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Abstrait 
 

 

Pour résoudre les problèmes environnementaux dans la distribution de 

marchandises, ce mémoire considère avec une préoccupation environnementale 

la conception de réseaux de distribution, lequel nous désignons comme le 

Conception Verte de Réseau de Distribution (CVRD). Nous formulons d'abord Un 

Modèle Générale de Conception de Réseau (MGCR). Nous présentons ensuite 

quatre modèles CVRD, qui sont les extensions de MGCR. Chacun de ces quatre 

modèles correspond à un groupe particulier de politiques environnementales. 

Les quatre environnement politiques sont strictes d'émission Cap, taxe sur le 

carbone, Cap-and-Trade et Cap-et-Offset. L'estimation précise des émissions est 

essentielle pour la CVRD. Nous expliquons en détail les deux modèles de calcul 

des émissions (un pour le transport routier et l'autre pour le transport ferroviaire), 

afin d’obtenir les valeurs d'émissions de chaque arc spécifique. Ces valeurs sont 

utilisées dans les modèles CVRD pour calculer les émissions totales d'un réseau 

particulier.  

Une étude de cas est mise en œuvre. Nous utilisons les données réelles d'une 

société d'énergie canadienne et tentons de reconfigurer son réseau de 

distribution pour les dix années à venir. Les quatre modèles de CVRD ainsi que 

le MGCR sont résolus à optimalité sous les divers scénarios, sauf pour un 

scenario qui a des contraintes très strictes. Les solutions optimales sont 

analysées et comparées. Les résultats montrent que certaines politiques sont 

généralement plus performantes que les autres, réduisant à la fois les coûts et 

les émissions. De plus, il est confirmé que les émissions de CO2 n’influencent 

pas la décision de sélection d’entrepôt, car il n'y a pas de coûts fixes d'utilisation 

des installations. En outre, dans l'étude de cas, la sélection du mode de transport 

ne varie pas selon les émissions de CO2. Cependant, les émissions de CO2 ont 

un impact sur le portfolio des produits destinés aux entrepôts, le coût total et les 

émissions.  
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Abstract 

To address the environmental issues in freight distribution, this thesis considers 

distribution network design with an environmental concern, which we denote as 

Green Distribution Network Design (GDND). We first formulate a general 

distribution network design (GeDND). We then present four GDND models, 

which are extensions of the GeDND model. Each of the four models corresponds 

to a particular type of environmental policy. The four environmental polices are 

Strict Emission Cap, Carbon Tax, Cap-and-Trade, and Cap-and-Offset.  

Accurately estimating emission is important for GDND. We explain in depth how 

to use two emission calculation models (one for road transport and the other for 

rail transport) to compute the arc-specific emission values. These values are 

used in the GDND models to calculate the total emissions from a particular 

network configuration.  

A case study is implemented. We adopt the real data of a Canadian energy 

company to redesign its distribution network for the next ten years. All of the four 

GDND models as well as the GeDND model are solved to optimality under 

various scenarios except for one scenario, which has very strict constraints. The 

optimal solutions are analyzed and compared. The results show that some 

policies generally perform better than the other, producing both lower costs and 

lower emissions. Also, it is found that CO2 emissions do not impact warehouse 

selection, as there are no fixed facility usage costs. Furthermore, the transport 

mode selection in the case study does not change with CO2 emissions. However, 

CO2 emissions do impact the assignment of products to warehouses, and total 

costs and emissions.  
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1. Introduction 
 

The negative impacts of global warming could be devastating: 

"The effects of an increase in global temperature include a rise in sea levels and 

a change in the amount and pattern of precipitation, as well as a probable 

expansion of subtropical deserts------ (Lu et al., 2007)" 

 

In 2013, the Intergovernmental Panel on Climate Change (IPCC) stated that the 

largest driver of global warming is carbon dioxide (CO2) emissions from human 

activities (IPCC, 2013). Since the industrial revolution in the 18th century, CO2 

emissions due to human activities have stably increased. By 2011, the 

concentrations of CO2 emissions exceeded the pre-industrial levels by about 40% 

(IPCC, 2013). 

 

Among the various contributors to CO2 emissions, the transport sector accounted 

for 23% of global CO2 emissions, and 30% of the overall CO2 emissions from 

fossil fuel combustion in 2005 (International Transport Forum, 2010). This is 

because right now, most transport still relies on fossil fuel, which contains high 

percentages of carbon. In the next few decades, the globally CO2 emissions from 

transport are expected to increase by approximately 40% from 2007 to 2030 

(International Transport Forum, 2010). By further checking the sources of the 

CO2 emissions from the transport sector, freight transport was found to represent 

around one third of transport emissions (Regmif & Hanaoka, 2010). Therefore, it 

is inevitable that companies with freight transport will face more and more 

challenges from governmental regulations. 

 

Around the world, governments and intergovernmental institutions mainly rely on 

four types of environmental policies: (1) Strict Emission Cap; (2) Carbon Tax; (3) 

Cap-and-Trade; (4) Carbon-and-Offset (The Congress of the United States, 

2008). The policies of Strict Emission Cap and Carbon Tax are relatively simple. 

Basically, Strict Emission Cap means that governments impose hard emission 
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constraints on companies during a planning horizon. Carbon Tax means that a 

tax is imposed on firms for emitting air pollutants (C2ES, 2011). 

 

In the Cap-and-Trade mechanism, governments specify a quota of allowed GHG 

emissions for firms during a planning horizon. The quotas are determined either 

by auction or by allocation according to some rules.  Within these quotas, firms 

do not need to pay, and they can sell the unused quota to other firms in an open 

carbon market. But, if the firms emit more than their quota, they need to buy 

emission allowances (C2ES, 2011). 

 

In the Cap-and-Offset scheme, the Cap is also a government specified quota of 

allowed emissions for each entity. The Offset is the investment that a firm would 

make in carbon-reducing projects to offset emissions in excess of its specified 

quota. The Offset is essentially the same as the purchasing of emission credits in 

the Cap-and-Trade scheme, except that the underlying market mechanism is 

different. In Cap-and-Trade, the availability and pricing of emission credits are 

determined by a carbon exchange market, while the availability and pricing of 

offsets are determined by independent suppliers of the offsets (Guide et al., 

2006). These explain why in some regions, such as California, a Cap-and-Offset 

scheme is actually managed under a Cap-and-Trade scheme, working as a 

compliance instrument to the Cap-and-Trade policies (California Air Resources 

Board, 2012). However, in Cap-and-Offset, firms do not benefit if they emit less 

than their specified caps as they cannot sell their unused emission quotas. This 

maybe the biggest difference between the two. 

 

Fortunately, many companies have already taken on some practices to mitigate 

environmental risks. The ways that companies use to reduce emissions can be 

classified into two categories- green technologies practices and non-technical 

practices. Green technologies practices rely on using green products or 

technologies, such as electric vehicles and energy-efficient vehicles, while non-

technical practices rely on better operations, such as training drivers to drive 
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more energy efficiently. Green technologies practices were proved to be effective 

in reducing CO2 emissions. However, according to a study commissioned by the 

European Commission, only technical options can hardly be sufficient to meet 

emission reduction targets of European countries (Skinner, 2010). Though the 

study focuses on European countries, it is also applicable to other countries or 

regions. Thus, more non-technical options are needed. 

 

Green distribution network design (GDND) is a promising non-technical option. 

Compared to traditional distribution network design that usually only tries to 

minimize economic costs, GDND incorporates carbon costs or carbon constraints 

during the network design stage. This helps better balance the costs and 

emissions of a network. The benefits of GDND are obvious: GDND doesn't 

necessarily result in large capital investment, and its optimal solutions can also 

be easily implemented. However, total costs generally increase when addressing 

emissions in a network design.  Also, different types of environmental policies 

exist. Research on how to incorporate emissions under each type of 

environmental policies is limited, let alone discussing their effect in reducing 

emissions. 

 

To explore how CO2 emissions impact distribution network design, we study a 

general distribution network design (GeDND) model. Based on this model, we 

propose four GDND models, each corresponding to a type of environmental 

policy. Accurately estimating emissions is important in GDND. We adopt an 

effective second-by-second microscope model to estimate road transport 

emissions, and a distance-based method to compute rail transport emissions. 

Based on these emission models, we obtain ways to compute values for arc-

specific emission values, which are used for calculating total emissions of a 

network. A case study is implemented. The distribution network of a Canadian 

company is redesigned for the next 10 years. CPLEX 12.6.0.1 is used together 

with a C++ interface in a LINUX environment to find optimal solutions. 

Computational results are compared and analyzed to see: (1) how emission 
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concerns impact the total costs and emissions under each type of environmental 

policy; (2) how emission concerns impact strategic decision-making, including 

transport mode and warehouse selection. Also, the four types of environmental 

policies are compared with their effect in reducing emissions while keeping a 

relatively low total cost. 

 

Literature on green network design is scarce. The studies focusing on the 

impacts of CO2 emissions on network design are even sparser. This thesis 

supplements the existing literature, and its contribution is threefold: (1) we 

formulate the GeDND model and four GNDN models based on a known general 

logistics network design model. Each of the four GNDN models corresponds to a 

type of environmental policy; (2) we test the potential impacts of the four types of 

policies using real data from a company. Thus providing managerial insights for 

the company; (3) instead of adopting highly integrated emission factors to 

compute emissions, we use arc-specific emission parameter to estimate total 

emissions in GDND. This helps capture the variation of total emissions and total 

emission costs among different optimal solutions. 

 

The rest of this thesis is organized as follows. Section 2 reviews the existing 

literature. Section 3 presents the GeDND model and model extensions under 

different types of environmental policies. In Section 4, we introduce two emission 

calculation models (one for road transport and another for rail transport) based 

on which we compute the values for an emission parameter. In Section 5, we 

implement a case study. In section 6, we compare and analyze the optimal 

solutions from Section 5. In Section 7, we present our conclusions and indicate 

future research directions. 
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2. Literature Review 
 

In this section, we first provide a brief overview on green supply chain 

management (GrSCM), which is supply chain management with an 

environmental concern (Wang et al., 2011). Then, we focus on the mathematical 

models for green supply chain network design (GSCND). Next, we review the 

impacts of CO2 emissions on decision-making during network optimization. At 

last, we review the emission calculation methods (for road and rail transport only). 

 

Through our literature survey, we find that many authors do not really distinguish 

CO2 from Greenhouse gases (GHGs), Carbon footprint, Equivalent Carbon 

Dioxide and Carbon Dioxide Equivalent. As these are relevant concepts, our 

literature survey covers articles that consider any of them, in order to have a 

broad literature base. 

 

2.1 Green Supply Chain Management 
 

Similar to the term GrSCM, there are Green Logistics Management, GSCND, 

and GDND. In this thesis, Green Logistics Management is considered as the 

same as GrSCM. GSCND is considered as part of GrSCM, which is a broader 

concept. GSCND considers only the design and modeling of supply chain 

networks (SCN). GDND is considered as part of GSCND, because GSCND deals 

with a whole supply chain, while GDND deals with only the part that starts from 

plants and ends at customers. 

 

Much research deals with GrSCM. Srivastava (2007) stated that since the 

conceptualization of GrSCM, about 1500 books, journal articles, and edited 

volumes have covered GrSCM. But, most of this research is empirical, and does 

not use mathematical models to solve problems. Therefore, this survey only 

covers review papers on GrSCM. 
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The earliest review paper comes from Srivastava (2007). At his time, no broad 

reference for GrSCM was available for regulatory bodies to refer to when 

formulating environmental policies. In the paper, he discussed a broad range of 

activities, including product design, material sourcing and selection, 

manufacturing processes, delivery of the final product to consumers, and end-of-

life management of the product after its useful life. All of them are put under the 

scope of GrSCM. From this paper, it could be found that before 2007, research 

on green supply chain management mainly falls into three categories: 

 

1. Articles about the importance of GrSCM; 

2. Articles on green design (mainly on green products); 

3. Articles on green operation (mainly on green manufacturing and 

remanufacturing, reverse logistics, and network design). 

 

Dekker et al. (2012) presented a review that highlighted the contribution of 

operations research to green logistics. A broad range of aspects was covered, 

including transportation, product and inventory, facility, and supply and transport 

chain design. The transportation part is the focus of this paper.  It covers the 

topics on: (1) transport mode choice; (2) intermodal transport; (3) equipment 

choice and efficiency; (4) fuel choice and carbon intensity. The paper concludes 

that more research using mathematical models is required to address the 

multitude of decisions needed to reduce emissions. 

 

A recent review work by Luthra (2014) aims to provide an overview of the various 

issues of GrSCM, and suggests further research scopes and directions. The 

author analyzed the existing literature from many perspectives, including key 

components of GrSCM, frequency of GrSCM components, tool / techniques used 

(frequency) and model (frequency) and so on. The paper concludes that limited 

work has been done on green logistic models. 
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Pinto & Moreno (2014) focused on the mathematical models employed in 

GSCND. The decision variables of these models include facility location and 

capacity, technology selection, carbon market mechanism considerations, 

production operations, and transport operations. Pinto and Moreno classified 

these models according to the decision variables as in the following Table 1. 

 
Table 1 Classification of decision variables in GSCND models (adapted from Pinto & Moreno, 2014) 

Decision variables Objective functions/ models 

Facility location 
 and capacity 

Multi-objective mathematical model to find a balance between possible environmental 

damage and economic impact. 

Technology 

Selection 

1. Multi-objective model in which potential plants may be selected using different 

types of technologies 

2. Long- term planning models to determine investment decisions relating to optimal 

selection, installation, and expansion of processes technological process 

Carbon market 

mechanism 
consideration 

Mixed integer linear programming (MILP) model for designing a green supply network 

integrating decisions related to “carbon trading”. 

Production 

Operations 

1.  Multi- period, discrete and continuous MILP model, which includes investment in 

energy generation systems within production planning. 

2. Mathematical model to determine optimal production levels and product mix in the 

presence of various environmental restrictions and typical production planning 

limitations. 

Transport 

Operations 

1.Optimization model for freight consolidation in which CO2s emissions are computed 

for two transport modes (road and rail transport). 

2. Linear programming and heuristic techniques to improve freight vehicle capacity 

use by accepting additional freight through in order to reduce CO2 emissions. 

 

 

Pinto and Moreno concluded that: (1) the CO2 market is an interesting alternative 

for managing CO2 emissions via CO2 credits. However, it is must be stressed that 

trading CO2 credits do not directly lower GHG emissions; (2) the areas in which 
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GHGs emissions can be significantly reduced are production operations, 

transportation, and recycling. 

 

Through these review papers, we find that there is a need to use mathematical 

models to solve GrSCM problems. Also, transportation seems to be a promising 

area for further emission reduction in a supply chain.  

 

2.2 Mathematical Models with Green Supply Chain Network 
Design 
 

Supply chain network design (SCND) is one of the most comprehensive strategic 

problems. It determines a portfolio of configuration parameters, including the 

number, location, capacity and type of various facilities in the network (Wang, 

2011). It needs to be solved to optimality for the long-term efficiency of the entire 

supply chain. Most mathematical models consider economic factors such as 

fixed facility costs and operation costs. Recently, environmental issues began to 

be incorporated in SCND (Treitl & Jammernegg, 2011). In what follows, we 

present the work on the mathematical models of GSCND, which are the focus of 

this literature survey.  

 

Hugo & Pistikopoulos (2005) developed a model for the long-term planning and 

design of SCN. One of the objective functions in this model aims to minimize the 

environmental impacts from emissions and wastes. The other aims to maximize 

the net profit value. The model incorporates a life cycle assessment criterion as 

part of the strategic investment decisions, and it considers plant location and 

plant capacity investments. Supply chain emissions are estimated by using life 

cycle analysis.  

 

Ramudhin et al. (2008) developed a mixed-integer mathematical model with two 

objective functions to explore the “Carbon-Market Sensitive - Green Supply 
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Chain Network Design” problem, where carbon trading considerations are 

integrated within the SCND phase.  One of the objective functions of the model 

minimizes total logistics costs. The other minimizes total CO2 emissions from 

both production and transportation. Many strategic decisions were considered, 

including supplier selection, raw material selection, plant location, and transport 

mode selection. Transport emission is calculated by: 

 

Transport emission= GHGs emission factor* Distance*Weight. 

 

Here, GHGs emission factor represents the emission per ton per mile via a 

specific transport mode. 

 

Pan et al. (2009) proposed a single objective model to explore emission 

reduction potential through freight consolidation between two French retail chains. 

The objective function of the model minimizes the sum of CO2 emissions from 

three transport sections (upstream, midstream and downstream). Strategic 

decision variables in this paper include supplier selection, plant location, 

warehouse location and transport mode selection. A macroscopic model called 

MEET is used to estimate the emissions from both road and rail transport. 

 

Wang et al. (2011) proposed a multi-objective optimization model to capture the 

trade-offs between total logistics cost and environmental influences. One of the 

objective functions in this model minimizes total costs, which include fixed setup 

costs, environmental protection investment, total transportation costs, and total 

handing costs. The other minimizes total CO2 emissions, including emissions 

occurred from facility usage and on road. This model considers supplier selection, 

plant location, and plant capacity investment. An arc-dependent emission 

parameter 𝑒!"
!  is used to compute road transport emissions. The values of this 

parameter are obtained by: 

 

𝑒!"  
! = 𝑏!"× Geographic distance between node 𝑖  and node 𝑗. 
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However, the paper does not explain what 𝑏!"  represents. 

 

Paksoy et al. (2011) developed a model for closed-loop SCND. The model has 

four objective functions. The first aims to minimize the transport costs from 

forward logistics, and different types of truck can be chosen. The second aims to 

minimize the transport costs from reverse logistics. The third minimizes total CO2 

emissions, which are produced by trucks on forward logistics. The last minimizes 

the purchasing costs minus the total opportunity profits. The opportunity profits 

are gained via using recyclable products. Different transport choices between 

echelons are considered. Arc-specific emission parameters are used to estimate 

forward logistics transport emissions. But, the paper does not mention how or 

where to obtain the values for these parameters. 

 

Abdallah et al. (2012) developed a single-objective mixed integer model for the 

supply chain with carbon trading and environmental sourcing. The objective 

function of the model minimizes the sum of the fixed costs, distribution costs, 

procurement costs, and carbon emission costs associated with carbon trading. 

The model considers green procurement, plant location, plant capacity 

investment, warehouse location, and warehouse capacity investment. Emission 

from facility usage, emission derived from raw material production, and road 

transport emission are all included. Like many articles on GSCND, the paper 

uses an emission factor, which represents the emission per unit of weight per 

unit distance, to compute road transport emission.  

 

Elhedhli & Merrick (2012) designed a single objective model for GSCND. Their 

objective function minimizes the fixed costs to set up facilities, the transport costs 

to move goods, and the emission costs from product shipment. Warehouse 

location and warehouse investment are considered in this model. An emission 

parameter (the emissions per unit distance per unit of weight) is the key to 

emission calculation. The emission parameter is obtained by referring to some 

concave lines representing the relationship between emissions and weights 
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under different vehicle speeds. This relationship was found by researching the 

data set of the vehicle GHG emissions in the Mobile6 computer program and 

Speed Correction Factors. The Mobile6 computer program was funded by the 

Environmental Protection Agency of the United States (US EPA). The program 

contains an extensive database of CO2 emissions for heavy-duty diesel vehicles 

obtained from full-scale experiment. From the database, emission factors for 

various vehicle weights can be obtained. Speed Correction Factors, outlined by 

the California Air Resources Board, are used to relate CO2 emission levels with 

vehicle weights and speeds of travel. The authors combine the emission factors 

from the Mobile6 computer program and the Speed Correction Factors to obtain 

the emission rate. 

 

Kannan et al. (2012) developed a single-objective model for reverse logistics 

network design. Its objective function minimizes the sum of transportation costs, 

fixed facility costs, and final disposal and landfill costs. The model considers the 

selection of collection / inspection centers. Carbon footprint from both 

transportation and reverse logistics operation are included. The paper uses an 

emission parameter, which represents the emission per unit of returned product 

per unit distance, to compute network emissions. It assumes that the value for 

this parameter is known. 

 

Fahimnia et al. (2013) introduced a unified optimization model to explore the 

impact of carbon pricing on a closed-loop supply chain. The model has only one 

objective function, which minimizes the overall supply chain costs. Carbon 

emission costs, as part of the overall supply chain costs, are considered. The 

paper considers both forward and backward transport emissions. Emissions 

occurring from both product manufacturing and facility usage are included. The 

paper uses an arc-specific emission parameter to compute transport emissions. 

But, it does not explain how or where to obtain the values of this parameter. Even 

in its real case study, the paper only mentions that the values of this parameter 

were provided by a third-party logistics (3PL). 
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Martí et al. (2015) introduced a model with one objective function that minimizes 

the total supply chain costs per unit of time. The costs include inventory costs 

(holding cost in markets' warehouses and in transit, as well as ordering and 

shortage costs) and procurement costs (raw materials, manufacturing including 

labor and transport). One critical assumption with the model is that demands in 

market are stationary and stochastic. The model considers both plant location 

and transport mode selection. Emissions from warehousing, raw materials, 

manufacturing and transport are all included. Like most papers on green supply 

chain, the paper uses an emission factor, i.e., the emissions per unit of weight 

per unit distance, to compute emissions. 

 

It seems that multi-objective models are more popular in supply chain network 

design. Multi-objective models usually do not consider specific environmental 

policies. Their emission concerns are expressed by independent objective 

functions minimizing the total emissions of networks. Articles with multi-objective 

models often focus on analyzing the trade-offs between logistics costs and 

emissions. But, recently, single objective models began to be more frequently 

developed. These models usually consider emissions under specific 

environmental polices. Their emission concerns are often expressed by 

incorporating carbon costs or emission constraints. 

 

Decision variables tell what type of questions GSCND are dealing with. In Table 

2 we summarize the models in this section from the perspective of their decision 

variables. 
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Table 2 Decision Variables of OR Models on Green Supply Chain Network Design 

 

 

Table 2 suggests that transport mode selection, as a decision variable, is not 

very popular in GSCND. By 2009, only two articles include it. However, transport 

mode selection is an important decision variable that impacts network emissions. 

For example, Pan et al. (2009) found that by pooling the supply chain resources 

of two big retail companies, a reduction of 14% of CO2 emission can be 

compared to their current road transport mode. But, if the companies use 

intermodal transport with at least two transport modes, they can save even up to 

52% of CO2 emissions. 

 

Table 2 also indicates that limited research is done considering both transport 

mode selection and facility location in the SCND. Only Pan et al. (2009) 

considered both of them when designing a collaborative freight distribution 

network between two companies. This suggests that future research could 

incorporate both during in the SCND of a single company. 

 

 

 

 

 

Authors

Supplier-
Selection/Raw-

Material-
Selection

Plant-
Location-

Plant-
Capacity-

Investment

Warehouse-
Location-

Warehouse-
Capacity-

Investment

Transport-
Mode-

Selection

Hugo et al. (2005) ✔ ✔  
Ramudhin)et)al.)(2008)) ✔ ✔ ✔
Pan)et)al(2009)) ✔ ✔ ✔ ✔
Wang))et)al.)(2011) ✔ ✔ ✔
Paksoy et al.(2011) ✔
Kannan)et)al.(2012) ✔
Abdallah et al. (2012) ✔ ✔ ✔ ✔ ✔
Fahimnia et al.(2013)
Elhedhli)et)al.(2012) ✔ ✔
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2.3 The Impacts of CO2 Emissions in Supply Chain Management 
 

Recently, researchers have started to model the impacts of CO2 emissions and 

examine how CO2 emissions could possibly affect decision making in supply 

chain management from the strategic level, such as network design, to the 

operational level, such as production planning. 

 

At the strategic level, Elhedhli & Merrick (2012) developed a model to 

simultaneously minimize logistics costs and carbon costs by strategically locating 

warehouses within a distribution network. Test results indicate that the addition of 

carbon costs created a driving force to reduce the amount of vehicle kilometers 

travelled. Since the customer demands must still be met, the solution suggests 

that more distribution centers be opened to decrease vehicle travel distances. 

 

Abdallah et al. (2012) found that the size of distribution centers could influence 

GHGs emissions in the entire supply chain. They formulated a mixed-integer 

linear model for reverse logistics network design. The model supports location 

choices for collecting used products and implementing recovery options, such as 

recycling and disposal options. Through sensitivity analysis, it was found that 

decreasing the size of facilities could reduce transport emissions. 

 

Wang et al. (2011) introduced a model, which is based on the classical facility 

location model, to capture the trade-offs between total costs and environment 

influences. Facility location was set as a variable. "Capacity ratio", which is 

defined as the total network capacity over the total demand, was introduced. 

After conducting a sensitivity analysis, the authors found that: (1) at the same 

CO2 emission level, larger capacity ratios led to less total costs; (2) for the same 

total costs, CO2 emissions monotonically decreased along with the increase of 

capacity ratio. 

 

At the tactical level, some papers conclude that if specific environmental policies 
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are in place, CO2 emissions are powerful enough to trigger transport mode 

switching. For example, Blauwens et al. (2006) investigated the effect of policy 

measures aiming at triggering mode shift in freight transport. The background 

was that road congestion resulted in extra emissions, thus some policies were 

made to force companies to switch to other transport modes. The author claimed 

that a combination of certain policy measures, such as those leading to an 

increase of road transport costs, could result in significant shifts from road 

transport to intermodal transport that produce less emissions.  

 

There are also papers that question the power of CO2 emissions in the SCND. 

Hoen et al. (2014) studied the effect of three emission regulations (Cap-and-

Trade, Carbon Tax, and Strict Emission Cap) on transport mode selection under 

stochastic demands. They investigated the impact of these regulations on four 

particular products. They found that unless the emission-related charges or 

values of one or more of parameters (weight, distance, or unit cost) were 

extremely high, environmental policies could not lead to transport mode switching.  

 

Hoen et al. (2010) investigated the effect of two regulation alternatives (an 

emission cost and an emission constraint) on transport mode selection. They 

analyzed a very simple situation: single product for delivery, an infinite horizon, 

and periodic review with stochastic demand. Their focus was on a decision 

maker who has to select one out of several available transport modes for a given 

product. They found that emission costs accounted for a relatively small portion 

of the total costs. Thus, they concluded that introducing emission costs via a 

direct emission tax or a market mechanism, such as Cap and Trade, was not 

likely to result in significant changes in transport modes. But, they believed that 

hard emission constraints could reduce carbon emissions by a large fraction. 

 

Both Hoen et al. (2014) and Hoen et al. (2010) assumed that transport costs 

remained the same when different transport modes were chosen. They made this 

assumption because a 3PL was used. This may explain why they concluded 
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some or all environmental polices were not powerful enough to trigger transport 

model switching. 

 

At the operational level, Benjaafar et al. (2013) used the variants of traditional lot-

sizing models to illustrate how carbon emission concerns could be integrated into 

operational decision-making process with regard to procurement, production, and 

inventory management. Carbon emissions under different environmental polices 

(Strict Emission Cap, Carbon Tax, Cap-and-Trade, and Cap-and-Offset) are 

incorporated in different ways. Numerical results show that: (1) under Strict 

Emission Cap, emissions can be significantly reduced without significantly 

affecting total costs; in one example, reducing emissions by 15% leads only to a 

3% increase of costs; (2) carbon offsets enable tighter emission caps by 

mitigating the impacts of strict emission caps on costs; (3) under Cap-and-Trade, 

when the price of buying or selling emission credits is fixed, emission levels are 

not affected by emission caps. They are affected only by the price of carbon 

credits; (4) under Cap-and-Trade, a higher carbon price could lead to a lower 

total cost.  

 

Benjaafar et al. (2013) focused on decision-making regarding production and 

procurement. They indicated that in the future, more operational decisions 

affecting emissions could be incorporated. Among them are facility location, 

transport mode selection, and so on. They also stated that other common models, 

such as newsvendor models and economic order quantity models, could be used 

to do similar analysis as in this article. In this thesis, we analyze how CO2 

emissions impact transport mode and warehouse selection based on a general 

model for the logistics network design.  
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2.4 Emission Estimation - Road and Rail Transport 
 

According to the GHG Protocol (2005), developed by the World Resources 

Institute and the World Business Council on Sustainable Development (WBCSD), 

one either applies a fuel-based or a distance-based method to calculate CO2 

emissions. With the fuel-based method, CO2 emission is often obtained by: 

 

CO2 emission = Fuel consumption* CO2 emission factor. 

 

Here the CO2 emission factor is developed based on the fuel’s heat content, the 

fraction of carbon in the fuel that is oxidized, and the carbon content coefficient. 

To know how much fuel is consumed, the simplest way is to refer to fuel receipts. 

However, fuel receipts are not always available. When fuel receipts are not in 

place but total fuel costs are available, we can still estimate fuel consumption by: 

 

Fuel consumption  =Total fuel costs / Fuel price. 

 

 For the distance-based method, CO2 emission is often estimated by: 

 

CO2 emission=Distance*Weight*Emission factor. 

 

Here the emission factor represents the emission of shipping one unit of 

commodity for one unit of distance. 

 

A handbook by the Department of Energy & Climate Change of UK classifies 

various emission calculation methods into three categories (see Figure 1). The 

first category, which is considered to be most accurate, uses fuel consumption 

amount to estimate emissions. The second one, which is considered to be less 

accurate than the first one, relies on travel distance and truckload to calculate 

emissions. The last one, which is considered to be the least accurate, relies only 

on travel distance to estimate emissions (GOV. UK, 2014).	  
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Figure 1 Decision tree for emission calculation methods selection (adapted from GOV. UK, 2014) 

 

For road transport emission calculation, Demir et al. (2014) provided a relatively 

in-depth introduction to various fuel consumption models. They categorized fuel 

consumption models into three groups with increasing levels of complexity: factor 

models, macroscopic models, and microscopic models. Factor models mainly 

rely on emission factors to estimate emissions. The emission factors are derived 

from the mean values of repeated measurements over a particular driving cycle. 

Microscopic models require instantaneous vehicle kinematic variables, such as 

speed and acceleration, or more aggregated variables, such as the time spent in 

each traffic mode, cruise and acceleration. Macroscopic models use average 

aggregate network parameters to estimate network-wide emission rates. 
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Demir et al. (2014) implemented a three-point scale analysis of the microscopic 

and macroscopic models. Eight criteria, including robustness, reliability, and so 

on, are used. The results show that: (1) microscopic models seem more robust 

and reliable, but data requirements for them are also more significant than for 

macroscopic models; (2) macroscopic models have more technical support, 

which provides continuous improvement. They are also more capable of 

estimating other air pollutants. 

 

Rail transport mainly has two types: the transport that uses electrical locomotives 

and the one that uses diesel locomotives. Literature on the fuel consumption 

models of rail transport is quite rare. The emission calculation handbook by the 

Department of Energy & Climate Change of UK explains how to use distanced-

based methods to estimate rail transport emissions. According to it, distanced-

based methods are the most common ways to estimate rail transport emissions 

(GOV. UK, 2014).  

 

Hoen (2012) adopted the NTM model to calculate the CO2 emissions from four 

types of transport modes: road, rail, marine, and air transport. The CO2 emissions 

produced by electrical locomotive trains and by diesel locomotive trains are 

computed separately. The NTM model is a macroscopic one that considers 

distance, load factors, type of transport mode, positioning, empty return trips, 

topography, and type of road (urban, rural or motorway). It is responsive to other 

types of pollutants, and it is continuously improved (Demir et al., 2014). However, 

the values for some vehicle specific parameters, such as the fuel consumption 

factor of an empty vehicle and that of a fully loaded vehicle, often are hard to 

obtain. 

 

Pan et al. (2009) considered two transport modes (road and rail transport) when 

designing a collaborative freight distribution network.  They used the MEET mode, 

a macroscopic model, to estimate road and rail transport emissions. The 

emissions of a specific truckload are estimated by referring to the emissions of 
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empty and full truckload. All parameter values were extracted from real-life 

experiments. However, these values were calibrated in 1999 based on European 

observations. Many corrections need to be done if they are to be used today and 

outside Europe (Demir et al., 2014). 

 

Directly referring to fuel consumption is the most accurate way to estimate CO2 

emissions. However, information, such as fuel expenditure records and fuel 

receipts, usually are hard to obtain. In this thesis, we use the Comprehensive 

Modal Emission Model (CMEM) to estimate road transport fuel consumption and 

total emissions. This model was initially developed in the late 1990s, with 

sponsorship from the National Cooperative Highway Research Program 

(NCHRP) and the EPA, to fulfill the need for microscopic emission modeling 

(UCR, 2015). So far, scholars, such as Scora & Barth (2006), Barth & 

Boriboonsomsin (2008), Koç et al. (2014), and Demir et al. (2014), have already 

used this model. This model also has several hundreds registered users 

worldwide (UCR, 2015). Generally, CEME is believed to be an effective second-

by-second microscope model. 

 

It is difficult to use microscopic models to estimate emission for rail transport, 

because often we could not even determine the travel distance by each type of 

train. So, in this thesis, we use a distance-based method to calculate CO2 

emissions from rail transport, and we name this method as the ton-mile method. 
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3. Models for Green Distribution Network Design 
 

The GeDND model in this thesis is derived from a general model for logistics 

network design developed by Cordeau et al. (2006). This general logistics 

network design model concerns decisions ranging from facility location and 

capacity choices to supplier and transport mode selection. This is beneficial as 

there are important interactions between these decisions. The model is flexible, 

as it can be easily adapted to handle other problem extensions, such as emission 

constraints and multiple planning periods. In the rest of this chapter, the GeDND 

model is firstly introduced. Then, four GDND models are presented as the 

extensions of the GeDND model. Each of the four models addresses a type of 

environmental policy. 

 

3.1 General Distribution Network Design Model 
 

The notations for the formulation of the GeDND model are: 

 

Sets: 

𝑃 Set of potential plant locations 

𝑊 Set of potential warehouse locations 

𝐶 Set of customers 

𝐷 Set of destinations 

𝐾 Set of commodities 

𝑂 Set of origins 

M Set of vehicle types 

𝑂! Set of potential origins for commodity 𝑘 

𝐷! Set of potential destinations for commodity 𝑘 

𝑀!" Set of vehicles types between 𝑜 and 𝑑 

           (There could be more than one type of vehicle for one transport mode) 
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𝑀!"
!  Set of vehicles types between 𝑜 and 𝑑 for commodity 𝑘 

𝑊! Set of potential warehouse locations where commodity 𝑘 can be stored 

𝑇 Set of time periods 

 

Parameters: 

𝑎!!" Demand of customer 𝑐 for commodity 𝑘 in period 𝑡 

𝑐! Fixed cost for selecting origin 𝑜 

𝑐!!       Fixed cost for assigning commodity 𝑘 to origin 𝑜 

𝑐!"!       Fixed cost for providing commodity 𝑘 to destination 𝑑 from origin 𝑜 

𝑐!"!       Fixed cost for using transport mode 𝑚 between 𝑜 and 𝑑 

𝑐!"!"     Unit cost for providing commodity 𝑘 to 𝑑 from 𝑜 by vehicle type 𝑚 

𝑔!!  Cost of holding one unit of commodity 𝑘 in warehouse 𝑤 for one period  

𝑞! Capacity of origin 𝑜 in equivalent units 

𝑔!"!  Capacity of vehicle type 𝑚 between 𝑜 and 𝑑 in equivalent units 

𝑞!!       Upper limit on the amount of commodity 𝑘 shipped from origin 𝑜 

𝑞!"!  Upper limit on the amount of commodity 𝑘 shipped from  𝑜 to 𝑑 

𝑢!!  Amount of capacity required by one unit of commodity 𝑘 at origin  𝑜 

𝑢!" Amount of capacity required by one unit of commodity 𝑘 in vehicle type 𝑚 

 

Variables 

  𝑋!"!"#   Amount of commodity 𝑘 shipped from 𝑜 to 𝑑 by vehicle type 𝑚 in period 𝑡 

  𝐼!!" Inventory of commodity 𝑘 in warehouse 𝑤 at the end of period 𝑡 

  𝑈! =1 if origin 𝑜 is selected, 0 otherwise 

  𝑉!! =1 if commodity 𝑘 is assigned to origin 𝑜, 0 otherwise 

𝑌!"!  =1 if origin 𝑜 provides commodity 𝑘 to destination 𝑑, 0 otherwise 

𝑍!"!  =1 if vehicle type 𝑚 is selected between 𝑜 and 𝑑, 0 otherwise 
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The objective function is: 

Min       𝑐!𝑈! +    𝑐!"!!∈!!" 𝑍!"!!∈!!∈!   + 𝑐!!𝑉!! + 𝑐!"! 𝑌!"! +!∈!!!∈!!!∈!

                       𝑐!"!"!∈!!"
! 𝑋!"!"#!∈!   +    𝑔!  ! 𝐼!!"!∈!!∈!!!∈!                                                    

(1) 

 

subject to: 

𝑋!"!"#

!∈!!"!!∈!!
− 𝑋!"!"# + 𝐼!

!,!!!

!∈!!"
!!∈!!

−   𝐼!!!   = 0            𝑘 ∈ 𝐾;   𝑤 ∈𝑊!; 𝑡 ∈ 𝑇   

  (2) 

𝑋!"!"#!∈!!"!!∈!!   = 𝑎!!"                              𝑘 ∈ 𝐾;   𝑐 ∈ 𝐶!;   𝑡 ∈ 𝑇                        (3) 

𝑢!!𝑋!"!"#   − 𝑞!𝑈!         ≤     0                𝑜 ∈ 𝑂; 𝑡 ∈ 𝑇                                !∈!!"
!!∈!!!∈!   (4) 

𝑋!"        !"#            −  𝑞!      !    𝑉!!!∈!!"
!!∈!!     ≤ 0                𝑘 ∈ 𝐾;   𝑜 ∈ 𝑂!;   𝑡 ∈ 𝑇       (5) 

𝑋!"        !"#            −  𝑞!"      !     𝑌!"!!∈!!"
! ≤ 0          𝑘 ∈ 𝐾;   𝑜 ∈ 𝑂!;𝑑 ∈ 𝐷!     ; 𝑡 ∈ 𝑇      (6) 

𝑢!"𝑋!"        !"#            −  𝑞!"      !     𝑍!"!!∈! ≤ 0          𝑜 ∈ 𝑂;   𝑑 ∈ 𝐷;𝑚 ∈ 𝑀!"   ;   𝑡 ∈ 𝑇.  (7) 

 

Objective function (1) minimizes the sum of all fixed and variable costs, including 

plant and warehouse selection costs, product assignment costs, vehicle selection 

costs, inventory-holding costs, and unit transport costs. Constraints (2) ensure 

the inventory balance at warehouses. Demand constraints are imposed in 

constraints (3). Constraints (4) impose capacity limits on plants and warehouses, 

whereas limits per commodity are enforced through constraints (5). Constraints 

(6) ensure that commodity 𝑘 is transported from origin 𝑜 to destination 𝑑 only 

when origin 𝑜 is selected to provide commodity 𝑘 to destination 𝑑. Constraints (7) 

impose capacity constraints through vehicle type 𝑚. 
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3.2 Green Distribution Network Design Models 
 

The formulations of the four GDND models are presented in this section. We 

concentrate mainly on how to incorporate CO2 emissions in these models. The 

paper by Benjaafar et al. (2013) is used as a reference for incorporating 

emissions. 
 

3.2.1 Model under Strict Emission Cap 
 

To develop the GDND model under Strict Emission Cap, we only need to add an 

extra emission inequality to the GeDND model. If we denote the total emissions 

from all activities in period 𝑡 as   𝐸𝑇! and the emission cap in period 𝑡 as 𝐸𝐶!, the 

emission inequality takes the form: 

 

  𝐸𝑇!   ≤   𝐸𝐶!                          𝑡 ∈ 𝑇,                                                        (8) 

where 𝐸𝑇! is obtained by: 

𝐸𝑇! = 𝑒!"!"𝑋!"!"#!∈!!"
!!∈!!∈!!!∈!!             𝑡 ∈ 𝑇.                     (9) 

 

Here,𝑒!"!"  represents the CO2 emission generated from shipping one unit of 

commodity from origin 𝑜 to destination 𝑑 by vehicle type 𝑚 in period 𝑡. It is an 

arc-specific emission parameter. Compared to highly integrated emission factors, 

𝑒!"!" considers origin, destination, vehicle type, and period. This helps capture the 

changes of total emissions among different network designs. 

 

In this thesis, emissions from handling or storing products in warehouses are 

considered to be negligible. Thus, formula (9) does not include emissions of this 

type. 
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3.2.2 Model under Carbon Tax 
 

The GDND model under Carbon Tax is similar to the GeDND model except the 

objective function. Let us denote 𝑐 as the cost of emitting one unit of weight of 

CO2 given a carbon tax. The objective function of this GDND model is as follows: 

Min       𝑐!𝑈! +    𝑐!"!!∈!!" 𝑍!"!!∈!!∈!   + 𝑐!!𝑉!! + 𝑐!"! 𝑌!"! +!∈!!!∈!!!∈!

                       𝑐!"!"!∈!!"
! 𝑋!"!"#!∈!   +    𝑔!  ! 𝐼!!"!∈!!∈!!!∈! +   𝑐   𝐸𝑇!!∈!                                 

(10) 

 

Here, we assume that 𝑐 remains the same in all periods. In reality, it may change 

over time. 

 

3.2.3 Model under Cap-and-Trade 
 

The Cap-and-Trade mechanism alters both the objective function and the 

constraints of the GeDND model. The objective function of the GDND model 

under Cap-and-Trade is: 

Min       𝑐!𝑈! +    𝑐!"!!∈!!" 𝑍!"!!∈!!∈!   + 𝑐!!𝑉!! + 𝑐!"! 𝑌!"! +!∈!!!∈!!!∈!

                       𝑐!"!"!∈!!"
! 𝑋!"!"#!∈!   +    𝑔!  ! 𝐼!!"!∈!!∈!!!∈! +   𝑝   (  𝐸!! − 𝐸!!)!∈!                    

(11) 

subject to constraints (2)-(7), and: 

𝐸𝑇! ≤ 𝐸𝑄!   + 𝐸!! −   𝐸!!                          𝑡 ∈ 𝑇                              (12) 

𝐸!!, 𝐸!! ≥   0                                                                  𝑡 ∈ 𝑇.                              (13) 

 

Here, 𝑝  is the price of buying or selling one unit of emission credit, and 

𝐸𝑄!  denotes the free emission quota during period 𝑡. The variable 𝐸!! denotes the 

amount of emission credits bought in period 𝑡 while 𝐸!! denotes the amount of 

emission credits sold in period 𝑡. The assumption on 𝑝 is that the selling price of 

emission credit equals the buying price, and this price remains the same in all 
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periods. When we need to differentiate the price of buying from that of selling, the 

objective function can be modified by associating prices 𝑝!and 𝑝!with 𝐸!!and 𝐸!!, 

respectively. When we need to consider the changes of 𝑝 as time goes on, 𝑝 

needs to be replaced by 𝑝!, which is the average price of buying or selling one 

unit of emission credit in period 𝑡. 

 
3.2.4 Model under Cap-and-Offset 
 

The Cap-and-Offset mechanism also alters both the objective function and the 

constraints of the GeDND model. The objective function of the GDND model 

under Cap-and-Offset is: 

Min       𝑐!𝑈! +    𝑐!"!!∈!!" 𝑍!"!!∈!!∈!   + 𝑐!!𝑉!! + 𝑐!"! 𝑌!"! +!∈!!!∈!!!∈!

                       𝑐!"!"!∈!!"
! 𝑋!"!"#!∈!   +    𝑔!  ! 𝐼!!"!∈!!∈!!!∈! +  ∝    𝐸𝐼!!!∈!         (14) 

 

subject to constraints (2)-(7), and: 

𝐸𝑇!   ≤ 𝐸𝑄! + 𝐸𝐼!!                                        𝑡 ∈ 𝑇                          (15) 

𝐸𝐼!! ≥   0                                                                          𝑡 ∈ 𝑇.                        (16) 

 

Here, ∝ denotes the price per unit of carbon offset, and 𝐸𝐼!! is the total amount of 

carbon offsets invested in period 𝑡.  
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4. Emission Parameter Calculation 
 

In Chapter 3, we used formula (9) to compute the total period emissions of a 

distribution network.  

𝐸𝑇! = 𝑒!"!"𝑋!"!"#!∈!!"
!!∈!!∈!!!∈!!                                 𝑡𝜖𝑇,             (9) 

 

where 𝑒!"!" represents the CO2 emission of shipping one unit of commodity from 

origin 𝑜 to destination  𝑑 by vehicle type 𝑚 in period 𝑡. 

 

In fact, many of the reviewed papers in Chapter 2 use a similar formula to 

compute network emissions. But, none of them explain in depth how they obtain 

the values of the emission parameters in their paper. This chapter explains how 

we compute the value of 𝑒!"!", which is essential for accurately estimating total 

emissions. 

 

In the rest of this chapter, we first introduce how to compute the value of 𝑒!"!" for 

road transport. Then, we introduce the way to compute the value of 𝑒!"!" for rail 

transport. 

 

4.1 Emission Values Calculation for Road Transport 
 

We compute the value of 𝑒!"!" for road transport based on the Comprehensive 

Modal Emission Model (CMEM). The fuel consumption 𝐹!   (in liters) of vehicle 

type  𝑚 over a distance 𝐿 with speed 𝑣  and vehicle total weight 𝐺! (curb weight 

plus vehicle payload, in kilogram) is calculated as: 

    𝐹  !   = 𝜆(𝑓!
!𝑁!𝑉!𝐿/𝑣 + 𝐺!𝛾!𝛼𝐿 + 𝛽!𝛾!𝐿𝑣!),                    (17) 

where: 

𝜆 = 𝜉/ 𝜙𝜓                                                (18) 

𝛾! = 1/1000𝑛!𝜂                                      (19) 
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𝛼 = 𝜏 + 𝑔𝑠𝑖𝑛𝜃 + 𝑔𝐶!𝑐𝑜𝑠𝜃                          (20) 

  𝛽! = 0.5𝐶!𝜌𝐴!.                                       (21) 

 

Here, 𝑓!
!𝑁!𝑉!𝐿/𝑣 is the engine module, which is linear in the travel time. The 

term 𝐺!𝛾!𝛼𝐿  is the weight module. Finally, 𝛽!𝛾!𝐿𝑣!  is the speed module, 

which is quadratic in speed. 

 

There are two types of parameters. The first is vehicle-common parameters.  The 

values for these parameters remain the same no matter which truck is being 

used (see Table 3). The second is vehicle-specific parameters. The values for 

these parameters vary when different types of trucks are used1.   

 
Table 3 BD truck type Vehicle-common parameters (Koç et al., 2014) 

	  

	  

	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1Some	  symbols	  for	  parameters	  and	  variables	  from	  Koç	  et	  al.	  (2014)	  have	  been	  replaced	  by	  the	  new	  ones	  in	  Table	  

3,	  in	  order	  to	  be	  consistent	  with	  the	  notation	  introduced	  in	  Chapter	  3.	  

	  

Notation Description Typical values 

𝜉 Fuel-to-air mass ratio 1 

𝑔 Gravitational constant (m/s!) 9.81 

𝜌 Air density (kg/m!  ) 1.2041 

𝐶!   Coefficient of rolling resistance 0.01 

𝜂 Efficiency parameter for diesel engines 0.45 

𝜙 Heating value of a typical diesel fuel (kj/g)  44 

𝜓 Conversion factor (g/s  to  liter/s) 737 

  𝑛! Vehicle drive train efficiency 0.45 

𝑣! Lower speed limit (m/𝑠)  5.5 

𝑣! Upper speed limit (m/s) 27.8 

𝜃 Road angle 0 

𝜏 Acceleration (m/s!) 0 
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The	  notations	  for	  vehicle-specific parameters are: 

𝑤! Curb weight of vehicle type 𝑚 (kg) 

𝑄!  Maximum payload of vehicle type 𝑚 (kg) 

𝑓!!  Engine friction factor of vehicle type 𝑚 (kg/rev/liter) 

𝑁!  Engine speed of vehicle type 𝑚 (rev/s) 

𝑉!  Engine displacement of vehicle type 𝑚 (liter) 

𝐶!  Coefficient of aerodynamics drag of vehicle type 𝑚 

𝐴!  Frontal surface area of vehicle type 𝑚 (m!) 

 

Based on formula (17), the value of 𝑒!"!" for road transport is estimated by: 

𝑒!"!" = 𝑓!"!𝜆(𝑓!
!𝑁!𝑉!𝐿!"/𝑣!"!" +   𝐺!"!"𝛾!𝛼𝐿!" + 𝛽!𝛾!𝐿!"(𝑣!"!")!)/  𝑄!"      !"  

𝑜 ∈ 𝑂;𝑑 ∈ 𝐷  ;   𝑚   ∈ 𝑀!"
!     𝑡 ∈   𝑇,                                                                (22) 

  G!"!" = 𝑄!"!" + 𝑤!.                                                (23) 

 

Here, 𝑓!"! is the CO2 emission of burning one unit of weight or volume of fuel. It is 

believed that fuel consumption and CO2 emission are proportionally related (Koç 

et al., 2014). Thus, CO2 emissions can be estimated through fuel consumptions 

using  𝑓!"!. The parameters 𝐿!" is the distance between origin 𝑜 to destination  𝑑 

𝑣!"!" is the average speed of truck type 𝑚 from origin 𝑜 to destination  𝑑 in period 𝑡, 

𝐺!"!"  is the average total weight (curb weight plus payload) of truck type 𝑚 

traveling from origin 𝑜 to destination  𝑑 in period 𝑡, 𝑄!"!" is the average payload of 

truck type m traveling from origin 𝑜 to destination  𝑑 in period 𝑡, 𝑤! is the curb 

weight of vehicle type 𝑚, and 𝑀!"
!  is the available truck types between origin 𝑜 to 

destination  𝑑. 

	  

4.2 Emission Values Calculation for Rail Transport 
 

With the ton-mile method, the emission of shipping one unit of commodity over 

distance 𝐿 is calculated by: 

𝐸!"#$ = 𝑓𝐿,                                                         (24) 
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where 𝑓 is an emission factor based on average loading and fuel efficiency for  

various rail freight operations (GOV. UK, 2014). 

 

Based on formula (24), the value of 𝑒!"!" for rail transport can be estimated by: 

              𝑒!"!" = 𝑓!!𝐿!"                                 𝑜 ∈ 𝑂;𝑑 ∈ 𝐷  ;𝑚 ∈ 𝑀!"
! ;   𝑡 ∈   𝑇,     (25) 

 

where 𝑓!! denotes the CO2 emission of shipping one unit of commodity for one 

unit of distance by vehicle type 𝑚 in period 𝑡, 𝐿!" is the distance between origin 𝑜 

and destination   𝑑 , and 𝑀!"
!  is the set of train types between origin 𝑜  and 

destination  𝑑. The values of 𝑓!! can be obtained from governmental reports, such 

as the 2014 Emission Factor Report by the EPA (EPA, 2014). For example, this 

report indicates that the average CO2 emission of shipping one ton of products 

for one mile by US trains in 2014 is 0.026 kilogram (kg). 
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5.  Case study: an Energy Company 
 

BD is a leading energy company in the world  (the case company is named as 

BD due to confidentiality reasons). The company has a refinery plant in Ontario, 

where it produces 99 categories of bulk lubricant oil products that are sold all 

over North America. In 2014, BD sold more than 40 million US gallons (USG) of 

these products to its 168 customers in North America. It is assumed that the 

yearly demand of these products will increase continuously in the next ten years. 

By 2024, the total demand is expected to triple. Also, it is assumed that its 

customer base will not change much in the next decade. 

 

BD is in the process of optimizing many aspects of its logistics network. Among 

those is the distribution of its bulk lubricant oil products in North America. The 

current distribution network for these products has five warehouses and one 

plant (see Figure 7). Between the plant and the warehouses, part of the products 

are shipped by trains, while the rest are by trucks. Between the warehouses and 

end customers, trucks do all the shipments. In the new distribution network 

design, BD wants to determine the optimal number of warehouses and the best 

combination of transport modes for the next 10 years. BD can choose 

warehouses and transport modes from its current available ones. Besides, BD 

has realized the necessity to incorporate environmental considerations in its 

network design phase. Therefore, we implement both the GeDND and GDND for 

BD. 
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Figure 2 Current network structure of BD 

 

In the rest of this chapter, we first compute the value of the parameter 𝑒!"!". Then, 

we design an optimal distribution network using the GeDND model. Later on, we 

adopt the four GDND models to design optimal green distribution network for BD, 

separately.  

 

5.1 Emission Parameter Calculation for BD 
 

This section explains how we compute the value of 𝑒!"!" to calculate BD's total 

network emissions. As BD can choose both road and rail transport, the value of 

𝑒!"!" for road and rail transport are computed separately in the following sections.  

 
5.1.1 Road Transport 
 

To compute the value of 𝑒!"!" by the CEME model, we need to know the values of 

vehicle specific parameters, which are determined by the specific truck types 

used in BD's distribution network. However, it is impossible to know exactly what 

types of trucks BD will use in the next ten years.  We assume that the truck types 

BD will use in the next ten years remain almost the same as the ones in current 
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period, except that the fuel efficiencies of the future trucks will be higher. With 

this assumption, we compute the value of 𝑒!"!" for the future network by: 

𝑒!"!" = 𝜛!𝑒!"!!    𝑜 ∈ 𝑂;𝑑 ∈ 𝐷  ;𝑚 ∈ 𝑀!"
! ;   𝑡 ∈   𝑇,                     (26) 

 

where 𝑒!"!! represents the CO2 emission of shipping one unit of commodity from 

origin 𝑜  to destination   𝑑  by vehicle type 𝑚  in period 0 , 𝜛!  is the emission 

reduction coefficient in period 𝑡, and 𝑇 is the set of 10 periods (each period is one 

year). The parameter 𝜛! is derived from the projected improvement of engine 

efficiency of trucks in period 𝑡 when compared with current period 0. We assume 

that 𝜛! is less than one, because in reality the engine efficiency of vehicles is 

improving all the time. This is partly stimulated by governmental regulations. To 

know more about how the values of 𝜛! are obtained, the reader is referred to 

Appendix 2 of this thesis. 

 

The values for 𝑒!"!! are obtained by: 

𝑒!"!! = 𝑓!"!𝜆(𝑓!
!𝑁!𝑉!𝐿!"/𝑣!"!! +   𝐺!"!!𝛾!𝛼𝐿!" + 𝛽!𝛾!𝐿!"(𝑣!"!!)!)/  Q!"      !!  

𝑜 ∈ 𝑂;𝑑 ∈ 𝐷  ;   𝑚   ∈ 𝑀!"
!   .                           (26) 

 

Here, 𝑣!"!!  represents the average speed of vehicle type 𝑚  from origin 𝑜  to 

destination   𝑑  in period 0 , 𝐺!"!!  is the average total weight (curb weight plus 

payload) of vehicle type 𝑚 traveling from origin 𝑜 to destination  𝑑 in period 0, 𝑄!"!! 

is the average payload of vehicle type 𝑚 traveling from origin 𝑜 to destination  𝑑 in 

period 0, and 𝑀!"
!  is the set of truck types between origin 𝑜 to destination  𝑑. 

 

The arc distances are all known; BD provided them all. The values of vehicle 

common parameters remain the same as those from Koç et al. (2014) (see Table 

3 in Section 4.1). We need to determine the values for vehicle specific 

parameters and the value for 𝑓!"!. 

 

We started by collecting the details of the trucks used in BD's current network. 
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However, it is difficult to get such detailed information as the engine types and 

curb weights of the trucks, because BD is using a 3PL for its distribution service. 

What we did is to utilize the known information to make assumptions about the 

trucks and then get the values of vehicle specific parameters. We learned from 

BD that a homogenous fleet is used, and the average payload of the trucks is 

23,470 USG. We also learned that the weight of 1 USG of products equals to 1 

kg or 2.205 US pounds (lbs). Thus, the average payload of the trucks is 23,470 

kg or 51,751 lbs. With this information, we investigated the North American truck 

market. Then, we made assumptions about the details of the trucks used in BD's 

current network (see Table 4) and the values of vehicle specific parameters (see 

Table 5).  For example, in the US, a truck that can carry more than 25,000 lbs of 

goods belongs to Class 8 (EPA & NHTSA, 2015). So, we assume that BD is 

using Class 8 trucks. Class 8 trucks in the US mostly use diesel fuel. We thus 

assume that 𝑓!"! is 2.70 kg per liter by referring to the EPA emission report (EPA, 

2014). To know more how we made all those assumptions, the reader is referred 

to Appendix 1 of this thesis.  
Table 4 BD truck type 

Truck 

Class 8 sleeper cab 

DD15L Detroit Diesel Engine 

Middle roof 

53-feet trailer with Max volume 3800 cubic feet 

Maximum Weight of 80,000lbs from governmental regulation 

 
Table 5 BD truck specific parameters  

Notation Description Heavy duty 

𝑤! Curb weight of vehicle type 𝑚 (kg) 13,040.78 

𝑄! Maximum payload of vehicle type 𝑚 (kg) 34,068 

𝑓!! Engine friction factor of vehicle type 𝑚 (kg/rev/liter) 0.15 

𝑁! Engine speed of vehicle type 𝑚 (rev/s) 22.5 

𝑉! Engine displacement of vehicle type 𝑚 (liter) 14.8 

𝐶! Coefficient of aerodynamics drag of vehicle type 𝑚 0.87 

𝐴! Frontal surface area of vehicle type 𝑚 (m!) 5.6 
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5.1.2 Rail Transport 
 

Similar to road transport, we also use 𝑒!"!! as a reference to compute the values 

of 𝑒!"!" for rail transport by:  

𝑒!"!" = 𝜛!𝑒!"!!                                        𝑜 ∈ 𝑂;𝑑 ∈ 𝐷  ;𝑚 ∈ 𝑀!"
! ;   𝑡 ∈   𝑇,          (27) 

 

where: 

  𝑒!"!! = 𝑓!!𝐿!"                                                          𝑜 ∈ 𝑂;𝑑 ∈ 𝐷  ;𝑚 ∈ 𝑀!"
! ;   𝑡 ∈   𝑇.          (28) 

 

Here, 𝑒!"!! represents the CO2 emission of shipping one unit of commodity from 

from origin 𝑜 to destination  𝑑 by vehicle type 𝑚 in current period 0, and 𝑓!! is the 

CO2 emission of shipping one unit of commodity for one unit of distance by 

vehicle type 𝑚 in current period 0. We also adopt the parameter 𝜛! to account 

for the improvement of engine efficiency of trains.  

 

It is difficult to know what types of trains are used in the current network. It is 

even more difficult to know the exact distances traveled by each type of train. We 

thus assume that 𝑓!! is fixed, no matter which type of train is used. According to 

the emission report by the EPA (EPA, 2014), the CO2 emission of shipping one 

ton of products for one mile by rail transport is 0.026 kg. Hence, 𝑓!!= 0.026 kg / 

ton-mile.  

 

5.2 General Distribution Network Design 
 

The formulation of the GeDND model was coded in C++ with CPLEX 12.6.0.1 

(Cordeau et al., 2006). The optimality tolerance was set to 0.01. The maximum 

computating time was 7200 seconds. The problem was solved on one of two 

Intel(R) Xeon(R) CPU X5675 3.07 GHz processors of a machine with 96 GB of 

RAM. 
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It took 2.38 seconds to find a solution with an optimality gap of 0.079%.  All of the 

five warehouses were selected. Whenever there was a cheaper transport mode 

on an arc, the solution always chose the cheaper one. To protect confidentiality, 

the total cost and emission of the solution are not disclosed. They are set as the 

baselines for comparison in the following part of this chapter.  

 

5.3 Green Distribution Network Design 
 

So far, none of the four types of environmental polices has an actual impact on 

freight transport by 3PLs in the US (GOV. UK, 2014). However, they all have a 

chance to be enforced in the USA within the next 10 years. Thus, we explore 

GDND under each type of environmental policy. In this section, all the GDND 

problems were solved on the same machine with the same optimality tolerance 

and the same maximum computing time as the GeDND problem. This ensures 

that the results are comparable. 

 
5.3.1 Distribution Network Design under Strict Emission Cap 
 
The GeDND problem from Section 5.2 is imposed with neither emission 

constraints nor carbon costs. Thus, the total emission of its optimal solution 

(   𝐸𝑇!!∈! ), if not the highest, is high. We name this emission as the baseline 

emission, and we use it as the basis to set up nine caps for the total emissions of 

the coming ten years as in Table 6. Then, each cap emission is further divided 

among the 10 years to obtain 10 period emission caps as in Table 7. The period 

emission caps are determined based on the period demand. For example, for 

scenario 1, the emission cap for the first period (𝐸𝐶!) is computed by: 

	  
𝐸𝐶! = 𝐸𝑇!! ∗ 99%	  

 

𝐸𝑇!!= (Per1 demand/Total demand)*Baseline emission, 
 

where "Total demand" covers the demands from all 10 periods. 	  
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Table 6 Total emission caps set up 

 
 

Table 7 Period emission caps set up 

 
From scenario 1 to scenario 9, the emission caps become stricter and stricter. 

We found an optimal solution for all scenarios except for scenario 9. For scenario 

9, no feasible solutions were found, as its emission caps are too strict. All 

solutions were found in less than 8 seconds, and their optimality gaps were less 

than 0.95%. All of the five warehouses of BD were selected. Whenever there was 

a cheaper transport mode on an arc, the solution always chose the cheaper one. 

Here we notice that the result of transport mode selection remain the same as 

that in GeDND in Section 5.2. This is because the cheaper transport mode, 

which is rail transport here, is also the one with lower emissions. So, when all the 

arcs in GeDND have already chosen the cheaper mode, the arcs in GDND will 

continue to choose the cheap one, in order to keep both emission and cost low.  

 

Comparisons between the result of the GeDND and each of those to scenarios 1-

9 are given in Figure 3.  The total cost and emission (denoted as "Base" in Figure 
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5.3.2 Distribution Network Design under Carbon Tax 
 

To see how Carbon Tax impacts optimal distribution network designs, a broad 

range of potential values for 𝑐  (the price of emitting one unit of weight of CO2 

given a carbon tax) were selected arbitrarily among its possible value scope (see 

Table 8). The scope was determined by referring to the carbon taxes in other 

countries. For example, in British Columbia in 2012, the carbon tax was at 30 

Canadian dollars per metric ton. In Ireland, the carbon tax was at 10 euro per 

metric ton in 2012 (CTC, 2015).  

Table	  8 Value settings for 𝑐 (the price of emitting one unit of weight of CO2 given a carbon tax) 

𝒄 (US Dollar/ kg) 

0.000003 

0.00003 

0.0003 

0.003 

0.036 

0.06 

0.09 

0.12 

0.15 

0.3 

0.6 

1.2 

4.8 

7.2 

9.6 

13 

20 

30 

60 

120 
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Each value of 𝑐  creates a different scenario. For each scenario, an optimal 

solution was found in less than 3 seconds. The optimality gaps lay between 

0.22% and 0.56%. All of the five warehouses of BD were selected. Whenever 

there was a cheaper transport mode on an arc, the solution always chose the 

cheaper one. The total costs, total logistics costs, and total emissions (in 

comparison with the base scenario) of the optimal solutions are given in Table 9 

and Figure 4. 

 
Table	  9 Total costs and emissions of the optimal solutions under Carbon Tax 

 

 
	  

c"(US$dollor/$kg)
Total$

cost/Total$
cost$base

Total$logistics$cost$
(Total$cost$minus$

total$emission$cost)

Total$
emisson/Total$
emission$base

Base(c=0) 100.00% 100.00% 100.00%
0.000003 100.00% 100.00% 100.00%
0.00003 100.00% 100.00% 100.00%
0.0003 100.01% 100.00% 100.00%
0.003 100.15% 100.00% 100.00%
0.036 101.77% 100.00% 100.00%
0.06 102.95% 100.04% 98.22%
0.09 104.40% 100.05% 98.09%
0.12 105.85% 100.06% 97.80%
0.15 107.30% 100.09% 97.47%
0.3 114.49% 100.19% 96.69%
0.6 128.90% 100.88% 94.72%
1.2 156.05% 102.46% 90.57%
4.8 313.50% 106.60% 87.42%
7.2 416.13% 110.72% 86.03%
9.6 517.68% 112.05% 85.69%
13 660.97% 114.30% 85.29%
20 955.03% 115.50% 85.13%
30 1374.49% 117.81% 84.96%
60 2628.38% 125.26% 84.61%
120 5125.63% 137.39% 84.31%





	   50	  

Here, 𝑝 is the price of buying or selling one unit of emission credits, 𝐸𝑄!   is the 

free emission quota in period 𝑡 , 𝐸!!denotes the amount of emission credits 

bought in period t, and 𝐸!! denotes the amount of emission credits sold in period  𝑡. 

When 𝐸!! −   𝐸!! > 0, it means that during period 𝑡, more emission credits are 

bought than sold, and vice-versa. 

To see how Cap-and-Trade may impacts the optimal distribution network design, 

a group of values for 𝑝, ranging from very low to very high, are selected arbitrarily 

as in Table 10. 

Table	  10 Value settings for emission credits (𝑝) 

𝒑 (US Dollar/ kg) 

0.000003 

0.00003 

0.0003 

0.003 

0.036 

0.6 

1.2 

4.8 

20 

30 

 

Similar to the method used in Section 5.3.1 to determine emission caps, we first 

use the baseline emission to set up 8 total free emission quotas. Then, each 

quota is further divided among the 10 periods to get 10 period free emission 

quotas 𝐸𝑄!  as in Table 11. 
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Table	  11	  Value settings for period free emission quota (𝐸𝑄!)  

  

Combining the values of 𝐸𝑄!   and 𝑝, we create 42 scenarios. The time to find an 

optimal solution for each scenario lay between 2.21 and 2.89 seconds. The 

optimality gap ranged from 0.09% to 0.6%. All of the five warehouses were 

selected for each scenario. Whenever there was a cheaper transport mode on an 

arc, the solution always chose the cheaper one. 

The total costs and emissions as a proportion of their respective value in the 

base scenario are given in Table 12. In this table, the cost of a scenario is 

divided by the cost of the base scenario. Similarly, the emission of a scenario is 

divided by the emission of the base scenario. We note that some negative values 

are associated with the cost ratios. For example, the scenario with 𝐸𝑄!   = 99% of 

base and 𝑝=30 has a total cost of around -90%, implying that the total cost from 

this scenario is negative. Furthermore, the total emission from this scenario is 

85%. This means that the total emission of the optimal solution of this scenario 

accounts for only 85% of the total emission of the base scenario. However, the 

emission quota for this scenario is 99% of the total emission of the base scenario. 

So, the unused emission quota (99% of base minus 85% of base) is sold in 

carbon market. As the price of carbon credit (𝑝) is so high here: 30 US dollars 

per kg, the profit from selling the unused emission quota reduces the total cost to 

a negative value.   
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!"!! % 99%!of!!"!! % 97%!of!!"!! % 95%!of!!"!! % 92%!of!!"!! % 90%!of!!"!! % 87%!of!!"!! % 86%!of!!"!! % 85%!of!!"!! %
!"!! % 99%!of!!"!! % 97%!of!!"!! % 95%!of!!"!! % 92%!of!!"!! % 90%!of!!"!! % 87%!of!!"!! % 86%!of!!"!! % 85%!of!!"!! %
!"!! % 99%!of!!"!! % 97%!of!!"!! % 95%!of!!"!! % 92%!of!!"!! % 90%!of!!"!! % 87%!of!!"!! % 86%!of!!"!! % 85%!of!!"!! %
!"!! % 99%!of!!"!! % 97%!of!!"!! % 95%!of!!"!! % 92%!of!!"!! % 90%!of!!"!! % 87%!of!!"!! % 86%!of!!"!! % 85%!of!!"!! %
!"!! % 99%!of!!"!! % 97%!of!!"!! % 95%!of!!"!! % 92%!of!!"!! % 90%!of!!"!! % 87%!of!!"!! % 86%!of!!"!! % 85%!of!!"!! %
!"!! % 99%!of!!"!! % 97%!of!!"!! % 95%!of!!"!! % 92%!of!!"!! % 90%!of!!"!! % 87%!of!!"!! % 86%!of!!"!! % 85%!of!!"!! %
!"!"! % 99%!of!!"!"! % 97%!of!!"!"! % 95%!of!!"!"! % 92%!of!!"!"! % !90%!of!!"!"! % 87%!of!!"!"! % 86%!of!!"!"! % 85%!of!!"!"! %
%
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5.3.4 Distribution Network Design under Carbon-and-Offset 
 

Let us recall the objective function (14) for this problem: 

Min       𝑐!𝑈! +    𝑐!"!!∈!!" 𝑍!"!!∈!!∈!   + 𝑐!!𝑉!! + 𝑐!"! 𝑌!"! +!∈!!!∈!!!∈!

                       𝑐!"!"!∈!!"
! 𝑋!"!"#!∈!   +    𝑔!  ! 𝐼!!"!∈!!∈!!!∈! +  ∝    𝐸𝐼!!!∈!  (14) 

 

subject to constraints (2)-(7), and: 

𝐸𝑇!   ≤ 𝐸𝑄! + 𝐸𝐼!
!                                                            𝑡 ∈ 𝑇                      (15) 

𝐸𝐼!! ≥   0,                                                                                            𝑡 ∈ 𝑇.                 (16) 

 

Here, the parameter  ∝ denotes the price per unit of carbon offsets, and 𝐸𝐼!! 

denotes the total amount of carbon offset invested in period 𝑡. 

 

The same groups of values of 𝐸𝑄! from Section 5.3.3 are used to set the values 

of 𝐸𝑄! under Carbon-and-Offset. Also, we use the same group of values of 𝑝 

from Section 5.3.3 to set the values of ∝. 

 

Combining the values of 𝐸𝑄!  and ∝, we create 42 scenarios. The time to find an 

optimal solution for each scenario lay between 2.35 to 6.01 seconds. The 

optimality gap ranged from 0.07% to 0.6%. For each solution, all of the five 

warehouses were selected. Whenever there was a cheaper transport mode on 

an arc, the solution always chose the cheaper one. 

The total costs and emissions (in comparison with the base scenario) of the 

optimal solutions are given in Table 13. This table shows that when 𝑝=30, 15% of 

emission reduction could be achieved, and it always accompanies a cost 

increase. 
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6.  Results Analysis 
 

In this chapter, we first compare the effects of the four types of environmental 

policies on GDND in terms of total costs and emissions. Then, we analyze how 

emission concerns impact the optimal network design from two aspects: 

warehouse selection and transport mode selection. 

 

6.1 Comparison of Environmental Policies 
 

In this section we compare the four types of environmental polices with each 

other. We put the results (total costs and emissions of the optimal solutions from 

Chapter 5) under any two types of environmental policies together to create six 

graphs. In the following part, these graphs are introduced and discussed. 

 
6.1.1 Strict Emission Cap and Carbon Tax 
 

In Figure 9, the red points represent the results under Strict Emission Cap. The 

blue line represents the results under Carbon Tax. The red points have better 

results; they have both lower costs and lower emissions. Thus, it seems that 

Strict Emission Cap is more effective in reducing emissions while keeping total 

costs relatively low. However, under Strict Emission Cap, the GDND model 

sometimes has infeasible solutions. This suggests that Strict Emission Cap has a 

potential drawback.  
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Table 14 includes part of warehouse-related input data.  We can see that the 

fixed cost for using a warehouse is zero (see column 2).  This is because BD 

uses a 3PL for its warehouse service. Though the 3PL does not charge fixed 

costs for warehouse usage, it does impose a fixed cost for assigning a new 

category of product to some of the warehouses (see column 4). As selecting 

more warehouses does not impact fixed facility costs, the optimal solutions 

always choose as many warehouses as possible, in order to reduce travel 

distances. This suggests that increasing the number of warehouses does not 

always increase fixed facility costs when a 3PL is used. 

Table	  14 Part of an input file for warehouse related input data (reported values are not real but have 

been scaled to protect confidentiality) 

 
 
	  

Warehouses Fixed-Cost-per-
Warehouse

Memphis 0
Memphis 0
Memphis 0
Memphis 0
Memphis 0
Memphis 0
Burnaby 0
Burnaby 0
Burnaby 0
Burnaby 0
Burnaby 0
Burnaby 0
Los2Angeles 0
Los2Angeles 0
Los2Angeles 0
Los2Angeles 0
Los2Angeles 0
Los2Angeles 0
Los2Angeles 0
Los2Angeles 0
Denver 0
Denver 0
Denver 0
Denver 0
Denver 0
Denver 0

Product Fixed-Cost Handling-
Unit-Cost

Storage-Unit-
Cost

Product21 24506.1 0.0 0.3
Product22 24506.1 0.0 0.3
Product23 24506.1 0.0 0.3
Product24 24506.1 0.0 0.3
Product25 24506.1 0.0 0.3
Product26 24506.1 0.0 0.3
Product24 0.0 0.1 0.3
Product27 0.0 0.1 0.3
Product26 0.0 0.1 0.3
Product28 0.0 0.1 0.3
Product29 0.0 0.1 0.3
Product210 0.0 0.1 0.3
Product211 24506.1 0.0 0.3
Product26 24506.1 0.0 0.3
Product212 24506.1 0.0 0.3
Product213 24506.1 0.0 0.3
Product214 24506.1 0.0 0.3
Product22 24506.1 0.0 0.3
Product215 24506.1 0.0 0.3
Product216 24506.1 0.0 0.3
Product24 24506.1 0.1 0.3
Product211 24506.1 0.1 0.3
Product27 24506.1 0.1 0.3
Product212 24506.1 0.1 0.3
Product26 24506.1 0.1 0.3
Product28 24506.1 0.1 0.3
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6.3 Transport Mode Selection 
 

Some authors claimed that environmental policies were powerful enough to 

trigger transport mode switching to slower modes. Other authors questioned this 

effect, and thought that emission related costs were too small to induce big 

changes. The observation from the case study of this thesis provides a new 

angle to perceive this question. 

 

In the current network, between BD's single plant and five warehouses, most of 

the products are shipped by road transport, while the rest is done by rail transport. 

In GeDND and GDND, the transport mode between the plant and the five 

warehouses is set as a variable, and two transport modes (road and rail transport) 

can be selected from. However, all optimal solutions select only rail transport (the 

slow mode), no matter whether there is an environmental policy or not. Therefore, 

it is hard to interpret the role that the environmental policies play. 
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7. Conclusions and Further Research 
 

In this thesis, we explore how CO2 emissions impact optimal distribution network 

designs. We first introduce the GeDND model, which has no emission 

consideration. This model is then extended to address four types of 

environmental policies: Carbon Tax, Strict Emission Cap, Cap-and-Trade and 

Carbon-and-Offset. Corresponding to each type of environmental policy, a GDND 

model is developed. 

Accurately estimating emissions is extremely important for the GDND. We adopt 

the CEME model, a microscopic second-by-second fuel consumption model, to 

estimate the road transport emissions. We use the ton-mile model, the most 

common method, to estimate the rail transport emissions.  Based on these two 

models, we compute the values of an emission parameter, which are used in 

GDND to calculate the total network emissions. This parameter considers 

specific arcs, planning periods and vehicle types. This helps capture the changes 

of emissions and emission costs among different network designs.  

A case study on optimizing the distribution network of an energy company is 

implemented. CPLEX is used to solve the GeDND and GDND models to 

optimality, where the optimality gap was set to 1%. Using the optimal solution of 

the GeDND problem as the basis for comparison, it is found that:  (1) under Strict 

Emission Cap, when the emission caps are loose, there are good chances to 

reduce 11% of emissions while causing an increase of only 7% in total costs. 

When the emission caps are very strict, an emission reduction of 16% causes an 

increase of 45% in total costs; (2) under Carbon Tax, generally, the rate of 

emission reduction is always lower than the rate of cost increase. For example, 

an emission reduction of 17% causes an increase of 213% in total costs; (3) 

under Cap-and-Trade, when the prices of carbon credits are very high, 15% of 

emissions could be reduced, and this could either lead to a cost increase if the 

free emission quotas are low, or a cost decrease if the free emission quotas are 

high; (4) under Carbon-and-Offset, when the prices of carbon offsets are very 
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high, more than 10% of emission could be reduced. However, contrary to Cap-

and-Trade, Carbon-and-Offset never leads to a cost decrease, even if the free 

emission quotas are very big. 

In the considered case we found that: (1) Carbon Tax produces the worst results. 

For any optimal solution under Carbon Tax, one can always find a better one 

under other policies; (2) Cap-and-Trade performs better than Carbon-and-Offset. 

This is because under Cap-and-Trade, companies can sell their unused emission 

quotas, while under Carbon-and-Offset, companies can never profit from their 

unused quotas; (3) between Carbon-and-Offset and Strict Emission Cap, it is 

hard to say which one performs better, because neither consistently produces 

better results than the other; (4) when the price of buying or selling emission 

credits is very high, the optimal solutions under Cap-and-Trade dominate those 

under Strict Emission Cap. When the price of buying or selling emission credits is 

low, it is hard to say which type performs better. 

From the perspective of strategic decision-making, it is found that CO2 emissions 

do not impact warehouse selection in this case; whether there is an 

environmental policy or not, all the optimal solutions choose as many 

warehouses as possible. This is because BD uses a 3PL for its warehouse 

service, and the 3PL does not impose fixed facility usage costs. Also, it is found 

that whenever possible, the optimal solutions choose the cheaper transport mode, 

no matter whether an environmental policy is in place or not. However, the 

emission considerations impact the assignment of products to warehouses. 

Both warehouse and transport mode selection impact the total emission of a 

supply chain network. Future research could explore which of the two has a more 

significant impact. Future research could also consider various average 

truckloads instead of a single average truckload that has been used in the case 

study. Companies often experience large demand fluctuations. When demands 

are low, to keep the same shipping frequency, the average payloads drop. Future 

research could explore when it is more beneficial to use a smaller truck when the 
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average payload drops. In this thesis, only CO2 emissions are considered. Other 

GHGs could be included in the future as well as more types of transport modes. 
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Appendix 1: 
 

The assumptions on the trucks used in BD's current distribution networks are as 

follows: 

 

1.Night cab long-haul trucks  

According to EPA & NHTSA (2011), regional-haul trucks are used only for routes 

that are less than 500 miles. In BD's distribution network, many arcs have a 

distance of more than 500 miles. Thus, we assume that the BD uses long-haul 

trucks. For long-haul trucks, a sleeping cab usually is included. 

 

2. The trucks burn diesel  

According to EPA (2009), more and more trucks are burning diesel these years. 

By 2009, around 74% of trucks used diesel fuel in the US (see Table 15), we 

thus assume that the trucks burn diesel fuel. 
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Table	  15 Fuel factions of trucks since 2002 (EPA, 2009) 

	  
 

3. Class 8 trucks 

 

EPA & NHTSA (2015) provides the average vehicle weight and payload of the 

various classes of trucks in the US. According to it, a truck that carries more than 

25,000lbs of products belongs to the category of Class 8. 

 

We learned from BD that the average payload in BD's current distribution 

network is 23,470 USG, which has a weight of around 51,751lbs. We thus 

assume that BD is using Class 8 trucks. 
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4. DD15L Detroit engine 

 

The 2013 Vehicle Technologies Market Report by Oak Ridge National Laboratory 

(2014) indicates that half of the trucks produced in the US in 2012 were from 

Freightliner and Western Star. This report also indicates that most of the truck 

engines from these two companies were provided either by Cummins or by 

Detroit. As the information for Detroit engines is easier to find, we assume that 

Detroit engines are used. 

 

5. Engine displacement  

The baseline engine for the Class 8 trucks is the Heavy-Duty Diesel engine with 

15 liters of displacement (EPA & NHTSA, 2015). The DD15L Detroit engine has 

14.8 liters of displacement (Detroit, 2015), close to the baseline of 15 liters of 

displacement. We thus assume that DD15L Detroit engines are used, and the 

engine displacement is 14.8 liters. 

 

6. Coefficient of aerodynamics drag 

 

It is hard to find out whether the trucks in BD's current distribution network have 

high roof, middle roof or low roof, so we choose the middle one. For Class 8 

trucks with middle roof, the coefficient of aerodynamics drag is 0.87 (see Table 

16). This is the default value in GEM, which is an official emission calculation tool 

targeting heavy-duty vehicle emission calculation. 
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Table	  16	  GEM Input for the Class 7 and 8 tractor standard setting (EPA & NHTSA, 2011) 

 
	  
 

7. Cab frontal area  

 

Table 17 indicates that if the coefficient of aerodynamics drag is 0.87, the frontal 

area of a mid-roof sleeper cabs must be bigger than 5.6 m!. As a result, we 

assume that the front area of the trucks is 0.56 m!.  

 
Table	  17 Frontal area and coefficient of aerodynamics drag of different trucks with different roofs 

(EPA & NHTSA, 2011) 
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8. Vehicle average speed  

 

EPA & NHTSA (2011) states that for night cabs, 86% of time they keep a speed 

of 65 mph, and 9% of time they keep a speed of 55 mph. For the last 5% of time, 

the speed is transient; it could be higher than 65 mph, lower than 55 mph, or 

between them. We assume that the average of the transient speeds is 60 mph. 

Then, we obtain the average speed of the whole trips: 62.35 miles per hour. 

 

9. Engine speed 

 

For a typical on-highway tractor-trailer application of 80,000lb or less, to get a 

maximum fuel economy at 65 mph , an engine speed of 1350 rev/s is 

recommended (Detroit, 2015). The average vehicle speed of BD trucks is 

assumed to be 62.35 mph, very close to 65 mph. Thus, we assume that the 

engine speed is 1350 rev/s. 

 

10. Value of 𝑓!"! 

 

According to EPA (2014), the CO2 emission of burning one USG of diesel fuel is 

10.21 kg. One USG of diesel fuel equals to 3.785 liters. Thus, 𝑓!"! = 2.70  kg  /

  liter. 

 

Appendix 2: 
 

EPA & NHTSA (2011) estimate that from 2010 to 2018, the fuel efficiency of the 

diesel and gasoline vehicles will increase 15% and 10%, respectively. The 

numbers are based on the agencies’ assessment of the feasibility of 

incorporating new technologies in the 2010-2018 model years. From this, we 

learned that the annual improvement of engine efficiency for diesel trucks is 

3.75%. Thus, the values of emission reduction coefficient 𝜛!, which suggest the 
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improvement of engine efficiency in period t when compared with current period 

0, are given in Table 18. 

 
Table	  18	  The values for emission reduction coefficient 𝜛!	  

𝜛! 
1 

𝜛! 
0.9625 

𝜛! 
0.92640625 

𝜛! 
0.891666016 

𝜛! 
0.85822854 

𝜛! 
0.82604497 

𝜛! 
0.795068283 

𝜛! 
0.765253223 

𝜛! 
0.736556227 

𝜛!" 
0.708935368 

	  




