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Abstract 

This study examines the value of stochastic information in Material Requirements Planning (MRP) 

under demand uncertainty. Two MRP models are developed to identify how stochastic 

programming can address the demand uncertainty issue in a MRP environment. The first model is 

a MRP optimization model with expected demand. The second model is a two-stage stochastic 

model that is extended from the first model to deal with uncertain demand. In this two-stage 

problem, the production batches are determined in the first stage and remain fixed. The production 

quantity is based on the number of batches determined in the first stage. In the second stage, the 

demand is realized and unmet demand is assumed to be lost. In the deterministic model, safety 

stock is predetermined and enforced to deal with uncertainty in demand, whereas there is no 

imposed safety stock in the stochastic model and the demand uncertainty is represented by a set of 

demand scenarios. In the computational experiments, 36 instances are generated and tested. We 

use Gurobi version 7.5 as the optimization solver, whereas the models and experiments are coded 

in Python 2.1.3. Computational results are presented to compare the performance of both the 

deterministic model and the stochastic model. In this thesis, the descriptive statistics about the 

optimal solutions based on the deterministic model with perfect demand information and its 

average objective value across all the scenarios, the objective values of stochastic model, and the 

expected objective values of deterministic model are computed. Based on these solution results, 

we analyse the sensitivity of deterministic solutions with demand uncertainty, the expected value 

with perfect information (EVPI), and the value of stochastic solutions (VSS). The results show 

that the optimal solutions from the deterministic optimization model are sensitive to the change of 

the demand. In addition, our stochastic model can provide average potential savings of 5% in the 

MRP environment under demand uncertainty.  
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Résumé 

Cette étude examine la valeur de l’information stochastique dans la planification des besoins 

matières (PBM) sous l’incertitude de la demande. Deux modèles de la PBM sont développés pour 

identifier comment la programmation stochastique peut répondre au problème d’incertitude de la 

demande dans un environnement de PBM. Le premier modèle est un modèle d’optimisation de la 

PBM avec demande espérée. Le deuxième modèle est un modèle stochastique en deux étapes qui 

s’étend du premier modèle pour répondre à une demande incertaine. Dans ce problème en deux 

étapes, le nombre de lots de production est déterminé dans la première étape et reste fixe. La 

quantité de production est basée sur le nombre de lots déterminé dans la première étape. Dans la 

deuxième étape, la demande est réalisée et la demande non satisfaite est suposée être perdue. Dans 

le modèle déterministe, le stock de sécurité est prédéterminé et appliqué pour faire face à 

l’incertitude de la demande, alors qu’il n’y a pas de stock de sécurité imposé dans le modèle 

stochastique et l’incertitude de la demande est représentée par un ensemble de scénarios de 

demande. Dans les expériences de calcul, 36 exemples sont générés et testés. Nous utilisons la 

version 7.5 de Gurobi comme solveur, alors que les modèles et les expériences sont codés en 

Python 2.1.3. Les résultats computationnels sont présentés pour comparer les performances du 

modèle déterministe et du modèle stochastique. Dans cette thèse, les statistiques descriptives sur 

les solutions optimales à partir du modèle déterministe avec les informations de demande parfaites 

et sa valeur objective moyenne de tous les scénarios, les valeurs objectives du modèle stochastique 

et les valeurs objectives espérées du modèle déterministe sont calculées. Sur la base de ces résultats 

de solution, nous analysons la sensibilité des solutions déterministes sous l’incertitude de la 

demande, la valeur attendue avec les information parfaites (EVPI), et la valeur des solutions 

stochastiques (VSS). Les résultats montrent que les solutions optimales du modèle d’optimisation 

déterministe sont sensibles à la variation de la demande. En outre, notre modèle stochastique peut 

fournir une économie potentielle moyenne de 5% dans l’environnement PBM en cas d’incertitude 

de la demande.  

 

Mots clés: 

PBM, incertitude de la demande, programmation stochastique, valeur attendue avec information 

parfaite (EVPI), valeur des soutions stochastiques (VSS) 
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Chapter 1- Introduction 

 

Material Requirements Planning (MRP) plays an important role in the production planning and 

control system in manufacturing processes. Arnold et al. (2012) propose that the main objective of 

MRP is to determine the requirements. Specifically, it is to create a production plan to ensure that 

the right materials in the right quantities will be available at the right time to meet the Master 

Production Schedule (MPS). MRP is a rule-based approach that works in a deterministic 

framework. According to Murthy and Ma (1991), there are three major inputs of MRP. The first 

one is product structure records. The product structure is represented by the bill of materials 

(BOM). The second input is the inventory status records which includes the on-hand balance, open 

orders, lot sizes, and lead times. The last input is the MPS which indicates the quantity and timing 

of end products. This deterministic demand of the end product is developed from forecast, which 

is typically created from historical sales data.  

 

In a stochastic environment, actual demand could be very different from the forecast. In the MRP 

environment, the plan generated by the traditional MRP approach is known to be very sensitive to 

even a small change in demand. This main drawback of MRP is known as “nervousness”. 

According to Bregni et al. (2011), even a small change in the upper level of MRP  can cause 

significant changes in the MRP plans. Consequently, this demand uncertainty can result in 

significant extra rescheduling cost, penalty cost, lost sale, loss the goodwill, etc.  

 

Conventionally, safety stock, safety lead time and overproduction are typical approaches to create 

a buffer for negative impacts from the demand uncertainty in MRP. However, these measures 

usually result in extra inventory, and consequently result in extra inventory holding cost. Some 

research proposes that a better performance can be achieved by the mathematical optimization. 

Normally the traditional optimization models in the MRP environment deal with optimal decisions, 

such as the optimal over planning, optimal safety stock. However, as it is mentioned in the research 

from Yu & Li (2000), the main challenge the supply chain management is facing is the uncertainty 

of the future. Many optimization problems in logistics consider the uncertainty in a form of 

scenarios where the parameters have different probability of occurrence. When facing these 

uncertainties, these traditional methods are often not adequate to deal with different scenarios.  
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Stochastic programming is a method for optimization problems under uncertainty. It typically 

makes use of a set of scenarios and probabilities associated with each scenario. In the context of 

MRP, relatively few studies focused on stochastic programming in the MRP environment. Within 

the study on stochastic programming, most of them addressed the topics such as supply chain 

network design, healthcare and disaster relief. Little attention was given to the stochastic 

programming in MRP environment. Therefore, this thesis will supplement the existing literature 

by providing the insights on the value of the stochastic information in MRP under demand 

uncertainty 

 

In response to the problem mentioned above, in this thesis, we explore a deterministic MRP 

optimization model and a two-stage stochastic model. By comparing the results from two models, 

we can get valuable insights on the performance of the decisions. Our work in this thesis is different 

from the other research in several aspects. The main contributions of this thesis can be summarized 

as follows:  

1. We developed two MRP models: the deterministic model and the stochastic model 

2. We performed computational experiments and illustrated the value of the stochastic 

programming model over the deterministic model in the MRP environment 

3. Based on the discussion of sensitivity of optimal solution, we provided the insight about 

the cost effectiveness of the demand change in the MRP environment 

4. Based on the discussion of Expected Value of Perfect Information (EVPI) and the Value of 

Stochastic Solution (VSS), we provided the insight about how the stochastic programming 

can provide the cost related information in the MRP environment 

 

To identify how the stochastic programming can address the demand uncertainty issue in an MRP 

environment to create a more robust production plan, we study a deterministic model and a 

stochastic model of the MRP. In this thesis, we use 1000 demand scenarios and 36 instances. The 

demand data set was created by a simulation. The demand follows a normal distribution with 

random probability. As in the traditional MRP, the demand is assumed to be dynamic, i.e., different 

demands in different periods have different average values and standard deviation. This data set is 

used in the computational experiments as the input of deterministic and stochastic models. 
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Afterwards, based on the computational results, a comparison between results from deterministic 

model and results from stochastic model will be presented. Furthermore, we perform the sensitivity 

analysis of solutions, as well as evaluate the EVPI and VSS in this thesis.  

 

The rest of this thesis is organized as follows: Chapter 2 is the literature review; Chapter 3 presents 

the deterministic model and the stochastic model; In chapter 4, the computational results and the 

analysis are provided; Chapter 5 is the conclusion and the future research directions.  
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Chapter 2 - Literature Review 

 

In this chapter, first, we generally talk about the stochastic programming. Second, we demonstrate 

the difference between MRP and ROP. In addition, we give an overview of MRP assumption and 

calculation. Next, we describe the MRP main components that consist of forecast, planning logic, 

and BOM. Then the last two subsections are general discussion about how to deal with uncertainty 

and production optimization models under uncertainty.  

 

2.1 Stochastic programming 

 

To deal with both optimization problems and uncertainties, stochastic programming is a good 

framework. It is a mathematical programming in which the stochastic elements are incorporated. 

According to the OR notes by Beasley, the coefficients of deterministic mathematical 

programming are known. In contrast, the coefficients of stochastic mathematical programming are 

unknown numbers. Instead, the coefficients of stochastic mathematical programming have 

probabilistic attributes. In our thesis, stochastic programming is involved. Therefore, we generally 

talk about how the stochastic programming is studied in the literature.  

 

Batun (2012) defined stochastic programming as “ a branch of mathematical programming that 

provides a framework for modeling and solving optimization problems with random parameters”. 

It is claimed in their research that the two-stage stochastic model is the most widely studied model. 

A decision is made with imperfect information at the first stage. Based on decisions from the first 

stage, at the second stage, we make decisions after the realization of random scenarios. 

Additionally, lots of decisions are made based on a sequential period. When uncertainty is involved 

in  multiple stages, a multi-stage stochastic program can be formulated.  

 

Large quantity of research deals with stochastic programming. Batun (2012) developed stochastic 

models for solving the scheduling of multiple operating room problems during the surgery. In this 

research, first, a two-stage stochastic program was formulated for the problem of operating room 

pooling and parallel surgery processing under uncertainty. Afterwards, a three-stage stochastic 

programming model was developed for the operating room rescheduling.  
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Bozorgi-Amiri et al. (2013) developed a stochastic model for the disaster relief logistics. In their 

search, demand is not the only uncertain parameter. Uncertain supplies, cost of procurement and 

transportation are also considered. It is a multi-objective model, which not only minimizes the sum 

of expected value and the variance of the total cost, but also maximizes satisfaction  levels of 

affected areas. The stochastic programming is also used for the supply chain network design 

problem. Santoso et al. (2005) proposed a stochastic programming approach for the supply chain 

network design. In their model, a sampling strategy was integrated, which helps to compute a 

larger scale of network design problems with a large quantity of scenarios. EI-Sayed et al (2010) 

also did research on the topic of network design. In their research, a multi-stage stochastic 

programming model was developed to maximize the total expected profit. Chouinard (2008) 

studied a stochastic programming model for designing supply loops. It integrates the reverse 

logistics into the current supply chain. 

 

In the research from Chang et al. (2007), stochastic programming models were used for the flood 

emergency logistics problems. These two models were developed as tools for government to 

determine the rescue resource distribution system when the urban flood happens. The structure of 

rescue organizations, the location of rescue resources warehouses, and distributions of rescue 

resources are used as the decision variables in their models. 

 

 2.2 The MRP logic  

 

The study of MRP has received a large amount of attention and the MRP related articles are vast. 

MRP is a system which is used to manage the production process. A schedule is established by 

MRP to show the components needed at each stage of assembly. And based on the lead time, the 

time when these components will be required is calculated (Arnold, Chapman, & Clive, 2012). In 

brief, the main objective of the MRP is to create a production plan to ensure that the right materials 

in the right quantities will be available at the right time to satisfy customers’ demand. Arnold et al. 

(2012) classified the inputs of MRP as master production schedule (MPS), bill of materials (BOM), 

and inventory records. The outputs of MRP can be classified as time-phased manufacturing and 

purchase orders for raw materials and components. 
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2.2.1 The difference between MRP and ROP 

 

One major difference between these two systems is that the reorder point (ROP) mainly deals with 

one product in a decentralized fashion while the MRP deals with the entire production process of 

an end-product in a centralized fashion. We discuss in this subsection the differences between 

MRP and ROP.  

 

MRP and ROP are two well-known inventory control methods in production planning and 

inventory control systems. Bregman (1992) used an analytical framework to compare the 

difference between the MRP and the ROP. In this paper, the author pointed out that, in MRP, the 

requirements for each component are calculated from the previous stage – Master Production 

Schedule (MPS); whereas in the ROP system, the amounts of each component required are 

calculated from theses components’ previous quantity. Both MRP and ROP deal with the 

forecasting. When we use the MRP, we plan for the future. We need to forecast the quantity of the 

whole products to be produced or manufactured. From the forecast demand, we then calculate the 

quantity of each component we require based on the MRP logic. However, the ROP works in a 

different way from the MRP does. When we use ROP, we look back to the historical data and 

compute the average demand and the standard deviation. This information is used to calculate the 

inventory control parameters that control the production plan. Bregman (1992) claims that the 

information from MRP better captures the actual demand for each component than ROP does as 

the forecasts of ROP are from the past data and the forecasts of MRP are from the MPS. Therefore, 

many companies have changed their planning systems from the ROP system to MRP system 

because the benefits yield from this conversion outweighs the large change-over costs for most of 

the companies. In this research, the author built an analytical framework to determine in which 

environment the MRP system can yield the highest benefits. The effects of this framework were 

measured from two aspects: a temporal comparison of ROP and MRP systems, and the comparison 

of the cost of components forecasting by using the ROP system and the MRP system. The author 

concluded that, when the production quantities, the stages between an item and MPS, and the gross 

requirements increase, both temporal penalty and the variance associated with the components 

stage requirements increase.  
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Jonsson & Mattsson (2006) compared the MRP system and the ROP system in a different manner. 

In their research, authors focused on the evaluation of the performances of different production 

planning systems to control the material flow in various types of inventory. They studied five 

different methods: The ROP, MRP, Kanban, the fixed order interval method and the run-out time 

planning. As it is mentioned by the authors, the performance of production planning is partly 

decided by the correct and appropiate methods they use. To have a better performance for each 

method, parameters, such as lead times, safety stocks, batch sizes, should be dertermined 

analytically. The authors designed and analyzed the study in two ways. In order to achieve high 

performance, firstly, authors separated three different manufacturing environments based on 

different environment types: inventory of purchased items, inventory of semi-finished items and 

inventory in distribution operations. Secondly, the author classified the modes of applying methods 

into two types. The first type is the planning parameters which require analytical frameworks. 

Another type is the way of using methods which includes review frequency, planning frequency, 

order modification and automatic re-planning. The data was from a web-based survey from 153 

manufacturing and 53 distribution companies. Through the analysis of the data, it is concluded that 

the MRP is most frequently used in the manufacturing companies whereas ROP is the second 

frequent undes method in the manufacturing companies. However, when it comes to the 

distributions operations, ROP and ROP-related methods are the main methods used. Also, MRP is 

more dependent on the accuracy of planning information than ROP. In general, MRP has a better 

performance in controlling the semi-finished goods. In addition, the critical parameters to achieve 

higher performance are different as well between MRP and ROP. For ROP method, the 

determination of re-order point and the safety stocks are the key parameters to achieve high 

performance. For MRP method, the lead times and safety stocks are critical to achieve better 

performance (Jonsson & Mattsson, 2006).  

 

Segerstedt (2006) made a comparison between ROP and MRP from the perspective of forecast, 

order trigger, lead-times, reshceduling, time phasing, forecasts for suppliers, workloads and bill of 

materials. We forecast each item individually in ROP method. In the MRP, the demand quantities 

are obtained from the MPS. When it comes to the order trigger for the replenishment, the order is 

triggered in ROP when the sum of on-hand inventory and scheduling receipts are less than the re-
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order point. In MRP, the starting date for a new order is planned in advance. Lastly, for ROP, there 

are no automatic rescheduling, no forecasts for suppliers, no workloads and no bill of materials. 

On the contrary, MRP has all these four charactrristics (Segerstedt, 2006). 

 

We can also find the comparison between ROP and MRP in the research from Jonsson & Mattsson 

(2006). In their research, the author described the reasons for choosing different material planning 

methods. They claimed that MRP is the most commonly used material planning method. The 

position of MRP was even enhanced since 1990s. Most of the ROP users also use MRP. However, 

few companies use MRP to generate demand for the ROP (Jonsson & Mattsson, 2006).  

 

Suwanruji & Enns (2006) compared the performance of ROP and MRP by using the simulation 

method. The type of demand and the capacity constraints are included as the additional 

experimental factors. Suwanruji & Enns (2006) concluded that, with seasonal demand, MRP 

performed better than ROP. Without the seasonal demand, the performance of these two methods 

depends on the capacity constraints. With capacity constraints, MRP had a better performance than 

the ROP. However, when it is without capacity constraints, the result is reversed. 

 

2.2.2 MRP assumption and calculation  

 

The input of the MRP system includes the bill of materials, item master data, demand data and the 

inventory data. As we mentioned earlier, MRP is a computer-based planning system which is 

driven by the MPS.  According the research from Yeung, Wong, & Ma (1998), the demand 

management process is established in the phase of MPS. The schedule for the end product is 

created in this phase. There is one MPS in corresponding to one product. More specifically, MPS 

states the quantity of the end product to be produced in the future. This quantity in MPS becomes 

the gross requirement in the MRP system. In another word, the goal of MPS is to create a 

production master schedule for the end product based on the forecast of the future needs (Dolgui 

& Prodhon, 2007).  Once it is developped in MPS, the MRP system will be executed. In such 

environment, the demand is always assumed to be deterministic. The figure below illustrates how 

do the MPS and MRP work.  
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Figure 1  The demonstration of MPS and MRP 

According to Ptak & Smith (2011), prior to determining what actions to taken on the production 

items, one should have an evaluation of the status of inventory. Status information is used to 

identify the items we have and items we need. Then we can decide what do we do, which can be 

achieved by executing an evaluation procedure. The MRP system can evaluate the inventory status  

automatically. Under the MRP system, there are two types of status data: inventory data and 

requirement data. These two types of data are associated with timing information. The inventory 

data, which can be verified by inspection, consist of the quantity on hand and quantity on in transit 

(or on order). The requirement data, which are computed by the system,  includes gross 

requirement quantities, net requirement quantities, and planned-order quantities (planned-order 

releases). The scheduled receipts can be taken included for the calculation of net requirements 

quantities which can be calculated as follows:  

Net Requirement
𝑡

= Gross Requirement
𝑡

− Scheduled Receipt
𝑡

− Projected On Hand𝑡 

The following figure is an example which explains the MRP explosion process. Firstly, we need 

the information comes from the Master Planning Schedule (MPS). For different components at 

level one, the MRP system will calculate and generate the planned releases based on the 

information from the MPS, quantity on hand, and the lead time. Then we move to the planning for 

the components at level two. For components at level two, the gross requirements are generated 

from the planned releases from the previous level. The remaining processing logic is the same with 

that in the previous level. The number of levels of components depends on the BOM. The product 

at level zero is the final product. Each product in the levels other than level zero is the component 

of product in the previous level (Turbide, 1993).  



 10 

 

Figure 2  The MRP explosion process (adapted from Turbide, 1993) 

 

However, in the real world, the demand is typically uncertain. The variation also includes the 

changes in the components (Dolgui & Prodhon, 2007). Koh, Saad, & Jones (2002) describe the 

sources of demand uncertainty as the inaccurate forecasts and customer order changes. According 

to the research from Murthy & Ma (1991), demand uncertainty comes from the forecasting errors 

and customer orders. There are still some other types of uncertainties in MRP system, such as the 

uncertainty in vendor supply, variations in product quality, variations in product structure, 

variations in production lead time, equipment breakdown and the dynamic lot sizing (Murthy & 

Ma, 1991). In this thesis, we focus on the aspect of demand uncertainty in MRP. 

 

2.2.3 MRP Demand  

 

MRP deals with the underlying components of the final product according to the product schedule 

in MPS. The demand at the first level in MRP system comes from MPS. As it is proposed by Proud 

(1994), “the objective of master scheduling is to plan the impact of demand on materials and 

capacity”. There are four components in the demand section of a MPS matrix: item forecast 

(independent demand), option forecast (dependent demand), actual demand, and total demand. 

Normally, in an MPS matrix, the total demand is calculated as the sum of item forecast, option 
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forecast, and actual demand (Proud, 1994). Demand forecast is the basis of the production planning. 

According to Chopra et al. (2013), there are a variety of forecast factors that are associated with 

the demand forecast, such as the past demand, lead time of the product replenishment, states of the 

economy, planned advertising or marketing efforts, etc. All these factors are not constant. 

Therefore, forecasts are always inaccurate. Chopra et al. (2013) classified the forecasting methods 

into four types: qualitative, time series, causal, and simulation. When there is limited historical 

data, the qualitative forecasting methods are most appropiate as these methods are more subjective 

and based on human judgements. The time series forecasting methods are more appropiate when 

the historical demand data does not vary significantly. When the demand forecast is highly 

correlated with the certain factors, the causal methods is usually used in the demand forecasting. 

The simulation method is used by imitating the consumer choices. Furthermore, Chopra et al. 

(2013) indicated that short-term forecasts are more accurate than the long-term forecasts, and 

disaggregate forecasts are usually less accurate than the aggregate forecasts. However, due to the 

inaccuracy of the demand forecasting, the forecast error (demand uncertainty) should be taken into 

account when making production decisions.  

 

2.2.4 Bill of materials (BOM) 

 

The interface between MPS and MRP is required when we deal with the underlying components 

and the final products. This interface is made via a bill of materials (BOM) (Proud, 1994). The 

BOM is defined as “a listing of all the subassemblies, intermediates, parts and raw materials that 

going to making the parent assembly showing the quantities of each required to make an assembly” 

(Arnold, Chapman, & Clive, 2012). On the bill of materials, all the information related to the item 

are included, such as all the required parts, unique part number, required quantity, function 

description, etc. Arnold et al. (2012) discuss a variety of important formats of BOM: product tree, 

parent-component relationship, and multilevel bill.  We take the bicycle and the chair as examples. 

The examples of BOMs are as follows.  
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Figure 3  Examples of BOM 

 

 

2.3 Dealing with uncertainty in production planning  

 

In this section, first, we generally talk about the studies about dealing with uncertainty in the 

context of production planning. Second, we will demonstrate production optimization models 

under uncertainty.  

 

2.3.1 Dealing with uncertainty in general  

 

Uncertainties can affect the operation of the company significantly and negatively. According to 

Murthy & Ma (1991), the demand uncertainty can result in the order modifications which have 

further impacts on the total quantities of end products. This order instability caused by the demand 

uncertainty is called nervousness. This can provoke delays or orders not being met. Dolgui & 

Prodhon (2007) shared the same conclusion in their research. They claimed that the demand 

variation can provoke the nervousness. Another negative impact of the demand uncertainty is on 
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the inventories. It can result in shortages or surplus.  Murthy & Ma (1991) summarized the impacts 

as the follows: more frequent rescheduling, order not being serviced effectively, unplanned setups 

for unplanned demands, loss of sales and goodwill, and excess and insufficient inventories. All 

these impacts can cause great increase in costs. 

 

To deal with the different types of uncertainty in MRP system, several approaches are used. 

Murthy & Ma (1991) summarized four different methods in their research. They claimed that 

safety stocks, safety lead tims, hedging and over planning, and yield factors. In the safety stock 

method, the level of inventory is increased to buffer the uncertainty. To use this method, the size 

of the safety stock have to be determined. According to their research, there are two methods to 

determine the size of the safety stock: economic method and service level method. The goal of the 

economic method is to minimize the total costs which include the setting up cost, stock holding 

cost, and penalties for shortages. In the service level method, the level of the customer service they 

wish to provide has to be determined before the determination of the size of the safety stock. In 

the method of the safety lead times, orders are released earlier than what is stated in the requirement 

plan. In this way, the end product can be delivered before their due time. The safety lead times 

method is mostly used to deal with the supplier uncertainty. When the delivery of items purchased 

from the suppliers is delayed, there will be a slack to buffer this delay.  

 

However, as it is mentioned in the research from Yu & Li (2000), the main challenge the supply 

chain management is facing is the the uncertainty of the future. Many logistics optimization models 

are facing uncertainties of different scenarios. Variables or parameters have different probabilities 

of occurrence. When facing these uncertainties, these optimal solutions (safety stock or safety lead 

times) are not robustness enough.  

 

Stadtler (2005) also pointed out the limitations of deterministic models in their research. All these 

models assumed that the demand follows a constant demand rate, which is contrast to stochastic 

demand observations in variety of areas. Stochastic programming is another method to deal with 

the uncertainty. In the stochastic programming model, the model size is exponentially expanded 

as there are lots of scenarios in each period in a multi-period model. Thus the stocahstic 

programming can provide a more robust solution when facing different scenarios (Stadtler, 2005). 
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2.3.2 Production optimization models under uncertainty  

 

Many studies consider optimization models with uncertain parameters. The following is a 

discussion about the models which deal with demand and lead time uncertainties, two common 

uncertain inputs in practice.  

 

Grubbström & Molinder (1996) developed basic one and two-level models by using the Laplace 

transform methodology together with the input-output analysis . This basic model formulated the 

theoretical description of material requirements planning (MRP).  The sum of the expected average 

of set up costs, inventory holding costs, and backlogging costs are used as the objective function 

of their one and two-level models. The demand of this model follows the Poisson distribution. And 

the aim of theirs models was to calculate the optimal safety stock values. Followed this research, 

Grubbström (1998) made an extension of the previous research (Grubbström & Molinder, 1996). 

In this new paper, the principle to determine the size of the safety stock was provided. A set of 

safety stock amount was decided before the demand was known. In the previous paper, the average 

cost approach was used. However, the annuity stream was used as a criterion in this new paper. 

The annuity is a “variation of net present value” (Grubbström & Molinder, 1996). The author used 

the one level model assuming the demand follows the Poisson distribution. The difference between 

the annuity stream and the method of traditional average cost method was examined. In addition, 

Grubbström & Tang (1999) further developed the safety stocks in an MRP systems. In their new 

research, it is claimed that the variance in demand has a significant impact on the level of the 

optimal safety stock. The optimal safety stock in multi-level MRP systems was studied in this 

paper. The multi-level inventory model was used to maximize the net present value. Different from 

the previous studies which Poisson distribution was used, the demand in this model was Gamma-

distributed. It provided a better understanding of the method of determining the optimal safety 

stock when demand follows a Gamma distribution. Following all the  research mentioned above, 

Grubbström & Wang (2003) studied a stochastic model of multi-level capacity-constrained system. 

In this model, the objective function was chosen as the expected net present value, and the solution 

procedure was the dynamic programming. The author further discussed the transforms. The 

dynamic programming was examined as a practical way when it comes to the multi-stage 

optimization. In addition, the basic model was illustrated by the numerical examples.  
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Louly, Dolgui, & Hnaien (2008) conducted a research in optimal planning in MRP with uncertain 

lead times. This systems was designed for the assemblies. The objective function of this model 

was to minimize the sum of different costs which include the average component holding cost and 

average backlogging cost. In this research, there are a variety of types of components, and the lead 

time of each component is random. The actual lead times are chosen as the random variables to 

find out the optimal planned lead times for all the components. The assumption of this model is 

that the demand of the end product is deterministic and the production capacity is infinite. Different 

kinds of components have different kinds of probability distributions. In the research conducted 

by the Dolgui & Ould-Louly (2002), a similar model was used. In their model, the objective 

function was also to minimize the sum of expected backlogging cost and holding cost. The demand 

was constant as well. This paper is also in the sake of finding out the optimal value of of the lead 

time.  

 

Bai et al (2002) used a simulation model to to examine how the system parameters and operating 

factors can affect the performance of MRP system. System parameters include the schedule frozen 

interval, schedule replanning interval, lot-sizing and safety stock; operating factors consist of 

demand forecast accuracy and product lead times. The MRP system performance was defined as 

the schedule instability, service level and total cost. The author claimed that all those four 

parameters (schedule frozen interval, schedule replanning interval, lot-sizing and safety stock) and 

operating factors have significant impact on the MRP performance. However, because of the 

interaction between all the parameters and factors, there is no win-win combination to achive better 

system performance under all the situations.  

 

Jeunet & Jonard (2000) evaluated the lot-sizing techniques based on the cost-effectiveness 

criterion and the robustness of set-up in the uncertain demand environment. A variety of measures 

of robustness was discussed and proposed in the paper. The author examined how the production 

schedules can be affected by the demand variability for single level assembly. According to the 

simulation results, the relationship between cost-effectiveness and and the robustness was inverse.  

The table below summarizes models above.  
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Authors Uncertainty 
Objective 

Function 
Parameters 

Type of 

Model 

Grubbström&Molinder 

(1996) 

 

Demand  

Minimize the sum of 

setup/holding/backlogging 

costs 

Optimal 

Safety Stock 

Value 

One-level 

and two-

level MRP 

Grubbström 

 (1998) 
Demand 

Annuity Stream ( a 

variation of net present 

value) 

Safety 

Stocks 

One-level 

MRP 

Grubbström&Tang 

(1999) 
Demand Net Present Value 

Optimal 

Safety 

Stocks 

Multi level 

MRP 

Grubbström&Wang 

(2003) 
Demand 

Expected Net Present 

Value 

Safety 

Stocks 

Multi level 

stochastic 

model 

Louly, Dolgui, & 

Hnaien (2008) 
Lead Time 

Minimize the sum of 

holding/backlogging costs 

Different 

Components 
Optimization 

Dolgui & Ould-Louly 

(2002) 
Lead Time 

Minimize the sum of 

holding/backlogging costs 

Planned 

Lead Times 

Single-

item/Multi-

item Model 

Bai, Davis, Canet, 

Cantrell, & Patterson 

(2002) 

Demand 
Schedule Instability/ 

Service Level/ Total Cost 

Frozen 

interval/ 

Replanning 

interval/ 

Lot-sizing/ 

Safety 

Stocks 

Multi-level 

Jeunet & Jonard 

(2000) 
Demand 

Cost-effectiveness/ Set-up 

robustness 
Lot-sizing Single-level 

Table 1  Summary of optimization models 

 

Following the topics in the literature review, in the next chapter, we demonstrate the details of the 

determinisitic model and the stochastic model. The MRP, stochastic programming are involved in 

our models.  
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Chapter 3 - Material Requirements Planning (MRP) Under Demand 

Uncertainty  

 

This chapter is organized as follows. In Section 3.1, the original MRP model is discussed; in 

Section 3.2, the description and the mathematical formulation of the deterministic MRP model are 

provided; in Section 3.3, we will demonstrate the description and the mathematical formulation of 

the stochastic MRP model.  

 

3.1 Traditional MRP model  

 

The MRP model used in this thesis is adapted from a model by Voß & Woodruff (2006). In the 

original model, the classic MRP plan (as it is shown in the table below) was used. 

 

Day 1 2 3 4 5 6 7 8 

Gross requirement 20 30 10 20 30 20 30 40 

Inventory plan (90) 70 40 30 10 80 60 30 90 

Net requirement                       20           10 

Planned receipt         100    100  

Planned release      100     100     

Table 2  The MRP plan in the original model  

In this plan, the main calculation logic is  

 

𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑃𝑙𝑎𝑛 𝑡 =  𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑃𝑙𝑎𝑛 𝑡−1 + 𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝑅𝑒𝑐𝑒𝑖𝑝𝑡 𝑡 −  𝐺𝑟𝑜𝑠𝑠 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 𝑡 

 

The data used for the MRP formulation in the original model is as the table shown below.  

 

 

 

 

 

 

 



 18 

Number of 𝑆𝐾𝑈 

Number of time buckets (i.e., the planning horizon) 

Number of item 𝑖 that is needed to make one 𝑗 

Demand for 𝑖 in period 𝑡 

Initial inventory of 𝑆𝐾𝑈𝑖 

Minimum lot size for 𝑆𝐾𝑈𝑖 

A sufficiently large number 

Quantity of 𝑆𝐾𝑈𝑖 to start or order in period 𝑡 

Table 3  The data used for the MRP formulation in the original model 

In the optimization model of the MRP, the objective function is to make the production of each 

item as late as possible (Voß & Woodruff, 2006). Denote by 𝐾 the set of SKUs and by 𝑇 the set 

of time buckets. If the production quantity is defined as 𝑞𝑖𝑡, the objective function can be written 

as follows. 

∑ ∑(|𝑇| − 𝑡)𝑞𝑖𝑡

𝑡∈𝑇𝑖∈𝐾

 

 

The constraints include the demand and material requirements (which is the calculation of the 

inventory plan shown above), lot size constraint, production indicator constraint and the constraint 

of the non-negative production. These constraints are formally described in the deterministic MRP 

model in the subsequent section.  

 

3.2 Deterministic MRP model  

 

We develop a MRP model with deterministic demand based on the MRP optimization model from 

Voß & Woodruff (2006). In our model, the inventory holding cost and the stock out cost are 

considered. Instead of making the production of each item as late as possible, the objective function 

is to minimize the sum of the inventory holding cost and the stock out cost. We multiply the 

inventory at the end of each period and the inventory holding cost per unit to get the total inventory 

holding cost for one period. The sum of all the inventory holding cost and stock out cost for each 

period is the objective we want to minimize through our model. Note that if the stock out cost is 

not allowed (this can simply be done by setting the bound on the stock out quantity variable to 

zero) and the inventory cost in different levels of production is the same, the model is equivalent 
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to that of Voß & Woodruff (2006). The input of this MRP model, which includes the BOM, the 

number of production periods, the holding cost for each item, the stock out cost for the end item 

and the demand sets, are used as the parameters of optimization model.  The decision variables are 

the quantity of inventory at the end of each period for each item and the number of batches for 

each item at each period to produce. In this setting, the production is done in batches, where each 

batch has a fixed quantity to produce. The children are the components used to produce the upper 

level item, and the parent is the corresponding upper level item to the children. In our model, we 

assume that each child item corresponds to one parent item (but one parent can consist of multiple 

children items). The unmet demand of the end product is assumed to be lost and the cost of lost 

sales is paid for each unit of lost sales. The detailed definition of variables, parameters and 

mathematical formulations are provided as follows.   

 

General notations for the formulations are as follows: 

 

Define the following parameters: 

Set: 

𝑇 Set of time periods {1, …, m} 

𝐾 Set of components in BOM {0, …, n} where 0 is the level of end product 

 

Parameters: 

 

𝐶ℎ
𝑘 Inventory holding cost of item 𝑘 per period, ∀𝑘 ∈ 𝐾 

𝑑𝑡
0 Demand for the end item at the period 𝑡, ∀𝑡 ∈ 𝑇 

𝐿𝑇𝑘 

 

The number of time periods between issuing the production order of 

𝑘 until the item is available, ∀𝑘 ∈ 𝐾 

𝐵𝑘 Batch size of item 𝑘, ∀𝑘 ∈ 𝐾 

𝐶𝑙 Cost of lost sale per item of the end product 

𝑝𝑎𝑟𝑒𝑛𝑡 (𝑘) Index of parent item of child item 𝑘 

𝑅𝑝𝑎𝑟𝑒𝑛𝑡 (𝑘)
𝑘  Number of item 𝑘 that is needed to make one parent item of item 𝑘 
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Decision variables:  

𝐼𝑡
𝑘 Quantity of item 𝑘 in stock at the end of period 𝑡, ∀𝑡 ∈ 𝑇, ∀𝑘 ∈ 𝐾 

𝑞𝑡
𝑘 Quantity of item 𝑘 available at the beginning of period 𝑡, ∀𝑡 ∈

𝑇, ∀𝑘 ∈ 𝐾 

𝑦𝑡
𝑘 The number of batches of item 𝑘 received at the beginning of 

period 𝑡, ∀𝑡 ∈ 𝑇, ∀𝑘 ∈ 𝐾 

𝐿𝑡 Amount of lost sale, ∀𝑡 ∈ 𝑇 

 

The formulation of the deterministic MRP can be written as follows: 

 

Min        ∑ ∑ 𝐶ℎ
𝑘

𝑘∈𝐾𝑡∈𝑇

𝐼𝑡
𝑘    +    ∑ 𝐶𝑙𝐿𝑡

𝑡∈𝑇

                                                                                                      (1) 

 

Subject to:  

 

 𝐼𝑡−1
0 + 𝑞

𝑡−𝐿𝑇𝑘
0 = 𝐼𝑡

0 + 𝑑𝑡
0 − 𝐿𝑡                                                    ∀𝑡 ∈  𝑇                                               (2) 

 

  𝐼𝑡−1
𝑘 + 𝑞

𝑡−𝐿𝑇𝑘
𝑘 = 𝐼𝑡

𝑘 + 𝑅𝑝𝑎𝑟𝑒𝑛𝑡 (𝑘)
𝑘 𝑞𝑡

𝑝𝑎𝑟𝑒𝑛𝑡(𝑘)
                           ∀𝑘 ∈ 𝐾\{0}, ∀𝑡 ∈ 𝑇                         (3) 

 

  𝑞𝑡
𝑘 = 𝐵𝑘𝑦𝑡

𝑘                                                                                     ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇                                 (4) 

 

 𝐼𝑡
𝑘, 𝑞𝑡

𝑘, 𝐿𝑡  ≥ 0, 𝑦𝑡
𝑘 ∈ 𝑍+                                                                                                                              (5) 

 

This formulation is a representation of the modified MRP deterministic model. The objective 

function (1) is to minimize the sum of inventory holding costs and the cost of lost sale. Constraint 

(2) is the material flow equation for the end product at level zero. Constraint (3) is the material 

flow equation for the components of the end product which belong to the levels higher than zero. 

Constraint (4) is the setup and production batch constraint for the quantity available at the 

beginning of each period. This constraint imposes that the number of units in period 𝑡 +
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 𝐿𝑇𝑝𝑎𝑟𝑒𝑛𝑡(𝑘)
𝑘  depends essentially on the number of production batches in period 𝑡 and the size of 

batch 𝐵𝑘.  Constraint (5) defines the variables. 

 

3.3 Stochastic MRP model  

 

Based on the deterministic model, a two-stage stochastic model is proposed to deal with uncertain 

demand. In this stochastic model, the objective function, the variables and parameters are aligned 

with the ones presented in the deterministic model. However, due to demand uncertainty, different 

scenarios of demand are incorporated. Each demand set will be associated with a probability. By 

solving this stochastic model and the stochastic model by using the expected value solution, we 

can get the solution which can hedge against different scenarios. In this two-stage model, the 

number of production batches for each component in each period is determined in the first stage. 

Then, this production decision is “frozen” and the quantity cannot be adjusted (which is in-lined 

with the frozen period in the MRP setting). Since the production quantities must remain fixed, 

inventory and lost sale quantities can be calculated for each demand scenario for the entire 

planning horizon. This is treated as in the second stage in the model.  

 

We define additional parameters and variables for the two-stage stochastic model as follows: 

Ω Set of scenarios {1,2,…r} 

𝑃𝑤 The probability of scenario 𝑤, ∀𝑤 ∈ Ω 

𝑑𝑡,𝑤
0  Demand for end item at the period 𝑡 in the scenario 𝑤, ∀𝑡 ∈

𝑇, ∀𝑤 ∈ Ω 

 

Decision variables:  

𝐼𝑡,𝑤
𝑘  Quantity of item 𝑘 in stock at the end of period 𝑡 in scenario 𝑤, 

∀𝑡 ∈ 𝑇, ∀𝑘 ∈ 𝐾, ∀𝑤 ∈ Ω 

𝑞𝑡,𝑤
𝑘  Quantity of item 𝑘 available at the beginning of period 𝑡 in the 

scenario 𝑤, ∀𝑡 ∈ 𝑇, ∀𝑘 ∈ 𝐾, ∀𝑤 ∈ Ω 

𝐿𝑡,𝑤 The amount of lost sale in scenario 𝑤, ∀𝑡 ∈ 𝑇, ∀𝑤 ∈ Ω 
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The stochastic MRP formulation can be written as follows. 

 

Min        ∑ [𝑃𝑤 (∑ ∑ 𝐶ℎ
𝑘𝐼𝑡,𝑤

𝑘

𝑘∈𝐾𝑡∈𝑇

+ ∑ 𝐶𝑙

𝑡∈𝑇

𝐿𝑡,𝑤 )]

𝑤∈Ω

                                                                                (6) 

 

Subject to: 

 

 𝐼𝑡−1,𝑤
0 + 𝑞

𝑡−𝐿𝑇𝑘,𝑤
0 = 𝐼𝑡,𝑤

0 + 𝑑𝑡,𝑤
0 − 𝐿𝑡,𝑤                                    ∀𝑡 ∈ 𝑇, ∀𝑤 ∈ Ω                                 (7) 

 

𝐼𝑡−1,𝑤
𝑘 + 𝑞

𝑡−𝐿𝑇𝑘,𝑤
𝑘 = 𝐼𝑡,𝑤

𝑘 + 𝑅𝑝𝑎𝑟𝑒𝑛𝑡 (𝑘)
𝑘 𝑞𝑡

𝑝𝑎𝑟𝑒𝑛𝑡(𝑘)
                   ∀𝑘 ∈ 𝐾\{0}, ∀𝑡 ∈ 𝑇, ∀𝑤 ∈ Ω          (8) 

 

 𝑞𝑡
𝑘 = 𝐵𝑘𝑦𝑡

𝑘                                                                                     ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇                                  (9) 

 

𝐼𝑡,𝑤
𝑘 , 𝑞𝑡,𝑤

𝑘 , 𝐿𝑡,𝑤 ≥ 0, 𝑦𝑡
𝑘 ∈ 𝑍+                                                                                                                      (10) 

 

This formulation is a representation of the stochastic MRP model. The objective function (6) is to 

minimize the sum of inventory holding costs and the cost of lost sale in different scenarios. 

Constraint (7) is the material flow equation for the end product at level zero in different scenarios. 

Constraint (8) is the material flow equation for the components of the end product which belong 

to levels higher than zero in different scenarios. Constraint (9) is the setup and production batch 

constraint for the quantity available at the beginning of each period in different scenarios. This 

constraint imposes that the number of units in period 𝑡 +  𝐿𝑇𝑝𝑎𝑟𝑒𝑛𝑡 (𝑘)
𝑘 depends essentially on the 

number of production batches in period 𝑡 and the size of batch 𝐵𝑘. Constraint (10) defines the 

variables. 

 

This chapter demonstrates the details of models. We are going to use these models in our 

experiments and to analyze the solutions obtained by using these models. In the next chapter, we 

explain the experimental design and provide computational results and analyses. 
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Chapter 4 - Computational Experiment and Analysis 

 

In this chapter, first, we demonstrate how the experiments are designed and how the instances are 

generated. Second, following the experimental design, the computational solutions are presented. 

Next, the sensitivity of the optimal solutions, expected value of perfect information (EVPI) and 

value of the stochastic solution (VSS) are presented.  We use Gurobi version7.5 as the solver, and 

the model and experiments are coded by Python version 2.1.3. The maximum CPU time for the 

deterministic model is 3600 seconds, whereas the maximum CPU time for the stochastic model is 

9600 seconds. The general time used for solving instances with 100 demand scenarios is around 

10 seconds, and the time used for solving instances with 1000 demand scenarios is around 1200 

seconds. 

 

4.1 Data instance generation   

 

The instances we generate consist of 8 items whereas one of the items is the end product and the 

other seven items are components of the end product. By assembling them in three different ways, 

we generate three BOMs (shown in Figure 4). We will examine these three BOMs one by one in 

the computational experiments and analyses.  
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Figure 4  Three BOMs in the MRP model 

 

For the planning horizon, we have two different set, i.e., 8 and 16 production periods. We set the 

lead time of the end product and components to one period. The data of the initial inventory, batch 

size, holding cost per unit, and the stock out cost per unit are summarized in the table below.  

 

SKUs Initial Inventory 

(𝐼0
𝑘) 

Holding Cost  

(𝐶ℎ
𝑘) 

Lot size  

(𝐵𝑘) 

SKU1 150 10.0 50 

SKU2 200 3.0 30 

SKU3 150 3.0 30 

SKU4 150 3.0 30 

SKU5 200 3.0 30 

SKU6 170 3.0 30 

SKU7 160 3.0 30 

SKU8 150 3.0 30 

Table 4  Summary of the parameters used in the dataset 
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The safety stock for SKU1 is applied in the deterministic model. It is calculated based on the 

service level at 95% as follows. In the calculation, the standard deviation is determined based on 

the scenarios. The lead time is the total lead time from the bottom of the BOM to the top.   

𝑆𝑎𝑓𝑒𝑡𝑦 𝑆𝑡𝑜𝑐𝑘 = 𝑧95%  ×  𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝐷𝑒𝑚𝑎𝑛𝑑𝑆𝐾𝑈1) × √𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒𝑆𝐾𝑈1 

 

By using this deterministic model, we analyze two different demand sets. The first one contains 

100 demand scenarios. The second one contains 1000 demand scenarios.  

 

In the stochastic model, we assume that each demand scenario has a same probability of occurrence. 

In our experimental test, we analyse two different size of demand sets which is exactly the same 

we use in the deterministic model. For the demand data with 100 scenarios, each demand set is 

associated with a probability of 0.01. For the demand data with 1000 scenarios, each demand 

scenario is associated with a probability of 0.001.  In the stochastic environment, for the instances 

with 8-period planning horizon with 100 scenarios, we can have 100×8 demand values; for the 

instances with 16-period planning horizon with 1000 demand scenarios, we can have 1000×16 

demand values. These large sets of demand scenarios are used to capture demand uncertainty in 

the MRP environment.  

 

Based on the deterministic model and the stochastic model we discussed above, we develop our 

experimental design by changing the parameters and combining them in different ways. We have 

two planning horizons which are 8 and 16 periods. We also test two different sizes of demand 

scenario set (100 scenarios and 1000 scenarios). In addition, by changing the structure of the 

product, we get three different BOMs. The changing of values of the inventory holding costs and 

the stock out cost are involved to generate instances. The first data set of these costs are the 

standard one which is the original value as it is shown in the table 6. The second data set is ten 

times value of the inventory holding cost while the stock out cost remains unchanged. The third 

data set is that the stock out cost is ten times the original stock out cost while the inventory holding 

cost remain the same. This information is summarized in Table 5 below.  
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Parameters Description  

BOM BOM1, BOM2, BOM3 

Planning Horizon  8 periods, 16 periods 

Demand scenarios  100 scenarios, 1000 scenarios 

Cost Standard, Holding× 10, Stock out×10 

Table 5  Parameters Description 

 

By combining all the parameters, we can get 36 combinations. Based on these 36 sets of parameter 

combinations, we can get 36 sets of solutions for each model. The summary of the parameter 

combinations is shown in the table below. Each combination is labelled by a number as follows.  

 

N=8 Scenarios Standard Ch Ch × 10 Stockout ×10 

BOM1 100 1 2 3 

BOM2 100 4 5 6 

BOM3 100 7 8 9 

N=16 Scenarios Standard Ch Ch × 10 Stockout ×10 

BOM1 100 10 11 12 

BOM2 100 13 14 15 

BOM3 100 16 17 18 

N=8 Scenarios Standard Ch Ch × 10 Stockout × 10 

BOM1 1000 19 20 21 

BOM2 1000 22 23 24 

BOM3 1000 25 26 27 

N=16 Scenarios Standard Ch Ch × 10 Stockout × 10 

BOM1 1000 28 29 30 

BOM2 1000 31 32 33 

BOM3 1000 34 35 36 

Table 6  The structure of the parameter combinations 

As it is mentioned in the previous sections, for the deterministic MRP, the model’s sensitivity of 

the cost effectiveness will be discussed. The discussion of the expected value of perfect 

information (EVPI) and the value of stochastic solution (VSS) will also be included for further 

analysis.  
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For the EVPI and VSS analysis, to get all the solution data needed, based on the deterministic 

model and the stochastic model we have, for each combination of parameters, we need four data 

solutions. To be specific, first, EVPI is the loss of the profit due to the existence of the uncertainty, 

which is also the value of knowing the future with certainty. It is the maximum amount of money 

the decision makers would like to pay for the perfect information. If the perfect information were 

available, we can get the optimal solutions by solving the deterministic model. The expected value 

of this solution under the perfect information is the average value of optimal solution of each 

demand instance. In this thesis, we name the objective value of this solution 𝑂𝐵𝐽𝑎𝑣𝑔_𝑝𝑒𝑟𝑓𝑒𝑐𝑡 . 

Second, we need the solution data from by solving the stochastic model. Here we name the 

objective value of this solution from the stochastic model 𝑂𝐵𝐽𝑠𝑡𝑜𝑐 . Then the EVPI can be 

calculated as the equation below: 

𝐸𝑉𝑃𝐼 = 𝑂𝐵𝐽𝑠𝑡𝑜𝑐 − 𝑂𝐵𝐽𝑎𝑣𝑔_𝑝𝑒𝑟𝑓𝑒𝑐𝑡 

 

In addition, the VSS is the possible benefits we can get from the stochastic model. It is the value 

of knowing and using the distribution on the future outcome. To get VSS, firstly we need to get 

the solution of the deterministic version of the stochastic model which the random parameters 

(demand values) are replaced by the expected values, which is defined as 𝑆𝑂𝐿𝑑𝑒𝑡𝑒𝑟. This solution 

of the deterministic model with the input of average demand is then evaluated by the entire set of 

demand scenarios and the resulting objective value of this solution is named as 𝑂𝐵𝐽exp _𝑑𝑒𝑡𝑒𝑟. The 

value of the VSS is the difference between the 𝑂𝐵𝐽exp _𝑑𝑒𝑡𝑒𝑟  and the 𝑂𝐵𝐽𝑠𝑡𝑜𝑐 . The equation of the 

VSS is as shown below.  

𝑉𝑆𝑆 = 𝑂𝐵𝐽exp_𝑑𝑒𝑡𝑒𝑟 − 𝑂𝐵𝐽𝑠𝑡𝑜𝑐 

 

To make it clear, this processing is illustrated in the flowchart below.  
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Figure 5  Illustration of the calculation of EVPI and VSS 

 

Therefore, by using the deterministic model and the stochastic model we have, we need to get four 

solution values for each parameter combination. For example, for parameter combination 1 which 

has 8-period planning horizon and 100 scenarios with BOM1 and standard cost, we need to get the 

solution values of 𝑆𝑂𝐿𝑑𝑒𝑡𝑒𝑟, 𝑂𝐵𝐽exp _𝑑𝑒𝑡𝑒𝑟, 𝑂𝐵𝐽𝑠𝑡𝑜𝑐 and 𝑂𝐵𝐽𝑎𝑣𝑔_𝑝𝑒𝑟𝑓𝑒𝑐𝑡. 

 

Next, we illustrate the experimental design for the cost sensitivity analysis. In this part, only the 

deterministic model is involved. In order to test whether the optimal solution is sensitive to the 

changes in demand, we run the instances with 100 demand scenarios and with 1000 demand 

scenarios in the deterministic model one by one. Then we can get 100 or 1000 optimal solution 

values for each instance. Since we have 36 instances. Therefore, we can get 19,800 solutions based 

on these parameter combinations. Among these solutions, 1800 solutions are from instances with 

100 scenarios (100 x 18), the rest are from instances with 1000 scenarios (1000 x 18). By analyzing 

these data, we will get the insights about the sensitivity of cost effectiveness with uncertain demand 

in an MRP environment. 
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4.2 Computational results and analysis  

 

By running the model, we get computational results in this section. The analysis of sensitivity of 

optimal solutions, EVPI and VSS are provided. Note that the deterministic model is referred to the 

case when safety stock is imposed. We have also attempted to solve the deterministic model 

without safety stock, and the results are far inferior to the case with safety stock. The case when 

safety stock is predetermined and added to the plan is in-lined with the traditional MRP. For the 

stochastic model, this quantity of safety stock is not necessary since the model takes into account 

demand uncertainty directly.  

 

4.2.1 Computational results and analysis for the sensitivity of deterministic solutions  

 

We run the deterministic model for 100 times for instances with 100 demand scenarios, and run 

the model for 1000 times for instances with 1000 demand scenarios in order to obtain the objective 

values of the solutions when the demand information is assumed to be perfectly known. In this 

section, we would like to demonstrate that the solutions associated with different demand scenarios 

vary significantly and thus a solution based on the MRP logic that is produced by a specific 

scenario could be very different from the optimal solution based on the realized demand once it 

becomes known. The results we obtain in this section will also be used in EVPI calculations. Each 

of the 100 demand scenarios or 1000 demand scenarios is used as the input data in this model to 

obtain solutions. Following the first instance, the same processing is repeated for the instances 2 

to 36. Then we get all the optimal solutions for all the instances. In Appendix A, we show detailed 

results of all optimal solutions.  

 

The values mean, maximum, minimum, standard deviation and coefficient of variation (CV) for 

all instances are presented in the table below. 
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Instance Mean Maximum Minimum SD CV 

1 5843 9360 3910 1146 20% 

2 58432 93600 39100 11461 20% 

3 5946 9490 4330 1121 19% 

4 9930 15240 5670 2332 23% 

5 99300 152400 56700 23318 23% 

6 9963 15240 5830 2302 23% 

7 10887 14780 7240 1796 16% 

8 108872 147800 72400 17959 16% 

9 10910 14780 7240 1790 16% 

10 9300 13130 7520 1206 13% 

11 93006 131300 75200 12063 13% 

12 9569 13400 7720 1171 12% 

13 13432 19050 9100 2463 18% 

14 134325 190500 91000 24627 18% 

15 13629 19130 9160 2412 18% 

16 14910 20850 10690 2374 16% 

17 149105 208500 106900 23739 16% 

18 15064 20850 10690 2337 16% 

19 5771 12320 3270 1213 21% 

20 57714 123200 32700 12126 21% 

21 5932 34940 3270 1705 29% 

22 9688 19890 3900 2403 25% 

23 96883 198900 39000 24029 25% 

24 9786 35210 3900 2594 27% 

25 10680 17990 5170 1870 18% 

26 106802 179900 51700 18702 18% 

27 10770 36170 5170 2137 20% 

28 9226 15650 6780 1231 13% 

29 92220 156500 67800 12307 13% 

30 9570 38430 6780 1733 18% 

31 13206 25180 7410 2534 19% 

32 132015 251800 74100 25334 19% 

33 13470 38700 7410 2709 20% 

34 14670 25730 8500 2442 17% 

35 146705 257300 85000 24422 17% 

36 14892 39690 8520 2612 18% 

Table 7  Mean values of optimal solutions based on the deterministic model with perfect demand 

information 
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Instances 1, 4 and 7 use the same cost parameters but for different BOM structures. Under the 

standard inventory holding cost, the average value of the optimal objective function for these three 

instances are 5843, 5946, 10887, respectively. Generally, we found that, with the same other 

parameters, BOM3 is more expensive to produce than those of BOM1 and BOM2. BOM1 is 

cheaper to produce than those of BOM2. Therefore, for all the instances that use the same cost 

parameter, the deeper level of BOM the product has, the higher production cost this product is.  

 

Additionally, as it is shown in Table 7, with the same parameter setting, optimal solutions from 

the instances with ten times inventory holding costs (2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35) are 

ten times of the optimal solutions from the data structure designs with the standard inventory 

holding cost (1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34). This can be expected since the objective 

function of the deterministic MRP is to minimize the sum of the inventory holding cost and stock 

out cost. If the stock out quantity is zero and the inventory holding costs in different levels are only 

adjusted by a constant factor, both models yield the same solution.  

 

As we can see from the table, for the same parameter setting, no matter how the production 

planning horizon is, the optimal solutions of instances with standard holding cost have the same 

or very close values with those with ten times the stock out cost. The objective is to minimize the 

sum of inventory holding cost and the stock out cost. But from the comparison between results 

from standard cost and the results from ten times the stock out cost, we can know that no stock out 

happened in these situations. And this is true after we check the solutions. 

 

The following parts examine the variability of optimal objective function value. By analyzing the 

range, standard deviation and the variance of optimal objective function value, we discuss whether 

the optimal solution is sensitive to the uncertain demand. Here we take the instances 1 and 2 as 

examples of the analysis.  
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Figure 6  Line chart of optimal solutions for instance 1  

The figure above describes how the objective values of the solutions fluctuate with the change of 

the demand scenarios. In this instance, the mean value is 5843, the maximum value is 9360, and 

the minimum values is 3910. After the calculation by using the Excel, we obtained the values of 

range and standard deviation which are 5450 and 1146. As we can see in the line chart above, the 

optimal solutions fluctuate dramatically in the range of 5450. As the mean value is just 5843, with 

a big standard deviation which is 1146, we can say that the coefficient of variation of the objective 

values from the mean value is large (20 % = 1146/5843)). In other words, the optimal solutions 

are sensitive with the demand change in the instance 1. From the Table 7, we can see that the 

coefficient of variation varies from 12% to 29%, and the standard deviation varies from 1121 to 

25334, which are large to conclude that the optimal solutions are sensitive with the demand change 

for all the instances.  

 

Figure 7 presents the central tendency of all the optimal solutions for instance 1. It describes more 

visually how the solution values are distributed around the mean value. It is shown in the figure 

that the spread of the optimal solutions is great, and the solution points are not clustered tightly. 

This dispersion figure also supports that the optimal solutions are sensitive to the demand change. 
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Figure 7  Histogram of optimal solutions for instance 1 

 

Next, we examine how the inventory holding cost can affect the variability of optimal solution 

values. We compare optimal solutions of instance 1 and instance 2 to examine how the optimal 

solution values change with ten times the standard inventory holding cost.  

 

Figure 8  Comparison of optimal solutions between instance 1 and instance 2 

We can see from the figure above that the line for instance 2 fluctuates more dramatically than that 

of instance 1. It is obvious that the optimal solutions of instance 2 change in a larger range. 

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Sc
e

n
ar

io
 1

Sc
e

n
ar

io
 4

Sc
e

n
ar

io
 7

Sc
e

n
ar

io
 1

0

Sc
e

n
ar

io
 1

3
Sc

e
n

ar
io

 1
6

Sc
e

n
ar

io
 1

9
Sc

e
n

ar
io

 2
2

Sc
e

n
ar

io
 2

5

Sc
e

n
ar

io
 2

8
Sc

e
n

ar
io

 3
1

Sc
e

n
ar

io
 3

4
Sc

e
n

ar
io

 3
7

Sc
e

n
ar

io
 4

0
Sc

e
n

ar
io

 4
3

Sc
e

n
ar

io
 4

6
Sc

e
n

ar
io

 4
9

Sc
e

n
ar

io
 5

2

Sc
e

n
ar

io
 5

5
Sc

e
n

ar
io

 5
8

Sc
e

n
ar

io
 6

1
Sc

e
n

ar
io

 6
4

Sc
e

n
ar

io
 6

7
Sc

e
n

ar
io

 7
0

Sc
e

n
ar

io
 7

3
Sc

e
n

ar
io

 7
6

Sc
e

n
ar

io
 7

9

Sc
e

n
ar

io
 8

2
Sc

e
n

ar
io

 8
5

Sc
e

n
ar

io
 8

8
Sc

e
n

ar
io

 9
1

Sc
e

n
ar

io
 9

4
Sc

e
n

ar
io

 9
7

Sc
e

n
ar

io
 1

0
0

Instance 1 Instance 2



 34 

Therefore, the higher inventory holding cost has increased the variability of the optimal solution 

values in this case.  

 

Figure 9  Comparison of coefficient of variation between two scenario sets  

The figure above illustrates that the comparison of coefficient of variation (CV) between 18 groups 

based two scenario sets. We have instances consisting of 100 demand scenarios, and instances 

consisting of 1000 demand scenarios. Except the difference of the scenarios, instance 1 and 

instance 9 have the same parameters. Then we can classify instance 1 and instance 9 into group 1. 

The classification of other instances has the same processing logic. Then we can get 18 groups. 

Figure 7 is a comparison for these groups. As we can see from the figure, under the same other 

parameters, the CV of instances with 1000 demand scenarios are slightly larger than those with 

100 demand scenarios. Therefore, we can say that the larger the size of the demand scenarios, the 

greater the variation of the optimal solutions in this case.  

 

In brief, it is shown in the table that the coefficient of variation varies from 12% to 29%. No matter 

in which way we design our instances, due to the uncertain demand, the solutions fluctuates in 

large ranges. Therefore, it is concluded that the sensitivity of optimal solutions is great under the 

demand change. The larger the standard inventory holding cost, the higher the variability of 

optimal solutions. The deeper the level of the BOM, the higher the production cost.  
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4.2.2 Computational results and analysis for the expected value of perfect information (EVPI)  

 

In this section, based on the instance (as it is shown in Table 6), we first run the deterministic 

model and the stochastic model for instances with 100 scenarios (instances 1-18) and instances 

with 1000 scenarios (instances 19-36). We get the solutions as it is shown in the table below.  

  

Instance  𝑂𝐵𝐽𝑠𝑡𝑜𝑐 𝑂𝐵𝐽exp_𝑑𝑒𝑡𝑒𝑟 𝑂𝐵𝐽𝑎𝑣𝑔_𝑝𝑒𝑟𝑓𝑒𝑐𝑡 𝐸𝑉𝑃𝐼 𝐸𝑉𝑃𝐼 (%) 𝑉𝑆𝑆 𝑉𝑆𝑆 (%) 

1 8909 9480 5843 3066 34% 571 6% 

2 89099 94801 58432 30667 34% 5702 6% 

3 10442 11171 5946 4496 43% 729 7% 

4 13430 13612 9930 3500 26% 182 1% 

5 134305 136125 99300 35005 26% 1820 1% 

6 14046 14069 9963 4083 29% 23 0% 

7 14649 14766 10887 3762 26% 117 1% 

8 146496 147663 108872 37624 26% 1167 1% 

9 15649 16522 10910 4739 30% 873 5% 

10 15503 16763 9300 6203 40% 1260 8% 

11 155038 167638 93006 62032 40% 12600 8% 

12 21418 27398 9569 11849 55% 5980 22% 

13 20341 20958 13432 6909 34% 617 3% 

14 203415 209587 134325 69090 34% 6172 3% 

15 25010 30778 13629 11381 46% 5768 19% 

16 22166 22438 14910 7256 33% 272 1% 

17 221669 224386 149105 72564 33% 2717 1% 

18 26738 32893 15064 11674 44% 6155 19% 

19 8970 9420 5771 3199 36% 450 5% 

20 89703 94203 57714 31989 36% 4500 5% 

21 11230 11230 5932 5298 47% 0 0% 

22 13254 13254 9688 3566 27% 0 0% 

23 132547 132547 96883 35664 27% 0 0% 

24 14350 14794 9786 4564 32% 444 3% 

25 14539 14835 10680 3859 27% 296 2% 

26 145391 148357 106802 38589 27% 2966 2% 

27 15897 16460 10770 5127 32% 563 3% 

28 15346 16363 9226 6120 40% 1017 6% 

29 153467 163633 92220 61247 40% 10166 6% 

30 22512 24547 9570 12942 57% 2035 8% 
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31 20084 20984 13206 6878 34% 900 4% 

32 200841 209847 132015 68826 34% 9006 4% 

33 25917 27922 13470 12447 48% 2005 7% 

34 22003 22527 14670 7333 33% 524 2% 

35 220033 225277 146705 73328 33% 5244 2% 

36 27800 30118 14892 12908 46% 2318 8% 

        

Average 

EVPI  35.8% 

Average 

VSS 5.0% 

 Table 8  Computational results for instances 1-36 

 

Let’s take the values from instance 1 as an example. If we have the perfect information about the 

demand before the start of the production, we have an average total cost of 5843. This is the 

average of the objective values based on the optimal value of each of the 100 demand scenarios. 

However, after all the demand scenarios are taken into consideration in the stochastic model, we 

got a total cost of 8909. The difference between these two solutions is 3066 which is the expected 

value of perfect information. Let’s assume that, before our production, there is a way to buy this 

perfect demand information. The maximum amount of money you are willing to pay is the EVPI 

which is 3066 in this case which equals the potential savings with this perfect information.  

 

For all the instances which have the same parameters except BOM, for example instances 1, 4 and 

7, the EVPI values increase with the BOM getting deeper. From the table above, we can see that 

instance 7 has the largest EVPI compared with those of instance 1 and instance 4, and the EVPI of 

instance 1 is the smallest among these three instances. As we can see in the Figure 10 and Figure 

11, this is the same for all the instances with standard holding cost and instances with ten times 

the standard holding cost. With the same other parameters, the deeper the BOM, the larger the 

EVPI in this case. Then we can say that the BOM structure has an impact on the EVPI when the 

stock out cost is not high. It means that, for products with multi-level BOM structures and the 

lower stock out cost, it is very important to get more accurate demand information as this 

information can help to save more money than the products with less level BOM structures. 
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Figure 10  Bar chart of EVPI for instances with standard holding cost  

 
Figure 11  Bar chart of EVPI for instances with holding cost x 10 

 

However, when we increase the stock out cost to the ten times the standard stock out cost, the 

impact the BOM on the EVIP is different from instances with lower stock out cost. In this case, as 

we can see in the Figure 12, most of instances with BOM1 have the largest EVPI, and instances 

3066

6203

3199

6120

3500

6909

3566

6878

3762

7256

3859

7333

0

1000

2000

3000

4000

5000

6000

7000

8000

Instances 1,4,7 Instances 10,13,16 Instances 19,22,25 Instances 28,31,34

BOM1 BOM2 BOM3

30667

62032

31989

61247

35005

69099

35664

68826

37642

72546

38589

73328

0

10000

20000

30000

40000

50000

60000

70000

80000

Instances 2,5,8 Instances 11,14,17 Instances 20,23,26 Instances 29,32,35

BOM1 BOM2 BOM3



 38 

with BOM2 have the smallest EVPI. EVPI of instances with BOM3 is in the middle. In this case, 

we can say that, when the stock out cost is high, the patterns observed in Figure 10 and 11 do not 

necessarily follow and the impact of the depth of the BOMs in this case are relatively similar 

among different BOMs.  

 

 

Figure 12  Bar chart of EVPI for instances with stock out cost x 10 

 

In addition, if we look at the percentage values in the table other than EVPI, we can see that 

instance 1 has 34% percentage of saving, and instances 4 and 7 have the same efficiency which 

are 26%. We than see from the Figure 13, for other instances which have same parameters and 

different BOMs, instances with BOM 1 always have the highest percentage of savings. Efficiencies 

of instances with BOM2 and BOM3 are pretty much the same, which are smaller than the 

efficiency of BOM1. Thus, under the same situations, products with shallow BOM structures have 

higher percentage of savings. In other words, with perfect information, products with deeper level 

BOMs are not as efficient as those with less level BOMs when it comes to the cost saving.  
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Figure 13  Bar char of EVPI efficiency for instances 1-36 

 

Next, we are going to examine how the number of demand scenarios affects the EVPI and the 

percentage of savings. The figure below are the line charts of EVPI from two groups. Since the 

parameters of each of the demand instances 𝑠 where 𝑠 ∈  [1, … ,18] corresponds to the demand 

instance s + 18 except that the size of the demand scenario set increases from 100 (in instances 1-

18) to 1000 (in instances 19-36). For example, the parameters in instance 1 correspond to those in 

instance 19. We name the instance 𝑠 and s + 18 as CDSD 1 in the line chart below. By comparing 

the EVPI of the corresponding data structure designs, we can get further information.  
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Figure 14  Comparison of EVPI for two different demand instance groups 

From the Figure 14, we can see that the efficiency from the group of 1000-demand-scenario 

instances are generally larger than the values from the group of 100-demand-scenario instances as 

the orange line is always above the blue line for all the CDSDs but with a very small margin.  The 

average efficiency from the group of 1000-demand-scenario instances is 36.4%, whereas the 

average efficiency from the group of 100-demand-scenario instances is 35.1%. The average 

difference is 1.3%.  

 

In reality, more accurate information could possibly be obtained by more intensive data collection 

and advanced forecasting methods based on rich dataset from multiple sources. The reduction of 

demand uncertainty can also be achieved by reducing the lead time so that the forecast does not 

need to be made very early in the process and better forecasted demand can be achieved once more 

information becomes more available over time.  
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4.2.3 Computational results and analysis for the value of the stochastic solution (VSS)  

 

In this section, we discuss possible benefits we can obtain by solving the stochastic model. In 

particular, we examine the value of incorporating stochastic information to determine the 

stochastic solutions in the MRP environment. Based in the instances generation, we get the 

objective values, VSS and the percentage of savings. These solution results are in the Table 8.  

 

As it is shown in the Table 8, under most of the instances, stochastic model can provide some cost 

savings compared to the deterministic model with safety stock. According to our solution results, 

our stochastic model can provide an average potential saving of 5% in the MRP environment under 

demand uncertainty. The impact of the BOM on the VSS and efficiency differs with the change of 

the cost parameter.    

 

 

Figure 15  Bar chart of VSS for instances with standard holding cost 
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Figure 16  Bar chart of VSS for instances with holding cost x 10 
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Figure 17  Bar chart of VSS for instances with stock out cost x 10 

 

After we change the stock out cost from the standard stock out cost to ten times the standard stock 
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Figure 18  Bar chart of VSS efficiency for instances with standard holding cost and ten times the 

standard holding cost 

 

 

Figure 19  Bar chart of VSS efficiency for instances with stock out x 10 
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cost, BOM structure has a significant impact on the VSS efficiency. Under the same situation, 

products with less BOM levels tend to have larger VSS efficiency. It means that it is more 

important for products with less BOM levels to solve the stochastic model as they can get more 

percentages of savings.  

 

Additionally, from the Table 8 we can see that instance 1 and instance 2 have the same VSS 

efficiency value. This is the same for all the instances with corresponding standard holding cost 

and ten times the standard holding cost. Therefore, we can conclude that, generally, other 

parameters remaining unchanged, the variation of holding cost generally has no impact on the VSS 

efficiency.  
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Chapter 5 - Conclusion  

 

In this thesis, a MRP deterministic model and a stochastic model are developed. These MRP 

optimization models are the generalization of the basic MRP optimization model and the main 

objective is to minimize the sum of the inventory holding cost and the stock out cost. The main 

inputs of the models are based on the MRP data which include BOM, lead time, initial inventory, 

and demand forecast. In the stochastic model, we incorporated demand uncertainty by using a set 

of different demand scenarios as commonly used in stochastic programming, where each demand 

scenario is associated with a certain probability of occurrence. The instance set was designed by 

changing the combinations and the values of different parameters. We performed computational 

experiments to evaluate the performance of both deterministic and stochastic models. The 

following conclusions were made from the results obtained. First, the solutions of the deterministic 

optimization model are very sensitive to the change of demand values. When each of the demand 

scenarios in the scenario set is used to determine the MRP plan, the total cost fluctuates 

dramatically over different demand scenarios. The larger the demand uncertainty is, the more the 

cost is affected.  Thus, the demand uncertainty has a significant impact on the total production cost. 

Second, based on the analysis of the EVPI and VSS from two groups of data (one with 100 demand 

instances, the other with 1000 demand instances), it is shown that our stochastic model can 

effectively capture the presence of uncertainty in the MRP environment and provide better 

solutions compared to the deterministic model with safety stock. In our experiments, we see that 

significant savings (approximately 5% on average based on the value of stochastic solution) can 

be achieved if the MRP plan is executed based on the solution from the stochastic model. Through 

the analysis of the EVPI and VSS, management insights are provided to the decision makers.  
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There are also some limitations about this thesis.  First, in our model, as in the standard MRP logic, 

we do not impose a capacity limitation in both our deterministic optimization model and the 

stochastic model and we can produce any quantity of batches. However, this can be easily 

incorporated by simply adding a capacity constrain into the model. In addition, our stochastic 

model is a two-stage model.  We make decisions about the quantity of batches for all the items and 

components to produce at the first stage. No further decisions are taken based on the observed 

demand realizations. This way, the production decisions remain fixed and no recourse decisions 

could be made. It would be interesting to take the outsourcing and the production recourse decision 

into the future research.  
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Appendix  

Appendix A: Python source codes of the deterministic model (in iPython Notebook) 
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Appendix B Python source codes of the stochastic model (based on iPython Notebook) 
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Appendix C   Objective values based on the deterministic model for instances 1-36. For instances from 19-36, we present only the results for the first 

100 demand scenarios.  
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