

constant. For a categorical covariate X, a potential split has the form X e {ci , . • • , ck} 

where c l , ... , ck  are possible values of X. The typical algorithm starts at the root node 

with ail observations, performs an exhaustive search through ail potential binary splits 

with the covariates and selects the best one according to a splitting criterion such as 

an impurity measure. In the CART approach, the process is repeated recursively to 

the children nodes until a stopping criterion is met (often until a minimum node size 

is attained). This produces a large tree that usually overfits the data. A pruning and 

selection method is then applied to find an appropriate subtree. Appropriate node 
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summaries are usually computed at the terminal nodes to interpret the tree or obtain 

predicted values. The node average is typically used for a continuons outcome while 

the node proportions of each values of a categorical outcome are reported. The most 

frequent value at a node can be used if a single prediction is needed. For a survi-

val outcome, the Kaplan—Meier estimate of the survival function in the node can be 

reported. 

1.2. Survival Data Description 

We begin by describing the basic setup which lead to the development of survival 

trees. We denote by U the true survival time and by C the true censoring time. 

The observed data is then composed of T = min(U, C), the time until either the 

event occurs or the subject is censored, = /(U < C), an indicator that takes a 

value of 1 if the true time—to—event is observed and 0 if the subject is censored, 

and X = (X1 ,. , Xp ), a vector of p covariates. Data is available for N independent 

subjects 6„ i = 1,. , N. The basic setup assumes that the covariates values 

are available at time 0 for each subject. Thus, only the baseline values of a time-

varying covariate is typically used. The inclusion of the multiple values of time—varying 

covariates will be discussed in Section 3.3. Multivariate and correlated survival data 

will be the topic of Section 3.1. 

2. SURVIVAL TREE BUILDING METHODS 

The early idea of using a tree—structured data analysis for censored data can be 

traced back to Ciampi, Bush, Gospodarowicz and Till (1981) and Marubini, Morabito 

and Valsecchi (1983). However, the first paper that contained ail the elements of what 

would become survival trees is the one by Gordon and Olshen (1985). In this section, 

we are presenting separately the splitting criteria and the final tree selection methods 
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that were proposed over the years. We are also presenting some variants and related 

methods and the few studies that compared some tree—building procedures. 

2.1. Splitting Criteria 

In this subsection, we will focus only on the different splitting criteria that were 

proposed. 

The idea behind the splitting criterion proposed by Gordon and Olshen (1985) was 

to force each node to be more homogeneous as measured by a Wasserstein metric 

between the survival function obtained from the Kaplan—Meier estimator at the node 

and a survival function that has mass at most one finite point. Although this particular 

splitting criterion did not gain much popularity, it laid ground to the work that 

followed. Indeed, Gordon and Olshen (1985) mention the possibility to use the logrank 

statistic or a parametric likelihood ratio statistic to measure the "distance" between 

the two children nodes and these ideas were used widely in the work that followed. 

Ciampi, Thiffault, Nakache and Asselain (1986) proposed to use the logrank sta-

tistic to compare the two groups formed by the children nodes. The retained split was 

the one with the largest significant test statistic value. The use of the logrank test 

leads to a split which assures that the median survival times in the two children nodes 

are separated best. Ciampi, Chang, Hogg and Mckinney (1987) proposed a general 

formulation based around using the likelihood ratio statistic (LRS) under an assu-

med model to measure the dissimilarity between the two children nodes. As for the 

logrank statistic above, it is clear that the larger the statistic is, the more dissimilar 

the two nodes are. They discuss more specifically about two possibilities : an expo-

nential model and a Cox proportional hazards model. Hence, this approach relies on 

the assumptions related to the chosen model. For instance, with the Cox model, the 

proportional hazards assumption implies that the hazard function in the right node 
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is proportional to the one in the left node. Davis and Anderson (1989) also used a 

splitting criterion based on an exponential model log—likelihood which is equivalent to 

the LRS dissimilarity measure under the exponential model. Ciampi, Hogg, McKin-

ney, and Thiffault (1988) and Ciampi, Thiffault and Sagman (1989) continued in the 

same direction and mention the possibility of using the logrank and Wilcoxon—Gehan 

statistics as dissimilarity measures and to use the Kolmogorov—Smirnov statistic to 

compare the survival curves of the two nodes. Segal (1988) also adopted a between-

node separation (dissimilarity measure) approach based on the Tarone—Ware class of 

two—sample statistics for censored data. With appropriate choices of weights, this class 

encompasses many well—known test statistics like the logrank and Wilcoxon—Gehan 

statistics. LeBlanc and Crowley (1993) are also using the logrank statistic as splitting 

criterion but they introduced a new method of pruning and selection of a final tree 

built around a measure of split—complexity (see Section 2.2.1). 

In their discussion, Therneau, Grambsch and Fleming (1990) mentioned that mar-

tingale residuals from a null Cox model could be used as the outcome for a regres-

sion tree algorithm. The advantage of this approach is that existing regression tree 

softwares could be used directly with the modified outcome. Keles and Segal (2002) 

provided an analytic relationship between the logrank and martingale residuals sum-

of—squares split functions. However, their approach is based on the idea that the 

residuals are recomputed at each node which prevents the direct use of a regression 

tree software. They show that the two splitting criteria are approximately equiva-

lent when the survival time is independent of the covariate but not in the general 

case. Loh (1991) and Ahn and Loh (1994) proposed two splitting criteria based on 

residuals obtained from fitting a Cox model with one covariate at a time. The basic 

idea consists in studying the patterns of the Cox model residuals along each covariate 

axis and selecting as the splitting covariate the one whose axis patterns appear the 
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least random. The degree of randomness of the residuals is quantified by dividing the 

observations in the parent node into two classes along each covariate and is measured 

by the two-sample t-test. 

By exploiting an equivalence between the proportional hazards model full likelihood 

and a Poisson model likelihood, Leblanc and Crowley (1992) proposed a splitting 

criterion based on a node deviance measure between a saturated model log-likelihood 

and a maximized log-likelihood. With this method, the unknown full likelihood is 

approximated by replacing the baseline cumulative hazard function by the Nelson-

Aalen estimator. The advantage of this method is that it can be implemented easily 

in any recursive partitioning software for Poisson trees such as the rpart algorithm in 

R or Splus. 

Zhang (1995) proposed an impurity criterion which combines two separate im-

purity measures, one for the observed times and one for the proportion of censored 

observations. 

Molinaro, Dudoit and van der Laan (2004) proposed a unified strategy for building 

trees with censored data. Their approach is based on defining an observed data world 

(with censoring) loss function by weighting a full data world (without censoring) loss 

function. Each non-censored observation is weighted by the inverse probability of 

censoring (IPC) given the covariates. 

Since the usual regression tree methods uses the node variance as the impurity 

measure, Jin, Lu, Stone and Black (2004) proposed a splitting rule based on the 

variance of the survival time. But since the mean and variance survival times are 

affected by the censored observations, they proposed to compute the variance by 

using a restricted time limit. 

Finally, Cho and Hong (2008) proposed to use the L 1  loss function to build a 

median survival tree. To compute the loss function, the censored observations are 
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replaced by their expected values conditional on the fact that the time is greater than 

the censored time. 

2.2. Selection of a Single Tree 

One important aspect of a tree building algorithm is to decide when to stop splitting 

and hence select a specific tree as the final model. Too large trees will tend to overfit 

the data and not generalize well to the population of interest while too small trees 

might miss important characteristics of the relationship between the covariates and the 

outcome. There are basically two approaches for the selection of a final tree. The first 

one is a backward method which builds a large tree and then selects an appropriate 

subtree by pruning some branches off. The second one is a forward method which uses 

a built—in stopping rule to decide when to stop splitting a node further. 

2.2.1. Pruning methods 

The pruning approach has basically two variants : cost—complexity and split-

complexity. However, the basic idea is to build a large tree To  and obtain a sequence 

of nested subtrees {To , T1 , ... , Tm } where Tm  is the root—only tree. For a given tree 

T, we will denote by L(T) and W(T) the set of terminal nodes (leaves) and inter-

ior nodes of T. For a given node h of T, we will define R(h) to be the within—node 

risk of h which measures the impurity of the node. The classical measure of impu-

rity for a regression tree is the residual sum of squares with the node average ac-

ting as the prediction. With survival data, many measures of impurity can be used 

for R(h) but the choice will usually be in accordance with the splitting criterion. 

For instance, LeBlanc and Crowley (1992) use the deviance of the node defined by 

R(h) = 2(LLh (saturated) — LLh  Oh  )) where LLh (saturated) is the log—likelihood for 

the saturated model with one parameter for each observation, and LLh (èh ) is the maxi-

mized log—likelihood under their adopted model. Davis and Anderson (1989) used a 



74 

risk function based on the exponential log—likelihood loss. 

The cost—complexity method arises from the CART paradigm. The cost—complexity 

of a tree is defined as 

Ra  (T) = 	R(h) + alL(T)1 	 (1) 
hEL(T) 

where a is a nonnegative parameter which governs the tradeoff between the complexity 

of the tree (the number of terminal nodes) and how well it fits the data. Once the cost-

complexity measure is specified, the classical pruning algorithm of CART (Breiman 

et al, 1984) can be used to obtain the sequence of optimally pruned subtrees. Each 

subtree is optimal for an interval of a values. 

The other method introduced by LeBlanc and Crowley (1993) defines the split-

complexity of a tree by 

G Œ (T) = 	G (h) — alW (T)1 
	

(2) 
hEW (T) 

where G(h ) is the value of the standardized splitting statistic at node h (i.e., the value 

of the splitting criterion for the selected split at node h). LeBlanc and Crowley (1993) 

interpret Y'hEW (T) G (h) as the total amount of prognostic structure represented by the 
4,--d  

tree. Once again, the parameter a (> 0) governs the tradeoff between the size of the 

tree and how well it fits the data. LeBlanc and Crowley (1993) provide an algorithm 

to obtain the sequence of optimally subtrees for any value of a. The split—complexity 

method is also used in Fan, Su, Levine, Nunn and LeBlanc (2006) and Bou-Hamad, 

Larocque, Ben-Ameur, Mâsse, Vitaro and Tremblay (2009). 

2.2.2. Final selection among the nested sequence of subtrees 

Once a nested sequence of subtrees {To , T1 , . . . , Tm } has been obtained, we still 

need to choose one single tree in it. Many methods are available. The most popular 



75 

are : test set, cross—validation, bootstrap, AIC/BIC and graphical methods ("kink" 

in the curve or elbow method). 

The classical CART method uses cross—validation to estimate the parameter a in 

the cost—complexity measure (1) and the final tree is the one corresponding to this 

value in the sequence of trees (Breiman et al., 1984). 

With the split—complexity measure (2), LeBlanc and Crowley (1993) proposed 

two methods. The aim of both of them is to obtain an honest estimate of G(T) = 

E hEW (T) G(h) for each tree in the sequence of subtrees since it is clear that the in-

sample values of G(T) are likely to be too large. Once these are obtained, the final 

tree can be selected as the one maximizing (2) by fixing a value for a. Since the null 

distribution of their standardized splitting statistic is asymptotically xî, LeBlanc and 

Crowley (1993) suggest to use an a value in the interval [2, 4]. Their argument is that 

a .--- 2 is in the spirit of the AIC criterion while a = 4 corresponds roughly to using a 

0.05 significance level for the 7d distribution. Their first method consists in applying 

a bootstrap bias correction to G(T) and is applicable with any sample size. Their 

second method is useful for large samples and consists in dividing the original sample 

into a training and test samples. The training sample is used to build the large tree 

and obtain the sequence of subtrees. The test sample is then used to recompute the 

value of G(T) = EhEw(T)  c(h) for each tree in the sequence. The optimal tree is then 

chosen using the recomputed values of (2). 

The AIC/BIC type methods proposed in other work are closely related to the 

second method of LeBlanc and Crowley (1993). The selection methods proposed in 

Ciampi, Chang, Hogg and Mckinney (1987), Su and Fan (2004), and Su and Tsai 

(2005) all involve selecting the final tree, among a sequence of subtrees, as the one 

minimizing a criterion like 

—211(T) + alL(T)1 



76 

where 11(T) is the log—likelihood of the tree and a is either 2 (AIC) or log(n) (BIC). 

The whole procedure involves building a large tree and obtaining a sequence of sub-

trees with a training sample and to recompute 11(T) with a test sample. 

Graphical methods that plot the value of a criterion as a function of the tree 

complexity for each tree in the sequence have also been proposed. Similarly to a scree 

plot in a principal components analysis, such a plot usually have an elbow shape with 

an abrupt change at some point. The final tree is then the one corresponding to the 

"kink" in the curve. Segal (1988) proposes such a method coupled with a specific 

pruning method. For this method, each internai node is assigned the maximum split 

statistic in the subtree of which the node is the root. This method is also used in Gao, 

Manatunga and Chen (2004). A drawback of graphical methods is the subjectivity 

associated with them. Negassa, Ciampi, Abrahamowicz, Shapiro and Boivin (2000) 

proposed an automatic elbow detection method and applied it with an AIC criterion, 

as above but computed on the same sample as the one that built the tree. 

2.2.3. Forward methods 

When the covariates are measured on different scales, the number of candidate 

splits at a given node can be very different for each covariate. For instance, if the 

splitting criterion is based on a p—value, then a covariate with a higher number of 

tests has a greater probability of achieving a small p—value. This is why the use of 

adjusted p—values have been proposed to avoid possible selection bias in the choice of 

the covariate (Schittgen, 1999 and Lausen, Hothorn, Bretz and Schumacher, 2004). 

At the same time, adjusted p—value can be used to regulate the tree building pro-

cedure, acting as a stopping criterion to decide when to stop splitting a node further. 

Using such a mule gives rise to a forward method which avoids the use of pruning. 

Using the standardize two—sample logrank statistic as the splitting criterion, Lausen 

et al. (2004) proposed such a method which adjusts both for the fact that multiple 
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tests are performed for each covariate but also for the fact that many covariates are 

involved, and hence that the overall best value of the test statistic is a maximum 

(over the covariates) of maximally selected statistics (over ail potential splits on a 

covariate). Splitting is stopped when the adjusted p—value of the selected best split is 

greater than a pre—specified value (for instance 0.05). 

2.3. Some variants and related methods 

The RECPAM (Recursive Partition and Amalgamation) method introduced in 

Ciampi et al. (1988) allows an additional feature compared to a classical tree ; see 

Ciampi, Negassa and Lou (1995) for a complete description. The method share the 

basic characteristics of regular trees in the sense that it builds a large tree, prunes it 

and selects one member in the sequence as the final tree. However, it allows a further 

step, the amalgamation step, where similar terminal nodes are grouped together. 

The amalgamation algorithm proceeds as a pruning and selection algorithm as it 

recursively amalgamates the two terminal nodes which are the most similar to create 

a sequence of nested partitions from which one final partition will be selected. In the 

end, the partition of the covariates space may flot necessarily be that of a tree since 

terminal nodes that are far away may end up grouped together. But it may bring 

down the number of groups to a more easily interpretable size. In their data example, 

Fan, Su, Levine, Nunn and LeBlanc (2006) used an amalgamation algorithm to bring 

the 12 terminal nodes of their final tree down to five interpretable prognosis groups. 

A similar idea of building a tree and then group together terminal nodes which 

are similar with respect to the survival profiles was proposed in Tsai, Chen, Chen, 

Balch, Thompson and Soong (2007). The grouping of the terminal nodes of the final 

tree is achieved with an agglomerative hierarchical clustering method. The method 

developed by LeBlanc and Crowley (1995) also breaks away from the tree structure and 
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can build proportional hazards models with piecewise constant relative risk functions. 

By adapting the ideas of Logical Analysis of Data or LAD (Hammer and Bonates, 

2006), Kronek and Reddy (2008) proposed the method LASD (Logical Analysis of 

Survival Data) that automatically detects good patterns of covariates to predict the 

survival function. Finally, Su and Tsai (2005) proposed a hybrid approach to augment 

a Cox proportional hazards model through a tree structure. 

2.4. Comparison of methods 

A large scale simulation study to compare many pruning and selection methods has 

yet to appear but some limited empirical work is available. To investigate the perfor-

mance of some tree size selection methods under the RECPAM framework, Negassa, 

Ciampi, Abrahamowicz, Shapiro and Boivin (2000, 2005) studied the performance of 

four model selection approaches : cross—validation, cross—validation with the 1 SE rule 

(Breiman et al., 1984), automatic elbow rule and minimum AIC. They concluded that 

none among theses approaches exhibited a uniformly superior performance over the 

different scenarios. They also proposed a two—stage method, where cross—validation 

is used in the first stage followed by the elbow approach, which performed well in the 

simulation. 

A large scale comparison of many splitting criteria has also yet to appear. Some 

limited results appear in Radespiel-Triiger, Rabenstein, Schneider and Lausen (2003) 

and Radespiel-Tr5ger, Gefeller, Rabenstein and Hothorn (2006). In addition to a real 

data set, a single tree structured data generating process with five terminal nodes and 

sample sizes of 250 but with many variations of censoring distributions and terminal 

node hazards was used in the first paper. Comparing many splitting methods, the 

authors concluded that the adjusted and unadjusted logrank statistic splitting with 

pruning, the exponential loss splitting with pruning and the adjusted logrank statistic 
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splitting without pruning have the best performance . Radespiel-Trôger et al. (2006) 

used bootstrap samples from a real data set to perform the simulation study. Their 

results showed that the adjusted logrank statistic splitting without pruning gave the 

best results. 

3. EXTENSIONS OF THE BASIC METHODS 

The last section presented the developments of survival trees and related methods 

for the basic setup involving a univariate survival outcome with independent data 

and without time—varying covariates. Extensions to more complex situations began 

to appear in the mid 90's. This section will present these developments in a thematic 

fashion. Extensions to multivariate and correlated data will be presented first, followed 

by the use of ensemble methods with a survival tree as the base model. Finally, 

specialized topics like time—varying covariates and time—to—event variables measured 

on a discrete scale will be presented. 

3.1. Multivariate and Correlated Data 

A natural extension of the univariate survival tree methods is to consider multiva-

riate or correlated survival outcomes. Suppose that there are N clusters in the data. 

Using the same notation as in Section 1.2, the available data are (7-i3 , Sii , Xii ) where 

the (ii) subscript indicates the observations for the unit j in cluster i, j = 1, ... ni , 

i = 1, . . . , N. Independence is assumed across clusters but the observations within 

a cluster are possibly correlated. The goal is to build a survival tree by taking into 

account the intra—cluster correlation. The marginal and random effect (frailty) models 

are the two main approaches to handle correlated survival outcomes and both of them 

have been adapted to build survival trees. 

Su and Fan (2004) and Gao, Manatunga and Chen (2004) used the frailty approach 
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where the intra-cluster dependence is modeled by a multiplicative random effect term. 

More specifically, the following formulation of the hazard function is the starting point 

of their method : 

wi ) = h0 (t)exp(Xii /3)wi  

where ho  is an unspecified baseline hazard function and w i  is a frailty term for cluster 

i that follows some known distribution. The gamma distribution was assumed in 

both papers. Su and Fan (2004) built a splitting criterion based on an integrated 

log-likelihood while Gao, Manatunga and Chen (2004) defined theirs through the 

standardized estimate of the splitting variable parameter obtained from a profile log-

likelihood. 

Fan, Su, Levine, Nunn and LeBlanc (2006) used the marginal approach where the 

dependence structure is left unspecified. Instead, their splitting criterion is based on a 

robust two-sample logrank statistic and their whole methodology is a generalization 

of the LeBlanc and Crowley (1993) method. One advantage of this approach over 

the frailty approach is that it does not require iterative procedures since the robust 

logrank statistic has a closed-form expression. 

3.2. Ensemble Methods With Survival Trees 

Trees are known for their instability in the sense that small perturbations in the 

learning sample can induce a large change in the predicting function. Bagging and 

random forests, proposed by Breiman (1996, 2001), are simple but ingenious solutions 

to this problem that basically reduce the variance of a single tree and enlarge the 

class of models. In fact, bagging is one particular case of random forests. The basic 

algorithm works by drawing B bootstrap samples from the original data and growing a 

tree for each of them without pruning. A final prediction is then obtained by averaging 

the predictions from each individual tree. The general random forest algorithm grows 
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each tree by selecting a random subset of predictors at each node. Bagging is then 

just the special case where ail predictors are retained at each node. 

Dannegger (2000) and Benner (2002) described applications of bagging with sur-

vival trees but the first two systematic studies appeared in 2004. 

Ishawaran, Blackstone, Pothier and Lauer (2004) proposed to built a forest of 

relative risk trees using the tree building method introduced in LeBlanc and Crowley 

(1992) which assumes proportional hazards. For any given covariate x, each tree (for 

b = 1,. . . , B) produces a relative risk value R(b) (x) compared to the mean unit in the 

study. They define the ensemble relative risk for x to be Re (x) -= 1/B bB  1  R(b) (x). 

Hothorn, Lausen, Benner and Radespiel-Trôger (2004) proposed a general bagging 

method for an arbitrary tree growing algorithm but used the LeBlanc and Crowley 

(1992) method for their practical implementation. However, their method differs in 

the way they aggregate the individual trees. To obtain an estimate of the survival 

function at a covariate x, they form a new set of observations by collecting together 

from each tree all the observations, from the bootstrap sample used to build the tree, 

that fell into the same terminal node as x. Then they compute the Kaplan—Meier 

estimate using this set of observations. Thus, they end up with a conditional survival 

function which is more informative than a single prediction like a median survival 

time or a relative risk compared to a mean unit. Their method is implemented in the 

R package ipred. 

Hothorn, Bühlman, Dudoit, Molinaro, van der Laan (2006) proposed a random 

forest method to build a survival ensemble for the log—survival time. Their approach is 

based on the general Molinaro et al. (2004) framework (see Section 2.1). The estimated 

inverse probability of censoring (IPC) weights are used as sampling weights to draw 

each bootstrap sample and a tree is built for each of them. With the quadratic loss, 

a prediction of the mean log—survival time at a covariate x is given by the average 
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survival time of the terminal node corresponding to x. The ensemble prediction of 

the mean log—survival time is then obtained as a weighted average, over all trees, 

of these predictions. Their method is implemented in the R package party. They also 

investigated a gradient boosting algorithm where a tree can act as the base learner but 

they studied instead the use of componentwise least squares. Hence, this particular 

boosting method is flot really an extension of survival trees. Along the same lines, 

Ridgeway (1999) and Benner (2002) also proposed boosting algorithm with different 

base learners. 

Ishwaran, Kogalur, Blackstone and Lauer (2008) introduced a general random fo-

rest method coupled with a new algorithm for imputing missing values. They investi-

gated four different criteria based on versions of the logrank statistics and conservation 

of events principle. To obtain a prediction at a given x, the Nelson—Aalen estimate 

of the cumulative hazard function at each node are averaged. Their method is imple-

mented in the R package ra ndomSurviva I Forest. 

Eckel, Pfahlberg, Gefeller and Hothorn (2008) compared proportionnai hazards 

models, survival forests and a bundling method with a data set of melanoma patients. 

The bundling method combines the Cox model with a tree by adding the linear pre-

dictor of a Cox model as an additional predictor, thus expanding the candidate splits. 

The final predictions are obtained from aggregated trees. Their conclusion was that 

the three methods were on par for this data set. 

3.3. Specific Topics : Time—Varying Effects and Covariates, and 

Discrete—Time Survival Outcome 

Almost ail survival tree methods were developed under the basic setup described in 

section 1.2 and did not include time—varying effects nor time—varying covariates. Mo-

reover, no method specifically adapted to discrete—time survival data were proposed 
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until very recently. 

Given that time—varying covariates are common in practice, only the difficulties 

associated with their use can explain the sparsity of the literature on tree based 

methods about this topic. In the context of regression trees for longitudinal data, 

Segal (1992) discusses issues about time—varying covariates and points out that no 

convincing technique for defining splits on them has been developed. One possibility 

is to replace each time—varying covariate by estimated parameters that summarize 

its relation with time. For instance, if the values of a time—varying covariate of an 

individual are regressed against time, then the slope and intercept could be used in the 

tree growing process instead of the original values. But this is not really satisfactory 

for two reasons. First, there is no guarantee that the covariate is linearly related fo 

time. Second, the number of repeated measures on an individual is generally too small 

to allow precise regression estimates. 

The first studies that dealt with time—varying covariates with survival trees were 

the ones by Bacchetti and Segal (1995) and Huang, Chen and Soong (1998). 

The solution proposed by Bacchetti and Segal (1995) was to allow the decompo-

sition of each subject into pseudo—subjects defined through the splitting rules of the 

tree. Assume that x(t) is a time—varying covariate. If the splitting rule of a node is 

x(t) < c, then the time window where this condition is true would go to one node and 

the time window where it is false would go to the other node. Hence, a subject could 

be splitted into two pseudo—subjects that could be splitted apart further at lower 

nodes. In the end, a subject could end up in many different terminal nodes. However, 

at any given time, each subject can be classified into one and only one terminal node. 

In order to achieve this, Bacchetti and Segal (1995) used modified two—sample test 

statistics that can accommodate left—truncated data. 

Huang, Chen and Soong (1998) used a similar approach in which subjects can 
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be splitted across many nodes as a function of time but with a more structured 

mode!. Their splitting criterion is built around the log—likelihood of a model which 

assumes that the distribution of the survival time for a subject is given by a piecewise 

exponential distribution. 

Xu and Adak (2001, 2002) methods used only time independent covariates but 

these were allowed to have time—varying effects. With their method, the tree is used 

only to find splits for the time variable in order to locate the time values where the 

effect change occur. The resulting tree partitions the time into time intervals and a 

Cox proportional hazard model is used to model the covariates. Hence, this model fits 

an adaptive piecewise Cox model by letting the tree algorithm find the intervals. 

Bou-Hamad, Larocque, Ben-Ameur, Mâsse, Vitaro and Tremblay (2009) propo-

sed a method specifically adapted to discrete—time survival outcomes. Their splitting 

criterion is based on the log—likelihood of a very flexible discrete time model which 

reduces to the entropy criterion for a categorical response when no censored observa-

tions are present. Moreover, this method directly allows time—varying effects for the 

covariates. Bou-Hamad, Larocque and Ben-Ameur (2009) generalized this approach 

to be able to incorporate time—varying covariates. This was achieved by allowing sub-

jects to be splitted across different nodes depending on the time period as in Bacchetti 

and Segal (1995). Hence, this method allows simultaneously time—varying effects and 

time—varying covariates. These two papers also investigated the use of bagging and 

random forests which produce aggregate estimations of the discrete conditional risk 

and survival functions. 

4. CONCLUSION 

This review shows that survival trees have been and are still a very active area of 

research. Many methods were proposed over the last 25 years. At first, the research 
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focused on the extension of classical trees to the case of censored data. But recently, 

more complex models and situations were studied and the development of ensemble 

methods renewed the interest about tree based methods in general and survival trees 

in particular. 

However, there are many topics that still need further research. For instance, it is 

still unclear which survival tree method should be recommended as there are only few 

articles that tried to systematically compare the many different approaches. Much 

work is also needed about the use of time—varying covariates and about how to in-

corporate time—varying effects. Finally, the interpretation of covariates effects with 

ensemble of trees in general is still mainly unsolved and should attract future research. 

In the context of survival trees, one further difficulty arises when time—varying effects 

are included. 
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Nous avons divisé la thèse en trois articles. Dans le premier article, une nouvelle 

méthodologie pour construire un arbre à temps discret a été présentée. Le critère 

de séparation utilisé dans la méthode proposée est équivalent au critère de l'entropie, 

utilisé pour une variable réponse catégorielle, en l'absence de censure. Par conséquent, 

la nouvelle méthode pourrait être considérée comme une extension de la méthode 

d'arbre de classification pour des données censurées à droite. De plus, les covariables 

peuvent avoir des effets qui varient dans le temps. Comme le critère de séparation 

peut être évalué rapidement grâce à une formule explicite, le temps de calcul ne 

pose pas problème et des techniques d'agrégation d'arbres, telles le bagging et les 

forêts aléatoires, peuvent facilement être utilisées. Des simulations ont montré que 

la nouvelle méthode performe bien. D'autre part, elle a été illustrée avec un exemple 

avec des données sur le tabagisme chez les adolescents. Cette méthodologie est surtout 

recommandée dans le cas où le nombre de périodes observées est limité. 

La principale motivation du deuxième article était l'étude des facteurs reliés à la 

faillite. De nombreux travaux se sont intéressés à la modélisation de la faillite. Les 

premières méthodes utilisaient seulement une seule période dans le temps mais depuis 

quelques années, des approches utilisant plusieurs périodes, par l'entremise de modèle 

d'analyse de survie, ont vu le jour. Les méthodes d'analyse de survie à temps discret 

sont le plus souvent utilisées étant donné que le statut de l'entreprise ainsi que les 

covariables utilisées (souvent des ratios financiers) sont évalués annuellement. Ainsi, 

les covariables varient dans le temps. C'est pourquoi le deuxième article propose une 

extension de la méthode de base du premier article afin de pouvoir inclure de telles co-

variables. Les résultats de l'exemple avec les données de faillite montrent qu'une forêt 

de survie construite avec la nouvelle méthode d'arbre performe mieux qu'un modèle 

paramétrique de base qui utilise les ratios financiers tel quels et performe de manière 

équivalente à un modèle paramétrique qui utilise une transformation particulière des 
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ratios. L'avantage d'une forêt de survie est qu'elle ne requiert pas de choix de la part 

de l'analyste contrairement aux modèles paramétriques qui eux nécessitent des choix 

non -triviaux concernant la manière d'inclure les covariables (choix des transforma-

tions, choix des interactions etc.) Cependant, l'interprétation est plus difficile avec 

une forêt de survie. Si l'interprétation est primordiale, une forêt de survie demeure 

tout de même une référence pour comparer la performance d'autres modèles plus 

interprétables. 

Finalement, nous avons présenté dans le troisième article une étude exhaustive des 

méthodes d'arbres de survie. Cette étude contribue à la littérature en mettant à jour 

la revue présentée dans Leblanc Crowley (1995). Nous nous sommes concentrés sur les 

éléments fondamentaux comme les critères de séparation et les méthodes de sélection 

d'un arbre final. En plus, nous avons décrit les nouveaux développements qui sont 

apparus depuis Leblanc et Crowley (1995), tels les méthodes pour données de survie 

multivariés, l'utilisation de méthodes d'ensemble avec les arbres de survie ainsi que 

certains sujets précis comme les covariables et les effets variant dans le temps. 
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