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“Immature poets imitate; mature poets steal; bad poets deface what they take, and good poets
make it into something better, or at least something different. The good poet welds his theft into
a whole of feeling which is unique, utterly different from that from which it was torn; the bad
poet throws it into something which has no cohesion. A good poet will usually borrow from
authors remote in time, or alien in language, or diverse in interest.”

T.S. Eliot
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Abstract
Alternative Risk Premia Investing

by Julien HEBERT NGUYEN

We propose a systematic portfolio construction framework that combines alternative
risk premia strategies in a robust investment portfolio. In the frame of this paper, we
developed four strategies that capture smart beta, value, carry, and momentum risk
premia. In the spirit of reproducible research, we clearly defined the instruments, rules,
trading signals, and order sizing methodologies used in each of the strategies. To make
our findings relevant to academics and practitioners alike, transaction costs impacts
were precisely modelled and assessed. The strategies presented herein were created to
account for the trading constraints faced by typical investors. They are implementable
by anyone transacting futures contracts. Backtests are coded in the R language. Critical
code elements are presented throughout the paper for the reader’s benefit. Our results
presented strong evidence that transactions costs and rebalancing frequencies have a
very significant impact on the return characteristics of different risk premia strategies.
We provided an in-depth performance analysis of every strategy in light of these two
important factors.

The strategies returns are then used to investigate the performance of different port-
folio construction methodologies. We considered only robust frameworks, thus omit-
ting any method requiring the forward estimation of returns. The portfolio properties
of the frameworks used are well documented in the case of traditional risk premia.
However, their resulting characteristics when applied to alternative risk premia port-
folios are undocumented. Our results show that these approaches retain their strengths
and weaknesses irrespective of the risk premia.

Our research contributes to the field of Financial Engineering in the following ways.
First, it establishes a transparent reproducible framework by which to develop, imple-
ment, and analyze alternative risk premia strategies under realistic trading conditions.
This is of importance because the current literature on alternative risk premia often
bases its conclusions on strategies that were modelled in the absence of transaction
costs. This paper demonstrate that such results provide little context as to the character-
istics of those premia. We suspect certain published strategies to even be unprofitable
over the long run. Secondly, our investigations on the different portfolio construction
techniques contributes empirical results to a body of knowledge that is scarce. There
currently exists no consensus around which portfolio construction methodologies to
favour for alternative risk premia. Finally, this research represents a stepping stone; we
hope to directly use our findings to investigate other potential applications of alterna-
tive risk premia investing. These applications are discussed in detail in our concluding
chapter.
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Chapter 1

Investment Context

1.1 The Rise of Alternative Risk Premia Investing

"Diversification is the only free lunch". This old adage has long been repeated and
heeded by institutional and retail investors alike. The mathematics of portfolio con-
struction clearly demonstrate the value associated to identifying different uncorrelated
(or lowly) correlated risk premia and incorporating them in a portfolio. This search
was made even more important with the advent of the mean-variance framework; the
latter providing portfolio managers with a tool to quantify the benefits of adding new
assets to a portfolio. Having mastered traditional risk premia investing, investors are
now increasingly seeking new sources of premia.

This search has been going on long before the discovery of the CAPM. Through-
out the years, academic researchers have identified multiple sources of returns that
can be accessed systematically. The firsts were additional factors explaining the equity
risk premium. Fama and French are, to this day, renowned for pioneering this field.
However, since the 90’s, it is through hedge funds that many new uncorrelated return
factors were identified. Practitioners and academics jumped on the bandwagon identi-
fying an ever expanding set of these systematic sources of returns in all asset classes. As
CTA’s, Global macro hedge funds, and multi-strategy hedge funds contributed to the
popularization of those strategies they became increasingly accepted by the research
community. Academics categorized these new factors under one term: alternative risk
premia.

The term alternative risk premia sometimes lends itself to misinterpretation as it
encompasses more than strictly risk premium. We feel the best definition of what an
alternative risk premia is, comes from a 2016 paper written by Lyxor asset management
[1]. It quotes: "In practice, alternative risk premia are systematic risk factors that can
help to explain the past returns of diversified portfolios. They may be risk premia in a
strict sense, but also market anomalies or common strategies.". Any systematic strat-
egy that resulted in consistent positive returns over many economic cycles, and whose
returns are unexplained by traditional risk premia (i.e. long-only exposure to equity /
bonds) can therefore be described as an alternative risk premia.

At the time of this writing, the alternative risk premia funds have grown into an
industry of their own. The post financial crisis regulatory framework contributed to
this. By limiting investment banks proprietary trading activities through Dodd-Frank,
the banks were forced to restructure their activities. Rather than closing these lucrative
desks, they opted to offer the strategies to outside investors. This gave rise to a whole

1



2 Chapter 1. Investment Context

industry around systematic strategies swap. Hedge funds and traditional asset man-
agers have now also embraced alternative risk premia investing. They are increasingly
seen separating their traditional "alpha" offering1 from their alternative risk premia
funds. The fees on those funds are typically in-between those of a typical "alpha" and
"beta" portfolios. These efforts have not been in vain; today’s investments in alterna-
tive risk premia are quickly gaining market adoption. The following figure presents the
results of 2016 survey by Russell [2] in which they conclude that: "This year’s survey
provided evidence of the rapidly growing interest in this area, and a couple of things
stood out in the results."

FIGURE 1.1: The rise of factor investing

The fact that alternative risk premia cover all assets classes, as well as the large
scope of their definition, makes it difficult to define or isolate "pure" alternative risk
premia returns. Indeed, a particular risk premium can be accessed in many different
ways. Each are dependent on the strategies parameters and implementation. Because
of this, researchers can adopt two different stances toward risk premia research. The
first consists in aggregating commercially available risk premia indices together by fil-
tering for similarities across them. This demands access to these indices which is not
always trivial as they are oftentimes private data of investment banks and asset man-
agers. Even with access to the data, this approach is, in our opinion, not realistic. It
requires one to perform a thorough analysis of all these indices by diligently reading
each of their rule-books and prospectuses. This is a Herculean task at best. Consider
for instance that Harvey and al. have identified more than 200 risk factors and market
anomalies for the equity asset class alone [3]. Furthermore, as illustrated in the below
figure [1], this number keeps on growing year after year. Should one consider all asset
classes, the number of risk premia quickly reaches the thousand’s.

1Which typically command high fees (2% & 20%)



Chapter 1. Investment Context 3

FIGURE 1.2: Equity Risk Premia Published In Time

The other approach consists in formulating one’s own strategies and backtest them.
This is the approach favoured in this paper. Its structure differs from that of traditional
academic papers and, is as follows: In chapter 2, we present the datasets and backtest
specifications adopted to develop the strategies presented herein. Chapters 3 to 6 each
focus on a strategy that belongs to four alternative risk premia (risk parity, value, carry,
and momentum). In each chapter, we cover its strategy’s theoretical foundations by
thoroughly reviewing the current academic literature pertaining to it and then, pro-
ceed to describe its investment universe, its signal construction and its final implemen-
tation. The strategies are implemented exclusively through futures instruments, and
backtested under "realistic" trading cost assumption. Proper care is applied to quantify
the impact of trading costs and rebalancing frequency on each strategy. Our goal is to
build them so that they are accessible to both, retail and institutional investors, who
have access to leverage and derivatives. This means that we do not want the strategies
to require excessive or continuous trading. These concerns are discussed in the final
section of these chapters as part of the strategy’s performance analysis. In chapter 7,
we investigate different portfolio construction approaches through which we aggre-
gate the strategies in a portfolio. Again, we conduct a literature review of the different
portfolio construction methodologies used today. Our literature review, as well as the
content of this section, focus on testing robust portfolio construction methodologies.
We present the reader with our findings so that he may use them in integrating these
risk premia together. Chapter 8 concludes our research by outlining future investiga-
tions that will be based on this paper’s results.





Chapter 2

Data & Backtest Specifications

In the spirit of reproducible research, extra care was taken in developing and modelling
the strategies contained herein. We are confident that our results represent those of
strategies that are investable. An investor with access to leverage and bearing similar
trading costs to those used in our backtests should be able to efficiently replicate our
returns. The specificities of our modelling methodology are discussed below.

2.1 Datasets

2.1.1 Sources

The strategies presented in this paper invest solely in listed (i.e. exchange traded)
futures instruments. Unless stated otherwise, the data we used comes directly from
Bloomberg. Futures instruments are clearly identified by their Bloomberg Terminal
symbols. All other data sets that we used are accompanied by their corresponding
Bloomberg Terminal symbols or command.

2.1.2 Continuous Futures Adjustments

Futures instruments expire and need to be rolled on a calendar basis for an investor to
maintain its exposure to the underlying asset’s returns. When devising trading strate-
gies using futures, one needs to account for the term structure’s impact over time. We
factored the impact of contango and backwardation in the instruments’ prices by using
Bloomberg’s generic continuous series data. The rollover settings we used are shown
below:

5



6 Chapter 2. Data & Backtest Specifications

FIGURE 2.1: Bloomberg - Futures Settings

The settings assume that the contracts roll on their first notice date and, that the
continuous price series are derived using the proportional adjustment approach. This
approach consists in adjusting two consecutive futures prices by multiplying them by
the ratio of the older contract’s to the newer contract’s trading price on the day of the
adjustment. There are other forward adjustments methods, and they each present ad-
vantages and disadvantages. The back-forward (Panama) and the rollover methods,
are two other popular methods by which one can derive continuous futures prices.
We favour the proportional adjustment approach because its computation methodol-
ogy requires very few assumptions. For more information on continuous futures ad-
justments, we direct the reader to Schwager’s treatment of the subject [4], and to the
Quanstart’s online tutorial [5].

2.1.3 Periods

For each strategy backtested, we worked with the longest data history as possible. As
futures instruments differ in trading history, certain strategies have longer backtest
periods than others. This being said, we made sure to present at least 10 years of returns
data. This ensures that the strategies are analyzed over the span of a full economic
cycle1.

2.2 Backest Parameters

2.2.1 Slippage

We backtested our strategies over different rebalancing frequencies. Upon each rebal-
ancing, a full day of slippage is applied. This creates a realistic time delay between the
moment a trade signal is received and its completion. We believe that a full day is am-
ple time, even for large institutional investors who require more liquidity, to complete
their orders. As institutional futures traders often execute their trades using market

1As defined by NBER’s average cycle duration (http://www.nber.org/cycles.html.).
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participation algorithms 2, a day of slippage is a realistic assumption with which to
work.

2.2.2 Transactions Costs

Transaction costs of 1 basis point are applied to every trade. To clarify, these costs are a
function of the portfolio’s value being traded. For example, should the whole portfolio
turnover, then we’d assume a full basis point of trading impacts on that day’s return.
These costs should correspond to what the average futures trader is expected to pay
in commissions and clearing. However, since transactions costs can have a material
impact on a strategy’s returns and, given that no two investors are alike, we present
strategy backtests using different trading costs.

2Passive futures traders generally alternate between implementation shortfall, or TWAP.





Chapter 3

Risk Parity Strategy

3.1 Literature Review

The asset allocation problem is one that has long been studied by academics and fi-
nancial professionals. Long before the advent of risk parity portfolios, Markowitz, in
its seminal paper title Portfolio Selection [6], proposed the mean-variance model as a
formal solution to this problem. By positing that investors are risk averse and thus ex-
hibit utility functions that are increasing and concave, one can prove that the optimal
portfolio is the one with maximum expected return for a given variance (risk) level. De-
pending on an investor’s risk appetite, one can use this framework to obtain the best
portfolio. This asset allocation model has been prevalently used for the last 40 years.

For all its elegance, the mean-variance model comes plagued by technical difficul-
ties that arise when implementing it in practice. Indeed, it relies heavily on its input
parameters which are themselves hard to estimate. The expected-return estimations
of a portfolio’s assets are especially difficult to obtain with precision as described by
Merton many years later [7]. Practitioners often use the average long-term excess re-
turn of the asset; a measure that fails to account for changes in the market risk level.
The model’s variance inputs are also non-trivial to estimate, especially for portfolios
that contain a large amount of assets. Small perturbations in the covariance matrix can
result in large weight shifts for the portfolio exposing its user to detrimental trading
costs. Through market crises, asset managers came to realize that the mean-variance
model might not be as robust in practice. In the last years, a large body of research fo-
cused on developing robust methods around these estimation issues. Ledoit and Wolf
[8], Jagannathan and Ma [9], and DeMiguel et al. [10] all provide insights into these
improvements.

Even with these improvements, mean-variance portfolios suffered large losses dur-
ing the last two major financial crises (2000, 2008). This led to a renewed interest in asset
allocation frameworks, many of whom were not optimization based. The risk parity
portfolios are one of these frameworks. The main objective of risk parity portfolios is
to address robustness issues inherent to their mean-variance counterparts. The first
paper on the subject was authored by Edward Qian, a portfolio manager at Panagora
asset management [11]. In it, the author demonstrates that using an asset’s risk contri-
bution to a portfolio makes for an accurate metric of loss contribution. Working with
risk contributions instead of variance lead to efficient portfolios in real world terms.
Indeed, risk parity portfolios exhibit many desirable properties. They enforce a degree
of diversification, as assets are guaranteed to have non-zero weights, and they remain
mean-variance optimal under a specific set of assumptions. These assumptions are
not discussed herein, but are presented in a paper authored by Maillard, Roncalli, and

9



10 Chapter 3. Risk Parity Strategy

Teiletche [12]. One of these authors, Roncalli, also provides a comprehensive treatment
of the subject in one of his books [13].

The last 5 years have seen the use of risk parity portfolios increase significantly
among institutional managers. Hedge funds and asset managers have contributed to
their popularity, but academic researchers have also helped fostering this approach.
There remains, nonetheless, many different methodologies by which one can imple-
ment these portfolios. Choices around a portfolio’s leverage, its rebalancing frequency,
and its investment universe are critical in successfully implementing this strategy. We
address those below.

3.2 Investment Universe

The table below contains the instruments traded in the strategy. Risk parity portfolios
transact assets that exhibit and outright risk premia. Currency futures are therefore
absent from the strategy’s tradeable assets because they present no long term holding
benefits.

Ticker Bloomberg Code Description Asset Class

ES1 ES1 Index E-mini S&P 500 Future Equity
NK1 NK1 Index Nikkei 225 Index Future Equity
VG1 VG1 Index Euro STOXX 50 Index Future Equity
PT1 PT1 Index S&P Toronto 60 Future Equity
XP1 XP1 Index ASX SPI 200 Future Equity
TY1 TY1 Comdty US Treasury 10-Year Future Fixed Income
RX1 RX1 Comdty German Government Euro Bund Future Fixed Income
JB1 JB1 Comdty Japanese Government Bond 10-Year Future Fixed Income

US1 US1 Comdty US Treasury Long Bond Future Fixed Income
CN1 CN1 Comdty Canadian Governement Bond 10-Year Future Fixed Income
FV1 FV1 Comdty US Treasury 5-Year Note Future Fixed Income
CL1 CL1 Comdty Crude Oil Future Commodity
GC1 GC1 Comdty Gold Future Commodity
HG1 HG1 Comdty Copper Future Commodity
NG1 NG1 Comdty Natural Gas Future Commodity
LC1 LC1 Comdty Live Cattle Future Commodity
S_1 S 1 Comdty Soybean Future Commodity

W_1 W 1 Comdty Wheat Future Commodity
C_1 C 1 Comdty Corn Future Commodity
SB1 SB1 Comdty Sugar Future Commodity

LH1 LH1 Comdty Lean Hog Future Commodity
FC1 FC1 Comdty Feeder Cattle Future Commodity
QS1 QS1 Comdty Gas Oil Future Commodity
CC1 CC1 Comdty Cocoa Future Commodity
CO1 CO1 Comdty Brent Oil Future Commodity

SI1 SI1 Comdty Silver Future Commodity

TABLE 3.1: Risk Parity Strategy - Investment Universe
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3.3 Signals & Order Sizing

We specify the risk parity’s portfolio problem using a notation similar to that of Thierry
Roncalli [12]. For a portfolio of n assets, where w = (w1, ..., wn) is the weight vector of
each asset in the portfolio, if we considerR(w1, ..., wn) to be a coherent and convex risk
measure, we can express each asset’s contribution to the portfolio’s risk as:

R(w1, ..., wn) =
n∑
i=1

wi
∂R(w1, ..., wn)

∂wi

=
n∑
i=1

φi(w1, ..., wn)

where
φi corresponds to the contribution asset i to the total portfolio risk

Replacing the general risk measure (φ) by a specific risk measure σ that corresponds
to the portfolio’s variance. We can express the portfolio’s risk as:

σ(w) =
√
wTΣw

=
∑
i=1

w2
i σ

2
i +

∑
i=1

∑
j 6=i

wiwjσij

where
σ(x) is the total portfolio’s risk

σ2i is the variance of asset i
σij is the covariance between assets i and j
Σ is the full covariance matrix

Under this risk measure, the marginal risk contribution of each asset is given by:

∂wiσ(x) =
∂σ(x)

∂wi
=

wiσ
2
i +

∑
j 6=i

wjσij

σ(x)

The total risk of the portfolio can then be expressed as the sum of its total risk
contributions:

σw =
n∑
i=1

σi(w) =
n∑
i=1

wi∂xiσ(x)

where
σi(w) is the risk contribution of asset i

From the above, we can define the risk parity portfolio as the one where the set of
assets weights (w∗) equalize their contribution to the portfolio’s risk. These weights
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ensure that the portfolio’s risk is equally balanced across all its assets. This is a non-
convex, constrained quadratic programming problem that can be written as:

w∗ = {w ∈ [0, 1]n :
∑

wi = 1, wi∂wiσ(w) = wj∂wjsigma(w) ∨ i, j} (3.1)

There are more than one approaches by which we can obtain the solution to this
programming problem. As an example, Maillard, Roncalli and Teleitche [12] solve it
numerically using sequential quadratic programming, while Zhu, Li, and Sun [14] use
a branch and bound algorithm for similar results. More recently, genetic algorithms
have been employed to solve these types of non-convex portfolio problems. Ardia et
al. [15], building on the work of Storn and Price [16], provide an attractive solution to
the problem in the form of DEoptim, a differential evolution algorithm. We use this
last algorithm to solve for our portfolio’s weights.

More specifically, we apply calendar dates as trading signals, and compute the port-
folio’s optimal weights (order sizes) using the R PortfolioAnalytics’ library DEoptim
solver. The trading signals are fixed dates that correspond to the last trading day of
each month. On those days, the trading signals trigger the optimization procedure to
solve for the optimal asset weights.

An important distinction between the risk parity strategy presented here, and the
traditional implementations of these portfolios, is that we apply sequential optimiza-
tions to arrive at our optimal weights. First, we compute the risk parity weights only
for assets within an asset class (equity, fixed income, commodity). Then, using those
weights, we create asset class specific sub-portfolios whose return series are used as a
baseline to optimize the portfolio’s weights across asset classes. The optimal weights
are then obtained by backtracking their values from each optimization step.

As outlined in this section, we specify the risk measure in the objective function to
be the standard deviation (variance). As DEoptim is a stochastic global optimization
algorithm, it can sometimes identify multiple set of weights that equalize the asset’s
contribution to the portfolio’s risk. As such, we add to the objective function that the
selected weights minimize the portfolio concentration in any one asset. This last cri-
terion is coherent with the hybrid properties of risk parity portfolio’s [12]. All of the
model’s parameters are estimated over a 252 days rolling window period and, we allow
for the presence of leverage in the final weights. This last condition is often necessary
to obtain "true" risk parity weights. The total portfolio exposure can be over or under
invested to 125% and 50% within asset classes and 150% and 50% across asset classes.
The code below provides some insights our specification of the problem. The reader
should note that this code is used for the "within asset class" optimization of equity
assets:
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1 # Equity futures returns
returns.eq <− na.omit(Return.calculate(symbols.closeprice[, symbols.eq]))

3 returns.eq.sma <− na.omit(as.xts(x = (apply(X = returns.eq, FUN = "SMA", n = 2, MARGIN = 2)),
order.by = index(returns.eq)))

5 # Objective function
rp.eq <− portfolio.spec(assets = colnames(returns.eq.sma))

7 rp.eq <− add.objective(portfolio = rp.eq, type = "risk_budget", name = "StdDev", min_concentration =
TRUE, min_difference = TRUE)

9 # Constraints
rp.eq <− add.constraint(portfolio = rp.eq, type = "box", min = 0.00, max = 1.00)

11 rp.eq <− add.constraint(portfolio = rp.eq, type = "leverage", min_sum = 0.50, max_sum = 1.25)

13 # Optimize
set .seed(1234)

15 opt <− optimize.portfolio.rebalancing(R = returns.eq.sma, portfolio = rp.monthly, optimize_method =
"DEoptim", search_size = 5000, itermax = 50, rebalance_on = "months", trailing_period = 252,
training_period = 252)

LISTING 3.1: Risk Parity - Within Asset Class (Equity) Code

The figure below presents the cumulative returns of the within asset classes sub-
portfolios. The equity risk parity sub-portfolio, whose optimal weights in time are
derived from the code above, is the line in pink. Even though those results are obtained
for the sole purpose of computing the portfolio’s weights, they include transactions
costs (1bps) and a full day of slippage.
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FIGURE 3.1: Risk Parity Strategy - By Asset Class Performance

3.4 Strategy Implementation

The strategy’s weights are updated on a monthly basis, but we tested the impact of
different rebalancing periods on the strategy’s returns. As with all our backtests, we
simulated realistic conditions by applying transactions of 1bps and a full day of slip-
page to each trade. The results are presented below.
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FIGURE 3.2: RiskParity Strategy - Trading Frequency

Daily Weekly Monthly Quarterly Yearly

Cumulative Return 0.35 0.37 0.36 0.34 0.35
Annualized Return 0.03 0.03 0.03 0.03 0.03

Annualized Standard Deviation 0.04 0.04 0.03 0.03 0.03
Annualized Sharpe Ratio (rf=0%) 0.73 0.91 0.93 0.88 0.91

Worst Drawdown 0.14 0.12 0.11 0.12 0.12
Average Drawdown 0.01 0.01 0.01 0.01 0.01

Skewness -0.63 -0.84 -0.53 -0.63 -0.57
Kurtosis 10.21 13.58 9.37 9.26 8.18

TABLE 3.2: Risk Parity Strategy - Trading Frequency

An examination of the data reveals that, in the presence of trading costs, the strat-
egy’s Sharpe ratio varies significantly. There is a full 0.20 difference in Sharpe ratio
between implementing this strategy with daily and monthly trading. The cumulative
returns reveals that, rebalancing on a weekly basis, dominates the other frequencies.
Surprisingly, quarterly and yearly rebalanced portfolios performed similarly to others.
This can be explained by the low turnover and relative weights stability inherent to the
risk parity framework. Because of the small difference in Sharpe Ratio and, because of
it’s overall total return, we favour rebalancing the portfolio on a weekly basis.

Using our selected portfolio, we then tested for the impacts that different trans-
actions costs may have on it. The same portfolio was implemented for trading costs
ranging from zero to 25bps, with increments of 5bps. We present their performance
statistics below:
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0.00% 0.05% 0.10% 0.15% 0.20% 0.25%

Cumulative Return 0.40 0.37 0.34 0.31 0.29 0.26
Annualized Return 0.03 0.03 0.03 0.03 0.03 0.02

Annualized Standard Deviation 0.03 0.03 0.03 0.03 0.03 0.03
Annualized Sharpe Ratio (rf=0%) 0.98 0.92 0.86 0.80 0.73 0.67

Worst Drawdown 0.11 0.11 0.12 0.12 0.12 0.12
Average Drawdown 0.01 0.01 0.01 0.01 0.01 0.01

Skewness -0.51 -0.53 -0.54 -0.55 -0.56 -0.57
Kurtosis 9.35 9.34 9.32 9.29 9.26 9.23

TABLE 3.3: Risk Parity Strategy - Trading Costs

3.5 Performance Metrics

We conclude this chapter by presenting the final strategy’s performance relative to a
long-only equal weighted benchmark portfolio of its assets. We backtested the bench-
mark similarly to the strategy; within an asset class, the instruments were equally
weighted to create sub-portfolios. These portfolios were then equal weighted again
to obtain the final asset weights. The benchmark is rebalanced daily, at no transaction
costs. This is by choice.
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FIGURE 3.3: RiskParity Strategy - Performance

The risk parity portfolio clearly outperforms its equal weighted counterpart over
the backtested period. A visual examination of both return lines reveal that the risk
parity strategy had a smaller drawdown during the 2008 global financial crisis than
the benchmark. Through compounding, the strategy ends up delivering a total return
that far exceeds the benchmark. However, what is really impressive is the fact that
the strategy’s volatility is half that of the benchmark and, that its annualized return is
double. Accordingly, its Sharpe ratio is almost 3 times higher than an equal weighted
portfolio; a significant improvement.
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EqualWeight RiskParity

Cumulative Return 0.25 0.51
Annualized Return 0.02 0.04

Annualized Standard Deviation 0.08 0.04
Annualized Sharpe Ratio (rf=0%) 0.27 0.98

Worst Drawdown 0.31 0.14
Average Drawdown 0.02 0.01

Skewness -0.71 -0.60
Kurtosis 9.03 9.95

TABLE 3.4: Risk Parity Strategy - Performance Statistics



Chapter 4

Value Strategy

4.1 Literature Review

Perhaps one of the most studied risk premia, value strategies are linked to the phe-
nomenon whereby asset prices tend to revert to their intrinsic (or otherwise fair) value.
This risk premia was the subject of Graham and Dodd’s seminal book [17], and ever
since its publication, the equity value premium has been validated by numerous sub-
sequent research papers. One of them is by Fama and French in 1993 [18]. In this
paper, the authors demonstrate the evidence of a strong value premium in U.S. stocks,
as defined by high book to market value, earnings to price, or cashflow to price ra-
tios. Similar findings on the equity value premium were also subsequently reported by
Lakonishok [19] and Fama and French [20] soon after.

The value risk premium is however not confined to equities. All major asset classes
have a tendency to mean revert around fundamental value metrics, especially when
their levels appear "cheap" or "rich". In the currency market for instance, it was shown
that the metric, known as the purchasing power parity (PPP), explained value pre-
mia. This was first documented in the 70’s in a paper by Frenkle [21]. However, this
asset class’ risk premium was the subject of a lot less research efforts than its equity
counterpart for many years. Only recently have academics and market practitioners
begun researching it again. Asness, Moskowitz and Pedersen [22] are among them.
They showed that 5 years average real interest rates serve as a good baseline metric
to explain exchange rates excess returns relative to one another. Similar finding by
Kroencke, Schindler, and Schrimpf in 2011 [23], and later by Menko, Sarno, Schmeling
and again Schrimpf in 2015 [24] corroborate this risk premium’s existence.

In the fixed income markets, evidences of the value premia were also observed by
Asness, Moskowitz and Pedersen [22] by using the past five year return as a valuation
metric. In an industry paper, Natividade et al. [25] successfully used the term structure
of interest rates to build a value metric and trade on it. Others, like Cochrane and Pi-
azessi [26], went as far as using the interest rates’ term structure’s convexity as a value
metric. Even though there exists strong proof of the existence of this risk premium, we
failed at replicating these author’s results. Our absence of success might be explained
by the fact that we tried applying these metrics with futures contracts. Nevertheless,
it remains that we have not succeeded in developing an acceptable risk premium har-
vesting strategy for this asset class. As such, we opted to entirely exclude this asset
class from our value risk premia portfolio.

As for commodities, there exists anecdotal evidence that fundamental commodi-
ties trader have long dominated the physical commodities markets by trading using

17



18 Chapter 4. Value Strategy

a broad set of value metrics. These metrics are often based on granular supply and
demand data that is difficult to collect. Such data, is more often than not, impossible
to collect for asset managers. To make matters even more difficult, commodities are a
diverse asset class. As such, they lack universal endogenous characteristics by which
they can be evaluated cross-sectionally. Because of these difficulties, we need to re-
sort to "hacks" in order to come up with a value metric for this asset class. Asness,
Moskowitz and Pedersen [22] propose one such trick by using the 5 year cumulative
returns of commodity contracts as a baseline to construct a mean reverting signal. Vari-
ations around this metric serve as the basis for many commodity value strategies today.

4.2 Investment Universe

The table below lists the instruments covered by this strategy. Since we haven’t man-
aged to efficiently isolate the value risk premia strategy for fixed income futures, we
omitted this asset class.

Ticker Bloomberg Code Description Asset Class Currency

ES1 ES1 Index E-mini S&P 500 Future Equity USD
NK1 NK1 Index Nikkei 225 Index Future Equity JPY
VG1 VG1 Index Euro STOXX 50 Index Future Equity EUR
PT1 PT1 Index S&P Toronto 60 Future Equity CAD
XP1 XP1 Index ASX SPI 200 Future Equity AUD
CL1 CL1 Comdty Crude Oil Future Commodity USD
GC1 GC1 Comdty Gold Future Commodity USD
HG1 HG1 Comdty Copper Future Commodity USD
NG1 NG1 Comdty Natural Gas Future Commodity USD
LC1 LC1 Comdty Live Cattle Future Commodity USD
S_1 S 1 Comdty Soybean Future Commodity USD

W_1 W 1 Comdty Wheat Future Commodity USD
C_1 C 1 Comdty Corn Future Commodity USD

AD1 AD1 Curncy AUD/USD Future FX USD
JY1 JY1 Curncy JPY/USD Future FX USD
BP1 BP1 Curncy GBP/USD Future FX USD
EC1 EC1 Curncy EUR/USD Future FX USD
CD1 CD1 Curncy CAD/USD Future FX USD
NV1 NV1 Curncy NZD/USD Future FX USD
PE1 PE1 Curncy MXN/USD Future FX USD

TABLE 4.1: Value Strategy - Investment Universe

4.3 Signals & Order Sizing

This strategy’s trading signals are based on a fair value assessment of each instrument
based on a fundamental metric. The value signals are constructed specifically for each
asset classes. Within a given asset class, each instrument’s value metric readings are
ranked. This ranking is used to derive the instruments’ portfolio weights. The asset
class sub-portfolios implement long-short positions, and are dollar neutral. We present
the signals construction methodologies below and conclude this section by outlining
the exact weighting function.
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4.3.1 Equity Signals

Our equity value signals are derived from Natividade’s fair value strategy template
[25]. Two indicators are involved in the signal’s construction: the earnings yield, and
the equity risk premium. We describe them below:

The Earnings Yield corresponds to the inverse of the equity index’s price to earn-
ings ratio. We use Bloomberg’s earnings estimates which are derived from a 12
months trailing window of the earnings per share before accounting for extraor-
dinary items.1

The Equity Risk Premium corresponds to the earnings yield (as described above) mi-
nus the 10 years swap rate of the index’s country.2

The figures below illustrate the indicators’ evolution for the strategy’s equity in-
struments:
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FIGURE 4.1: Value Strategy - Earnings Yield Indicators

1Which are obtained from the command PE RATIO in the terminal.
2Some authors also substract the breakeven inflation rates to the previous terms. We chose not to use

it as reliable data is difficult to obtain for certain countries.
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FIGURE 4.2: Value Strategy - ERP Indicators

Both indicators are ranked and converted to target weights using the order sizing
function defined in section 4.3.4. The final instrument exposures are obtained by aver-
aging both target weights.

4.3.2 FX Signals

The value signals for currency instruments are derived from a purchasing power parity
(PPP) based metric. Traditional PPP metrics seek to explain the exchange rate differ-
entials between two currencies through long-run inflation differentials. Over time, the
relative value of two currencies should adjust itself so that the price of goods in one
country are similar to those of the other, once accounting for exchange rate differen-
tials. Although this dynamic generally tends to hold, many long-term deviations from
PPP have been documented throughout the years. In most cases, these exchange rates
misalignments can be explained by the "Penn effect"3, and can be corrected using pro-
ductivity differentials. Our indicator accounts for such effects. Its construction is as
follows:

1. For each currency pair, we retrieve its country’s OECD PPP rates estimates4;

2. We then retrieve its country’s World Bank GDP per capita, based on purchasing
power parity estimates5, and divide it by the equivalent US’ GDP value;

3. Then, we compute the PPP implied currency exchange rates (1 / PPP) and adjust
it by the GDP adjustment ratio (obtained on step 2.).

4. Finally, we calculate the percent differentials between the 30 days EMA of the
exchange rate and that of the adjusted PPP implied value.

As for equity instruments, the indicator’s values are ranked and converted into
long-short market exposures using the strategy’s order sizing methodology. The indi-
cator’s time series is presented here for illustrative purposes.

3We refer the reader to Stopler’s [27]’s treatment of the subject.
4Bloomberg terminal command: PPP US Index, PPP FR Index, etc.
5Bloomberg terminal command: PPPGGDUS Index.
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FIGURE 4.3: Value Strategy - PPP Indicators

4.3.3 Commodity Signals

Our final value risk premium signals are applied to commodity instruments. For this
asset class we used a variation of Asness, Moskowitz, and Pedersen’s value indicator
[22]. Like them, we calculate the 5 years difference of the log returns of each instrument.
Then, we filter the values by applying a simple 30 days moving average. We smooth the
5 years return to increase the indicator’s stability, and ultimately limits the strategy’s
turnover. These simple, albeit effective, trading signals are depicted here :
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FIGURE 4.4: Value Strategy - 5Y Returns Indicators

4.3.4 Order Sizing

As previously mentioned, within each asset classes, the value strategies are dollar-
neutral. This means that, for a given asset class signal, we rank its values and target a
long exposure to the instruments whose signals are ranked the highest, and short those
whose signals are the lowest. The higher a signal ranks, the bigger the instrument’s
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portfolio weight (long), and vice versa.This dollar neutral weighting is the same as the
one proposed by Asness, Moskowitz and Pedersen [22]. The exact weight target for an
instrument i, at time t, corresponds to:

wit = zt(rank(Iit)−
Nt + 1

2
(4.1)

where

I is the security i’s fair value indicator at time t
N is the number of instruments at time t
z is a scalar that ensures the sum of the long and short exposures equal 1 and -1

4.4 Strategy Implementation

For each asset class, we rank the signals and derive their instruments weights. These
target weights are lagged by one day to account for the transaction slippage. From
these weights, we generate three composite sub-portfolios. One for each asset type.
These return streams will be used in determining the relative weight assigned to each
sub-portfolio as part of the strategy. The following figure and table contain the cumu-
lative returns, and performance statistics of these sub-portfolios:
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FIGURE 4.5: Value Strategy - By Asset Class Performance
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Equity FX Commodities

Cumulative Return 0.93 0.42 1.23
Annualized Return 0.04 0.02 0.05

Annualized Standard Deviation 0.08 0.05 0.12
Annualized Sharpe Ratio (rf=0%) 0.58 0.51 0.44

Worst Drawdown 0.12 0.08 0.29
Average Drawdown 0.01 0.01 0.03

Skewness 0.66 -0.44 -0.13
Kurtosis 10.04 8.29 4.17

TABLE 4.2: Value - Strategy By Asset Class Performance

The weights assigned to each sub-portfolio correspond to those equalizing the risk
contribution of each asset class composite to that of the final portfolio. This allocation
problem is the same as the one specified in Chapter 3. The only difference in this case
relates to the sum of weights which are constrained to 100% (w.sum.max = 1.00). We
perform the optimization and update the weights on a monthly frequency. This has
no impact on the total portfolio trading frequency (which is presented later). The exact
optimization parameters are:

1 Weights.ERC(returns = foo.data,
rebalancing.frequency = "months",

3 optimization.type = "risk_budget",
objective .function = "StdDev",

5 w.min = 0.00,
w.max = 1.00,

7 w.sum.min = 0.99,
w.sum.max = 1.01,

9 training .period = 90,
trailing .period = 90)

LISTING 4.1: Value Strategy - Composite Weights Code

Using the composite weights, we backtracked each instrument exposures. To assess
the impact of the rebalancing frequency on the strategy, we backtested five portfolios
(daily, weekly, monthly, quarterly, and yearly). For each backtest, we accounted for
a full day of slippage, and 1bps of transaction costs. The strategy’s returns present a
relatively similar profile at all time-frames but, longer rebalancing time-frames clearly
dominate the shorter ones. The yearly rebalanced strategy has the highest Sharpe ratio,
followed by the monthly and weekly ones.
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FIGURE 4.6: Value Strategy - Trading Frequency

Daily Weekly Monthly Quarterly Yearly

Cumulative Return 0.30 0.42 0.47 0.45 0.49
Annualized Return 0.02 0.02 0.03 0.03 0.03

Annualized Standard Deviation 0.04 0.04 0.04 0.04 0.04
Annualized Sharpe Ratio (rf=0%) 0.43 0.54 0.60 0.58 0.63

Worst Drawdown 0.08 0.07 0.08 0.07 0.06
Average Drawdown 0.01 0.01 0.01 0.01 0.01

Skewness 0.01 -0.15 -0.11 -0.17 -0.28
Kurtosis 6.46 6.06 5.01 4.81 4.75

TABLE 4.3: Value Strategy - Trading Frequency

Even if the yearly rebalancing policy dominates all others, we opted to implement
the final strategy with weekly rebalancings. Should the strategy’s signals become more
volatile in the future, rebalancing the portfolio on a weekly basis would ensure that
we capture the changes in exposures that arise from this. The performance differences
between weekly and monthly rebalancing’s aren’t enough, in our opinion, to justify
rebalancing only on a monthly frequency.

Testing for the impact of transaction costs, we can see from the table below that,
for transaction costs that are above 0.10%, the strategy’s attractiveness quickly dete-
riorates. Above this level, the portfolio’s Sharpe ratio quickly diminishes below 0.50
which, for a long-short portfolio, is average at best.
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0.00% 0.05% 0.10% 0.15% 0.20% 0.25%

Cumulative Return 0.57 0.50 0.44 0.38 0.33 0.27
Annualized Return 0.03 0.03 0.02 0.02 0.02 0.02

Annualized Standard Deviation 0.04 0.04 0.04 0.04 0.04 0.04
Annualized Sharpe Ratio (rf=0%) 0.69 0.62 0.56 0.49 0.43 0.36

Worst Drawdown 0.07 0.07 0.07 0.08 0.08 0.09
Average Drawdown 0.01 0.01 0.01 0.01 0.01 0.01

Skewness -0.15 -0.15 -0.14 -0.14 -0.14 -0.14
Kurtosis 6.00 6.01 6.02 6.02 6.03 6.03

TABLE 4.4: Value Strategy - Trading Costs

4.5 Performance Metrics

The final strategy’s backtest is presented relative to a long-only benchmark composed
of the same instruments it trades. The benchmark is an equal weighted portfolio of
the asset classes composites where each asset class sub-portfolio is equally weighted
across its instruments. The chart below illustrates the appeal of alternative risk pre-
mia strategies relative to traditional risk premia. The value strategy’s performance is
much more stable than its counterpart, suffers significantly smaller drawdowns, and
realizes a similar annualized return. As is the case for most alternative risk premia,
over the backtest period, it realizes an attractive 0.68 annualized Sharpe ratio. This is
twice the expected return per volatility unit of the benchmark. Given the long backtest
period, we are confident that these results were obtained throughout a full, albeit tur-
bulent business cycle. We omit their presentation, but the p-values of our Sharpe ratio
estimates are well below 0.05, further reinforcing our robustness claim.
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FIGURE 4.7: Value Strategy - Performance
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EqualWeight RiskParity

Cumulative Return 0.25 0.51
Annualized Return 0.02 0.04

Annualized Standard Deviation 0.08 0.04
Annualized Sharpe Ratio (rf=0%) 0.27 0.98

Worst Drawdown 0.31 0.14
Average Drawdown 0.02 0.01

Skewness -0.71 -0.60
Kurtosis 9.03 9.95

TABLE 4.5: Value Strategy - Performance Statistics
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Carry Strategy

5.1 Literature Review

The carry risk premia has long been exploited in almost every asset classes by investors
and speculators alike. A generalized interpretation of what carry is can be found in
Koijen, Moskowitz, Pedersen and Vrugt’s seminal paper titled "Carry" [28]. Carry is
essentially the expected return from an asset, assuming its price remains the same over
a certain period of time. This makes it unique among alternative risk premia because
its expected return can be estimated prior to its realization. Indeed, Moskowitz’s de-
scribes carry as "a model-free characteristic that is directly observable ex ante.". This
makes carry a generic proxy for the broad market risk premium; it makes sense as carry
essentially represents the minimal return that the market participants require to invest
in a security.

Currency carry trades were documented as early as 1981 by Bilson [29], followed
by Messe and Rogoff in 1983 [30], and Fama in 1984 [31]. It is well accepted that, unlike
most financial assets, the currency markets do not reward an investor with a holding
benefit. Carry strategies present a way to extract a risk premium from this market. The
return characteristics of currency carry strategies is studied in detail in a working pa-
per by Burnside [32]. His paper establishes the attractiveness of such strategies over
multiple business cycles, thus validating the very existence of this risk premium for
this asset class1.

In commodities, the carry risk premium is a function of the term structure dynam-
ics. In 1930, Keynes proposed that the backwardation, observed in commodities term
structures, arises from inventory and price risk dynamics between producers and spec-
ulators [33]. This can be exploited by investors to generate returns. Following Keynes’
research, Kaldor [34], Cootner [35], and more recently Rouwenhorst [36] improved on
Keyne’s findings by identifying different explanatory factors explaining commodity
returns. Based on these, Koijen, Moskowitz, Pedersen and Vrugt [28] proposed a com-
modity strategy that harvests this asset class’ carry dynamics. Ahmerkamp and Grant
also came up with a similar strategy that same year [37].

The risk premium existence was also validated in the equity and global bond mar-
kets. It was demonstrated that yield spreads are a predictor of bond returns by many
authors [38] [39], and that they could be used to harvest carry returns [28]. In the equity
markets, the dividend yield is a predictor of an equity index future’s returns, and can be
used to harvest a global equity carry risk premium [28]. We have tried replicating the

1An important result of this paper is that it rejects the assumptions made under the uncovered interest
rate parity models.

27
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baseline results from the cited works, but failed at obtaining results that were satisfac-
tory. As such, we focused our carry strategy research on commodities and currencies
exclusively.

5.2 Investment Universe

The table below lists the futures instruments transacted as part of these strategies. One
should note that we only had access to a few currency instruments; most currency
trades take place in the Forward markets rather than with futures.

Ticker Bloomberg Code Description Asset Class Currency

AD1 AD1 Curncy AUD/USD Future FX USD
BP1 BP1 Curncy GBP/USD Future FX USD

CD1 CD1 Curncy CAD/USD Future FX USD
EC1 EC1 Curncy EUR/USD Future FX USD
JY1 JY1 Curncy JPY/USD Future FX USD

NV1 NV1 Curncy NZD/USD Future FX USD
PE1 PE1 Curncy MXN/USD Future FX USD
LA1 LA1 Comdty Aluminum Future Commodity USD
LA2 LA2 Comdty Aluminum Future (2nd) Commodity USD
HG1 HG1 Comdty Copper Future Commodity USD
HG2 HG2 Comdty Copper Future (2nd) Commodity USD
GC1 GC1 Comdty Gold Future Commodity USD
GC2 GC2 Comdty Gold Future (2nd) Commodity USD

SI1 SI1 Comdty Silver Future Commodity USD
SI2 SI2 Comdty Silver Future (2nd) Commodity USD

CO1 CO1 Comdty Brent Oil Future Commodity USD
CO2 CO2 Comdty Brent Oil Future (2nd) Commodity USD
QS1 QS1 Comdty Gas Oil Future Commodity USD
QS2 QS2 Comdty Gas Oil Future (2nd) Commodity USD
CL1 CL1 Comdty Crude Oil Future Commodity USD
CL2 CL2 Comdty Crude Oil Future (2nd) Commodity USD

NG1 NG1 Comdty Natural Gas Future Commodity USD
NG2 NG2 Comdty Natural Gas Future (2nd) Commodity USD
CT1 CT1 Comdty Cotton Future Commodity USD
CT2 CT2 Comdty Cotton Future (2nd) Commodity USD
KC1 KC1 Comdty Coffee Future Commodity USD
KC2 KC2 Comdty Coffee Future (2nd) Commodity USD
CC1 CC1 Comdty Cocoa Future Commodity USD
CC2 CC2 Comdty Cocoa Future (2nd) Commodity USD
SB1 SB1 Comdty Sugar Future Commodity USD
SB2 SB2 Comdty Sugar Future (2nd) Commodity USD
S_1 S 1 Comdty Soybean Future Commodity USD
S_2 S 2 Comdty Soybean Future (2nd) Commodity USD

W_1 W 1 Comdty Wheat Future Commodity USD
W_2 W 2 Comdty Wheat Future (2nd) Commodity USD
C_1 C 1 Comdty Corn Future Commodity USD
C_2 C 2 Comdty Corn Future (2nd) Commodity USD
LH1 LH1 Comdty Lean Hog Future Commodity USD
LH2 LH2 Comdty Lean Hog Future (2nd) Commodity USD
FC1 FC1 Comdty Feeder Cattle Future Commodity USD
FC2 FC2 Comdty Feeder Cattle Future (2nd) Commodity USD
LC1 LC1 Comdty Live Cattle Future Commodity USD
LC2 LC2 Comdty Live Cattle Future (2nd) Commodity USD

TABLE 5.1: Carry Strategy - Investment Universe
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5.3 Signals & Order Sizing

Regardless of asset class, all carry trading signals are based on an assessment of an
"assets expected return assuming that market conditions, including its price, stays the
same." [28]. Any security’s return can therefore be explained by a carry return compo-
nent and a price appreciation return component:

Rt,T = Ct,T + E(PT − Pt) + ε (5.1)

where

Rt,T is the asset’s total return between time t T
Ct,T is the asset’s carry return between time t T
E(PT − Pt) is the expected price appreciation of the asset between time t and T
ε is the asset’s unexpected price movements

For a fully collateralized future’s trade, the carry return component can be ex-
pressed as:

Ct,T =
St − Ft,T
Ft,T

(5.2)

where

Ct,T is the asset’s carry at time t
St is the asset’s spot price at time t
Ft,T is the asset’s futures contract price (with maturity T) at time t

Using the above equation, we developed asset class specific carry signals.

5.3.1 Foreign Exchange

Our currency carry signals use the classic interest rate spread as proposed by Kroencke
in 2011 [23] and later Moskowitz [28]. For a given currency futures contract, we de-
fined the carry indicator as the spread between the interest rates of the base and term
countries. Since the no-arbitrage price of a currency forward contract is a function of
this interest rate spread, we can therefore infer its value directly from the FX forward
premium or discount. Using a notation similar to that of Anand, et al. [40] we express
the currency carry as follow:
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Ft,T = St
1 + rforeignt,T ∗∆t,T

1 + rlocalt,T ∗∆t,T

Ct,T =
Ft,T
St
− 1

where
Ct,T is the instrument’s carry at time t
Ft,T is the instrument’s forward price (with maturity T) at time t

rlocalt,T is the local interest rate (with maturity T) at time t

rforeignt,T is the foreign interest rate (with maturity T) at time t

It should be noted that the forward price, as described above, implies a no-arbitrage
relationship between the spot price and forward price. In other words, we assume
the non-violation of covered interest rate parity. Covered IRP has been empirically
proven to hold for short time-frames (months), hence why we use the forward discount
/ premium in the construction of our carry signals. As we use futures to implement
the strategy, we priviledged using the 3 months forward prices instead of the 1 month
forwards traditionally used in the literature. The figure below illustrates the evolution
of the different forward discounts / premiums computed for the currency instruments
traded:
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FIGURE 5.1: FX Carry Strategy - Forward Discounts

A classic carry strategy would transform the forward discounts into trading weights
by implementing a dollar neutral portfolio that goes long the currency futures exhibit-
ing the highest forward premiums, and short those exhibiting the highest forward dis-
counts. We do the same, however we extend this signal with a reverse carry indica-
tor. This addition is important to our strategy because, although FX carry portfolios
produce significant average returns, they are extremely vulnerable to global currency
shocks. Pure FX carry portfolio have therefore a tendency to suffer crash like losses.
This behaviour has been thoroughly studied by Burnside [41]. These crashes are low
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probability extreme losses that are the result of large endogenous unwinding of spec-
ulative money2. Authors studying these risks found that they could be predicted by
the level of FX volatility [43]. We based our research on these findings, to augment
our signals with a global FX variance indicator that, when triggered, reverses our base-
line carry positions. The construction of this indicator is loosely based on works from
Cenedese [44] and Menkhoff [45].

Our reverse carry indicator is constructed using 33 currency pairs. For each, we
compute their daily log returns, and average them over the 33 currencies used. We
then square the average of the daily returns and compute their average over a month.
This last value is a proxy for the global FX variance. We compute its innovations to
construct the final indicator. The equations below detail the indicator’s computation
methodology:

σFXt =
1

Tt

∑
τ∈Tt

∑
k∈Kτ

(
|rkτ |
Kτ

)2

εFXt = εFXt − εFXt−Tt
where ∣∣∣rkτ ∣∣∣ = |log∆sτ | is the k currency’s instrument log return at time τ

Kτ is the number of available currencies on dayτ
Tt is the total number of trading days in a month t

The figure below presents the value in time for this variance indicator, as well as its
innovations:
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FIGURE 5.2: FX Carry Strategy - Global FX Variance

We use this particular variance estimator because it presents interesting properties.
For a thorough review of them, we refer the reader to Menkhoff’s work [45]. For the
purpose of this paper, it suffices to say that this indicator’s innovations can be used to

2Some authors, like Brunnermeier [42] attribute these to liquidity constraints.
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construct a rolling quantile measure that will serve as a reverse carry trigger. Should
the 50 days single moving average of the variance innovations exceed their 500 days
rolling quantile, a signal to reverse the carry positions is received. We illustrate this
below:

−0.4

−0.2

0.0

0.2

0.4

0.6

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Variance Innovations
Innovations Quantiles

Global FX Variance

FIGURE 5.3: FX Carry Strategy - Innovations and Quantiles

Having detailed the construction of the reverse carry indicator, we can outline how
we obtain the final strategy’s weights. On a monthly basis we observe the following
rules:

Signal =


+1, if FwdDiscnn >= quantile(FwdDiscn1, ..., FwdDiscnN )(1− 2/N) ≥ 0

−1, if FwdDiscnn >= quantile(FwdDiscn1, ..., FwdDiscnN )(1− 2/N) ≥ 0

0, else

where

N corresponds to the total number of currencies
+ 1 corresponds to a go long signal
− 1 corresponds to a go short signal
0 corresponds to a neutral signal

This gives our baseline strategy’s positioning. However, the reverse carry indicator
can change that positioning at any point in time if:

Signal =

{
1, if εt >= quantile(εt−τ , ..., εt)0.99

0, else



Chapter 5. Carry Strategy 33

where

εt corresponds the variance indicator’s innovations
1 corresponds to a long reverse carry signal
0 corresponds to a neutral reverse carry signal

The final strategy’s order sizes consists in applying a 25% weight multiplier to the
previously computed signals. Doing so implements an unlevered dollar neutral port-
folio whereby in this particular case, we are long the two strongest yielding currency
futures, and short the lowest two3. The positioning is promptly inverted in the event
of a reverse carry signal.

5.3.2 Commodity

The commodity carry signals are taken directly from Koijen, Moskowitz, Pedersen and
Vrugt’s "Carry" paper [28]. We use their notation in the presentation of our carry indi-
cators. Theoretically, a commodity’s carry can be estimated by comparing its spot price
to its first nearby futures price. This however proves difficult in practice as the com-
modities markets often lack reliable spot prices. A workaround consists in estimating
carry from the "slope" between the first nearby and second nearby contracts. Assuming
that the no arbitrage price for a specific commodity futures is:

Ft = St(1 + rft − δt) (5.3)

where

Ft is the current futures price
St is the asset’s spot price

rft is the prevailing risk free rate
δt is the convenience yield

Then, generalizing the no-arbitrage futures price relationship, and thus assuming
that the 2nd nearby contract’s price will converge to the first nearby upon maturity, we
obtain the following expression of carry4:

Ct =
F 1
t − F 2

t

F 2
t (T2 − T1)

(5.4)

3Known as the funding currencies.
4Most authors adjust this estimator by the time differential between both contract’s maturity. They do

this by dividing the equation terms by (T2 − T1). We opt not to use this adjustment as we find it doesn’t
add much precision to the signals.
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where

Ct,T is the asset’s carry at time t

F 1
t is the first nearby future contract’s price at time t

F 2
t is the second nearby future contract’s price at time t
T1 is the time to maturity (in months) of the first nearby contract
T2 is the time to maturity (in months) of the second nearby contract

The carry estimates can be extremely volatile due to daily variations in the con-
tracts’ prices, and to seasonality effects found in certain commodity term structures.
Therefore, we smooth the above indicator using a rolling 252 days simple moving av-
erage. Other windows achieve the desired effect. The choice of using a full year is
so that we smooth seasonal effects, while also mitigating the impact of the day to day
noise on the indicator’s value. The carry indicators for the different commodity instru-
ments traded as part of the strategy are presented below:
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FIGURE 5.4: Commodity Carry Strategy - Roll Yield Indicators

Finally, the strategy’s trading weights are derived from the indicator’s ranking
through the dollar neutral weighting scheme used in the value strategy. To obtain
the weights, we rank the commodities carry indicators and apply the methodology
proposed by Asness [22]:

wit = zt(rank(Iit)−
Nt + 1

2
) (5.5)

where

I is the security i’s carry indicator at time t
N is the number of instruments at time t
z is a scalar that ensures the sum of the long and short exposures equal 1 and -1

Note that those weights are applied to commodities. For commodities who are
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highly ranked5, the weight is positive. For commodities who are lowly ranked6 the
weight is negative. To obtain the weight’s allocation between the first nearby and sec-
ond nearby futures, we divide the target weight by two, and allocate it to the first
nearby and second nearby futures as follows: If the weight is positive, the strategy
goes long the second nearby contract (by half the target weight value) and short the
first nearby contract (by half the target weight value). If the weight is negative, the
signs (long / short) are inverted for both contracts.

5.4 Strategy Implementation

5.4.1 Foreign Exchange

We first backtest the currency carry strategy under different rebalancing frequencies.
Daily, weekly, monthly, and quarterly, rebalanced portfolios were backtested. For each,
we considered a full day of slippage before each trade, and applied transaction costs
of 1 basis points (per size of notional). The backtests cumulative returns, and their
performance statistics are presented in the figure and table below:
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FIGURE 5.5: FX Carry Strategy - Trading Frequency

Daily Weekly Monthly Quarterly

Cumulative Return 0.44 1.04 0.73 1.03
Annualized Return 0.02 0.04 0.03 0.04

Annualized Standard Deviation 0.05 0.06 0.06 0.07
Annualized Sharpe Ratio (rf=0%) 0.43 0.67 0.49 0.63

Worst Drawdown 0.13 0.14 0.13 0.12
Average Drawdown 0.01 0.01 0.01 0.01

Skewness -0.18 -0.00 -0.17 -0.16
Kurtosis 11.70 10.91 11.16 10.97

TABLE 5.2: FX Carry Strategy - Trading Frequency

5And who are most likely, but not necessarily, backwardated (F 1
t >= F 2

t )
6And who are, most likely, but not necessarily contangoed (F 1

t < F 2
t )
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The above statistics identify the weekly rebalancing policy as the one resulting in a
maximal Sharpe ratio for the strategy. This rebalancing frequency suffers a higher max-
imum drawdown (14%), but provides the most attractive total return over the backtest
period. Choosing a weekly rebalancing frequency also ensures that both, the carry and
reverse carry signals, are implemented as part of the portfolio. While a daily rebal-
ancing might seem justified, especially given the use of our reverse carry indicator, its
increased trading cost significantly impacts the portfolio’s returns. To further assess the
the performance impact of those costs, we present below the weekly rebalanced strat-
egy’s performance metrics under multiple transaction fee assumptions. These transac-
tion costs are well above what an institutional investor should expect to pay to transact
currency futures. In fact, even our baseline costs of 1 basis point are conservative.

0.00% 0.05% 0.10% 0.15% 0.20% 0.25%

Cumulative Return 1.15 0.99 0.85 0.72 0.60 0.48
Annualized Return 0.04 0.04 0.04 0.03 0.03 0.02

Annualized Standard Deviation 0.06 0.06 0.06 0.06 0.06 0.06
Annualized Sharpe Ratio (rf=0%) 0.71 0.64 0.57 0.50 0.43 0.36

Worst Drawdown 0.14 0.15 0.15 0.15 0.15 0.15
Average Drawdown 0.01 0.01 0.01 0.01 0.01 0.01

Skewness -0.00 0.00 0.01 0.02 0.02 0.02
Kurtosis 10.88 10.86 10.83 10.79 10.73 10.66

TABLE 5.3: FX Carry Strategy - Trading Costs

5.4.2 Commodities

We perform the same backtests on the commodity portfolio. An examination of the
different backtests equity line reveals some interesting features. For one, it would seem
that the strategy’s total return is similar for rebalancing frequencies up to a month. At
the quarterly and yearly frequencies, the cumulative return augments significantly. The
increased returns however come accompanied by a lot more volatility, making these
last two choices, unappealing from a Sharpe ratio perspective. The longer rebalancing
frequencies clearly offer a lower return for a given unit of risk (volatility) than their
daily or weekly rebalanced counterparts. As such, we select our rebalancing frequency
to be weekly7. The figure and table below present the backtests statistics:

7A daily rebalancing frequency placing too heavy a burden from a trading perspective.
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FIGURE 5.6: Commodity Carry Strategy - Trading Frequency

Daily Weekly Monthly Quarterly Yearly

Cumulative Return 0.28 0.27 0.26 0.39 0.33
Annualized Return 0.02 0.02 0.02 0.03 0.02

Annualized Standard Deviation 0.01 0.01 0.01 0.02 0.03
Annualized Sharpe Ratio (rf=0%) 2.10 1.91 1.38 1.18 0.73

Worst Drawdown 0.01 0.02 0.03 0.04 0.06
Average Drawdown 0.00 0.00 0.00 0.00 0.01

Skewness 0.66 0.53 -0.72 -0.59 -0.25
Kurtosis 8.07 7.19 25.51 33.74 16.13

TABLE 5.4: Commodity Carry Strategy - Trading Frequency

Although we recognize that the Sharpe ratio is the highest for daily rebalancings,
we feel that opting for weekly rebalancings only increases the strategy’s volatility marginally.
The same can also be observed for the maximum drawdown statistic. Given that the
goal of this research is to develop strategies that are implementable for the largest por-
tion of investors, we stand by our choice of a weekly rebalanced portfolio. Finally, we
present the backtests for different trading costs:

0.00% 0.05% 0.10% 0.15% 0.20% 0.25%

Cumulative Return 0.29 0.27 0.25 0.24 0.22 0.20
Annualized Return 0.02 0.02 0.02 0.02 0.02 0.01

Annualized Standard Deviation 0.01 0.01 0.01 0.01 0.01 0.01
Annualized Sharpe Ratio (rf=0%) 1.95 1.84 1.74 1.63 1.53 1.43

Worst Drawdown 0.02 0.02 0.02 0.02 0.02 0.02
Average Drawdown 0.00 0.00 0.00 0.00 0.00 0.00

Skewness 0.50 0.50 0.51 0.51 0.50 0.50
Kurtosis 7.06 7.05 7.03 7.01 6.99 6.99

TABLE 5.5: Commodity Carry Strategy - Trading Costs
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5.5 Performance Metrics

This final section presents the strategies performance metrics relative to their long-only
benchmarks. Unlike for the value portfolio, we do not blend both strategies together
in a single portfolio. We omit to do so because there are only two asset classes in which
we efficiently managed to harvest carry risk premia. The two strategies correlation is
very close to zero. As such, an equal weighted portfolio of them closely approximates
their equal risk contribution portfolio equivalent. We continue to research methods
that would allow us to extract this risk premia in the equity and fixed income markets
and, hope to present and analyze our results in a single portfolio format in our future
research. The benchmark for each strategy consists in an equal weighted portfolio of
its underlying instruments. We assume that they are rebalanced daily with no slippage
or transaction costs.

5.5.1 Foreign Exchange

The below figure presents the FX Carry’s strategy relative to its benchmark. Its eq-
uity line, albeit volatile, displays a more attractive profile than that of its benchmark.
Upon closer examination, we can see the influence of the reverse carry signals in the
performance between the years 2008 and 2009.
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FIGURE 5.7: FX Carry Strategy - Performance

FX Carry EqualWeight

Cumulative Return 0.45 0.36
Annualized Return 0.02 0.02

Annualized Standard Deviation 0.05 0.08
Annualized Sharpe Ratio (rf=0%) 0.44 0.23

Worst Drawdown 0.13 0.27
Average Drawdown 0.01 0.02

Skewness -0.18 -0.32
Kurtosis 11.73 7.46

TABLE 5.6: FX Carry Strategy - Performance Statistics
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The above table reveals a Sharpe ratio that is almost double that of its benchmark.
Realizing an above 0.40 Sharpe ratio for a strategy trading solely in an asset class that
confers no holding benefit, should be sufficient proof of the existence of this alterna-
tive risk premium. On a more contemporaneous note, one should note that currency
carry strategies have performed poorly in the last five years. The main explanation be-
hind these recent performances is attributed to the expansionary monetary policies that
most developed market central banks implemented following the global financial cri-
sis. Even in light of this, we remain confident in the attractiveness of this risk premium,
especially from a forward looking perspective.

5.5.2 Commodities

The commodity carry strategy’s cumulative returns are presented below. This is our
highest Sharpe ratio strategy, realizing 1.92 over the backtest period. Such a high ratio
is explained by the extreme amount of leverage required by the strategy (400%). Even
with such leverage, the strategy barely generates 2.00% annualized returns. Investors
are often leverage constrained and shun risk premia that require a lot of it. It stands to
reason that the participants willing or able to underwrite those risks do so at attractive
premia levels. In this particular case, this effect is compounded by the fact that retail
investors have a limited access to the commodity markets because of different financial
regulations aimed at protecting them. This further limits the amount of capital being
deployed toward this risk premium. When compared to its benchmark, the commod-
ity strategy offers an extremely stable return profile that exhibits none of the cyclicality
inherent to this asset class’ returns. Commodities are highly volatile yet, when har-
vesting carry risk premium, the resulting volatility is reduced seventeen fold relative
to that of a long-only portfolio of these assets. The maximum drawdown statistics are
also impressive; the strategy suffering a maximal loss of a mere 2%. This seems almost
insignificant when compared to the benchmark’s 57% loss in 2008.
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FIGURE 5.8: Commodity Carry Strategy - Performance
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Commodity Carry Benchmark

Cumulative Return 0.28 0.16
Annualized Return 0.02 0.01

Annualized Standard Deviation 0.01 0.17
Annualized Sharpe Ratio (rf=0%) 1.92 0.07

Worst Drawdown 0.02 0.57
Average Drawdown 0.00 0.03

Skewness 0.50 -0.31
Kurtosis 7.06 6.97

TABLE 5.7: Commodity Carry Strategy - Performance Statistics
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Momentum Strategy

6.1 Literature Review

Long shun by the academic community, the momentum risk premia were long har-
vested by the industry’s practitioners. This was notably the case for equity traders
and portfolio managers as described in Grinblatt’s work [46]. The initial momentum
strategies were initially studied as a characteristic of single stock equity instruments.
Jegadeesh [47] and Asness [48], are two authors that were famous for their analyses of
the subject.

As momentum investing gained acceptance in the academic research community,
its associated risk premia were identified as an important characteristic of most finan-
cial assets. Commodities, fixed income instruments, and currencies all exhibit a mo-
mentum risk premium that is pervasive in time. One of the longest empirical study of
momentum is credited to Hurst in 2014 [49]. In it, the author extended Moskowitz’s
[50] time series momentum strategy over a century of data. His findings, validating
the existence of the risk premia, were corroborated in an unrelated paper published by
Lemperiere [51].

There exists two types of momentum risk premia; the cross sectional momentum,
and the time series momentum. The strategy, developed as part of this research, be-
longs to the latter category. Unlike cross-sectional momentum, which are often dollar
or beta neutral, time series momentum strategies typically implement long, neutral, or
short tactical positions within a diversified universe of financial assets with no such
constraints.

6.2 Investment Universe

Below is a list of the instruments that are transacted as part of the strategy. The most
liquid futures contracts from all asset classes are used.
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Ticker Bloomberg Code Description Asset Class

ES1 ES1 Index E-mini S&P 500 Future Equity
NK1 NK1 Index Nikkei 225 Index Future Equity
VG1 VG1 Index Euro STOXX 50 Index Future Equity
PT1 PT1 Index S&P Toronto 60 Future Equity
XP1 XP1 Index ASX SPI 200 Future Equity
TY1 TY1 Comdty US Treasury 10-Year Future Fixed Income
RX1 RX1 Comdty German Government Euro Bund Future Fixed Income
JB1 JB1 Comdty Japanese Government Bond 10-Year Future Fixed Income

US1 US1 Comdty US Treasury Long Bond Future Fixed Income
CN1 CN1 Comdty Canadian Governement Bond 10-Year Future Fixed Income
FV1 FV1 Comdty US Treasury 5-Year Note Future Fixed Income
CL1 CL1 Comdty Crude Oil Future Commodity
GC1 GC1 Comdty Gold Future Commodity
HG1 HG1 Comdty Copper Future Commodity
NG1 NG1 Comdty Natural Gas Future Commodity
LC1 LC1 Comdty Live Cattle Future Commodity
S_1 S 1 Comdty Soybean Future Commodity

W_1 W 1 Comdty Wheat Future Commodity
C_1 C 1 Comdty Corn Future Commodity
SB1 SB1 Comdty Sugar Future Commodity

LH1 LH1 Comdty Lean Hog Future Commodity
FC1 FC1 Comdty Feeder Cattle Future Commodity
QS1 QS1 Comdty Gas Oil Future Commodity
CC1 CC1 Comdty Cocoa Future Commodity
CO1 CO1 Comdty Brent Oil Future Commodity

SI1 SI1 Comdty Silver Future Commodity
AD1 AD1 Curncy AUD/USD Future FX

JY1 JY1 Curncy JPY/USD Future FX
BP1 BP1 Curncy GBP/USD Future FX
EC1 EC1 Curncy EUR/USD Future FX
CD1 CD1 Curncy CAD/USD Future FX
NV1 NV1 Curncy NZD/USD Future FX
PE1 PE1 Curncy MXN/USD Future FX

TABLE 6.1: Momentum - Investment Universe

6.3 Signals & Order Sizing

6.3.1 Momentum Signals

There are many ways to estimate the momentum risk premium. The most popular
approach was proposed in Moskowitz’s seminal paper [50] on the subject. In it, he
finds that the momentum effect is statistically significant when measured across 1 to 12
months windows. We were mindful of these findings when developing our momen-
tum strategy. However, instead of selecting a single window by which we estimate an
instrument’s price momentum, we selected three: 3-months, 6-months, and 12-months.
Timeframes below 3-months were not considered as those estimation windows tend to
be dominated by mean reverting dynamics rather than momentum. For the three time-
frames, we compute their 13, 26, and 52 weekly rolling moving averages using weekly
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closing prices as defined below:

Aw =
n∑
i=1

P(w−i)+1

n
(6.1)

where

w is the moving average’s week
n is the moving average’s period
P is the weekly close price of the data series

For a given futures, the above indicators’ values are then converted into three sep-
arate trading signals by comparing its weekly closing price to each indicators value. A
price that exceeds the indicator value results in a long signal, whereas a price below
the indicator value results in a short signal. The below equation specifies the signal
construction:

Signal =

{
+1, if Pw −Aw ≥ 0

−1, otherwise

where

+ 1 corresponds to a go long signal
− 1 corresponds to a go short signal

From the signals, we create momentum sub-strategies that are applied to each in-
strument. As an example, for each equity futures trade as part of the strategy, we create
three momentum sub-strategies. To ensure no look ahead bias is introduced in these
sub-strategies, we apply the trading signals with one day of slippage. However, we
do not account for any transactions costs yet. The three figures below illustrate these
return series for the equity futures contracts. The same is done for all the other instru-
ments as well.
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FIGURE 6.1: Short Term Momentum - Equity Composites
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FIGURE 6.2: Medium Term Momentum - Equity Composites
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FIGURE 6.3: Long Term Momentum - Equity Composites

6.3.2 Order Sizes

The strategy’s order sizes are obtained from the composites computed above. The
methodology contains many steps and bears careful explanation. First, for the compos-
ites of a given asset class, we perform an ERC optimization by momentum timeframe
(ST, MT, LT). Continuing our example with the equity contracts, we would optimize
three portfolios: one composed of short term equity momentum sub-strategies, another
of medium term sub-strategies, and a last one of longer term sub-strategies. The ERC
optimization problem is detailed in Chapter 3. We use the same resolution method for
this as the one used to obtain the risk parity portfolio.

For each time-frame, the optimizations are specified to allow for over-investment or
under-investment at the portfolio level, as well as at the composite levels. We also do
not allow negative allocations (shorts) to a specific composite. Finally, the covariance
matrices are estimated using the last 90 days realized returns, and the portfolio weights
are updated on a monthly basis. The code-block below provides some insight in the
specifications we just outlined.

# Short Term Equity ERC
2 Weights.ERC(returns = equity.model$st$instruments$returns,

rebalancing.frequency = "months",
4 optimization.type = "risk_budget",

objective .function = "StdDev",
6 w.min = 0.00,

w.max = 1.50,
8 w.sum.min = 0.50,

w.sum.max = 1.25,
10 training .period = 90,

trailing .period = 90)

LISTING 6.1: Momentum - Equity ST Momentum ERC Code

Within each asset class, a total of three optimizations (like the one above) are per-
formed. This results in allocation weights for each three momentum (short term, medium
term, long term) sub-strategies. These weights are once again lagged by a full day (to
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account for slippage), and used in creating three composites (short term, medium term,
long term) per asset classes. These three composites are then used in another ERC op-
timization with the same specifications. The result of this optimization is the final asset
class composite whose weights are an optimal blend of short term, medium term, and
longer term momentum risk premia for each instrument. Staying with our equity con-
tracts, we present these intermediary results below:
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FIGURE 6.4: Momentum Strategy - Equity Composites

For each asset class, the four weights matrices, associated to each of the composites
(as the ones presented above), are used to backtrack the optimal instrument weights.
The code block below illustrates this final step. First, the final asset classes composites
are recreated from these weights matrices, and are then used as inputs in a final ERC
optimization that determines the optimal asset class exposures of the strategy. The
result of this optimization is then used to obtain the final strategy weights by back-
tracking each instrument’s weights.
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1 # Update Equity Weights
returns_equity <− Return.calculate(futures_equity[" first .day::day"]

3 portfolio_equity <− Return.portfolio(returns_equity, lag(weights_equity, k = 1))

5 # Update Fixed Income Weights
returns_fixedincome <− Return.calculate(futures_fixedincome["first .day::day"]

7 portfolio_fixedincome <− Return.portfolio(returns_fixedincome, lag(weights_fixedincome, k = 1))

9 # Update Commodities Weights
returns_commodities <− Return.calculate(futures_commodities["first.day::day"]

11 portfolio_commodities <− Return.portfolio(returns_commodities, lag(weights_commodities, k = 1))

13 # Update Commodities Weights
returns_commodities <− Return.calculate(futures_commodities["first.day::day"]

15 portfolio_commodities <− Return.portfolio(returns_commodities, lag(weights_commodities, k = 1))

17 # Update Asset Class Weights
returns_assetclass <− bind(portfolio_equity, portfolio_fixedincome, portfolio_commodities)

19 weights_assetclass <− Weights.ERC(returns = returns_assetclass,
rebalancing.frequency = "months",

21 optimization.type = "risk_budget",
objective .function = "StdDev",

23 w.min = 0.00,
w.max = 1.50,

25 w.sum.min = 0.50,
w.sum.max = 1.25,

27 training .period = 90,
trailing .period = 90)

29

# Backtrack the individual futures weights
31 weights_portfolio <− bind(weights_assetclass[, "equity"] ∗ weights_equity, weights_assetclass[, "

fixedincome"] ∗ weights_fixedincome, weights_assetclass[,"commodities"] ∗ weights_commodities
returns_portfolio <− Return.portfolio(returns_futures, weights_portfolio)

LISTING 6.2: Momentum Strategy - Across Assets Weights

6.4 Strategy Implementation

Using the strategy weights, we backtested the portfolio under daily, weekly, monthly
and quarterly rebalancing. At the risk of repeating ourselves, each backtest were im-
plemented using a full day of slippage between trades, and transaction costs of 1 basis
point. This strategy is a good example of the impact that transactions cost can have.
Apart from the yearly rebalanced strategy, which doesn’t efficiently implement the
trading signals, the daily rebalanced strategy is the worst. One would expect that time-
series momentum signals are better implemented as soon as they are triggered, but as
shown below, the impact of transactions costs can rapidly mitigate this advantage.
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FIGURE 6.5: Momentum Strategy - Trading Frequency

Daily Weekly Monthly Quarterly Yearly

Cumulative Return 0.27 0.43 0.63 0.39 0.20
Annualized Return 0.02 0.03 0.04 0.02 0.01

Annualized Standard Deviation 0.04 0.05 0.05 0.05 0.04
Annualized Sharpe Ratio (rf=0%) 0.41 0.56 0.71 0.46 0.30

Worst Drawdown 0.08 0.07 0.08 0.10 0.16
Average Drawdown 0.02 0.01 0.01 0.01 0.01

Skewness 0.80 0.83 0.95 0.92 -0.24
Kurtosis 23.30 19.74 28.38 28.44 5.64

TABLE 6.2: Momentum Strategy - Trading Frequency

The monthly rebalanced strategy is the obvious implementation choice. Its Sharpe
ratio stands highest at 0.71, and its total return far outpaces the other implementations.
However, as all our other strategies were implemented on weekly basis, we opted to do
so here as well. We end up sacrificing a bit of Sharpe ratio with this choice. This being
said, we are confident that a weekly rebalancing policy strikes an appropriate balance
between trading reactivity and overall costs.

As this strategy is one of our most active in terms of trading, we present the impacts
that different transaction costs have on its returns characteristics. At 5 basis points, the
strategy’s performance statistics really start deteriorating. An investor bearing trading
costs that are above 20 basis points would not capture this risk premium. He would
instead suffer negative returns trading our strategy.
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0.00% 0.05% 0.10% 0.15% 0.20% 0.25%

Cumulative Return 0.43 0.28 0.15 0.02 -0.08 -0.18
Annualized Return 0.03 0.02 0.01 0.00 -0.01 -0.01

Annualized Standard Deviation 0.05 0.05 0.05 0.05 0.05 0.05
Annualized Sharpe Ratio (rf=0%) 0.55 0.38 0.21 0.04 -0.13 -0.30

Worst Drawdown 0.07 0.08 0.12 0.16 0.20 0.23
Average Drawdown 0.01 0.02 0.03 0.04 0.04 0.08

Skewness 0.82 0.83 0.84 0.84 0.85 0.85
Kurtosis 19.68 19.66 19.60 19.49 19.35 19.17

TABLE 6.3: Momentum Strategy - Trading Costs

6.5 Performance Metrics

The below figure and table present the selected strategy’s performance relative to a
long-only benchmark composed of the same instruments. As for the risk premia and
value strategies, the benchmark was constructed by equal weighting each instrument
within an asset class, and then allocating equally to the asset classes composites. This
ensures that we compare the strategy to a well balanced benchmark. An important
characteristic inherent to the momentum risk premium is exhibited below. Contrary to
most investment portfolios, momentum strategies tend to have a "long-volatility" bias.
Such strategies perform particularly well in turbulent / crises market environment,
followed by a period of lackluster performance1. We see this exact behaviour when
looking at the strategy’s return between 2008 and 2009.
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FIGURE 6.6: Momentum Strategy - Performance

1This characteristic is known as "Momentum Crashes".



50 Chapter 6. Momentum Strategy

Momentum Benchmark

Cumulative Return 0.40 0.66
Annualized Return 0.02 0.04

Annualized Standard Deviation 0.05 0.08
Annualized Sharpe Ratio (rf=0%) 0.52 0.46

Worst Drawdown 0.07 0.35
Average Drawdown 0.01 0.02

Skewness 0.82 -0.62
Kurtosis 19.68 9.64

TABLE 6.4: Momentum Strategy - Performance Statistics



Chapter 7

Portfolio Construction

7.1 Literature Review

Following Markowitz’s modern portfolio theory (MPT) [6], there has been an explosion
of academic papers tackling to the portfolio selection problem. Sharpe (1964) Treynor
(1962), Litner (1965) and Mossin (1966) all built upon Markowtiz’s ideas to propose the
Capital Asset Pricing Model (CAPM). For the first time, academic researchers and mar-
ket practitioners alike were now armed with a formal framework by which to tackle as-
set allocation problems. As often the case in finance, the first focus of these researchers
were geared toward equity centric portfolios, which in turn led to the development of
the market capitalization weighted indices, and of the mutual fund industry.

Years after the CAPM’s discovery, others sought to expand the model. The Ar-
bitrage Pricing Theory (APT), proposed by Ross [52], and later the Fama and French
multi factor models [18] were attempts at such. These expanded models led to im-
provements in portfolio construction methodologies that took factor tilting, and hedg-
ing into consideration. By the mid 1990’s the hedge fund industry gained prominence,
and these new asset allocation methodologies were quickly adopted by their market
practitioners. In a departure from the classic 60/40 equity bonds allocations, it was
trading strategies like the constant proportional portfolio insurance (CPPI) [53] that
saw widespread adoption.

Through the emergence of computers and quantitative risk management techniques,
practitioners and academic alike started identifying limits to the traditional mean vari-
ance portfolio framework. This led them to embark on the development of portfolio
construction methodologies that addressed the problems inherent to mean-variance
optimized portfolios. Chief among these were the issues surrounding the proper es-
timation of financial assets expected returns, a key component of the mean-variance
model. Alongside these problems were also the excessive asset concentration that these
portfolios sometimes exhibited. All these issues, and more, were described by Gold-
man Sachs, Fisher Black and Robert Litterman’s in a seminal paper [54]. In it, they
propose a portfolio construction methodology that alleviates these two problems; the
Black-Litterman Model. Around the same period, a handful of other asset allocation
models would become popular amongst market practitioners. Equal weighted portfo-
lios (long overlooked by academic researchers), Minimum Variance portfolios, Equally
risk weighted portfolios [12], and Maximum Diversification portfolios [55] all became
widely adopted by market practitioners following the large losses borne by traditional
mean-variance and 60/40 portfolios during the global financial crisis. These method-
ologies all have a common point in that they focus, on redefining "risk" in a way that
their resulting portfolios are robust out of sample. Today, smart beta and risk parity
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portfolios owe their popularity to these methods.

Although vast and rich, the portfolio construction literature seldom sought to apply
these methods to alternative risk premia portfolio. We know the characteristics of their
portfolios when composed of long-only financial assets, but when it comes to portfo-
lios of alternative, we have few empirical evidences of their usefulness. A goal of this
research, is to revisit these portfolio construction methodologies and use them in allo-
cating across the alternative risk premia strategies developed in the prior sections. We
chose to limit ourselves to "robust" portfolio construction methodologies. By that, we
mean that we consider only approaches that do not require the estimation of expected
returns. This is coherent with the current market orthodoxy. Indeed, as stated by Ron-
calli: "Looking at the marketplace, it also appears that a large fraction of investors
prefers more heuristic solutions, which are computationally simple to implement and
are presumed robust as they do not depend on expected returns." [12].

7.2 Strategies

7.2.1 Strategy Universe

The table lists the strategies used to construct as part of our risk premia portfolio. As
some strategies have longer performance histories1, we normalized their inception date
and end date to be the same.

Strategy Inception End Ann. Return (%) Ann. Volatility (%)

Risk Parity 2007-01-01 2015-06-30 3.29 3.62
Momentum 2007-01-01 2015-06-30 2.28 4.51
Value 2007-01-01 2015-06-30 2.77 4.94
Commodity Carry 2007-01-01 2015-06-30 1.43 0.9
FX Carry 2007-01-01 2015-06-30 4.02 7.06

TABLE 7.1: Portfolio Construction - Investment Universe

7.3 Portfolios

We construct four alternative risk premia portfolio. Each portfolio, is rebalanced on
weekly basis so as to match the rebalancing frequencies of its underlying strategies.
Since we work with the strategies data directly, and that their returns are already net of
trading fees (as per the backtests presented herein), we adjust our portfolio rebalanc-
ing costs to 0.50 basis points and a full day of slippage. This mitigates the effects as-
sociated to double counting transaction costs. It remains however overly conservative
as the strategies long-short exposures net themselves when combined in a portfolio.
This gives rise to less trading than we simulated in our own portfolio backtests. We
are cognizant of this, but retain this stance as we prefer to err on the side of caution
and overestimate the portfolio’s transactions costs rather than underestimate them. An
alternative to adjusting the trading costs downward would be to implement a more
granular backtest that uses and adjusts the strategy’s underlying weights directly. We
will integrate this approach in future works.

1The backtests were conducted based on the longest instruments data availability.



Chapter 7. Portfolio Construction 53

For each portfolio construction approach tested, we enforced the strategies weights
to sum to 100% and constrained them to be positive (meaning we can’t short a strategy).
The diversification benefits that arise from combining the different strategies together
mean that the resulting portfolio’s volatility is significantly reduced. However, an ad-
vantage of risk premia investing through futures is that one can access leverage. As
such, an investor can dynamically lever its portfolio so that it realizes a desired volatil-
ity level. We apply such a leverage adjustment to our portfolios. The below section
details our exact leverage methodology.

7.3.1 Leverage Adjustments

As most of our strategies exhibit volatilities below 5.00%, the resulting portfolios also
realize a volatility well below this level. To address this, we leverage the portfolio to
a 5.00% annualized volatility target while limiting its gross leverage factor up to 500%
(5X leverage). As certain strategies already have a certain amount of leverage embed-
ded in them, some portfolios might at certain points in time have gross exposures in
excess of 500%. The leverage adjustment factors are computed from the average of two
measures. The first is based on the portfolio’s 90 days realized volatility. The second is
based on the portfolio’s forward looking volatility as derived from a GARCH model.

The first measure is derived below. First, we compute the portfolio’s 90 days real-
ized volatility. Then annualize it. And finally convert the estimate into a leverage factor
based on the desired volatility target. These computation steps are outlined below:

σt,t−90 =

√√√√ 1

N

t∑
t−90

(xt − x)2 (7.1)

σRealized,t = σt,t−90
√

252 (7.2)

LeverageRealized,t =
σTarget
σRealized,t

(7.3)

where

xt are the daily returns of the portfolio
σRealized,t is the annualized realized volatility over the last 90 days
LeverageRealized,t is the leverage target derived from the portfolio’s realized volatility

The second leverage measure is derived from the portfolio’s forward looking volatil-
ity estimate. We obtain this estimate by positing that the portfolio’s volatility follows
a GARCH process. We do not make any explicit assumptions relative to the specific
type of GARCH process it follows. Instead, we cycle through multiple models until
we obtain the best fit. This is achieved using the model fitting functions found in R’s
RUGARCH package. The exact details surrounding the model selection and fit proce-
dures employed in this package are beyond the scope of this research2. The code block

2Should the detail conscious reader seek more information, we refer him to the package’s documenta-
tion [56] and direct him to the following functions (ugarchspec, ugarchfit).
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below provides some insight in our volatility estimating procedure. We fit the GARCH
models every week using the portfolio’s last 300 days of returns. At each step, we test
the model fit and model forecasts for convergence. In the instances when the model
does not converge, we re-specify it and refit it while expanding the sample period by
a day at a time. We do this until the model converges. The forward leverage target is
computed from the 5 days ahead forecast of the portfolio’s volatility. The full R code of
the function used to compute this leverage measure is presented here after:

1

# Function definition
3 Leverage.factor <− function(returns, vol. target , max.gross) {

5 # Compute the realized leverage factor
vol. realized <− na.omit(apply.rolling(R = returns, width = 90, by = 1, FUN = "StdDev.annualized"))

7 vol.leverage <− vol.target / vol. realized
realized .leverage <− na.omit(vol.leverage)

9 realized .leverage[realized .leverage > max.gross] <− max.gross

11 # Compute the forward looking leverage factor
garch.leverage <− returns ∗ NA

13 for( i in seq(from = 300, to = nrow(returns), by = 5)) {

15 # Specify an open garch model
garch.spec <− ugarchspec()

17 garch. fit <− try(ugarchfit(spec = garch.spec, data = returns [(( i−299):i) , ]) , silent = TRUE)
garch.conv <− try(convergence(object = garch.fit) , silent = TRUE)

19

# If the garch fit doesn’t converge, prune the sample returns until it does
21 j <− i

while(garch.conv != 0 | is (garch. fit , "try−error")){
23 j <− (j − 1)

garch. fit <− try(ugarchfit(spec = garch.spec, data = returns [(( j−299):j) , ]) , silent = TRUE)
25 garch.conv <− try(convergence(object = garch.fit) , silent = TRUE) }

27 # Forecast the week ahead volatility
garch.forecast <− try(ugarchforecast(garch.fit , n.ahead = 5), silent = TRUE)

29

# If the garch forecast doesn’t converge, prune the sample returns until it does
31 j <− i

while( is (garch.forecast , "try−error") ) {
33 j <− j − 1

garch. fit <− try(ugarchfit(spec = garch.spec, data = returns [(( j−299):j) , ]) , silent =
TRUE)

35 garch.forecast <− try(ugarchforecast(garch.fit , n.ahead = 5), silent = TRUE) }

37 # GARCH leverage
garch.leverage [ i ] <− last(sigma(garch.forecast)) ∗ sqrt(252) }

39

# Bound the GARCH leverage factor
41 garch.leverage[garch.leverage > max.gross] <− max.gross

garch.leverage <− na.locf(garch.leverage)
43

# Final Leverage Factor
45 leverage. factor <− na.omit(realized.leverage + garch.leverage) / 2

return(leverage. factor ) }

LISTING 7.1: Forward Leverage Measure Code

To account for the trading costs associated to this added layer of complexity, we
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apply the leverage factors on a weekly basis at the same time we are rebalancing the
portfolios. As always, a day of slippage, and 0.50 basis point trading costs are included
in our backtests. It is important to note that the resulting portfolios do not exactly reach
their volatility targets. Indeed, in the presence of trading costs, the increased trading,
required to manage the portfolio leverage, can quickly become detrimental to its per-
formance. The below figure demonstrates this phenomenon on the risk parity strategy.
Without trading costs, if the strategy is rebalanced on a daily basis to its leverage fac-
tor, it just slightly overshoots its volatility target. However, in the presence of trading
costs (willingly exaggerated to 1 basis points) the strategy’s volatility increases, but
is nowhere near its target. Furthermore, all this excessive trading reduces its returns,
further impacting its Sharpe ratio negatively. The same happens at the portfolio level.
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FIGURE 7.1: Leverage Adjustments - Trading Costs

Daily Daily (1bps) Weekly Weekly (1bps) Unlevered

Cumulative Return 0.88 0.45 0.52 0.45 0.34
Annualized Return 0.07 0.04 0.05 0.04 0.03

Annualized Standard Deviation 0.06 0.06 0.04 0.04 0.04
Annualized Sharpe Ratio (rf=0%) 1.15 0.67 1.11 0.97 0.88

Worst Drawdown 0.14 0.15 0.12 0.12 0.12
Average Drawdown 0.01 0.01 0.01 0.01 0.01

Skewness -0.29 -0.31 -0.14 -0.19 -0.85
Kurtosis 5.09 5.11 8.40 8.41 13.66

TABLE 7.2: Leverage Adjustments - Performance

7.3.2 Equal Weight

Often overlooked by academic researchers, equal weighted portfolios are very popu-
lar among market practitioners. Empirical evidence of their popularity can notably be
found in Bernartzi and Thaler’s work [Bernatzi2001]. At face value, they may seem
overly simple, but this allocation methodology possesses surprising empirical proper-
ties. The most important of them is its out of sample robustness, especially relative
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to mean-variance efficient portfolios. Indeed, the theoretical performance of mean-
variance efficient portfolio often translates to poor empirical out of sample performance
[57]. Furthermore, equally weighted portfolios are often more resilient to drawdowns
than their mean-variance based counterparts. The latter are often too concentrated,
and suffer accordingly during market crashes. These appealing characteristics justify
testing their performance when constructing risk premia portfolios.

An equally weighted portfolio’s allocations can be represented as:

wi =
1

N
(7.4)

where

wi is the proportion of the portfolio capital allocated to the asset i
N is the total number of assets in the portfolio’s investment universe

Applying this allocation methodology to a portfolio composed of our risk premia
strategies, we obtain a portfolio that generates a Sharpe ratio above 1.00. These results
assume weekly rebalancings of the net of fees strategies with an added 0.50 basis point
of trading costs. One day of slippage is also applied. The figure below presents the
cumulative returns associated to this portfolio construction approach. The table reveals
what we alluded to earlier, the levered portfolio, although more volatile, doesn’t reach
our desired volatility target.
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FIGURE 7.2: Equal Weight Portfolio - Performance
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Unlevered Levered

Cumulative Return 0.26 0.41
Annualized Return 0.03 0.04

Annualized Standard Deviation 0.02 0.03
Annualized Sharpe Ratio (rf=0%) 1.27 1.47

Worst Drawdown 0.02 0.03
Average Drawdown 0.00 0.00

Skewness -0.14 -0.18
Kurtosis 6.60 7.96

TABLE 7.3: Equal Weight Portfolio - Performance Metrics

7.3.3 Minimum Variance

Minimum variance portfolios have recently seen a renewed interest by market practi-
tioners. This approach was initially viewed as a solution to overcome the issues sur-
rounding the mean-variance framework. Clarke, and al. [58] studied the characteris-
tics of this portfolio construction methodology by applying it US Equity instruments.
He found that, although one is not required to estimate the portfolio’s assets expected
returns, proper care must still be applied when constructing minimum variance port-
folios, especially in cases when the number of assets (N) in the portfolio is large. This
is not the case for our portfolio (N = 5).

We specify our Minimum Variance Portfolio as a constrained optimization problem:

minimize
w

σp = w′Ωw

subject to sumwi = 1, i = 1, . . . , N.

wi ≥ 0.

where

w is the optimal set of weights
Ω is the estimated covariance matrix of strategy returns
N is the total number of strategies in the portfolio

When unconstrained, minimum variance portfolios often lead to large turnover.
This was reported to be the case of equity portfolios, monthly turnover statistics hover
around 11.9% [58], a significant amount of rebalancing by any standard. More impor-
tantly, is the fact that these portfolios are, similarly to mean-variance portfolios, often
highly concentrated in a few assets. To address this, we build two portfolios of strate-
gies. The first is unconstrained, except for the 100% leverage and weights positivity
constraints that are outline in the above equation. The second portfolio is constrained
so that its strategies weights are within the following range:
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Strategy Minimum Weight Maximum Weight
Risk Parity 30% 65%
Momentum 10% 40%
Value 10% 40%
Commodity Carry 10% 40%
Currency Carry 10% 40%

We solve for the portfolio weights with a quadratic solver. R’s ROI, is such a solver
and can be found as part of the Portfolio Analytics’s library. The covariance matrix are
estimated using a rolling 90 days returns window, and the weights are rebalanced on
weekly basis. For both portfolio, we present their levered and unlevered cumulative
returns and performance statistics. We discuss their results in the analysis section.

Unconstrained
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FIGURE 7.3: Unconstrained MV Portfolio - Performance

Levered Unlevered

Cumulative Return 0.19 0.12
Annualized Return 0.02 0.01

Annualized Standard Deviation 0.02 0.01
Annualized Sharpe Ratio (rf=0%) 1.21 1.75

Worst Drawdown 0.02 0.01
Average Drawdown 0.00 0.00

Skewness -0.14 0.01
Kurtosis 20.35 5.01

TABLE 7.4: Unconstrained MV Portfolio - Performance Metrics
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Constrained
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FIGURE 7.4: Constrained MV Portfolio - Performance

Levered Unlevered

Cumulative Return 0.27 0.19
Annualized Return 0.03 0.02

Annualized Standard Deviation 0.03 0.02
Annualized Sharpe Ratio (rf=0%) 1.19 1.50

Worst Drawdown 0.06 0.02
Average Drawdown 0.00 0.00

Skewness -0.68 -0.32
Kurtosis 13.92 5.40

TABLE 7.5: Constrained MV Portfolio - Performance Metrics

7.3.4 Equal Risk Contribution

The last portfolio construction method investigated is ERC. As for the minimum vari-
ance portfolio, we constructed two distinct portfolios. The first, is unconstrained, and
the second is constrained to the same weights our constrained minimum variance port-
folio. As we have already defined the equal risk portfolio problem in Chapter 3. we
focus on presenting our results. The portfolio weights were obtained using R’s DeOp-
tim library. The cumulative return lines, and performance statistics of both portfolios
are presented next.
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Unconstrained
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FIGURE 7.5: Unconstrained ERC Portfolio - Performance

Levered Unlevered

Cumulative Return 0.26 0.16
Annualized Return 0.03 0.02

Annualized Standard Deviation 0.02 0.01
Annualized Sharpe Ratio (rf=0%) 1.27 1.54

Worst Drawdown 0.03 0.01
Average Drawdown 0.00 0.00

Skewness -0.68 -0.08
Kurtosis 16.40 6.08

TABLE 7.6: Unconstrained ERC Portfolio - Performance Metrics
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Constrained
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FIGURE 7.6: Constrained ERC Portfolio - Performance

Levered Unlevered

Cumulative Return 0.26 0.24
Annualized Return 0.03 0.03

Annualized Standard Deviation 0.02 0.02
Annualized Sharpe Ratio (rf=0%) 1.27 1.34

Worst Drawdown 0.03 0.02
Average Drawdown 0.00 0.00

Skewness -0.68 -0.18
Kurtosis 16.40 5.38

TABLE 7.7: Constrained ERC Portfolio - Performance Metrics

7.4 Results Analysis

We conclude this chapter by discussing the results of our investigations. The equity
line for our different risk premia portfolios (levered) are presented in the figure below.
A visual examination of the results reveal that, as expected, the equal risk contribution
portfolios are squeezed in between the equal weighted portfolio and the minimum
variance portfolio (unconstrained). This is an interesting and encouraging result in
itself as equal risk contribution portfolios are considered by certain authors’ a trade-off
between the equally weighted and minimum variance portfolios [12]. The fact that this
holds for alternative risk premia as well means that the other properties of this method
might also apply.
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FIGURE 7.7: Portfolio Construction - Performance

EW MV MV (Constrained) ERC ERC (Constrained)

Cumulative Return 0.31 0.15 0.27 0.20 0.22
Annualized Return 0.04 0.02 0.03 0.03 0.03

Annualized Standard Deviation 0.03 0.02 0.03 0.02 0.02
Annualized Sharpe Ratio (rf=0%) 1.24 1.06 1.19 1.07 1.14

Worst Drawdown 0.03 0.02 0.06 0.03 0.03
Average Drawdown 0.00 0.00 0.00 0.00 0.00

Skewness -0.26 -0.29 -0.68 -0.84 -0.84
Kurtosis 8.17 21.20 13.92 16.12 17.04

TABLE 7.8: Portfolio Construction - Performance Metrics

The most surprising aspect of our results is the fact that the equal weighted portfolio
delivered the best returns, and risk-adjusted returns (Sharpe ratio) over our sample
period. This is discussed in detail next.

7.4.1 Performance Metrics

An analysis of the portfolios performance metrics reveal significant differences across
the three different construction methodologies. First off, the equal weighted portfolio
is the most attractive from a total return, but also from a risk to return perspective. Its
dominance in Sharpe ratio terms is puzzling and warrants further investigation. A po-
tential explanation may lie in the fact that alternative risk premia strategies exhibit low
and stable correlations to one another. The equal weighted portfolio might somehow
have benefited from this. There is also the fact that the other allocation methodolo-
gies faced significant transaction costs impacts. The equal weighted portfolio doesn’t
vary in weights, and therefore trades less than its counterparts. We will investigate this
further in future works, but for the time being, we are reminded that equal weighted
portfolios are more often than not, very difficult to beat in "real world" applications.

The following scatter chart shows each portfolio’s risk to return positioning. The
dotted grey lines represent Sharpe ratios of 1, 2 and 3. It is important to note that all
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our portfolios dominate the first line.
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FIGURE 7.8: Portfolio Construction - Risk to Return Scatter

When assessing their drawdown profiles, we find that the the largest drawdowns
belong to the constrained minimum variance portfolio. Although the volatility of this
portfolio is lower than that of the equal weighted one, it still experiences a maximum
drawdown that is 2.% higher. This can be observed in the figure below:
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FIGURE 7.9: Portfolio Construction - Historical Drawdowns

We conclude this section by pointing to the fact that the skewness of all those port-
folios are negative. This is expected from a "true" portfolio of risk premia strategies,
and further strengthens our conviction in our results.





Chapter 8

Conclusion

8.1 Conclusion

The objective of this work was twofold. First, we demonstrated that a diversified set of
alternative risk premia strategies could be accessed through futures contract trading.
These strategies follow systematic trading signals and order sizing rules that can be im-
plemented systematically. In contrast to many papers on the subject, we’ve deducted
realistic trading costs from all our strategies. This is too often neglected and, as shown,
it can have a significant impact on a strategy’s returns. To mitigate the operational
burden associated with trading those strategies, we’ve settled on a weekly rebalanc-
ing frequency for all of them. This was not always the most optimal choice, but it is
one that we feel is much more realistic than assuming that investors (even institutional
ones) always have the capabilities to trade on a daily basis. Institutional investors of-
ten think that to access these strategies, one needs to be trading a lot. We’ve dispelled
this myth by showing that rebalancing the strategies and portfolios once a week, still
allows one to capture the returns associated to these risk premia.

Secondly, we’ve demonstrated the importance of portfolio construction in aggre-
gating these strategies together. The resulting portfolios are significantly impacted by
the choice of portfolio construction. Unexpectedly, using our set of strategies and for
the period studied, the equal weighted portfolio allocation provides investors with the
most attractive risk to return profile. This is encouraging as this method is very intu-
itive to implement. It is possible that the other portfolio construction methodologies
we have tested would have benefited from a different parametrization. We hope to test
this in our future works.

An important finding associated to this research is the fact that, in the presence of
transaction costs, even when applying a leverage factor on a weekly basis, we failed
to achieve our annualized volatility target of 5%. Most portfolios undershoot it signifi-
cantly. We will dedicate our future research toward solving this issue. A better under-
standing of the interactions between the leverage factor, the rebalancing frequency, and
the portfolio construction method, should help us reach this target, even in the pres-
ence of transaction costs. This will be crucial for the real world investing applications
of these portfolios.

The results of this research are but a stepping stone for further research on risk pre-
mia strategies. There is still much more to learn on the impact of the choice of portfolio
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construction methodologies on alternative risk premia portfolios. For instance, deter-
mining the performance of these portfolios under different market regimes is some-
thing that we hope to research next. We’ll also explore the potential for these strate-
gies to be used as alternative factors on which to regress hedge fund portfolios. This
could help us better understand the underlying drivers of hedge fund performance,
and in doing so, identify suitable research paths by which to improve the current state
of hedge fund statistical replication methods.

Finally, we haven’t discussed the appropriateness of these portfolios in a liability
driven investment setting. We’ve demonstrated the attractiveness of their Sharpe ratio,
and therefore expect them to be good candidate portfolios for LDI investors seeking
an alternative to a pure bond exposure. This is another important path to explore.
The research on alternative risk premia investing is still in its infancy, but as academic
researchers and market practitioners start increasingly focusing on the subject, their
increased adoption should provide us with important empirical and anecdotal data
points. We can’t help but feel that in time, these portfolios will replace the classic
pension benchmarks, just as recently "Risk Parity" portfolios are slowly becoming the
baseline for many of these investors.
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