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Abstract 

To address the environmental issues in supply chain management at the operational 

level, this thesis considers the One-Warehouse Multi-Retailer problem with a global 

Emission Constraint, which we denote as OWMR-EC. We validate three known 

formulations for the classical One-Warehouse Multi-Retailer (OWMR) problem. We 

propose formulations for the OWMR-EC problem by incorporating a global emission 

constraint. Computational results are presented for both OWMR and OWMR-EC. 

Analyses are given to the maximum potential emission reduction and to the trade-off 

between costs and emissions. Experiments with different levels of emission cap show 

piecewise convex trade-off curves between costs and emissions, which indicate that the 

marginal cost of emission reduction tends to increase as reduced amount increases. We 

also discuss several heuristics for the OWMR problem, among which the best heuristic 

is chosen and integrated into an iterative penalized relaxation method to search for 

feasible solutions for the OWMR-EC problem. Computational results for all heuristics 

discussed are presented. The final heuristic that we propose for the OWMR-EC problem 

consumes less than one second on average and gives an average gap of 0.53%. However, 

it is not always able to find feasible solutions, especially for the highly constrained 

problems. 
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1. Introduction 

It was predicted by Shrivastava (1995) that the natural environment would be an 

important battle field for economic competition in the 21st century. Shrivastava believes 

that companies could gain competitive advantages through environmental technology 

improvements. This statement has been supported later on by the fact that more and more 

firms are explicitly addressing environmental issues as part of their corporate social 

responsibility. 

Among the environmental issues, common concerns are given to global warming and 

Greenhouse Gas (GHG) emissions. Voiland (2009) from NASA’s Earth Science News 

Team reported that a clear trend of temperature increase has been observed since modern 

human civilization: the average global temperature has increased by about 0.8°C since 

1880. The American Association for the Advancement of Science (2009), on behalf of 18 

scientific associations, expressed the consensus view that such a temperature increase is 

due to the GHG emissions caused by human activities. 

As an international effort to reduce GHG emissions, most industrialized countries 

voluntarily participate in the Kyoto Protocol. The Kyoto Protocol issued by the United 

Nations (1998) set an GHG emission reduction goal for the first commitment period from 

2008 to 2012: participating parties committed to reduce the GHG emission amount by 5% 

against the 1990 level. Later in 2012, the Doha Amendment by the United Nations (2012) 

extended the protocol to 2020. The conference in Doha also agreed that the Kyoto 

Protocol will be replaced by a new treaty by 2015, which will involve both developed and 

developing countries. In order to achieve the emission reduction goal, many countries 

have their emission projects implemented or scheduled. According to a report by the 

World Bank (2014), most European countries have implemented emission trading 

schemes while some other countries such as Sweden, Mexico, South Africa and Japan 

have implemented carbon tax systems. The price for emitting one ton of carbon-dioxide 

(CO2) differs greatly between different countries. The World Bank (2014) reported that 

the price ranges from as low as 1 US$/ton in Mexico and New Zealand to as high as 168 

US$/ton in Sweden.  
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As more countries are participating in the Kyoto Protocol and carbon pricing systems 

are being more widely implemented, it can be foreseen that GHG emission reduction will 

be of interest to more and more enterprises. For example, in its corporate sustainability 

report, UPS (2014) states the plan to reduce its carbon emission intensity from 

transportation by 20 percent by 2020 compared to the baseline of 2007. Such a goal will 

be achieved through redesigns of the logistics network and upgrades of its fleets with 

vehicles that consume Liquefied Natural Gas (LNG).  

Conventionally, network redesign, advanced technology and alternative clean energy 

are effective approaches to improve environmental performance. However, these 

measures usually require a great amount of initial capital investment. Some researchers 

indicate that a better environmental performance can also be achieved by better planning 

at the production and distribution stages. This issue has also become an emerging topic in 

the lot sizing literature.  

Solutions to lot sizing problems usually try to minimize the economic cost while the 

carbon emission factors are ignored. Like economic costs, carbon emissions can be 

incurred at various activities. Carbon is emitted while the products are produced in the 

factories, transported to the service outlets or kept as inventory in warehouses. If we take 

into account these emission factors in lot sizing problems, it is possible to better balance 

emissions and costs. Costs will generally increase when we address the emission factors 

in lot sizing problems. However, the benefit of such an approach to reduce emission is 

that it does not require a major change in the supply chain network or a large amount of 

capital investment, giving companies more flexibility towards their emission reduction 

targets. 

To explore the possibilities of emission reduction through production and 

transportation planning, we study a lot sizing problem in a two-level supply chain with a 

distribution structure, otherwise known as a One-Warehouse Multi-Retailer (OWMR) lot 

sizing problem and extend it to an emission-constrained context. We propose several 

formulations based on known formulations for the standard OWMR problem and test how 

they perform. CPLEX 12.6.0.1 is called to solve the problems using a JAVA coding 

environment. Data sets of instances from a previous study by Solyalı and Süral (2012) are 
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used as instances input. Due to the lack of available data sets for the problem with 

emission parameters, we adapt the standard OWMR instances. Computational tests are 

presented, both for the standard OWMR problem and for the OWMR with an Emission 

Constraint (OWMR-EC) 

Compared to the vast literature base for lot sizing problems, studies focusing on the 

impact of emission constraints on lot sizing models are relatively sparse. Within the 

studies on lot sizing problems with emission constraints, most of them deal with classical 

and general models, such as EOQ, newsvendor problem and single level lot sizing. Very 

little attention is given to more complicated lot sizing models and very few studies 

examine heuristic methods for the lot sizing models with emission constraints. Therefore, 

this thesis will supplement the existing literature by studying the specific OWMR-EC 

problem. 

The contribution of this thesis is fourfold. (1) We validate three known formulations 

of the OWMR problem using a standard data set and compare our computational results 

to those of a previous study. (2) We propose formulations for the OWMR-EC problem 

and, compare them in a computational experiment using an adapted standard data set. (3) 

Results from the experiments allow us to analyze the trade-off between costs and carbon 

emissions and to provide managerial insights.  (4) We develop and compare different 

heuristic methods to expedite the computation process for both the OWMR problem and 

the OWMR-EC problem.  

The rest of this thesis is organized as follows. Section 2 reviews existing literature. 

Section 3 presents and validates three known formulations for the OWMR problem and 

compare the computational results to a previous study. In section 4, we propose 

formulations for OWMR-EC problem and present computational results. Section 5 

analyzes the trade-off between costs and emissions in the OWMR-EC problem and 

provides managerial insights. Section 6 proposes several heuristic methods and compares 

their quality and speed. Section 7 concludes the thesis. 
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2. Literature review 

 In this section, we first generally review supply chain decision models that take into 

account carbon emission factors and discuss different types of emission constraints 

implied by various studies. Next, we provide a brief overview of the general literature on 

lot sizing. We then focus on lot sizing with an emission constraint, and discuss the 

modeling of different policies and criteria.  

2.1 Impact of Emissions in Supply Chain Management 

Recently there is a growing concern about the environmental impact in supply chain 

management. Researchers model the impact of carbon emission and examine how it can 

possibly affect decision making in supply chain management. Emissions can have effects 

on decisions making from the strategic level like network design, to the operational level 

like production planning.  

 At the strategic level, Cachon (2014) considers a retail store density problem and uses 

the model to decide the size, location and number of retailer stores with consideration of 

carbon emissions. His model extends the emission responsibility down to consumer’s fuel 

consumption. He assumes that retailers’ trucks carry goods more efficiently than 

consumers’ cars. As a denser retailer network reduces the distance traveled by consumers, 

it results in less carbon emissions from transportation. On the other hand, a dense retailer 

network incurs higher operating cost and higher emissions from electricity consumption 

at retail space. Analyses are given on the potential of emission reduction in the long term 

network redesign.  

 At the tactical level, Hoen et al. (2014) propose a transportation mode selection model 

that considers emission costs among other cost such as inventory and transport. Their 

model selects a transportation mode for an organization which produces a single product 

and faces stochastic demand in a single period. Exactly one mode out of air, road, rail, 

and water will be selected by the model. They also conduct a numerical study under three 

types of carbon emission regulations: (1) a carbon tax, (2) emission trading scheme, and 

(3) a strict constraint on emissions. The study reveals that a large amount of carbon 

emissions can be reduced by switching to a different transportation mode and the decision 
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is largely dependent on the type of carbon emission regulation chosen. Another study by 

Hoen et al. (2013) investigates a different transportation mode selection problem under a 

self-imposed emission target. The producer decides the transportation mode and product 

price, which will affect the demand. The scope of the problem is extended to multiple 

products and multiple customers. They conclude that when the emission reduction target 

is relatively small (up to 20%), switching transportation modes can be an effective 

measure to reduce carbon emission.   

 Demir, Bektaş, and Laporte (2014) review vehicle routing models with fuel 

consumption components. They first focus on methods to estimate carbon-dioxide 

emissions in vehicle transportation and identify 13 types of macroscopic models and 12 

types of microscopic models. They then categorize different vehicle routing and 

scheduling models according to the emission estimation methods used. These models 

consider decisions at both tactical and operational levels. Some of the studies also conduct 

numerical experiments and report the potential emission reduction amount by minimizing 

emission instead of transportation time.  

 At the operational level, Jaber, Glock, and El Saadany (2013) develop a mathematical 

model for a two-level supply chain with a serial structure in which a carbon emission tax 

and emission penalties are imposed. This model takes into account the emission amount 

as a function of the production rate (i.e. the number of units produced in a given time). 

Decisions on the production rate are made based on setup cost, holding cost and emission 

cost together. Song and Leng (2012) analyze the newsvendor problem with stochastic 

demand and a perishable item under different types of carbon emission constraints and 

examine the impact on the optimal quantity decision. Zhang and Xu (2013) extend the 

newsvendor problem with cap-and-trade mechanism to a multi-item scenario. Arıkan and 

Jammernegg (2014) study the newsvendor problem under dual sourcing options, which 

allow the vendor to fulfill excessive orders at short notice but with higher cost and higher 

emissions. Their numerical study shows that significant emission reduction can possibly 

be achieved with a slight increase in economic cost. 

 All these models indicate that emissions can be an important factor in decision 

making at all levels of the supply chain. However, emission factors can be incorporated 
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in the models in different ways. Most of the vehicle routing models reviewed by Demir 

et al. (2014) consider emissions as an objective and compare the results to the situation 

where time or cost is the objective. Arıkan and Jammernegg (2014) also consider 

minimizing emissions as an objective. Other models introduced in this section consider 

emissions as a constraint to the problem where penalties are imposed on the carbon 

emissions. The Congressional Budget Office of the Congress of the United States (2008) 

proposes four policy options for limiting carbon-dioxide emission: (1) Mandatory carbon 

emission capacity: the emission amount of the firm cannot exceed an strict emission cap; 

(2) Carbon emission tax: a tax is imposed on the firm for each unit of carbon emitted; (3) 

Cap-and-trade system: there is a carbon emission cap, but firms are allowed to buy or sell 

emission credits; (4) Investment in the carbon offsets: there is a carbon cap, however if 

the emission exceeds the cap, firms are allowed to invest in carbon reduction projects to 

offset their own emission. 

Song and Leng (2012) suggest that policy (4) is essentially the same as policy (3) 

when the selling price of excessive emission credits is 0. Therefore policy (3) and (4) can 

be considered as one type of mechanism. Following this categorization, Table 1 

summarizes the types of emission mechanism analyzed by different studies. 

 Strict Cap Carbon Tax Cap-and-Trade 

Cachon (2014)  √  

Hoen et al. (2014) √ √ √ 

Hoen et al. (2013) √   

Jaber et al. (2013)  √  

Song and Leng (2012) √ √ √ 

Zhang and Xu (2013)   √ 

Table 1. Types of Emission Mechanism Analyzed 

For a more comprehensive review on the impacts of environmental issues at different 

decision phases in the supply chain, see Dekker, Bloemhof, and Mallidis (2012). They 

systematically discuss environmental factors in the design, planning and control in a 

supply chain for transportation, inventory of products and facility decisions. The rest of 

the literature review focuses on a specific domain in supply chain management: the lot 
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sizing problems. 

2.2 Lot Sizing 

Lot sizing in general deals with the problem of when to order (or produce) and how 

much to order. The models aim to minimize the total cost by balancing the trade-off 

between various costs while satisfying demands. There are a lot of different variations in 

the domain of lot sizing. We will briefly review the lot sizing problem and its extensions. 

We do not intend to give a comprehensive review of lot sizing problems but we discuss 

the most important concepts so as to better understand studies on lot sizing problems with 

emission constraints.  

The classical Economic Order Quantity (EOQ) model proposed by Harris (1913) is 

an example of a lot sizing problem with a relatively simple setting. The EOQ formula 

minimizes the total cost of ordering and inventory holding while facing stationary 

demands and no capacity constraint. It involves decisions made by one facility in the 

supply chain and thus can be considered as a single level lot sizing problem. This model 

can help decision makers yield the optimal replenishment plan if a series of assumptions 

are satisfied. These assumptions include: (1) demands are stationary over time, (2) there 

is no production capacity constraint and (3) the company produces only one type of 

product.  

However, planning in reality usually faces different conditions where some of these 

assumptions are violated. Therefore, the problem has been extended in many dimensions 

by researchers to more closely resemble the reality and accommodate different conditions. 

For example, instead of being stationary, the demand may be dynamic through the 

planning horizon, which means that the demands are known in advance but vary from 

period to period. In this case, the problem is denoted as the dynamic lot sizing studied by 

Wagner and Whitin (1958). Instead of producing a single type of product, a company may 

also produce multiple items. Instead of having unlimited production capacity, a plant 

usually has resource constraints and can only produce a limited amount of products in a 

given time period. A review on modeling single-level dynamic lot sizing problems with 

various extensions can be found in Jans and Degraeve (2008). 

Extending the scope also increases the complexity of the problem. Instead of 
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minimizing the cost of only one facility, a multi-level lot sizing problem deals with 

multiple parties in the supply chain and minimizes the global total cost.  

In multi-level lot sizing problems, the structure of the supply chain can have different 

features. Arkin (1989) discusses four types of supply chain structure: (1) a serial system 

in which the product passes through a linear sequence of subsequent stages; (2) an 

assembly system in which several subassemblies are combined together at each stage; (3) 

a distribution system in which a product from one facility is distributed to multiple 

facilities, and finally, (4) a general system which can be a combination of the three other 

systems. Figure 1 shows examples of different types of supply chain structures.  

                        

(1) Serial system      (2) Assembly system  

 

                                                   

(3) Distribution system            (4) General system 

  Figure 1. Types of Supply Chain Structures 

The special case of a two-level distribution system is also known as the One-

Warehouse Multi-Retailer (OWMR) problem. The product goes from one warehouse or 

production plant, to multiple retailers. Figure 2 depicts the structural outline of the 

OWMR problem.  

 

Figure 2. Outline of One-Warehouse Multi-Retailer Structure 

The complexity of the OWMR problem has drawn the interest of researchers to 
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propose strong formulations and heuristic methods. Solyalı and Süral (2012) propose a 

new reformulation to the problem which is called a combined transportation and shortest 

path based formulation. Their computational results show that the new formulation is 

stronger than the previously known ones. Federgruen and Tzur (1999) propose time-

partitioning heuristics for a multi-item OWMR problem. The heuristics solve the problem 

by decomposing the planning horizon into smaller intervals.  

2.3 Lot Sizing with Emission Constraints  

As introduced in Section 2.1, carbon emissions have been considered an important 

factor in many decisions at different levels of the supply chain. Lot sizing decisions are 

not an exception. One of the new extensions to lot sizing problems is to add an emission 

constraint to the problems. This is explained next in more detail. 

 Benjaafar, Li, and Daskin (2013) add emission constraints to a single-level lot sizing 

model with dynamic demand under different carbon emission policies and derive insights 

on the impacts of these different policies. Retel Helmrich et al.  (2015) study a similar 

model under a global emission constraint and apply several heuristic algorithms to solve 

the problem. Extensive computational tests are presented in their study. Romeijn, Morales, 

and Van den Heuvel (2014) study biobjective lot-sizing models in which the second 

objective is to minimize the maximum carbon emission amount. They discuss the 

computational complexity when emission coefficients take different forms: zero, time-

invariant or time-variant. Pareto frontiers are also presented for a 15-period instance. Hua, 

Cheng, and Wang (2011) adopt the emission constraints into the classical EOQ model and 

examine the impacts of carbon trade, carbon price and carbon cap on order decisions. 

Similar models concerning EOQ with emission constraints are studied by Chen, Benjaafar, 

and Elomri (2013) and an analysis on the trade-off between costs and emissions is 

presented.  

One is tempted to consider emission constraints the same as the traditional production 

capacity constraint. However, Benjaafar et al. (2013) point out that an emission constraint 

is different from a production capacity constraint in two aspects: 1) the scope of emission 

activities and 2) the time horizon of emissions. 

Several studies indicate that carbon emissions can come from various activities. 
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Carbon is emitted at various stages through the supply chain. It occurs while a machine is 

being set up for production, while products are being produced, transported and even 

being kept in inventory. In other words, the emissions have to be taken into account in a 

joint capacity shared by activities at different stages. Changes in the decisions related to 

one activity (e.g. transportation) could affect other activities (e.g. inventory keeping) due 

to the joint carbon capacity limit.  

Apart from being shared by different activities, carbon emission capacity can be 

shared by multiple periods or even the entire planning horizon. Production capacities, on 

the other hand, are modeled for each period. Absi et al. (2013) further suggest that the 

emission constraint can be imposed on different types of time intervals. They study four 

types of carbon emission constraints, namely 1) periodic carbon emission constraint, 2) 

cumulative carbon emission constraint, 3) global carbon emission constraint and 4) 

rolling carbon emission constraint. Figure 3 illustrates how emissions are evaluated under 

these four types of constraints. 

  

Figure 3. Different Types of Time Intervals  

2.4 Modeling Emissions under Different Policies 

 Following the same categories of emission policies as introduced in section 2.1, 

namely a strict emission cap, a carbon tax, and a cap-and-trade scheme, we will review 

how different types of emission policies are modeled in lot sizing problems. 

A strict emission cap limits the total amount of carbon that can be emitted during the 
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planning horizon. It does not affect the objective function in models, but serves as a hard 

constraint. If we denote the total emissions from all activities as ET, and the total emission 

cap as EC, a strict emission cap generally takes the form of: 

 𝐸𝑇 ≤  𝐸𝐶 

The second policy, a carbon tax, imposes an extra cost to firms for each unit of carbon 

emitted. Such a carbon tax mechanism affects the objective cost function but not the 

constraints, as opposed to a strict emission cap which serves as a constraint. By adding 

such an extra cost, only the cost coefficients of each activities (e.g. production setup cost, 

inventory holding cost and variable production cost) are changed, but not the structure of 

the objective function. Therefore, Benjaaafar et al. (2013) conclude that under this 

mechanism, “the problem reduces to one of pure cost minimization”. 

The third policy, a cap-and-trade mechanism, is considered as a combination of a 

strict cap and a carbon tax (see Benjaafar et al. (2013)). It alters both the objective function 

and the constraints. The additional cost (or benefit) in the objective function is modeled 

as: 

𝑝(𝐸+ − 𝐸−) 

where p is the price of buying or selling one unit of carbon emission credit, 𝐸+ is the 

amount of emission credit bought by the company and 𝐸− is the amount of emission 

credit sold. A constraint on the total emission is also imposed: 

𝐸𝑇 ≤  𝐸𝐶 + 𝐸+ − 𝐸− 

However, some studies have a different approach to represent the cap-and-trade 

mechanism. Chen et al. (2013) suggest that when the selling price of emission credit 

equals the buying price, the problem becomes similar to the one under the carbon tax 

mechanism. Hoen et al. (2014) also conclude that a cap-and-trade scheme resembles a 

carbon tax scheme but a certain amount of emission is exempted from tax. 

2.5 Total Emission and Average Emission 

As an alternative to limiting the total amount of emission, constraints can also be 

imposed to limit the average amount of emission for producing each unit of product, 

emphasizing the environmental efficiency of the firm. 
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Absi et al. (2013) apply the average emission constraint when analyzing an 

uncapacitated multi-sourcing single-item problem. They define a mode as a combination 

of a production facility and a transportation method. Each mode is characterized by its 

unitary cost and unitary emission. A mode is called ecological when the unitary emission 

is less than the imposed average cap. They then derive that at most two modes are needed 

for obtaining an optimal solution, one being more economical and possibly another one 

being more ecological. 

Benjaafar et al. (2013) also present a formulation to accommodate this type of 

average emission constraint. They change the limit of the constraint from a total emission 

cap to an average emission cap multiplied by total demand. Since, in their model, the total 

demand is known in advance and all demand has to be satisfied without shortage, the 

result of the average cap multiplied by total demand is a deterministic number. In that 

case, it does not make a difference whether the constraint is imposed on average emissions 

or total emissions.  

However, in some other settings, the problem may change under an average emission 

constraint. For example, if a shortage is allowed with a penalty, a firm can produce less 

to satisfy the total emission constraint, whereas under the average emission constraint, 

producing a lower quantity of products does not necessarily reduce the average emission. 

 Strict 

cap 

carbon 

tax 

cap-and-

trade 

Total 

Emission 

Average 

Emission 

Global Periodic, 

cumulative 

and rolling 

Benjaafar et al. (2013) √ √ √ √ √ √ √ 

Helmrich et al. (2011) √   √  √  

Hua et al. (2011)  √ √ √  √  

Chen et al. (2013) √ √ √ √  √  

Absi et al. (2013) √    √ √ √ 

Table 2. Summary of Types of Emission Constraints  
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3. One-Warehouse Multi-Retailer Problem: Formulations and 

Computational Results 

In this chapter, we discuss three known formulations for the OWMR problem with a 

single product: the standard basic formulation, the four index facility location formulation 

and a combined transportation and shortest path formulation. Computational results are 

presented at the end of the chapter.  

3.1 Basic Formulation 

General notations for the formulations are as follows: 

Parameters 

𝑇 Set of time periods {1, … ,𝑚}  

𝑁𝑐 Set of retailers {1, … , 𝑛}  

𝑁 Set of facilities which include both the plant and the retailers. 𝑁 = 𝑁𝑐 ∪

{0} where 0 represents the plant 

 

𝐶𝑆 The setup cost of production at plant  

𝐶𝐷𝑖𝑡 

 

The setup cost of delivery which occurs when products are delivered to 

retailer 𝑖 in period t, ∀𝑖 ∈ 𝑁𝑐, ∀𝑡 ∈ 𝑇 

 

𝐶𝑈 The unit production cost  

𝐶𝑇𝑖 The unit transportation cost from the plant to retailer 𝑖, ∀𝑖 ∈ 𝑁𝑐  

𝑑𝑖𝑡 The demand of retailer 𝑖 at time period 𝑡, ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝑁𝑐  

𝑑0𝑡 The aggregate demand of all retailers in period 𝑡, 𝑑0𝑡 = ∑ 𝑑𝑖𝑡𝑖∈𝑁𝑐
, ∀𝑡 ∈ 𝑇  

𝑑𝑖𝑡𝑢 The sum of the demand at facility 𝑖  from period t to u, 𝑑𝑖𝑡𝑢 =

∑ 𝑑𝑖𝑞
𝑢
𝑞=𝑡  , ∀𝑖 ∈ 𝑁, 0 ≤ 𝑡 ≤ 𝑢 ≤ 𝑚  

 

ℎ𝑖 The holding cost at facility 𝑖, ∀𝑖 ∈ 𝑁  

𝐼𝑖0 The initial inventory at facility 𝑖, ∀𝑖 ∈ 𝑁  

 

Decisions variables 

𝐼𝑖𝑡 The inventory at facility 𝑖 at the end of period 𝑡, ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇  

𝑟𝑖𝑡 The quantity delivered to retailer 𝑖 in period 𝑡, ∀𝑖 ∈ 𝑁𝑐, ∀𝑡 ∈ 𝑇  

𝑝𝑡 Production quantity in period 𝑡, ∀𝑡 ∈ 𝑇  

𝑦0𝑡 Binary variable that takes the value of 1 if a production setup is done at  
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the plant in period 𝑡, and the value of 0 otherwise, ∀𝑡 ∈ 𝑇 

𝑦𝑖𝑡 Binary variable that takes the value of 1 if a delivery to retailer 𝑖 in period 

𝑡 is made, and takes the value of 0 otherwise, ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝑁 

 

 

 

The basic formulation is a natural representation of the OWMR problem. It is 

intuitive and can naturally deal with instances with initial inventory. The objective 

function (1)  minimizes the sum of the inventory cost, production setup cost, delivery 

setup cost, the variable production cost, and the variable delivery cost. Constraints (2) 

ensure the inventory balance at the retailers. Constraints (3) ensure the inventory balance 

at the plant. Constraints (4) and (5) are the setup forcing constraints for production and 

delivery respectively. Constraints (6) - (9) are the binary and non-negativity constraints.  

Min ∑∑ℎ𝑖𝐼𝑖𝑡
𝑖∈𝑁𝑡∈𝑇

+∑𝐶𝑆

𝑡∈𝑇

𝑦0𝑡 + ∑∑𝐶𝐷𝑖𝑡
𝑡∈𝑇

𝑦𝑖𝑡
𝑖∈𝑁𝑐

+∑𝐶𝑈𝑝𝑡
𝑡∈𝑇

 

 

(1) 
 

+∑∑ 𝐶𝑇𝑖𝑟𝑖𝑡
𝑖∈𝑁𝑐𝑡∈𝑇

 

 

 

S.T.      𝐼𝑖,𝑡−1 + 𝑟𝑖𝑡 = 𝑑𝑖𝑡 + 𝐼𝑖,𝑡, ∀𝑖 ∈ 𝑁𝑐 , ∀𝑡 ∈ 𝑇 (2) 

 

𝐼0,𝑡−1 + 𝑝𝑡 = ∑ 𝑟𝑖𝑡
𝑖∈𝑁𝑐

+ 𝐼0𝑡 ∀𝑡 ∈ 𝑇 (3) 

 𝑝𝑡 ≤ 𝑑0𝑡𝑚𝑦0𝑡 ∀𝑡 ∈ 𝑇 (4) 

 𝑟𝑖𝑡 ≤ 𝑑𝑖𝑡𝑚𝑦𝑖𝑡 ∀𝑖 ∈ 𝑁𝑐 , ∀𝑡 ∈ 𝑇 (5) 

 𝑦𝑖𝑡 ∈ {0,1} ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (6) 

 𝐼𝑖𝑡 ≥ 0, ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (7) 

 𝑟𝑖𝑡 ≥ 0 ∀𝑖 ∈ 𝑁𝑐 , ∀𝑡 ∈ 𝑇 (8) 

 𝑝𝑡 ≥ 0 ∀𝑡 ∈ 𝑇 (9) 

 

Note that in our problem, all demands have to be satisfied. Therefore the total amount 

of products produced ∑ 𝑝𝑡𝑡∈𝑇  equals the difference between the total demand and the 
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initial inventory, which is a constant. The same is also true for the total amount of products 

delivered to the retailers ∑ ∑ 𝑟𝑖𝑡𝑖∈𝑁𝑐𝑡∈𝑇 . Furthermore, we assume that the unit production 

and the unit transportation costs are time-invariant. As a result, the sum of the last two 

items of objective function (1) 

∑𝐶𝑈𝑝𝑡
𝑡∈𝑇

+∑∑ 𝐶𝑇𝑖𝑟𝑖𝑡
𝑖∈𝑁𝑐𝑡∈𝑇

 

is a constant. For the sake of simplicity of the formulation, we take out these fixed 

components from the objective function and replace (1) with (10). The Basic Formulation 

(BF) then is defined as follows: 

BF:    Min ∑∑ℎ𝑖𝐼𝑖𝑡
𝑖∈𝑁𝑡∈𝑇

+∑𝐶𝑆

𝑡∈𝑇

𝑦0𝑡 + ∑∑𝐶𝐷𝑖𝑡
𝑡∈𝑇

𝑦𝑖𝑡
𝑖∈𝑁𝑐

 

 
(10) 

 

 

 S.T.     (2) - (9) 

 

3.2 Four Index Facility Location Formulation 

The Four Index Facility Location Formulation is proposed and discussed by Levi et 

al. (2008). Solyalı and Süral (2012) extend the formulation to incorporate initial inventory 

and analyze its impact on the computation complexity. Ruokokoski et al. (2010) adapt the 

formulation and apply it to the Production-Routing Problem. In the four index facility 

location formulation, a new set of variables with four indices is introduced. The new 

variable 𝑓𝑖𝑢𝑞𝑡 represents the amount of products produced in period u that is delivered to 

retailer 𝑖 (∀𝑖 ∈ 𝑁𝑐) in period q to satisfy the demand of period t (1 ≤ 𝑢 ≤ 𝑞 ≤ 𝑡 ≤ 𝑚). 

The following relationship exists between the original variables 𝑝𝑢 and 𝑟𝑖𝑡 and the new 

variables 𝑓𝑖𝑢𝑞𝑡: 

𝑝𝑢 = ∑ ∑∑𝑓𝑖𝑢𝑞𝑡

𝑚

𝑡=𝑞

𝑚

𝑞=𝑢𝑖∈𝑁𝑐
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𝑟𝑖𝑡 = ∑∑𝑓𝑖𝑢𝑡𝑞

𝑚

𝑞=𝑡

𝑡

𝑢=1

 

The resulting formulation is as follows: 

 

FIFL-WI: Min ∑∑ℎ𝑖𝐼𝑖𝑡
𝑖∈𝑁𝑡∈𝑇

+∑𝐶𝑆𝑦0𝑡
𝑡∈𝑇

+ ∑∑𝐶𝐷𝑖𝑡
𝑡∈𝑇

𝑦𝑖𝑡
𝑖∈𝑁𝑐

 

 

(11) 

 

S.T. ∑∑𝑓𝑖𝑢𝑞𝑡

𝑡

𝑞=𝑢

𝑡

𝑢=1

= 𝑑𝑖𝑡 ∀𝑖 ∈ 𝑁𝑐, ∀𝑡 ∈ 𝑇 (12) 

 

𝐼𝑖,𝑡−1 +∑∑𝑓𝑖𝑢𝑡𝑞

𝑚

𝑞=𝑡

𝑡

𝑢=1

= 𝑑𝑖𝑡 + 𝐼𝑖,𝑡 ∀𝑖 ∈ 𝑁𝑐, ∀𝑡 ∈ 𝑇 (13) 

 

𝐼0,𝑡−1 + ∑∑∑𝑓𝑖𝑡𝑞𝑢

𝑚

𝑢=𝑞

𝑚

𝑞=𝑡𝑖∈𝑁𝑐

= ∑ ∑∑𝑓𝑖𝑢𝑡𝑞

𝑚

𝑞=𝑡

𝑡

𝑢=1𝑖∈𝑁𝑐

+ 𝐼0𝑡 ∀𝑡 ∈ 𝑇 (14) 

 

∑𝑓𝑖𝑢𝑞𝑡

𝑡

𝑞=𝑢

≤ 𝑑𝑖𝑡𝑦0𝑢 
∀𝑖 ∈ 𝑁𝑐,  

1 ≤ 𝑢 ≤ 𝑡 ≤ 𝑚 (15) 

 

∑𝑓𝑖𝑢𝑞𝑡

𝑞

𝑢=1

≤ 𝑑𝑖𝑡𝑦𝑖𝑞 
∀𝑖 ∈ 𝑁𝑐, 

1 ≤ 𝑞 ≤ 𝑡 ≤ 𝑚 
(16) 

 𝑦0𝑡 ∈ {0,1} ∀𝑡 ∈ 𝑇 (17) 

 𝑦𝑖𝑡 ≥ 0 ∀𝑖 ∈ 𝑁𝑐, ∀𝑡 ∈ 𝑇 (18) 

 

The objective function (11) minimizes the sum of the inventory cost, production setup 

cost, and delivery setup cost. As we have discussed in the Section 3.1, we exclude the 

variable production cost and the variable delivery cost in the objective function for the 

sake of simplicity: 

 𝐼𝑖𝑡 ≥ 0, ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (19) 

 𝑓𝑖𝑢𝑞𝑡 ≥ 0 ∀𝑖 ∈ 𝑁𝑐, 1 ≤ 𝑢

≤ 𝑞 ≤ 𝑡 ≤ 𝑚 
(20) 
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∑ ∑∑∑𝐶𝑈𝑓𝑖𝑢𝑞𝑡

𝑚

𝑡=𝑞

𝑚

𝑞=𝑢

𝑚

𝑢=1𝑖∈𝑁𝑐

+ ∑ ∑∑∑𝐶𝑇𝑖𝑓𝑖𝑢𝑡𝑞

𝑚

𝑞=𝑡

𝑚

𝑡=𝑢

𝑚

𝑢=1𝑖∈𝑁𝑐

 

Constraints (12) state that all the demand must be satisfied. Constraints (13) and (14) 

ensure the inventory balance at the retailers and the plant. Constraints (15) and (16) 

enforce a setup if any production or delivery is made. Constraints (17) - (20) are the non-

negativity and binary constraints. Note that in constraint (17), although 𝑦𝑖𝑡 (∀𝑖 ∈ 𝑁𝑐, ∀𝑡 ∈

𝑇) is defined as a continuous variable, it naturally takes integral value of 0 or 1 in the 

optimal solution.  The proof of this proposition can be found in Solyalı and Süral (2012).  

Reformulation without inventory variables 

In the four index facility location formulation, the four index decision variable 𝑓𝑖𝑢𝑞𝑡 

itself contains the information of when the product is produced, delivered and consumed. 

Therefore, inventory quantities at the plant and retailers at every period are fixed and 

computable once the values of 𝑓𝑖𝑢𝑞𝑡  have been determined. Let 𝐻𝑖𝑞𝑡 (∀𝑖 ∈ 𝑁, 1 ≤ 𝑞 ≤

𝑡 ≤ 𝑚) be the holding cost of keeping one unit of products at facility i through periods q 

to t. 𝐻𝑖𝑞𝑡 can be calculated as: 

𝐻𝑖𝑞𝑡 = (𝑞 − 𝑡)ℎ𝑖 

For example, 𝐻0,1,5 is the total holding cost at the plant for one unit of product that is 

produced in period 1 and delivered to the retailer in period 5, while 𝐻1,1,5 is the total 

holding cost at retailer 1 for keeping one unit of product that is delivered in period 1 and 

consumed in period 5. When q equals t, it indicates that this unit arrives at the facility 

(either by production or delivery) and leaves it in the same period and thus no inventory 

is incurred. With this new parameter, the inventory decision variables and the inventory 

balance constraints can be taken out to simplify the formulation. Constraints (13), (14) 

and (19) are removed and the objective function is replaced by (21). The formulation then 

becomes: 

FIFL: Min ∑ ∑∑∑(𝐻𝑖𝑞𝑡 + 𝐻0𝑢𝑞)𝑓𝑖𝑢𝑞𝑡

𝑚

𝑡=𝑞

𝑚

𝑞=𝑢

𝑚

𝑢=1𝑖∈𝑁𝑐

+∑𝐶𝑆𝑦0𝑡
𝑡∈𝑇

+ ∑∑𝐶𝐷𝑖𝑡
𝑡∈𝑇

𝑦𝑖𝑡
𝑖∈𝑁𝑐

 (21) 

 

S.T.    (12), (15) - (18) and (20) 
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Note that after the reformulation without inventory variable, the FIFL formulation 

can no longer accommodate initial inventory. In order to deal with initial inventory at the 

plant, we need to introduce a new set of decision variable. Let 𝑓𝑖0𝑞𝑡 (∀𝑖 ∈ 𝑁𝑐, 1 ≤ 𝑞 ≤

𝑡 ≤ 𝑚) be the amount of initial inventory that is delivered to retailer 𝑖 in period q to satisfy 

the demand of period t. 

FIFL-II: Min ∑ ∑∑∑(𝐻𝑖𝑞𝑡 +𝐻0𝑢𝑞)𝑓𝑖𝑢𝑞𝑡

𝑚

𝑡=𝑞

𝑚

𝑞=𝑢

𝑚

𝑢=1𝑖∈𝑁𝑐

+ ∑ ∑∑𝐻𝑖𝑞𝑡𝑓𝑖0𝑞𝑡

𝑚

𝑡=𝑞

𝑚

𝑞=1𝑖∈𝑁𝑐

  

 

+𝐻0,1,𝑚+1𝐼00 − ∑ ∑∑𝐻0𝑞,𝑚+1𝑓𝑖0𝑞𝑡

𝑚

𝑡=𝑞

𝑚

𝑞=1𝑖∈𝑁𝑐

+∑𝐶𝑆𝑦0𝑡
𝑡∈𝑇

 (22) 

 

+∑∑𝐶𝐷𝑖𝑡
𝑡∈𝑇

𝑦𝑖𝑡
𝑖∈𝑁𝑐

  

 

 

S.T.    (6), (15), (20) and  

 
∑∑𝑓𝑖𝑢𝑞𝑡

𝑞

𝑢=0

𝑡

𝑞=1

= 𝑑𝑖𝑡 ∀𝑖 ∈ 𝑁𝑐, ∀𝑡 ∈ 𝑇 (23) 

 

∑ ∑∑𝑓𝑖0𝑞𝑡

𝑚

𝑡=𝑞

𝑚

𝑞=1𝑖∈𝑁𝑐

≤ 𝐼00 ∀𝑖 ∈ 𝑁𝑐, 1 ≤ 𝑞 ≤ 𝑡 ≤ 𝑚 (24) 

 
∑𝑓𝑖𝑢𝑞𝑡

𝑞

𝑢=0

≤ 𝑑𝑖𝑡𝑦𝑖𝑞 ∀𝑖 ∈ 𝑁𝑐, 1 ≤ 𝑞 ≤ 𝑡 ≤ 𝑚 (25) 

 

 

The objective function (22) minimizes the total cost. As initial inventory is used, this 

potentially incurs inventory costs at the plant, inventory cost at the retailers and setup cost 

of delivery. The third term imposes the total inventory costs of initial inventory at the 

plant throughout the planning horizon assuming the initial inventory never leaves the plant. 

 𝑓𝑖0𝑞𝑡 ≥ 0 ∀𝑖 ∈ 𝑁𝑐, 1 ≤ 𝑞 ≤ 𝑡 ≤ 𝑚 (26) 
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When initial inventory is actually used and leaves the plant, the fourth term deducts the 

corresponding inventory cost at the plant. By doing so, inventory cost at the plant is 

properly accounted for even when part or the whole of initial inventory is not used.  

Constraints (12) and (16) are replaced by (23) and (25) respectively to accommodate 

the new variables. Constraint (24) is added to ensure that not more initial inventory is 

used than available. Since initial inventory is introduced, the integer setup variables of 

delivery can no longer be relaxed since initial inventory serves as an alternative source of 

limited capacity. Therefore 𝑦𝑖𝑡  (∀𝑖 ∈ 𝑁𝑐 ) no longer naturally takes integral values. 

Constraints (17) and (18) are replaced by (6) to ensure setup variables take binary values. 

3.3 A Combined Transportation and Shortest Path Formulation 

 This formulation was introduced by Solyalı and Süral (2012) and is denoted as SP. A 

new set of parameters 𝐺𝑖𝑡𝑘  is introduced. Let 𝐺𝑖𝑡𝑘 = ∑ ℎ𝑖 × 𝑑𝑖,𝑙+1,𝑘
𝑘−1
𝑙=𝑡  be the total 

holding cost of satisfying the demand of retailer 𝑖  (∀𝑖 ∈ 𝑁𝑐 ) from period 𝑡  to 𝑘  by 

delivering in period 𝑡 (1 ≤ 𝑡 ≤ 𝑘 ≤ 𝑚). The cost 𝐺𝑖𝑡𝑘 can be viewed as the distance of 

an arc that connects point t and point k. In the optimal solution, a series of arcs are chosen 

to connect the starting point (period 1) to the end point (period m) with the shortest 

distance. Therefore, the lot sizing problem at the retailer level can be considered to be  

represented by a shortest path problem.  

On the other hand, instead of assigning a binary variable to 𝐺𝑖𝑡𝑘to indicate whether 

an arc is chosen or not, new set of decision variables are introduced. Let 𝑢𝑖𝑘𝑞𝑡 represent 

the fraction of the total demand at retailer 𝑖 (∀𝑖 ∈ 𝑁𝑐) from period 𝑞 to t that is satisfied 

by products produced in period 𝑘 and delivered in period q (1 ≤ 𝑘 ≤ 𝑞 ≤ 𝑡 ≤ 𝑚). The 

sum  ∑ 𝑢𝑖𝑘𝑞𝑡
𝑞
𝑘=1   represents the fraction of the total demand at retailer 𝑖 (∀𝑖 ∈ 𝑁𝑐) from 

period 𝑞 to t that is satisfied by products delivered in period 𝑞 (1 ≤ 𝑘 ≤ 𝑞 ≤ 𝑡 ≤ 𝑚). 

Therefore, the variables still keep track of the products from its production and delivery 

at the plant level.  

The complete formulation uses a shortest path-based formulation to represent the lot 

sizing problems at the retailer level, and facility location type representation for the plant 

level. The SP formulation is as follows: 
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SP: Min ∑ ∑∑∑𝐻0𝑘𝑞𝑑𝑖𝑞𝑡𝑢𝑖𝑘𝑞𝑡

𝑞

𝑘=1

𝑚

𝑡=𝑞

𝑚

𝑞=1𝑖∈𝑁𝑐

+ ∑ ∑∑∑𝐺𝑖𝑞𝑡𝑢𝑖𝑘𝑞𝑡

𝑞

𝑘=1

𝑚

𝑡=𝑞

𝑚

𝑞=1𝑖∈𝑁𝑐

   

(27) 

 +∑𝐶𝑆𝑦0𝑡
𝑡∈𝑇

+ ∑∑𝐶𝐷𝑖𝑡
𝑡∈𝑇

𝑦𝑖𝑡
𝑖∈𝑁𝑐

  

S.T. (17), (18) and 

 
∑𝑢𝑖11𝑡 = 1

𝑚

𝑡=1

 ∀𝑖 ∈ 𝑁𝑐 (28) 

 

∑∑𝑢𝑖𝑞𝑡𝑘

𝑡

𝑞=1

𝑚

𝑘=𝑡

−∑∑𝑢𝑖𝑞𝑘,𝑡−1

𝑘

𝑞=1

𝑡−1

𝑘=1

= 0 
∀𝑖 ∈ 𝑁𝑐 

2 ≤ 𝑡 ≤ 𝑚 
(29) 

 

∑∑𝑎𝑖𝑘𝑟𝑢𝑖𝑞𝑘𝑟

𝑚

𝑟=𝑡

𝑡

𝑘=𝑞

≤ 𝑦0𝑞 
∀𝑖 ∈ 𝑁𝑐 

1 ≤ 𝑞 ≤ 𝑡 ≤ 𝑚 
(30) 

 

∑∑𝑎𝑖𝑞𝑡𝑢𝑖𝑘𝑞𝑡

𝑞

𝑘=1

𝑚

𝑡=𝑞

≤ 𝑦𝑖𝑞 
∀𝑖 ∈ 𝑁𝑐 

1 ≤ 𝑞 ≤ 𝑚 
(31) 

 𝑢𝑖𝑢𝑞𝑡 ≥ 0 ∀𝑖 ∈ 𝑁𝑐, 

1 ≤ 𝑢 ≤ 𝑞 ≤ 𝑡 ≤ 𝑚 
(32) 

The objective function (27) minimizes inventory cost, production setup cost and 

delivery setup cost. Similar to the previous formulations, we take out the following 

redundant parts of the objective function:  

∑ ∑∑∑𝐶𝑈𝑑𝑖𝑞𝑡𝑢𝑖𝑘𝑞𝑡

𝑞

𝑘=1

𝑚

𝑡=𝑞

𝑚

𝑞=1𝑖∈𝑁𝑐

+ ∑ ∑∑∑𝐶𝑇𝑖𝑑𝑖𝑞𝑡𝑢𝑖𝑘𝑞𝑡

𝑞

𝑘=1

𝑚

𝑡=𝑞

𝑚

𝑞=1𝑖∈𝑁𝑐

 

 Constraints (28) and (29) are the shortest path representation of the lot sizing problem 

at retailer level. Constraints (30) and (31) impose setup cost for production and delivery 

respectively. Constraint (32) ensures non negativity.  
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Extension to initial inventory at the plant: 

SP-II: Min ∑ ∑∑∑𝐺𝑖𝑞𝑡𝑢𝑖𝑘𝑞𝑡

𝑞

𝑘=0

𝑚

𝑡=𝑞

𝑚

𝑞=1𝑖∈𝑁𝑐

+ ∑ ∑∑∑𝐻0𝑘𝑞𝑑𝑖𝑞𝑡𝑢𝑖𝑘𝑞𝑡

𝑞

𝑘=1

𝑚

𝑡=𝑞

𝑚

𝑞=1𝑖∈𝑁𝑐

  

 

+𝐻01,𝑚+1𝐼00 − ∑ ∑∑𝐻0𝑞,𝑚+1𝑑𝑖𝑞𝑡𝑢𝑖0𝑞𝑡

𝑚

𝑡=𝑞

𝑚

𝑞=1𝑖∈𝑁𝑐

+∑𝐶𝑆𝑦0𝑡
𝑡∈𝑇

 (33) 

 

+∑∑𝐶𝐷𝑖𝑡
𝑡∈𝑇

𝑦𝑖𝑡
𝑖∈𝑁𝑐

  

 

S.T.  (6), (30), (32) 

 
∑𝑈𝑖11𝑡

𝑚

𝑡=1

+∑𝑈𝑖01𝑡

𝑚

𝑡=1

= 1 ∀𝑖 ∈ 𝑁𝑐 (34) 

 

∑∑𝑈𝑖𝑞𝑡𝑘

𝑡

𝑞=0

𝑚

𝑘=𝑡

−∑∑𝑈𝑖𝑞𝑘,𝑡−1

𝑘

𝑞=0

𝑡−1

𝑘=1

= 0 ∀𝑖 ∈ 𝑁𝑐, 2 ≤ 𝑡 ≤ 𝑚 (35) 

 

∑ ∑∑𝑈𝑖0𝑞𝑡𝑑𝑖𝑞𝑡

𝑚

𝑡=𝑞

𝑚

𝑞=1𝑖∈𝑁𝑐

≤ 𝐼00  (36) 

 

∑∑𝑎𝑖𝑞𝑡𝑈𝑖𝑘𝑞𝑡

𝑞

𝑘=0

𝑚

𝑡=𝑞

≤ 𝑦𝑖𝑞 ∀𝑖 ∈ 𝑁𝑐, 1 ≤ 𝑞 ≤ 𝑚 (37) 

 𝑈𝑖0𝑞𝑡 ≥ 0 ∀𝑖 ∈ 𝑁𝑐, 1 ≤ 𝑞 ≤ 𝑡 ≤ 𝑚 (38) 

 

In order to incorporate initial inventory, similar modifications are needed as those are 

made for the four index facility location formulation. Objective function (33) minimizes 

the total cost. The objective function first imposes the inventory cost of initial inventory 

at the plant throughout the planning horizon and then deducts the inventory cost of the 

units that are delivered to the retailers.  

Constraints (28) and (29) are replaced by (34) and (35) respectively to accommodate 

the new initial inventory variables. Constraint (36) ensures that the total initial inventory 

used does not exceed the available amount. Setup variables for delivery 𝑦𝑖𝑡 (𝑖 ∈ 𝑁𝑐) no 
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longer naturally takes integral values. Constraints (17) and (18) are replaced by constraint 

(6) to ensure setup variables take binary values. 

3.4 Computational Results 

The data sets we used for our experiments are taken from the test instances used by 

Solyalı and Süral (2012). The data sets include production setup cost, delivery setup cost, 

holding cost at the plant, holding cost at the retailers. The production setup cost is static 

throughout the time horizon for each instance. In different instances, the production setup 

cost can be different and follows a uniform distribution in the range between 1500 and 

4500. The delivery setup cost was randomly generated following a uniform distribution 

in the range between 5 and 100. The delivery setup cost differs between retailers and is 

dynamic through the time horizon. The holding cost at the plant is constant at 0.5 per unit 

per period. The holding cost at the retailers is randomly generated following a uniform 

distribution in the range between 0.5 and 1. It differs from retailer to retailer, but for each 

retailer it remains static throughout the time horizon.  

In this thesis, we assume that all demands have to be satisfied. Therefore the total 

number of products that will be produced and transported to the retailers is fixed and 

independent of production plans and delivery plans. For this reason, we have removed the 

constant production cost and transportation cost from the formulations in the experiments. 

Table 3 summarizes the cost parameters that are used by Solyalı and Süral (2012).  

 Cost Time (In)Variance 

Production Setup 1500-4500 Static 

Delivery Setup 5-100 Time-Variant 

Holding one unit at the Plant 0.5 Static 

Holding one unit at Retailers 0.5-1.0 Static 

Producing one unit - - 

Delivering one unit - - 

Table 3. Characteristics of the Cost Parameters 

Instances can have 50, 100 or 150 retailers. The time horizon consists of 15 or 30 

periods. Every combination of number of retailers and time horizon consists of 10 

instances without initial inventory and 10 instances with initial inventory. In total there 
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are 120 different instances and we test them with each of the previously discussed 

formulations. 

The formulations were coded in a JAVA environment with CPLEX 12.6.0.1. Each 

instance was solved on one out of two Intel(R) Xeon(R) CPU X5675 3.07 GHz processors 

of a machine with 96 GB of RAM. The optimality tolerance was set to 10−6 using a single 

thread. The computation is stopped when the time used exceeds 7200 seconds.  

We first test two versions of the four index facility location formulation, the one with 

inventory variables (FIFL-WI) and the reformulated one without inventory variables 

(FIFL) discussed in Section 3.2. The faster one out of the two is then chosen to be 

compared with the basic formulation and the combined transportation and shortest path 

formulation. Table 4 shows the average CPU time (in seconds) needed to solve the 

OWMR problem using these two formulations. The reformulation without inventory 

variables is significantly faster than the FIFL-WI. 

    

Retailers Periods  FIFL-WI  FIFL 

50 15  2.2  1.1 

100 15  4.1  2.8 

150 15  6.5  3.7 

50 30  26.6  8.6 

100 30  92.9  24.1 

150 30  166.0  38.0 

Average   49.7  13.1 

Table 4. CPU Times of FIFL-WI and FIFL of Instances without Initial Inventory 

Table 5 summarizes the computational results for BF, SP and FIFL on instances 

without initial inventory and Table 6 summarizes the results on instances with initial 

inventory. Instances with 15 periods are solved to optimality by all formulations within 

7200 seconds. Instances with 30 periods are solved to optimality by SP, SP-II, FIFL and 

FIFL-II but not BF. The column MILP Time indicates the average time used to solve an 

instance in seconds. LP Time indicates time needed to solve the problem when the binary 

variables are relaxed as continuous variables. The last column shows the average gap 

when the binary constraints are relaxed. All values are the average results over 10 

instances with the same size. 
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Table 5. Computational results for BF, SP and FIFL without initial inventory  

 

Table 6. Computational Results for BF, SP-II and FIFL-II with Initial Inventory  

The results show that both the number of retailers and the number of periods have a 

considerable impact on the computation time. Increasing these two numbers, especially 

the number of periods, significantly increases the computation time. In all instances with 

30 periods, the basic formulation fails to solve the problem to optimality within 7200 

seconds.  

The BF appears to be inferior to the other formulations not only with respect to the 

solution time, but also with respect to the LP relaxation gap. The BF has gaps of around 

70%, while SP and FIFL have an average initial gap of as little as 0.03% for instances 

without initial inventory, and SP-II and FIFL-II have an average gap of around 1% for 

instances with initial inventory. The average initial gaps of SP, SP-II, FIFL and FIFL-II 

obtained from our experiments are exactly the same as those reported by Solyalı and Süral 

(2012). The shortest path formulations and the four index facility location formulations 

have the same size of gap in almost all instances. However, in certain instances, the 

shortest path formulations provide a slightly better LP gap than the four index facility 

location formulations. This result is aligned with the theorems proved by Solyalı and Süral 

(2012) that SP has an equal or better LP gap compared to FIFL, and SP-II has an equal or 

better gap compared to FIFL-II. 

Retailers Period MILP  Time LP Time GAP MILP  Time LP Time GAP MILP  Time LP Time GAP

50 15 0 30.8 0.1 68.17% 1.2 0.9 0.00% 1.1 0.7 0.00%

100 15 0 161.4 0.1 71.34% 2.8 1.3 0.02% 2.8 1.8 0.02%

150 15 0 402.2 0.2 72.29% 4.1 1.9 0.02% 3.7 2.6 0.02%

50 30 0 >7200 - - 12.8 4.4 0.03% 8.6 3.5 0.03%

100 30 0 >7200 - - 33.9 9.6 0.05% 24.1 9.5 0.05%

150 30 0 >7200 - - 42.3 45.5 0.03% 38.0 21.3 0.03%

Average - - - 16.2 10.6 0.03% 13.1 6.6 0.03%

BF SP FIFL

   

Retailers Period MILP  Time LP Time GAP MILP  Time LP Time GAP MILP  Time LP Time GAP

50 15 >0 33.4 0.1 68.21% 5.3 0.9 1.62% 2.6 0.9 1.63%

100 15 >0 291.7 0.1 71.35% 14.0 2.9 1.19% 8.0 2.1 1.19%

150 15 >0 371.4 0.2 72.26% 28.0 3.9 1.01% 18.7 2.7 1.01%

50 30 >0 >7200 - - 30.3 6.6 1.02% 19.7 4.6 1.02%

100 30 >0 >7200 - - 103.4 15.3 0.61% 57.6 9.7 0.61%

150 30 >0 >7200 - - 337.7 33.9 0.57% 72.2 27.0 0.57%

Average - - - 86.5 10.6 1.00% 29.8 7.8 1.01%

BF SP-II FIFL-II
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With respect to speed, our results shows that FIFL and FIFL-II are faster in almost 

all instances. However in results presented by Solyalı and Süral (2012) experiments, SP 

and SP-II are slightly faster than FIFL and FIFL-II, which is contradictory to our results. 

This may be caused by the difference in CPLEX version or hardware.   
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4. Incorporating a Global Emission Constraint: Formulations 

and Computational Results 

 Based on the three known formulations for the OWMR problem, we propose three 

formulations with a global emission constraint. Most studies assume that carbon emission 

amount is correlated to energy consumption. For example, Girod et al. (2013) assume that 

when fossil fuel is used, 71.5 tons of  𝐶𝑂2 are emitted while consuming one terajoule 

energy. This emission factor, together with other factors such as transportation mode, 

vehicle types and fuel types, are used to calculate the final emission amount. Palak, 

Ekşioğlu and Geunes (2014) divide transportation related emission into a variable part 

and a fixed part, in which the fixed part comes mainly from the loading and unloading 

process. They also consider inventory related emissions due to the heating or cooling 

system at the facility. To properly account for all sources of emission,  our model uses a 

similar approach and takes into account emissions from all activities,  including 

production setups, delivery setups, inventory holding at the plant and at the retailers. For 

the sake of brevity, we only discuss here the formulations with initial inventory. The 

notation for emission parameters is as follows: 

𝐸𝐶 The global emission cap over the entire planning horizon  

𝐸𝑇𝑖 Emission of transporting one unit of product from the plant to retailer 𝑖, 

∀𝑖 ∈ 𝑁𝑐 

 

𝐸𝐼𝑖 Emission of keeping one unit of inventory at facility 𝑖, ∀𝑖 ∈ 𝑁  

𝐸𝑆 Emission of production setup  

𝐸𝐷𝑖𝑡 Emission of delivery setup which occurs when products are delivered to 

retailer 𝑖 in period 𝑡, , ∀𝑖 ∈ 𝑁𝑐, ∀𝑡 ∈ 𝑇 

 

𝐸𝑃 Emission of producing one unit of product 
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4.1 Basic Formulation with Emission 

 This formulation is the same as the basic formulation, except that a global emission 

constraint (39) is imposed to limit the total emission. The constraint is similar to the 

objective function (10) in its structure, and requires that the total emission cannot exceed 

a global emission cap. 

BF-E: Min (10) 

    S.T. (2) - (9) and  

 
∑∑𝐸𝐼𝑖

𝑖∈𝑁𝑡∈𝑇

𝐼𝑖𝑡 +∑𝐸𝑆𝑦0𝑡
𝑡∈𝑇

+ ∑∑𝐸𝐷𝑖𝑡𝑦𝑖𝑡
𝑡∈𝑇𝑖∈𝑁𝑐

≤ 𝐸𝐶 

 

(39) 

 

  The total emission accounts for the emission of keeping inventory both at the plant 

and the retailers, the emission of production setup and the emission of delivery setup. 

Note that in general, emission also comes from the unit production and delivery. The sum 

of their variable emission of production and delivery is: 

∑𝐸𝑃𝑝𝑡
𝑡∈𝑇

+∑∑ 𝐸𝑇𝑖𝑟𝑖𝑡
𝑖∈𝑁𝑐𝑡∈𝑇

 

However, similar to the variable production cost and variable delivery cost, we assume 

that these two emission parameters are time-invariant. Since we have a global emission 

constraint, the total production and delivery quantities are constant, and their effect on 

emissions is hence also constant. To simplify the emission constraint, we leave out these 

two terms.  

4.2 Four Index Facility Location Formulation with Emission 

To calculate the emission amount, we introduce a new parameter that is similar to 

𝐻𝑖𝑢𝑡. We denote by 𝐸𝐻𝑖𝑢𝑡 = (𝑡 − 𝑢)𝐸𝐼𝑖 the emission of holding one unit of inventory at 

facility 𝑖 (∀𝑖 ∈ 𝑁) from period 𝑢 to 𝑡 (1 ≤ 𝑢 ≤ 𝑚, 𝑢 ≤ 𝑡 ≤ 𝑚 + 1). This formulation is 

the same as FIFL-II, except that a global emission constraint (40) is imposed. 

FIFL-E: Min (11) 

S.T. (12) - (20) and 
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∑ ∑∑∑(𝐸𝐻𝑖𝑞𝑡 + 𝐸𝐻0𝑢𝑞)𝑓𝑖𝑢𝑞𝑡

𝑚

𝑡=𝑞

𝑚

𝑞=𝑢

𝑚

𝑢=1𝑖∈𝑁𝑐

+ ∑ ∑∑𝐸𝐻𝑖𝑞𝑡𝑓𝑖0𝑞𝑡

𝑚

𝑡=𝑞

𝑚

𝑞=1𝑖∈𝑁𝑐

 
 

 

+𝐸𝐻01,𝑚+1𝐼00 − ∑ ∑∑𝐸𝐻0𝑞,𝑚+1𝑓𝑖0𝑞𝑡

𝑚

𝑡=𝑞

𝑚

𝑞=1𝑖∈𝑁𝑐

+∑𝐸𝑆𝑦0𝑡
𝑡∈𝑇

 (40) 

 

+∑∑𝐸𝐷𝑖𝑡𝑦𝑖𝑡
𝑡∈𝑇

≤ 𝐸𝐶

𝑖∈𝑁𝑐

  

Constraint (40) limits the total emission under the global emission cap. The structure 

of the constraint is similar to the objective function (11). The first term of the objective 

function accounts for the emission of keeping inventory at the retailers and at the plant. 

The last two terms account for the emission incurred by production setups and delivery 

setups. The remaining three terms in the middle account for the inventory holding 

emission for the initial inventory. For the inventory holding emission at the plant, we 

apply the same technique to calculate the emission amount: The third term in constraint 

(40) imposes the total inventory emissions for the initial inventory at the plant throughout 

the planning horizon, assuming the initial inventory never leaves the plant. When the 

products leave the plant, the fourth term deducts the corresponding inventory holding 

emission at the plant.   

4.3 A Combined Transportation and Shortest Path Formulation with 

Emission 

A new parameter similar to 𝐺𝑖𝑡𝑘  is introduced to record the emission amount. 

𝐸𝐺𝑖𝑡𝑘 = ∑ 𝐸𝐼𝑖 ∗ 𝑑𝑖,𝑙+1,𝑘
𝑘−1
𝑙=𝑡  is defined as the total holding emission of satisfying demand 

of retailer 𝑖 (∀𝑖 ∈ 𝑁𝑐) from period 𝑡 to 𝑘 by delivering products in period 𝑡 (1 ≤ 𝑡 ≤ 𝑘 ≤

𝑚). 

SP-E:  Min (27) 

S.T. (17), (18), (28) - (32) and 

 



29 

 

 
∑ ∑∑∑𝐸𝐺𝑖𝑞𝑡𝑈𝑖𝑘𝑞𝑡

𝑞

𝑘=0

𝑚

𝑡=𝑞

𝑚

𝑞=1𝑖∈𝑁𝑐

+ ∑ ∑∑∑𝐸𝐻0𝑘𝑞𝑑𝑖𝑞𝑡𝑈𝑖𝑘𝑞𝑡

𝑞

𝑘=1

𝑚

𝑡=𝑞

𝑚

𝑞=1𝑖∈𝑁𝑐

  

 
+𝐸𝐻01,𝑚+1𝐼00 − ∑ ∑∑𝐸𝐻0𝑞,𝑚+1𝑑𝑖𝑞𝑡𝑈𝑖0𝑞𝑡

𝑚

𝑡=𝑞

𝑚

𝑞=1𝑖∈𝑁𝑐

+∑𝐸𝑆𝑦0𝑡
𝑡∈𝑇

 (41) 

 
+∑∑𝐸𝐷𝑖𝑡𝑦𝑖𝑡

𝑡∈𝑇𝑖∈𝑁𝑐

+ ∑∑𝐶𝐷𝑖𝑡
𝑡∈𝑇

𝑦𝑖𝑡
𝑖∈𝑁𝑐

≤ 𝐸𝐶  

The global emission constraint limits the total amount of emissions of various 

activities. The first term accounts for the emission from inventory holding at the retailers. 

The second, third and fourth terms together account for the emission from inventory 

holding at the plant. The last two terms account for the emission of delivery setup and 

production setup respectively. 

4.4 Introduction of the Data Set with Emission Parameters 

Due to the lack of existing data set with emission parameters for the OWMR, we 

adapt the instances of Solyalı and Süral (2012) by generating new sets of emission 

parameters. The generated emission parameters are combined with the cost parameters in 

the data set provided by Solyalı and Süral (2012) to form a data set with both costs and 

emissions for the following four activities: production setup, delivery setup, inventory 

holding at the plant, inventory holding at the retailers. 

Since the emission intensity is usually related to energy consumptions, which is also 

a major component of the various costs, we assume that the amount of emission is 

correlated with the cost of the corresponding activity with a certain level of deviation. We 

consider three levels for the correlation between the cost and emission parameters. For 

the first level of correlation, we allow a 50% positive or negative deviation for the 

emission parameters, with respect to the cost of the corresponding parameter. This means 

that for each activity (i.e. inventory holding, production setup and delivery setup), the 

emission amount can be within [50%, 150%] of the corresponding cost. The exact 

deviation is taken from a uniform distribution within this range. For example, for a plant 

with production setup cost of 2000, the production setup emission is generated within the 
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range [1000, 3000] following a uniform distribution. The two other levels of correlation 

are obtained by allowing a maximum deviation of 20% and 100%. We consider instances 

with a 50% maximum deviation for the purpose of comparing between the formulations. 

The other two data sets are tested for the purpose of an analysis on the emission amount 

in Section 5. 

We tailor the emission cap parameters for each instance instead of applying a random 

generation. When the emission cap is too tight, there will be no feasible solution for the 

problem. On the other hand, when the emission cap is more than ample, it becomes non-

binding and will not have any effect on the solution cost. Therefore, in order to have a fair 

comparison between the instances, we calculate the upper bounds and lower bound for 

the emission cap, within which the emission cap is binding for the problem and at the 

same time allows feasible solutions. Then we run a series of experiments in which the 

emission cap is gradually tightened, from the upper bound to the lower bound. 

An upper bound on the emission cap is defined as the minimum emission amount 

needed in a cost-optimal solution. Any solution that needs an emission amount higher 

than the upper bound is inefficient because such a solution can be improved by either 

reducing the cost without increasing the emission amount, or by reducing the emission 

amount without increasing cost. 

An upper bound on the emission cap can be obtained through two steps. First, we 

minimize the total cost regardless of the emission constraint and record the optimal cost. 

Second, we minimize the emission amount while constraining the cost to be the optimal 

cost. The second step is necessary because there may exist alternative solutions which 

give the same optimal cost but have different emission amounts. This also suggests that 

companies can possibly reduce their emission amount slightly while keeping their costs 

at the optimal level. 

 A lower bound on the emission cap is defined as the minimum emission amount 

needed to provide a feasible solution. Imposing an emission cap lower than this lower 

bound will make the problem infeasible. A lower bound on the emission can be obtained 

by minimizing the emission amount while satisfying all demand, regardless of the costs. 

 Once we know the emission upper bound and lower bound, we can calculate the 
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Maximum Potential Reduction (MPR) on emissions using the following formula: 

𝑀𝑃𝑅 =  
𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 − 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑
 

The larger the MPR is, the greater emission reduction we can potentially achieve 

compared to the base case where we only optimize the cost without taking into account 

an emission constraint. 

4.5 Computational Results with an Emission Constraint 

For each instance, we run 20 experiments with different levels for the emission cap. 

In the first experiment, the emission cap is set to be: 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐶𝑎𝑝 =  𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 −  𝑀𝑃𝑅 × 5% 

When solving such an instance, we obtain a solution for which the emission reduction 

corresponds to at least 5% of the maximum achievable reduction. Then in the next 

experiments, a tighter emission cap corresponding to a 10% MPR reduction is imposed. 

The emission cap is gradually tightened to 100% MPR reduction in the 20th experiment. 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐶𝑎𝑝 =  𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 −  𝑀𝑃𝑅 × 100% 

When the global emission constraint is imposed, BF-E takes more than 2 hours on average 

to solve even the smallest instance with 50 retailers and 15 periods. Therefore only results 

using FIFL-E and SP-E are presented. In order to have complete results on computation 

times, no time limit is set for FIFL-E and SP-E. All instances are solved to optimality. 

Table 7 and Table 8 show the CPU times for SP-E and FIFL-E respectively. 
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Table 7. CPU Times of FIFL-E 

 

Table 8. CPU Times of SP-E 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Average

retailers period

50 15 0 3 2 4 5 5 7 6 9 9 9 10 11 12 13 14 17 17 11 16 3 9

100 15 0 9 14 19 16 17 19 33 27 25 37 26 55 44 47 55 44 59 77 79 9 35

150 15 0 18 44 32 44 28 37 39 60 83 126 110 70 70 83 106 113 162 140 163 12 77

50 30 0 35 88 68 186 210 150 169 276 210 264 290 250 383 407 277 439 377 353 440 41 246

100 30 0 284 267 494 551 700 869 781 1243 1440 867 970 1118 1396 1200 1567 1573 1904 2088 1542 173 1051

150 30 0 358 392 783 630 911 1858 1747 1759 1687 1558 1868 2442 2341 2938 3505 2320 3471 2629 3005 248 1822

50 15 >0 10 11 10 21 14 18 15 19 20 19 21 25 22 27 27 29 26 30 28 11 20

100 15 >0 43 41 61 32 54 54 54 81 63 78 74 107 112 128 130 142 101 134 143 44 84

150 15 >0 91 151 98 126 99 113 125 130 146 171 155 158 162 151 162 196 162 176 173 39 139

50 30 >0 110 309 165 321 316 437 275 366 495 396 508 337 383 450 396 489 587 507 584 217 383

100 30 >0 497 775 1169 967 1476 1579 1590 2006 2619 2025 1756 2155 2028 2922 2566 2156 2178 2914 2143 873 1820

150 30 >0 549 1187 1415 1221 1508 2817 2561 3258 2746 3111 4268 3233 4049 4070 4244 3626 3675 3825 4711 1673 2887

Average 217 412 486 448 578 836 770 977 1015 967 1130 1003 1126 1291 1254 1106 1122 1264 1297 476 889

   

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Average

retailers period

50 15 0 5 4 5 6 9 14 8 11 8 9 12 12 13 18 19 21 19 15 30 3 12

100 15 0 10 17 19 15 23 28 41 27 40 70 50 54 69 86 79 104 110 96 90 8 52

150 15 0 23 30 37 48 32 51 85 66 93 137 126 123 127 136 173 205 185 223 211 12 106

50 30 0 41 86 86 184 225 233 264 350 410 282 378 286 501 420 559 496 489 462 659 32 322

100 30 0 185 405 720 566 1035 1058 1303 1331 1601 1383 1705 1786 2268 2480 2354 3068 3008 2648 2625 155 1584

150 30 0 883 1205 895 1395 1393 1564 3073 1768 2375 1065 2282 2324 2958 3003 3580 3310 3740 3689 4008 192 2235

50 15 >0 12 14 15 22 19 26 28 20 19 19 26 27 30 26 31 26 29 35 36 11 24

100 15 >0 60 69 71 76 80 90 88 125 95 116 109 138 118 122 167 166 147 204 191 54 114

150 15 >0 170 207 176 187 228 187 180 194 286 353 196 274 299 209 277 244 273 382 323 55 235

50 30 >0 175 234 235 367 515 382 484 419 661 519 523 552 476 622 580 732 848 734 671 247 499

100 30 >0 683 719 1151 953 1159 2088 1765 2089 2512 2334 2462 2814 2634 3407 3040 2712 3177 4171 3793 1201 2243

150 30 >0 841 1180 1900 2040 2136 2993 3912 2779 3882 4059 5713 4804 4229 5042 5331 6388 11137 14525 5947 3899 4637

Average 257 348 442 488 571 726 936 765 998 862 1132 1099 1144 1298 1349 1456 1930 2265 1549 489 1005
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Overall, FIFL-E performs consistently faster than SP-E. Results also reveal that as 

the emission cap gradually becomes tighter, the computation time tends to increase 

dramatically for both FIFL-E and SP-E, as shown by Figure 4. However, in the last 

experiment when the emission cap is set exactly to the lower bound, the computation 

time drops significantly.  

 

Figure 4. Comparison of Computation Time between FIFL-E and SP-E 

Table 9 shows the computation time of the OWMR and the OWMR-EC problem. 

The column OWMR indicates the average time consumed to solve an OWMR problem 

in seconds. Each number corresponds the average value over ten instances with the same 

size.  The column OWMR-EC indicates the average time consumed to solve an OWMR-

EC problem in seconds. Each instance is tested with twenty different emission caps 

shown in Table 7 and Table 8. Ten instances in each size are tested and therefore each 

value in the column OWMR-EC is the average time over 200 experiments. The values 

of third column OWMR− EC
OWMR⁄  is calculated as the value the average time needed to 

solve the OWMR-EC problems divided by the average time needed to solve the OWMR 

problems. As the size of the instances increases, the impact of the emission constraint 

on the computation time also increases. In the largest instances without initial inventory, 

the global emission constraint increases the computation time by up to 50 times 

approximately for both SP and FIFL. 
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Table 9. Average CPU Time of SP, SP-E, FIFL and FIFL-E 

 

 

  

SP (SP-II) SP-E FIFL (FIFL-II) FIFL-E

Retailers Period O WMR O WMR-EC O WRM O WMR-EC

50 15 0 1.2 12.0 1001% 1.1 9.2 836%

100 15 0 2.8 51.8 1849% 2.8 35.4 1264%

150 15 0 4.1 106.1 2589% 3.7 77.2 2085%

50 30 0 12.8 322.2 2517% 8.6 245.7 2857%

100 30 0 33.9 1584.2 4673% 24.1 1051.3 4362%

150 30 0 42.3 2235.1 5284% 38.0 1822.4 4796%

Average 16.2 718.6 2985% 13.1 540.2 2700%

50 15 >0 5.3 23.6 445% 2.6 20.1 772%

100 15 >0 14.0 114.3 817% 8.0 83.8 1047%

150 15 >0 28.0 235.1 839% 18.7 139.3 745%

50 30 >0 30.3 498.8 1646% 19.7 378.7 1923%

100 30 >0 103.4 2243.3 2170% 57.6 1819.8 3159%

150 30 >0 337.7 4636.9 1373% 72.2 2887.4 3999%

Average 86.5 1292.0 1215% 29.8 888.2 1941%

    −   
    ⁄   

    −   
    ⁄
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5. Analysis of Emissions  

As previously discussed in Section 4.5, we assume that emission amounts are 

proportional to the cost of the corresponding activities with a 50% maximum deviation. 

In reality, the emission amount may be more strongly correlated to the cost of the 

corresponding activities. Such circumstance can be found in energy intensive industries 

where energy usage incurs both cost and emission, and thus these two factors are 

strongly correlated. In some other industries, the opposite situation can be true where 

these two factors have a weak correlation (e.g. in industries where the production cost 

is mainly determined by the cost of labour). Therefore, in addition to the emission 

parameters with a 50% maximum deviation, we also generate and test emission 

parameters with a 20% maximum deviation and a 100% maximum deviation. These 

correspond to the high and low correlation case respectively. Our base case with the 50% 

maximum deviation corresponds to the medium correlation case. Using these different 

data sets, we analyze the costs and the emissions under different scenarios and examine 

their trade-off. 

5.1 Maximum Potential Reduction and Its Cost 

We have discussed the Maximum Potential Reduction (MPR) of emission in Section 

4.4, but the cost of achieving such reduction has not been discussed. As the emission 

amount in a cost-optimal solution is denoted as 100% emission budget, we also denote 

the cost in a cost-optimal solution as 100% cost, so that fair comparison can be made 

between instances. The Cost of Maximum Emission Reduction (CMER) is defined as 

the additional cost of the minimum emission solution compared to the minimum cost 

solution.  

𝐶𝑀𝐸𝑅 =  
𝐶𝑜𝑠𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝐶𝑜𝑠𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 𝑐𝑜𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝐶𝑜𝑠𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 𝑐𝑜𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 

Table 10 summarizes the MPR and CMER in different scenarios. A 20% deviation 

means that the emission parameters are highly correlated to the cost and 100% means 

that the data is weakly correlated to each other. It is clear from the table that, in scenarios 

where the emission parameters are weakly correlated to the cost parameters higher 

maximum emission reduction can potentially be achieved. 
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Table 10. Average Maximum Potential Reduction with Different Maximum Emission Deviations 

 As the emission parameters deviate farther from the corresponding costs, not only 

the MPR increases, the cost of achieving such a maximum reduction also increases. 

MCER increases even at a faster rate compared to MPR, indicating that the marginal 

cost of emission reduction is increasing. 

5.2 Cost Emission Trade-Off Curve 

In a series of experiments, we gradually tighten the emission cap from the upper 

bound to the lower bound, and analyze how the cost increases.  

Figure 5 displays an example of the aggregated trade-off curve over twenty 

instances (ten with initial inventory and ten without initial inventory) with 50 retailers 

and 15 periods and a medium correlation level. As we reduce the emission amount, the 

cost increases at an increasing speed. The first 1% emission reduction only incurs about 

0.13% extra cost while reducing emission by 2% results in about 0.83% of additional 

cost. The average maximum amount of emission reduction that can be achieved is 3.05% 

at a price of 3.75% cost on average.  

 

 

Emission Deviation

Retailers Periods MPR CMER MPR CMER MPR CMER
50 15 0 0.53% 0.46% 3.04% 3.82% 18.56% 32.59%

100 15 0 0.50% 0.46% 2.84% 3.65% 12.23% 21.06%

150 15 0 0.52% 0.53% 4.29% 5.03% 16.65% 24.20%

50 30 0 0.52% 0.52% 3.00% 3.19% 15.12% 20.74%
100 30 0 0.61% 0.63% 3.05% 3.47% 14.80% 24.45%

150 30 0 0.54% 0.53% 4.69% 4.21% 14.00% 24.54%

50 15 >0 0.43% 0.56% 3.05% 3.68% 18.11% 31.47%
100 15 >0 0.44% 0.43% 2.79% 3.51% 12.03% 20.39%

150 15 >0 0.54% 0.51% 4.31% 5.20% 16.94% 24.68%

50 30 >0 0.54% 0.54% 3.06% 3.18% 15.10% 20.50%
100 30 >0 0.58% 0.64% 2.97% 3.43% 14.68% 23.97%
150 30 >0 0.53% 0.54% 4.68% 4.41% 13.94% 24.23%

Average 0.52% 0.53% 3.48% 3.90% 15.18% 24.40%

20% 50% 100%
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Figure 5. Average Trade-Off Curve over Twenty Instances with 50 Retailers and 15 Periods (Medium Correlation) 

Figure 6 and Figure 7 show the aggregated trade-off curves of larger size instances 

with 100 retailers and 150 retailers respectively. These figures show similar results: the 

marginal cost of emission reduction tends to increase as higher levels of emission 

reduction needs to be achieved. 

 

Figure 6. Average Trade-Off Curve over Twenty Instances with 100 Retailers and 15 Periods (Medium Correlation) 

 

 

Figure 7. Average Trade-Off Curve over Twenty Instances with 150 Retailers and 15 Periods (Medium Correlation)  
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Note that in Figure 5, the curve is piecewise convex. To avoid the aggregation effect, 

we look at a specific instance in Figure 8. It displays the trade-off curve of one of the 

instances with 50 retailers and 15 periods. As the emission cap is gradually tightened 

from 100% to 96.6%, the cost rises in an increasing pace. Note that the curve is 

piecewise convex in two sections. The first section starts from 100% emission and ends 

at 97.3, and the second section covers the rest. Such a curve indicates that within each 

section, the marginal cost of reducing emission increases. In this case, reducing the 

emission by 2.4%, from 100% to 97.6% incurs 1% extra cost. However, if we continue 

to tighten the emission, only 0.3% reduction incurs almost another 1% extra cost. A 

similar pattern repeats within the second convex section.  

 When we look at the solution of each point on the graph, we can see that each 

convex section corresponds to one specific production setup plan at the plant. The light 

blue bars indicate in how many periods production setups are made out of 15 periods. 

All solutions in the first section have 5 production set-ups while the second have 6 

production setups.  

 

Figure 8. Trade-off Curve: An Instance with 50 Retailers and 15 Periods 
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6. Heuristics 

As shown by the results presented in the previous section, a global emission 

constraint significantly increases the computation time. In some cases, even the fastest 

formulation proposed in Section 4 cannot give an optimal solution in two hours. As an 

attempt to expedite the computation process, we propose several heuristics. We 

decompose the OWMR problem into two stages and apply different heuristics to each 

stage. We also extend the best heuristics to the solve OWMR-EC problem. 

At stage 1, we develop a production plan at the plant level. The production setup 

decisions are passed to stage 2 as inputs while the decisions on production quantity are 

discarded. In other words, stage 1 decides when to produce at the plant. We use two 

methods, namely the Simple Retailers Aggregation (SRA) and a Modified Silver-Meal 

approach (MSM) to produce the production setup plan at the plant. At stage 2, we take 

the decisions made at stage 1 as input, and develop the delivery plan for the retailers. 

Once the delivery plan for all retailers is produced, the production quantity is determined 

based on the delivery quantity and a solution to the OWMR problem is provided by the 

end of stage 2. We test three approaches at stage 2: optimization, optimization with 

Local Branching (LB) and a Time Partitioning Fix-and-Optimize (TP) method. The 

emission constraint has been ignored so far. At stage 3, we use an iterative Penalized 

Relaxation (PR) heuristic to find a feasible solution for the problem under the emission 

constraint. In the iteration process of PR, a series of OWMR problems are solved using 

the heuristics at stage 1 and stage 2. Figure 9 summarizes all the methods used in these 

three stages. 
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Figure 9. Summary of Methods Applied to Solve OWMR-EC at Various Stages 

6.1 Production Plan for the Plant 

 At this stage, the goal is to develop a production plan at the plant as an input for 

stage 2. At the end of stage 1, only the decisions on the production setups are passed on 

to stage 2 while the decisions on production quantity are discarded. In other words, stage 

1 aims to decide when to produce. The SRA method and MSM are applied and results 

are presented in Section 6.1.3. 

6.1.1 Simple Retailers Aggregation 

 To simplify the complexity of the OWMR problem, we aggregate all the retailers 

and treat them as one.  The demand of this aggregate retailer 𝑑0𝑡 (∀𝑡 ∈ 𝑇) is the sum of 

demands from all retailers, i.e., ∑ 𝑑𝑖𝑡
𝑛
𝑖=1 . The delivery setup cost for this retailer 𝐶𝐷0𝑡 

(∀𝑡 ∈ 𝑇 ) is the sum of delivery setup costs for all retailers, i.e., ∑ 𝐶𝐷𝑖𝑡
𝑛
𝑖=1 . After 

aggregating all the retailers, the structure of the supply chain becomes a two-level serial 

system. Nonetheless, it can also be viewed as a special case of the OWMR problem but 

with only one retailer. Therefore, we apply the FIFL formulation to solve this aggregated 

problem. The SRA works as follow: 

Step 1. Aggregate all retailers into one. 

Step 2. Optimize with FIFL. 

Step 3. Record the production setup decisions at the plant �̂�0𝑡((𝑡 ∈ 𝑇)). 
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6.1.2 Modified Silver-Meal Heuristic 

Instead of simply adding up demands from all retailers, an alternative to aggregating 

the retailers is to apply the Silver-Meal model to each retailer separately and then 

aggregate all the orders from the retailers as the demand for the plant.   

The original Silver-Meal heuristic was proposed by Silver and Meal (1973) to deal 

with the single-level dynamic lot sizing problem. This forward algorithm addresses the 

average cost per period and balance the trade-off between ordering cost (or setup cost) 

and inventory holding cost. Define 𝐴𝐶𝑡𝑘 as the average cost per period of placing an 

order at period t to cover the demands of the next k periods (including period t).  𝐴𝐶𝑡𝑘 

can be derived as: 

𝐴𝐶𝑡𝑘 = (𝑆 + ∑(𝑞 − 1)𝑑𝑡+q−1ℎ

𝑘

𝑞=1

)/𝑘 

where S is the ordering cost, 𝑑𝑡 is the demand at period t and ℎ is the holding cost per 

period. When 𝑘 = 1, an order is made to satisfy the demand in period t only. Since zero 

lead time is assumed, products arrive and are consumed in the same period and thus no 

inventory holding cost incurs. The procedure of Silver-Meal heuristic is as follows: 

Step 1. Set 𝑡 = 1. 

Step 2. Calculate the average cost 𝐴𝐶𝑡𝑘 for ascending integer values of k (starting at 1) until the 

average cost increases at time 𝑘∗ + 1 (𝐴𝐶𝑡,𝑘∗ ≤ 𝐴𝐶𝑡,𝑘∗+1). 

Step 3. The decision is made to place an order at period t to cover the demands of the next 𝑘∗ 

periods. 

Step 4. If the end of the planning horizon is reached, stop. Otherwise, set t equal to 𝑡 + 𝑘∗ and 

continue with Step 2. 

The Silver-Meal heuristic cannot be applied directly to each retailer because the 

delivery setup cost is dynamic while the Silver-Meal heuristic assumes that the ordering 

cost is constant. In the Silver-Meal heuristic, making a decision to order in period t to 

cover the next k periods also implies that an order will be placed at period t + k. Therefore, 

when the setup cost is dynamic, the setup cost of the next order should also be considered 

at the present planning. To accommodate the dynamic setup cost situation, we modify 

the method of calculating the average cost per period and denote it as 𝐴𝐶𝑡𝑘
𝛼 : 
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𝐴𝐶𝑡𝑘
𝛼 = (𝛼𝐶𝐷𝑡 + (1 − 𝛼)𝐶𝐷𝑡+𝑘 + ∑(𝑞 − 1)𝑑𝑡+q−1ℎ

𝑘

𝑞=1

)/𝑘 

where the ordering cost S is replaced by the weighted delivery setup cost 𝛼𝐶𝐷𝑡 +

(1 − 𝛼)𝐶𝐷𝑡+𝑘 and the weight 𝛼 can be any decimal number between 0 and 1.  

After applying this weighted Silver-Meal heuristic to all retailers, we are able to 

aggregate orders from retailers and treat it as the demand for the plant. Then the classical 

Silver-Meal heuristic is applied to the plant since the setup costs at the plant are 

stationary. The complete process of the Modified Silver-Meal heuristic (MSM) is as 

follows: 

Step 1. Set 𝛼 = 1. For each retailer 𝑖 ∈ 𝑁𝑐, use 𝐴𝐶𝑡𝑘
𝛼  as the average cost and apply the Silver-

Meal heuristic. Record the orders for all retailers. 

Step 2. Sum up the orders from all retailers resulting from this plan to calculate the demands 

for the plant.  

Step 3. Use the production setup cost at the plant as the ordering cost S and apply the original 

Silver-Meal heuristic to the plant, with the aggregate demands as calculated in Step 2. 

Calculate the total cost including production setup cost, delivery setup cost, holding cost 

at the plant and holding cost at retailers.  

Step 4. Repeat Step 1 to Step 3 with 𝛼 ∈{0.9, 0.8, …, 0.1, 0}. 

Step 5. Pick the plan with the value of 𝛼 that renders the lowest total cost.  

Step 6. Record the production setup decisions at the plant �̂�0𝑡 (𝑡 ∈ 𝑇). 

 

When there is initial inventory at the plant, a minor modification to the Silver-Meal 

heuristic implemented at step 5 is needed. Before implementing the Silver-Meal 

heuristic at step 5, we add an initiation process: 

We first compare the initial inventory quantity to the aggregated demand over all 

retailers from period 1 to q, e.g. 𝑑0,1,𝑢 = ∑ ∑ 𝑑𝑖𝑞𝑖∈𝑁𝑐
𝑢
𝑞=1 . Find 𝑢∗ such that 𝑑0,1,𝑢∗ ≤

𝐼00 ≤ 𝑑01,𝑢∗+1. We fix the production setup to be 0 for periods 1 to 𝑢∗ and start the 

original Silver-Meal heuristic from period 𝑢∗ + 1. 
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6.1.3 Computational Results at Stage 1 

Both heuristics yield the production setup decisions at the plant �̂�0𝑡 as the output. 

To examine the quality of this output, we define two indices to measure solutions’ 

deviation from the production setup decisions in the optimal solution of the original 

OWMR problem denoted with 𝑦0𝑡
𝑂𝑃𝑇 . The first index measures the Difference in the 

Total Setups (DTS) between the heuristic solution and the optimal solution. It is defined 

as: 

𝐷𝑇𝑆 = |∑𝑦0𝑡
𝑂𝑃𝑇

𝑡∈𝑇

−∑�̂�0𝑡
𝑡∈𝑇

| 

The second index measures the Difference in the Individual Setups (DIS). It is defined 

as: 

𝐷𝐼𝑆 =∑|𝑦0𝑡
𝑂𝑃𝑇 − �̂�0𝑡|

𝑡∈𝑇

 

For both indices, a smaller value indicates that the solution given by the heuristic 

more closely resembles the optimal solution. Table 11 summarizes the average 

computation time, DTS and DIS of these two methods for all instances. On instances 

with 15 periods, the MSM method only takes about one third of the time needed for the 

SRA method to give a solution to the production planning problem at stage 1. On 

instances with 30 periods, MSM’s advantage in computation time is even larger. Yet, 

both methods are very fast since they consume less than 0.1 second on average.  
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Table 11. DTS and DIS and Time of Two Heuristics for All Instances 

 

Over the 60 instances with the planning horizon of 15 periods, the SRA method 

has an average DTS of 1.0, while the MSM method has an average DTS of only 0.20, 

which means the MSM method provide a better solution in terms of the total number 

of production setups. On the other hand, SRA has an average DIS of 2.2, which is 

slightly smaller than 2.6, the average DIS of MSM. 

In other 60 instances with a longer planning horizon of 30 periods the SRA method 

has an average DTS of 2.2, while the MSM method has an average DTS of only 0.7. 

With respect to DIS, SRA has a smaller average 5.6, compared to 6.9 of MSM. 

When the length of the planning horizon is doubled, DTS for both methods more 

than doubled. This indicates that the solution quality in terms of total production setups 

for both methods deteriorates when the length of the planning horizon increases. 

With respect to the impact of the number of retailers on the solution quality, we can 

observe that the SRA method does not have a stable performance in the instances with 

a large number of retailers. On the contrary, the MSM method is more stable and even 

has small values for both DIS and DTS in large instances with 150 retailers. 

6.2 Delivery Plan for Retailers 

At stage 2, we take the production setup decisions obtained from stage 1 as input 

retailers period SRA MSM SRA MSM SRA MSM

50 15 0 0.017 0.007 1.4 3.8 0.3 0.2

100 15 0 0.021 0.004 1.9 6.3 0.1 0.1

150 15 0 0.019 0.010 3.4 3.5 2.6 0.3

50 15 >0 0.022 0.005 1.4 2.4 0.2 0.2

100 15 >0 0.024 0.008 1.9 3.8 0.1 0.2

150 15 >0 0.024 0.009 3.4 2 2.6 0.2

Average 0.021 0.007 2.2 3.6 1.0 0.2

50 30 0 0.082 0.008 3.5 8.1 0.5 0.9

100 30 0 0.079 0.013 5.4 10.2 0.4 0.6

150 30 0 0.086 0.029 7.9 2.4 5.6 0.4

50 30 >0 0.101 0.012 3.5 9.4 0.5 1

100 30 >0 0.093 0.016 5.4 8.9 0.4 0.7

150 30 >0 0.089 0.025 7.9 2.5 5.5 0.3

Average 0.088 0.017 5.6 6.9 2.2 0.7

DISTime DTS

𝐼00
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and proceed to make the delivery plan for all retailers. There are a few options to produce 

the delivery plan. We can resort to the FIFL formulation and use CPLEX to optimize 

the stage 2 problem while fixing all the production setup variables. Alternatively, we 

can fix the production setup variables but allow for certain flexibility at the same time 

through a Local Branching method. Finally, we also experiment a Time Partitioning Fix-

and-Optimize approach, which divides the planning horizon into a series of overlapping 

intervals and optimizes the sub-problem separately. Each of these approaches is 

combined with the SRA and the MSM, yielding a specific heuristic for the OWMR 

problem. Computational results for each of these combinations are presented at 

Section 6.2.3. 

6.2.1 Optimize and Local Branching 

Given the output �̂�0𝑡  obtained from stage 1, we can now optimize the delivery 

problem at stage 2 by applying the four index facility location formulations while fixing 

the production setup variables as follows: 

𝑦0𝑡 = �̂�0𝑡 ∀𝑡 ∈ 𝑇 (42) 

Instead of strictly fixing all the production setup variables, we can also relax this 

constraint and allow the program to revoke a small part of production setup decisions. 

Such a relaxation provides the opportunity for the program to search for solutions that 

have similar, but not necessarily the same, production setups as those obtained at stage 

1. Pochet and Wolsey (2006) discussed this Local Branching method using the following 

constraint: 

∑ 𝑦0𝑡
𝑡∈𝑇,�̂�0𝑡=0

+ ∑ (1 − 𝑦0𝑡)

𝑡∈𝑇,�̂�0𝑡=1

≤ 𝛾  (43) 

 

The left side of the constraint measures the DIS between a potential solution and 

the solution provided at stage 1 and the integer 𝛾 is the maximum difference allowed. 

When 𝛾 takes the value of 0, which means no difference is tolerated, the constraint has 

the same function as that of constraint (42). As the value of 𝛾 increases, we allow more 

decisions made at the stage 1 to be revoked, and thus possibly providing a better result.  
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However, more branches are searched and therefore an impact on the computation time 

is also expected. 

6.2.2 Time Partitioning Fix-and-Optimize  

The third approach aims to reduce the computation time and disaggregates the 

OWMR problem into many smaller problems. We treat each retailer separately and 

divide the planning horizon into a series of shorter time intervals with overlaps. If we 

note 𝜌 as the length of the optimization periods and 𝜅 as the length of the overlapping 

periods, the procedure of TP is as follows: 

 

Step 1. For each retailer 𝑖 ∈ 𝑁𝑐, do step 2 to step 6. 

Step 2. Starting from the first period 𝑢 = 1, optimize the total cost for time interval 𝑢 to 𝑢 +

𝜌− 1. Record the optimal delivery setup decisions as �̂�𝑖𝑡  (𝑢 ≤ 𝑡 ≤ 𝑢 + 𝜌− 1). 

Step 3. Fix 𝑦𝑖𝑡 = �̂�𝑖𝑡  for period t when 1 ≤ 𝑡 ≤ 𝑢 + 𝜌− 1 − 𝜅.  

Step 4. If 𝑢 + 𝜌− 1 < 𝑚, update 𝑢 = 𝑢 + 𝜌− 𝜅, optimize the total cost for time interval 𝑢 to 

𝑢 + 𝜌− 1 , while ignoring the periods after 𝑢 + 𝜌− 1 . Record the optimal delivery 

setup decisions as �̂�𝑖𝑡  (𝑢 ≤ 𝑡 ≤ 𝑢 + 𝜌− 1). 

Step 5. Repeat Step 3 and step 4 until 𝑢 + 𝜌− 1  reaches m, the entire planning horizon is 

optimized. 

Step 6. Fix 𝑦𝑖𝑡 = �̂�𝑖𝑡  for period t when 𝑢 ≤ 𝑡 ≤ 𝑢 + 𝜌− 1. 

 

Figure 10 illustrates the procedure of step 2 to step 6 for a 30-period instance 

with the optimizing interval 𝜌 = 10  and the overlapping interval 𝜅 = 5 . We first 

optimize the total cost for periods 1 to 10, the remaining periods are left out of the 

problem. In the next optimization, we fix the setup decisions for periods that have been 

optimized except the overlapping part 6 to 10. Therefore, we fix periods 1 to 5 and 

optimize periods 6 to 15. Then periods 1 to 10 are fixed and periods 10 to 20 are 

optimized. The same procedure continues until all 30 periods are optimized. 
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Figure 10. An Example of TP Procedure for a 30-Period Instance 

The goal of the TP method is to disaggregate the OWMR problem into many 

small problems, which can be solved in an extremely short time. Following the same 

example, when 𝜌 = 10 and 𝜅 = 5, for each retailer five small MILP need to be solved 

in an instance with 30 periods. If there are 150 retailers, then 750 small problems are 

optimized instead one big OWMR problem. To solve these small problems, we consider 

two options. We can either employ the four index facility location formulation with 

CPLEX, or enumerate all possible delivery setup decisions. The second option is also 

known as Complete Enumeration (CE). Again using the same example, when 𝜌 = 10, 

there are two possible scenarios (to deliver or not to deliver) at each period and in total 

there are 210, or 1024, different possible delivery plans. The CE method evaluates all 

these plans and chooses the one with the lowest cost. Depending on the optimization 

method used, we denote the Time-Partition Fix-and-Optimize process as TP (CPLEX) 

and TP (CE) respectively. 

6.2.3 Computational Results at Stage 2 

Each of the approaches at the stage 2 is combined with either SRA or MSM and 

forms a unique heuristic method for the OWMR problem. All combinations are tested 

and the computational results are compared to the exact solutions of FIFL and FIFL-II, 

the fastest exact method for the OWMR problem discussed in Section 3.  

The Local Branching method is tested when the maximum allowed DIS, or the 
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parameter k, takes the values: 1, 2 and 3. For the Time Partitioning Fix-and-Optimize 

method, the length of the optimizing periods 𝜌 is set to be 10, and the length of the 

overlapping periods 𝜅 is set to be 5. It is tested using Complete Enumeration and CPLEX 

to solve the sub-problems. Applying TP with CE or CPLEX gives exactly the same 

solutions, but the time consumed may be different. 

As the benchmark, the time needed to solve an instance by FIFL or FIFL-II is 

considered 100% time. The Comparative Time (C. Time) used by the heuristic method 

to solve the problem is then calculated as: 

𝐶. 𝑇𝑖𝑚𝑒 =
𝑇𝑖𝑚𝑒 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑏𝑦 𝑡h𝑒 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐

 𝑇𝑖𝑚𝑒 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑏𝑦 𝐹𝐼𝐹𝐿
× 100% 

Table 12 and Table 13 show the results of the approaches at stage 2 combined 

with the SRA method. With respect to the solution quality, the overall average gap for 

all heuristics is less than 1%. When there is no initial inventory, SRA-TP has the same 

gaps as SRA-OPTIMIZE, which suggests that in all instances without an initial 

inventory, the TP method finds the optimal solution to the problems at stage 2 when 

given a set of fixed production setup decisions from stage 1. However, this is only an 

observation limited to the instances we have tested. In other instances, TP may not 

guarantee an optimal solution. The Local Branching method improves the solution 

quality and has smaller gaps. As the maximum DIS allowed increases, the solution 

quality keeps improving, from 0.49% to 0.34%. Although SRA-LB has better gaps than 

other heuristics, it consumes even more time than the exact method. SRA-OPTIMIZE 

reduces the time to about a quarter of the time needed by the exact method. SRA-TP 

(CE) only takes 2.1% of the time consumed by the exact method, which is significantly 

faster than other methods.  

 



49 

 

 

Table 12. Computational Results for Approaches at stage 2 Combined with SRA on Instances without Initial 

Inventory 

 

Table 13. Computational Results for Approaches at stage 2 Combined with SRA on Instances with Initial Inventory 

When an initial inventory is considered, TP no longer provides the optimal plan 

at stage 2. The average gap of TP increases slightly to 0.64%, compared to the average 

gap of SRA-OPTIMIZE 0.54%.  

Table 14 and Table 15 show the results of the approaches at stage 2 combined 

with the MSM method. When we have a horizontal comparison between OPTIMIZE, 

LB and TP, the overall average results are similar to those discussed earlier when these 

heuristics are combined with SRA. When there is no initial inventory, gaps of MSM-TP 

are the same as those of MSM-OPIMIZE. The Local Branching method has the best 

gaps and continues to improve as the maximum allowed DIS increases. In terms of 

computation time, The Local Branching method exceeds 100% of the time consumed 

by the exact method. MSM-TP (CE) again is faster than other heuristics.  

Retailers Period Gap C.Time Gap C.Time Gap C.Time Gap C.Time Gap C.Time Gap C.Time

50 15 0 0.19% 33.3% 0.19% 130.9% 0.18% 137.0% 0.15% 177.6% 0.19% 4.6% 0.19% 67.0%

100 15 0 0.22% 25.3% 0.16% 132.3% 0.07% 107.8% 0.07% 182.8% 0.22% 2.7% 0.22% 48.9%

150 15 0 1.44% 30.1% 0.99% 150.3% 0.78% 158.0% 0.57% 201.0% 1.44% 2.3% 1.44% 48.0%

50 30 0 0.09% 24.2% 0.08% 140.2% 0.07% 133.4% 0.02% 184.2% 0.09% 1.7% 0.09% 40.9%

100 30 0 0.29% 20.6% 0.27% 140.1% 0.23% 134.6% 0.22% 180.8% 0.29% 0.8% 0.29% 29.3%

150 30 0 1.37% 20.8% 1.24% 165.2% 1.13% 154.6% 1.03% 206.4% 1.37% 0.7% 1.37% 30.3%

Average 0.60% 25.7% 0.49% 143.2% 0.41% 137.6% 0.34% 188.8% 0.60% 2.1% 0.60% 44.1%

SRA - OPTIMIZE SRA - LB SRA - TP

CE CPLEX

   

  =1   =2   =3

Retailers Period Gap C.Time Gap C.Time Gap C.Time Gap C.Time Gap C.Time Gap C.Time

50 15 >0 0.15% 29.8% 0.15% 138.6% 0.15% 153.6% 0.15% 200.8% 0.24% 8.2% 0.24% 50.5%

100 15 >0 0.14% 20.8% 0.08% 103.5% 0.02% 106.3% 0.02% 164.7% 0.26% 3.1% 0.26% 35.1%

150 15 >0 1.24% 17.6% 1.01% 116.1% 0.78% 138.7% 0.54% 151.2% 1.49% 1.7% 1.49% 24.6%

50 30 >0 0.08% 19.4% 0.08% 132.3% 0.07% 127.2% 0.04% 177.4% 0.13% 1.3% 0.13% 24.8%

100 30 >0 0.23% 17.4% 0.23% 143.7% 0.16% 126.8% 0.13% 191.2% 0.31% 1.1% 0.31% 19.9%

150 30 >0 1.37% 27.0% 1.17% 167.6% 1.06% 167.9% 0.96% 217.5% 1.40% 0.9% 1.40% 27.4%

Average 0.54% 22.0% 0.45% 133.6% 0.37% 136.8% 0.31% 183.8% 0.64% 2.7% 0.64% 30.4%

SRA - O PTIMIZE SRA - LB 

CPLEXCE

SRA - TP

   

  =1   =2   =3
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Table 14. Computational Results for Approaches at stage 2 Combined with MSM on Instances without Initial 

Inventory 

 

Table 15. Computational Results for Approaches at stage 2 Combined with MSM on Instances with Initial 

Inventory 

When we make a vertical comparison between SRA and MSM,  the difference 

in computation time is insignificant. However, there are a few interesting observations 

about the solution quality. When combined with different approaches at stage 2, SRA 

almost always has better gaps compared to MSM. The only exception is LB when 𝛾 

takes the value of 3. As the maximum DIS allowed increases, MSM-LB improves its 

solution quality at a faster pace than SRA-LB and finally surpass SRA-LB when 𝛾 

equals 3.  

As the size of the instances increases, either in the number of retailers or the 

length of the planning horizon, the quality of solution is affected. When the number of 

retailers increases, the gaps of SRA tend to deteriorate. However the opposite is true for 

MSM. Its solution quality improves as the number of retailers increases. As the length 

of the planning horizon increases, the solution quality of MSM also improves. 

Figure 11 summarizes the overall gaps and Comparative Time of all heuristics 

Retailers Period Gap C.Time Gap C.Time Gap C.Time Gap C.Time Gap C.Time Gap C.Time

50 15 0 1.40% 34.1% 1.06% 149.5% 0.86% 161.7% 0.51% 198.5% 1.40% 6.0% 1.40% 61.2%

100 15 0 0.86% 25.4% 0.82% 162.0% 0.43% 124.9% 0.40% 197.1% 0.86% 3.6% 0.86% 48.0%

150 15 0 0.51% 30.0% 0.49% 156.8% 0.18% 113.6% 0.18% 202.7% 0.51% 3.1% 0.51% 53.4%

50 30 0 0.98% 22.5% 0.78% 126.8% 0.65% 158.1% 0.51% 201.0% 0.98% 1.3% 0.98% 36.3%

100 30 0 0.53% 20.4% 0.51% 170.3% 0.42% 140.3% 0.36% 204.4% 0.53% 0.7% 0.53% 30.3%

150 30 0 0.12% 21.9% 0.09% 127.4% 0.04% 131.7% 0.04% 172.6% 0.12% 0.7% 0.12% 29.7%

Average 0.73% 25.7% 0.63% 148.8% 0.43% 138.4% 0.33% 196.0% 0.73% 2.6% 0.73% 43.1%

MSM - OPTIMIZE MSM - LB MSM - TP

CE CPLEX

   

  =1   =2   =3

Retailers Period Gap C.Time Gap C.Time Gap C.Time Gap C.Time Gap C.Time Gap C.Time

50 15 >0 1.22% 28.4% 0.89% 144.9% 0.75% 177.6% 0.35% 199.6% 1.32% 3.8% 1.32% 45.8%

100 15 >0 0.67% 19.9% 0.65% 131.7% 0.26% 94.9% 0.25% 171.8% 0.80% 1.5% 0.80% 27.5%

150 15 >0 0.29% 18.5% 0.26% 129.4% 0.10% 104.6% 0.10% 149.7% 0.59% 1.5% 0.59% 22.5%

50 30 >0 1.07% 18.9% 0.88% 101.5% 0.72% 143.8% 0.58% 225.3% 1.15% 1.0% 1.15% 25.0%

100 30 >0 0.47% 16.6% 0.44% 186.0% 0.35% 178.2% 0.29% 216.9% 0.57% 0.4% 0.57% 19.2%

150 30 >0 0.23% 26.1% 0.20% 167.6% 0.07% 135.7% 0.06% 185.1% 0.26% 0.6% 0.26% 32.6%

Average 0.66% 21.4% 0.55% 143.5% 0.38% 139.1% 0.27% 191.4% 0.78% 1.5% 0.78% 28.8%

MSM - OPTIMIZE MSM - LB MSM - TP

CE CPLEX

   

  =1   =2   =3
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discussed. Since all these heuristics have an overall average gap of less than 1%, we also 

include the results of applying FIFL with CPLEX while setting the optimal gap tolerance 

as 1%, to validate these heuristics’ effectiveness on computation time. The heuristics 

that fall in the shaded area are dominated by the exact method, since they perform worse 

than the exact method in terms of both computation time and solution quality. 

Considering the heuristics that are not dominated by the exact method, SRA-TP (CE) 

has the second best average gap and its computation time is significantly faster than 

others. Therefore, we choose SRA-TP (CE) and integrate it into the Penalized 

Relaxation method at stage 3. 

 

 

Figure 11. Summary of Average Gaps and Comparative Times of Different Heuristics 

6.3 Accommodating the Emission Constraint 

To satisfy the global emission constraint, we introduce a Penalized Relaxation (PR) 

method inspired bi-objective optimization. In this method, the global emission 

constraint is relaxed and all the emission factors are taken into account in the objective 

function as penalties. The penalties are added to the objective function through the 

adjustments of all cost coefficients. Let 𝛽 (0 ≤ 𝛽 ≤ 1) be the penalty factor, the cost 
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coefficients are adjusted through: 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐶𝑜𝑠𝑡 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 

(1 − 𝛽) × 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑎𝑛 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 + 𝛽 × 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝐶𝑜𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 

The costs that need to be adjusted include all activities: the setup cost of production, 

the setup cost of delivery, the inventory holding cost at the plant and the inventory 

holding cost at the retailers. When 𝛽 takes the value of 0, there is no penalty enforced, 

and minimizing the objective function will lead to purely minimizing the total cost 

regardless of the emissions. On the other hand, if 𝛽 takes the value of 1, full penalty is 

implemented and minimizing the objective function will lead to minimizing the total 

amount of emissions regardless of the costs. 

The Penalized Relaxation method iteratively solves a series of OWMR problems 

with different values of 𝛽, and thus different coefficients of costs. The solutions obtained 

are then verified with the true cost coefficients and emission coefficients. The solutions 

that do not satisfy the emission constraint are discarded. If solutions that satisfy the 

emission constraint are found, the one with the least cost is selected as the final solution. 

If all solutions are discarded, the heuristic fails to provide a feasible solution. 

In the iterative process, we solve an OWMR problem and update the penalty factor 

before solving the next OWMR problem. In order to quickly approach the appropriate 

penalty factor that can balance well the costs and emissions, we apply the bisection 

method. We start with 𝛽 = 0.5, or (
1

2
)1, and solve the OWMR problem with adjusted 

cost coefficients. If the resulting total emission amount exceeds the allowed emission 

cap, we increase the penalty factor 𝛽 = (
1

2
)1 + (

1

2
)2  and try to satisfy the emission 

constraint in the next iteration. On the contrary, if the resulting total emission amount 

already satisfy the emission constraint, we decrease the penalty factor 𝛽 = (
1

2
)1 − (

1

2
)2 

and try to lower the total cost in the next iteration. Let l be the iteration index. The 

complete process of the Penalized Relaxation is described as follows: 
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Step 1. Start the first iteration, 𝑙 = 1 and 𝛽 = (
1

2
)
𝑙
, update all adjusted costs: 

𝐶𝑆′ = (1 − 𝛽) × 𝐶𝑆 + 𝛼 × 𝐸𝑆  

𝐶𝐷𝑖𝑡
′ = (1 − 𝛽) × 𝐶𝐷𝑖𝑡 +  𝛼 × 𝐸𝐷𝑖𝑡, ∀𝑖 ∈ 𝑁𝑐 , ∀𝑡 ∈ 𝑇 

ℎ𝑖
′ = (1 − 𝛽) × ℎ𝑖 + 𝛼 × 𝐸𝐼𝑖, ∀𝑖 ∈ 𝑁  

Step 2. Solve the OWMR problem with adjusted costs. Verify the solution with original costs 

and emission coefficients. Record the actual total cost and the total emissions. 

Step 3. Update iteration index 𝑙 =  𝑙 + 1. If the total emissions is larger than the emission cap, 

update 𝛽 = 𝛽 + (
1

2
)
𝑙
. Otherwise, update α = 𝛽− (

1

2
)𝑙. 

Step 4. Update all adjusted costs. Solve the OWMR problem and verify the solution with 

original costs and emission coefficients. Record the actual total cost and the total 

emissions. 

Step 5. Repeat Step 3 and Step 4 until 𝑙 reaches 10, ten iterations have been performed. 

Step 6. Discard all solutions that do not satisfy the emission constraint and pick the one with 

the least cost out of the remaining solutions. 

 

At Step 2 and Step 4 of this Penalized Relaxation method, either an exact method or 

a heuristic can be applied to solve the OWMR problem. However, the iteration process 

at Step 5 solves the OWMR problem 10 times with different parameters. This requires 

that the method that is chosen to solve the OWMR problem should be fast enough. 

Therefore, we choose SRA-TP (CE), which delivers a good solution quality within a 

short time, and integrate it into the PR heuristic.  

The PR heuristic is tested in the same manner as FIFL-E and SP-E are tested in 

Section 4.5. For each of the 120 instances, 20 different levels of emission cap are applied. 

The emission cap is gradually tightened from the emission upper bound to the emission 

lower bound. Every step corresponds to 5% of MPR and at the 20th step, 100% of MPR 

need to be reduced. 

Table 16 summarizes the average gap between the solution given by the heuristic 

and the optimal solution under 20 different levels of emission cap. There are a few cells 

with no gap. This indicates that at that level of emission cap, the PR heuristic fails to 

give a feasible solution for all of the 10 instances with the same size.  
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The rightmost column of Table 16 shows the average gap over different levels of 

emission cap of instances with the same size. As the number of retailers increases, the 

average gap tends to increase. However the trend is not very clear and there are some 

exceptions. With respect to the length of planning horizon, for instances with 30 periods 

the average gap over all experiments is 0.31%, which is lower than the average gap of 

0.61% over all instances with 15 periods. Again, the trend is not clear and there exists 

some exceptions. The bottom row shows the average gap over instances with different 

sizes when imposing a certain level of emission cap.
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Table 16. Average Gaps of PR under Different Levels of Emission Cap 

 

 

Table 17. Number of Instances (out of 1 0) that PR Gives a Feasible Solution 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Average

retailers period

50 15 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.06% 0.01% 0.00% 0.09% 1.32% 1.04% 0.71% 0.26% 0.09% 0.04% 0.02% 0.00% 0.18%

100 15 0 0.30% 0.32% 0.32% 0.34% 0.35% 0.37% 0.40% 0.43% 0.49% 0.80% 0.53% 0.55% 0.65% 0.94% 0.51% 0.45% 0.43% 0.36% 0.11% 0.00% 0.43%

150 15 0 0.46% 0.47% 0.48% 0.50% 0.65% 0.69% 0.75% 0.89% 0.88% 0.98% 1.14% 1.46% 1.51% 1.53% 1.53% 1.58% 2.22% 2.44% - - 1.12%

50 30 0 0.10% 0.10% 0.09% 0.07% 0.07% 0.06% 0.07% 0.09% 0.12% 0.15% 0.31% 0.30% 0.26% 0.22% 0.56% 0.57% 0.50% 0.49% 0.32% 0.00% 0.22%

100 30 0 0.31% 0.30% 0.30% 0.30% 0.30% 0.32% 0.40% 0.24% 0.24% 0.24% 0.27% 0.27% 0.31% 0.44% 0.45% 0.41% 0.45% 0.60% 0.20% - 0.33%

150 30 0 0.43% 0.42% 0.41% 0.32% 0.31% 0.30% 0.29% 0.28% 0.27% 0.27% 0.26% 0.25% 0.24% 0.24% 0.27% 0.33% 0.59% 0.23% 0.28% 0.00% 0.30%

50 15 >0 0.25% 0.25% 0.25% 0.26% 0.26% 0.55% 0.59% 0.38% 0.39% 0.36% 1.03% 0.99% 1.08% 0.94% 0.57% 0.69% 0.72% 0.59% 0.18% 0.00% 0.52%

100 15 >0 0.31% 0.31% 0.32% 0.33% 0.35% 0.38% 0.41% 0.46% 0.55% 0.74% 0.65% 0.69% 0.75% 1.05% 0.72% 0.77% 0.66% 0.59% 0.15% 0.00% 0.51%

150 15 >0 0.33% 0.34% 0.36% 0.38% 0.53% 0.59% 0.65% 0.81% 0.79% 0.81% 0.90% 1.16% 1.18% 1.25% 1.32% 1.45% 1.98% - - - 0.87%

50 30 >0 0.15% 0.15% 0.14% 0.13% 0.12% 0.12% 0.13% 0.15% 0.17% 0.21% 0.38% 0.49% 0.46% 0.42% 0.70% 0.72% 0.60% 0.64% 0.53% 0.00% 0.32%

100 30 >0 0.33% 0.35% 0.37% 0.39% 0.43% 0.52% 0.36% 0.37% 0.39% 0.41% 0.46% 0.47% 0.53% 0.73% 0.74% 0.78% 0.89% 1.13% 0.47% - 0.53%

150 30 >0 0.45% 0.46% 0.48% 0.44% 0.44% 0.44% 0.43% 0.42% 0.41% 0.41% 0.40% 0.39% 0.37% 0.38% 0.41% 0.47% 0.74% 0.52% 0.42% 0.00% 0.42%

Average 0.28% 0.29% 0.29% 0.29% 0.32% 0.36% 0.37% 0.38% 0.40% 0.45% 0.53% 0.59% 0.72% 0.77% 0.71% 0.71% 0.82% 0.69% 0.27% 0.00% 0.53%

Reduction (%MPR)

   

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Average

retailers period

50 15 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 8 6 6 5 2 8.9

100 15 0 10 10 10 10 10 10 10 10 10 10 8 8 7 6 5 5 5 5 5 2 7.8

150 15 0 6 6 6 6 6 6 6 6 5 5 4 3 3 3 3 3 2 1 0 0 4.0

50 30 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 9 9 9 8 8 2 9.3

100 30 0 10 10 10 10 10 10 10 9 9 9 9 9 9 9 9 8 8 8 5 0 8.6

150 30 0 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 5 5 1 5.8

50 15 >0 10 10 10 10 10 10 10 9 9 9 9 9 9 9 9 7 7 5 4 2 8.4

100 15 >0 10 10 10 10 10 10 10 10 10 9 8 8 8 7 6 6 5 4 3 2 7.8

150 15 >0 6 6 6 6 6 6 6 6 5 5 5 4 2 2 2 2 2 0 0 0 3.9

50 30 >0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 8 8 1 9.4

100 30 >0 10 10 10 10 10 10 9 9 9 9 9 9 9 9 8 7 7 6 2 0 8.1

150 30 >0 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 5 4 1 5.8

Average 8.8 8.8 8.8 8.7 8.7 8.7 8.6 8.4 8.3 8.2 7.8 7.7 7.4 7.3 6.9 6.4 6.1 5.1 4.1 1.1 7.3

Reduction (%MPR)
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Figure 12 depicts the shape of average gaps at different levels of emission cap. As 

the emission cap tightens, the average gap increases until an emission reduction of 70% 

MPR is imposed. Then the average gap remains at a relatively high level before it drops 

dramatically when the emission cap is very tight. It seems that the drop at the end can 

be explained by having less instances with a feasible solution, i.e., we are left with the 

somewhat easier instances. 

 

Figure 12. Average Gap of PR for All Instances under Different Levels of Emission Cap 

Note that even though the heuristic has small average gaps when the emission cap 

is very tight (e.g. an emission reduction target of more than 90% MRP), it provides 

feasible solutions to only a few instances out of ten. In other instances, no solution is 

provided and therefore these instances are not accounted for the average gaps.  

The number of instances solved by the heuristic measures the quality of the heuristic 

from another perspective. Table 17 gives detailed information on the number of 

instances solved by the heuristic. As the emission cap tightens, fewer instances can be 

solved by the heuristic. When we impose an emission cap of 100% MPR, the optimal 

solution is the only feasible solution, so it becomes difficult for the heuristic to find such 

a solution. 

From this table, the impact of the size of instances on the solution quality can also 
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be observed without ambiguity. When the number of retailers increases, there is less 

chance that the heuristic can provide a feasible solution. On the other hand, when the 

length of planning horizon increases, PR has a higher possibility of providing a feasible 

solution. 

 With respect to the computation time, on average PR only consumes less than 0.9 

second to solve an OWMR-EC problem. This is only 0.69% of the time used by FIFL-

E, the fastest formulation discussed in Section 4.5. The advantage in computation time 

is even more significant as the size of the instances become larger. As the size increases, 

the average CPU time for PR also increases, but the magnitude of increase in time is 

much smaller than that of FIFL-E. Table 19 presents the detailed average CPU times for 

PR to solve all instances under different levels of emission cap.  Different from the exact 

methods, whose computation time is obviously affected by the tightness of the emission 

cap, PR has average computation times that are insensitive to the tightness of the 

emission cap. 

 

Table 18. Summary of Average CPU Times to Solve an OWMR-EC Problem by FIFL-E and PR 

Retailers Period FIFL-E (s) PR (s) C.Time (%)

50 15 0 9.2 0.3 2.88%

100 15 0 35.4 0.4 1.23%

150 15 0 77.2 0.6 0.75%

50 30 0 245.7 1.0 0.41%

100 30 0 1051.3 1.3 0.13%

150 30 0 1822.4 1.8 0.10%

50 15 >0 20.1 0.3 1.37%

100 15 >0 83.8 0.5 0.54%

150 15 >0 139.3 0.6 0.42%

50 30 >0 378.7 1.1 0.29%

100 30 >0 1819.8 1.5 0.08%

150 30 >0 2887.4 1.8 0.06%

Average 714.2 0.9 0.69%

O WMR-EC
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Table 19. Detailed Average CPU Times (in seconds) to Solve an OWMR-EC Problem under Different Level of Emission Cap Using PR 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Average

Retailers Period

50 15 0 0.27 0.26 0.27 0.27 0.26 0.27 0.26 0.27 0.27 0.26 0.27 0.26 0.26 0.26 0.26 0.27 0.26 0.27 0.26 0.26 0.26

100 15 0 0.42 0.46 0.44 0.45 0.44 0.45 0.44 0.44 0.45 0.44 0.43 0.44 0.44 0.43 0.42 0.43 0.43 0.43 0.43 0.43 0.44

150 15 0 0.57 0.58 0.58 0.58 0.60 0.58 0.58 0.58 0.58 0.58 0.58 0.60 0.59 0.58 0.58 0.58 0.58 0.58 - - 0.58

50 30 0 0.99 0.98 0.98 0.97 0.99 0.97 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.97 1.02 1.03 1.03 1.03 1.04 1.25 1.01

100 30 0 1.33 1.32 1.32 1.34 1.32 1.58 1.34 1.36 1.32 1.33 1.32 1.36 1.34 1.32 1.34 1.32 1.32 1.33 1.35 - 1.35

150 30 0 1.79 1.77 1.77 1.76 1.76 1.76 1.76 1.77 1.76 1.76 1.76 1.80 1.76 1.77 1.77 1.77 1.77 1.78 1.76 1.77 1.77

50 15 >0 0.27 0.28 0.27 0.29 0.27 0.27 0.27 0.27 0.27 0.28 0.27 0.27 0.27 0.27 0.28 0.29 0.28 0.27 0.28 0.26 0.28

100 15 >0 0.45 0.46 0.45 0.45 0.45 0.46 0.46 0.45 0.45 0.45 0.45 0.46 0.45 0.45 0.45 0.46 0.45 0.46 0.44 0.43 0.45

150 15 >0 0.58 0.58 0.59 0.60 0.57 0.58 0.58 0.58 0.58 0.58 0.59 0.59 0.58 0.58 0.58 0.58 0.58 - - - 0.58

50 30 >0 1.05 1.05 1.20 1.05 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.12 1.13 1.12 1.12 1.13 1.67 1.10

100 30 >0 1.47 1.48 1.51 1.69 1.48 1.52 1.53 1.46 1.46 1.46 1.46 1.47 1.48 1.46 1.43 1.44 1.44 1.43 1.34 - 1.47

150 30 >0 1.82 1.92 1.85 1.81 1.81 1.82 1.85 1.83 1.81 1.86 1.82 1.82 1.82 1.82 1.82 1.82 1.83 1.84 1.82 1.74 1.83

Average 0.92 0.93 0.94 0.94 0.92 0.94 0.92 0.92 0.91 0.92 0.91 0.92 0.92 0.91 0.92 0.92 0.92 0.96 0.99 0.98 0.93

Reduction (%MPR)
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7. Conclusion 

 We have addressed the one-warehouse multi-retailer problem in its classical form 

as well as with a global emission constraint, which we denote as OWME-EC. Three 

known formulations for the OWMR problem are validated with a standard data set. 

Computational results show that the four index facility location formulation is 

significantly faster than the other two formulations, although the combined 

transportation and shortest path formulation provides slightly smaller average LP gaps.  

 To accommodate the production situation where companies need to limit their 

carbon emissions due to either regulations or their own target on environmental 

performance, we propose three formulations that incorporate a global emission 

constraint based on previously known formulations. 

 Due to the fact that there is no available standard data set that contains both cost 

factors and emission factors, we generated emission parameters that have a certain level 

of correlation with the cost parameters. Computational results show that the four index 

facility location formulation with an emission constraint (FIFL-E) is faster than the other 

two formulations. Results also show that as the emission cap tightens, the computation 

time increases dramatically.  

 Solving a series of OWMR-EC problems with different parameters also allows us 

to analyze the trade-off between costs and emissions. The (piecewise) convex trade-off 

curves indicate that the marginal cost of emission reduction tends to increase as the 

reduced amount increases. In other words, the first 1% emission reduction is cheaper 

than the second 1% emission reduction and the cost per percentage emission reduction 

grows when a higher reduction needs to be achieved.  

Results with the first set of emission parameters, which are moderately correlated 

with the costs, shows that on average up to 3.2% of emissions can be reduced. The 

maximum potential emission reduction is not very significant compared to other 

methods such as using clean energy or upgrading machine. However, it can be achieved 

at the operational level, simply by the re-planning of production and delivery. Moreover, 

experiments with two other sets of emission parameters show that the maximum 
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potential emission reduction is largely dependent on the correlation between cost and 

emission coefficients. Our experiments indicate that in the case where cost and emission 

factors are highly correlated, the potential to reduce emissions is very limited. On the 

other hand, in industries where costs and emissions are weakly correlated (e.g. labor 

intensive industries), higher emission reduction can potentially be achieved.   

As the computation time for the OWMR-EC problem is considerably long, heuristics 

are proposed and tested to facilitate the computation process. We first design an efficient 

heuristic for the OWMR and then adapt it to the OWMR-EC. We decompose the 

OWMR problem into two stages. Different combinations of heuristics for these two 

stages are tested. Results show that the combination of the Simple Retailers Aggregation 

(SRA) method and the Time-Partitioning Fix-and-Optimize method using Complete 

Enumeration (TP (CE)) provides good solutions to the OWMR problem within a very 

short time. In this combination SRA is applied to decide upon the production setup 

decisions and TP (CE) is used to decide the delivery plan to the retailers. Finally, a 

penalized relaxation approach is applied to satisfy the emission constraint by iteratively 

solving the OWMR problem using SRA and TP (CE). This proposed heuristic solves 

the OWMR-EC problem in less than one second on average and has an average 

optimality gap of 0.65%. However, it is not always able to find feasible solutions, 

especially for the highly constrained problems. 

The results of this research are limited to a specific problem where there is one plant 

(or warehouse) that has unlimited capacity and multiple retailers. A promising research 

avenue is to apply the emission constraint to other lot sizing problems. Future researches 

can also implement other types of emission constraints instead of a global strict emission 

cap.  
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