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Abstract 

 To contribute to the growing trend of adapting lot-sizing models to represent realistic 

situations in an effort to propose more practical solutions, this thesis studies a multi-item 

capacitated lot-sizing problem that simultaneously considers both backlog and lost sales. We first 

review the Classic Lot-sizing Problem (CLSP) formulation along with its extensions with backlog 

and lost sales. For better compatibility, we propose the Facility Location Reformulation (FLR) to 

formulate our problem and highlight the reasons why. We develop a formulation using FLR that 

simultaneously considers backlog and lost sales. We also propose several extensions to our 

formulation, first by introducing two different lost sales approaches: fixed proportion lost sales 

and variable proportion lost sales. The formulations are also tested using different assumptions 

for backlog: unlimited backlog, restricted backlog, and multiple customer types. We extend the 

traditional backlog concept to include a “multiple customer types” backlog assumption in which 

customers have different willingness to wait. We summarize the results and make comparisons 

between the different formulations on their performance and structure of their solution. We then 

evaluate the impact that certain parameters have on the performance of the formulations by 

conducting sensitivity analyses on the following parameters: capacity, customer’s willingness to 

wait, lost sales cost, and length of backlog restriction.  
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1. Introduction 

Lot-sizing models are Mixed Integer Programming (MIP) models used to determine the 

optimal timing and level of production. In their most basic form, lot-sizing models consider the 

trade-off between setup costs and holding costs, while satisfying deterministic and dynamic 

demand. Deterministic and dynamic demand describes a situation in which demand is known up 

front but can vary over time. Oftentimes in the lot-sizing literature, it is assumed that demand must 

be completely satisfied on time. However in practice, this demand assumption often does not hold 

true and companies face situations where demand cannot be satisfied on time. In this thesis, we 

study lot-sizing models in which demand possibly cannot be satisfied on time. We describe this 

inability to satisfy demand on time as a stock-out. Once faced with a stock-out, there are different 

options that can be taken, two of which are backlogging the unsatisfied demand and incurring lost 

sales.  

Problem Description 

When faced with unsatisfied demand due to limited capacity or other reasons, it may be 

possible to backlog this demand. The term backlogging is used to describe the situation in which 

unsatisfied demand in a specific period is satisfied by production in later periods. Over the years, 

researchers have studied models that consider backlogging. However, it is usually assumed that 

backlogged demand is eventually all satisfied during a later period within the planning horizon, at 

a given cost. Once again, this is often not the case in practice. Industries are becoming more 

saturated and competitive and costumers are willing to shop elsewhere if their demand cannot be 

immediately satisfied. When producers are faced with stock-outs, demand can sometimes be lost. 

Within the lot-sizing literature, both backlog and lost sales have been studied separately.  
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In Zangwill (1966), an extension to the standard Mixed Integer Programming (MIP) 

formulation of the basic lot-sizing problem was developed to include the possibility of planned 

backlog. Other researchers have then developed other formulations with backlog (Lambrecht and 

Vander Eecken 1978a, Pochet and Wolsey 1988). This research subsequently lead to studies on 

different problems considering backlog. Service-level constraints, which limit the use of backlog, 

have been studied by Gade and Küçükyavuz (2013) and Gruson et al. (2018). The concept of lost 

sales in lot-sizing problems has also been studied. Sandbothe and Thompson (1990) were some of 

the first to explore this idea. Their formulation forbids the use of backlog or any alternative means 

of satisfying demand in case of a stock-out. When demand is not met on time, lost sales, along 

with a penalty cost, are incurred for every unit of demand lost. As an alternative to allowing 

backlog and lost sales, researchers have also included the option of outsourcing in lot-sizing 

problems. This scenario involves portions of the production being completed by a third-party, 

rather than in-house. Inspired by the popular use of outsourcing in practice, Zhang (2015) studied 

a capacitated lot-sizing problem with constant production capacity and unlimited outsourcing.   

In this thesis, we study a capacitated multi-item lot-sizing problem, which simultaneously 

considers the possibility of both backlog and lost sales. The combination of these two concepts has 

not yet been pursued in the literature. Lot-sizing models are increasingly being adapted to represent 

realistic situations in an effort to propose more practical solutions. We strive to continue that trend 

by proposing new lot-sizing problems, where both backlogging and lost sales can be options as a 

means of dealing with a stock-out. In this problem, once faced with a stock-out, units of demand 

will either be backlogged or become lost sales. When considering these two concepts 

simultaneously, one must first determine how the two interact with each other.     
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In combination with backlog, there are two possibilities of lost sales that are studied: a 

fixed-proportion and a variable-proportion version. Before defining the two versions, it is 

important to note that in our study, we treat each unit of demand as a separate individual customer. 

Customers with multiple units of demand are a more complex problem that can be an interesting 

extension for future research. In both the fixed and variable version, when a stock-out occurs, a 

minimum fixed percentage of the unsatisfied demand is lost. This fixed percentage represents the 

customers who are not willing to wait in case of a stock-out. For the fixed-proportion lost sales, 

the remaining unsatisfied demand must be backlogged and satisfied in later periods. As for the 

variable-proportion lost sales, the company decides whether the remaining unsatisfied demand will 

be lost sales or become backlog that must be satisfied in later periods.  

 Since stock-outs have a negative impact on customer loyalty, backlog service-level 

constraints have been modeled in an effort to limit the loss of customer goodwill (Gade and 

Küçükyavuz, 2013). Others have used penalty costs to punish demand that is not met on-time 

either with a lost sales penalty cost (Sandbothe and Thompson, 1990), or a backlog penalty cost 

(Pochet and Wolsey 1988, Gruson et al. 2018). Our model uses both types of costs to represent the 

negative impact of stock-outs. The backlog penalty cost is used to represent the costs associated 

with backlogging an item (administration cost, schedule changing cost, extra transportation cost, 

loss of goodwill, etc.), while the lost sales penalty cost will be used to represent the lost profit and 

the loss of customer goodwill. 

Research Question and Contributions 

Our research is inspired by highly competitive and short seasonal industries like that of fast 

fashion. Companies within these industries have similar product offerings, and subsequently some 

customers are more willing to shop elsewhere if stock-outs occur while others are willing to wait. 
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Although these types of industries inspired this thesis, there are many other situations that are 

relevant. As long as customers have substitutes available, there can be lost sales. Even in special 

cases, there may be lost sales without any substitutes available. For instance there is a loss of 

interest or need in a product. The important idea to note is that our thesis applies to situations 

where, in case of a stock-out, some customers are willing to wait (leading to backlog) and others 

are not willing to wait (leading to lost sales). We study a production planning problem of a 

manufacturer that faces deterministic demand under the assumption that every unit of demand is 

represented by a unique customer. The goal is to develop various mathematical optimization 

models for a manufacturer that will represent different relationships between backlog and lost 

sales.   

Lot-sizing research has veered towards problems that portray realistic business scenarios. 

The possibility of stock-outs is a concept that is common throughout multiple industries. Solutions 

for stock-outs, such as backlog, outsourcing, and lost sales have all been studied. In a realistic 

production setting, multiple options and consequences are in play. Considering both backlog and 

lost sales simultaneously could provide insight for a more realistic production planning problem. 

In addition, this will allow us to analyze the trade-off between backlog and lost sales. This thesis 

aims to contribute to the movement of providing more practical solutions by answering the 

following research question: How can one formulate and solve a multi-item capacitated lot-sizing 

problem that considers backlog and lost sales simultaneously?   

 The contribution of this thesis is sixfold. (1) We propose new lot-sizing problems, which 

incorporate backlog and lost sales simultaneously. (2) We extend the backlog concept to model 

customers that have a different willingness to wait. (3) We develop a formulation for each of the 

proposed problems. (4) We conduct computational tests to evaluate the performance of the new 
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formulations versus similar existing formulations. (5) We analyze the structure of the solutions, 

and the trade-off between backlog and lost sales. (6) We conduct sensitivity analyses to determine 

the impact of changing some key parameters.   

Methodology 

In order to conduct the analysis, CPLEX 12.6.3.0 will be used to solve test instances for 

different formulations which are modelled using the OPL coding environment. We conduct our 

computational experiments on two datasets developed by Trigeiro et al. (1989). The datasets are 

adapted to fit our new formulations prior to the tests. The new formulations are tested, along with 

similar existing formulations, for comparison purposes. The formulations are then tested under 

different assumptions such as backlog restrictions and multiple customer types. Lastly, we change 

certain parameters in the dataset to perform sensitivity analyses.   

 The thesis is organized as follows. In Section 2, we review the related existing literature 

on our topic. Section 3 will summarize the existing formulations for the Classical Lot-sizing 

Problem (CLSP) and Facility Location Reformulation (FLR) that incorporate either backlog or 

lost sales. Next in Section 4, we develop two new reformulations that include both backlog and 

lost sales simultaneously and describe potential alterations to the formulations that can be made to 

incorporate different assumptions. In Section 5, we compare the computational results of multiple 

formulations, different assumption, and parameter settings, and analyze the results. In Section 6, 

we conduct a sensitivity analysis on multiple key parameters. Lastly in Section 7, we provide a 

conclusion to the thesis.   
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2. Literature Review  

In this section, we first provide a brief overview of the literature on the topic of lot-sizing, 

specifically when demand is dynamic. Then, we look more closely at lot-sizing models that 

consider backlog. We follow by examining the use of lost sales or similar concepts in lot-sizing 

models. Next, we review alternative reformulations that have been developed to solve comparable 

lot-sizing problems. Finally, we summarize the main areas of research that we focus on and 

highlight the papers that motivate our thesis.  

2.1 Lot-sizing 

Lot-sizing models, in general, aim to determine the optimal timing (when) and level of 

production (how much). The model’s goal is to minimize the total cost while adhering to all of the 

constraints and satisfying the demand. Lot-sizing models can be classified using different angles 

in terms of their timescale, demand behaviour, and the time horizon (Jans and Degraeve, 2008). 

The classical Economic Order Quantity (EOQ) model developed by Harris (1913) is seen as the 

base form of lot-sizing models. The EOQ model assumes a continuous timescale, no production 

capacity constraints, and a deterministic and constant demand rate with only one type of product. 

One of the contributions of the EOQ model is that it highlights the trade-off between setup and 

holding costs. Many extensions of this model have been explored. A thorough review on these 

EOQ extensions is provided by Silver et al. (1998). One such extension, named the Economic Lot 

Scheduling Problem (ELSP), considers multiple products and a constant production rate 

(Elmaghraby 1978, Zipkin 1991). In contrast to the EOQ model, which is simpler to solve, the 

ELSP is NP-hard (Elmaghraby 1978, Zipkin 1991). The ELSP model represents a more realistic 

problem, wherein companies produce and deliver multiple products.  
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Even though the EOQ model has been extended in many different ways, it often has too 

many unrealistic assumptions to provide a practical production plan. Researchers have extended 

this model to include more realistic conditions by relaxing some of the previous assumptions. One 

of the EOQ model’s biggest assumption is that demand is constant. Since this is rarely the case, 

researchers have moved their focus to dynamic demand, which permits the demand to vary over a 

time horizon.  

2.2 Dynamic Demand 

Lot-sizing research has moved towards using dynamic demand to obtain more realistic 

production plans over a time horizon. Dynamic demand assumes that the demand for items can 

vary over time. The goal of these models is to satisfy aggregate demand through production during 

each period (Robinson, 2009). Wagner and Whitin (1958) were the first to introduce the classical 

dynamic lot-sizing model where dynamic demand must be satisfied in each given period. The 

original model has since been extended in different directions. Robinson et al. (2009) state that 

there are four predominant types of classical dynamic demand lot-sizing problems that are studied, 

as indicated in Table 1.  

 Capacitated Uncapacitated 

Single-item S-CLSP S-ULSP 

Multi-item M-CLSP M-ULSP 

Table 1. Types of Lot-sizing Problems 

They are categorized according to two factors: (1) single or multiple products, (2) 

capacitated or uncapacitated. A review of different models for lot-sizing problems can be found in 
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Jans and Degraeve (2008). In this thesis, we focus on multi-item capacitated lot-sizing problems 

(M-CLSP).  

2.3 Backlog 

When faced with stock-out, backlogging demand can be a possible option. This means that 

demand in a specific period can be satisfied by production in later periods. Zangwill (1966, 1969) 

adapted the original uncapacitated lot-sizing model (ULSP) of Wagner and Whitin (1958) to allow 

backlogging. He proposed an algorithm with a concave holding and backlogging cost structure 

along with a limited number of periods that a demand could be backlogged for. For the capacitated 

lot-sizing model with backlog, Swoveland (1975) provided a model with piecewise concave cost 

functions for production, holding, and backlogging.  

Pochet and Wolsey (2006) present a basic MIP formulation for the ULSP. The formulation 

is based on three types of variables: production, inventory, and production setup. The authors also 

provide an extension to the formulation that includes backlog. All variables, including backlog, 

have an associated cost and the objective is to minimize their sum.  

Researchers have also experimented with service-level constraints with backlog. Gade and 

Küçükyavuz (2013) study a multi-item dynamic lot-sizing problem with backlog and a service-

level constraints. For instance, one of the constraints limits the number of periods that demand can 

be backlogged for. They propose the service-level constraint as an alternative to having a backlog 

cost in the objective function, and then develop a shortest path algorithm to solve the resulting 

formulation. Another service-level constraint that is often considered is a constraint that ensures 

that a certain percentage of demand is met on time in each period (Gruson et al., 2018). Gruson et 

al. (2018) extend on Gade and Küçükyavuz (2013), and they propose various service-level 
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constraints. The authors use the facility location reformulation to help distinguish between 

backorders and backlog. By doing so, they were able to study different service level constraints at 

an individual level, item-by-item, period-by-period, and globally. Their results concluded that 

different constraints can lead to very different solutions.  

Backlog has also been combined with the concept of time-windows (Absi et al. 2011, Lee 

et al. 2001, Huang 2008, Brahimi et al. 2006). Absi et al. (2011) study a single uncapacitated lot-

sizing problem (USLP) with production time-windows, early production and backlog. Within this 

problem, demand can be met with on-time production at a unit cost, early production at a penalty 

cost, or backlog at a cost for backorders. 

2.4 Lost Sales     

Lost sales occur when demand is not met on time and the customer no longer wants the 

product, either because the product is not needed anymore, or because he decides to go to a 

competitor to purchase a similar item. Companies may incur lost sales when faced with stock-out 

and backlog is not permitted. When lost sales occur, the firm may avoid paying the unit production 

cost, but faces a loss in revenue and customer goodwill. There is hence a cost associated to each 

unit of lost sales.   

Sandbothe and Thompson (1990) were some of the first to explore the lot-sizing problem 

with the concept of lost sales. They examined two versions of a capacitated problem with the 

possibility of lost sales where production capacity either remains constant over a time horizon, or 

fluctuates. In this formulation backlog is forbidden. When the producers are not able to meet 

demand on time, lost sales are incurred and they suffer a penalty cost for each lost order.   
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Aksen et al. (2003) examined an uncapacitated version of the single-item deterministic lot-

sizing problem, where demand cannot be backlogged but does not have to be satisfied. If demand 

is not satisfied, the cost of a lost sale is equal to the lost revenue. This paper highlights the trade-

off between production cost and sales revenue. They first present a profit-maximization model, 

and then reformulate it as a cost-minimization model. Aksen et al. (2003) do so by including the 

unmet demand decision variable as a component of the total cost function.  

 Typically in production planning, the ability to meet customer demand is limited by 

production capacity. Liu et al. (2007) explore an alternate realistic scenario, where demand is 

constrained by inventory capacity instead of production capacity. The paper studies a single-item 

capacitated lot-sizing problem (CLSP) with time varying inventory restrictions and lost sales. They 

associate a penalty cost to each unit of lost sales. The authors assume, in this case, that the lost 

sales cost is greater than the production cost. Once inventory reaches its capacity for a given period, 

the unsatisfied demand is absorbed by the lost sale variable. Liu et al. (2007) do not consider the 

addition of backlog into their model.  

Absi et al. (2011) consider a single-item uncapacitated lot-sizing problem with production 

time windows, and early production. They address a single-level problem with competing interests 

between customers and suppliers. This type of problem simulates an environment with strict time 

restrictions and tight capacity levels. The model does allow items to be produced before the given 

time window. Companies may opt for this option at a given early production penalty cost. The 

proposed model uses production time windows, therefore if the demand cannot be produced within 

a given time interval, there is a stock-out. Absi et al. (2011) propose two formulations that deal 

with this stock-out in a different way. The first formulation includes early production costs and 

lost sales, in which a cost is incurred for producing before the time window, and a lost sales cost 
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for not satisfying demand before the deadline. The second formulation was previously mentioned 

in Section 2.3 and involves the consideration of early production with backlog. In this case, there 

is an extra cost for backlog, however there is no potential for lost sales, nor is there any penalty 

for customer goodwill. The authors do not consider a problem with backlog and lost sales together. 

The research illustrates the trade-off between satisfying customers by adhering to due dates, and 

pleasing suppliers by respecting release dates (Absi et al., 2011). 

The research paper by Absi et al. (2011) is the inspiration for this thesis. The authors 

mentions the idea of merging all three variables (early production, backlog, and lost sales), but 

indicates that these are not generally considered simultaneously. We do believe, however, that 

considering backlog and lost sales simultaneously in an environment without time windows can 

be insightful. By removing the concept of production time windows, early production is no longer 

applicable. Items that are produced in periods before they are to satisfy demand, simply become 

inventory, and are charged a holding cost in each period until they are consumed. We extend this 

work by proposing reformulations that include both backlog and lost sales simultaneously.  

2.5 Facility Location Reformulation 

 The classic MIP formulation for the multi-item capacitated (CLSP) and uncapacitated lot-

sizing problem (ULSP) has its limitations when backlog is considered (Gruson et al., 2018). The 

CLSP formulation is able to identify backlog but not backorders. Backorders represent unsatisfied 

demand on an individual level while backlog represents the sum of multiple backorders which 

have not been satisfied yet. For the formulation we aim to develop, we require the information of 

backorders. The distinction between backlog and backorders will be further discussed in Section 

3.4. 
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Faced with this issue, we must turn to a different formulation that is capable of handling 

this type of problem. Krarup and Bilde (1977) proposed the facility location reformulation, which 

solves the ULSP as a linear program (LP). Researchers have used this reformulation, or extensions 

of it, to include factors such as backlog, service levels, and multi-processed items (Gade and 

Küçükyavuz 2013, Gruson et al. 2018, Denizel et al. 2008).  The reformulation is shown to be able 

to provide better LP relaxations and improve computing times (Denizel et al. 2008, Nemhauser 

and Wolsey 1988). Typically, the facility location problem consists of finding the optimal facilities 

so that demand is satisfied at minimum cost (Daskin 1995). Krarup and Bilde (1997) reformulate 

the model specifically to address lot-sizing problems.  

Continuing with Krarup and Bilde (1977), the reformulation uses a production variable that 

is able to track separately in which period demand is produced and satisfied. This information 

facilitates the calculation of the total production cost, along with the associated penalty costs. Gade 

and Küçükyavuz (2013) use a similar reformulation to solve lot-sizing problems with service level 

constraints. Gruson et al. (2018) extend this reformulation by including backlog and backorder 

costs.  

2.6 Target Area of Research 

 Inspired by the research of Absi et al. (2011), we aim to develop a lot-sizing model that 

considers both backlog and lost sales. We study a relevant scenario used by Gade and Küçükyavuz 

(2013), which examines both the capacitated and uncapacitated multi-item lot-sizing problem. The 

facility location reformulation proposed by Krarup and Bilde (1977), will be used to solve the 

problem. We develop extensions to our new model that consider different backlog assumptions 

and different types of lost sales. Upon optimization of our models using CPLEX, we analyze the 

results and the relationship between backlog and lost sales. In addition, we examine the results 
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between our model and its various extensions. Table 2 summarizes which of our focused topics 

are covered by the reviewed research. Note that in Absi et al. (2011), both backlog and lost sales 

are considered, but not simultaneously.  

 Capacitated Multi-item Backlog Lost Sales FLR 

Absi et al. (2011)   X X  

Gade and Küçükyavuz (2013)  X X  X 

Gruson et al. (2018) X X X  X 

Krarup and Bilde (1977)     X 

Liu et al. (2007) X   X  

Pochet and Wolsey (1988) X X X   

Sandbothe and Thompson 

(1990) 

X   X  

Table 2. Summary of Related Research 
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3. Overview of Various Existing Formulations 

In this section, we describe the transition of the standard capacitated multi-item lot-sizing 

model (CLSP) towards a reformulation that incorporates both backlog and lost sales 

simultaneously. In Section 3.1, we review the classic MIP formulation presented by Pochet and 

Wolsey (2006).  We then explore two adapted versions of the model which take into account 

backlog (Section 3.2) and lost sales (Section 3.3) separately. Due to the MIP formulation’s 

limitations, we turn to different formulations that are capable to handle our problem better. Section 

3.4 briefly reviews the concepts behind the classic facility location problem. In Section 3.5 we 

propose the facility location reformulation developed by Krarup and Bilde (1977) as a possible 

solution to our problem. We present the facility location reformulation with backlog (Section 3.6) 

and lost sales (Section 3.7) separately. In Section 3.8, we develop our reformulation which 

consider both backlog and lost sales simultaneously. This section proposes two models with 

different types of lost sales: a fixed and a variable version. In the following sections, extensions to 

our two developed formulations are proposed. In Section 3.9, we rewrite the formulation to 

consider a scenario where there is no restrictions on the number of periods demand can be 

backlogged for. In Section 3.10, we propose a formulation that considers multiple customer types 

instead of the common single customer type approach.     

3.1 Basic Formulation: Classic Multi-Item Capacitated Lot-Sizing 

Problem (CLSP) 
 

The premise of the basic lot-sizing problem is to determine the optimal time and batch sizes 

that must be produced to satisfy a dynamic demand in a discrete and finite time horizon. Pochet 

and Wolsey (2006) present the classic MIP formulation which uses three important sets of 
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variables: inventory, production, and setup variables. General notations for the capacitated multi-

item lot-sizing formulations we will be using are as follows:  

 

Parameters: 
 

T Set of time periods {1, …, m} 

N Set of items {1, …, n}  

𝑆𝐶𝑖𝑡 The setup cost of production for item i during period t, ∀i ∈ N, ∀t ∈ T  

𝑉𝐶𝑖𝑡 The unit production cost for item i during period t, ∀i ∈ N, ∀t ∈ T  

𝐻𝐶𝑖𝑡 The unit holding cost for item i during period t, ∀i ∈ N, ∀t ∈ T  

𝐶𝑎𝑝𝑡  The production capacity during period t, ∀t ∈ T  

𝑈𝑇𝑖𝑡 The unit production time for item i during period t, ∀i ∈ N, ∀t ∈ T  

𝑆𝑇𝑖𝑡 The setup time for item i during period t, ∀i ∈ N, ∀t ∈ T  

𝑑𝑖𝑡 Demand of item i for period t, ∀i ∈ N, ∀t ∈ T  

𝐼𝑖0 The amount of inventory of item i at the beginning of period 1, ∀i ∈ N 

𝑀𝑖𝑡 = 𝑀𝑖𝑛{ (∑ 𝑑𝑖𝑙), (
𝐶𝑎𝑝𝑡−𝑆𝑇𝑖𝑡

𝑈𝑇𝑖𝑡
)}𝑚

𝑙=𝑡  

Decision Variables: 

𝑋𝑖𝑡 The amount of item i produced in period t, ∀i ∈ N, ∀t ∈ T   

𝐼𝑖𝑡 The amount of inventory for item i at the end of period t, ∀i ∈ N, ∀t ∈ T  

𝑌𝑖𝑡 Set up variable for item i in period t, takes on the value of 1 if production takes place and 

becomes 0 otherwise, ∀i ∈ N, ∀t ∈ T  

 

CLSP 

 

Min   ∑∑(𝑉𝐶𝑖𝑡𝑋𝑖𝑡 +𝐻𝐶𝑖𝑡𝐼𝑖𝑡 + 𝑆𝐶𝑖𝑡𝑌𝑖𝑡
𝑖∈𝑁𝑡∈𝑇

)                                                        (1) 

 𝑆. 𝑇.    𝐼𝑖,𝑡−1 + 𝑋𝑖𝑡 = 𝑑𝑖𝑡 + 𝐼𝑖𝑡  ∀i ∈ N, ∀t ∈ T (2) 

 𝑋𝑖𝑡 ≤ 𝑀𝑖𝑡𝑌𝑖𝑡  ∀i ∈ N, ∀t ∈ T (3) 
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 ∑ (𝑈𝑇𝑖𝑡𝑋𝑖𝑡 + 𝑆𝑇𝑖𝑡𝑌𝑖𝑡)𝑖∈𝑁 ≤ 𝐶𝑎𝑝𝑡  ∀t ∈ T (4) 

 𝐼𝑖0 = 0  ∀i ∈ N (5) 

 𝑌𝑖𝑡 ∈ {0,1}  ∀i ∈ N, ∀t ∈ T (6) 

 𝑋𝑖𝑡 , 𝐼𝑖𝑡 ≥ 0  ∀i ∈ N, ∀t ∈ T (7) 

 

We first consider the capacitated multi-item lot-sizing model, as formulated by Trigeiro et 

al. (1989), as an appropriate representation of a production planning problem for a manufacturer 

that faces a deterministic demand. The objective function (1) is to minimize the sum of the unit 

production cost, inventory cost, and setup cost. This model attempts to find the optimal solution 

while adhering to a number of restrictions. Constraints (2) are the balancing constraints that ensure 

that all demand is satisfied by either production or inventory. Figure 1 provides a graphical 

illustration of the structure of the inventory balance constraints for an uncapacitated single-item 

lot-sizing model. 

 

Figure 1. Graphical Representation of the Inventory Balance Constraints for the Single-Item ULSP 
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In this example the time horizon consists of five periods and there is no starting inventory. 

For every period, we must satisfy a given demand represented by dt. The nodes represent each 

period labelled from 1 to 5, while the arcs represent the flow of products. Each period node must 

obtain products from incoming arcs, either production (Xt) or inventory (It), in order to satisfy the 

demand (outgoing arc) in that period.  

The setup constraints (3) force a setup for production during each period if production is 

strictly positive. Constraints (4) are the capacity restrictions in terms of units of time consumed by 

both regular production and production setups. Constraints (5) set the initial inventory to zero. 

Constraints (6) and (7) are binary and non-negativity constraints respectively.  

3.2 CLSP with Backlog 

This classic formulation can be further extended to consider the concept of backlog (Pochet and 

Wolsey 1988, Zangwill 1969). In this scenario, we allow demand to be satisfied at a later period 

at a penalty. Let 𝐵𝑖𝑡 equal the number of items i that are backlogged at the end of period t (∀i ∈ N, 

∀t ∈ T), and let 𝐵𝐶𝑖𝑡 be the unit cost incurred for backlogging one item of i at the end of period t. 

Furthermore, we define 𝑀′𝑖𝑡 as follows: 𝑀′𝑖𝑡 = 𝑀𝑖𝑛{ (∑ 𝑑𝑖𝑙), (
𝐶𝑎𝑝𝑡−𝑆𝑇𝑖𝑡

𝑈𝑇𝑖𝑡
)}𝑚

𝑙=1 . With the newly 

added decision variable and cost parameter, the formulation is adapted as follows 

CLSP-B 

Min   ∑∑(𝑉𝐶𝑖𝑡𝑋𝑖𝑡 +𝐻𝐶𝑖𝑡𝐼𝑖𝑡 + 𝑆𝐶𝑖𝑡𝑌𝑖𝑡 + 𝐵𝐶𝑖𝑡𝐵𝑖𝑡)

𝑖∈𝑁𝑡∈𝑇

                                  (8) 

 𝑆. 𝑇.    (4), (5), (6), 𝑎𝑛𝑑  

 𝐼𝑖,𝑡−1 + 𝑋𝑖𝑡 + 𝐵𝑖𝑡 = 𝑑𝑖𝑡 + 𝐼𝑖𝑡 + 𝐵𝑖,𝑡−1  ∀i ∈ N, ∀t ∈ T (9) 

 𝑋𝑖𝑡 ≤ 𝑀′𝑖𝑡𝑌𝑖𝑡  ∀i ∈ N, ∀t ∈ T (10) 
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 𝑋𝑖𝑡 , 𝐼𝑖𝑡 , 𝐵𝑖𝑡 ≥ 0, 𝐵𝑖𝑚 = 0  ∀i ∈ N, ∀t ∈ T (11) 

  

 

The objective function (8) minimizes the total cost which now includes backlog cost. The 

backlog variable is added to constraints (9) which allows that demand can be satisfied at a later 

period. In the setup forcing constraints (10), the 𝑀′𝑖𝑡 represents a large number that is now equal 

to the following: 

Constraints (11) have replaced constraints (7) as the updated non-negativity constraints. In 

addition, these constraints ensures that there cannot be backlog remaining at the end of the time 

horizon. In both models at this point, we assume no lost sales. By forcing 𝐵𝑖𝑚 = 0, we assure that 

all demand must be satisfied by production within the time horizon. The important question of this 

problem is when each item will be produced. Depending on when each item is produced, different 

costs will be incurred. 

 

Figure 2. Graphical Representation of the Inventory Balance Constraints for the Single-Item ULSP with Backlog 

Figure 2 provides a visual for the added backlog variable to the original structure of the 

inventory balance constraints for a single-item ULSP with backlog. In this formulation, there is 
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more flexibility for satisfying demand due to the addition of another incoming arc. Each period t 

now has three methods to satisfy demand: on-time production (Xt), inventory (It-1), and backlog 

(Bt). For every method used there is an associated cost to it. Throughout our thesis we denote t as 

the period in which demand is satisfied and denote k as the period in which the item is produced. 

Demand that is produced in the same period (𝑘 = 𝑡) will not have any additional cost other than 

the variable production cost (𝑉𝐶𝑖𝑡). For instance, every unit of D3 that is satisfied by X3 will only 

incur the variable production cost. As for products that were produced before the demand period, 

they will have an additional inventory cost (𝐻𝐶𝑖𝑡) for each period equal to (𝑡 − 𝑘) periods. 

Therefore, if D3 is satisfied by X1, a holding cost will be incurred for both periods it was held in 

inventory (I1 and I2 ≥ 0). Products that were produced later than the demand period, will have an 

additional backlog cost (𝐵𝐶𝑖𝑡) for (𝑘 − 𝑡) periods. Similarly to inventory, if D3 is satisfied by X5, 

a backlog cost will be incurred for both periods it was backlogged (B3 and B4 ≥ 0). 

 For the context of our research, we assume that 𝐻𝐶𝑖𝑡 ≤ 𝐵𝐶𝑖𝑡. Although the CLSP 

formulation is a correct formulation to solve the lot-sizing problems, it has limitations that prevents 

it from being effective when backlog is added to the formulation. We discuss these limitations in 

greater depth in Section 3.4.   

3.3 CLSP with Lost Sales 

Oftentimes in CLSP models we assume that all demand will eventually be satisfied. 

However, customers may chose not to wait in case of a stock-out. They may opt to purchase the 

product from a competitor, purchase a substitute product, or decide not to purchase it at all. To 

incorporate this concept of lost sales, we can construct a reformulation of the CLSP with lost sales 

(Sandbothe and Thompson 1990, Absi et al. 2011, Aksen et al. 2003).  When potential demand is 

lost because it cannot be met on time, the company incurs lost sales. Lost sales is a variable 
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commonly found in profit maximization formulations. However, Aksen et al. (2003) explain how 

lost sales can also be used in a cost minimization formulation.  

Aksen et al. (2003) study a single-item lot-sizing problem where the firm has to decide 

whether or not to satisfy demand in a period. In this problem, it is assumed that demand cannot be 

backlogged and all unsatisfied demand becomes lost sales. Aksen et al. (2003) defines 𝑝𝑡 as the 

unit revenue (unit-selling price) in period t, ∀t ∈ T. They also define 𝐿𝑡 as the number of lost sales 

in period t. Typically when dealing with lost sales, the model is a profit maximization formulation 

and the objective function is written as follows: 

(𝑀𝑎𝑥) 𝑃𝑟𝑜𝑓𝑖𝑡 (𝜋) =∑𝑝𝑡(𝑑𝑡 − 𝐿𝑡)

𝑇

𝑡=1

−∑(𝑆𝐶𝑡𝑌𝑡 + 𝑉𝐶𝑡𝑋𝑡 + 𝐻𝐶𝑡𝐼𝑡)

𝑇

𝑡=1

 

The components of the objective function consist of the total revenue minus the relevant 

costs (setup, production, and holding). In some cases, it can happen that companies facing low 

demand with low gross marginal profit in a certain period, may find it more profitable to lose that 

demand (Aksen et al., 2003). Total revenue over the time horizon is not constant and therefore the 

total profit cannot be maximized just by minimizing the total cost. To account for this, the paper 

makes a fundamental assumption that the gross marginal profit (𝑝𝑡 − 𝑉𝐶𝑡) is non-negative in each 

period t, in other words, the unit selling price is greater than or equal to the unit production cost 

(𝑝𝑡 ≥ 𝑉𝐶𝑡). The authors then rearrange the objective function as follows: 

(𝑀𝑎𝑥) 𝑃𝑟𝑜𝑓𝑖𝑡 (𝜋) =∑𝑝𝑡𝑑𝑡

𝑇

𝑡=1

−∑(𝑆𝐶𝑡𝑌𝑡 + 𝑉𝐶𝑡𝑋𝑡 + 𝐻𝐶𝑡𝐼𝑡 + 𝑝𝑡𝐿𝑡)

𝑇

𝑡=1
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The first term of the objective function is now a data-dependent constant that can be 

removed. By removing the constant, the formulation can easily be turned into a minimization 

problem. We can rewrite the objective function as follows: 

(𝑀𝑖𝑛) − 𝑃𝑟𝑜𝑓𝑖𝑡 (𝜋) =∑(𝑆𝐶𝑡𝑌𝑡 + 𝑉𝐶𝑡𝑋𝑡 + 𝐻𝐶𝑡𝐼𝑡 + 𝑝𝑡𝐿𝑡)

𝑇

𝑡=1

− 𝑐𝑜𝑛𝑠𝑡. 

This derivation and further details can be found in Aksen et al. (2003). With this new 

formulation, the unit revenue parameter (𝑝𝑡) acts as a lost sales cost. In practice, the cost associated 

to a lost sale can be even larger than 𝑝𝑡 when the cost of the loss of customer goodwill is included.  

The assumption of a non-negative profit margin proposed by Aksen et al. (2003) and Liu 

et al. (2007), is used in this thesis as is reflects the realistic production planning problem we are 

trying to emulate. 

For our formulation with lost sales, we consider a scenario where there is no longer the 

possibility of backlog. If the demand cannot be met on time, lost sales are incurred. Figure 3 shows 

the new network where backlog is prohibited and lost sales occur. Note the new incoming arcs 

(Lt). The lost sales arcs differ from the backlog arcs discussed in the previous section. Lost sales 

provides an alternative means to balancing the demand. Using the lost sales alternative rather than 

matching the demand with production, however comes at a high cost.   
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Figure 3. Graphical Representation of the Inventory Balance Constraints for the Single-Item ULSP with Lost Sales (Adapted 

from Sandbothe and Thompson, 1990) 

To incorporate lost sales in the CLSP formulation, we let 𝐿𝑖𝑡 be the amount of lost sales 

for item i in period t (∀i ∈ N, ∀t ∈ T), and let 𝐿𝐶𝑖𝑡 equal the unit cost incurred for the lost sale of 

item i in period t (∀i ∈ N, ∀t ∈ T). 𝐿𝐶𝑖𝑡 is at least equal to the unit selling price as explained in 

Aksen et al. (2003), but can be larger if the cost related to the loss of customer goodwill is included. 

The new formulation proposed by Aksen et al. (2003) is written as follow: 

CLSP-L 

Min   ∑∑(𝑉𝐶𝑖𝑡𝑋𝑖𝑡 +𝐻𝐶𝑖𝑡𝐼𝑖𝑡 + 𝑆𝐶𝑖𝑡𝑌𝑖𝑡 + 𝐿𝐶𝑖𝑡𝐿𝑖𝑡)

𝑖∈𝑁𝑡∈𝑇

                                  (12) 

 𝑆. 𝑇.    (4), (5), (6), 𝑎𝑛𝑑  

 𝐼𝑖,𝑡−1 + 𝑋𝑖𝑡 + 𝐿𝑖𝑡 = 𝑑𝑖𝑡 + 𝐼𝑖𝑡  ∀i ∈ N, ∀t ∈ T (13) 

 𝑋𝑖𝑡 ≤ 𝑀𝑖𝑡𝑌𝑖𝑡  ∀i ∈ N, ∀t ∈ T (14) 
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 𝑋𝑖𝑡 , 𝐼𝑖𝑡 , 𝐿𝑖𝑡 ≥ 0  ∀i ∈ N, ∀t ∈ T (15) 

 

In the CLSP with lost sales formulation, the lost sales cost replaces the cost for backlog in 

the objective function (12). For the purpose of clarity, we refer to index k as the period in which 

item i is produced, and let index t indicate the period in which demand is to be satisfied. In the 

balancing constraints (13), the demand (𝑑𝑖𝑡) in period t can now be satisfied by on-time production 

(𝑋𝑖𝑘, 𝑘 = 𝑡) , early production (𝑋𝑖𝑘, 𝑘 < 𝑡) or lost sales (𝐿𝑖𝑡). The lost sales variable can be 

interpreted as a ghost production variable. In the first two models, total demand must be satisfied 

before the end of the time horizon. Production was also the only method to meet demand. Now 

with the possibility of lost sales, production is no longer forced to satisfy all demand. In case of 

lost sales, the variable production cost (𝑉𝐶𝑖𝑡) may not be charged, only the cost related to lost sales 

(𝐿𝐶𝑖𝑡) will be. Total demand over the time horizon can now be satisfied by either production or 

lost sales. Constraints (14) enforce the production setup and returns to its original form from the 

basic CLSP formulation. Constraints (15) are the non-negativity constraints. 

 

3.4 Facility Location Problem 
 

While the MIP formulations presented above are capable of providing optimal solutions 

for these basic cases, Gruson et al. (2018) explain how they have a major disadvantage which 

prevents us from using them any further. The classic formulation is capable of identifying backlog, 

however not backorders. This can cause issues when we develop our formulation with backlog 

and lost sales, because we need to be able to measure stock-out levels. When no lost sales are 

present, the backorder level in period t refers to the quantity of unsatisfied demand in the given 

period, whereas backlog in period t represents the number of backorders from the beginning of the 

time horizon up to period t that have still not been met at the end of period t (Gruson et al. 2018, 
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Gade and Küçükyavuz 2013). The backlog variable is the sum of the remaining (i.e. yet satisfied) 

backorders which could represent multiple combinations of backorders. For instance, if 𝐵𝑖1=1 and 

𝐵𝑖2=2, this could represent two different situations with respect to backorders. There could be one 

backorder accumulated in both periods that have not yet been satisfied or one backorder in period 

1 that was satisfied in period 2 and two new backorders accumulated in period 2. The classical 

formulation is unable to distinguish between these two cases. This is explained in more detail in 

Gruson et al. (2018). 

In order to combine both backlog and lost sales simultaneously, we need to know when the 

stock-out occurred and how many units were backordered. This will enable the penalty cost to be 

properly accounted for. To further extend our problem while allowing us to keep track of when a 

product was backordered and for how long it has been backlogged for, we use the facility location 

reformulation of the lot-sizing problem proposed by Krarup and Bilde (1977). In addition, it will 

give us the ability to apply restrictions on the number of periods an item can be backlogged for. 

Furthermore, the facility location reformulation typically provides a better linear programming 

relaxation, and hence improves the computational time (Krarup and Bilde, 1977).  

Before we review the Krarup and Bilde (1977) reformulation, we first review the 

formulation for the facility location problem (FLP) that it was based on. The FLP was originally 

developed to select the best placement of v facilities with unrestricted size in order to minimize 

the total cost for satisfying given demand at w customer locations.  

Daskin (2008) describes a facility location model that aims to minimize the sum of the 

fixed and variable costs while satisfying all demand zones.  The variable cost (𝑐𝑖𝑗) is the total cost 

for satisfying all customers in zone j from facility i, while the fixed cost (𝑓𝑖) is the cost for opening 

facility i. This formulation has two sets of decision variables, (𝑥𝑖𝑗) which is the fraction of the 
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customer’s demand in zone j that is satisfied by facility i. The second is a binary variable (𝑦𝑖) that 

is equal to 1 if facility i is open and 0 otherwise. In this formulation, we let 𝑉 be the set of facilities 

{1,…, v}, and let 𝑊 represent the set of customer locations{1,…, w}. The formulation looks as 

follows: 

FLP 

Min   ∑∑ 𝑐𝑖𝑗𝑥𝑖𝑗 +∑𝑓𝑖𝑦𝑖
𝑖∈𝑉𝑗∈𝑊𝑖∈𝑉

                                                                           (16) 

 𝑆. 𝑇.    ∑ 𝑥𝑖𝑗 = 1𝑖∈𝑉   ∀j ∈ W (17) 

 𝑥𝑖𝑗 ≤ 𝑦𝑖     ∀i ∈ V, ∀j ∈ W (18) 

 𝑦𝑖𝑗 ∈ {0,1}  ∀i ∈ V, ∀j ∈ W (19) 

 𝑥𝑖𝑗 ≥ 0  ∀i ∈ V, ∀j ∈ W (20) 

The objective function (16) minimizes the total variable and fixed cost. Constraints (17) 

ensure that demand for each customer zone is satisfied, while constraints (18) only allow demand 

to be satisfied by opened facilities.  

3.5 Facility Location Reformulation    
 

Krarup and Bilde (1977) proposed the facility location reformulation of the lot-sizing 

problem. This reformulation gives us the ability to distinguish between backlog and backorders. 

For a backorder in a given period, we are now able to place limits on the number of periods an 

item can be backlogged for. This formulation provides the flexibility and structure that allows us 

to formulate a problem with both lost sales and backlog simultaneously.  
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Facility Location Reformulation without Backlog or Lost Sales 

 In the facility location reformulation, a new variable 𝑍𝑖𝑘𝑡 denotes the quantity of product 

i produced in period k to satisfy demand in period t (∀i ∈ N, ∀t ∈ T, ∀k ∈ T). In the basic 

formulation where we assume no backlog, the following relationships hold: 

  

𝑋𝑖𝑡 =∑ 𝑍𝑖𝑡𝑘
𝑚

𝑘=𝑡
 

 

𝑑𝑖𝑡 =∑ 𝑍𝑖𝑘𝑡
𝑡

𝑘=1
 

 
 

 The first equality states that production in period t can only be used to satisfy demand in t 

or in a later period. While the second equality states that all demand must be satisfied by early or 

on-time production during the time horizon.   

The facility location reformulation of the capacitated lot-sizing problem is written as follows: 

FLR 

Min   ∑∑∑𝑉𝐶𝑖𝑘𝑍𝑖𝑘𝑡 +

𝑡

𝑘=1

∑∑𝑆𝐶𝑖𝑡
𝑡∈𝑇

𝑌𝑖𝑡
𝑖∈𝑁𝑡∈𝑇𝑖∈𝑁

+∑∑∑(∑𝐻𝐶𝑖𝑙

𝑡−1

𝑙=𝑘

)𝑍𝑖𝑘𝑡

𝑡

𝑘=1𝑡∈𝑇𝑖∈𝑁

                                                     (21) 

 𝑆. 𝑇.   ∑ 𝑍𝑖𝑘𝑡 = 𝑑𝑖𝑡
𝑡
𝑘=1   ∀i ∈ N, ∀t ∈T (22) 

 𝑍𝑖𝑘𝑡 ≤ 𝑑𝑖𝑡𝑌𝑖𝑘       ∀i ∈ N, ∀t ∈T, ∀k ∈T | k ≤ t (23) 

 ∑ ∑ 𝑈𝑇𝑖𝑡
𝑚
𝑙=𝑡𝑖∈𝑁 𝑍𝑖𝑡𝑙 + ∑ 𝑆𝑇𝑖𝑡𝑌𝑖𝑡 ≤ 𝐶𝑎𝑝𝑡𝑖∈𝑁   ∀t ∈T (24) 

 𝑌𝑖𝑡 ∈ {0,1}  ∀i ∈ N, ∀t ∈T (25) 
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 𝑍𝑖𝑘𝑡 ≥ 0  ∀i ∈ N, ∀t ∈T, ∀k ∈T (26) 

 In the facility location reformulation, the objective function and constraints have similar 

interpretations as in the standard CLSP model. The objective function (21) minimizes the sum of 

the unit production cost, setup cost and inventory cost. Constraints (22) ensure that all demand 

must be satisfied. Constraints (23) are the setup constraints, while constraints (24) are the capacity 

constraints. Constraints (25) and (26) are the binary and non-negative constraints respectively.   

 The 𝑍𝑖𝑘𝑡 variable contains the information of which item is produced, when it was 

produced, and when it satisfied demand. With this variable, it is now possible to differentiate 

between backlog and backorders (Gruson et al., 2018). At the same time, this variable eliminates 

the need for the production (𝑋𝑖𝑡), inventory (𝐼𝑖𝑡), and backlog (𝐵𝑖𝑡) variables that were needed in 

the CLSP formulation. Instead, these variables can be identified by the configuration of the k, t 

indices. When k = t, 𝑍𝑖𝑘𝑡 refers to the number of items i produced and satisfied in period t. When 

k < t, 𝑍𝑖𝑘𝑡 equals the number of products made in period k that have been held in inventory for 

(𝑡 − 𝑘) periods, until its demand was satisfied in period t. For example, 𝑍𝑖13 indicates the number 

of units of item i that were produced in period 1 and consumed in period 3. From this, we can 

gather that these units were held in inventory for two periods and the associated holding cost can 

be calculated.  
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3.6 Facility Location Reformulation with Backlog  

If backlog is considered, demand for period t can now be satisfied by production in any 

period k. This leads to the following relationships: 

𝑋𝑖𝑡 =∑ 𝑍𝑖𝑡𝑘
𝑚

𝑘=1
 

 

𝑑𝑖𝑡 =∑ 𝑍𝑖𝑘𝑡
𝑚

𝑘=1
 

 

When k  > t, 𝑍𝑖𝑘𝑡 equals the number of products made in period k that were backordered 

in period t and have been backlogged for (𝑘 − 𝑡) periods. A backlog cost 𝐵𝐶𝑖𝑡 is added to the 

objective function for each period an item is backlogged for. With backlog considered the resulting 

formulation is as follows: 

FLR-B 

Min   ∑∑∑𝑉𝐶𝑖𝑘𝑍𝑖𝑘𝑡 +

𝑡

𝑘=1

∑∑𝑆𝐶𝑖𝑡
𝑡∈𝑇

𝑌𝑖𝑡 +

𝑖∈𝑁𝑡∈𝑇

∑∑∑(∑𝐻𝐶𝑖𝑙

𝑡−1

𝑙=𝑘

)𝑍𝑖𝑘𝑡

𝑡

𝑘=1

𝑚

𝑡=1𝑖∈𝑁𝑖∈𝑁

     

+∑∑ ∑ (∑𝐵𝐶𝑖𝑙

𝑘−1

𝑙=𝑡

)𝑍𝑖𝑘𝑡

𝑚

𝑘=𝑡+1

𝑚−1

𝑡=1𝑖∈𝑁

                                                                                   (27) 

 𝑆. 𝑇.   (25), (26), 𝑎𝑛𝑑 

∑ 𝑍𝑖𝑘𝑡 = 𝑑𝑖𝑡
𝑚
𝑘=1   ∀i ∈ N, ∀t ∈T (28) 

 𝑍𝑖𝑘𝑡 ≤ 𝑑𝑖𝑡𝑌𝑖𝑘       ∀i ∈ N, ∀t ∈T, ∀k ∈T (29) 

∑ ∑ 𝑈𝑇𝑖𝑡
𝑚
𝑙=1𝑖∈𝑁 𝑍𝑖𝑡𝑙 + ∑ 𝑆𝑇𝑖𝑡𝑌𝑖𝑡 ≤ 𝐶𝑎𝑝𝑡𝑖∈𝑁   ∀t ∈T (30) 
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The objective function (27) now includes the sum of the backlog costs. Constraints (22), 

(23), and (24) are changed into constraints (28), (29), and (30) to include the possibility of 

satisfying a demand from any period. Since in constraints (28) all demand must be satisfied within 

the time horizon, there is no backlog possible at the end of the horizon and therefore makes the 

previous 𝐵𝑖𝑚 = 0 constraints obsolete.  

 As the cost function for each item depends on when they were produced, we can simplify 

the cost coefficient as follows: 

 

 

𝐶𝑖𝑘𝑡 = 

{
  
 

  
 (𝑉𝐶𝑖𝑘 +∑𝐻𝐶𝑖𝑙

𝑡−1

𝑙=𝑘

)  𝑖𝑓 𝑘 < 𝑡

𝑉𝐶𝑖𝑘                       𝑖𝑓 𝑘 = 𝑡

(𝑉𝐶𝑖𝑘 +∑𝐵𝐶𝑖𝑙

𝑘−1

𝑙=𝑡

)  𝑖𝑓 𝑘 > 𝑡

 

 

 

 With the new cost coefficient the objective function can now be written as follows: 

 

Min   ∑∑(𝑆𝐶𝑖𝑡𝑌𝑖𝑡 +∑𝐶𝑖𝑘𝑡

𝑚

𝑘=1

𝑍𝑖𝑘𝑡)

𝑡∈𝑇𝑖∈𝑁

                                                         (31) 

  

Moving forward in this thesis, we build upon the above formulation to simplify the 

notations.  

Up to this point we have considered that backlog has no restrictions, and therefore demand 

can be satisfied during any period in the time horizon. We can add a restriction on the number of 

periods an item can be backlogged for. Let r be the maximum number of periods an item can be 
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backlogged for. We define the set of R as R={1,…, r}. The stocked-out items that become 

backlogged will now be restricted to r periods before they must be satisfied. The resulting model 

would be rewritten as follows:  

FLR-BR 

Min (31) 

𝑆. 𝑇.   (25), (26), 𝑎𝑛𝑑 

∑ 𝑍𝑖𝑘𝑡 = 𝑑𝑖𝑡
min {𝑚,𝑡+𝑟}
𝑘=1   ∀i ∈ N, ∀t ∈T (32) 

𝑍𝑖𝑘𝑡 ≤ 𝑑𝑖𝑡𝑌𝑖𝑘       ∀i ∈ N, ∀t ∈T, ∀k ∈T | 1≤k≤min{m, t+r} (33) 

∑ ∑ 𝑈𝑇𝑖𝑡
𝑚
𝑙=max {𝑡−𝑟,1}𝑖∈𝑁 𝑍𝑖𝑡𝑙 + ∑ 𝑆𝑇𝑖𝑡𝑌𝑖𝑡 ≤ 𝐶𝑎𝑝𝑡𝑖∈𝑁   ∀t ∈T (34) 

Constraints (32) are the balancing constraints which now restrict backlog to r periods. 

Constraints (33) are the altered setup constraints, while constraints (34) enforce the capacity 

restrictions.  

The restricted backlog assumptions will be used when introducing our later models in 

section 3.8 and 3.9 which consider both backlog and lost sales simultaneously. However, an 

explanation on how to formulate the new problems with unlimited backlog will be provided as 

well.  

3.7 Facility Location Reformulation with Lost Sales 

In order to develop the facility location reformulation that considers lost sales, we return 

to a situation where backlog is prohibited and all demand that is not satisfied on time becomes lost 

sales. The resulting formulation is written as follows: 
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FLR-LS 

Min   ∑∑(𝑆𝐶𝑖𝑡𝑌𝑖𝑡 + 𝐿𝐶𝑖𝑡𝐿𝑖𝑡 +∑𝐶𝑖𝑘𝑡

𝑡

𝑘=1

𝑍𝑖𝑘𝑡)

𝑡∈𝑇𝑖∈𝑁

                                         (35) 

 𝑆. 𝑇.   (23), (24), (25), 𝑎𝑛𝑑 

∑ 𝑍𝑖𝑘𝑡 + 𝐿𝑖𝑡 = 𝑑𝑖𝑡
𝑡
𝑘=1   ∀i ∈ N, ∀t ∈T (36) 

𝑍𝑖𝑘𝑡 , 𝐿𝑖𝑡 ≥ 0  ∀i ∈ N, ∀t ∈T, ∀k ∈T (37) 

 The objective function (35) aims to minimize the sum of all the costs (production, holding, 

and setup) which now also include the cost for lost sales. It is important to note that since backlog 

is not allowed (𝑘 ≤ 𝑡), 𝐶𝑖𝑘𝑡 consists of only two cost possibilities: on-time production (𝑘 = 𝑡), 

and a product that has been held in inventory (𝑘 < 𝑡). The new balancing constraints (36) no longer 

restrict all demand to be satisfied by production. They now allow the possibility of demand being 

lost if not satisfied on time. Constraints (37) are the new non-negativity constraints which include 

the lost sales decision variable. Formulation FLR-LS shows that adding lost sales without the 

possibility of backlog can be easily formulated. Once you consider both options simultaneously 

the formulation becomes more complex, and several variants are possible depending on the 

assumption with respect to the relationship between lost sales and backlog.    
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4. Facility Location Reformulation with Simultaneous 

Backlog and Lost Sales 
 

  The goal of this thesis is to develop a formulation that can solve a multi-item lot-sizing 

problem that considers both backlog and lost sales. In addition, we aim to test its performance and 

efficiency versus similar formulations for comparative analysis. We formulate several variants for 

this new problem with different assumptions. Table 3 summarizes all the formulations that will be 

examined for our thesis. Note that the specifics of all listed formulations in Table 3 either have 

already been reviewed or will be explained in the later sections.    

 No Lost Sales Fixed Lost Sales Variable Lost Sales 

No Backlog FLR FLR-LS N.A. 

Unlimited Backlog FLR-B FLR-B-FL FLR-B-VL 

Restricted Backlog FLR-BR FLR-BR-FL FLR-BR-VL 

Backlog with 

Multiple Customer 

Types 

 

FLR-BM 

 

FLR-BM-FL 

 

FLR-BM-VL 

Table 3. Formulation Categories for Multi-item CLSP 

The basic lot-sizing model without backlog or lost sales is modeled as a facility location 

reformulation (FLR).  

As shown in Table 3, with respect to the lost sales, there are three variants of multi-item 

capacitated lot-sizing formulations that we examine: 

1. No lost sales, 

2. Fixed lost sales, 

3. Variable lost sales.  
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Both fixed and variable lost sales describe a scenario where in case a stock-out occurs, a 

fixed percentage of the unsatisfied demand automatically becomes lost sales. In a model with 

variable lost sales, the fixed percentage of unsatisfied demand is however a minimum and 

additional lost sales can be incurred if it is better for the company’s interest. The concepts of fixed 

versus variable sales will be further explained in Sections 4.1 and 4.2.  

There are also four different assumptions considered for backlog: 

1. Backlog is forbidden,  

2. The number of periods an item can be backlogged for is unlimited, 

3. The number of periods an item can be backlogged for is restricted, 

4. Backlog restrictions are dependent on multiple customer types. 

The case of multiple customer types describes a scenario where there are multiple customer 

types each with a different willingness to wait for stocked-out demand. This assumption of backlog 

with multiple customer types is new in the literature and extends the concept of the traditional 

single customer type. The concept of multiple customer types is further explained in Section 4.3.    

All formulations listed in Table 3 are similar in structure. In fact, all formulations can be 

derived from the FLR-BM-FL formulation by either removing constraints, altering constraints, or 

changing a parameter. A detailed explanation on how to reverse engineer the FLR-BM-FL 

formulation into the others will be provided in Section 4.4. Note that it is not possible to have a 

formulation without backlog and with variable lost sales. The formulations that only consider one 

of the two concepts (backlog and lost sales) such as FLR-LS, FLR-B, and FLR-BR, have already 

been reviewed in our previous sections. In our next sections we propose new formulations that 

consider both backlog and lost sales simultaneously. Furthermore, we explore these new 

formulation using different assumptions on backlog.  
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4.1 Facility Location Reformulation with Simultaneous Backlog and 

Fixed Lost Sales 
 

When considering lost sales with the possibility of backlog, there are two different types 

that can be explored: fixed lost sales and variable lost sales. In the case of fixed lost sales, we 

assume that when a stock-out occurs in period t, a fixed percentage of the unsatisfied demand will 

result in lost sales while the rest remains as backlog until that demand is satisfied. The 

interpretation of fixed lost sales is valid in case a company estimates that α percent of the customers 

who are faced with a stock-out are willing to wait for their item, while (1 – α) is not willing to 

wait, and their demand will be lost if there is a stock-out.  

We first define 𝑆𝑖𝑡 as the number of items i stocked-out in period t. A stock-out for a 

specific item i and period t is the amount of demand dit that is not satisfied on time and is calculated 

as follows: 𝑆𝑖𝑡 = (∑ 𝑍𝑖𝑘𝑡 +𝐿𝑖𝑡)
min {𝑚,𝑡+𝑟}
𝑘=𝑡+1 . In addition, we let α be the percentage of stock-out 

for a specific period that will remain as backlog, and let (1-α) be the remainder of the stock-out 

that becomes lost sales. The backlogged stock-outs are, however, restricted to r periods of backlog. 

The resulting formulation with restricted backlog and fixed lost sales is as follows: 

FLR-BR-FL 

Min   ∑∑(𝑆𝐶𝑖𝑡𝑌𝑖𝑡 + 𝐿𝐶𝑖𝑡𝐿𝑖𝑡 + ∑ 𝐶𝑖𝑘𝑡

min {𝑚,𝑡+𝑟}

𝑘=1

𝑍𝑖𝑘𝑡)

𝑚

𝑡=1

𝑁

𝑖=1

                            (38) 

𝑆. 𝑇.    (25), (33), (34), (37), 𝑎𝑛𝑑   

 ∑ 𝑍𝑖𝑘𝑡 + 𝐿𝑖𝑡 = 𝑑𝑖𝑡
min {𝑚,𝑡+𝑟}
𝑘=1   ∀i ∈ N, ∀t ∈T (39) 

 𝐿𝑖𝑡 = (1 − 𝛼)(∑ 𝑍𝑖𝑘𝑡 + 𝐿𝑖𝑡
min {𝑚,𝑡+𝑟}
𝑘=𝑡+1 )  ∀i ∈ N, ∀t ∈T (40) 
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 The objective function (38) minimizes the sum of production cost, holding cost, setup cost, 

backlog cost, and cost of lost sales. Constraints (39) ensures that demand is either satisfied by 

production or becomes lost sales. Constraints (40) sets (1 − 𝛼) percentage of the stocked-out 

demand in period t as lost sales. If we look at this constraint more closely, ∑ 𝑍𝑖𝑘𝑡
min {𝑚,𝑡+𝑟}
𝑘=𝑡+1  

represents backorders for demand in period t according to the definition in Gruson et al. (2018). 

When we take (∑ 𝑍𝑖𝑘𝑡 + 𝐿𝑖𝑡)
min {𝑚,𝑡+𝑟}
𝑘=𝑡+1  altogether, it represent the total stocked-out demand in 

period t, consisting of the amount backordered and the lost sales.  

 The case where there are no restrictions on backlog can also be modeled. This type of 

formulation has the objective function and constraints written as follows: 

FLR-B-FL 

Min   ∑∑(𝑆𝐶𝑖𝑡𝑌𝑖𝑡 + 𝐿𝐶𝑖𝑡𝐿𝑖𝑡 +∑𝐶𝑖𝑘𝑡

𝑚

𝑘=1

𝑍𝑖𝑘𝑡)

𝑚

𝑡=1

𝑁

𝑖=1

                                        (41) 

 

𝑆. 𝑇.    (25), (30), (37), 𝑎𝑛𝑑   

 ∑ 𝑍𝑖𝑘𝑡 + 𝐿𝑖𝑡 = 𝑑𝑖𝑡
𝑚
𝑘=1   ∀i ∈ N, ∀t ∈T (42) 

 𝑍𝑖𝑘𝑡 ≤ 𝑑𝑖𝑡𝑌𝑖𝑘      ∀i ∈ N, ∀t ∈T, ∀k ∈T (43) 

 𝐿𝑖𝑡 = (1 − 𝛼)(∑ 𝑍𝑖𝑘𝑡 + 𝐿𝑖𝑡)
𝑚
𝑘=𝑡+1  ∀i ∈ N, ∀t ∈T (44) 

 The objective function (41) is the same as in FLR-BR-FL, but without the backlog 

restriction of r periods. Constraints (42) are the demand balancing constraints that enable demand 

to be satisfied by any period in the time horizon. Constraints (43) are the setup constraints. 
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Constraints (44) are the lost sales constraints which force a fixed percentage of the stock-outs to 

become lost sales.  

 Note that as an alternative, model FLR-B-FL can be obtained from model FLR-BR-FL by 

setting r = m-1. 

 To help clarify the fixed lost sales models, we review a small example with two items (n = 

2) and a planning horizon of four periods (m = 4). For the purpose of this example, we use the 

FLR-B-FL formulation which does not impose any backlog restrictions. In Tables 4 and 5, we lay 

out the parameters. In this example, the costs parameters may change depending on the item, but 

remain the same during each period. An instance where costs change depending on the period 

could also be solved by our formulation. As a final note, we set α = 50%.  

Parameters Item 1 (i=1) Item 2 (i=2) 

Variable Cost (VCit) 0 0 

Holding Cost (HCit) 1 1 

Setup Cost (SCit) 25 50 

Lost Sales Cost (LCit) 12 12 

Backlog Cost (BCit) 3 3 

Unit Production Time (UTit) 1 3 

Setup Time (STit) 2 5 

Table 4. List of Values for Cost and Time Parameters 
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Parameters Items 

(i) 

Period 1 

(t=1) 

Period 2 

(t=2) 

Period 3 

(t=3) 

Period 4 

(t=4) 

Demand (dit) i=1 10 5 10 10 

i=2 2 2 6 3 

Capacity (Capt) 20 30 25 35 

Percentage of fixed lost sales (1-α) 50% 

Table 5. List of Values for Demand and Capacity 

 Once we solve this dataset using CPLEX 12.6.3.0, we obtain the optimal objective function 

of 219. We can break down our solution by examining the values of our decision variables. Table 

6 summarizes the solution of item 1, while Table 7 reviews the solution of item 2. 

Zikt 

Variables 

t=1 t=2 t=3 t=4 Total Cost 

Y1t 1 1 1 0 25+25+25=75 

Z11t 10 0 0 0 0 

Z12t 0 15 0 0 0 

Z13t 0 0 10 10 10 

Z14t 0 0 0 0 0 

L1t 0 0 0 0 0 

S1t 0 0 0 0  

d1t 10 15 10 10  

Objective Function 85 

Table 6. Solution for the Decision Variables for Item 1 using FLR-B-FL 
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Zikt 

Variables 

t=1 t=2 t=3 t=4 Total Cost 

Y2t 0 0 0 1 50 

Z21t 0 0 0 0 0 

Z22t 0 0 0 0 0 

Z23t 0 0 0 0 0 

Z24t 1 1 3 3 9+6+9=24 

L2t 1 1 3 0 60 

S2t 2 2 6 0  

d2t 2 2 6 3  

Objective Function 134 

Table 7. Solution for the Decision Variables for Item 2 using FLR-B-FL 

In this example, we have item 1 which has a low setup cost and item 2 which has a higher 

setup cost. The low setup cost encourages more frequent production in order to avoid extra costs 

for inventory, backlog, and lost sales. Notice that item 1 never incurs lost sales.  It is optimal for 

item 1 to be produced on-time in almost every period. The sole reason for the demand of period 4 

being produced in period 3 is that the capacity is needed in period 4 for item 2. With regards to 

item 2, it is more economical to produce all the demand over the horizon in one period because of 

its large setup cost. Production would rather receive the additional penalties for backlog and lost 

sales then pay for the high setup cost. The lost sales and backlog penalties are also less detrimental 

for item 2 because the demand in units is relatively low.  If we refer to Table 7, all on-time 

production is located in the cell where k = t. These cells result in no costs other than the initial cost 

to set up production for that given period. All early production (where products were held in 
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inventory for one or more periods) are shown in the cells where k < t.  For the cells where k > t, 

they indicate the backlogged demand that was produced the period k. 

Backlogged demand incurs a backlog cost for every period that demand is not satisfied for. 

Let’s take 𝑍24𝑡 in Table 7 as an example. The calculations for the backlog cost related to the 

production in period 4 are conducted as follows:  

((𝐵𝐶23 + 𝐵𝐶22 + 𝐵𝐶21)𝑍241) + ((𝐵𝐶23 + 𝐵𝐶22)𝑍242)  + ((𝐵𝐶23)𝑍243) 

((9) ∗ 1) + ((6) ∗ 1) + ((3) ∗ 3) = 24 

 

In the FLR-B-FL model, having backlog indicates that there was a stock-out. For each 

period t that a stock-out occurs, a percentage of the unmet demand in period (𝑆𝑖𝑡) is lost. In this 

case (1-α) is 50 percent. The complete demand of 2 units in period 1 is stocked-out, which means 

one unit of 𝑑21becomes lost sales (𝐿21 = 1), and 1 unit is backlogged (𝑍241 = 1) as indicated in 

Table 7. For all periods in which stock-outs occur, the stock-out equals the number of lost sales 

plus the total number of backordered items produced in later periods. Using the stock-out example 

for item 2 in period 1, the equation is as follows: 

𝑆21 = 𝐿21 + 𝑍221 + 𝑍231 + 𝑍241 

= 1 + 0 + 0 + 1 = 2 

To summarize, this example demonstrates how the FLR-B-FL model functions. The Z 

variables are used to indicate when demand is satisfied by production. If ever the demand in period 

t cannot be satisfied on time, (1 - α) percent of the stocked-out items in period t is lost while the 

rest must be satisfied from production in later periods. If we place a time restriction on backlogged 

items as we do in the FLR-BR-FL formulation, then the backlogged item must be satisfied in the 

next r periods. For instance, if we set r = 2 in our previous example, our solution from Tables 6 
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and 7 is no longer valid. Variable 𝑍241 has a value of one indicating that one unit of item 2 is 

produced in period 4 to satisfy demand in period 1. Since this one unit is backlogged for three 

periods, the solution is not valid and a new one must be generated. To illustrate the effect that 

backlog restrictions can have, we set r = 2 and solve the instances used in our previous example 

using the FLR-BR-FL formulation. The solution is summarized in Table 8 and 9. 

Zikt 

Variables 

t=1 t=2 t=3 t=4 Total Cost 

Y1t 1 1 0 1 25+25+25=75 

Z11t 10 0 0 0 0 

Z12t 0 15 10 0 10 

Z13t 0 0 0 0 0 

Z14t 0 0 0 10 0 

L1t 0 0 0 0 0 

S1t 0 0 0 0  

d1t 10 15 10 10  

Objective Function 85 

Table 8. Solution for the Decision Variables for Item 1 using FLR-BR-FL 
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Zikt 

Variables 

t=1 t=2 t=3 t=4 Total Cost 

Y2t 0 0 1 1 50+50=100 

Z21t 0 0 0 0 0 

Z22t 0 0 0 0 0 

Z23t 1 0 5.667 0 6 

Z24t 0 1 0.167 3 6+0.5=6.5 

L2t 1 1 0.167 0 12+12+2=26 

S2t 2 2 0.333 0  

d2t 2 2 6 3  

Objective Function 138.5 

Table 9. Solution for the Decision Variables for Item 2 using FLR-BR-FL 

The new objective function is 223.5, which is 4.5 more than the objective function for FLR-

B-FL. Although the objective function increased by only a small amount, the solution is very 

different. The production plan for item 1 only has one change: demand for period 3 was produced 

in period 2 in order to leave available capacity in period 3 for item 2. As for item 2, the production 

plan added a second production setup to satisfy the backlog restriction. In period 3, the firm is 

forced to produce the backlogged demand from period 1. The rest of the capacity was spent 

satisfying demand for period 3. In period 4, the remaining backlogged demand and the demand for 

period 4 were produced. The production plan for item 2 using FLR-BR-FL had an additional setup. 

However, it incurred less lost sales than FLR-B-FL. From this example we notice the impact that 

a backlog restriction can have on the optimal solution. FLR-B-FL is a more flexible formulation 

than FLR-BR-FL, and therefore may provide better solutions. The example also illustrates a 
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limitation of the model. In the lot-sizing literature, the production quantity is typically modeled as 

a continuous variable (see Pochet and Wolsey, 2006). As a consequence, the inventory, backlog, 

and lost sales variables are also continuous variables, and can hence take fractional values. This is 

a typical assumption in the standard lot-sizing models (Absi et al. 2011, Pochet and Wolsey 1988, 

Gade and Küçükyavuz 2013).   

4.2 Facility Location Reformulation with Simultaneous Backlog and 

Variable Lost Sales 
 

The second type of lost sales is variable lost sales. When a stock-out occurs for the demand 

in period t, a minimum percentage of the unsatisfied demand will result in lost sales while the rest 

remains as backlog until that demand is satisfied. The difference of the variable lost sales compared 

to the fixed lost sales is that the percentage of the stocked-out demand that will result in lost sales 

is a minimum and therefore the firm has the option to incur more lost sales if this provides a better 

solution. It sounds contradictory, however it may be optimal to incur more lost sales in times of 

high demand and strict capacity levels. Additional lost sales for some products can be beneficial 

if there are products with different characteristics in terms of backlog cost, lost sales cost, capacity 

usage, etc. The ability to take on additional lost sales also ensures the existence of a feasible 

solution. The interpretation of variable lost sales is valid in the same case as fixed lost sales, but 

with the addition that the company can choose that in case of a stock-out, the demand of some 

customers that are willing to wait will instead not be satisfied.  

The resulting formulation for variable lost sales is the same as the fixed lost sales 

formulation (FLR-BR-FL), except for a minor adjustment to the lost sales constraints (40). The 

FLR-BR-VL formulation is written as follows: 

 



43 
 

FLR-BR-VL  

Min (38) 

𝑆. 𝑇.    (25), (33), (34), (37), (39) 𝑎𝑛𝑑 

 𝐿𝑖𝑡 ≥ (1 − 𝛼)(∑ 𝑍𝑖𝑘𝑡 + 𝐿𝑖𝑡)
min {𝑚,𝑡+𝑟}
𝑘=𝑡+1   ∀i ∈ N, ∀t ∈T (45) 

Constraints (45) is no longer an equality and instead is an inequality which allows the 

possibility to have more than the minimum lost sales required for every stock-out.  

This variable lost sales formulation can also be written under the assumption that there is 

no restriction on backlog. The FLR-B-VL formulation would be constructed as follows: 

FLR-B-VL 

Min (41) 

𝑆. 𝑇.    (25), (30), (37), (42), (43), 𝑎𝑛𝑑   

 𝐿𝑖𝑡 ≥ (1 − 𝛼)(∑ 𝑍𝑖𝑘𝑡 + 𝐿𝑖𝑡)
𝑚
𝑘=𝑡+1   ∀i ∈ N, ∀t ∈T (46) 

 Constraints (46) serve the same purpose as constraints (45), but do not consider backlog 

restrictions.  

In essence, the fixed and variable lost sales formulations are similar with a minor 

adjustment to the lost sales constraints. However this adjustment has an impact on the 

formulation’s ability to provide feasible solutions. For instance, with fixed lost sales, some 

instances might be infeasible if the capacity is not sufficient, whereas with variable lost sales, the 

company always has the possibility to have all the demand as lost sale, and hence the problem can 

never be infeasible.   
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4.3 Facility Location Reformulation with Multiple Customer Types 

 Up to this point, we have covered three types of reformulations with respect to the lost 

sales: FLR without lost sales, FLR with fixed lost sales, and FLR with variable lost sales. In 

addition, we have reviewed these formulations under different assumptions on backlog: no 

backlog, unlimited backlog, and restricted backlog. In all cases, we assume that customers share 

the same behaviour when faced with backlog. Specifically, it was assumed that customers that are 

backlogged all have the same maximum number of periods that they are willing to wait, which can 

be either restricted or unrestricted. In this section, we develop a formulation that assumes multiple 

customer types with different behaviours when faced with backlog. The customer behaviour is 

characterized by the maximum number of periods a customer is willing to wait.         

In the case of multiple customer types, customers are assumed to have different tolerances 

for the maximum length of backlog. To incorporate this into our model, we redefine R as the set 

of possible maximum backlogged periods a customer is willing to wait {1, …, r}. In addition, let 

𝐵𝑞 define the percentage of customers willing to wait a maximum of q periods, ∀q ∈ R. We enforce 

a condition which sets ∑ 𝐵𝑞 = 𝛼𝑞∈𝑅 . This condition ensures that the total percentage of customers 

willing to backlog are represented by one of the customer types. The percentage of customers not 

willing to wait for any periods of backlog and becoming lost sales when a stock-out occurs can be 

defined as (1 − ∑ 𝐵𝑞)𝑞∈𝑅 .  

With the addition of multiple customer types, the definition of the stock-out variable 𝑆𝑖𝑡 

which represents the number of item i stocked-out in period t remains the same as before: 𝑆𝑖𝑡 =

(∑ 𝑍𝑖𝑘𝑡 + 𝐿𝑖𝑡)
min {𝑚,𝑡+𝑟}
𝑘=𝑡+1 . In this model with multiple customer types, once a stock-out occurs, the 

unsatisfied demand will either be lost or be backlogged up to a maximum of r periods. Every 
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customer type has a maximum number of periods they are willing to wait for backlog. For instance 

if a stock-out has occurred and 𝐵1 = 0.5, then 50 percent of the unsatisfied customers are willing 

to wait a maximum of one period of backlog. If these customers’ demand are not satisfied within 

one period of backlog, the firm will incur lost sales. If a stock-out has occurred with 𝐵1 = 0.5 and 

𝐵2 = 0.25, then the 25 percent of customers who are willing to wait at most 2 periods along with 

the 50 percent of customers willing to wait one period may all be satisfied after one period of 

backlog.  

To illustrate the multiple customer type assumption, we consider a problem with backlog 

and fixed lost sales.  The FLR-BM-FL formulation has the same objective function (38) found in 

the FLR-BR-FL formulation, while its constraints are written as follows: 

FLR-BM-FL 

Min (38) 

𝑆. 𝑇.    (25), (33), (34), (37), (39), (40), 𝑎𝑛𝑑 

 ∑ 𝑍𝑖,𝑡+𝑞,𝑡 ≤ ∑ 𝐵𝑞 ∗ 𝑆𝑖𝑡
min {𝑟,𝑚−𝑡}
𝑞=𝑙

min {𝑟,𝑚−𝑡}
𝑞=𝑙   

 ∀i ∈ N, ∀t ∈T, ∀l  | 1 ≤ l  ≤ min(r, m-t)  (47) 

 Constraints (47) ensure that the items that are backlogged for at least l periods are restricted 

by the number of customers that are willing to wait for l periods or more. The customers willing 

to wait for l periods consist of all the customers willing to wait for a maximum of l periods or 

longer. To help clarify, we break down the set of constraints (47) using an example with one item, 

three customer types (i.e. with a maximum willingness to wait for 1, 2, and 3 periods) and four 

periods in the horizon. The constraints for a stock-out for item 1 related to the demand for period 

1 are listed below: 
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 𝐿11 = 𝑆11 ∗ ((1 − (𝐵1 + 𝐵2 + 𝐵3))   (48) 

 𝐿11 + 𝑍121 + 𝑍131 + 𝑍141 = 𝑆11   (49) 

 𝑍121 + 𝑍131 + 𝑍141 ≤ (𝐵1 + 𝐵2 + 𝐵3) ∗ 𝑆11  l = 1 (50) 

 𝑍131 + 𝑍141 ≤ (𝐵2 + 𝐵3) ∗ 𝑆11  l = 2 (51) 

𝑍141 ≤ 𝐵3 ∗ 𝑆11  l = 3 (52) 

 Constraint (48) sets the number of lost sales equal to the percentage of customers not 

willing to wait for backlogged demand in case of a stock-out. Constraint (49) ensures that the 

stocked-out demand is either satisfied by production in the following three periods or becomes lost 

sales. Constraint (50) restricts the total backlogged demand to the cumulative number of all 

customers willing to wait at least one period. Constraint (51) restricts demand backlogged for 2 or 

3 periods to the number of customers willing to wait at least two periods. Constraint (52) limits 

the demand backlogged for 3 periods to the number of customers willing to wait for a maximum 

of 3 periods.   

 To explain the FLR-BM-FL formulation as a whole, we return to the example in section 

3.8. Our problem still has two items (n=2) and four periods (m=4), however we restrict the number 

of periods an item can be backlogged to two periods (r=2). The α variable is no longer relevant in 

this model. For the models with multiple customer types, we assign percentages (𝐵𝑞) to each of 

the possible backlogged periods to denote what percentage of the customers are willing to wait 

maximum q periods. Let 𝐵1 = 0.30 and 𝐵2 = 0.20, while the remaining stocked-out items will be 

lost immediately. There is a maximum of 50 percent of customers willing to wait for one period, 

and a maximum of 20 percent are willing to wait two periods. This also signifies that for every 
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stock-out, 50 percent of the stocked-out demand will be lost. Using the same parameters as in 

Table 4 and 5, our optimal solution for model FLR-BM-FL is as follows: 

  

Zikt 

Variables 

t=1 t=2 t=3 t=4 Total Cost 

Y1t 1 1 0 1 25+25+25=75 

Z11t 10 8 0 0 8 

Z12t 0 7 10 0 10 

Z13t 0 0 0 0 0 

Z14t 0 0 0 10 0 

L1t 0 0 0 0 0 

S1t 0 0 0 0  

d1t 10 15 10 10  

Objective Function 93 

Table 10. Solution for the Decision Variables for Item 1 using FLR-BM-FL 
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Zikt 

Variables 

t=1 t=2 t=3 t=4 Total Cost 

Y2t 0 1 1 1 50+50+50=150 

Z21t 0 0 0 0 0 

Z22t 0.6 1.4 0 0 1.8 

Z23t 0.4 0.267 6 0 3.2 

Z24t 0 0.033 0 3 0.2 

L2t 1 0.3 0 0 15.6 

S2t 2 0.6 0 0  

d2t 2 2 6 3  

Objective Function 170.8 

Table 11. Solution for the Decision Variables for Item 2 using FLR-BM-FL 

The optimal objective function of this example is 263.8, which is 40.3 higher than for FLR-

BR-FL and 44.8 higher than for FLR-B-FL. The solution for item 1 using the FLR-BM-FL 

formulation exhibits a similar solution to the previously used FLR-BR-FL formulation. The minor 

changes are caused by the required capacity needed for item 2. The optimal solution for item 2 

uses three production setups in periods 2, 3, and 4.   

The effects of the multiple customer types are apparent in period 1 for item 2. In period 1, 

there is a stock-out of 2 units for item 2. In this situation the constraints for stocked-out demand in 

period 1 of item 2 consists of the following; 

 𝐿21 = 𝑆21 ∗ ((1 − (𝐵1 + 𝐵2))   (53) 
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 𝐿21 + 𝑍221 + 𝑍231 = 𝑆21   (54) 

 𝑍221 + 𝑍231 ≤ (𝐵1 + 𝐵2) ∗ 𝑆21  (55) 

 𝑍231 ≤ 𝐵2 ∗ 𝑆21  (56) 

If we input all the values for this example, constraint (53) determines that for any period 

where there are stock-outs, fifty percent of them are lost immediately. Constraint (54) ensures that 

all stocked-out items either become backlog and are satisfied in a later period or become lost sales. 

As for the backlogged demand, constraint (55) shows that a maximum of fifty percent of the 

stocked-out items in period 1 can be satisfied in period 2 or 3. Constraint (56) ensures that a 

maximum of twenty percent of the stocked-out items in period 1 can be satisfied in period 3.  

Using this example, we review how the optimal solution respects the multiple customer 

constraints. For item 2 a stock-out of 2 items occurs in period 1 (𝑆21 = 2). By inserting the values 

into constraint (53) we obtain 𝐿21 = 1 , which matches that of the optimal solution. The optimal 

solution in Tables 8 and 9 has 𝑍221 = 0.6 and 𝑍231 = 0.4. When the values are added to constraint 

(54), the right hand and left hand side of the equation are equal to each other. Constraints (55) and 

(56) are also respected when the value are inserted in the inequalities. For item 2 in period 2, a 

second stock-out occurs for 0.6 units. By using constraint 48, we can validate that 𝐿22 = 0.3. Upon 

inspection, the other three constraints are satisfied.  

To summarize, this example highlights the similarities and differences between the 

formulations with multiple customer types and a single customer type, while illustrating the trade-

offs that occur between lost sales and backlog.            
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A variable version of the formulation can be constructed by changing the lost sales 

constraints into an inequality (≥). To simplify the formulation, the lost sales constraints (46) can 

be removed altogether because it is implicitly stated in the multiple customer type constraints (47). 

The formulation includes objective function (38) and the following constraints;  

FLR-BM-VL 

Min (38) 

𝑆. 𝑇.    (25), (33), (34), (37), (39), (45), 𝑎𝑛𝑑(47) 

The multiple customer types constraints (47) with l = 1 state that the total backlogged items 

for demand in period t is restricted by ∑ 𝛽𝑞𝑞∈𝑅 ∗ 𝑆𝑖𝑡. Since we assume that ∑ 𝛽𝑞𝑞∈𝑅 = 𝛼, the lost 

sales constraints (46) are redundant and therefore we remove them. The lost sales constraints (46) 

are there to set a minimum number of stocked-out items as lost sales. However the minimum lost 

sales is already enforced in the multiple customer types constraints as ∑ 𝛽𝑞𝑞∈𝑅  defines the 

maximum percentage of customers willing to wait for backlogged demand in case of a stock-out. 

Constraint (46) can be included in the formulation, but this will have no impact on the optimal 

solution.   

4.4 Relationships between Formulations 

Amongst the formulations we cover, there are some a priori relationships between the 

optimal objection function values that can be identified. Under the same backlog assumption, a 

relationship exist between formulations with different types of lost sales. Given the difference in 

the lost sales constraints, the variable lost sales formulations will always have an optimal objective 

function value less than or equal to the value of the fixed lost sales version of the formulations. It 

is important to clarify that these relationships hold amongst formulations that share the same 
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assumptions on backlog. We define 𝑉𝑓 as the optimal objective function for formulation f. The 

equation below illustrates this relationship if we assume that backlog is restricted to r periods.  

𝑉𝐹𝐿𝑅−𝐵𝑅−𝑉𝐿 ≤ 𝑉𝐹𝐿𝑅−𝐵𝑅−𝐹𝐿 

A relationship can also be found between formulations with different backlog assumptions 

if we consider formulations with the same type of lost sales. Given that formulations with 

unrestricted backlog provide more flexibility, the optimal objection function value will be less than 

or equal to formulations with restricted backlog. Furthermore, due to the relationship between the 

α and β parameters (i.e. α = ∑ 𝛽𝑞𝑞∈𝑅 ), formulations with multiple customer types will have an 

optimal objective function value larger than or equal to those of formulations with restricted 

backlog assuming they have both the same maximum restriction. The equation below illustrates 

this relationship if we assume that the formulations all consider fixed lost sales: 

𝑉𝐹𝐿𝑅−𝐵−𝐹𝐿 ≤ 𝑉𝐹𝐿𝑅−𝐵𝑅−𝐹𝐿  ≤  𝑉𝐹𝐿𝑅−𝐵𝑀−𝐹𝐿 

4.5 Summary of Facility Location Reformulations 

Using the facility location reformulation, we were able to successfully develop 

formulations that consider both backlog and lost sales under different backlog and lost sales 

assumptions. If we take a closer look, all formulations reviewed in Sections 3.5 through 3.10 have 

similar structures. Using the FLR-BM-FL model as the base formulation, we are able to derive all 

the other formulations by making a few alterations. To help with the reengineering of the 

formulation, we first revisit the FLR-BM-FL formulation below: 
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FLR-BM-FL 

Min   ∑∑(𝑆𝐶𝑖𝑡𝑌𝑖𝑡 + 𝐿𝐶𝑖𝑡𝐿𝑖𝑡 + ∑ 𝐶𝑖𝑘𝑡

min {𝑚,𝑡+𝑟}

𝑘=1

𝑍𝑖𝑘𝑡)

𝑚

𝑡=1

𝑁

𝑖=1

                            (57) 

𝑆. 𝑇.   ∑ 𝑍𝑖𝑘𝑡 + 𝐿𝑖𝑡 = 𝑑𝑖𝑡
min {𝑚,𝑡+𝑟}
𝑘=1   ∀i ∈ N, ∀t ∈T (58) 

𝑍𝑖𝑘𝑡 ≤ 𝑑𝑖𝑡𝑌𝑖𝑘       ∀i ∈ N, ∀t ∈T, ∀k ∈T | 1≤k≤min{m, t+r} (59) 

 ∑ ∑ 𝑈𝑇𝑖𝑡
𝑚
𝑙=𝑡−𝑟𝑖∈𝑁 𝑍𝑖𝑡𝑙 + ∑ 𝑆𝑇𝑖𝑡𝑌𝑖𝑡 ≤ 𝐶𝑎𝑝𝑡𝑖∈𝑁   ∀t ∈T (60) 

 𝐿𝑖𝑡 = (1 − 𝛼)(∑ 𝑍𝑖𝑘𝑡 + 𝐿𝑖𝑡)
min {𝑚,𝑡+𝑟}
𝑘=𝑡+1   ∀i ∈ N, ∀t ∈T (61) 

  

 ∑ 𝑍𝑖,𝑡+𝑞,𝑡 ≤ ∑ 𝐵𝑞 ∗ 𝑆𝑖𝑡
min {𝑟,𝑚−𝑡}
𝑞=𝑙

min {𝑟,𝑚−𝑡}
𝑞=𝑙   

 ∀i ∈ N, ∀t ∈T, ∀l  | 1 ≤ l  ≤ min(r, m-t)  (62) 

 𝑍𝑖𝑘𝑡 , 𝐿𝑖𝑡 ≥ 0  ∀i ∈ N, ∀t ∈T, ∀k ∈T (63) 

 𝑌𝑖𝑡 ∈ {0,1}  ∀i ∈ N, ∀t ∈T (64)  

The objective function (57) along with the demand balancing constraints (58), the setup 

constraints (59), and the capacity constraints (60) are integral components to the basic structure 

of the facility location reformulation. These constraints exist in all the formulation, although 

possibly in a slightly different form. The lost sales constraints (61) exist in formulations with both 

backlog and lost sales and serves as a restriction on the number of stocked-out items that can be 

backlogged. The 𝛼 parameter represents the percentage of stocked-out items that can be 

backlogged. By setting the parameter at different values we are able to create various other 

formulations. The multiple customer type constraints (62) exist in formulations that consider 
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multiple customer types with different levels of patience when faced with backlog. The 𝐵𝑞 

parameter represents the percentage of customers that are willing to wait a maximum number of q 

periods for backlogged items. By setting the parameter at different values we are able to create 

various other formulations. Lastly, there are non-negativity (63) and binary constraints (64) which 

are essential to the formulations. 

We are able to derive all formulations from the FLR-BM-FL formulation by either 

removing sets of constraints, restricting the parameters, or deleting variables. Table 12 shows the 

alterations necessary to derive each formulation. 
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 No Lost Sales Fixed Lost Sales Variable Lost Sales 

No Backlog FLR 

Set 𝐿𝑖𝑡 = 0 

𝑍𝑖𝑘𝑡 = 0, if k > t  

 

Consequence: 

No (61), (62) 

FLR-LS 

Set α = 0% in (61) 

𝑍𝑖𝑘𝑡 = 0, if k > t 

 

Consequence: 

No (62) 

 

 

N.A. 

Unlimited Backlog FLR-B 

r = m-1 

𝐵𝑞 = 𝛼 𝑓𝑜𝑟 𝑞 = 𝑟 

𝐵𝑞 = 0 𝑓𝑜𝑟 𝑞 < 𝑟 

𝛼 =∑𝐵𝑞 = 100%

𝑞∈𝑅

 

 

Consequence: 

No 𝐿𝑖𝑡 in (57) and(58) 

No (61), (62) 

FLR-B-FL 

r = m-1 

𝐵𝑞 = 𝛼 𝑓𝑜𝑟 𝑞 = 𝑟 

𝐵𝑞 = 0 𝑓𝑜𝑟 𝑞 < 𝑟 

 

Consequence: 

No (62) 

 

FLR-B-VL 

𝐿𝑖𝑡 ≥ (1-α)* 𝑆𝑖𝑡 in (61)  

r = m-1 

𝐵𝑞 = 𝛼 𝑓𝑜𝑟 𝑞 = 𝑟 

𝐵𝑞 = 0 𝑓𝑜𝑟 𝑞 < 𝑟 

 

Consequence 

No (62)  

 

Restricted 

Backlog 

FLR-BR 

𝐵𝑞 = 𝛼 𝑓𝑜𝑟 𝑞 = 𝑟 

𝐵𝑞 = 0 𝑓𝑜𝑟 𝑞 < 𝑟 

𝛼 = ∑𝐵𝑞 = 100%

𝑞∈𝑅

 

 

Consequences: 

No 𝐿𝑖𝑡 in (57) and (58) 

No (61), (62) 

 

FLR-BR-FL 

𝐵𝑞 = 𝛼 𝑓𝑜𝑟 𝑞 = 𝑟 

𝐵𝑞 = 0 𝑓𝑜𝑟 𝑞 < 𝑟 

FLR-BR-VL 

𝐿𝑖𝑡 ≥ (1-α)* 𝑆𝑖𝑡 in (61)  

𝐵𝑞 = 𝛼 𝑓𝑜𝑟 𝑞 = 𝑟 

𝐵𝑞 = 0 𝑓𝑜𝑟 𝑞 < 𝑟 

Multiple 

Customer Types 

FLR-BM 

𝛼 =∑𝐵𝑞 = 100%

𝑞∈𝑅

 

 

Consequences: 

No 𝐿𝑖𝑡 in (57) and (58) 

No (61)  

FLR-BM-FL 

Base Formulation 

𝛼 =∑𝐵𝑞 ≤ 100%

𝑞∈𝑅

 

FLR-BM-VL 

𝐿𝑖𝑡 ≥ (1-α)* 𝑆𝑖𝑡 in (61)  

 

Table 12. Required Adjustments Needed to Derive Each Formulation from FLR-BM-FL 

Starting with the bottom row in Table 12, FLR-BM-VL can be derived by simply changing 

the lost sales constraints in FLR-BM-FL into an inequality (≥), allowing for more lost sales to be 

incurred if necessary. Note that the original equality constraint (61) can be considered to be equal 

to the union of a “≤” and “≥” constraint. Changing this to a “≥” constraint can be done by removing 
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the “≤” constraint. The FLR-BM formulation can be created setting the sum of the 𝐵𝑞 parameters 

to 100 percent which results in the removal of the lost sales constraint (61) and the lost sales 

variable in constraints (57) and (58).  This can be said for all formulations in Table 12 that do not 

allow lost sales.  

In the “Restricted Backlog” row, the formulations share a common backlog restriction of r 

periods that is enforced for all stocked-out items. To formulate the restricted backlog case, starting 

from the multiple customer type case, we must set 𝐵𝑞 = 𝛼 for q = r, and set 𝐵𝑞 = 0 for q < r. So 

there is only one class of customers and this ensures that customers faced with backlog all have 

the same patience, and are willing to wait for a maximum of r periods.  

The formulations under the “Unlimited Backlog” assumption has two distinct differences 

compared to the restricted backlog formulations. They no longer have a backlog restriction and 

therefore r = m-1 where m is the last period in the time horizon. Because of the lifted restriction to 

backlog, we can also remove constraints (62) to formulate FLR-B-FL and FLR-B-VL.  

To derive the formulations without backlog, we must first remove the possibility of backlog 

by setting 𝑍𝑖𝑘𝑡 = 0 when k > t. Additionally, to create the basic FLR formulation we must remove 

the 𝐿𝑖𝑡 decision variable from the constraints (58), along with constraints (61) and (62) completely. 

We achieve this by setting all lost sales variables to zero. For the FLR-LS formulation, we remove 

constraints (62) and set α = 0% for constraints (61). The formulation where there is no backlog 

and variable lost sales does not exist. Variable lost sales exist to allow for more backlog to be 

incurred if necessary in case of a stock-out. However if there is no backlog, lost sales is the only 

option rendering the “variable lost sales concept” obsolete.  
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We have proposed new formulations that consider both backlog and lost sales 

simultaneously. This chapter reviewed at length these new formulations along comparable 

versions. In the following chapter, we explain the methods used to test the formulations, 

summarize the computational results and provide an analysis of these results.     
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5. Computational Results 

 Using the facility location reformulation, we have developed several variants of models 

that simultaneously consider both backlog and lost sales. Historically, studies have considered one 

of the variables using either a classical lot-sizing model or a reformulation. However both variables 

have not been considered together. To test the speed and efficiency of the new models, we run 

them using several data instances. In addition, we run the existing reformulations that were 

summarized in Sections 3.5 to 3.7 and compare the results.  

5.1 Data Set 

 With the absence of an existing data set with backlog and lost sales parameters, we opt to 

adapt the instances of Trigeiro et al. (1989), which were originally intended for a standard 

capacitated lot-sizing model. These datasets have also been used in other research (Jans and 

Degraeve 2007, Sural et al. 2009, Fiorotto and de Araujo 2014, Fiorotto et al. 2015). There are 

two data sets we use to test our models: the F-set and the G-set. The F-set includes 70 instances 

each with 6 items (n=6) and a time horizon of 15 periods (m=15). The G-set includes a total of 71 

instances, 46 of which follow the same format as the F-set with 6 items and 15 periods. The 

remaining 25 instances are broken up into 5 different structures with 5 instances each. The 

breakdown is shown in Table 13. 
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Instances Items (n) Periods (m) 

1-50 6 15 

51-55 12 15 

56-60 24 15 

61-65 6 30 

66-70 12 30 

71-75 24 30 

Table 13. G-dataset Structure 

The original dataset was constructed with the CLSP formulation in mind, which we 

reviewed in Section 3.1. Table 14 summarizes the original parameters developed by Trigeiro et al. 

(1989).  

Parameters Notation Range Type of Variance 

Production setup cost  𝑆𝐶𝑖 200-1000 Product-Variant 

Holding cost (per unit per period) 𝐻𝐶𝑖 1-5 Product-Variant 

Setup time (time per period) 𝑆𝑇𝑖 10-50 Product-Variant 

Unit Production time (time per unit) 𝑈𝑇 1 Static 

Demand (per item per period) 𝑑𝑖𝑡 Average of 

100 per period 

- 

Table 14. Characteristics of the Original Parameters from Trigeiro et al. (1989) 

The F and G datasets use nominal values throughout, and change one characteristic at a 

time. For the costs, the variable cost is set to zero while production and holding cost are randomly 

assigned within their respective ranges indicated in Table 14.  The unit production time remained 
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at 1 and the setup time varies between 10 to 50 units of time per period. The demand per item per 

period were randomly distributed with a mean of 100 units of demand. It is important to note that 

while the ranges listed in Table 14 were usually respected in the original datasets by Trigeiro et al. 

(1989), the datasets veered from these ranges on occasion. More information can be found in 

Trigeiro et al. (1989).   

The F and G datasets use a static capacity level for all their instances, meaning that the 

capacity level for each period remains the same throughout the time horizon. Since in the original 

datasets, there are no backlog or lost sales, all demand can be satisfied on time. In order to create 

instances that have stock-outs, we chose to decrease the original capacity down to 92.5 percent of 

its original level. By doing so we can better expose the trade-off between early production, on-

time production, late production, or no production under a tight capacity limit. The resulting 

capacity levels used are as follows: 

Dataset (𝑛,𝑚) Values 

F (6,15) [673, 984] 

G (6,15) [612, 673, 703, 722, 898] 

G (12,15) 1347 

G (24,15) 2694 

G (6,30) 697 

G (12,30) 1395 

G (24,30) 2790 

Table 15. Adapted Capacity Levels Used in F and G-datasets (Trigeiro et al. 1989) 

 In the F-dataset, there are 50 instances where the adapted capacity is set at 673, and 20 

where it is at 984. As for the G-dataset, there are five different adapted capacity settings used for 
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problems with 6 items and 15 periods. The problems of larger size, each have a set capacity level 

for their five instances. More details on the original dataset can be found in Trigeiro et al. (1989). 

For the purpose of our thesis, we extend the dataset to include new backlog and lost sales 

parameters. The new parameters include the following ones: backlog cost (𝐵𝐶𝑖𝑡), lost sales cost 

(𝐿𝐶𝑖𝑡), a fixed percentage for stocked-out items remaining as backlog (𝛼), the limit to the number 

of periods an item can be backlogged for (𝑟), and a percentage of customers that are willing to 

wait a maximum number of q periods (𝛽𝑞). While adding to the existing data set, we strived to 

keep the values consistent throughout the instances in order keep the initial structure of the data 

set. When setting the backlog and lost sales costs, we ensured that the cost of lost sales is always 

greater than if the item was backlogged and satisfied in a later period. We therefore set the rule 

that 𝐿𝐶𝑖𝑡 > 𝐵𝐶𝑖𝑡 ∗ 𝑟.  Furthermore note that 𝐵𝐶𝑖𝑡 > 𝐻𝐶𝑖𝑡. The added parameters to the existing 

dataset are listed in Table 16.    

 Parameters Values 

Backlog cost (per unit per period) 𝐵𝐶 [6,7] 

Lost Sales cost (per unit) 𝐿𝐶 [25,30] 

Backlog restriction (in periods) 𝑟 4 

Fixed percentage for stocked-out items 

remaining as backlog 

𝛼 0.75 

Percentage of customers that are willing to 

wait a maximum number of r periods for  

r ∈{1, 2, 3, 4} 

𝛽𝑟 [0.25, 0.20, 0.15, 0.15] 

Table 16. Characteristics of the New Parameters 
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5.2 Models  

In an effort to evaluate the efficiency and performance of our new models, the 

reformulations will be tested and compared to similar existing models. The FLR-B and FLR-LS 

models will be tested for the purpose of base case comparison. This will offer insights on how the 

performance and solution of the reformulation is affected when both concepts our considered 

together compared to individually. In addition, we test both our fixed and variable lost sales 

formulations under different backlog assumptions. The formulations we include in our study are 

listed in Table 17. 

 No Lost Sales Fixed Lost Sales Variable Lost Sales 

No Backlog X FLR-LS X 

Unlimited Backlog FLR-B FLR-B-FL FLR-B-VL 

Restricted Backlog FLR-BR FLR-BR-FL FLR-BR-VL 

Backlog with 

Multiple Customer 

Types 

 

FLR-BM 

 

FLR-BM-FL 

 

FLR-BM-VL 

Table 17. Breakdown of the Different Formulations that will be Evaluated 

Unlimited Backlog 

In the formulations with unlimited backlog, the backlog can be satisfied during any period 

in the time horizon. To evaluate this assumption we test FLR-B, FLR-B-FL, and FLR-B-VL. 

Restricted Backlog 

Formulations under the assumption of restricted backlog have a limit for the number of 

periods an item can be backlogged for (𝑟). During the testing, we have set r=4. To determine if 
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backlog restrictions have any impact, we will test and compare FLR-BR, FLR-BR-FL, and FLR-

BR-VL.   

Multiple Customer Types 

In section 3.8, we introduce the concept of multiple customer types as an alternative to the 

commonly used single customer type assumption. We test three adapted formulations FLR-BM, 

FLR-BM-FL and FLR-BM-VL to analyze how multiple customer types affect the performance of 

the formulation. The single customer type consisted of a universal willingness to wait for 

backlogged items. The customer was either not willing to wait for their backlogged demand or 

willing to wait any number of periods (r being the maximum number of periods). In the multi-

customer versions of the formulation, we add more layers to the customer’s behaviour when faced 

with backlog. For our multi-customer formulations, we introduce four customer types with the 

following characteristics: 

 25 percent of all customers are willing to wait a maximum of one period 

 15 percent of all customers are willing to wait a maximum of two periods 

 10 percent of all customers are willing to wait a maximum of three periods 

 10 percent of all customers are willing to wait a maximum of four periods 

In an effort to compare the formulations with one customer type versus multiple types, we set 

the parameters as follows:  

∑𝐵𝑞 = 𝛼

𝑞∈𝑅

 

The above equality ensures that the minimum percentage of stock-out that becomes lost 

sales is the same.  
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Uncapacitated Formulations   

 For more insight we develop and test uncapacitated versions of all of our models. This will 

allow us to compare the basic structure of our formulations. 

Exclusions  

The classic FLR model was considered for testing and analysis as a base example of the 

reformulation without backlog or lost sales, but was ultimately excluded from our study. The FLR 

model would have mirrored the study done by Trigeiro et al. (1989). However, due to our reduction 

in capacity, many of the instances are infeasible. For this reason, we exclude this model from our 

analysis. We did however test the FLR formulation using the original instances to verify the 

consistency with the results obtained by Trigeiro et al. (1989).  

Formulation Overview 

To summarize, we have accumulated a number of different models that will be run and 

analyzed. They are listed in Table 18. 

 No Lost Sales Fixed Lost Sales Variable Lost Sales 

No Backlog U-FLR FLR-LS X 

Unlimited Backlog FLR-B 

U-FLR-B 

FLR-B-FL 

U-FLR-B-FL 

FLR-B-VL 

U-FLR-B-VL 

Restricted Backlog FLR-BR 

U-FLR-BR 

FLR-BR-FL 

U-FLR-BR-FL 

FLR-BR-VL 

U-FLR-BR-VL 

Backlog with 

Multiple Customers 

FLR-BM 

U-FLR-BM 

FLR-BM-FL 

U-FLR-BM-FL 

FLR-BM-VL 

U-FLR-BM-VL 

Table 18. List of Formulations used in our Analysis 
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5.3 Results 

 The formulations were coded in IBM Optimization Studio using OPL and solved with 

CPLEX 12.6.3.0. The optimization tolerance was set to zero using a single thread. A time limit of 

1800 seconds was installed, any computations that went beyond that were stopped. We allocated 

512.0 MB of working memory for the program to solve problems with 6 items and 15 periods. 

Once we got to the larger problems, the program was unable to process the problems without larger 

working memory. For all problems with more than 6 items and 15 periods, 5,000 MB of working 

memory were allocated. The computer used to run the programs had 8.00 GB installed RAM and 

a 1.70-2.40GHZ processor.  

 When summarizing and analyzing our results, we break it down into two sections. The first 

is a comparison of the performances between the different models. The performance measures 

include: the computing time, the optimal solution, and the LP time and gap. The second is a 

comparison of the structure of the solutions between different models. Our goal for this chapter is 

to highlight the differences in performance and structure of the solutions between different 

formulations.  

5.3.1 Performance Comparison 

F-Dataset 

Table 19 summarizes our initial test results for all ten capacitated models using the F-

dataset at a 92.5 percent capacity level. The column CPU Time indicates the average time used to 

solve an instance in seconds with a limit of 1800 seconds. The IP column indicates the average 

objective function value of the best found solution, while Gap signifies the average percentage 

difference between the best found solution and the best lower bound at the end of the optimization 
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process. If this gap is equal to zero, then the solver has found the optimal solution. The LP column 

indicates the solution of the problem when binary variables (production setup) are relaxed as 

continuous variables, while LP Time indicates the average time it takes to solve the LP. The LP is 

calculated separately from the IP. Lastly, the LP Gap displays the average percentage difference 

between the best found solution and the LP relaxation value. All values in Table 19 are the average 

values of 70 separate instances of the same size.  

 

Table 19. Computational Results and Solutions for F-dataset at 92.5 percent Capacity Level 

IP Computing Time 

The results show that computing time is impacted by the type of formulation. Under the 

same backlog assumption, formulations that consider both backlog and lost sales have larger 

average computing times than those that only consider backlog. Our results also indicate that 

computing times for formulations with multiple customers are longer than for formulations that 

only consider one customer type. These results may be caused by the added complexity which the 

combination of backlog and lost sales and the multiple customer types bring to these formulations. 

Formulations that do not allow lost sales (FLR-B, FLR-BR, and FLR-BM) are solved a lot 

quicker than those which do. FLR-LS has the longest average computing time apart from FLR-

BM-FL. When we allow the possibility of backlog along with lost sales, it generally leads to a 

decrease in computing time.  

Backlog Lost Sales Formulations CPU Time (sec) IP Gap (%) LP LP Time (sec) LP Gap (%)

No Fixed FLR-LS 168.41 43,974.15 0.03 42,479.13 0.02 3.393

No FLR-B 30.24 41,460.68 0.00 40,654.04 0.02 1.944

Fixed FLR-B-FL 82.29 42,975.89 0.00 41,832.22 0.01 2.701

Variable FLR-B-VL 114.15 42,974.98 0.00 41,832.22 0.03 2.699

No FLR-BR 29.27 41,460.68 0.00 40,654.04 0.02 1.944

Fixed FLR-BR-FL 80.10 42,975.89 0.00 41,832.22 0.02 2.701

Variable FLR-BR-VL 78.79 42,974.98 0.00 41,832.22 0.02 2.699

No FLR-BM 80.04 41,892.85 0.00 40,890.19 0.02 2.351

Fixed FLR-BM-FL 172.41 43,054.38 0.03 41,843.81 0.02 2.848

Variable FLR-BM-VL 143.48 43,035.49 0.02 41,843.74 0.03 2.812

Multiple

Unlimited

Restricted
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  Although there are some discrepancies in the average CPU Time between formulations 

with fixed and variable lost sales, there is no evidence that either one takes longer than the other.  

IP Objective Function Value  

If we compare the objective function values of the best found solutions in Table 19 for 

formulations under the same backlog assumption, we first notice that the average value of the best 

found objective function is very similar for both the fixed and variable lost sales versions. With 

the lost sales cost being so high, there is little benefit in incurring more lost sales than necessary. 

The difference between fixed and variable lost sales is the largest for the case with multiple 

customer types. 

The average objective function of the optimal solution does not change when removing the 

backlog restriction. By looking at Table 19, we can see FLR-BR, FLR-BR-FL, and the FLR-BR-

VL all have the same optimal solutions as the unrestricted backlog version of their formulations. 

This could be the result of a lenient restriction on backlog (i.e. the maximum backlog  period). By 

reducing the value of r, we create a larger restriction on backlog which could produce a difference 

in the average objective function value of the optimal solution between formulations with 

unrestricted and restricted backlog. The average value of the optimal objective function does 

however increase slightly when the formulation includes the assumption of multiple customer 

types instead of a singular customer type. The multiple customer type formulations are less flexible 

and may be forced to incur more lost sales or additional production setups during periods of high 

demand. All formulations that consider both backlog and lost sales have similar average optimal 

solutions. The formulations with only one of the two concepts, however, have different solutions. 

The objective value of the optimal solution for FLR-BR decreased by approximately 3.0 percent, 
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while FLR-LS increased by approximately 1.7 percent compared to formulations that consider 

both backlog and lost sales.  

From the results in Table 19, we notice that formulations that only consider backlog 

provide the lowest optimal value of the objective function. In situations where demand for a period 

is low, it may be not be worth it to setup production. Instead, they can satisfy the demand during 

the next production period and pay a smaller backlog penalty cost instead of the more expensive 

production setup. To highlight this strategy (i.e. use backlog to reduce costs), we performed a 

separate study in which we compare the results of the U-FLR and U-FLR-BR formulations (i.e. 

the uncapacitated case). We refer to the uncapacitated versions to highlight the possible gains in 

using backlog versus a standard model without backlog. Table 20 demonstrates that backlog in 

fact is an effective tool to reduce total cost. The table compares the average optimal solution 

between the U-FLR and the U-FLR-BR formulations for both datasets and all problem sizes. The 

first row includes all 70 instances of the F-dataset, while the second includes 50 instances. The last 

five rows each have a sample size of five. Backlog’s usefulness is hence not restricted to cases 

with capacity constraints, it can also be used as an effective strategy to cut costs for the 

uncapacitated case. 

 

Table 20. Comparison of the Solution between U-FLR and U-FLR-B 

U-FLR U-FLR-BR

F(6, 15) 40,639.50 39,879.83

G(6, 15) 35,995.59 35,774.70

G(12, 15) 67,452.20 67,053.00

G(24, 15) 143,287.00 142,122.40

G(6, 30) 66,532.80 66,253.20

G(12, 30) 144,165.80 143,330.00

G(24, 30) 272,379.40 270,488.20

Problem Size
Avg. IP
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As a final note for this section, all formulations have a low average optimality gap. When 

the gap is 0.00% it indicates that the optimal solution was found within the time limit. Only three 

formulations did not have an average gap of 0.00%, being FLR-LS, FLR-BM-FL, FLR-BM-FL. 

These formulations each had one instance that was not solved to optimality within the time limit. 

The instances of the F-dataset are of a manageable size with only 6 items and 15 periods 

considered. When the problem size becomes larger, it can take longer to find the optimal solution 

and in some cases it might not be possible to solve the problem within the time limit.  

LP Solution 

All formulations exhibited very low LP computing times, all less than three hundredths of 

a second. The LP gap, which represents the average percentage difference between the best found 

objective function value of the optimal solution and the value of the LP relaxation, differed 

between formulations. The LP gap was highest for FLR-LS and lowest for FLR-B and FLR-BR. 

The LP gap is seen to be slightly larger for formulations that assume multiple customer types 

compared to those that consider one customer type.   

G-Dataset 

We use the results of the G dataset to investigate how efficiently the formulations deal with 

larger sized problems. Table 21 summarizes the results of each formulation for the different sized 

problems.  

The column with the header of “# of Time Limits”, indicates the number of times the 

program was not able to find the optimal solution within the time limit of 1,800 seconds. Each 

formulation has six rows each showing the average results for the different sized problems. In the 



69 
 

G-dataset, there are 50 instances with 6 items and 15 periods, and 5 instances for each of the other 

problem sizes. The capacity level is at 92.5 percent of the original dataset for all instances.  
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Table 21. Computational Results and Solutions for G-dataset with Different Sized Problems at 92.5 percent Capacity Level 

*Two instances were infeasible 

Backlog Lost sales Formulation Size (n, m) CPU Time (sec)  IP Gap (%) LP LP Time (sec) LP Gap (%) # of Time Limits 

(6, 15) 179.02 41,333.46 0.000 39,502.70 0.02 4.257 0

(12, 15) 1,308.29 73,032.00 0.279 71,748.50 0.03 1.778 3

(24, 15) 1,726.33 148,152.80 0.171 147,347.11 0.06 0.532 3

(6, 30) 1,425.00 69,665.20 0.792 67,529.96 0.05 3.127 4

(12, 30) 1,800.00 148,503.00 0.938 146,431.32 0.09 1.341 5

(24, 30) 1,800.00 276,153.00 0.268 275,144.76 0.24 0.378 5

(6, 15) 46.57 38,711.91 0.000 37,630.57 0.02 2.740 0

(12, 15) 999.89 69,415.00 0.024 68,775.29 0.04 0.924 1

(24, 15) 1,387.11 144,080.40 0.064 143,696.20 0.11 0.267 3

(6, 30) 1,492.77 68,713.40 0.392 67,137.78 0.07 2.351 2

(12, 30) 1,800.00 146,221.00 0.485 145,090.94 0.25 0.764 5

(24, 30) 1,657.78 272,943.00 0.183 272,306.62 0.52 0.245 4

(6, 15) 57.73 40,295.27 0.000 38,847.71 0.01 3.507 0

(12, 15) 1,664.53 71,530.28 0.307 70,511.47 0.03 1.443 3

(24, 15) 1,800.02 146,879.37 0.161 146,259.07 0.07 0.421 4

(6, 30) 1,612.72 69,565.89 0.757 67,522.53 0.05 2.999 3

(12, 30) 1,800.02 148,220.25 0.789 67,522.53 0.13 1.190 5

(24, 30) 1,800.02 275,901.90 0.257 275,045.26 0.35 0.324 5

(6, 15) 41.14 40,283.38 0.000 38,841.09 0.02 3.495 0

(12, 15) 1,484.39 71,526.76 0.312 70,511.47 0.03 1.438 0

(24, 15) 1,800.15 146,872.98 0.162 146,259.07 0.06 0.418 2

(6, 30) 1,528.80 69,605.80 0.827 67,522.53 0.04 3.056 1

(12, 30) 1,800.05 148,191.96 0.766 67,522.53 0.10 1.175 5

(24, 30) 1,800.02 275,951.50 0.274 275,045.26 0.21 0.343 3

(6, 15) 54.31 38,711.91 0.000 37,630.57 0.02 2.740 0

(12, 15) 906.56 69,415.00 0.014 68,775.29 0.03 0.924 1

(24, 15) 1,407.94 144,080.40 0.057 143,696.20 0.08 0.267 3

(6, 30) 1,311.46 68,700.00 0.348 67,137.78 0.05 2.331 2

(12, 30) 1,800.00 146,217.80 0.462 145,090.94 0.20 0.761 5

(24, 30) 1,657.19 272,937.40 0.173 272,306.62 0.41 0.242 4

(6, 15) 82.67 40,295.27 0.000 38,847.71 0.02 3.507 0

(12, 15) 1,486.80 71,530.28 0.307 70,511.47 0.03 1.443 3

(24, 15) 1,779.79 146,879.37 0.161 146,259.07 0.06 0.421 4

(6, 30) 1,606.68 69,565.89 0.757 67,522.53 0.04 2.999 3

(12, 30) 1,800.06 148,220.25 0.789 67,522.53 0.04 1.190 5

(24, 30) 1,800.16 275,901.90 0.257 275,045.26 0.84 0.324 5

(6, 15) 62.79 40,283.38 0.000 38,841.09 0.01 3.495 0

(12, 15) 1,520.67 71,526.76 0.312 70,511.47 0.04 1.438 0

(24, 15) 1,779.89 146,872.98 0.162 146,259.07 0.10 0.418 2

(6, 30) 1,395.68 69,605.80 0.827 67,522.53 0.04 3.056 1

(12, 30) 1,800.03 148,191.96 0.766 67,522.53 0.04 1.175 5

(24, 30) 1,800.05 275,951.50 0.274 275,045.26 0.43 0.343 3

(6, 15)* 256.61 39,537.15 0.661 37,868.34 0.02 3.990 4

(12, 15) 1,456.15 69,733.40 0.192 69,017.98 0.07 1.025 4

(24, 15) 1,800.03 144,569.40 0.142 144,072.02 0.25 0.343 5

(6, 30) 1,800.03 68,849.40 0.705 67,161.30 0.12 2.517 5

(12, 30) 1,800.03 146,561.80 0.600 145,261.78 0.44 0.873 5

(24, 30) 1,800.07 273,343.80 0.234 272,580.49 0.99 0.291 5

(6, 15) 193.66 40,526.24 0.000 38,887.93 0.03 3.912 1

(12, 15) 1,512.20 71,583.67 0.339 70,520.89 0.04 1.502 3

(24, 15) 1,800.02 146,908.41 0.181 146,265.12 0.08 0.436 5

(6, 30) 1,519.95 69,580.79 0.870 67,522.53 0.05 3.021 3

(12, 30) 1,800.05 148,416.86 0.915 146,408.05 0.17 1.309 5

(24, 30) 1,800.03 275,922.35 0.261 275,045.26 0.32 0.331 5

(6, 15) 83.25 40,459.06 0.000 37,781.17 0.02 3.360 0

(12, 15) 935.16 71,602.46 0.412 69,351.57 0.06 1.067 1

(24, 15) 804.62 146,924.71 0.197 145,278.30 0.06 0.240 2

(6, 30) 630.24 69,580.05 0.878 67,139.87 0.05 2.063 1

(12, 30) 1,800.02 148,306.68 0.862 145,690.62 0.13 0.847 5

(24, 30) 1,280.68 275,879.33 0.251 273,657.73 0.32 0.197 3

FLR-BR

FLR-B

FLR-LS

FLR-BM-FL

FLR-BM-VL

FLR-BR-FL

FLR-BR-VL

Restricted

No

Fixed

Variable

Multiple

No

No Fixed

Unlimited

No

Fixed

Variable

Fixed

Variable

FLR-B-FL

FLR-B-VL

FLR-BM
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For Table 21, we remark that there were two (6, 15) instances that were infeasible using 

FLR-BM. Infeasible solutions are possible when using this formulation because we assume that 

there is no backlog allowed at the end of the time horizon. This formulation does not allow for lost 

sales and assumes that r = 4. It also assumes that 50 percent of customers are only willing to wait 

one period of backlog. With all of this considered, FLR-BM is an inflexible formulation that can 

run into some infeasibility issues.      

IP Computing Time 

From our results, we can deduce that on average, larger problems take longer to solve, 

which is no surprise. For all formulations the computing time increased as the problem sizes 

increased. The computing times however do not follow a linear trend. Although we can conclude 

that in general, larger problems will take longer than smaller problems, there are instance where 

that is not the case. For example, if we look at the (12, 30) problems versus the (24, 30) problems, 

we observe that for all formulations, the (12, 30) instances have a larger computing time than the 

(24, 30) instances. To evaluate this further we examine the number of instances that reach the time 

limit before finding the optimal solution. 

The number of times the program reaches the time limit before reaching optimality also 

increases as the problem size becomes larger. However as Figure 4 indicates, our results do not 

show a consistent correlation between the size of the problem and the number of instances that 

were not solved to optimality within the time limit of 30 minutes.   
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Figure 4. Comparison of Number of Instances in which the Time Limit was Reached for the G-dataset 

In all cases, the G(12, 30) problems took longer on average than the G(24, 30) problems. 

The five G(12,30) instances reached the time limit for all formulations that we tested. The same 

cannot be said for the G(24, 30) problems, where the instances reached the time limit three to five 

times depending on the formulation. The reasons could be linked to the small sample size (n=5) 

used for the larger problems: the five G(12, 30) instances could have all been difficult to solve. 

Another reason could be that the adjustments in the capacity parameter made the G(12, 30) 

instances tighter than the G(24,30) instances.   

IP Objective Function Value 

From our results, we can evidently see that larger size problems produce a higher optimal 

objective function than smaller problems due to the added costs associated to the new items and 

periods. In Table 21, we notice that the formulations that performed best for the (6, 15) problems 

continue to perform best with larger problem sizes. FLR-B and FLR-BR have the lowest best found 
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objective function. When only backlog is considered, there is more flexibility and less penalty 

costs. Under the assumption that the maximum cost for backlogging an item must be lower than 

the cost of lost sales (𝐿𝐶𝑖𝑡 > 𝐵𝐶𝑖𝑡 ∗ 𝑟), the better option is to backlog when possible. Realistically, 

when demand is stocked-out, customers may look for other options rather than wait. The models 

that consider multiple options simultaneously (backlog and lost sales), gave comparative solutions 

that were higher than the respective formulations with only backlog but lower than the respective 

formulations with only lost sales.  

LP Solution 

 Both the G-dataset and F-dataset have a similar LP Gap of two to four percent for problems 

of 6 items and 15 periods. As the problems become larger, our results for the G-dataset show that 

the LP Gap decreases accordingly. Table 22 shows the average LP gap according to the size of the 

problems for all models. The LP gap appears to be more affected when the number of items are 

increased compared to the number of periods. These results are in line with the results of Trigeiro 

et al. (1989) who studied the capacitated lot-sizing problem without backlog or lost sales.  

LP Gap (%) Number of periods (m) 

Number of items (n) 15 30 

6 3.500 2.752 

12 1.298 1.062 

24 0.376 0.302 

Table 22. Average LP Gap Results for the Different Sized Problems of the G-dataset 
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5.3.2 Comparison of the Structure of the Solution 

 In the previous section, we have reviewed the optimal or best found objective function 

value and computation time of all models for both datasets. For greater insight, this section 

analyzes the structure of the solution between models. Table 23 and Table 24 display the weight 

each cost has within the total cost. The first column “Avg. Setup Cost” indicates the percentage of 

the total cost that is made up of the cost to setup production. The following three rows do the same 

for holding, backlog, and lost sales costs in that order. The “# of no LS” column, shows the number 

of instances that do not include lost sales in the optimal solution. The last column does the same 

for instances in which backlog is not included. The cells that have an “N/A”, do not consider those 

variables in the formulation and therefore do not indicate any value.  In Table 24, we use the 

average results of the entire G-dataset to make the results easier to compare.    

 

Table 23. Cost Solution Structure for F-dataset at 92.5 percent Capacity Level (70 instances) 

Backlog Lost Sales Formulation Avg. % Setup Avg. % Holding Avg. % Backlog Avg. % Lost Sales

No Fixed FLR-LS 65.08 31.82 N/A 3.10

No FLR-B 61.19 28.47 10.34 N/A

Fixed FLR-B-FL 63.87 31.34 2.01 2.78

Variable FLR-B-VL 63.87 31.38 1.99 2.76

No FLR-BR 61.19 28.47 10.34 N/A

Fixed FLR-BR-FL 63.87 31.34 2.01 2.78

Variable FLR-BR-VL 63.87 31.38 1.99 2.76

No FLR-BM 61.82 31.30 6.88 N/A

Fixed FLR-BM-FL 63.42 32.11 1.86 2.61

Variable FLR-BM-VL 63.61 31.92 1.82 2.65

Unlimited

Restricted

Multiple
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Table 24. Cost Solution Structure for G-dataset at 92.5 percent Capacity Level (71 instances) 

Analysis of Costs 

For both datasets, the FLR-LS formulation has the highest setup and lost sales percentage 

in the total cost. With the addition of backlog, the percentage of setup cost and lost sales decreases 

in the formulations that consider both backlog and lost sales. Models that consider backlog can use 

backlog as a strategy to cut costs. This strategy is most effective when only backlog is considered 

compared to when both backlog and lost sales are included simultaneously.  

Analysis of Decisions 

 To evaluate the decision solution structure, we use the results obtained from the F-dataset. 

The F-dataset is preferred compared to the G-dataset in order to analyze the decision solution 

structure because the instances all have the same problem size.  In Table 25, we summarize the 

average values for the number of setups, the number of units held in inventory, the number of units 

backlogged, and the number of units that became lost sales in the optimal or best found solution. 

The table provides for a better comparison of the solution structure between the different 

formulations.  

Backlog Lost Sales Formulation Avg. % Setup Avg. % Holding Avg. % Backlog Avg. % Lost Sales

No Fixed FLR-LS 62.55 32.30 N/A 5.14

No FLR-B 59.15 30.21 10.64 N/A

Fixed FLR-B-FL 61.72 32.49 2.42 3.37

Variable FLR-B-VL 61.81 32.37 2.17 3.66

No FLR-BR 59.11 30.25 10.64 N/A

Fixed FLR-BR-FL 61.72 32.49 2.42 3.37

Variable FLR-BR-VL 61.81 32.37 2.17 3.66

No FLR-BM 60.25 31.33 8.29 N/A

Fixed FLR-BM-FL 61.63 32.36 2.55 3.46

Variable FLR-BM-VL 61.71 32.31 2.41 3.57

Unlimited

Restricted

Multiple
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Table 25. Decisions Solution Structure Values for F-dataset 

 From the results in Table 25, we notice that FLR-BR-VL use slightly less backlog and lost 

sales than the FLR-BR-FL while having a lower average total cost in their optimal solution. The 

same is true when comparing FLR-B-VL and FLR-B-FL. Although variable lost sales must always 

have an equal or lower objective function value compared to fixed lost sales, the reason does not 

necessarily have to be due to a reduction in stock-outs. The change in the structure of the solution 

when going from a fixed lost sales formulation towards a variable lost sales formulation can go in 

different directions. The stock-outs for the variable lost sales model can either decrease or increase 

with the idea of using additional lost sales as a strategy to reduce total cost. 

When we consider multi-customer types, the same possibilities remain true. However, as 

multiple customer formulations are inherently less flexible, the use of additional lost sales as a cost 

saving strategy when a stock-out occurs will increase. Table 25 supports this idea, as the number 

of lost sales are slightly higher while the number of backlog is lower for FLR-BM-VL compared 

to FLR-BM-FL. 

 The impact of multiple customers can be illustrated by comparing the solution structures 

of FLR-BM with FLR-BR. Although all customers are willing to wait for backlog, the added 

dimension of different customer types with different willingness’s to wait has a significant effect 

Backlog Lost Sales Formulation # of Setup # of Holding # of Backlog # of Lost Sales # of no B # of no LS

No Fixed FLR-LS 43.60 3,929.33 N/A 58.51 N/A 31

No FLR-B 40.17 3,573.80 668.86 N/A 0 N/A

Fixed FLR-B-FL 42.41 3,869.46 144.96 48.32 10 10

Variable FLR-B-VL 42.41 3,870.16 142.73 47.74 10 10

No FLR-BR 40.17 3,576.13 668.37 N/A 0 N/A

Fixed FLR-BR-FL 42.41 3,865.54 144.96 48.32 10 10

Variable FLR-BR-VL 42.41 3,870.16 142.73 47.74 10 10

No FLR-BM 40.36 3,762.14 475.91 N/A 0 N/A

Fixed FLR-BM-FL 42.14 3,910.82 137.05 45.68 10 10

Variable FLR-BM-VL 42.26 3,900.39 132.61 46.05 10 10

Unlimited

Restricted

Multiple
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on the structure of the solution. The added restrictions of multiple customer types discourage the 

use of backlog by approximately 30 percent. This is logical as backlog is more restricted.      

Referring to Table 25, the last two columns indicate for how many instances did the optimal 

solution not include any stock-outs, in other words no lost sales (LS) or backlog (B). In the FLR-

BR and FLR-B formulations, backlog is used in all instances because it can provide more 

flexibility and reduce total cost. In fact, backlog represents over 10 percent of total cost. In the 

FLR-LS formulation, lost sales is used less and is only approximately 3 to 5 percent of the total 

cost. Formulations that consider both backlog and lost sales have few instances that do not have 

any stock-outs, around 15 percent (10/70 instances). As for formulations that only consider 

backlog, all instances include at least one stock-out. The formulation that only considers lost sales 

has the largest percentage of instances without any stock-outs with 44.3 percent (31/70 instances).   

Summary 

 From reviewing the structure of the solution for all formulations, we see an apparent trade-

off between the cost of backlog and lost sales. The trade-off, however may be sensitive to certain 

parameters. Changing certain parameters can affect the total number of stock-outs that are included 

in the optimal solution. To further evaluate the trade-off between backlog and lost sales, we 

perform a sensitivity analysis on different parameters in the following chapter. 
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6. Sensitivity Analysis  
 

 In the previous section, we evaluated the optimal solutions and structure of the solutions 

across multiple models. The impact of the size of the models was also analyzed. In this section, 

we evaluate the impact that certain parameters have on the performance of the formulations. We 

conduct a sensitivity analysis on the following parameters: capacity, 𝛼 and 𝛽𝑟, the lost sales costs 

and the value of r. Our goal for this section is to determine how and, to what extent, the 

performances and structures of the solutions are changed when certain parameters are altered. 

Although the G-dataset is included in the capacity sensitivity analysis, the large problem sizes 

made the additional sensitivity test’s computing time very high. For this reason, we used the F-

dataset for the majority of our sensitivity analysis. 

6.1. Impact of Capacity 
 

6.1.1. Performance Comparison 

Capacity was discussed as an important factor for the cause of stock-outs. Up to this point, 

we have tested our models with an adjusted capacity level of 92.5 percent of the original values of 

the Trigeiro et al. (1989) datasets. For this sensitivity test, we perform tests using different capacity 

levels to evaluate the impact of capacity on all the formulations. The performance in terms of 

computing time and solutions of the models at different capacity levels for both datasets will be 

summarized. For each formulation, we list the results of the uncapacitated version along with the 

different capacity levels that were tested. 
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G-dataset 

For the G-dataset, we test the models using a level of 95 percent of the original capacity 

and compare it to the results from the 92.5 percent capacity level. We anticipated to test the models 

using a 90 percent capacity level for the G-dataset. However, the large problem sizes would make 

the computing time for all instances excessively long.  The number of instances that would reach 

the time limit without being solved to optimality would be very high. The results would therefore 

be too unreliable to make significant inferences. Furthermore, we have already observed two 

infeasible instances for formulation FLR-BM with a 92.5 percent capacity level. If we lower the 

capacity even further, we would obtain more infeasible solutions. For all above reasons, we 

deemed that the F-dataset would provide sufficient data to analyze the results for a 90 percent 

capacity level. To make comparisons between models clearer, we combine all problems size’s 

results of the G-dataset together.  The results may not be perfectly proportional between different 

sized problems. However, we feel that averaging all sized problems still provides a strong 

representations of the sensitivity of capacity. For a full summary of the results for the G-dataset at 

a 95 percent capacity level see Appendix A. 
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Table 26. Computational Results and Solutions for Different Capacity Levels for the G-dataset 

In Table 26, the results show that a change in capacity levels has a significant impact on 

the performance of the formulations. This impact is made apparent by first examining the results 

of the uncapacitated formulations. 

Uncapacitated Formulations 

IP Computing Time 

Without capacity restrictions, the results indicate that the formulations are able to solve 

each instance to optimality in on average under a second. Because of its efficiency, the optimality 

gap is zero percent for all formulations. Capacity is therefore a main factor in computing time.  

IP Objective Function Value 

For all models, the best found value of the objective function is obtained when there are no 

capacity limitations. The average IP value is also equal to the average LP value for all formulations. 

Backlog Lost Sales Formulation Capacity level (%) Avg. IP Avg. Gap (%) Avg. CPUTime (sec) Avg. LP Avg. LPTime (sec) Avg. LP Gap (%)

FLR-LS Uncapacitated 72,181.45 0.000 0.04 72,181.45 0.01 0.000

FLR-LS 95.0 75,520.18 0.068 381.66 74,183.72 0.03 2.844

FLR-LS 92.5 77,167.17 0.179 683.57 75,466.65 0.05 3.262

FLR-B Uncapacitated 71,716.48 0.000 0.04 71,716.48 0.02 0.000

FLR-B 95.0 73,511.69 0.032 372.42 72,728.84 0.07 1.722

FLR-B 92.5 74,473.40 0.081 546.91 73,465.36 0.08 2.096

FLR-B-FL Uncapacitated 72,181.45 0.000 0.31 72,181.45 0.03 0.000

FLR-B-FL 95.0 74,967.19 0.050 417.37 73,842.78 0.04 2.405

FLR-B-FL 92.5 76,254.52 0.160 658.83 74,869.39 0.09 2.721

FLR-B-VL Uncapacitated 72,181.45 0.000 0.16 72,181.45 0.02 0.000

FLR-B-VL 95.0 74,969.05 0.051 424.97 73,842.78 0.04 2.406

FLR-B-VL 92.5 76,250.43 0.165 745.03 74,865.10 0.06 2.717

FLR-BR Uncapacitated 71,716.48 0.000 0.04 71,716.48 0.02 0.000

FLR-BR 95.0 73,505.23 0.024 320.06 72,728.84 0.04 1.719

FLR-BR 92.5 74,471.84 0.074 534.00 73,465.36 0.06 2.094

FLR-BR-FL Uncapacitated 72,181.45 0.000 0.07 72,181.45 0.01 0.000

FLR-BR-FL 95.0 74,967.19 0.050 401.85 73,842.78 0.04 2.405

FLR-BR-FL 92.5 76,254.52 0.160 650.29 74,869.39 0.09 2.721

FLR-BR-VL Uncapacitated 72,181.45 0.000 0.21 72,181.45 0.03 0.000

FLR-BR-VL 95.0 74,969.05 0.051 401.80 73,842.78 0.04 2.406

FLR-BR-VL 92.5 76,250.43 0.165 624.93 74,865.10 0.06 2.717

FLR-BM Uncapacitated 71,758.07 0.000 0.06 71,758.07 0.02 0.000

FLR-BM 95.0 73,879.31 0.029 365.71 72,932.58 0.04 2.099

FLR-BM 92.5 75,126.73 0.557 775.86 73,695.94 0.14 2.941

FLR-BM-FL Uncapacitated 72,181.45 0.000 0.29 72,181.45 0.03 0.000

FLR-BM-FL 95.0 75,030.19 0.061 422.24 73,853.23 0.04 2.514

FLR-BM-FL 92.5 76,476.28 0.184 694.92 74,928.98 0.06 3.039

FLR-BM-VL Uncapacitated 72,181.45 0.000 0.28 72,181.45 0.03 0.000

FLR-BM-VL 95.0 75,025.67 0.058 439.67 73,853.23 0.04 2.510

FLR-BM-VL 92.5 76,374.41 0.183 682.93 74,907.42 0.08 2.883

Fixed

No

Fixed

Variable

No

Unlimited

Restricted

No

Fixed

Variable

Multiple

No

Fixed

Variable
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The best found value of the objective function was the same for all uncapacitated models 

that considered both backlog and lost sales. The reason for this is due to the fact that none of the 

instances include stock-outs in there optimal solution. In addition, the uncapacitated FLR-LS 

formulation did not include any stock-outs either and therefore also had the same best found value 

of the objective function. When stock-outs are not included in the optimal solution, all our 

formulations we examine are the same. U-FLR-B, U-FLR-BR and U-FLR-BM are the only two 

formulations that produced a different optimal solution because the use of backlog is an effective 

cost saving strategy even when capacity is not considered, and backlog is therefore used in the 

optimal solutions.   

LP Solution  

For the uncapacitated problems, we observe that for the G-dataset, the LP gap is equal to 

zero for all instances. However, this is not a general result, as we will see later that in the F-dataset 

we have instances for which the LP relaxation of the uncapcitated problems has a strictly positive 

LP gap. When no lost sales or backlog is allowed, the uncapacitated multi-item lot-sizing problem 

decomposes into separate single-item uncapacitated lot-sizing problems for which the facility 

location reformulation is tight (Pochet and Wolsey, 2006). 

As a note, the uncapacitated formulations did not require the use of any nodes when solving 

the datasets. Only when capacity was included did the program use nodes to solve the datasets.  

Capacitated Formulations 

IP Computing Time 

There is a significant difference in computational time between the uncapacitated and 

capacitated models. Furthermore, the models take even longer to be solved up to optimality as the 
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capacity level is decreased. The average increase in computing time going from 95.0 to 92.5 

percent of the capacity level for the G-dataset is shown in Table 27. The computing time increased 

on average by 64.7 percent. In addition, the number of instances that were not able to reach the 

optimal solution within the time limit rose for all models, especially those which considered both 

backlog and lost sales. There is not enough evidence to determine if there are certain formulations 

that are more affected by a decrease in capacity than others.   

 

Table 27. Impact on Avg. IP and CPU Time from Decreasing Capacity Levels for the G-dataset 

IP Objective Function Value 

 By reviewing Table 26, we can make some general observations. With the addition of 

capacity, the results indicate an increase in the optimal value of the objective function across all 

models. The average total cost continues to increase as the capacity levels are lowered. On average 

for the G-dataset, the optimal solution of all formulations experienced an increase in cost of 3.59 

percent with the introduction of capacity restrictions. 

Table 27 summarizes the percent increase in the average best found value of the objective 

function when the capacity level is decreased from 95.0 to 92.5 percent. The FLR-LS model was 

the most affected with an increase of 2.18 percent, while FLR-B was the least with a 1.31 percent 

increase.  

Backlog Lost sales Formulation Capacity Level (%) Avg. IP Increase in Avg. IP (%) CPU Time (sec) Increase in CPU Time (%) # of Time Limits

FLR-LS 95.0 75,520.18 381.66 15

FLR-LS 92.5 77,167.17 2.18 683.57 79.10 20

FLR-B 95.0 73,511.69 372.42 10

FLR-B 92.5 74,473.40 1.31 546.91 46.85 11

FLR-B-FL 95.0 74,967.19 417.37 14

FLR-B-FL 92.5 76,254.52 1.72 658.83 57.85 20

FLR-B-VL 95.0 74,969.05 424.97 14

FLR-B-VL 92.5 76,250.43 1.71 745.03 75.31 24

FLR-BR 95.0 73,505.23 320.06 10

FLR-BR 92.5 74,471.84 1.32 534.00 66.84 11

FLR-BR-FL 95.0 74,967.19 401.85 12

FLR-BR-FL 92.5 76,254.52 1.72 650.29 61.82 20

FLR-BR-VL 95.0 74,969.05 401.80 11

FLR-BR-VL 92.5 76,250.43 1.71 624.93 55.53 20

FLR-BM 95.0 73,879.31 365.71 9

FLR-BM 92.5 75,126.73 1.69 775.86 112.15 28

FLR-BM-FL 95.0 75,030.19 422.24 11

FLR-BM-FL 92.5 76,476.28 1.93 694.92 64.58 22

FLR-BM-VL 95.0 75,025.67 439.67 12

FLR-BM-VL 92.5 76,374.41 1.80 682.93 55.33 22

Multiple

No

Fixed

Variable

No

Unlimited

Fixed

No

Fixed

Variable

Restricted

No

Fixed

Variable
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If we examine the formulations that consider both concepts simultaneously, we notice that 

the best found value of the objective function for formulations with multiple customers’ types are 

more impacted than those with a single customer type. This is because in the formulation, the 

backlog constraints are more restrictive, and hence a lack of capacity will have bigger 

repercussions. There is also a slightly larger impact on the best found value of the objective 

function for models with fixed lost sales instead of variable lost sales. We attribute this difference 

to the added flexibility that the variable lost sales models offer.  

LP Solution 

The LP Gap, indicated in Table 26 is shown to have a small increase for all formulations 

when the capacity is decreased from 95 to 92.5 percent of the original capacity setting. The 

percentage decrease is fairly consistent across all formulations. The LP Time also increases 

consistently across all formulations when capacity is decreased, however the LP solution is still 

found very quickly.   

In order to determine if the impact on the models are further worsened when the capacity 

levels decrease even more, we turn our focus on the results for the F-dataset.  

F-dataset 

For the F-dataset, we conduct the sensitivity analysis by testing the instances with a larger 

capacity level of 95 percent, and a smaller capacity level of 90 percent compared to the original 

capacity level used of 92.5 percent. The results are then combined and summarized in Table 28. 
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Table 28. Impact on Avg.IP and CPU Time from Decreasing Capacity Levels for the F-dataset 

First, we notice that the results for the F-dataset are consistent with those for the G-dataset. 

The Avg. IP, CPU Time, and Avg. LP Gap all increase as the capacity levels are decreased. The 

results from the F-dataset, however, allow us to identify trends in the results by further reducing 

the capacity levels to 90 percent. Before we review the result in detail, it is important to elaborate 

on the LP gap results for the uncapacitated models. Uncapacitated formulations that considered 

both backlog and lost sales have an average LP gap that is not equal to zero. By examining the 

result more closely, whenever an instance included a stock-out in the optimal solution, the LP gap 

was not equal to zero. This happened for all formulations that included both backlog and lost sales. 

The same result did not happen for formulations that just considered backlog. U-FLR-B and U-

Backlog Lost Sales Formulation Capacity level (%) Avg. IP Avg. Gap (%) Avg. CPUTime (sec) Avg. LP Avg. LPTime (sec) Avg. LP Gap (%)

FLR-LS Uncapacitated 40,639.50 0.000 0.03 40,639.50 0.01 0.000

FLR-LS 95.0 43,044.79 0.000 38.27 41,987.59 0.02 2.457

FLR-LS 92.5 43,974.15 0.032 168.41 42,479.13 0.02 3.393

FLR-LS 90.0 45,211.67 0.025 224.11 43,325.73 0.02 4.116

FLR-B Uncapacitated 39,879.83 0.000 0.03 39,879.83 0.01 0.000

FLR-B 95.0 41,071.30 0.000 8.58 40,441.39 0.01 1.541

FLR-B 92.5 41,460.68 0.000 30.24 40,654.04 0.02 1.944

FLR-B 90.0 42,061.37 0.000 79.84 41,049.17 0.02 2.386

FLR-B-FL Uncapacitated 40,625.60 0.000 0.08 40,622.67 0.03 0.005

FLR-B-FL 95.0 42,417.96 0.000 33.24 41,549.20 0.02 2.082

FLR-B-FL 92.5 42,975.89 0.000 82.29 41,832.22 0.01 2.701

FLR-B-FL 90.0 43,890.93 0.007 142.72 42,516.08 0.02 3.140

FLR-B-VL Uncapacitated 40,625.60 0.000 0.10 40,622.67 0.04 0.005

FLR-B-VL 95.0 42,417.96 0.000 25.03 41,549.20 0.02 2.082

FLR-B-VL 92.5 42,974.98 0.000 114.15 41,832.22 0.03 2.699

FLR-B-VL 90.0 43,888.01 0.005 141.01 42,515.59 0.02 3.136

FLR-BR Uncapacitated 39,879.83 0.000 0.03 39,879.83 0.01 0.000

FLR-BR 95.0 41,071.30 0.000 7.83 40,441.39 0.01 1.541

FLR-BR 92.5 41,460.68 0.000 29.27 40,654.04 0.02 1.944

FLR-BR 90.0 42,061.37 0.000 79.30 41,049.17 0.02 2.386

FLR-BR-FL Uncapacitated 40,625.60 0.000 0.08 40,622.67 0.03 0.005

FLR-BR-FL 95.0 42,417.96 0.000 43.06 41,549.20 0.02 2.082

FLR-BR-FL 92.5 42,975.89 0.000 80.10 41,832.22 0.02 2.701

FLR-BR-FL 90.0 43,891.13 0.007 141.98 42,516.08 0.02 3.141

FLR-BR-VL Uncapacitated 40,625.60 0.000 0.07 40,622.67 0.03 0.005

FLR-BR-VL 95.0 42,417.96 0.000 37.77 41,549.20 0.03 2.082

FLR-BR-VL 92.5 42,974.98 0.000 78.79 41,832.22 0.02 2.699

FLR-BR-VL 90.0 43,888.01 0.005 129.58 42,515.59 0.27 3.136

FLR-BM Uncapacitated 40,014.41 0.000 0.04 40,014.34 0.01 0.000

FLR-BM 95.0 41,414.17 0.000 19.74 40,661.10 0.04 1.810

FLR-BM 92.5 41,892.85 0.000 80.04 40,890.19 0.02 2.350

FLR-BM 90.0 42,899.13 0.051 171.33 41,554.62 0.02 3.000

FLR-BM-FL Uncapacitated 40,626.89 0.000 0.16 40,624.08 0.04 0.005

FLR-BM-FL 95.0 42,439.91 0.000 22.75 41,555.69 0.01 2.114

FLR-BM-FL 92.5 43,054.38 0.027 172.41 41,843.81 0.02 2.848

FLR-BM-FL 90.0 44,055.50 0.005 212.20 42,545.78 0.02 3.390

FLR-BM-VL Uncapacitated 40,626.89 0.000 0.15 40,624.08 0.05 0.005

FLR-BM-VL 95.0 42,437.14 0.000 43.39 41,555.69 0.03 2.109

FLR-BM-VL 92.5 43,035.49 0.022 143.48 41,843.74 0.03 2.812

FLR-BM-VL 90.0 43,996.97 0.017 243.76 42,543.99 0.03 3.294

Multiple

No

Fixed

Variable

FixedNo

Unlimited

No

Fixed

Variable

Restricted

No

Fixed
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FLR-BR had at least one stock-out in every optimal solution yet the LP gap remained at zero, 

while U-FLR-LS had no stock-outs.  

IP Computing Time 

In the G-dataset we saw a large increase in the computing time resulting from a drop in 

capacity. Using the F-dataset results, we can determine whether smaller size problems experience 

the same impact on computing time. From the result in Table 29, we can see the increase in CPU 

Time that was also found in the G-dataset. The average computing times are lower but that is due 

to the small problem sizes in the F-dataset. The impact that capacity has on computing time, is also 

shown in the F-dataset. If we look at the percentage increase more closely using Table 29, we can 

see some differences compared to the results from the G-dataset. 

 

Table 29. Percentage Change in Optimal Solutions between Different Capacity Levels for the F-dataset 

Across all formulations, the jump in computing time when capacity is decreased from 95 

to 92.5 percent is approximately three times larger than in the G-dataset. The increase is 

Backlog Lost Sales Formulation Capacity Level (%) Avg. IP Increase in Avg. IP (%) CPU Time (sec) Increase in CPU Time (%) # of Time Limits

FLR-LS 95.0 43,044.79 38.27 0

FLR-LS 92.5 43,974.15 2.159 168.41 340.05 3

FLR-LS 90.0 45,211.67 2.814 224.11 33.07 2

FLR-B 95.0 41,071.30 8.58 0

FLR-B 92.5 41,460.68 0.948 30.24 252.62 0

FLR-B 90.0 42,061.37 1.449 79.84 164.02 0

FLR-B-FL 95.0 42,417.96 33.24 0

FLR-B-FL 92.5 42,975.89 1.315 82.29 147.59 0

FLR-B-FL 90.0 43,890.93 2.129 142.72 73.43 1

FLR-B-VL 95.0 42,417.96 25.03 0

FLR-B-VL 92.5 42,974.98 1.313 114.15 356.05 0

FLR-B-VL 90.0 43,888.01 2.125 141.01 23.54 1

FLR-BR 95.0 41,071.30 7.83 0

FLR-BR 92.5 41,460.68 0.948 29.27 273.98 0

FLR-BR 90.0 42,061.37 1.449 79.30 170.92 0

FLR-BR-FL 95.0 42,417.96 43.06 0

FLR-BR-FL 92.5 42,975.89 1.315 80.10 86.02 0

FLR-BR-FL 90.0 43,891.13 2.130 141.98 77.26 1

FLR-BR-VL 95.0 42,417.96 37.77 0

FLR-BR-VL 92.5 42,974.98 1.313 78.79 108.62 0

FLR-BR-VL 90.0 43,888.01 2.125 129.58 64.47 1

FLR-BM 95.0 41,414.17 19.74 0

FLR-BM 92.5 41,892.85 1.156 80.04 305.47 0

FLR-BM 90.0 42,899.13 2.402 171.33 114.06 2

FLR-BM-FL 95.0 42,439.91 22.75 0

FLR-BM-FL 92.5 43,054.38 1.448 172.41 657.73 2

FLR-BM-FL 90.0 44,055.50 2.325 212.20 23.08 1

FLR-BM-VL 95.0 42,437.14 43.39 0

FLR-BM-VL 92.5 43,035.49 1.410 143.48 230.67 2

FLR-BM-VL 90.0 43,996.97 2.234 243.76 69.88 1

No Fixed

Unlimited

No

Fixed

Variable

Restricted

No

Fixed

Variable

Multiple

No
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significantly lower when capacity is further lowered from 92.5 to 90 percent. Figure 5 illustrates 

how the computing time increases as capacity is lowered. 

 

Figure 5. Comparison of Computing Time under Different Capacity Levels for F-dataset 

The results indicate that there is a large decrease in CPU Time of on average 272.6 percent 

as the capacity level is changed from 92.5 to 95 percent and then a decrease of 532.2 percent with 

a change from 90 to 95 percent. There is however no evidence that the computing time decreases 

at an increasing rate and we do not have enough observations to test this.    

Another difference in the F-dataset compared to the G-dataset is the number of instances 

that reached the time limit. The G-dataset had many instances that reached the time limit at 95 

percent capacity level and the number rose for all models as the capacity level was changed to 92.5 

percent. Although the number of instances reaching the time limit slightly increased for the F-

dataset when changing the capacity from 92.5 to 95 percent, it is not to the same degree as the G-

dataset. These results suggest that problems of larger size could be more time sensitive when 
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capacity is lowered. Another possible explanation is that the F-dataset had a more “loose” capacity 

to begin with.  

IP Objective Function Value 

From the results in Table 29, we can see that the optimal value of the objective function 

increases as the capacity level decreases.  In Figure 6, we see that the values rise at an increasing 

rate as the capacity levels decrease. 

 

Figure 6. Comparison of Solution under Different Capacity Levels for F-dataset 

For all formulations, the percentage increase was larger when we decreased the capacity 

levels by a second 2.5 percent (i.e. from 92.5 to 90 percent). Table 29 displays the percent increase 

in the Avg. IP for every 2.5 percent decrease in capacity. The formulation the most affected was 

again FLR-LS, which we attribute to the formulation’s lack of flexibility. When faced with lower 

capacity levels, FLR-LS is forced into accepting more lost sales which have a very high cost. In 
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contrast, FLR-BR, FLR-BR-FL, FLR-BR-VL, FLR-BM-FL and FLR-BM-VL have more 

flexibility with the option of backlog which has a lower cost then lost sales.    

LP Solution 

 The LP Time across all formulations remained very low and fairly consistent as the 

capacity decreased. Meanwhile, the LP gap increased for all formulations as the capacity 

decreased.  

Summary 

 To summarize, the capacity has a significant impact on the performance of the 

formulations. As capacity decreases, the computing time, the optimal value of the objective 

function, and the LP gap all significantly increase.  

6.1.2. Comparison of the Structure of the Solution 

 The increase in total cost can be traced back to the change in the structure of the solution 

forced by the tightened capacity. Table 30 and Table 31 illustrate the information on the structure 

of the solution when capacity levels are decreased for the F-dataset and G-dataset respectively. 

The column “Setup Cost (%)” indicates the percentage of the total cost that is made up of the cost 

to setup production. The following three rows do the same for holding, backlog, and lost sales 

costs in that order.   
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Table 30. Cost Solution Structure of the F-dataset with Different Capacity Levels 

Backlog Lost Sales Formulation Capacity level (%) Setup Cost (%) Holding Cost (%) Backlog Cost (%) Lost Sales Cost (%) # of no B # of no LS

FLR-LS Uncapacitated 66.4 33.6 N/A 0.0 N/A 70

FLR-LS 95.0 66.9 31.3 N/A 1.8 N/A 41

FLR-LS 92.5 65.1 31.8 N/A 3.1 N/A 31

FLR-LS 90.0 61.4 33.0 N/A 5.6 N/A 26

FLR-B Uncapacitated 62.8 30.5 6.7 N/A 0 N/A

FLR-B 95.0 62.5 29.3 8.2 N/A 0 N/A

FLR-B 92.5 61.2 28.5 10.3 N/A 0 N/A

FLR-B 90.0 58.6 28.5 12.9 N/A 0 N/A

FLR-B-FL Uncapacitated 66.2 33.6 0.1 0.2 65 65

FLR-B-FL 95.0 64.6 32.1 1.4 1.9 15 15

FLR-B-FL 92.5 63.9 31.3 2.0 2.8 10 10

FLR-B-FL 90.0 60.7 32.3 3.0 4.1 10 10

FLR-B-VL Uncapacitated 66.1 33.6 0.1 0.2 65 65

FLR-B-VL 95.0 64.6 32.1 1.4 1.9 15 15

FLR-B-VL 92.5 63.9 31.4 2.0 2.8 10 10

FLR-B-VL 90.0 60.6 32.3 2.9 4.1 10 10

FLR-BR Uncapacitated 62.8 30.5 6.7 N/A 0 N/A

FLR-BR 95.0 62.5 29.3 8.2 N/A 0 N/A

FLR-BR 92.5 61.2 28.5 10.3 N/A 0 N/A

FLR-BR 90.0 58.6 28.5 12.9 N/A 0 N/A

FLR-BR-FL Uncapacitated 66.2 33.6 0.1 0.2 65 65

FLR-BR-FL 95.0 64.6 32.1 1.4 1.9 15 15

FLR-BR-FL 92.5 63.9 31.3 2.0 2.8 10 10

FLR-BR-FL 90.0 60.7 32.3 3.0 4.1 10 10

FLR-BR-VL Uncapacitated 66.1 33.6 0.1 0.2 65 65

FLR-BR-VL 95.0 64.6 32.1 1.4 1.9 15 15

FLR-BR-VL 92.5 63.9 31.4 2.0 2.8 10 10

FLR-BR-VL 90.0 60.6 32.3 2.9 4.1 10 10

FLR-BM Uncapacitated 63.6 31.1 5.3 N/A 0 N/A

FLR-BM 95.0 63.1 30.5 6.4 N/A 0 N/A

FLR-BM 92.5 61.8 31.3 6.9 N/A 0 N/A

FLR-BM 90.0 59.6 31.8 8.6 N/A 0 N/A

FLR-BM-FL Uncapacitated 66.2 33.6 0.1 0.1 66 66

FLR-BM-FL 95.0 64.9 32.0 1.3 1.8 17 17

FLR-BM-FL 92.5 63.4 32.1 1.9 2.6 10 10

FLR-BM-FL 90.0 60.8 32.6 2.7 3.8 12 12

FLR-BM-VL Uncapacitated 66.2 33.6 0.1 0.1 66 66

FLR-BM-VL 95.0 64.9 32.0 1.3 1.9 17 17

FLR-BM-VL 92.5 63.6 31.9 1.8 2.7 10 10

FLR-BM-VL 90.0 60.7 32.8 2.6 4.0 12 12
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Variable
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Unlimited

No
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Table 31. Cost Solution Structure of the G-dataset with Different Capacity Levels 

Table 30 and 31 show that the contribution of setup cost towards the total cost decreases 

when capacity is decreased because the backlog and/or lost sales costs become more important. 

The first thing to note is the structure of the solutions for the uncapacitated models. For the F-

dataset we see some percentage backlog and lost sales cost in the optimal solutions for the 

uncapacitated models that consider both backlog and lost sales. We do not, however, see this in 

the results of the G-dataset. This could explain their differences in the LP gap as mentioned in the 

IP Objection Function Value subsection of Section 6.1.1.   

Analysis of Costs 

 The results suggest that the proportion of setup cost does decrease as the capacity levels 

decrease, but not by a large amount. The proportion of backlog and lost sales cost rise significantly 

and this could explain the decrease in the setup cost’s contribution to the optimal solution. The 

Backlog Lost Sales Formulation Capacity level (%) Setup Cost (%) Holding Cost (%) Backlog Cost (%) Lost Sales Cost (%) # of no B # of no LS

FLR-LS Uncapacitated 68.0 32.0 N/A 0.0 N/A 75

FLR-LS 95.0 65.8 31.5 N/A 2.7 N/A 36

FLR-LS 92.5 62.6 32.3 N/A 5.1 N/A 31

FLR-B Uncapacitated 65.5 30.3 4.2 N/A 11 N/A

FLR-B 95.0 62.2 30.0 7.8 N/A 0 N/A

FLR-B 92.5 59.2 30.2 10.6 N/A 0 N/A

FLR-B-FL Uncapacitated 68.0 32.0 0.0 0.0 75 75

FLR-B-FL 95.0 65.1 31.5 1.4 2.0 21 21

FLR-B-FL 92.5 61.7 32.5 2.4 3.4 15 15

FLR-B-VL Uncapacitated 68.0 32.0 0.0 0.0 75 75

FLR-B-VL 95.0 65.1 31.5 1.4 2.0 21 21

FLR-B-VL 92.5 61.8 32.4 2.2 3.7 15 15

FLR-BR Uncapacitated 65.5 30.3 4.2 N/A 11 N/A

FLR-BR 95.0 62.2 30.0 7.8 N/A 0 N/A

FLR-BR 92.5 59.1 30.3 10.6 N/A 0 N/A

FLR-BR-FL Uncapacitated 68.0 32.0 0.0 0.0 75 75

FLR-BR-FL 95.0 65.1 31.5 1.4 2.0 20 20

FLR-BR-FL 92.5 61.7 32.5 2.4 3.4 15 15

FLR-BR-VL Uncapacitated 68.0 32.0 0.0 0.0 75 75

FLR-BR-VL 95.0 65.0 31.5 1.4 2.0 21 21

FLR-BR-VL 92.5 61.8 32.4 2.2 3.7 15 15

FLR-BM Uncapacitated 66.2 30.3 3.4 N/A 0 N/A

FLR-BM 95.0 62.5 31.3 6.1 N/A 0 N/A

FLR-BM 92.5 60.2 31.3 8.3 0.1 1 N/A

FLR-BM-FL Uncapacitated 68.0 32.0 0.0 0.0 75 75

FLR-BM-FL 95.0 65.1 31.7 1.3 1.9 20 20

FLR-BM-FL 92.5 61.6 31.0 2.5 3.5 17 17

FLR-BM-VL Uncapacitated 68.0 32.0 0.0 0.0 75 75

FLR-BM-VL 95.0 65.1 31.7 1.3 1.9 20 20

FLR-BM-VL 92.5 61.7 31.0 2.4 3.6 16 16

Restricted

No

Fixed

Variable

Multiple

No

Fixed

Variable

No Fixed

Unlimited

No

Fixed
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formulations with only backlog exhibit the smallest proportion of setup and holding cost at all 

capacity levels compared to the other model. The reason behind this is because for these 

formulations, the backlog cost constitutes a substantial proportion of the total costs. The combined 

percentage increase in the portion of backlog and lost sales from a decrease in capacity is seen to 

be similar for all the formulations. This could indicate that capacity has a similar impact on all 

formulations.  

Analysis of Decisions 

 For greater insight, Table 32 summarizes the average decision variable values of all 

formulations for the different capacity levels for the F-dataset.  
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Table 32. Decisions Solution Structure of the F-dataset with Different Capacity Levels 

In the results from Table 32, the number of backlogged and lost demand increases as 

capacity ranges from uncapacitated to 90 percent capacity level. These results confirm the ideas 

discussed in the “Analysis of Costs” section, where the reduction of capacity leads to greater use 

of backlog and lost sales in the optimal solutions. As for the number of setups, the amount 

decreases when the capacity level is reduced from 95 to 90 percent. However, for all formulations, 

the number of setups slightly increase when going from the uncapacitated models to the models 

with 95 percent capacity levels. An explanation behind the difference in the number setups 

Backlog Lost Sales Formulation Capacity level (%) # of Setup # of Holding # of Backlog # of Lost Sales # of no B # of no LS

FLR-LS Uncapacitated 42.2 4,012.8 N/A 0.0 N/A 70

FLR-LS 95.0 44.0 3,896.5 N/A 34.9 N/A 41

FLR-LS 92.5 43.6 3,929.3 N/A 58.5 N/A 31

FLR-LS 90.0 42.0 4,059.6 N/A 102.4 N/A 26

FLR-B Uncapacitated 40.3 3,682.8 509.4 N/A 0 N/A

FLR-B 95.0 40.5 3,620.7 591.3 N/A 0 N/A

FLR-B 92.5 40.2 3,573.8 668.9 N/A 0 N/A

FLR-B 90.0 38.7 3,551.3 835.0 N/A 0 N/A

FLR-B-FL Uncapacitated 42.2 4,002.8 11.0 3.7 65 65

FLR-B-FL 95.0 42.6 3,918.3 95.1 31.7 15 15

FLR-B-FL 92.5 42.4 3,869.5 145.0 48.3 10 10

FLR-B-FL 90.0 40.9 3,927.3 214.2 71.4 10 10

FLR-B-VL Uncapacitated 42.2 4,004.1 11.0 3.7 65 65

FLR-B-VL 95.0 42.6 3,918.6 95.1 31.7 15 15

FLR-B-VL 92.5 42.4 3,870.2 142.7 47.7 10 10

FLR-B-VL 90.0 40.9 3,932.5 211.3 72.8 10 10

FLR-BR Uncapacitated 40.3 3,682.2 510.0 N/A 0 N/A

FLR-BR 95.0 40.5 3,628.4 584.2 N/A 0 N/A

FLR-BR 92.5 40.2 3,576.1 668.4 N/A 0 N/A

FLR-BR 90.0 38.7 3,552.6 835.4 N/A 0 N/A

FLR-BR-FL Uncapacitated 42.2 4,002.8 11.0 3.7 65 65

FLR-BR-FL 95.0 42.6 3,917.2 95.1 31.7 15 15

FLR-BR-FL 92.5 42.4 3,865.5 145.0 48.3 10 10

FLR-BR-FL 90.0 40.9 3,930.5 214.3 71.4 10 10

FLR-BR-VL Uncapacitated 42.2 4,004.1 11.0 3.7 65 65

FLR-BR-VL 95.0 42.6 3,918.6 95.1 31.7 15 15

FLR-BR-VL 92.5 42.4 3,870.2 142.7 47.7 10 10

FLR-BR-VL 90.0 40.9 3,932.7 211.3 72.8 10 10

FLR-BM Uncapacitated 40.7 3,745.2 402.5 N/A 0 N/A

FLR-BM 95.0 40.9 3,741.1 435.8 N/A 0 N/A

FLR-BM 92.5 40.4 3,762.1 475.9 N/A 0 N/A

FLR-BM 90.0 39.1 3,775.8 587.8 N/A 0 N/A

FLR-BM-FL Uncapacitated 42.2 4,004.4 8.5 2.8 66 66

FLR-BM-FL 95.0 42.8 3,915.7 89.1 29.7 17 17

FLR-BM-FL 92.5 42.1 3,910.8 137.1 45.7 10 10

FLR-BM-FL 90.0 41.0 3,940.4 200.6 66.9 12 12

FLR-BM-VL Uncapacitated 42.2 4,005.6 8.5 2.8 66 66

FLR-BM-VL 95.0 42.8 3,913.4 88.0 29.8 17 17

FLR-BM-VL 92.5 42.3 3,900.4 132.6 46.1 10 10

FLR-BM-VL 90.0 40.9 3,962.4 189.1 69.6 12 12
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Unlimited

Restricted

Multiple

Fixed

Variable

No
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Variable
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No
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between the different capacity levels is not straightforward. There are two opposing tendencies in 

play. When capacity is reduced, the following possibilities can occur: 

1. An increase in the number of production setups because of a reduced ability to 

satisfy demand for longer periods of time. 

2. A decrease in the number of production setups because the capacity (which is 

already scarce) is consumed by setups through setup times. 

The two tendencies play a role in determining the number of setups that are included in the 

optimal solutions.   

Firstly it is important to note that in most cases, backlog is an effective strategy to reduce 

total cost. Therefore, for FLR-B and FLR-BR, the majority of the instances have stock-outs 

included in the optimal solution. This is the case even for the uncapacitated version of the models. 

Incurring backlogs instead of having to schedule an additional production setup can be cost 

efficient.     

The “# of no B” column, shows the number instances out of 70 instances for the F-dataset 

and 75 for the G-dataset that do not include backlog in the optimal solution. The last column does 

the same for instances in which lost sales is not included. The number of instances that do not use 

backlog and lost sales in their optimal solution are shown to either decrease or stay the same as 

capacity is reduced. This is logical as lower capacity levels will force some backlog and/or lost 

sales because of feasibility. One exception is FLR-BM-FL and FLR-BM-VL in the F-dataset 

where the number of instances without a stock-out increases by two when going from 92.5 to 90 

percent. On closer inspection, when capacity is lowered it may be optimal for some instances to 

have more frequent setups instead of paying for the backlog and lost sales penalty. Another reason 
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could be because some instances were not solved to optimality which skewed the results. In most 

cases however, when capacity is tightened, lost sales and backlog will be used more frequently.  

Figure 7 illustrates the increasing trend in the total backlog and lost sales costs when capacity is 

decreased. 

 

Figure 7. Comparison of Combined Total Backlog and Lost Sales Costs under Different Capacity Levels for the F-dataset 

In the uncapacitated formulations, we can find the optimal combination of backlog and lost 

sales without any capacity restrictions. When capacity is reduced, stock-outs become more 

frequent, which leads to more backlog and lost sales. An alternative to stock-outs when capacity 

is reduced is scheduling additional production setups if feasible. Typically backlog and lost sales 

are the cheaper options and therefore this explains the rising trend that appears in Figure 7.  
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6.2. Impact of α 

The parameter α indicates the percentage of customers willing to wait if a stock-out has 

happened. Up to this point, we have assumed that when a stock-out occurs, 75 percent of all 

customers are willing to wait for backlog (for the relevant formulations). For problems with only 

one customer type, the backlogged demand can be satisfied up to r periods later if backlog is 

restricted, or up to period m if backlog is unrestricted. To explore the impact of the α parameter on 

our formulations, we conduct an experiment with five different assumptions on the customer’s 

willingness to wait when a stock-out occurs, as indicated in Table 33. For problems with multiple 

customers, we adjust each customer type proportionally, while maintaining the following 

condition: ∑ 𝐵𝑞 = 𝛼𝑞∈𝑅 . Note that the case with α = 75% was the base case used in the previous 

experiments.  

 

Table 33. Relationship between 𝛼 𝑎𝑛𝑑 𝐵𝑞 

6.2.1. Performance Comparison 

We test the five different assumptions for the customer’s willingness to wait on all 

formulations that consider both backlog and lost sales simultaneously using the F-dataset. The 

results for the average best found solution and computational time are shown in Table 34.  

α(%) β(%)

55 [18.33, 14.67, 11.00, 11.00]

65 [21.67, 17.33, 13.00, 13.00]

75 [25.00, 20.00, 15.00, 15.00]

85 [28.33, 22.67, 17.00, 17.00]

95 [31.67, 25.33, 19.00, 19.00]

100 [33.33, 26.67, 20.00, 20.00]
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Table 34. Optimal Solution and Computing Time for Different Values of α using the F-dataset 

IP Computing Time 

By examining the results in Table 34, we notice that some general trends remain consistent 

with the previous tests. Computing time generally increases as the value of α is decreased for all 

formulations. There are some exceptions for some formulations where the computing time is 

greater when the value of α is 65 percent compared to 55 percent. The results do not show enough 

evidence that the computing time of certain formulations are more affected than others when the 

value of α is reduced.  

Figure 8 illustrates the impact of α on the computing time of the FLR-BM-FL and FLR-

BM-VL formulations.  

Backlog Lost Sales Formulation α Avg. IP Avg. Gap (%) Avg. CPUTime Avg. LP Avg. LPTime Avg. LP Gap (%) # of Time Limits

55% 43412.36 0.031 179.41 42106.41 0.02 3.040 3

65% 43228.20 0.013 144.42 41990.06 0.02 2.900 1

75% 42975.89 0.000 82.29 41832.22 0.01 2.701 0

85% 42605.86 0.000 65.58 41597.10 0.02 2.413 0

95% 41970.01 0.000 47.46 41105.06 0.02 2.083 0

55% 43408.57 0.018 160.23 42106.41 0.02 3.033 1

65% 43226.48 0.009 131.41 41990.06 0.03 2.897 1

75% 42974.98 0.000 114.15 41832.22 0.03 2.699 0

85% 42605.39 0.000 48.21 41597.10 0.02 2.412 0

95% 41969.64 0.000 42.81 41105.06 0.02 2.083 0

55% 43412.36 0.040 215.05 42106.41 0.03 3.040 4

65% 43228.20 0.016 129.97 41990.06 0.02 2.900 2

75% 42975.89 0.000 80.10 41832.22 0.02 2.701 0

85% 42605.86 0.000 56.19 41597.10 0.02 2.413 0

95% 41970.01 0.000 42.16 41105.06 0.03 2.083 0

55% 43408.57 0.017 125.78 42106.41 0.02 3.033 1

65% 43226.48 0.010 133.88 41990.06 0.02 2.897 1

75% 42974.98 0.000 78.79 41832.22 0.02 2.699 0

85% 42605.39 0.000 46.12 41597.10 0.02 2.412 0

95% 41969.64 0.000 27.95 41105.06 0.02 2.083 0

55% 43467.91 0.035 198.01 42112.64 0.02 3.132 2

65% 43289.45 0.039 184.68 41996.74 0.02 3.010 4

75% 43054.38 0.027 172.41 41843.81 0.02 2.848 2

85% 42730.41 0.018 138.98 41625.93 0.03 2.623 2

95% 42228.24 0.000 86.20 41218.53 0.02 2.395 0

55% 43433.49 0.065 211.57 42112.63 0.03 3.077 4

65% 43266.88 0.059 247.11 41996.73 0.05 2.970 4

75% 43035.49 0.022 143.48 41843.74 0.03 2.812 2

85% 42700.82 0.017 119.09 41625.74 0.02 2.566 1

95% 42192.59 0.000 65.61 41217.97 0.02 2.326 0

Multiple

Fixed

Variable

FLR-B-VL

FLR-BR-FL

FLR-BR-VL

FLR-BM-FL

FLR-BM-VL

Fixed FLR-B-FL

Unlimited

Variable

Restricted

Fixed

Variable
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Figure 8. Comparison of Computing Time between FLR-BM-FL and FLR-BM-VL for Different Values of α using the F-dataset 

Notice in Figure 8 the point at the right extremity of the chart: it represents the optimal 

solution for the formulations when α equals 100 percent. When α = 100%, all customers are willing 

to wait for backlog when a stock-out occurs, however different customers have different 

willingness’ to wait. Only the FLR-BM-VL formulation is used to obtain the results for α = 100%, 

because the FLR-BM-FL formulation experienced feasibility issues when α = 100%. 

From Figure 8, we observe that the computing times generally decrease when α is 

increased. Furthermore, FLR-BM-VL generally exhibits lower CPU times compared to FLR-BM-

FL for the same level of α. An exception to both general trends is the change of α from 55 to 65 

percent for FLR-BM-VL.  

The computing time for formulations with a single customer type seems to exhibit a 

different trend than formulations with multiple customer types. Figure 9 compares the computing 

time of the FLR-BM-FL and FLR-BR-FL formulations.  
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Figure 9. Comparison of Computing Time between FLR-BM-FL and FLR-BR-FL for Different Values of α using the F-dataset 

The computing time decreases in a convex fashion for the FLR-BR-FL formulation 

compared to a concave fashion for the FLR-BM-FL formulation. The reason that the 

computational time is decreased quicker for FLR-BR-FL could be because of its ability to use 

backlog more liberally compared to FLR-BM-FL. This pattern between formulations with a single 

customer type versus multiple customer types is consistent across the formulations with different 

lost sales types and backlog assumptions. Based on our results there is strong indication that the 

computing time is impacted differently for models with multiple customer types compared to 

single customer types when the value of α is reduced. Results for α = 100% were not recorded 

because of feasibility issues that arise with the FLR-BM-FL and FLR-BR-FL formulations for 

when α = 100%. 

IP Objective Function Value 

By reviewing the results illustrated in Table 34, we can identify the apparent impact on the 

best found value of the objective function when the values of α and β are adjusted. In all cases as 
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the value of α is reduced, the variable lost sales version of the formulation provides a better total 

cost than the fixed lost sales version. The difference is bigger for the multiple customer case 

compared to the restricted or unlimited backlog case. The backlog restriction does not have an 

impact on the best found value of the objective function, however this is true for when r = 4. In 

Section 6.3.1, we review if the best found value of the objective function is affected when the value 

of r is reduced. Lastly, the formulations with multiple customer types provide higher total costs 

than those that consider a single customer type, no matter the value of α and β.  

We suggest that by allowing the possibility of more backlog, the formulation has more 

flexibility and can therefore provide a better solution in less time. In Figure 10, we graph the best 

found objective function value of the FLR-BM-FL and FLR-BM-VL formulations according to 

the value of α ranging from 55 to 100 percent.  

 

Figure 10. Comparison of Best Found Objective Function Values between FLR-BM-FL and FLR-BM-VL for Different Values of 

α using the F-dataset 
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Figure 10 shows that the total cost decreases progressively as more backlog is allowed in 

the formulation. This suggests that the impact of backlog is strengthen due to the added flexibility 

it provides to the formulation. Only the FLR-BM-VL formulation is used to obtain the results for 

α = 100%, because the FLR-BM-FL formulation experienced feasibility issues when α = 100%. 

To determine if this trend holds true with formulations with single customer type, we 

compare the best found objective function values for the different values of α between the FLR-

BM-FL and the FLR-BR-FL formulations.  

 

Figure 11. Comparison of Best Found Objective Function Values between FLR-BM-FL and FLR-BR-FL for Different Values of 

α using the F-dataset 

Compared to the multiple customer type formulation, FLR-BR-FL exhibits a steeper 

decrease in the optimal value of the objective function when α is increased. The multiple customer 

type formulations have more restrictions in place, which could explain why it does not reduce the 

total cost as quickly. In the formulations with multiple customer types, there are customers that 

are only willing to wait one or two weeks for backlog, while the FLR-BR formulations assume 
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that all customers are willing to wait at least four weeks. Therefore there is an inherent advantage 

for FLR-BR to lower the optimal solution through the use of backlog. Results for α = 100% were 

not recorded because of feasibility issues that arise with the FLR-BM-FL and FLR-BR-FL 

formulations for when α = 100%. 

LP Solution  

The LP gap follows a similar pattern as the best found objective function does. As the value 

of α increases, the LP gap decreases. The LP gap decreases more the closer it gets to α = 100%. 

As for the LP time, it stays fairly consistent throughout. The LP time does not seem to be affected 

by the type of formulation nor the value of α.  

6.2.2. Comparison of the Structure of the Solution 
 

Analysis of Costs 

To further analyze the impact of α on the models, we look into the changes in the structure 

of the solutions. Table 35 summarizes the structure of the solution of all models that consider both 

backlog and lost sales for different values of α.   
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Table 35. Cost Solution Structure for Different Values of α using the F-dataset 

We have suggested throughout the thesis that the reasoning for the better solutions is the 

added flexibility that backlogging provides. The results in Table 35 indicate that as the value of α 

increases up to 100 percent, the percentage of backlog cost increases. In Figure 12, we illustrate 

the impact of backlog on the optimal solutions for different values of α for both FLR-BM-FL and 

FLR-BR-FL.  

Backlog Lost Sales Formulation α Setup Cost (%) Holding Cost (%) Backlog Cost (%) Lost Sales Cost (%) # of no B # of no LS

55% 64.26 31.94 0.91 2.90 18 18

65% 64.06 31.83 1.31 2.81 16 16

75% 63.87 31.34 2.01 2.78 10 10

85% 63.00 31.30 3.31 2.39 8 8

95% 61.76 30.36 6.47 1.41 1 1

55% 64.09 32.06 0.88 2.98 18 18

65% 64.03 31.85 1.30 2.82 16 16

75% 63.87 31.38 1.99 2.76 10 10

85% 63.00 31.31 3.30 2.38 8 8

95% 61.79 30.34 6.46 1.41 1 1

55% 64.23 31.97 0.91 2.90 18 18

65% 64.06 31.83 1.31 2.81 16 16

75% 63.87 31.34 2.01 2.78 10 10

85% 63.00 31.30 3.31 2.39 8 8

95% 61.76 30.36 6.47 1.41 1 1

55% 64.09 32.06 0.88 2.98 18 18

65% 64.03 31.85 1.30 2.82 16 16

75% 63.87 31.38 1.99 2.76 10 10

85% 63.00 31.31 3.30 2.38 8 8

95% 61.79 30.34 6.46 1.41 1 1

55% 63.97 32.25 0.86 2.93 21 21

65% 63.67 32.34 1.23 2.76 18 18

75% 63.42 32.11 1.86 2.61 10 10

85% 63.24 31.89 2.80 2.07 8 8

95% 62.26 31.71 4.94 1.09 1 1

55% 64.06 32.16 0.82 2.97 20 20

65% 63.90 32.15 1.18 2.76 16 16

75% 63.61 31.92 1.82 2.65 10 10

85% 63.27 31.83 2.75 2.16 8 8

95% 62.32 31.42 5.03 1.24 1 1

Multiple

Fixed FLR-BM-FL

Variable FLR-BM-VL

Unlimited

Fixed FLR-B-FL

Variable FLR-B-VL

Restricted

Fixed FLR-BR-FL

Variable FLR-BR-VL
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Figure 12. Percentage Impact of Backlog on the Optimal Solution for FLR-BM-FL and FLR-BR-FL for Different Values of α 

using the F-dataset 

In Figure 12, we can clearly see a slope with increasing marginal impact as the value of α 

approaches 100 percent. This slope supports the notion that the impact of backlog grows 

increasingly as the value of α increases as well. In a scenario where both backlog and lost sales are 

present, backlog seems to thrive when customers are more patient therefore allowing the added 

flexibility to structure a production schedule that reduces overall cost. 

Analysis of Decisions 

 For greater insight, Table 36 lists the average unit values of the decision variables. For the 

purpose of analyzing the disparity in the backlog and lost sales decision variables between the 

formulations with fixed and variable lost sales, we introduce a new “% Backlog of Stock-out” 

column. This column indicates the percentage of stock-out that is eventually satisfied by backlog. 

We can use this column to determine if there is a greater disparity in the usage of backlog between 
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formulations with fixed and variable lost sales given different backlog assumption and different 

values of α.  

 

Table 36. Decision Solution Structure for Different Values of α using the F-dataset 

 From Table 36, we observe that as the value of α increases, the number of setups decrease 

for all formulations. The results support the ideas discussed in the “Analysis of Costs” subsection, 

in which the use of backlog rises in an increasing fashion as the value of α increases from 55 to 95 

percent. Lost sales as anticipated decreases when the value of α increases for all formulations, and 

the same occurs for the number of items held in inventory. 

 By examining the new “% Backlog of Stock-out” column, we notice that that discrepancy 

between the formulation with fixed lost sales versus variable lost sales decreases as the value of α 

increases. This indicates that additional lost sales are more likely to be incurred when the 

customer’s willingness to wait is lower.  The discrepancy between the formulations with fixed lost 

sales versus variable lost sales are larger for the formulations with multiple customer types 

Backlog Lost Sales Formulation α # of Setup # of Holding # of Backlog # of Lost Sales % Backlog of Stock-out # of no B # of no LS

55% 42.80 3,926.46 62.94 51.49 55.00 18 18

65% 42.59 3,923.10 91.67 49.36 65.00 16 16

75% 42.41 3,869.46 144.96 48.32 75.00 10 10

85% 41.80 3,843.50 230.19 40.62 85.00 8 8

95% 40.70 3,715.52 461.71 24.30 95.00 1 1

55% 42.70 3,937.86 61.15 52.82 53.65 18 18

65% 42.57 3,919.94 90.71 49.74 64.58 16 16

75% 42.41 3,870.16 142.73 47.74 74.94 10 10

85% 41.80 3,849.79 229.40 40.54 84.98 8 8

95% 40.71 3,717.24 460.94 24.29 94.99 1 1

55% 42.77 3,933.12 63.06 51.60 55.00 18 18

65% 42.59 3,922.46 91.67 49.36 65.00 16 16

75% 42.41 3,865.54 144.96 48.32 75.00 10 10

85% 41.80 3,847.93 230.19 40.62 85.00 8 8

95% 40.70 3,713.30 461.71 24.30 95.00 1 1

55% 42.70 3,937.99 61.15 52.82 53.65 18 18

65% 42.57 3,919.94 90.71 49.74 64.58 16 16

75% 42.41 3,870.16 142.73 47.74 74.94 10 10

85% 41.80 3,848.68 229.40 40.54 84.98 8 8

95% 40.71 3,717.24 460.94 24.29 94.99 1 1

55% 42.70 3,938.36 64.21 52.54 55.00 21 21

65% 42.39 3,938.28 91.97 49.52 65.00 18 18

75% 42.14 3,910.82 137.05 45.68 75.00 10 10

85% 41.86 3,875.17 201.53 35.56 85.00 8 8

95% 40.87 3,827.00 346.79 18.25 95.00 1 1

55% 42.73 3,939.63 59.40 52.79 52.95 20 20

65% 42.54 3,933.01 84.58 48.81 63.41 16 16

75% 42.26 3,900.39 132.61 46.05 74.22 10 10

85% 41.87 3,877.14 197.99 37.05 84.24 8 8

95% 40.87 3,809.60 357.90 21.04 94.45 1 1

Multiple

Fixed FLR-BM-FL

Variable FLR-BM-VL

Restricted

Fixed FLR-BR-FL

Variable FLR-BR-VL

Unlimited

Fixed FLR-B-FL

Variable FLR-B-VL
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compared to formulations with a single customer type. Therefore additional lost sales are more 

likely to be incurred when there are customers with different willingness to wait.  

 When the value of α increases, the number of instances without a single stock-out 

decreases.  This trend is apparent for all formulation that include α in their formulation. As the 

value of α is increases, the maximum number of customers that must be lost when a stock-out 

occurs is reduced. Since the negative impact of the high lost cost is lessened, adding stock-outs in 

the optimal solution become more appealing because of the cost saving that backlogging can 

provide.  

6.3. Impact of r 
 

 Up to this point, we have set our backlog restriction parameter (r) to 4 periods. This allows 

unsatisfied demand to be backlogged for a maximum of 4 periods. Throughout our results, 

formulations with backlog restrictions have produced the same optimal solution as formulations 

without backlog restrictions. In this section, we reduce the r parameter to determine if a lower 

backlog restriction will have an impact on the optimal solution.     

6.3.1 Performance Comparison 

 The three models that incorporate backlog restrictions in their models are tested using the 

F-dataset at 92.5 percent capacity level with the value r ranging from 1 to 4. Table 37 summarizes 

the performance of the models. 
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Table 37. Optimal Solution and Computing Time for Different Values of r using the F-dataset at a 92.5 percent Capacity Level 

IP Computing Time 

 When the value of r is reduced, the computing time is affected, but not in a consistent way. 

FLR-BR has a very consistent computing time for all value of r. FLR-BR-FL and FLR-BR-VL 

both have their lowest computing time when the value of r is either 1 or 4, however there is not 

enough evidence to make any conclusions on the effect that the value of r has on computing time.  

IP Objective Function Value 

 For all three formulations, the average optimal value of the objective function does not 

change when the value of r is reduced from 4 to 2. Only when the value of r is equal to 1, does the 

optimal value of the objective function change for the three formulations. The models that consider 

both backlog and lost sales experience a small increase in their optimal value when the value of r 

decreases from 2 to 1, while the FLR-BR formulation experiences a slightly greater increase.  

 For all models, there is only a change in the optimal value of the objective function when 

the value of r is reduced from 2 to 1. This indicates that in the original optimal solution when r = 

4, backlog was held for a maximum of 2 periods. Therefore, the optimal solution would only differ 

significantly between an unlimited backlog model and a restricted backlog model if the value of r 

was less than 2. The impact of r can be higher if we would reduce the capacity further.  

Backlog Lost Sales Formulation r Avg. IP Avg. Gap (%) Avg. CPUTime (sec) Avg. LP Avg. LPTime (sec) Avg. LP Gap (%)

FLR-BR 4 41,460.68 0.000 29.27 40,654.04 0.02 1.944

FLR-BR 3 41,460.68 0.000 26.91 40,654.04 0.02 1.944

FLR-BR 2 41,460.68 0.000 22.67 40,654.04 0.01 1.944

FLR-BR 1 41,490.87 0.000 27.04 40,673.46 0.03 1.966

FLR-BR-FL 4 42,975.89 0.000 80.10 41,832.22 0.02 2.701

FLR-BR-FL 3 42,975.89 0.000 84.39 41,832.22 0.02 2.701

FLR-BR-FL 2 42,975.89 0.000 89.92 41,832.22 0.01 2.701

FLR-BR-FL 1 42,985.15 0.000 64.07 41,850.05 0.01 2.687

FLR-BR-VL 4 42,974.98 0.000 78.79 41,832.22 0.02 2.699

FLR-BR-VL 3 42,974.98 0.000 138.59 41,832.22 0.05 2.699

FLR-BR-VL 2 42,974.98 0.000 133.94 41,832.22 0.03 2.699

FLR-BR-VL 1 42,983.15 0.000 76.98 41,849.70 0.02 2.684

Restricted

No

Fixed

Variable
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 By reviewing the result we conclude that the value of r has a very minimal impact on the 

optimal value of the objective function. In most cases, the model aims to satisfy backlog 

immediately to minimize the backlog penalty cost. Therefore the impact of r is greatest the lower 

the value of r is.  

LP Solution 

 The LP time remains consistent in all models for all values of r. The LP gap experiences a 

very small decline when the value of r decreases from 2 to 1.   

6.3.2 Comparison of the Structure of the Solution 

 To explore in greater detail the impact of r on the optimal solution, we review the structure 

of the solutions illustrated in Table 38. 

 

Table 38. Cost Solution Structure for Different Values of r using the F-dataset at a 92.5 percent Capacity Level 

Analysis of Costs 

 The cost distribution does not experience any significant change when the value of r is 

reduced. The value of r does not seem to have an impact on the cost distribution of the optimal 

solution. In Table 38, we notice a small change in the cost percentages when changing r from 3 to 

Backlog Lost Sales Formulation r Setup Cost (%) Holding Cost (%) Backlog Cost (%) Lost Sales Cost (%)

FLR-BR 4 61.19 28.47 10.34 N/A

FLR-BR 3 61.19 28.47 10.34 N/A

FLR-BR 2 61.16 28.44 10.40 N/A

FLR-BR 1 61.43 28.40 10.17 N/A

FLR-BR-FL 4 63.87 31.34 2.01 2.78

FLR-BR-FL 3 63.87 31.34 2.01 2.78

FLR-BR-FL 2 63.83 31.38 2.01 2.78

FLR-BR-FL 1 63.99 31.27 1.97 2.77

FLR-BR-VL 4 63.87 31.38 1.99 2.76

FLR-BR-VL 3 63.87 31.38 1.99 2.76

FLR-BR-VL 2 63.87 31.38 1.99 2.76

FLR-BR-VL 1 63.91 31.37 1.93 2.78

Restricted

No

Fixed

Variable
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2. However there is no change in the best found objective function which therefore indicates the 

existence of alternative solutions. 

Analysis of Decisions 

For greater insight, Table 39 lists the unit values of the decision variables.  

 

Table 39. Decision Solution Structure Values for Different Values of r using the F-dataset at a 92.5 percent Capacity Level 

By looking at the average unit values of the decision variables there are a few points to 

note. For the most part, the decisions remain the same as the value of r is reduced. The average 

units of backlog does not significantly drop which suggests that the majority of backlog is satisfied 

immediately. If we look at FLR-BR-VL, we see an increase of 0.61 units in the average number 

of lost sales used in the objective function, while the number of backlog decreases by 2.15 units 

when the value of r decreases from 2 to 1. This suggests that lost sales is used as strategy in some 

instances to reduce the total cost. The number of instances that do not have any stock-outs in their 

best found solution remains the same as the value of r changes.  

Summary 

 The impact of r is very minimal as backlog is shown to be for the most part immediately 

satisfied. The impact of r is strongest when its value is low and we presume that a reduction in 

capacity would strengthen its impact.  

Backlog Lost Sales Formulation r # of Setup # of Holding # of Backlog # of Lost Sales # of no B # of no LS

FLR-BR 4 40.17 3575.07 668.66 N/A 0 N/A

FLR-BR 3 40.17 3575.07 668.66 N/A 0 N/A

FLR-BR 2 40.16 3567.93 672.33 N/A 0 N/A

FLR-BR 1 40.29 3566.13 667.27 N/A 0 N/A

FLR-BR-FL 4 42.41 3865.10 144.96 48.32 10 10

FLR-BR-FL 3 42.41 3865.10 144.96 48.32 10 10

FLR-BR-FL 2 42.40 3869.17 144.96 48.32 10 10

FLR-BR-FL 1 42.46 3862.79 144.19 48.06 10 10

FLR-BR-VL 4 42.44 3866.03 142.64 47.71 10 10

FLR-BR-VL 3 42.44 3866.03 142.64 47.71 10 10

FLR-BR-VL 2 42.41 3865.73 142.73 47.74 10 10

FLR-BR-VL 1 42.41 3865.51 140.58 48.35 10 10

Restricted

No

Fixed

Variable
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6.4. Impact of Lost Sales Cost 

 Up to this point, we have set the lost sales cost the same for all items. In this sensitivity 

analysis, we aim to determine if there is a greater discrepancy in the best found objective function 

values between the formulation with fixed and variable lost sales if there is a difference in lost 

sales cost between items. In this section, using the F-dataset at a 92.5 capacity level, we introduce 

more variability between items with respect to the lost sales cost. Specifically, we multiplied the 

lost sales cost by 5 for the first three items. We aim to determine the impact that variability in lost 

sales costs has on the optimal solution on models with fixed lost sales compared to variable lost 

sales.  

6.4.1 Performance Comparison 

 For this sensitivity analysis, we test the formulation using a different set of lost sales costs 

and compare it to our original results. Table 40 illustrates the performance of the models, 

consisting of the results of our original lost sales costs (Original) and our new lost sales costs 

(Adjusted). 

 

Table 40. Optimal Solution and Computing Time for Different Lost Sales Costs using the F-dataset at a 92.5 percent Capacity 

Level 

 

 

Backlog Lost Sales Formulations Lost Sales Cost Avg. IP Avg. Gap (%) Avg. CPUTime (sec) Avg. LP Avg. LPTime (sec) Avg. LP Gap (%)

FLR-LS Original 43,974.15 0.032 168.41 42,479.13 0.02 3.393

FLR-LS Adjusted 44,089.22 0.032 156.13 42,563.14 0.02 3.445

FLR-B-FL Original 42,975.89 0.000 82.29 41,832.22 0.01 2.701

FLR-B-FL Adjusted 43,286.16 0.000 114.25 42,055.65 0.02 2.847

FLR-B-VL Original 42,974.98 0.000 114.15 41,832.22 0.03 2.699

FLR-B-VL Adjusted 43,282.30 0.000 88.79 42,051.65 0.02 2.849

FLR-BR-FL Original 42,975.89 0.000 80.10 41,832.22 0.02 2.701

FLR-BR-FL Adjusted 43,286.16 0.000 74.23 42,055.65 0.02 2.847

FLR-BR-VL Original 42,974.98 0.000 78.79 41,832.22 0.02 2.699

FLR-BR-VL Adjusted 43,282.30 0.000 88.55 42,051.65 0.02 2.849

FLR-BM-FL Original 43,054.38 0.027 172.41 41,843.81 0.02 2.848

FLR-BM-FL Adjusted 43,400.71 0.013 180.20 42,061.99 0.02 3.057

FLR-BM-VL Original 43,035.49 0.022 143.48 41,843.74 0.03 2.812

FLR-BM-VL Adjusted 43,339.34 0.009 152.27 42,057.94 0.03 2.957

Fixed

Variable

Fixed

Fixed

Variable

Fixed

Variable

Unlimited

Restricted

Multiple

No
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IP Computing Time 

 The results in Table 40 indicate that an increase in the lost sales cost for certain items does 

not seem to impact the computing time of the formulations in a consistent way. The computing 

time remains fairly similar for all formulation. Some formulations have a longer computing time 

with the adjusted lost sales costs compared to the original lost sales cost, and others experience the 

opposite. The difference in computing between one set of lost sales cost versus the other is very 

small and therefore there is not enough evidence to make any conclusions.   

IP Objective Function Value 

 Across all formulations the optimal value of the objective function experiences a 

significant increase when the lost sales costs are increased for certain items which is logical since 

some costs are increased. Formulations that consider both backlog and lost sales simultaneously 

exhibit a similar increase in the optimal value of the objective function, while FLR-LS is 

significantly less impacted.  

 When comparing the difference in the optimal value of the objective function for both the 

original and adjusted cases, we notice that the difference is larger in the adjusted case. The 

hypothesis for this observation would be that with more variability in the lost sales cost, the 

variable lost sales formulation has more flexibility to allow some extra lost sales for items with a 

low lost sales cost, and consequently freeing up capacity for production of items with a high lost 

sales cost. This remains true under all backlog assumptions. The difference between the variable 

and fixed lost sales model is greatest under the assumption of multiple customer types. This 

supports previous findings in this thesis where we believe the models with multiple customer types 

are the least flexible formulation and therefore are more likely to be impacted by a change in a 
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parameter than models with a single customer type. The results in Table 40 indicate that 

formulations with restricted backlog provide the same optimal value of the objective function as 

formulations with unlimited backlog. This also support the idea that r has a minimal impact on the 

optimal value of the objective function when its value is high.   

LP Solution 

 The LP time remains consistent for all formulations, between the models using the original 

lost sales cost versus the adjusted lost sales cost. All models using the adjusted lost sales cost have 

a slightly higher LP gap than models using the original lost sales cost. The difference is however 

small given the percentage change in the optimal value of the objective function. 

6.4.2 Comparison of the Structure of the Solution 

 To explore in greater detail the impact of lost sales cost on the optimal solution, we review 

the structure of the solutions illustrated in Table 41. 

 

Table 41. Cost Solution Structure for Different Lost Sales Costs using the F-dataset at a 92.5 percent Capacity Level 

Analysis of Costs 

 For all cases, the proportion of backlog and lost sales cost decrease when we increase the 

lost sales cost for certain items. In turn, the percentage of setup cost increases as a consequence, 

Backlog Lost Sales Formulations Lost Sales Cost Setup Cost (%) Holding Cost (%) Backlog Cost (%) Lost Sales Cost (%)

FLR-LS Original 65.08 31.82 N/A 3.10

FLR-LS Adjusted 65.43 31.58 N/A 2.99

FLR-B-FL Original 63.87 31.34 2.01 2.78

FLR-B-FL Adjusted 64.51 31.37 1.78 2.33

FLR-B-VL Original 63.87 31.38 1.99 2.76

FLR-B-VL Adjusted 64.58 31.42 1.68 2.33

FLR-BR-FL Original 63.87 31.34 2.01 2.78

FLR-BR-FL Adjusted 64.51 31.37 1.78 2.33

FLR-BR-VL Original 63.87 31.38 1.99 2.76

FLR-BR-VL Adjusted 64.54 31.45 1.68 2.33

FLR-BM-FL Original 63.42 32.11 1.86 2.61

FLR-BM-FL Adjusted 64.60 31.65 1.57 2.18

FLR-BM-VL Original 63.61 31.92 1.82 2.65

FLR-BM-VL Adjusted 64.45 31.70 1.49 2.36

Restricted

Fixed

Variable

Multiple

Fixed

Variable

No Fixed

Unlimited

Fixed

Variable
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while the percentage of holding cost changes at random. We believe that because holding cost is 

the lowest of all of them, it has the lowest priority and therefore its usage depends on the other 

decision variables.  

 The FLR-LS formulation has the smallest percentage cost decrease for backlog and lost 

sales while also having the smallest proportion of setup cost increase when there is an increase in 

the lost sales cost for certain items. The formulations that consider both backlog and lost sales 

exhibit a similar impact in its cost distribution when the lost sales costs are changed.   

Analysis of Decisions 

For greater insight, Table 42 lists the unit values of the decision variables.  

 

Table 42. Decision Solution Structure Values for Different Lost Sales Costs using the F-dataset at a 92.5 percent Capacity Level 

 From the results in Table 42, we see that the average units of backlog and lost sales 

significantly decrease when there is an increase in the lost sales cost for certain items. The number 

of setups also increases for all formulation. Although the increase in the number of setups is small, 

their high cost has a large impact on the total cost.  

 If we refer to Table 42, we notice an increase for all models in the number of instances that 

not include at least one stock-out in their optimal solution. All formulations that consider both 

backlog and lost sales simultaneously have the same increase in the number of instances except 

Backlog Lost Sales Formulations Lost Sales Cost # of Setup # of Holding # of Backlog # of Lost Sales # of no B # of no LS

FLR-LS Original 43.60 3,929.33 N/A 58.51 N/A 31

FLR-LS Adjusted 43.83 3,911.14 N/A 56.37 N/A 32

FLR-B-FL Original 42.41 3,869.46 144.96 48.32 10 10

FLR-B-FL Adjusted 42.76 3,885.87 119.82 39.94 14 14

FLR-B-VL Original 42.41 3,870.16 142.73 47.74 10 10

FLR-B-VL Adjusted 42.79 3,888.88 113.19 40.30 14 14

FLR-BR-FL Original 42.41 3,865.54 144.96 48.32 10 10

FLR-BR-FL Adjusted 42.76 3,887.28 119.82 39.94 14 14

FLR-BR-VL Original 42.41 3,870.16 142.73 47.74 10 10

FLR-BR-VL Adjusted 42.77 3,888.18 113.19 40.30 14 14

FLR-BM-FL Original 42.14 3,910.82 137.05 45.68 10 10

FLR-BM-FL Adjusted 42.91 3,890.34 112.13 37.38 16 16

FLR-BM-VL Original 42.26 3,900.39 132.61 46.05 10 10

FLR-BM-VL Adjusted 42.76 3,901.58 105.07 41.35 14 14

Restricted

Fixed

Variable

Multiple

Fixed

Variable

No Fixed

Unlimited

Fixed

Variable
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for FLR-BM-FL. This supports the idea that FLR-BM-FL is the least flexible formulation, and 

therefore is more likely to be impacted by a change in a parameter.  
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7. Conclusion  

 The objective of this thesis was to develop lot-sizing models that could simultaneously 

consider backlog and lost sales. In addition, we aim to generalize the traditional single customer 

backlog assumption by considering multiple customer types with a different willingness to wait. 

Both of these aspects are new in the lot-sizing literature. This thesis aims to contribute to the trend 

of adapting lot-sizing models to represent realistic situations in an effort to propose more practical 

solutions. We address the multi-item capacitated lot-sizing problem in its classical form, and 

review proposed formulations that consider either backlog or lost sales individually.  

 To accommodate the necessary capabilities required to consider both backlog and lost 

sales, such as the calculation of the stock-out levels, we use the facility location reformulation. 

When both concepts are considered simultaneously, there are two approaches that we consider for 

lost sales when backlog is also an option: fixed proportion lost sales and variable proportion lost 

sales. To properly explore the proposed problem, we develop extensions to our formulation using 

different assumptions on backlog: unrestricted backlog, restricted backlog, and multiple customer 

types.   

 As there is no available dataset that matches our proposed problem, we adapt a dataset 

intended for a CLSP by adding generated backlog and lost sales parameters. When analyzing our 

computational results we compare the best found solutions, computing times and structures of the 

solution amongst our different formulations. Our results showed that the formulations with fixed 

lost sales and variable lost sales provide similar optimal solutions, which we attribute to the high 

lost sales cost. The variable lost sales formulations however is shown to be a more flexible, which 

leads to slightly lower best found objective function values. The variable lost sales models will 
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always provide a feasible solution, whereas the fixed lost sales models may face feasibility issues 

when capacity levels decrease.         

 By comparing the results of the formulations under different assumptions on backlog when 

lost sales is also an option, we determine that the results differ when considering multiple customer 

types as opposed to the traditional single customer type. The best found objective function value 

is either the same or higher for formulations with multiple customer types compared to 

formulations with a single customer type. By removing the traditional assumption of a uniform 

customer behaviour to stock-outs, we add realism to the model, but in return the model becomes 

less flexible and therefore results in higher total costs.   

 Different problem sizes were used to test the efficiency of our developed formulations. The 

results indicate that there is a significant relationship between the size of the problem and the 

average computing time per instance. The number of times the time limit was reached before the 

optimal solution could be found was more prevalent in problems of larger sizes. The optimal 

solution along with the computing times are especially sensitive to the number of items in a 

problem.   

 Given that the dataset we used was intended for a CLSP, we decided to conduct a sensitivity 

analysis with multiple capacity levels in an effort to find its impact on the performance of our 

formulations. Our results show that the capacity level is an important factor for our models. The 

computing time, structure of the solution, and the optimal solution are all affected by a change in 

the capacity level. Results suggest that the computing time and the best found objective function 

increase as the capacity levels decrease.  
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 Our sensitivity analysis also explored the impact of the α parameter representing the 

percentage of customer willing to wait for backlog when a stock-out occurs. From our analysis, 

we find that the optimal or best found solution generally follows a progressively declining slope 

as α goes from 55 to 100 percent. We find that allowing for the possibility of backlog allows for 

more flexibility and in turn, better and quicker solutions. As more flexibility is added into the 

problem, the greater the marginal reduction in total cost will be.   

 The results of this research are limited to specific problems where there is a manufacturer 

that has multiple customers that each represent one unit of demand. The manufacturer has the 

option to satisfy the demand on time, satisfy it later through backlog, or not to satisfy the demand 

and incur lost sales instead. Another limitation of this thesis is that the sensitivity analysis only 

focuses on one parameter at a time. We suggest for future research to examine possible interactions 

between certain parameters. We believe there are combinations of parameters that can provide 

some interesting results, such as a simultaneous change in the capacity level and the backlog time 

restriction (r). Another interesting analysis would be to study a larger range of backlog and lost 

sales cost parameters.     

To accommodate for our specific problem we made necessary assumptions. First, we 

assume that the unit selling price of an item would be greater or equal to the unit cost. This is a 

necessary assumption in order to use the lost sales variable in a minimization problem. It is an 

assumption that still encompasses the majority of realistic scenarios. Next, we assume that each 

unit of demand is represented by a separate customer. Lastly, we assume a scenario where the 

customer’s willingness to wait for backlog is known only at a population level. Therefore the 

customer’s willingness wait at an individual level is not known which prevents the ability to choose 

which customers to satisfy first in an effort to reduce total cost. Instead, we assume a first come 
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first served approach so that the customers that are faced with a stock-out represent a mix of 

customers who are willing to wait and customers who will not buy the product. In practice 

however, this mix of customers that face the stock-out is not a fixed and known parameter. For 

future research, we therefore suggest to explore the uncertainty in the mix (i.e. the α parameter). 

In addition, it would interesting to allow multiple units of demand to be ordered by the same 

customer. This would add a new dynamic that could continue the trend of adapting lot-sizing 

models to represent realistic situations.    

Finally, it would be interesting, especially in a business-to-business context, to consider 

that a manufacturer knows which customers are willing to wait (and for how long) and which 

customers are not willing to wait. In this case, the decisions that need to be taken will also include 

the allocation of the produced items to specific customers. The company can then exploit this 

customer specific knowledge, so that in case of a stock-out, the stock-outs are allocated (if 

possible) to customers that are willing to wait.  
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Appendices 
 

Appendix A: Computational Results and Solutions for the G-dataset at a 95 

percent Capacity Level 

 

Backlog Lost sales Formulation Size (n, m) CPU Time (sec)  IP Gap (%) LP LP Time (sec) LP Gap (%) # of Time Limits 

(6, 15) 105.34 39,787.48 0.031 38,210.20 0.01 3.883 1

(12, 15) 284.39 70,907.80 0.000 70,027.29 0.02 1.228 0

(24, 15) 769.80 146,238.20 0.010 145,827.70 0.04 0.275 2

(6, 30) 545.89 68,588.80 0.166 67,139.87 0.03 2.152 1

(12, 30) 1,800.00 146,352.00 0.400 145,159.21 0.07 0.796 5

(24, 30) 1,050.35 274,255.00 0.104 273,720.90 0.14 0.204 2

(6, 15) 53.72 37,749.17 0.000 36,884.48 0.02 2.295 0

(12, 15) 122.09 68,524.60 0.000 68,063.12 0.04 0.683 0

(24, 15) 712.84 146,238.20 0.015 143,133.00 0.03 0.182 1

(6, 30) 711.70 67,935.60 0.048 66,794.26 0.06 1.716 1

(12, 30) 1,800.00 144,937.60 0.257 144,116.02 0.27 0.560 5

(24, 30) 1,447.50 271,695.80 0.132 271,305.80 0.18 0.151 4

(6, 15) 47.58 39,043.44 0.000 37,766.83 0.02 3.236 0

(12, 15) 795.33 70,097.50 0.000 69,346.09 0.03 1.074 1

(24, 15) 779.34 145,621.60 0.000 145,278.30 0.05 0.236 2

(6, 30) 506.61 68,518.35 0.001 67,139.87 0.05 2.046 1

(12, 30) 1,800.00 146,906.43 0.004 145,690.62 0.10 0.808 5

(24, 30) 1,206.92 274,176.95 0.001 273,657.73 0.25 0.197 5

(6, 15) 41.14 39,043.44 0.000 37,766.83 0.01 3.236 0

(12, 15) 723.30 70,097.50 0.000 69,346.09 0.03 1.074 0

(24, 15) 785.49 145,621.60 0.028 145,278.30 0.06 0.236 2

(6, 30) 505.39 68,518.35 0.152 67,139.87 0.04 2.046 1

(12, 30) 1,800.00 146,951.00 0.436 145,690.62 0.10 0.834 5

(24, 30) 1,205.08 274,172.35 0.104 273,657.73 0.21 0.196 3

(6, 15) 39.17 37,749.17 0.000 36,884.48 0.01 2.295 0

(12, 15) 89.43 68,524.60 0.000 68,063.12 0.02 0.683 0

(24, 15) 512.75 146,238.20 0.015 143,133.00 0.03 0.182 1

(6, 30) 517.06 67,935.60 0.032 66,794.26 0.03 1.716 1

(12, 30) 1,800.00 144,937.60 0.209 144,116.02 0.10 0.560 5

(24, 30) 1,265.29 271,695.80 0.084 271,305.80 0.24 0.151 3

(6, 15) 51.77 39,043.44 0.000 37,766.83 0.02 3.236 0

(12, 15) 829.05 70,097.50 0.000 69,346.09 0.06 1.074 1

(24, 15) 783.54 145,621.60 0.027 145,278.30 0.05 0.236 2

(6, 30) 547.12 68,518.35 0.154 67,139.87 0.04 2.046 1

(12, 30) 1,800.00 146,920.10 0.421 145,690.62 0.09 0.816 5

(24, 30) 1,270.22 274,176.95 0.108 273,657.73 0.23 0.197 3

(6, 15) 66.67 39,043.44 0.000 37,766.83 0.02 3.236 0

(12, 15) 787.18 70,097.50 0.000 69,346.09 0.03 1.074 0

(24, 15) 788.88 145,621.60 0.028 145,278.30 0.05 0.236 2

(6, 30) 507.97 68,518.35 0.152 67,139.87 0.03 2.046 1

(12, 30) 1,800.00 146,951.00 0.436 145,690.62 0.10 0.834 5

(24, 30) 1,208.08 274,172.35 0.104 273,657.73 0.20 0.196 3

(6, 15) 68.81 38,242.63 0.000 37,136.28 0.01 2.858 0

(12, 15) 213.25 68,704.40 0.000 68,154.99 0.03 0.806 0

(24, 15) 934.53 143,648.00 0.000 143,341.33 0.06 0.215 1

(6, 30) 480.52 67,989.40 0.001 66,801.78 0.05 1.780 1

(12, 30) 1,757.18 145,046.60 0.002 144,216.25 0.10 0.564 4

(24, 30) 1,174.55 271,865.60 0.001 271,474.57 0.20 0.151 3

(6, 15) 39.13 39,125.59 0.000 37,782.36 0.02 3.393 0

(12, 15) 672.83 70,097.50 0.000 69,351.57 0.03 1.067 0

(24, 15) 808.87 145,626.00 0.030 145,278.30 0.06 0.240 2

(6, 30) 596.39 68,547.35 0.219 67,139.87 0.04 2.086 1

(12, 30) 1,800.00 147,038.26 0.518 145,690.62 0.12 0.887 5

(24, 30) 1,269.26 274,164.15 0.105 273,657.73 0.24 0.192 3

(6, 15) 101.88 39,125.59 0.000 37,782.36 0.01 3.393 0

(12, 15) 836.83 70,097.50 0.011 69,351.57 0.05 1.067 1

(24, 15) 829.22 145,626.00 0.031 145,278.30 0.06 0.240 2

(6, 30) 581.48 68,531.30 0.192 67,139.87 0.03 2.064 1

(12, 30) 1,800.00 146,990.23 0.486 145,690.62 0.13 0.858 5

(24, 30) 1,258.53 274,164.15 0.104 273,657.73 0.21 0.192 3

Multiple

No FLR-BM

Fixed FLR-BM-FL

Variable FLR-BM-VL

Restricted

No FLR-BR

Fixed FLR-BR-FL

Variable FLR-BR-VL

No Fixed FLR-LS

Unlimited

No FLR-B

Fixed FLR-B-FL

Variable FLR-B-VL


