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Abstract 

This Master’s thesis proposes an approach to calculate CVA (credit value 

adjustment) with the implied recovery rates. We use the methodology introduced by Das 

and Hanouna (2009) to extract the implied recovery rates and probabilities of default 

from CDS spreads. We compare CVA calculated with implied recovery rates to CVA 

calculated with constant recovery rates. The results show that constant recovery CVA 

generally underestimates the credit risk exposure, compared to the model-implied CVA. 

Using CVA with non-constant recovery appears to be more prudent to protect against 

credit risk. 

 

Keywords: CVA; Implied recovery rate; Credit risk; OTC derivatives 

 

 

Résumé 

Ce mémoire propose une approche pour calculer CVA avec les taux de 

recouvrement implicites et endogènes. Nous utilisons la méthode proposée par Das et 

Hanouna (2009), qui permet d’extraire les taux de recouvrement et les probabilités de 

default implicites des écarts de CDS. Nous comparons CVA calculé avec les taux de 

recouvrement constants et CVA calculé avec les taux de recouvrement implicites. Les 

résultats montrent que CVA avec taux de recouvrement constants sous-estime 

l’exposition au risque de crédit, en comparaison de CVA calculé avec taux de 

recouvrement implicites. CVA calculé avec taux de recouvrement non constants apparait 

plus prudent pour se protéger contre le risque de crédit. 

 

Mots-clés : CVA; taux de recouvrement implicite, risque de crédit; Produits dérivés  



  

3 

 

 

Acknowledgments 

Foremost, I want to express my sincere gratitude to Professor Pascal François for 

accepting me as his Master’s student. His patience, guidance and precious advice have 

helped me from the beginning to the end of this work. He has always pointed out to me 

the right direction when I felt lost in the research. I have learned much more than the 

knowledge from him. I also want to thank Mr. Mohamed Jabir, who has helped me a lot 

to construct the data and encouraged me when the research became difficult. Thanks to 

my parents for their love and unconditional confidence towards me. At last, I express my 

gratefulness to Daniel, who is always there to support me and to listen to me. He gave me 

the courage and confidence to start my Master’s degree. And I know that without his love 

and care, I would never have finished this work.   



  

4 

 

 

Contents 

 

Abstract .............................................................................................................................. ii 

Acknowledgments ............................................................................................................ iii 

Contents ............................................................................................................................ iv 

I. Introduction ....................................................................................................................6 

II. Literature Review .........................................................................................................9 

A. CVA calculation  .........................................................................................................9 

1. Assumptions and general formula ............................................................................9 

2. BCVA and DVA.....................................................................................................12 

3. Funding and OIS.....................................................................................................13 

4. CVA and wrong way risk .......................................................................................14 

B. Recovery rate .............................................................................................................16 

1. Recovery rate process: structural models VS reduced form models  .....................16 

       2. Definitions of recovery rate ....................................................................................17 

3. Implied recovery rate ..............................................................................................20 

III.  Methodology .............................................................................................................24 

A. Extracting implied recovery rate ...............................................................................24 

1. Assumptions ...........................................................................................................24 

2. Methodology of extracting implied recovery .........................................................26 

            2.1. CDS pricing methodology ..............................................................................26 

            2.2. Market capitalization modeling ......................................................................28 

            2.3. Term structures of default probability and recovery rate  ...............................29 

            2.4. Constraints  .....................................................................................................33 

B. CVA calculation with implied recovery rate .............................................................35 

1. Assumptions ...........................................................................................................35 

2. CVA calculation with implied recovery rate  .........................................................35 

3. CVA calculation with constant recovery rate  ........................................................36 

 



  

5 

 

 

IV. Analysis and results ...................................................................................................37 

A. Data Description ........................................................................................................37 

1. CDS term structures and market capitalization ......................................................37 

            1.1. CDS term structures ........................................................................................38 

            1.2. 5-year CDS spreads and market capitalizations..............................................40 

            1.3. CDS spreads and market capitalizations by sector and by rating ...................42 

2. Forward rate term structures ...................................................................................44 

B. CDS term structure calibration ..................................................................................46 

1. RMSE .....................................................................................................................46 

       2. Results .....................................................................................................................47 

            2.1. Parameters .......................................................................................................47 

            2.2. Default probability and recovery rate term structures ....................................52 

C. CVA comparison .......................................................................................................57 

1. Representative obligors ..........................................................................................57 

       2. CVA comparison for each representative obligor ..................................................58 

            2.1. Representative obligor of the total sample .....................................................59 

            2.2. Representative obligor for each phase of business cycle  ...............................62 

            2.3. Representative obligor for each sector  ...........................................................65 

            2.4. Representative obligor for each rating class  ..................................................68 

V. Conclusion....................................................................................................................71 

VI. Appendix ....................................................................................................................72 

Appendix A. Calibrated Parameter 𝜎 .............................................................................72 

Appendix B. Default probability bound .........................................................................73 

Appendix C. List of 397 issuers .....................................................................................75 

Appendix D. List of defaults ..........................................................................................85 

VI. References ..................................................................................................................86 

 

  



  

6 

 

 

 Introduction 

 

Like the Russia/LTCM crisis in 1998, the collapse of financial system in 2008 showed 

that credit risk was an important source of systematic risk. The modern financial system 

is "an interwoven network of financial obligations" and any counterparty default can lead 

to an important "gridlock" due to the network effects (Brunnermerier, 2009). This 

interconnectedness was largely built by the OTC derivative markets, and the failure to 

capture the credit risk on these off-balance sheet transactions was the central reason of 

the amplified financial crisis.   

 

CVA (credit value adjustment) is the most recent methodology to measure the market 

value of counterparty credit risk for OTC derivatives. In fact, the concept of "credit 

charges" (what we call CVA now) dates back to more than the mid-1990s. After the 

Russian bond default and LTCM crisis in 1998, large dealers started calculating CVA to 

assess the cost of the counterparty credit risk. In 2006, new accountancy regulations 

(FAS 157, IAS 39) required that the value of derivatives positions be corrected for 

counterparty risk and banks start calculating CVA on a monthly basis. Nevertheless, it is 

from the 2008 financial crisis that financial institutions really began managing and 

hedging counterparty credit risk actively. Some large dealers have set up CVA desks to 

adjust the price of OTC derivatives and reduced the variation of CVA charge. In this 

context, regulators (Basel III) have also devised a new regulatory framework by better 

addressing counterparty credit risk and CVA.   

 

As a credit risk estimator, CVA is composed of three major components: exposure at 

default, probability of default and recovery rate at default. We find an extensive literature 

on the first two components with much less on the third one. Recovery rate has often 

been assumed as a constant (commonly 40%) for CVA calculation.  
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However, much evidence suggests that historical recovery rate possesses large variation 

according to different seniorities, sectors and issuers. For example, the historical recovery 

rate seems to be volatile and to coincide somewhat with macroeconomic cycles: during 

the crisis, the aggregate recovery rate tends to decrease compared with economic boom 

periods. (Figure 1) Altman & al. (2005) show that variance of recoveries on corporate 

bonds can be explained substantially by default rates. Moody’s reports on “Corporate 

Default and Recovery Rate” project the different distributions of recovery rate across all 

seniority and rating levels. Archarya & al. (2007) point out that creditor recoveries are 

heavily influenced by industry conditions at the time of default.  

 

 

Figure 1: Historical Average Recovery rate1 for all bonds (from Moody’s 1920-2012) 

 

Due to these characteristics of historical data, it is inaccurate and unrealistic to treat 

recovery rate as certain when modeling credit risk. In this work, we aim to improve the 

methodology of CVA calculation with forward term structure of implied recovery rate. 

 

This Master’s thesis is divided into 4 sections. In the first part, we review the literature on 

extracting default probability and recovery rate term structures. We also study the 

methodology of CVA calculation. In the next section, we develop the methodology of 

CVA calculation using implied recovery. The empirical results will be presented and 

                                                 
1 The recovery rate is measured by the market price of defaulted bond as a percentage of par, observed 30 

days after default. 
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analysed in Section 4. Finally, we resume our findings and provide some possible 

directions for further research. 
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Section II  Literature Review 

In this part, we review at first CVA calculation and then the literature on implied 

recovery rate. 

 

A. Credit value adjustment (CVA)  calculation  

 

Credit value adjustment (CVA) by definition is the difference between the risk-free value 

of a financial contract and its risky value accounting the default probability of the 

counterparty before the maturity. In other words, CVA represents the market price of the 

counterparty credit risk. Two classes of financial products are subject to counterparty 

risk: OTC derivatives and securities financing transactions, such as repo, security 

borrowing and lending. They are privately negotiated and not supervised and guaranteed 

by the organized market. As the recent financial crisis has shown, no counterparty is risk-

free, and consequently counterparty credit risk must be taken into the valuation of OTC 

derivatives.  

 

A.1. Assumptions and general formula 

 

Here we introduce the standard way to calculate CVA based on the methodology of 

Gregory (2012). Suppose that an institution (for example, an investment bank) gets into a 

derivative position with its counterparty (for example, an orange juice producer). We 

calculate the unilateral CVA from the perspective of the institution.  

 

The main hypotheses are:  

1. The institution itself cannot default.  

2. Risk-free valuation is straightforward. 

3. The credit exposure and default probability are independent. 
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We define the risk-free value of an OTC derivative as 𝑉(𝑡, 𝑇) and the true risky value 

as �̃�(𝑡, 𝑇) , where T is the maturity of the contract.  We set 𝜏  as the time that the 

counterparty defaults. 𝜙(𝜏, 𝑇)  is the recovery fraction of the risk-free value of the 

derivative at default.2 

 

There are two possible scenarios: 

1. 𝜏 > 𝑇 , counterparty does not default before maturity. And 𝐼(𝜏 > 𝑇) takes the 

value of 1 when default occurs after or at 𝑇  and takes the value of 0 

otherwise. The payoff at t is 𝐼(𝜏 > 𝑇) ∗ 𝑉(𝑡, 𝑇). 

2. 𝜏 ≤ 𝑇, counterparty does default before maturity. And 𝐼(𝜏 ≤ 𝑇) takes the value 

of 1 when default occurs before or at  𝑇  and takes the value of 0 otherwise.   

In this case, Gregory (2012) separates the payoff into two parts: cash flows 

paid up to the default time 𝐼(𝜏 ≤ 𝑇) ∗ 𝑉(𝜏, 𝑇)  and payoff at default time  𝜏 . 

𝑉(𝜏, 𝑇) is the market risk-free value at default. If 𝑉(𝜏, 𝑇) > 0, the institution gets  

𝜙(𝜏, 𝑇) ∗ 𝑉(𝜏, 𝑇) from the counterparty, where 𝜙(𝜏, 𝑇) indexes the recovery rate. 

If at 𝜏, 𝑉(𝜏, 𝑇) ≤ 0, the institution still needs to settle the contract and the payoff 

is 𝑉(𝜏, 𝑇).  Hence, the payoff at 𝜏 is 𝐼(𝜏 ≤ 𝑇) ∗ (𝜙(𝜏, 𝑇) ∗ 𝑉(𝜏, 𝑇)+ + 𝑉(𝜏, 𝑇)−), 

Where 𝑉(𝜏, 𝑇)+ = max(𝑉(𝜏, 𝑇), 0) and 𝑉(𝜏, 𝑇)− = min (𝑉(𝜏, 𝑇), 0). 

Combining these two terms, the total payoff in the case of the counterparty's 

default before maturity is: 

𝐼(𝜏 ≤ 𝑇) ∗ 𝑉(𝜏, 𝑇) + 𝐼(𝜏 ≤ 𝑇) ∗ (𝜙(𝜏, 𝑇) ∗ 𝑉(𝜏, 𝑇)+ + 𝑉(𝜏, 𝑇)−) 

 

 
We now can write the risky value of the contract under the risk-neutral measure at t as:  

�̃�(𝑡, 𝑇) = 𝐸𝑄 [

𝐼(𝜏 > 𝑇) ∗ 𝑉(𝑡, 𝑇) + 
𝐼(𝜏 ≤ 𝑇) ∗ 𝑉(𝑡, 𝜏) +

𝐼(𝜏 ≤ 𝑇) ∗ (𝜙(𝜏, 𝑇) ∗ 𝑉(𝜏, 𝑇)+ + 𝑉(𝜏, 𝑇)−)
] 

 

Replacing 𝑉(𝜏, 𝑇)− by 𝑉(𝜏, 𝑇) − 𝑉(𝜏, 𝑇)+, then we get  

                                                 
2 𝜙(𝜏, 𝑇) refers to recovery of market value (RMV) in the next section.  
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�̃�(𝑡, 𝑇) = 𝐸𝑄 [

𝐼(𝜏 > 𝑇) ∗ 𝑉(𝑡, 𝑇) + 
𝐼(𝜏 ≤ 𝑇) ∗ 𝑉(𝑡, 𝜏) +

𝐼(𝜏 ≤ 𝑇) ∗ (𝜙(𝜏, 𝑇) ∗ 𝑉(𝜏, 𝑇)+ + 𝑉(𝜏, 𝑇) − 𝑉(𝜏, 𝑇)+)
] 

�̃�(𝑡, 𝑇) = 𝐸𝑄 [

𝐼(𝜏 > 𝑇) ∗ 𝑉(𝑡, 𝑇) + 
𝐼(𝜏 ≤ 𝑇) ∗ 𝑉(𝑡, 𝜏) +

𝐼(𝜏 ≤ 𝑇) ∗ ((𝜙(𝜏, 𝑇) − 1) ∗ 𝑉(𝜏, 𝑇)+ + 𝑉(𝜏, 𝑇))
] 

 

Because 𝑉(𝑡, 𝜏) + 𝑉(𝜏, 𝑇) = 𝑉(𝑡, 𝑇), then we get 

�̃�(𝑡, 𝑇) = 𝐸𝑄 [

𝐼(𝜏 > 𝑇) ∗ 𝑉(𝑡, 𝑇) + 
𝐼(𝜏 ≤ 𝑇) ∗ 𝑉(𝑡, 𝑇) +

𝐼(𝜏 ≤ 𝑇) ∗ ((𝜙(𝜏, 𝑇) − 1) ∗ 𝑉(𝜏, 𝑇)+)
] 

 

Since 𝐼(𝜏 > 𝑇) + 𝐼(𝜏 ≤ 𝑇) = 1, then we have 

�̃�(𝑡, 𝑇) = 𝐸𝑄[𝑉(𝑡, 𝑇) + 𝐼(𝜏 ≤ 𝑇) ∗ ((𝜙(𝜏, 𝑇) − 1) ∗ 𝑉(𝜏, 𝑇)+)] 

�̃�(𝑡, 𝑇) = 𝑉(𝑡, 𝑇) − 𝐸𝑄[𝐼(𝜏 ≤ 𝑇) ∗ ((1 − 𝜙(𝜏, 𝑇)) ∗ 𝑉(𝜏, 𝑇)+)] 

 

The subtrahend term is the credit value adjustment (CVA), the difference between the 

risk-free value and the true risky value. 

𝐶𝑉𝐴(𝑡, 𝑇) = 𝐸𝑄[𝐼(𝜏 ≤ 𝑇) ∗ ((1 − 𝜙(𝜏, 𝑇)) ∗ 𝑉(𝜏, 𝑇)+)] 

 

The derivation shows that credit risk of the counterparty can be priced 

independently from the traditional risk-free valuation of the derivative. This result is 

consistent with the third assumption, which supposes independence between the 

exposure and default risk. 

 

As the expectation value covers all the time from 𝑡 to 𝑇, we can rewrite the formula 

before as the result of integration. 

𝐶𝑉𝐴(𝑡, 𝑇) = 𝐸𝑄 [∫ 𝐵(𝑡, 𝑢)𝑉(𝑢, 𝑇)+

𝑇

𝑡

(1 − 𝜙(𝑡, 𝑢))𝑑𝐹(𝑡, 𝑢)] 

Where 𝐵(𝑡, 𝑢) is the discount factor and 𝐹(𝑡, 𝑢) is the cumulative default probability. 
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For the discrete time formula, suppose that there are 𝑁  periods from 𝑡  to  𝑇 : 

 {𝑡0, 𝑡, 𝑡1, 𝑡2, … , 𝑡𝑁}, where 𝑡0 = 𝑡 and 𝑡𝑁 = 𝑇. We then denote the expected exposure and 

the default probability for each period as: 𝐸𝐸(𝑡𝑖−1, 𝑡𝑖) = 𝐸𝑄[𝐵(𝑡𝑖−1, 𝑡𝑖)𝑉(𝑡𝑖)
+] and 𝜆𝑖 =

𝐹(𝑡, 𝑡𝑖) − 𝐹(𝑡, 𝑡𝑖−1).  

𝐶𝑉𝐴(𝑡, 𝑇) ≈ ∑ 𝐸𝐸(𝑡𝑖−1, 𝑡𝑖) ∗ (1 − 𝜙(𝑡𝑖−1, 𝑡𝑖)) ∗ 𝜆(𝑡𝑖−1, 𝑡𝑖)

𝑁

𝑖=1

 

 

In the case of an option, CVA formula should be simple because the long position is 

always positive. We set 𝑉𝑜𝑝𝑡𝑖𝑜𝑛(𝑡, 𝑇) as the upfront premium of the option and CVA 

should be written as below: 

𝐶𝑉𝐴𝑜𝑝𝑡𝑖𝑜𝑛 ≈ 𝑉𝑜𝑝𝑡𝑖𝑜𝑛(𝑡, 𝑇) ∗ ∑(1 − 𝜙(𝑡𝑖−1, 𝑡𝑖)) ∗ 𝜆(𝑡𝑖−1, 𝑡𝑖)

𝑁

𝑖=1

 

 

Sorensen and Bollier (1994) show that CVA can be written as a series of (reserve) 

European swaptions for an interest rate swap. In fact, the position of the interest 

rate swap could be positive or negative so that CVA could be 0 or positive depending 

the position value. 

𝐶𝑉𝐴𝑠𝑤𝑎𝑝 ≈ ∑(1 − 𝜙(𝑡𝑖−1, 𝑡𝑖)) ∗ 𝜆(𝑡𝑖−1, 𝑡𝑖) ∗ 𝑉𝑠𝑤𝑎𝑝𝑡𝑖𝑜𝑛(𝑡; 𝑡𝑖, 𝑇)

𝑚

𝑖=1

 

 

“The intuition is that the counterparty might default at any time in the future and, hence, 

effectively cancel the non-recovered value of the swap, economically equivalent to 

exercising the reverse swaption.” (Gregory, 2010, page 248) 
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A.2. BCVA and DVA (Hypothesis 1) 

 

The conception of DVA (debit value adjustment) has arisen because the institution itself 

can default, just like its counterparty. In other words, we drop down the first assumption. 

Obviously, the contingent component for DVA is the negative expected exposure (NEE) 

of the instrument (from the perspective of the institution).  Let’s denote 𝜆𝐼(𝑡𝑖−1, 𝑡𝑖) and 

𝜙𝐼(𝑡𝑖−1, 𝑡𝑖)  as the default probability and the recovery rate of the institution for the 

period  (𝑡𝑖−1, 𝑡𝑖) . DVA exists only when the institution itself defaults whereas the 

counterparty hasn’t defaulted yet.   

𝐷𝑉𝐴(𝑡, 𝑇) = ∑ 𝑁𝐸𝐸(𝑡𝑖−1, 𝑡𝑖) ∗ (1 − 𝜙𝐼(𝑡𝑖−1, 𝑡𝑖)) ∗ 𝜆𝐼(𝑡𝑖−1, 𝑡𝑖)

𝑁

𝑖=1

∗ (1 − 𝜆𝐶(0, 𝑡𝑖−1)) 

 

At the same time, we should also adjust CVA. CVA should exist only when both the 

counterparty defaults and the institution hasn’t defaulted yet. We denote 𝜆𝐶(𝑡𝑖−1, 𝑡𝑖) and 

𝜙𝐶(𝑡𝑖−1, 𝑡𝑖) as the default probability and the recovery rate of the counterparty for the 

period (𝑡𝑖−1, 𝑡𝑖). 

𝐶𝑉𝐴(𝑡, 𝑇) = ∑ 𝐸𝐸(𝑡𝑖−1, 𝑡𝑖) ∗ (1 − 𝜙𝐶(𝑡𝑖−1, 𝑡𝑖)) ∗ 𝜆𝐶(𝑡𝑖−1, 𝑡𝑖)

𝑁

𝑖=1

∗ (1 − 𝜆𝐼(0, 𝑡𝑖−1)) 

 

BCVA (bilateral CVA) is defined as: 𝐵𝐶𝑉𝐴 = 𝐶𝑉𝐴 + 𝐷𝑉𝐴. And the price of the OTC 

derivative should be: �̃� = 𝑉(𝑡, 𝑇) − 𝐵𝐶𝑉𝐴 = 𝑉(𝑡, 𝑇) − 𝐶𝑉𝐴 − 𝐷𝑉𝐴.  

 

The paradox here is that if the institution becomes riskier, the absolute value of DVA will 

increase, which leads also to  an increase in �̃�.  Institutions might make profits due to 

the decline of their own credit quality.  

 

 

 

 



  

14 

 

 

A.3. OIS and Funding (Hypothesis 2) 

 

The second hypothesis implies that Libor is risk-free and that the institution can easily 

borrow and lend at Libor. However, the financial turmoil in 2008 has told us that the two 

conditions do not hold.  

 

“OIS discounting” means that instead of using Libor as the discounting rate, we employ 

OIS as the discount factor. In fact, Libor includes credit risk while OIS is now viewed as 

the risk-free rate.  

 

Funding value adjustment (FVA) includes the funding cost of the transaction (for the 

institution) in the derivative pricing. This cost exists only when neither the institution nor 

the counterparty has defaulted. We denote  𝐹𝑆(𝑡𝑖−1, 𝑡𝑖) as the funding spread (both for 

lending and borrowing) between 𝑡𝑖−1 and 𝑡𝑖. The formula for FVA is as below: 

𝐹𝑉𝐴 = ∑ 𝐸𝐸(𝑡𝑖−1, 𝑡𝑖) ∗ (1 − 𝜆𝐶(0, 𝑡𝑖−1))

𝑁

𝑖=1

∗ (1 − 𝜆𝐼(0, 𝑡𝑖−1)) ∗ 𝐹𝑆(𝑡𝑖−1, 𝑡𝑖) ∗ (𝑡𝑖 − 𝑡𝑖−1)

+ ∑ 𝑁𝐸𝐸(𝑡𝑖−1, 𝑡𝑖) ∗ (1 − 𝜆𝐶(0, 𝑡𝑖−1))

𝑁

𝑖=1

∗ (1 − 𝜆𝐼(0, 𝑡𝑖−1)) ∗ 𝐹𝑆(𝑡𝑖−1, 𝑡𝑖) ∗ (𝑡𝑖 − 𝑡𝑖−1) 

 

The risky value of the derivative should be written as: 

 �̃� = 𝑉(𝑡, 𝑇) − 𝐵𝐶𝑉𝐴 − 𝐹𝑉𝐴 

 

A.4. Wrong-way risk (Hypothesis 3)  

 

Wrong-way risk is to identify the unfavourable correlation between the exposure and 

the counterparty credit quality. (Gregory, 2012, page 307) The counterparty credit 

quality falls when the exposure is higher and vice versa. Wrong-way risk will 

surely increase CVA and make it more complex to calculate. 

 

To price CVA in this case, Gregory (2012) replaces the unconditional expected 
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exposure by the expected exposure conditional on the default of the counterparty. We 

denote 𝜏𝑐 as the counterparty default time and CVA can be expressed as below: 

𝐶𝑉𝐴(𝑡, 𝑇) ≈ ∑ 𝐸𝐸(𝑡𝑖|𝑡𝑖 = 𝜏𝑐) ∗ (1 − 𝜙(𝑡𝑖−1, 𝑡𝑖)) ∗ 𝜆(𝑡𝑖−1, 𝑡𝑖)

𝑁

𝑖=1

 

 

Further, Hull and White (2012) propose another way to calculate CVA with wrong-way 

risk. Instead of fixing the default time, they set the hazard rate as a function of the 

future value of the derivative: ℎ(𝑡) = 𝑒𝑥𝑝 [𝑎(𝑡) + 𝑏𝑤(𝑡) + 𝜒휀] , where 𝑎(𝑡)  is a 

function of time, b is a constant parameter,  𝑤(𝑡)  is the value of the derivative, 𝜒 

measures the amount of noise in the relationship and 휀 is normally distributed with  

zero  mean  and  unit variance.3 

 

To conclude, CVA is relatively a complex subject covering a vast array of recent topics. 

Indeed, it is difficult to calculate precisely CVA. The literature mostly focuses on the 

expected exposure and default probability measurement. In this Master’s thesis, we try 

to improve CVA calculation with market implied recovery rate. 

  

                                                 
3 Recovery rate is treated as a constant in this case. 
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B. Recovery rate  

 

In the case of default, losses occur mainly in three ways: losses from the principal, 

carrying costs of non-performing loans (e.g. interest income foregone) and trivial 

workout expenses (e.g. legal, administrative and accounting fees). Moreover, the default 

process and the ultimate payouts to the bondholders might not be realized within a short 

delay. It typically takes around two years from the default date to the emergency from 

Chapter 11. Due to these physical traits, the measurement of recovery rate becomes 

susceptible: the fractional recovery of which value and at which moment?  In this section, 

we review at first the different recovery processes in the structural model and in the 

reduced form model; then the different definitions of recovery rate, and at the end, the 

literature on extracting implied recovery rates from market data. 

 

B.1. Recovery rate process: structural models VS reduced form models 

 

Based on Jarrow and Protter (2004), we compare the recovery rate process in the 

structural model versus in the reduced form model. 

 

We suppose that the face value of the firm’s debt is one dollar with maturity 𝑇. Denote 𝑟𝑡 

as the risk-free rate and  𝜏 as the time that default occurs. The indicator  𝐼(𝜏 ≤ 𝑇) takes 

the value 1 if default occurs before 𝑇 and takes 0 otherwise. For the structural model, we 

determine the default barrier and in the case of default, the bondholders receive a fraction 

𝛿𝜏 of the firm’s debt. In the reduced form model, 𝜙𝜏 is assumed to be the recovery rate at 

default. 

 

The formula from the structural model to evaluate the firm’s debt at time 0 is: 

𝑣(0, 𝑇) = 𝐸([ 𝐼(𝜏 ≤ 𝑇) ∗ 𝛿𝜏 + 𝐼(𝜏 > 𝑇) ∗ 1]𝑒− ∫ 𝑟𝑠𝑑𝑠
𝑇

0 ) 
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The formula from the reduced form model to evaluate the firm’s debt at time 0 is: 

𝑣(0, 𝑇) = 𝐸([ 𝐼(𝜏 ≤ 𝑇) ∗ 𝜙𝜏 + 𝐼(𝜏 > 𝑇) ∗ 1]𝑒− ∫ 𝑟𝑠𝑑𝑠
𝑇

0 ) 

 

The distinction is small but crucial between the two formulas. “The recovery rate process 

is prespecified by a knowledge of the liability structure in the structural approach, while 

(in the reduced form models) it is exogenously supplied.” (Jarrow and Protter, 2004, page 

5)   

 

In the same article, the authors argue that the difference between the two classes of model 

is due to the information assumed known by the modeler. In the structural model, the 

modeler has complete knowledge of all the firm’s assets and liabilities, while in the 

reduced form model, the modeler has incomplete knowledge of the firm’s condition but 

the same information as the market. In this sense, they conclude that in a pricing context, 

reduced form models are preferred. 

 

B.2. Definitions of recovery rate 

 

As our methodology for pricing credit risk is mostly related to the reduced form models, 

we review the different definitions of recovery rate in this context. We trace back to the 

framework of Duffie and Singleton (1999) for pricing defaultable bonds.  

 

Suppose that we price a defaultable bond with the final payment $ 𝑋. As before, we 

denote 𝑟𝑡  as the short-term risk-free rate and 𝜏  indexes the time that default 

occurs. 𝐵(𝑡, 𝑇) = 𝐸𝑄 [𝑒𝑥𝑝 (− ∫ 𝑟𝑠
𝑇

𝑡
𝑑𝑠)] is the time 𝑡 price of Treasury zero-coupon bond 

(face value of $ 1 and maturity 𝑇). In the case of default, the recovery amount at time  𝜏 

(in $) is 𝜑(𝜏, 𝑇). The value of the defaultable bond at 𝑡 is: 

�̃�(𝑡, 𝑇) = 𝐵(𝑡, 𝜏) ∗ 𝜑(𝜏, 𝑇) ∗ 𝐼(𝜏 ≤ 𝑇) + 𝐵(𝑡, 𝑇) ∗ 𝑋 ∗ 𝐼(𝜏 > 𝑇) 
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And the recovery rate  𝜙𝜏 can be expressed as: 

 𝜙𝜏 =
𝜑(𝜏, 𝑇)

𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 𝑣𝑎𝑙𝑢𝑒
 

 

According to the different assumptions for the denominator, Duffie and Singleton (1999) 

present three ways of recovery rate modeling: 1) recovery of par (face value), 2) recovery 

of Treasury and 3) recovery of market value.  

 

 Recovery of par (RFV) 

 

Recovery rate here is a fraction of face value, which is generally consistent with the bond 

covenants and CDS contracts. Recovery of face value is also conformable with 

liquidation at default and absolute priority rules since it “implies equal recovery for 

bonds of equal seniority of the same issuer” (Duffie and Singleton, 1999).  

 

In reality, it is often adopted by the rating agencies. For example, Moody’s uses the ratio 

of the market bid price observed roughly 30 days after default to its face value. This 

measurement is not only direct and objective but also reflects the market expectation for 

the ultimate recovery soon after the credit event for the final recovery rate. 

 

In the literature of reduced form models, recovery of par refers to the “RFV” model in 

Duffie and Singleton (1999). The recovery amount 𝜑(𝜏, 𝑇) can be written as a function of 

recovery of par: 

𝜑(𝜏, 𝑇) =  𝜙𝜏 ∗ 𝑋 

The value of the defaultable bond at 𝑡 is: 

�̃�(𝑡, 𝑇) = 𝐵(𝑡, 𝜏) ∗  𝜙𝜏 ∗ 𝑋 ∗ 𝐼(𝜏 ≤ 𝑇) + 𝐵(𝑡, 𝑇) ∗ 𝑋 ∗ 𝐼(𝜏 > 𝑇) 

 

When 𝜙𝜏 = 𝜙0, the recovery rate becomes a constant fraction of the face value, as in the 

model of Duffie (1999) and Lando (1998). Recovery rate of par captures only the loss 

from the principle and implies zero recovery for the coupons. 
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 Recovery of Treasury (RT) 

 

Recovery of Treasury is the fractional recovery of the present value of the face value, 

which is equivalent to the price of a Treasury bond with the same face value and 

maturity.  

 

In this case, the recovery amount 𝜑(𝜏, 𝑇) can be expressed as below: 

𝜑(𝜏, 𝑇) =  𝜙𝜏 ∗ 𝐵(𝜏, 𝑇) ∗ 𝑋 

And the value of the defaultable bond at  𝑡 is: 

�̃�(𝑡, 𝑇) = 𝐵(𝑡, 𝑇) ∗ 𝜙𝜏 ∗ 𝑋 ∗ 𝐼(𝜏 ≤ 𝑇) + 𝐵(𝑡, 𝑇) ∗ 𝑋 ∗ 𝐼(𝜏 > 𝑇) 

 

This method is employed by Longstaff and Schwartz (1995) and Jarrow and Turnbull 

(1995).  

 

 Recovery of market value (RMV) 

 

Recovery rate here is the fraction of the pre-default market value of the defaultable bond. 

In this case, the recovery amount 𝜑(𝜏, 𝑇)can be expressed as below: 

𝜑(𝜏, 𝑇) =  𝜙𝜏 ∗ �̃�(𝜏−, 𝑇) 

And the value of the defaultable bond at  𝑡 is: 

�̃�(𝑡, 𝑇) =  𝐵(𝑡, 𝜏) ∗ 𝜙𝜏 ∗ �̃�(𝜏−, 𝑇) ∗ 𝐼(𝜏 ≤ 𝑇) + 𝐵(𝑡, 𝑇) ∗ 𝑋 ∗ 𝐼(𝜏 > 𝑇) 

 

This RMV model is proposed by Duffie and Singleton (1999) and it assumes the same 

recovery rate for coupons and principle. With this definition of recovery rate, they price 

the defaultable bond as the final payment 𝑋 discounted at the risk-free rate plus a default 

premium. The equation is as below: 

�̃�0 = 𝐸0
𝑄 [𝑒𝑥𝑝 (− ∫ 𝑅𝑡

𝑇

0

𝑑𝑡) 𝑋],   𝑅𝑡 = 𝑟𝑡 + ℎ𝑡(1 −  𝜙𝑡) 
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Where ℎ𝑡 is the hazard rate and  𝜙𝑡 is the fractional recovery of market value if default 

occurs at time 𝑡. As we can see, the pricing of credit risk is subsumed within the discount 

factor 𝑅𝑡. In this way, defaultable bonds can be priced by any default-free term structure 

modeling techniques.  

 

B.3. Implied recovery rate  

 

The literature of extracting implied recovery rate from market data is relatively new and 

limited. Due to the market context, most of the papers extract the fractional recovery of 

face value. Here, we review several representative research papers and compare them. 

 

B.3.1. Related Literatures  

 

Bakshi, Madan and Zhang (2006) assume that default probability and recovery rate are 

functions of the risk-free rate and allow dependence between the two variables. Using the 

market data of 25 BBB-rated unsecured US corporate bonds from 1989 to 1998, the 

authors extract distinct implied default probability and recovery rate in time series by a 

calibration model.  Further, they show that compared with RFV and RMV, RT provides 

better fitting models.  

 

Similarly, Gaspar and Slinko (2008) suppose that hazard rate and recovery rate are 

related to S&P 500 and that the two rates are negatively correlated.  They assume the 

constant recovery rate for all firms in the data and finally obtain an average recovery rate 

of 30 % of US investment grade bonds from 2004 to 2007. 

 

Güntay, Madan and Unal (2003) propose a completely different framework. They apply a 

pure recovery model which is free of default timing consideration. This ARS (adjust 

relative spread), which should only be related to recovery level and variance, is defined 

as the proportion of senior debt times the ratio of the difference between the prices of the 
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senior debts and junior debts to the difference between default-free debts and junior 

debts. After transformation, the formula for ARS is as below: 

𝐴𝑅𝑆 =
𝐸(𝑦) − 𝐸(𝑦𝐽)

1 − 𝐸(𝑦𝐽)
 

Where 𝑦  is the aggregate recovery rate to all outstanding debt and 𝑦𝐽  is the average 

recovery rate of junior debt. Recovery rates are supposed to be a transformed normal 

distribution and related to the risk-free rate and the firm’s asset tangibility. Using the data 

of 28 US corporate junior and senior bonds from 1990 to 1997, their results show that the 

risk-neutral recovery level and variance are generally much lower than the industrial 

historical recovery. 

 

Another category of models exploits the information carried in the CDS term structures. 

 

Zhang (2003) aims to separate default probability from a constant expected recovery rate 

throughout the period of Argentinean sovereign CDS data and across all the maturities. 

The model allows the default probability to be the function of three state variables related 

to the risk free rate. The result of Zhang (2003) suggests an expected recovery rate of 

27.5% for Argentina in 2001. Pan and Singleton (2008) adopts a similar methodology. 

They allow recovery to change in time series but stay constant across all the CDS 

maturities. They extract recovery rates of face value from the sovereign CDS spreads of 

three countries (Mexico, Turkey and Korea) and suggest average recovery rates of 

76.9%, 76.4% and 16.7% respectively, which is quite different from Zhang (2003). 

Schneider, Sögner and Veza (2009) apply the same methodology of Pan and Singleton 

(2008) to CDS on senior unsecured bonds. They find an overall implied recovery of 79 % 

for 282 US obligors from 2004 to 2006. 

 

Our methodology to extract implies recovery rates is based mainly on Das and Hanouna 

(2009). They suppose that recovery rate and default probability are correlated and are 

functions of firm-specific stock price and its volatility. The authors have developed a 

calibration model to extract the forward term structure of implied recovery and default 
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probability from CDS spreads of different maturities. Using data of CreditMetrics from 

January 2000 to July 2002, they arrive with declining recovery rate term structures for all 

the quintiles. However, the average is quite different: from 90% implied recovery for the 

best quality credit quintile to 30% for the worst quintile.   

 

B.3.2. Comparison of the methodologies  

 

We can differentiate these models in three ways: 1) the extracted information sources, 2) 

dependence (independence) between the default probability and recovery rate and 3) 

market available information, to which hazard rate and recovery rate are related. 

 

Obviously, there are two extracted information sources: corporate bonds and CDS term 

structures. Which one is better? First of all, they are both problematic since wealth of 

evidence showing nondefault components is significant in bond prices and CDS spreads. 

Elton & al. (2001) point out that the rate spreads between corporate and government 

bonds include three main components: expected default loss, taxes and systematic risk 

premium. By adding the dependence between default probability and recovery rate, 

Dionne & al. (2008) has proved that the proportion of default risk can reach 76% for 

Canadian Baa bonds during the 1987-1991 period.  

 

There are also recent studies indicating liquidity premium in bond and CDS markets. For 

corporate bonds, Longstaff & al. (2005) explain that the significant nondefault 

component is highly related to the illiquidity measures, such as bid-ask spreads, 

outstanding principle amount and Treasury richness. In the CDS markets, Guo and 

Newton (2001) show that liquidity determinant is significant and time-varying both in 

dummy-variable pooling regression and Markov regime-switching model. Arora & al. 

(2012) also demonstrate that the counterparty risk of the seller is priced in the CDS 

spreads.  
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It might be difficult to conclude which source is better for extracting implied default 

measure, although some research has shown that CDS market has a lead over the bond 

market for corporate (Coudert and Gex, 2010, Alexopoulou & al. 2009).   

It is interesting to note that the pure recovery model of Güntay, Madan and Unal (2003) 

could be an efficient way to eliminate the irrelevant components to recovery rate, such as 

liquidity risk. This would be done by taking the difference between the senior and junior 

bonds. However, it requires two classes of bonds, which limits the applicable objectives.  

 

Furthermore, Bakshi, Madan and Zhang (2001), Gaspar and Slinko (2008) and Das and 

Hanouna (2009) allow the dependence between default probability and recovery rate. The 

others assume the independence between the two variables.  Obviously, a more precise 

model should include the latter correlation.  

 

Finally, according to related variables, we can also separate these models into three 

categories: hazard and recovery rate related to systematic variables, to industrial variables 

and to firm-specific variables. Bakshi, Madan and Zhang (2001) and Gaspar and Slinko 

(2008) relate hazard and recovery to systematic variables (risk-free rate and S&P 500) 

while Schneider, Sögner and Veza (2009) study the recovery rates for different sectors. In 

the case of Güntay, Madan and Unal (2003) and Das and Hanouna (2009), they both 

include systematic (risk-free rate) and firm-specific variables (asset tangibility, stock 

price and volatility). 

 

We have chosen the Das and Hanouna (2009) model for further research. It allows the 

correlation between default probability and recovery rate. Hazard rate is related to both 

systematic and firm-specific risks. This methodology can be applied for public firms who 

are the reference entities of CDS contracts.  
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Section III   Methodology 

 

This section explains the methodology of combining CVA calculation with the implied 

recovery rate. There are two main steps: Firstly, based on the model of Das and Hanouna 

(2009), we find the term structure of implied recovery rate of the studied firm. Secondly, 

we adopt the results to the CVA calculation. 

 

A. Extracting  implied recovery rate  

 

In this part, we discuss 1) the main assumptions of our methodology and 2) the model to 

extract the CDS implied recovery rate term structure. 

 

A.1. Assumptions 

 

Our methodology is mainly based on the model of Das and Hanouna (2009). At each 

point in time, by calibrating the term structure of CDS spreads, the authors extract the 

term structure of default probabilities and recovery rates. In their model, the default 

probability is driven by the stock price (the only state variable) and the recovery rate is 

linked to the default probability by a parametric function.  

 

One of the main changes we make is the state variable. Instead of using the stock price, 

we write the default probability as a function of market capitalization. From a 

mathematical viewpoint, they are not so different: market capitalisation is the product of 

stock price and number of shares. However, since default probability is at the firm level, 

market capitalization should be more adequate than stock price as the state variable.   

 

Market capitalization refers to the equity value of a firm. We denote the capital structure 

of the firm as 𝑉𝐹 = 𝐸 + 𝐷, where 𝑉𝐹 is the firm value, 𝐸 is firm equity value and 𝐷 is its 

debt value. Equity value 𝐸 and debt value 𝐷 should have the same default probability (the 
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firm’s default probability). The difference between these securities lies in the recovery 

rates. In our model, in the case of default, we suppose that the recovery rate on equity is 

zero while debt4 has no-zero recovery rates, which are dependent on default probability.  

 

We are aware that the zero recovery rate for equity is unrealistic. Even after the firm files 

for bankruptcy, the equity price will not immediately fall to zero. However, compared to 

the other stakeholders, the shareholders have the lowest priority to recover their loss. 

Further, this assumption can be easily relaxed by setting a certain amount of equity 

recovery rate in the model. 

 

From a discrete time approach, at each time interval, the default probability of the firm is 

driven by its market value at the beginning of the period. The recovery rate on debt 𝐷 

becomes also contingent upon market capitalization through its dependence on the 

default probability. In the view of Jarrow and Protter (2004), our reduced model assumes 

that market capitalization is the only available information on the market. 

 

Under the forward risk-neutral measure, the absence of arbitrage opportunities implies 

that the market capitalization grows at forward risk-free rates. Knowing the market value 

evolution, we can write the corresponding endogenous default probabilities and recovery 

rates. Later, these two variables will be used to calibrate the CDS spread curve. 

 

Another reasoning of Das and Hanouna’s methodology is that the information carried in 

CDS spread curve on the “reference loan” is comprised of its probability of default and 

recovery rate. The accurate forward-looking default and recovery rate term structure can 

be found by calibrating the CDS spread curve. It infers that only the credit risk of the 

                                                 
4  We study the senior unsecured bonds in the empirical part, since the recovery rate on unsecured 

obligations is considered to be near to the OTC derivatives.  
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underlying firm is priced in the CDS spreads. There should be almost no liquidity risk or 

counterparty credit risk of the underwriter.5  

 

The last important hypothesis is the dependence between recovery rate and default 

probability. As we mentioned before, this correlation has already been examined by some 

research, such as Altman & al. (2004) and Dionne & al. (2008). Our model imposes the 

negative correlation between the two variables and supposes that default probability is the 

only variable to explain the recovery rate. In this way, our methodology successfully 

separates the default probability and the recovery rate from the CDS spreads.  

 

 A.2. Methodology of extracting implied recovery 

 

This part is divided into four sections. At first, we introduce the CDS pricing 

methodology. Secondly, we model the stochastic behavior of the state variable, the 

market capitalization. Thirdly, we define how to obtain state-dependent default 

probabilities and recovery rates from the calibration model. Finally, we will discuss the 

constraints of the model. 

 

A.2.1. CDS pricing methodology 

 

We use the CDS pricing model that is proposed in the Das and Hanouna (2009).  

 

We assume 𝑁 periods in the model, 𝑗 = 1, … , 𝑁 and ℎ as the time interval of each step. 𝑇𝑗 

is the end of the 𝑗th period. 

 

The discount function is a function of risk-free forward rates: 

                                                 
5 As we discussed in the literature review, this assumption might be tricky since in some situations, the two 

additional risks could be significantly priced in the CDS spread curves. But theoretically, the price of CDS 

should reflect the credit risk of the underlying entity.   
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𝐷(𝑇𝑗) = 𝑒𝑥𝑝 {− ∑ 𝑓𝑘ℎ

𝑗

𝑘=1

} 

 

The survival function is defined as a function of default intensity of the firm  휀𝑗 ≡

휀(𝑇𝑗−1, 𝑇𝑗) : 

𝑄(𝑇𝑗) = 𝑒𝑥𝑝 {− ∑ 휀𝑘ℎ

𝑗

𝑘=1

} 

 

Suppose that a CDS is contingent on a defaultable bond or loan, whose nominal value is 

$ 1. We define the CDS spread for 𝑁 periods is 𝐶𝑁, and assume that default occurs at the 

end of 𝑁 periods. The expected present value of the premiums paid is: 

𝐴𝑁 = 𝐶𝑁ℎ ∑ 𝑄(𝑇𝑗−1)𝐷(𝑇𝑗)

𝑁

𝑗=1

 

 

If the default occurs during the CDS contract, the seller needs to pay the buyer 1 minus 

recovery rate. We denote the recovery rate 𝜙𝑗 ≡ 𝜙(𝑇𝑗−1, 𝑇𝑗). Therefore, if the default 

occurs in period 𝑗, the loss payment will be $ 1 ∗ (1 −  𝜙𝑗). It implies that our model uses 

the “recovery of par” definition for pricing the CDS.  

 

The possibility that the firm survives until period  (𝑗 − 1)  and defaults at period 𝑗 

is 𝑄(𝑇𝑗−1)(1 − 𝑒−𝜀𝑗ℎ). The expected present value of loss payments is: 

𝐵𝑁 = ∑ 𝑄(𝑇𝑗−1)(1 − 𝑒−𝜀𝑗ℎ)𝐷(𝑇𝑗)(1 − ϕj)

𝑁

𝑗=1

 

 

The accurate 𝐶𝑁 should make 𝐴𝑁 = 𝐵𝑁: 

𝐶𝑁 =
ℎ ∑ 𝑄(𝑇𝑗−1)𝐷(𝑇𝑗)𝑁

𝑗=1

∑ 𝑄(𝑇𝑗−1)(1 − 𝑒−𝜀𝑗ℎ)𝐷(𝑇𝑗)(1 − ϕj)
𝑁
𝑗=1
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A.2.2. Market capitalization modeling 

 

As discussed before, at time 𝑡, market capitalization is the only variable to explain the 

default intensity (default probability) of the firm and that default probability is the only 

variable to explain the recovery rate. As a result, both default probability and recovery 

rate are dependent on market capitalization.  

 

Identical to Das and Hanouna’s model, we model the stochastic behavior of market 

capitalization  𝑀  with the Cox et al. (1979) binomial tree by adding a state of jumping to 

default. Below is a one period example: 

M              {

𝑀𝑢 = 𝑀𝑒𝜎√ℎ                              𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑞(1 − 𝜆)

𝑀𝑑 = 𝑀𝑒−𝜎√ℎ                 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝑞)(1 − 𝜆)

0                                                   𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜆

  

Where 𝜆 is the probability of jumping to default and 𝑞 is the probability of an up move if 

the firm survives. 

 

As mentioned before, under the forward risk-neutral measurement, the condition of 

absence of arbitrage opportunities implies that market capitalization grows at the forward 

risk-free rate. Otherwise, this asset will dominate or be dominated by other assets since 

there is no risk preference. The expected return on 𝑀 can be written as below: 

𝐸 [
𝑀𝑗 − 𝑀𝑗−1

𝑀𝑗−1
] = 𝑒𝑓𝑗ℎ 

Since 𝐸[𝑀𝑗] = 𝑀𝑗−1 ∗ [𝑞(1 − 𝜆) ∗ 𝑢 +  (1 − 𝑞)(1 − 𝜆) ∗ 𝑑 + 𝜆 ∗ 0], 

𝐸 [
𝑀𝑗 − 𝑀𝑗−1

𝑀𝑗−1
] = 𝑞(1 − 𝜆) ∗ 𝑢 +  (1 − 𝑞)(1 − 𝜆) ∗ 𝑑 = 𝑒𝑓𝑗ℎ 

After the transformation, we get the risk-neutral probability of the up move: 𝑞 =
𝑅

1−𝜆
−𝑑

𝑢−𝑑
 

and 𝑅 = 𝑒𝑓ℎ.  
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Compared to the risk-neutral probability for an original Cox et al. (1979) binomial tree, 

the result of adding the state of jumping to default is the change of the drift of market 

capitalization. We rewrite the drift as below: 

𝑅

1 − 𝜆
=

𝑒𝑓ℎ 

1 − (1 − 𝑒−𝜀ℎ)
= 𝑒(𝑓+𝜀)∗ℎ 

 

We notice that it is consistent with Duffie and Singleton (1999). Their “RMV” pricing 

model shows that the drift of a defaultable asset under risk neutral measurement should 

be the risk-free rate plus the loss rate: 𝑅𝑡 = 𝑟𝑡 + 휀𝑡(1 −  𝜙𝑡). Applying it to our model, 

the drift of the market capitalization should be 𝑓𝑗 + 휀𝑗 ∗ (1 −  𝜙𝑗). Since we set the zero 

recovery rate6 for market capitalization ( 𝜙𝑗 = 0), the risk-neutral drift is equal to 𝑓𝑗 + 휀𝑗, 

which is identical to the drift derived from the risk-neutral probability.  

 

We need to mention that volatility here should be the implied volatility of the return on 

market capitalization. Instead of using historical volatility as do Das and Hanouna (2009), 

we define implied volatility  𝜎 as a parameter to estimate in the calibration model.  

  

A.2.3. Term structure of default probability and recovery rate  

 

As we discussed in A.2.1, to price CDS, we need the default intensity 휀 and recovery 

rate 𝜙.7 The key step of this calibration model is to define the default probability and 

recovery rate function.  

 

After modeling the evolution of market capitalization, we can write the state-dependent 

default intensity and recovery rate. We denote each node on the tree with the index [𝑖, 𝑗], 

where 𝑗 indexes time (from 0 to 𝑁) and 𝑖 indexes the level of the node at time 𝑗. In the 𝑗th 

                                                 
6 In our model, we use the “recovery of par” definition. However, because it is 0 “recovery of par”, it will 

also be 0 “recovery of market value”. 
7 For now, we suppose that the risk-free forward rates are available. Later, in the data description, we will 

introduce the way to extract the forward rates term structure from US Treasury yields. 
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period, 𝑖 takes value 0 at the top and value 𝑗 at the bottom. Das and Hanouna define the 

probability of default and recovery rate as below: 

휀[𝑖, 𝑗] =
1

𝑀[𝑖, 𝑗]𝑏
 

𝜆[𝑖, 𝑗] = 1 − 𝑒−𝜀[𝑖,𝑗]ℎ    

𝜙[𝑖, 𝑗] =
1

1 + 𝑒𝑥𝑝(𝑎0 + 𝑎1𝜆[𝑖, 𝑗])
 

𝑀[𝑖, 𝑗] = 𝑀[0,0]𝑢𝑗−𝑖𝑑𝑖 = 𝑀[0,0]exp (𝜎√ℎ(𝑗 − 2𝑖)) 

 

The calibration model contains four parameters {𝑎0, 𝑎1, 𝑏, 𝜎}. Parameter 𝑏 captures the 

relation between the market capitalization and the default intensity. Parameter  𝑎1 

captures the dependence between the default probability and recovery rate. Parameter 𝜎 

is implied volatility of the return on market capitalization. 

 

Since we now have the default and recovery rate of every node, we can find the expected 

premiums and expected losses of CDS by recursion.  

𝐴[𝑖, 𝑗] =
𝐶𝑁

𝑅
+

1

𝑅
[𝑞[𝑖, 𝑗](1 − 𝜆[𝑖, 𝑗])𝐴[𝑖, 𝑗 + 1] + (1 − 𝑞[𝑖, 𝑗])(1 − 𝜆[𝑖, 𝑗])𝐴[𝑖 + 1, 𝑗 + 1]] 

𝐵[𝑖, 𝑗] = 𝜆[𝑖, 𝑗](1 − 𝜙[𝑖, 𝑗]) +
1

𝑅
[𝑞[𝑖, 𝑗](1 − 𝜆[𝑖, 𝑗])𝐵[𝑖, 𝑗 + 1] + (1 − 𝑞[𝑖, 𝑗])(1 − 𝜆[𝑖, 𝑗])𝐵[𝑖 + 1, 𝑗 + 1]] 

 

We need to fix the payments of the two legs at maturity 𝑇. For the premiums,  𝐴[𝑖, 𝑁] =

𝐶𝑁 , since the last coupon payment should be at maturity for the majority of CDS 

contracts. For the expected loss payment,  𝐵[𝑖, 𝑁] =  𝜆[𝑖, 𝑁](1 − 𝜙[𝑖, 𝑁]), because the 

last period should be recovered by the CDS contract. 

 

Fair  𝐶𝑁 should make the two expected values at time 0 the same. That is 𝐴[0,0] should 

equal to 𝐵[0,0].  
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We calibrate the CDS spread curve by minimising the error term8: 

min
𝑎0,𝑎1,𝑏,𝜎

1

𝑁
∑[𝐶𝑗(𝑎0, 𝑎1, 𝑏, 𝜎) − 𝐶𝑗

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑]
2

𝑁

𝑗=1

 

Where 𝐶𝑗
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 is the observed CDS spread in the market. 

 

After calibration, we get the four estimated parameters {𝑎0, 𝑎1, 𝑏, 𝜎}. We must return to 

the jump-to-default tree to calculate the term structure of default probabilities and 

recovery rates on the defaultable “reference loan”. We denote 𝑝(𝑖, 𝑗) as the probability of 

reaching node (𝑖, 𝑗), and the term structure of default probabilities and recovery rates can 

be calculated as below: 

 𝜆𝑗 = ∑ 𝑝[𝑖, 𝑗]𝜆[𝑖, 𝑗]

𝑗

𝑖=0

,       ∀𝑗 

𝜙𝑗 = ∑ 𝑝[𝑖, 𝑗]𝜙[𝑖, 𝑗]

𝑗

𝑖=0

,       ∀𝑗 

 

Here, the difficulty is to get the risk-neutral probability to reach each node 𝑝(𝑖, 𝑗). The 

risk-neutral probability of an up move  𝑞(𝑖, 𝑗)  is inconstant and depends on default 

probabilities 𝜆[𝑖 − 1, 𝑗 − 1] and 𝜆[𝑖, 𝑗 − 1] of the last step. Therefore, we cannot apply 

the general formula for node probabilities of a regular binomial tree. Instead, we 

cumulate the node probabilities step by step. Below is a three-period example: 

𝑝[0,0] = 1; 

𝑝[0,1] = 𝑝[0,0] ∗ (1 − 𝜆[0,0]) ∗ 𝑞[0,0]; 

𝑝[1,1] = 𝑝[0,0] ∗ (1 − 𝜆[0,0]) ∗ (1 − 𝑞[0,0]); 

𝑝[0,2] = 𝑝[0,1] ∗ (1 − 𝜆[0,1]) ∗ 𝑞[0,1]; 

𝑝[1,2] = 𝑝[0,1] ∗ (1 − 𝜆[0,1]) ∗ (1 − 𝑞[0,1]) + 𝑝[1,1] ∗ (1 − 𝜆[1,1]) ∗ 𝑞[1,1]; 

𝑝[2,2] = 𝑝[1,1] ∗ (1 − 𝜆[1,1]) ∗ (1 − 𝑞[1,1]); 

𝑝[0,3] = 𝑝[0,2] ∗ (1 − 𝜆[0,2]) ∗ 𝑞[0,2]; 

                                                 
8 We will discuss the constraints in the next part A.2.4.  
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𝑝[1,3] = 𝑝[0,2] ∗ (1 − 𝜆[0,2]) ∗ (1 − 𝑞[0,2]) + 𝑝[1,2] ∗ (1 − 𝜆[1,2]) ∗ 𝑞[1,2]; 

𝑝[2,3] = 𝑝[1,2] ∗ (1 − 𝜆[1,2]) ∗ (1 − 𝑞[1,2]) + 𝑝[2,2] ∗ (1 − 𝜆[2,2]) ∗ 𝑞[2,2]; 

𝑝[3,3] = 𝑝[2,2] ∗ (1 − 𝜆[2,2]) ∗ (1 − 𝑞[2,2]); 

 

By step-by-step accumulation, we can write 𝑝[𝑖, 𝑗]  at each node in the tree. 𝜆[𝑖, 𝑗] 

and 𝜙[𝑖, 𝑗] are easy to calculate with the estimated 4 parameters. Therefore, we can get 

the term structure of default probabilities  𝜆𝑗 and recovery rates 𝜙𝑗. 

 

Until now, we have explained how to obtain the term structure of default probability and 

recovery rate step by step. To sum up, the inputs of our model are the term structure of 

CDS spreads  𝐶𝑗 , 𝑗 = 1, … , 𝑁 , risk-free forward rates 𝑓𝑗 , 𝑗 = 1, … , 𝑁  and market 

capitalization 𝑀. The outputs are the implied function for default probability 𝜆[𝑖, 𝑗] =

𝑓(𝑆, 𝑏, 𝜎) and recovery rates 𝜙[𝑖, 𝑗] = 𝑓(𝑎0, 𝑎1, 𝜆), and their term structures 𝜆𝑗 and 𝜙𝑗.  

Figure 2 below shows the general process of our methodology:  

 

Figure 2: Process of the methodology 

 

 

 

Step 7:  Calculating the term structure of PD and RR according to the calibrated parameters

Step 6:  Fitting the estimated CDS spreads to the observed CDS spreads

Step 5:  Estimating CDS spread term stucture with the related RR and PD  

Step 4: Writing recovery rate according to default probability

Step 3:  Writing default probability according to default intensity

Step 2:  Writing default intensity depending on market capitalization 

Step 1:  Building Cox & al. binomial tree of market capitalization 
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A.2.4. Constraints  

 

In this section, we discuss about the parameters’ constraints, especially for 𝑎1,  𝑏 and 𝜎.  

Firstly, we impose negative correlation between the default probability and recovery rate, 

parameter 𝑎1 < 0 (Constraint 1). 

 

Secondly, the implied volatility 𝜎 must be bigger than 0, 𝜎 > 0 (Constraint 2).  

 

Thirdly, to make sure the negative correlation between the market capitalization and 

default intensity (휀 =
1

𝑀𝑏), parameter  𝑏 should also be bigger than 0, 𝑏 > 0 (Constraint 

3).  

 

Finally, as 𝑞[𝑖, 𝑗] =

𝑅

1−𝜆[𝑖,𝑗]
−𝑑

𝑢−𝑑
 is a probability, 𝑞[𝑖, 𝑗] must be between 0 and 1 for ∀𝑖, 𝑗. 

Substituting the 𝑢 = 𝑒𝜎√ℎ, 𝑑 = 𝑒−𝜎√ℎ, 𝑅 = 𝑒𝑓ℎ and 1 − 𝜆 = 𝑒−𝜀ℎ = 𝑒
−

1

𝑀𝑏ℎ
, we have 

𝜎 ≥ (𝑓 +
1

𝑀𝑏) √ℎ ≥ −𝜎, where 𝜎 > 0 . Since (𝑓 +
1

𝑀𝑏) √ℎ is certainly bigger than 0, it is 

certainly bigger than – 𝜎. Hence, we only need to deal with (𝑓 +
1

𝑀𝑏) √ℎ ≤ 𝜎, which can 

be transferred to 
1

𝑀𝑏 ≤
𝜎

√ℎ
− 𝑓 (Inequality 1).  

 

Since 
1

𝑀𝑏 is always positive, it means that  
𝜎

√ℎ
− 𝑓 > 0 and 𝜎 > √ℎ ∗ 𝑓 (Constraint 4). As 

Constraint 4 is stricter than Constraint 2, we now drop Constraint 2. 

 

As the two sides of Inequality 1 are positive numbers, we impose 𝑙𝑛 in front of them. The 

inequation becomes −𝑏 ∗ 𝑙𝑛(𝑀) ≤ ln (
𝜎

√ℎ
− 𝑓). Three situations are possible: 

1) If 𝑀 > 1, then 𝑙𝑛(𝑀) > 0 and  𝑏 ≥
−𝑙𝑛 (

𝜎

√ℎ
−𝑓)

𝑙𝑛𝑀
 . Adding Constraint 3, parameter 𝑏 

has two constraints. 
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2) If 𝑀 < 1, then 𝑙𝑛(𝑀) < 0 and  𝑏 ≤
−𝑙𝑛 (

𝜎

√ℎ
−𝑓)

𝑙𝑛𝑀
 . As 𝑏 > 0,  

−𝑙𝑛 (
𝜎

√ℎ
−𝑓)

𝑙𝑛𝑀
 has to be also 

bigger than 0. As the numerator −𝑙𝑛 (
𝜎

√ℎ
− 𝑓) should be smaller than 0, we need 

to impose 𝜎 ≥ √ℎ ∗ (𝑓 + 1) , which is stricter than Constraint 4. For 

parameter 𝑏, 0 < 𝑏 ≤
−𝑙𝑛 (

𝜎

√ℎ
−𝑓)

𝑙𝑛𝑀
. 

3) If 𝑀 = 1, then 𝑙𝑛(𝑀) = 0 and  𝜎 ≥ √ℎ ∗ (𝑓 + 1) . 

 

To conclude, in the stock price Cox & al. (1979) binominal tree, the constraints are as 

below: 

When all 𝑀 > 1, the constraints are: 𝜎 > √ℎ ∗ 𝑓, 𝑏 > 0 and 𝑏 ≥
−𝑙𝑛 (

𝜎

√ℎ
−𝑓)

𝑙𝑛𝑀
. 

When all 𝑀 < 1, the constraints are: 𝜎 ≥ √ℎ ∗ (𝑓 + 1) and 0 < 𝑏 ≤
−𝑙𝑛 (

𝜎

√ℎ
−𝑓)

𝑙𝑛𝑀
. 

When all 𝑀 = 1, the constraints are: 𝜎 ≥ √ℎ ∗ (𝑓 + 1) and 𝑏 > 0. 

 

Now we discuss the mixed situation. Obviously, 𝜎 must be bigger than √ℎ ∗ (𝑓 + 1). In 

this case, for the stock prices bigger than 1, we can keep only 𝑏 > 0  and drop  𝑏 ≥

−𝑙𝑛 (
𝜎

√ℎ
−𝑓)

𝑙𝑛𝑀
, since 

−𝑙𝑛 (
𝜎

√ℎ
−𝑓)

𝑙𝑛𝑀
 is always inferior to 0. For stock prices less than 1, the 

constraint for 𝑏 stays the same. Therefore, in a mixed situation, the constraints are: 𝜎 ≥

√ℎ ∗ (𝑓 + 1) and 0 < 𝑏 ≤
−𝑙𝑛 (

𝜎

√ℎ
−𝑓)

𝑙𝑛𝑀
. 
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B. CVA with implied default probability and recovery rate 

 

In this section, we explain how we implant the implied term structure of the default 

probabilities and recovery rates into CVA calculation. 

 

B.1. Assumptions 

 

The essential condition to implant the results from A.2 is that the default probability and 

recovery rate on OTC derivatives should be identical to the “reference loan” of CDS.  

 

For default probability, it is the same intuition as in Part A. If the firm files for 

bankruptcy, all its securities default, including OTC derivatives. In other words, its OTC 

derivatives get the same default probability as its equity and debt.  

 

The recovery rate is more complicated since we know that the difference among those 

securities is due to their recoveries. “Normally, OTC derivatives would rank pari passu 

with senior unsecured debt, which in turn is the reference in most CDS contracts.” 

(Gregory J, 2012, page 210)  It implies that to implant the results from A.2 to CVA 

calculation, we need to choose CDS contracts whose “reference loan” is senior unsecured 

debt. In fact, the common practice in the industry is to assume a constant recovery of 

40% on OTC derivatives, which is nearly the historical average recovery rate of senior 

unsecured debt.9  

 

B.2. CVA with implied default probability and recovery rate 

 

As we deduced before, CVA can be priced separately from the traditional risk free 

valuation.  The formula for CVA calculation in discrete time with the stochastic recovery 

rate is as below: 

                                                 
9 According to Annual Default Study of Moody’s (2013), the historical average recovery rate is nearly 43% 

in 2012 for senior unsecured debt. 
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𝐶𝑉𝐴(𝑡, 𝑇) ≈ ∑ 𝐸𝐸(𝑡𝑗−1, 𝑡𝑗) ∗ (1 − 𝜙(𝑡𝑗−1, 𝑡𝑗)) ∗ 𝜆(𝑡𝑗−1, 𝑡𝑗)

𝑁

𝑗=1

 

Where 𝐸𝐸(𝑡𝑗−1, 𝑡𝑗) = 𝐸𝑄 [𝐵(𝑡𝑗−1, 𝑡𝑗)𝑉(𝑡𝑗−1, 𝑡𝑗)
+

]. 

 

Replacing 𝜆(𝑡𝑖−1, 𝑡𝑖) and  𝜙(𝑡𝑖−1, 𝑡𝑖)  by the term structure of default probabilities and 

recovery rates (  𝜆𝑗  and  𝜙𝑗 ) that we calculated in Part A, we can rewrite the CVA 

formula: 

𝐶𝑉𝐴(𝑡, 𝑇) = ∑ 𝐸𝐸(𝑡𝑗)

𝑁

𝑗=1

∗ (1 − 𝜙𝑗) ∗ 𝜆𝑗  

Where  𝐸𝐸(𝑡𝑗) = 𝐸𝑄[exp(−𝑓(𝑗) ∗ ℎ) ∗ 𝑉(𝑡𝑖)
+] ,  𝑉(𝑗)+ = max(𝑉(𝑗), 0)  and 𝑉(𝑗)  is the 

value of the OTC derivative at period 𝑗. 

 

B.3. Comparison with the constant recovery rate 

 

Gregory (2012) shows the standard equation for CVA with constant recovery rate as 

below: 

𝐶𝑉𝐴 = (1 − 𝜙) ∑ 𝐸𝐸(𝑡𝑗)

𝑁

𝑗=1

∗ 𝜆𝑗 

The term structure of default probability can also be linked to the CDS spreads: 

𝜆𝑗 = 𝜆𝑗
𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 − 𝜆𝑗−1

𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
 

𝜆𝑗
𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 = 1 − 𝑒−𝜀𝑗∗ℎ 𝑎𝑛𝑑 휀𝑗 =

𝐶𝐷𝑆 𝑆𝑝𝑟𝑒𝑎𝑑𝑗

1−𝜙
   

Where 휀 is the default intensity and ℎ is the related time interval.  

 

In the following part, we compare these two methodologies empirically, in order to see 

the impact of the non-constant recovery rate assumption on the CVA calculation.   
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Section IV   Analysis and results 

In this section, we apply the methodology to extract the implied recovery rate and default 

probability from our sample. Then we compute CVA according to the implied recovery 

and compare it with the CVA calculated with constant recovery. 

 

A. Data Description  

 

In this section, we describe the three input data series of our model: CDS spread term 

structures, market capitalizations of the underlying firms and forward risk free rate term 

structures. 

 

A.1. CDS spread term structures and market capitalizations 

 

We use DATASTREAM of Thomson Reuters to download CDS spread term structures 

and market capitalizations. Both of them are monthly data from 01/01/2007 to 

01/09/201010, covering the recent financial crisis. Hence, for each underlying firm, we 

have 45 (months) CDS spread terms structures and 45 market capitalizations in time 

series.  

 

In DATASTREAM, we choose the single-name CDS traded on the US market in USD 

and exclude all the CDS XR, CR, MR or MM, which refer to different restructuring 

clauses as (or not as) a credit event. Each term structure contains 10 CDS spreads for 10 

maturities, from 1-year to 10-year. The selected spread is the average of bid and ask 

(midspread).  

 

                                                 
10 Our data is provided by CMA via DATASTREAM and the agreement between CMA and Thomson 

Reuters has been discontinued since 1st September 2010.  
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The output of Thomson Reuters database shows a sample of CDS on 503 “reference 

loans” with data for 10 maturities.11 We take off 66 “reference loans” with missing data 

during the studied period. After all these operations, there are 437 “reference loans” with 

the complete term structures for the studied period.  

 

It is important to mention that among these 66 incomplete reference loans, there are only 

three firms (Ambac Assurance Corp, CIT Group and Energy Future Holding) which have 

default records, according to FISD (Fixed investment security data base) and Moody’s. In 

other words, the survivorship bias is very limited in our data selection.  

 

The next step is to clean the sample so that all the CDS contracts are on senior unsecured 

debts and that all the “reference obligors” are public companies. Senior unsecured CDS is 

selected to match the right recovery rate with CVA calculation on derivatives. We delete 

seven “subordinated reference loans” and four “reference loans” issued by civil and 

provincial governments. We also take off one “reference loan” because it is written on a 

subsidiary and keep the “reference loan” on its parent company.  

 

When looking for the market capitalization of underlying issuers, we lose 28 “reference 

loans (or obligors)” due to incomplete information: 2 obligors are private companies; 19 

firms do not have available market capitalization from the Thomson Reuters database and 

7 firms do not have complete market capitalization data for the tested period. In the case 

of CDS written on a subsidiary (3 cases), we use the market capitalization of its parent 

company.  

 

Finally, our data is comprised of 397 CDS spreads curves of 10 maturities on 397 distinct 

issuers from 01/01/2007 to 01/09/2010. During this interval, there are 10 default records 

(six firms) on senior unsecured debt during the sample period (Appendix D). Regardless 

of these defaults, there is no suspension of CDS quote so that the term structures of all the 

                                                 
11 We notice that senior unsecured CDS quotes on Lehman Brothers Holding Inc. are absent from the 

Thomson Reuters sample. 
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issuers remain complete for the studied period. This is another proof of limited 

survivorship bias in our research. 

 

Below is an example, with the monthly market capitalizations and the monthly CDS term 

structures from 01/01/2007 to 01/09/2010 on the senior unsecured debt of a “reference 

obligor (Goldman Sachs)”: 

 

  

Figure 3: Data example of a “reference obligor (Goldman Sachs)” 

 

A.1.1 CDS spreads term structure  

 

We now take a bird’s eye view on the total sample. We calculate the average of CDS 

spreads of the sample according to different maturities and obtain the figure below, 

showing the evolution of CDS spread term structure in time series. The CDS spread 

spikes around September 2008 and then drops around March 2009. We observe humped 

and even reverse term structures from September 2008 to October 2009.   
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Figure 4: Average CDS spread term structures 

 

A.1.2 5-year CDS spreads and stock returns 

 

Here, we focus on the 5-year spreads of our sample, since it is the most liquid. We see 

their evolutions in timeline versus stock return, their distributions and compare them 

according to different sectors. 

 

We take the average of the 5-year spreads and market capitalisation in time series for 

each firm. The histogram (Figure 5) and the main statistics (Table 1) of the sample are as 

below.  
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Figure 5: Histogram of average market capitalization and 5-year CDS spread 

 

 
CDS 5 years maturity spreads 

(basis points) 
Market Capitalization (B$) 

Mean 283.90 21.69 

Median 111.93 9.03 

Standard deviation 564.15 40.52 

Maximum 3 0.00034 

Minimum 14627 513.31 

Table 1: Summary data statistics on CDS spreads (5 years) and market capitalization 

 

We then take the average of 5-year spreads and market capitalisations of all the firms for 

each month. Figure 6 shows the evolution of 5-year CDS spreads against monthly stock 

return in time series. The stock price is downloaded at the same time with market 

capitalization from Thomson Reuters. The correlation between the average CDS spread 

and stock return during all sample period is -0.19. 
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Figure 6: Evolution of 5-year CDS spreads against monthly stock return 

 

A.1.3 CDS spreads and market capitalizations by sector and by rating class  

 

As we discussed in Literature Review, recovery rate is proven to be significantly related 

to sector and rating. We now sort CDS spreads (5-years maturity) data and market 

capitalizations by sector and by rating. 

 

We classify 397 firms by their SIC code and the data is divided into 8 categories (Table 

2). Almost 40% of our sample comes from the manufacturing sector, and it also 

represents the largest average market capitalization. The construction sector gets the 

highest average CDS spread while the wholesale trade industry seems to be the lowest.  
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Industry 
Number 

of firms 

CDS spread (5 years) 

(basis points) 

Market capitalization 

(B$) 

Average 
standard 

deviation 
Average 

standard 

deviation 

Construction 15 514.95 247.35 1.84 7.03 

Finance 60 321.15 234.86 25.93 7.41 

Manufacturing 149 225.26 157.03 26.67 4.96 

Mining 22 225.32 116.77 16.20 3.24 

Retail trade 34 268.41 162.26 20.33 2.12 

Services 31 432.23 289.03 18.88 3.28 

Transportation12 78 317.44 185.07 17.07 2.65 

Wholesale Trade 8 77.61 39.97 11.09 1.20 

Table 2: Data by industry 

 

We then classify our firms by rating. Rating classification is downloaded from Moody’s 

Credit risk calculator. Since the firms are not rated at the same time, we take the last 

rating results before October 2010 (the end of our sample period). We mention that there 

are 20 firms which do not get any rating.  

 

Moody’s provides 20 different rating scales and we regroup them into 5 categories (Table 

2). The total sample counts 249 firms who are rated below (including) Baa and 131 firms 

are rated under Baa. We notice that average CDS spread increases and market 

capitalization decreases when rating goes downwards.    

 

 

 

 

 

 

 

 

                                                 
12 The complete specification of the sector is: Transportation, Communications, Electric, Gas, And Sanitary 

Services. 
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Category notation 
Number 

of firms 

CDS spread (5 years) 

(basis points) 
Market capitalization (B$) 

Average 
standard 

deviation 
Average 

standard 

deviation 

Category 1 𝐴𝑎𝑎 − 𝐴𝑎3 15 71.60 59.40 138.02 20.61 

Category 2 𝐴1 − 𝐴3 83 98.77 100.44 43.38 9.36 

Category 3 𝐵𝑎𝑎1 − 𝐵𝑎𝑎3 148 145.53 184.23 13.96 4.25 

Category 4 𝐵𝑎1 − 𝐵3 106 478.53 385.31 6.28 0.70 

Category 5 𝐶𝑎𝑎1 − 𝐶 25 949.99 662.31 3.60 0.72 

Category 6 No rating 20 371.25 420.13 5.88 1.00 

Table 3: Data by rating category  

 

 

A.2. Forward rate term structures 

 

Another series we need is the forward interest rate term structures, which are extracted 

from US Treasury yields. From the Federal Reserve website, we got historical monthly 

Treasury yields for 9 maturities (1 month, 3 months, 6 months, 1 year, 2 years, 3 years, 5 

years, 7 years and 10 years). We observe an abrupt decrease of 1-month Treasury yields 

from mid-2007 to mid-2008.  

 

Figure 7: Treasury yield term structure (source: U.S. FED) 
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To calculate the forward interest rate term structures, we first do Nelson-Siegle curve 

fitting to get the spot rate curves. We compute the forward rate term structures (Figure 6) 

from the fitted spot rate curves. The forward rate can be expressed as 𝑓(𝑡1, 𝑡2, 𝑡2 + 0.5) , 

where 𝑡1 varies from the first month (Jan. 2007) to the last (45th) month (Sep. 2010), and 

for each 𝑡1, 𝑡2 takes value from 0 to 9.5, at 0.5 year interval.  The size of forward rates 

matrix is [20 intervals *45 months]. We notice that the shape of the forward rate term 

structures changes around 2008: at the beginning of the sample period, the slope tends to 

be much flatter than the later period.  

 

 

Figure 8: Monthly forward rate term structures 𝑓(𝑡1, 𝑡2, 𝑡2 + 0.5) 
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B. CDS term structure calibration 

We apply our calibration model to the data. Since we have 17 865 term structures 

(397 𝑓𝑖𝑟𝑚𝑠 ∗  45 𝑚𝑜𝑛𝑡ℎ𝑠), the results contain 17 865 sets of parameters, 17 865 default 

probability term structures and 17 865 recovery rate term structures.  

 

Firstly, we study the RMSEs (root-mean-square error) to see the calibration quality. Then 

we show the results of 4 calibrated parameters. Finally, we calculate the term structures 

of default probability/recovery rate based on the parameters. We display the results 

(parameters, default probability term structures and recovery rate term structures) at four 

levels: 1) results for the total sample, 2) results based on the phases of business cycle, 3) 

results sorted by industry (SIC) and 4) results sorted by rating (Moody’s).  

 

B.1 RMSE 

 

We calculate RMSE as below for each term structure. RMSE is calculated as below:  

𝑅𝑀𝑆𝐸 = √0.1 ∗ ∑[𝐶𝑗
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝐶𝑗

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑]
2

10

𝑗=1

 

We report RMSE information for the total sample in Table 4. 

 

Table 4: RMSE distribution  

In Table 4, RMSE is calculated by 𝑅𝑀𝑆𝐸 = √0.1 ∗ ∑ [𝐶𝑗
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝐶𝑗

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑]
210

𝑗=1 . We have in total 17 865 RMSEs. The RMSEs are 

expressed in bps/1000. 

 RMSE (bps/10 000) RMSE/𝟎. 𝟏 ∗ ∑ 𝑪𝒋
𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅𝟏𝟎

𝒋=𝟏  

Mean 0.0786 0.1331 

Median 0.0027 0.1003 

Standard deviation 0.4444 0.1112 

Maximum 14.6366 0.9631 

Minimum 0.0000 0.0307 

95% Quintile 0.2153 0.3141 
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In order to improve the precision, we clean our results by throwing out all 𝑅𝑀𝑆𝐸/0.1 ∗

∑ 𝐶𝑗
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑10

𝑗=1  > 0.3141 (95% Quintile). It eliminates 893 term structures and the results 

now contain 16 972 sets of data. Table 5 reports the RMSE information for the cleaned 

results. 

Table 5: RMSE distribution: the cleaned results 

In Table 5, RMSE is calculated by 𝑅𝑀𝑆𝐸 = √0.1 ∗ ∑ [𝐶𝑗
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝐶𝑗

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑]
210

𝑗=1 . We have in total 16 972 RMSEs. The RMSEs are 

expressed in bps/1000. 

 RMSE (bps/10 000) RMSE/𝟎. 𝟏 ∗ ∑ 𝑪𝒋
𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅𝟏𝟎

𝒋=𝟏  

Mean 0.0167 0.1127 

Median 0.0024 0.0976 

Standard deviation 0.0408 0.0548 

Minimum  0.0000 0.0307 

Maximum 0.3949 0.3140 

95% Quintile 0.0855 0.2359 

 

 

B.2 Results 

 

As in Data Description, the results (parameters, default probability term structures and 

recovery rate term structures) will be exhibited at four levels: 1) results for the total 

sample, 2) results based on the phases of business cycle, 3) results sorted by industry 

(SIC) and 4) results sorted by rating (Moody’s).  

 

B.2.1 Parameters 

 

We show the results of parameters {𝑎0, 𝑎1, 𝑏, 𝜎} for the total sample in Table 6. The 

distributions of {𝑎0, 𝑎1} and 𝜎, which measure the dependence between the recovery rate 

to default probability and the implied volatility of market capitalization changes, seem to 

be asymmetric and fat tailed. As we noticed in the previous part, one of the main reasons 

might be that the distributions of the two main inputs (CDS spreads and market 
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capitalizations) are also asymmetric and fat tailed. The magnitude of implied volatility is 

relatively big compared to what we know (e.g. the implied volatility calculated by 

OptionMetrics). We will discuss this point later in Appendix A. Parameter 𝑏, which 

measures the dependence of hazard rate to the market capitalization, is more centralized.  

 

Table 6: Parameters for the truncated sample  

Table 6 shows the information of estimated parameters for the total sample, after taking off the outliers. 

The sample now contains 16 972 sets of parameters {𝑎0, 𝑎1, 𝑏, 𝜎}. We report the average, median, standard 

deviation, minimum and maximum of each parameter across all the firms and all the sample period. 

Parameter 𝑎1  measures the dependence between the default probability and recovery rate.  𝜙[𝑖. 𝑗] =

1

1+𝑒𝑥𝑝(𝑎0+𝑎1𝜆[𝑖.𝑗])
. {𝑏} estimates the correlation between the market capitalization and hazard rate, 휀[𝑖. 𝑗] =

1

𝑀[𝑖.𝑗]𝑏. {𝜎} is the implied volatility of market capitalization changes. 

 Mean Median Std. Min Max 

𝒂𝟎 -380.8420 -23.2132 8175.0274 -120386.26 558531.03 

𝒂𝟏 4208.7738 219.4769 27224.02 0.0001 819324.89 

𝒃 0.0658 0.0630 0.0420 0.0000 0.2325 

𝝈 5.1585 2.0066 10.4732 0.06461 57.2428 

 

 

Let us now look at the variation in timeline. According to NBER, we separate the sample 

period into three parts: before the crisis (before December 2007), during the crisis 

(between December 2007 to June 2009) and after the crisis (after June 2009). The 45-

month sample period is divided into three under-periods: the first 12 months, from 13th 

month to 30th month (17 months), and from 31st month to the 45th month (16 months).   

 

The parameters according to different phases of the business cycle are exhibited below 

(Table 7). Parameter 𝑎1, which measures the dependence between default probability and 

recovery rate, suggests that during and after the crisis, this dependence seems to be higher 

than in the period before the crisis. Volatility 𝜎 is also higher during and after the crisis 

than the period before the crisis.  
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Parameter 𝑏 however is higher before the crisis. Parameter 𝑏 estimates the correlation 

between the market capitalization and the hazard rate,  휀[𝑖. 𝑗] =
1

𝑀[𝑖.𝑗]𝑏 . The default 

probability increases when 𝑏  gets smaller. Therefore, it is reasonable that 𝑏  is higher 

before the crisis. 

 

We notice that it is difficult to separate the period during and after the crisis. The credit 

risk seems to be persistent even after the economic crisis ends. Actually, some research 

(ex: Bruche and González-Aguado, 2010) has proven that the credit cycle distinguishes 

itself from the NBER business cycle. The credit cycle starts much earlier and ends later 

than the business cycle. Chun, Dionne and François (2013) also show that the high-level 

regime of credit spreads is long-lived and “often outlasts NBER economic recessions”. 

 

We then compare these parameters for different industries. Table 8 shows the wholesale 

trade sector gets the smallest parameter 𝑏 and the biggest parameter 𝑎1. The construction 

sector reveals the highest parameter 𝑏. The result of parameter 𝑏 is consistent with the 

average CDS spread (5 years maturity): the wholesale trade sector is the lowest CDS 

spread, while the construction sector represents the highest spread. The mining industry 

seems to have the smallest dependence between default probability and recovery rate.  
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Table 7: Parameters by phases of business cycle 

Table 7 shows the information of estimated parameters for different phases of business cycle. Before the 

crisis, there are 12 months and 5 790 term structures in all. During the crisis, there are 18 months and 6 520 

term structures in all. After the crisis, there are 15 months and 5 709 term structures. Each term structure 

matches one set of parameters {𝑎0. 𝑎1. 𝑏. 𝜎}. {𝑎1} measures the dependence between default probability 

and recovery rate.  𝜙[𝑖. 𝑗] =
1

1+𝑒𝑥𝑝(𝑎0+𝑎1𝜆[𝑖.𝑗])
. {𝑏}  estimates the correlation between the market 

capitalization and hazard rate. 휀[𝑖. 𝑗] =
1

𝑀[𝑖.𝑗]𝑏. {𝜎} is the implied volatility of market capitalization changes. 

  
Phases of Business Cycle 

Before the crisis During the crisis After the crisis 

𝒂𝟎 

Mean -58.5483 -480.4497 -523.7096 

Median -9.2220 -29.9377 -45.4671 

Std. 643.6287 3653.6664 13444.8197 

𝒂𝟏 

Mean 747.2101 3733.0206 7509.6444 

Median 116.4347 234.2299 444.9751 

Std. 11803.1616 28182.28 33754.42 

𝒃 

Mean 0.0925 0.0524 0.0600 

Median 0.0893 0.0462 0.05746 

Std. 0.0376 0.0386 0.0395 

𝝈 

Mean 2.4977 6.4963 5.7489 

Median 2.1286 1.9139 1.9071 

Std. 2.9052 12.6455 11.1774 
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Table 8: Parameters by sectors 

Table 8 shows the information of estimated parameters for different sectors. Category 1 is the construction 

sector (594 term structures); category 2 is the finance sector (2 502 term structures); category 3 is the 

manufacturing sector (6 449 term structures); category 4 is the mining sector (1 013 term structures); 

category 5 is the retail trade sector (1 473 term structures); category 6 is the services sector (1 297 term 

structures); category 7 is the transportation, communications, electric, gas and sanitary services sector (3 

239 term structures); category 8 is the wholesale trade sector (405 term structures). Each term structure 

matches one set of parameters {𝑎0, 𝑎1, 𝑏, 𝜎}. {𝑎1} measures the dependence between default probability 

and recovery rate,  𝜙[𝑖, 𝑗] =
1

1+𝑒𝑥𝑝(𝑎0+𝑎1𝜆[𝑖,𝑗])
. {𝑏}  estimates the correlation between the market 

capitalization and hazard rate, 휀[𝑖, 𝑗] =
1

𝑀[𝑖,𝑗]𝑏. {𝜎} is the implied volatility of market capitalization changes.

     

  
Industry category 

1.CON 2.FIN 3.MAN 4.MIN 5.RET 6.SER 7.TRA 8.WHO 

𝒂𝟎 

Mean -581.36 -666.25 -444.21 -144.53 -784.71 1045.38 -443.69 -389.11 

Med. -106.29 -25.518 -18.345 -16.308 -20.832 -54.837 -25.752 -18.482 

Std. 1753.40 2592.70 4634.02 688.95 2715.56 27140.0 2739.9 1655.31 

𝒂𝟏 

Mean 3679.5 4728.6 3667.7 1425.8 9851.7 1987.5 3281.9 11169.4 

Med. 741.80 232.86 186.14 202.16 204.77 332.12 243.18 162.59 

Std. 11485.8 23148.4 33295.8 8977.0 35545.4 8198.73 16159.2 50638.1 

𝒃 

Mean 0.0488 0.0604 0.0700 0.0705 0.0689 0.0557 0.0645 0.0791 

Med. 0.0425 0.0575 0.0671 0.0711 0.0667 0.0478 0.0609 0.0810 

Std. 0.0361 0.0411 0.0420 0.0422 0.0400 0.0419 0.0420 0.0464 

𝝈 

Mean 7.0040 4.5200 4.8313 6.3544 4.7019 7.1319 5.1176 4.4180 

Med. 2.3807 1.6349 1.9674 2.2677 2.1279 2.9914 1.9794 1.7396 

Std. 13.326 10.729 10.019 11.982 9.118 11.037 10.271 10.260 

 

Finally, we compare the results of parameters based on the rating classes provided by 

Moody’s. Table 9 suggests that it is the rating class Baa1-Baa2 which has the highest 

dependence between default probability and recovery rate. Parameter b decreases when 

the rating gets worse. Implied volatility increases when the credit quality deteriorates.  
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Table 9: Parameters by rating 

Table 9 shows the information of estimated parameters for different rating according to Moody’s. Category 1 is the firms which get 

rating Aaa-Aa3 (674 term structures); category 2 is the firms which get rating A1-A3 (3 704 term structures); category 3 is the firms 

which get rating Baa1-Baa3 (6 603 term structures); category 4 is the firms which get rating Ba1-B3 (4 337 term structures); category 

5 is the firms which get rating Caa1-C (817 term structures); category 6 is the firms which do not get rating (837 term structures). 

Each term structure matches one set of parameters  {𝑎0, 𝑎1, 𝑏, 𝜎}. {𝑎1} measures the dependence between default probability and 

recovery rate,  𝜙[𝑖, 𝑗] =
1

1+𝑒𝑥𝑝(𝑎0+𝑎1𝜆[𝑖,𝑗])
. {𝑏} estimates the correlation between the market capitalization and hazard rate,  휀[𝑖, 𝑗] =

1

𝑀[𝑖,𝑗]𝑏
. {𝜎} is the implied volatility of market capitalization changes.  

  
Rating category 

1. Aaa-Aa3 2. A1-A3 3.Baa1-Baa3 4.Ba1-B3 5.Caa1-C 6. No rating 

𝒂𝟎 

Mean -157.4628 -333.4116 -626.7857 -77.5548 -163.0859 -615.837 

Med. -18.5111 -20.0315 -13.6682 -56.7794 -42.2903 -57.6416 

Std. 919.0857 1605.5195 4866.7293 14877.67 1436.4852 2466.203 

𝒂𝟏 

Mean 1053.7688 4873.9202 5143.5745 3335.341 1059.458 4088.937 

Med. 260.8665 258.9691 147.9025 302.3869 198.7494 521.0052 

Std. 3264.5423 25184.349 35439.8562 19816.98 6921.194 14243.09 

𝒃 

Mean 0.0756 0.0756 0.0744 0.0496 0.0350 0.0621 

Med. 0.0702 0.0704 0.0733 0.0441 0.0265 0.0568 

Std. 0.0458 0.0428 0.0419 0.0338 0.0328 0.0426 

𝝈 

Mean 2.6829 3.4506 3.8679 7.5544 12.5734 5.1101 

Med. 1.3492 1.3885 1.8382 3.2439 5.5899 2.2216 

Std. 6.5449 8.4968 8.8475 12.2674 16.0312 10.2513 

 

 

B.2.2 Default probability and recovery rate term structures  

 

Displayed below are the average default probability and recovery rate term structures for 

the total sample and over all the sample period in Figure 9. They are both downwards 

sloping term structures. The short term default probability is very high, but declines 

rapidly conditional on survival. For the declining recovery rate term structure, Das and 

Hanouna (2009) argue that “forward recovery rate is lower when the firm defaults later 

rather than sooner […] firms that migrate slowly into default suffer greater dissipation of 
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assets over time, whereas the firm that has a short-term surprise default may be able to 

obtain greater resale values for its assets”.  

 

Figure 9: Total sample default probability and recovery rate 

Figure 9 plots the default probability and recovery rate term structure for the total sample (16 972 term structures). We take the 

average default probability and recovery rate across all the firms (397 firms) and the sample period (45 months). The default 

probability at 0.5 year maturity is 11.1% and at 10 years maturity is 0.8%; the recovery rate at 0.5 year maturity is 62.81% and at the 

10 years maturity is 1.75%. 

 

 

The time evolution is exhibited in Figure 10 below. We compare the term structures of 

default probability/recovery rate for three phases of the business cycle. Figure 9 shows 

that all term structures are declining. However, the level and the steepness of the slope 

are different for each term structure.  

 

Before the crisis, the default probability term structure is the most gradual and the 

recovery rate is at the highest level, compared with the two other periods. This is 

consistent to the previous research. For the firms which are riskier, the short-run default 

probability is higher and the long-run default probability declines very fast, conditional 

on survival.  
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We might ask why the default probability term structure is not up-sloping before the 

crisis. It could refer again to the literature that points to longer credit cycles than NBER 

business cycles. Since the credit cycle seems to start before the economic recession, it 

might affect the results on the first 12 months of the sample. This should be one of the 

reasons why we also obtain a downward sloping default probability term structure for the 

period before the crisis.  

 

We notice that the difference between the period during the crisis and after the crisis is 

not obvious. As discussed for the parameter results, it might be due to the persistence of 

the credit cycle. 

 

Figure 10: default probability (recovery rate) term structure according to business cycle 

Figure 10 plots the default probability and recovery rate term structures according to different phases of business cycle. Before the 

crisis (before December 2007), there are 12 months and 5 790 term structures in all. During the crisis (between December 2007 to 

June 2009), there are 18 months and 6 520 term structures in all. After the crisis (after June 2009), there are 15 months and 5 709 term 

structures. We take the average default probability and recovery rate across all firms (397 firms).  

 

 

We now compare the default probability and recovery rate across the sectors. We choose 

five sectors (construction, finance, manufacturing, services and wholesale trade). From 

Data Description, we know that the wholesale trade sector has the lowest CDS spreads 

and the construction sector is the highest one. As for the manufacturing sector, it 

represents most firms in the sample (37%).  

 

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

maturity

d
e
fa

u
lt
 p

ro
b
a
b
ili

ty

default probability term structure by phase of business cycle

 

 

before the crisis

during the crisis

after the crisis

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

maturity

re
c
o
v
e
ry

 r
a
te

recovery rate term structure by phase of business cycle

 

 

before the crisis

during the crisis

after the crisis



  

55 

 

 

Figure 11 shows that the wholesale trade sector is on average the least likely to default in 

the short term but the most likely to default at long term. It also seems to represent a 

higher recovery rate than all the other sectors. The construction sector, whose average 

CDS spread is the highest, is the opposite of the wholesale trade sector.  

 

Another sector that has a very low recovery is the service industry. In fact, the recovery 

rate is related to the firm’s resale value in the case of default. The service industry has 

obviously very low resale value since these firms might possess fewer assets than those 

from other industries.                

 

Figure 11: default probability (recovery rate) term structure according to sectors 

Figure 11 plots the default probability and recovery rate term structures according to sectors. The construction sector counts 594 term 

structures; the finance sector counts 2 502 term structures; the manufacturing sector counts 6 449 term structures; the services sector 

counts 1 297 term structures; the wholesale trade sector counts 405 term structures. We do not plot the mining sector, the retail trade 

sector and the transportation, communications, electric, gas, and sanitary services sector, since their results are almost the same as the 

finance sector. We take the average default probability and recovery rate across all the firms (397 firms) and the sample period (45 

months).  

  

 

We now compare the results of default probability/recovery rate term structures across all 

the rating classes (Figure 12). Caa1-C rating class reveals the steepest default probability 

term structure and the lowest recovery rate for all maturities.  
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Figure 12 suggests that it is between the investment grade and under-investment grade 

(between Baa1-Baa3 and Ba1-B3 rating classes) where displays the biggest change. For 

the first two rating classes (Ass-Aa3 and A1-A3), the results show very little difference.   

 

Figure 12: default probability (recovery rate) term structure according to rating 

Figure 12 plots the default probability and recovery rate term structures according to sectors. Class 1 is the firms who get rating Aaa-

Aa3 (674 term structures); class 2 is the firms who get rating A1-A3 (3 704 term structures); class 3 is the firms who get rating Baa1-

Baa3 (6 603 term structures); class 4 is the firms who get rating Ba1-B3 (4 337 term structures); class 5 is the firms who get rating 

Caa1-C (817 term structures); class 6 is the firms who do not get rating (837 term structures). We take the average default probability 

and recovery rate across all the firms (397 firms) and all the sample period (45 months).  

 

  

 

Despite some model risk, the final outputs of the term structures seem to be meaningful 

and reasonable. In the next step, we use these results to compute CVA and compare it to 

the CVA calculation with constant recovery rate. 
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C. CVA comparison 

 

In this section, we compare CVA calculation with implied recovery rate to CVA with 

constant recovery rate. We have choosen 17 “representative obligors” from the sample, 

and for each obligor, we compare the CVA calculations by the two methodologies. 

 

C.1 “Representative obligors” 

 

To compare the two CVA calculations, we choose 17 representative obligors from the 

sample. We take the median13 of the CDS term structures and market capitalisations 1) at 

the total sample level; 2) for each business cycle; 3) for each sector and 4) for each rating 

class. Below is the list of 17 representative obligors: 

 

Total sample Phases of  

business cycle 

Sectors Rating Total 

1 Representative 

obligor 

 

3 Representative 

obligors 

 

8 Representative 

obligors 

 

5 Representative 

obligors 

 

17 

Representative 

obligors 

 

As discussed in Section 3 Methodology, the formula for CVA calculation with implied 

recovery rate is as below: 

𝐶𝑉𝐴𝑖𝑟(𝑡, 𝑇) = ∑ 𝐸𝐸(𝑡𝑗)

𝑁

𝑗=1

∗ (1 − 𝜙𝑗
𝑖𝑟) ∗ 𝜆𝑗

𝑖𝑟
 

Where 𝜙𝑗
𝑖𝑟

 and 𝜆𝑗
𝑖𝑟

 is the implied default probability/recovery rate term structures 

extracted from the CDS spread term structure.  

 

 

 

                                                 
13 Since our sample is asymmetric, we take the median instead of the mean. 
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And the formula for CVA calculation with constant recovery is as below: 

𝐶𝑉𝐴𝑐𝑟(𝑡, 𝑇) = (1 − 𝜙𝑐𝑟) ∑ 𝐸𝐸(𝑡𝑗)

𝑁

𝑗=1

∗ 𝜆𝑗
𝑐𝑟

 

Where 𝜆𝑗
𝑐𝑟 = 𝜆𝑗

𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 − 𝜆𝑗−1
𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 , and  𝜆𝑗

𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 = 1 − 𝑒−𝜀𝑗∗ℎ ,  휀𝑗 =
𝐶𝐷𝑆 𝑆𝑝𝑟𝑒𝑎𝑑𝑗

1−𝜙𝑐𝑟 . 

 𝜙𝑗
𝑐𝑟

 is the constant recovery and 𝜆𝑗
𝑐𝑟

 is the corresponding default probability term 

structures. We calculate constant recovery CVAs when 𝜙𝑗
𝑐𝑟 = {60%, 40%, 20%, 0%}, 

among which 40% constant recovery rate is commonly used in the industry. 

 

Since the expected exposure is the same in both cases, we set 𝐸𝐸(𝑡𝑗) = 1$ for ∀𝑗. In this 

way, we do not take into account of the correlation between expected exposure and 

default risk. This might reduce the precision of CVA calculation. However, the objective 

of our Master’s thesis is to study the recovery effect on CVA. Hence, setting expected 

exposure as a fixed amount can eliminate influences from other factors, such as wrong-

way or right-way risk. We can be sure that the difference between the two CVAs is only 

due to the recovery assumption.  

 

C.2 CVA comparison for each “representative obligor” 

 

This part shows the results of the two CVA calculations in the case of each obligor. It is 

divided into 4 parts: 1) for the “representative obligor” from the total sample level; 2) for 

the “representative obligor” from each business cycle; 3) for the “representative obligor” 

from each sector and 4) for the “representative obligor” from each rating class. 

 

For CVA with constant recovery, we tested 4 recovery rates, 60%, 40%, 20% and 0%. 

40% is the common assumption in the industry for CVA calculation.  
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C.2.1 “Representative obligor” of the total sample: 

 

We take the median of CDS term structures and the median of market capitalisation for 

the total sample to get the first “representative obligor”. Then we apply the methodology 

to get the implied recovery rate/default probability term structures and adopt the results to 

compute CVA (Figure 13).  We also compute CVA with the methodology of constant 

recovery rate. We tested the constant recovery rate for 4 different values, 60%, 40%, 20% 

and 0%.  

 

By the methodology of implied recovery, we can extract two downward sloping term 

structures. However, by the methodology of constant recovery, we get a flat recovery 

term structure and a humped default probability term structure, which reaches the 

maximum at 4 years maturity. In the figure, we show the example of 40% constant 

recovery. It is the same shape of default probability term structure for the other constant 

recovery rates.  

 

This is intuitive. When we allow the recovery rate to vary, the evolution in CDS spread 

term structure can be absorbed by both recovery and default probability. In the case of 

constant recovery rate, all the changes in CDS term structure have to be transferred 

completely to the default probability. The methodology of constant recovery shows that 

the marginal default probability term structure is mainly responsible for absorbing the 

changes in CDS term structure between every maturity. No matter the constant recovery, 

the shape of default probability term structures will stay similar since they are extracted 

from the same CDS term structure. 

 

In the short run, constant recovery seems to overestimate loss given default (1-recovery 

rate), and the corresponding default probability term structure seems to underestimate the 

real probability of default. For the longer term, the dynamic between the two pairs of 

term structure becomes the opposite: the methodology with the constant recovery 

underestimates the loss given default and overestimates the default probability. 
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The figure of CVA comparison is very informative. Firstly, in the short run, compared to 

implied recovery methodology, CVA with constant recovery seems to underestimate the 

exposure to credit risk, even with the most conservative assumption (recovery equals to 

0%). This could be due partly to the negative correlation between the default probability 

and recovery rate, which generally contributes to a higher credit risk valuation. Constant 

recovery CVA does not capture this effect while we impose negative correlation when 

extracting the implied recovery rate.  

 

Secondly, we notice that before 3 years maturity, constant recovery CVAs seem to be the 

same value, no matter the constant recovery levels. This is another proof that constant 

recovery CVA is quite naive. In the short run, since increases in recovery rate lead 

automatically to the increase in default probability, CVAs are very likely to stay at the 

same level. But in the long run, the default probability of smaller recovery rate decreases 

faster than that of the higher recovery rate. In other words, the default probability of 40% 

recovery rate is higher than the default probability 0% recovery rate at longer maturities. 

This contributes to the increasing of CVA and explains the dispersion of constant 

recovery CVAs at long term. 

 

The opposite is true for the model-implied CVA. It grows faster at short run than at long 

run. Its CVA curve suggests that for short term, the effect of decreasing in recovery rate 

dominates the effect of decreasing in default probability. But for long term, the market 

anticipates stable CVA since the effect of decreasing in default probability starts to 

compensate decreasing in recovery rate. In fact, the implied recovery model is forward-

looking which it is not the case for the constant recovery methodology. 

 

We find that for 20% and 0% constant recovery, their CVAs intersect with implied 

recovery CVA. And for 40% constant recovery, the difference with model-implied CVA 

grows until 5 years maturity and shrinks for longer maturities. It suggests that for the 

short term, the effect of under estimating default probability by the constant recovery 

methodology seems to dominate the effect of over estimating the loss given default. 
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Therefore, for the short term, CVA with constant recovery rate is much smaller than 

CVA with implied recovery. For the longer term, the effect of under estimating loss given 

default by the constant recovery methodology starts to dominate the default probability 

overestimation. Hence, constant recovery CVA gradually overtakes implied recovery 

CVA. 

 

In other words, CVA is somewhat the combination of the recovery rate and default 

probability. The effect is from both sides. From the same CDS spread, increasing 

recovery rate (decreasing loss given default) is related to increased default probability. In 

this sense, high constant recovery could overestimate CVA in the case of bad credit 

quality, because it overestimates more default probability than underestimates loss given 

default. And low constant recovery could also underestimate CVA in the case of good 

credit quality, since it underestimates more default probability than overestimates loss 

given default. 

 

Figure 13: CVA comparison: “representative obligor” of total sample 

Figure 13 (1) plots the results for default probability/recovery rate term structures (inconstant recovery and 

constant recovery 40%) for the representative “median” obligor of the total sample. 𝑅𝑀𝑆𝐸/

𝑚𝑒𝑎𝑛(𝐶𝐷𝑆 𝑠𝑝𝑟𝑒𝑎𝑑𝑠) for the implied recovery calibration is 1.7%. Figure 13 (2) plots the results of CVA 

calculation according to the term structures in Figure 13 (1). We set the expected exposure at $ 1 for all 

maturities.  
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C.2.2 “Representative obligor” for each business cycle: 

 

 Before the crisis  

We take the median of CDS term structures and the median of market capitalization for 

the sample before the crisis. We compute CVA by the two methodologies and compare 

them in Figure 14.   

 

For the term structures, the implied recovery is declining while the implied default 

probability term structure seems to be humped. For constant recovery, we also get a 

humped default probability term structure. The level and the shape suggest that the 

obligor before the crisis is less risky than the obligor of the total sample. 

 

The dynamics between the two pairs of term structures are quite similar as in the case of 

the total sample, although the difference between the two CVAs seems to be smaller. 

CVA with implied recovery is bigger than constant recovery CVAs in general. Even 0% 

constant recovery rate CVA seems to underestimate the exposure to credit risk, compared 

with model-implied recovery. Until 5 years maturity, all constant recovery CVAs are 

almost identical.  

 

Implied CVA curve here is clearly increasing from 0.5 to 10 years, which is different 

from the total sample CVA that is flat after 7 years maturity. It justifies the forward-

looking characteristic of our model. For less risky firms, the investors anticipate smaller 

credit risk in short term but an increasing credit risk for the future.     
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Figure 14: CVA comparison: “representative obligor” before the crisis 

Figure 14 (1) plots the results for default probability/recovery rate term structures (inconstant recovery and 

constant recovery 40%) for the representative “median” obligor for the sample before the crisis. 𝑅𝑀𝑆𝐸/

𝑚𝑒𝑎𝑛(𝐶𝐷𝑆 𝑠𝑝𝑟𝑒𝑎𝑑𝑠)  is 8.8%. Figure 14 (2) plots the results of CVA calculation according to term 

structures in Figure 14 (1). We set the expected exposure at $ 1 for all maturities.  

  

 

 During the crisis  

Figure 15 shows the results of default probability/recovery rate term structures and CVA 

calculation for the “representative obligor” during the crisis. The implied term structures 

are decreasing. For constant recovery, we also get a declining default probability term 

structure.  

 

The dynamics between the term structures and CVAs are both quite similar as the total 

sample obligor. For the short term, 0% recovery rate CVA seems to be quite the 

equivalent to implied recovery CVA. They insect each other sooner than the case of the 

total sample. 
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Figure 15: CVA comparison: “representative obligor” during the crisis 

Figure 15 (1) plots the results for default probability/recovery rate term structures (inconstant recovery and 

constant recovery 40%) for the representative “median” obligor for the sample during the crisis. 𝑅𝑀𝑆𝐸/

𝑚𝑒𝑎𝑛(𝐶𝐷𝑆 𝑠𝑝𝑟𝑒𝑎𝑑𝑠) for the implied recovery calibration is 3.2%. Figure 15 (2) plots the results of CVA 

calculation according to the term structures in Figure 15 (1). We set the expected exposure at $ 1 for all 

maturities.  

   

 

 After the crisis  

Figure 16 shows the results of default probability/recovery rate term structures and CVA 

calculation for the “representative obligor” of the period after the crisis.  

 

The dynamics between term structures and CVAs are both quite similar as the total 

sample obligor. The effect of under estimating loss given default by the constant recovery 

methodology starts to dominate the default probability overestimation at sooner maturity 

than in the case of the total sample obligor. 
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Figure 16: CVA comparison: “representative obligor” after the crisis 

Figure 16 (1) plots the results for default probability/recovery rate term structures (inconstant recovery and 

constant recovery 40%) for the representative “median” obligor for the sample after the crisis. 

RMSE/mean(CDS spreads) is 8.3%. Figure 16 (2) plots the results for CVA calculation according to the 

term structures in Figure 16 (1). We set the expected exposure at $ 1 for all maturities.  

    

 

C.2.3. “Representative obligors” for industry categories: 

 

We display the results for three sectors: construction, manufacturing and wholesale trade. 

Construction is the sector with the highest average CDS spreads (5 years maturity) and 

the wholesale trade is the lowest. Manufacturing represents the most firms in the sample. 

For the other sectors, we observe similar results of CVA comparison.  

 

 Construction 

We have choosen the median of CDS term structure and the median of market 

capitalisation for the sample firms from the construction sector.  

 

For the term structures, the implied recovery is declining while the implied default 

probability is decreasing. For the constant recovery, we also get a generally declining 

default probability term structure. It is coherent with the fact that construction represents 

the highest average CDS 5-year spread among all the sectors. 
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From the CVA comparison, we observe that a 20% constant recovery CVA seems to 

match quite well the curve of implied CVA. At very short term, all the constant recovery 

CVAs seem to be slightly bigger than implied CVA.  

 

Later, we find that this is the case for the service sector and the last two rating classes. 

Firstly, this is might due to some model risk, which we discuss in the next section. The 

model tends to be less performant in the high default probability cases. Secondly, due to 

the high CDS spread, constant recovery rate methodology can capture some “forward-

looking” information since the marginal default probabilities fall to 0 at the long run. 

Hence, the curve shape of constant recovery CDS is similar to the model-implied CVA.  

 

Figure 17: CVA comparison: “representative obligor” from construction 

Figure 17 (1) plots the results for default probability/recovery rate term structures (inconstant recovery and 

constant recovery 40%) for the representative “median” obligor for the sample firms from the construction 

sector. RMSE/mean(CDS spreads) is 6.3%. Figure 17 (2) plots the results of CVA calculation according to 

the two pairs of term structures in Figure 17 (1). We set the expected exposure at $ 1 for all maturities.  
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We have choosen the median of CDS term structure and the median of market 

capitalisation for the sample firms from the manufacturing sector. The dynamics between 

the term structures and CVA calculations are very alike to the “representative obligor” 

after the crisis. We also observe similar results for the four other sectors: finance, mining, 
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retail trade and transportation14, although the magnitude of the difference between the 

two CVAs is not the same. They are both “middle” risky cases. (Figure 18)  

 

Figure 18: CVA comparison: “representative obligor” from manufacturing 

Figure 18 (1) plots the results for default probability/recovery rate term structures (inconstant recovery and 

constant recovery 40%) for the representative “median” obligor for the sample firms from the 

manufacturing sector. RMSE/mean(CDS spreads) is 11.2%. Figure 18 (2) plots the results of CVA 

calculation according to the term structures in Figure 18 (1). We set the expected exposure at $ 1 for all 

maturities.  

     

  

 Wholesale trade 

We have choosen the median of CDS term structure and the median of market 

capitalisation for the sample firms from the construction sector. Both implied recovery 

and default probability term structures are declining. For constant recovery, we get a 

humped default probability term structure. (Figure 19) CVA comparison looks quite the 

equivalent to the “representative obligor” before the crisis. They are both less risky cases.  

 

 

 

 

 

                                                 
14 The complete specification of the sector is Transportation, Communications, Electric, Gas, And Sanitary 

Services. 
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Figure 19: CVA comparison: “representative obligor” from wholesale trade 

Figure 19 (1) plots the results for default probability/recovery rate term structures (inconstant recovery and 

constant recovery 40%) for the representative “median” obligor for the sample firms from wholesale trade. 

RMSE/mean (CDS spreads) is 4.9%. Figure 19 (2) plots the results of CVA calculation according to the 

term structures in Figure 19 (1). We set the expected exposure at $ 1 for all maturities.  

    

 

C.2.4. “Representative obligor” of each rating class: 

We display the results for 2 rating classes: rated between A1 and A3 and rated between 

Ba1 and B3. They are chosen to represent accordingly the good credit quality obligors 

and bad credit quality obligors. We observe similar results in CVA comparison for the 

other rating classes.    

 

 Rated between A1 and A3 

Figure 20 shows the results of default probability/recovery rate term structures and CVA 

calculation for the representative obligor of the rating category A1 to A3. The dynamics 

between the term structures and CVA calculations are very alike to the “representative 

obligors” after the crisis and from manufacturing sector. We observe almost the same 

results for the rating class Baa1 to Baa3. Although the difference between the two CVAs 

is less obvious, rating class Aaa to Aa3 also shows similar dynamics for CVA 

comparison.   
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Figure 20: CVA comparison: “representative obligor” between A1 and A3 

Figure 20 (1) plots the results for default probability/recovery rate term structures (inconstant recovery and 

constant recovery 40%) for the representative “median” obligor for the sample rated between A1 and A3 

(including A1 and A3) by Moody’s. RMSE/mean (CDS spreads) is 2.9%. Figure 20 (2) plots the results of 

CVA calculation according to the term structures in Figure 20 (1). We set the expected exposure at $ 1 for 

all maturities.  

         

 

 Rated between Ba1 and B3 

The “representative obligor” for this class is quite similar to the construction sector. 

(Figure 21) We observe that a 40% constant recovery CVA seems to matches quite well 

the curve of implied CVA. For the very short term, all the constant recovery CVAs also 

seem to slightly be higher than implied CVA. For the rating class Caa1 to C, the results 

seem to be nearly the same.  

 

The result suggests a higher constant recovery rate then the construction sector, although 

the CDS spread level is higher for the Ba1-B3 obligor. As discussed at the beginning of 

the section, CVA is the combined effect from both recovery rate and default probability. 

Bad credit quality firms can be associated with high constant recovery, because it 

overestimates more default probability than underestimates loss given default. Good 

credit quality firms can be associated with low constant recovery, because it 

underestimates more default probability than overestimates loss given default. 
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Figure 21: CVA comparison: “representative obligor” between Ba1 and B3 

Figure 21 (1) plots the results for default probability/recovery rate term structures (inconstant recovery and 

constant recovery 40%) for the representative “median” obligor for the sample rated above between Ba1 

and B3 (including Ba1 and B3) by Moody’s. RMSE/mean (CDS spreads) is 24.9%.  Figure 21 (2) plots the 

results of CVA calculation according to the two pairs of term structures in Figure 21 (1). We set the 

expected exposure at $ 1 for all maturities.  

          

 

It is obvious that CVA comparison results vary from case to case. However, from all 

these “represntative obligors”, we can classify the results for three categories: “very safe 

obligors”, “middle risky obligors” and “very risky obligors”. The results suggest that it is 

the “middle risky obligors” who represents the biggest difference between model-implied 

CVA and constant recovery CVA. For less risky firms, even 0% constant recovery 

assumption underestimates the credit risk exposure compared to implied recovery CVA, 

especially for the short term. For more risky firms, 40% recovery CVA seems to be very 

close to model-implied CVA. It might suggest that in the two extreme cases, CVA is 

driven more by default probabilities than by recovery rates.  
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Conclusion  

In this Master’s thesis, we have examined mainly the impact of model-implied recovery 

rate on CVA calculation. Based on the methodology of Das and Hanouna (2009), we 

have extracted implied recovery rate and default probability term structures from CDS 

spread term structure. Although this model might present some risks, and the tests are 

conducted on the recent financial crisis period, the outputs are quite meaningful and 

demonstrate timeline variations, industry characteristics and rating class differences. 

Our main finding shows that CVA calculation is the combined product of recovery rate 

and default probability. In the case of very high credit quality and very low credit quality 

firms, CVA seems to be driven more by default probability. And the difference between 

constant recovery CVA and implied recovery CVA is relatively small. However, for the 

middle risky obligors, non-constant recovery rate is very important for CVA calculation. 

Compared with model-implied CVA, constant recovery CVA seems to underestimate the 

exposure to credit risk. In other words, people using constant recovery CVA might not be 

protected enough against credit risk whereas those using non-constant recovery rate CVA 

appear to be more prudent.  

A natural criticism of the work might be that these "representative obligors" cannot 

"represent" well the total sample. David (2008) argues that "credit spreads are convex 

functions of firms' solvency ratio, and hence the average spreads are larger than the 

spread evaluated at the average solvency ratio." In other words, taking the median of 

CDS spreads and market capitalization does not mean that we get the median level of 

credit risk of the sample. The alternative way is firstly to calculate CVA for each term 

structure and then take the mean or median of all these CVAs. This should be much more 

informative than calculating CVA from one median term structure. Currently, we are 

pursuing the investigation on this point and trying to extract more information from the 

sample on the comparison of the two CVAs.  
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Appendix A. Calibrated Parameter 𝝈 

 

The magnitude of parameter 𝜎 from the calibration exercise is relatively wide, compared 

to the implied volatility calculated by OptionMetrics. To fix this problem, we have tried 

other means for calibration: fixing the implied volatility as provided by OptionMetrics 

and normalizing the state-variable (market capitalization) by the firm’s debt. However, 

after these changes, fitting quality suffers a lot. Hence, we have decided to give the 

priority to the fitting and conserve the results of parameter 𝜎.  

 

By construction, our model might imply a high volatility parameter. From Section 3 

Methodology, default probability at each node is a function of market capitalization: 

𝜆[𝑖, 𝑗] = 1 − 𝑒
−

1

𝑀[𝑖,𝑗]𝑏ℎ
. We notice that under the condition  𝑏 > 0 , if 𝑀[𝑖, 𝑗] > 1,  the 

maximum value of  𝜆[𝑖, 𝑗]  is  1 − 𝑒𝑥𝑝(−ℎ) . When  𝑀[𝑖, 𝑗] < 1 , the minimum value 

of 𝜆[𝑖, 𝑗] is 1 − 𝑒𝑥𝑝(−ℎ). In our case, the time interval is 0.5, and 1 − 𝑒𝑥𝑝(−ℎ) equals 

0.39. In other words, if fitting requires default probability higher than 39% for some 

nodes in the binomial tree, market capitalization must be smaller than 1.  

 

Our sample period covers the recent financial crisis. Hence, it should be common that the 

lower nodes in the binomial tree need to give high default probabilities. The market 

capitalization must be smaller than 1 for these lower nodes. As a result, implied volatility 

must be high enough to allow market capitalization become smaller than 1 in the tree. 

 

Figure 22 plots the mean of parameter 𝜎 at each month. Despite the "wrong" magnitude, 

the calibrated volatility captures well the evolution in timeline. In fact, the results of 

sigma are much related to the level of CDS spread term structure and its shape 

(increasing, humped or decreasing). Actually, the riskier the obligor, the sooner its 

market capitalization needs to be smaller than 1 in the tree. As a consequence, implied 

volatility has to be bigger.  
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Figure 22: Evolution of calibrated parameter 𝜎 

 

Appendix B. Default probability bound 

By the model construction, the default probability might be bounded. From Section 3 

Methodology, we can compute the probability that the market capitalization goes up at 

each node as 𝑞[𝑖, 𝑗] =

𝑅

1−𝜆[𝑖,𝑗]
−𝑑

𝑢−𝑑
. Since the probability should stay between [0, 1], we get 

0 ≤

𝑅

1−𝜆[𝑖,𝑗]
−𝑑

𝑢−𝑑
≤ 1(𝐼𝑛𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2).  

By replacing  𝑢 = 𝑒𝜎√ℎ , 𝑑 = 𝑒−𝜎√ℎ  and  𝑅 = 𝑒𝑓ℎ , Inequation 2 can be transformed as 

below: 

1 − exp (𝑓 ∗ ℎ + 𝜎√ℎ) ≤ 𝜆 ≤ 1 − exp (𝑓 ∗ ℎ − 𝜎√ℎ) 

The left part is always satisfied since 1 − exp (𝑓 ∗ ℎ + 𝜎√ℎ) < 0. We need to focus on 

the right side  𝜆 ≤ 1 − exp (𝑓 ∗ ℎ − 𝜎√ℎ) . Set  𝑦 = 1 − exp(𝑥) , 𝑥 ∈ (−∞, 0] , 𝑦  varies 

between [0,1]. However, since the nature of parameters 𝑓, ℎ and 𝜎 (interest rate, time 

interval and return volatility),  (𝑓 ∗ ℎ − 𝜎√ℎ) cannot vary between (−∞, 0].  
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If we take the minimum value of the forward rates and maximum value of volatility, we 

estimate that 𝜆 will not be higher than 30%. Actuality, after calibration, the maximum 

default probability (𝜆) we get is 23.82%, before taking out the term structures whose 

𝑅𝑀𝑆𝐸/𝑚𝑒𝑎𝑛 (𝐶𝐷𝑆 𝑠𝑝𝑟𝑒𝑎𝑑𝑠) is bigger than 0.31. Further, all these “outliers” that we 

reject attain the maximum level of default probabilities (Figure 23). In other words, we 

are eliminating the cases that the firms might be the most likely to default. Our default 

probability for the total sample estimated before might be biased downwards. Through 

the dependence, the recovery rate at the total sample level might be biased upwards. 

 

However, the objective of this Master’s thesis is to compare constant recovery and 

implied recovery for CVA calculation. Removing those high RMSEs makes the 

estimation of implied recovery rates more precise. Further, the cleaned results are still 

adequate for comparison by industry and rating.  

 

 Figure 23: Number of rejected term structures/average CDS spread 
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Appendix C. List of 397 issuers 

Name Sector Rating 

ALCOA INC  Mining Baa1-Baa3 

AMERISOURCEBERGEN CORP  Wholesale Trade Baa1-Baa3 

ALBERTSON'S INC  Retail Trade Ba1-B3 

ABBOTT LABORATORIES  Manufacturing A1-A3 

ACE LTD  Finance15 A1-A3 

ARCHER-DANIELS-MIDL. CO  Manufacturing A1-A3 

AMERICAN ELEC PWR CO INC  Transportation16 Baa1-Baa3 

AES CORP  Transportation Ba1-B3 

AETNA INC  Finance Baa1-Baa3 

ALLERGAN INC  Manufacturing A1-A3 

HESS CORP  Manufacturing Baa1-Baa3 

AMERICAN INTL.GROUP  Finance A1-A3 

AK STEEL CORP  Manufacturing No rating 

ALLSTATE CORP  Finance A1-A3 

ADVANCED MICRO DEVC INC  Manufacturing Ba1-B3 

AMGEN INC  Finance No rating 

AMKOR TECHNOLOGY INC  Manufacturing Ba1-B3 

AMERICAN TOWER CORP  Finance Baa1-Baa3 

AON CORP  Finance Baa1-Baa3 

APACHE CORP  Mining A1-A3 

ANADARKO PETROLEUM CORP  Mining Ba1-B3 

AIR PRODUCTS & CHEMS INC  Manufacturing A1-A3 

ARVINMERITOR INC  Manufacturing Baa1-Baa3 

ARROW ELECTRONICS INC  Wholesale Trade Baa1-Baa3 

ASHLAND INC  Manufacturing Ba1-B3 

ARAMARK CORPORATION  Retail Trade Ba1-B3 

ALLTEL CORP  Transportation Baa1-Baa3 

AVALONBAY COMMNS. INC  Finance Baa1-Baa3 

AVIS BUDGET CAR RENT LLC  Services No rating 

AVON PRODUCTS  Manufacturing A1-A3 

AVNET INC  Wholesale Trade Baa1-Baa3 

ALLIED WASTE NA INC  Transportation Ba1-B3 

AMERICAN AXLE & MNFG INC  Manufacturing Ba1-B3 

AMERICAN EXPRESS CO  Finance A1-A3 

ALLEGHENY EN SUPP CO LLC  Manufacturing Baa1-Baa3 

                                                 
15 The complete specification of the sector is: Finance, Insurance, And Real Estate. 
16 The complete specification of the sector is: Transportation, Communications, Electric, Gas, And Sanitary 

Services. 
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AUTOZONE INC  Retail Trade Baa1-Baa3 

BANK OF AMERICA CORP  Finance A1-A3 

BAXTER INTERNATIONAL INC  Manufacturing A1-A3 

BRUNSWICK CORP  Manufacturing Caa1-C 

BLACK & DECKER CORP  Manufacturing Baa1-Baa3 

BAKER HUGHES INC  Manufacturing A1-A3 

BELO CORP  Transportation Ba1-B3 

BELLSOUTH CORP  Transportation A1-A3 

BURLINGTON NTHN SNT FE  Finance Baa1-Baa3 

BOEING CO  Manufacturing A1-A3 

BAUSCH & LOMB INC  Manufacturing Ba1-B3 

BERKSHIRE HATH.INC  Finance Aaa-Aa3 

BOSTON SCIENTIFIC CORP  Manufacturing Ba1-B3 

PEABODY ENERGY  Mining Ba1-B3 

BORGWARNER INC  Manufacturing Baa1-Baa3 

BOSTON PROPERTIES LP  Finance No rating 

BOYD GAMING CORP. Services Caa1-C 

BEAZER HOMES USA INC  Construction Caa1-C 

CITIGROUP INC  Finance A1-A3 

CONAGRA FOODS INC  Manufacturing Baa1-Baa3 

CARDINAL HEALTH INC  Wholesale Trade Baa1-Baa3 

CONTINENTAL AIRLINES INC  Transportation Ba1-B3 

CATERPILLAR INC  Manufacturing A1-A3 

CATERPILLAR FINL.SVS CORP  Manufacturing A1-A3 

CHUBB CORP  Finance A1-A3 

CONSTELLATION BRAND  Services No rating 

CBS CORPORATION  Transportation Baa1-Baa3 

COMCAST CABLE COMMS LLC  Manufacturing No rating 

CARNIVAL CORP  Transportation A1-A3 

AVIS BUDGET GRP INC  Services Baa1-Baa3 

CONSTELLATION EN.GP. INC  Mining Baa1-Baa3 

CHESAPEAKE ENERGY CORP  Mining Ba1-B3 

CIGNA CORP  Finance Baa1-Baa3 

COLGATE-PALMOLIVE CO  Manufacturing Aaa-Aa3 

MACK-CALI REALTY L.P.  Finance No rating 

CLOROX COMPANY  Manufacturing Baa1-Baa3 

COMMERCIAL METALS CO  Manufacturing Baa1-Baa3 

COMCAST CORP  Manufacturing Baa1-Baa3 

CUMMINS INC  Manufacturing Baa1-Baa3 

CMS ENERGY CORP  Transportation Ba1-B3 

CNA FINANCIAL CORP  Finance Baa1-Baa3 
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CENTERPOINT ENERGY INC  Transportation Ba1-B3 

CENTERPOINT EN.RES. CORP  Transportation A1-A3 

CAPITAL ONE BANK  Finance Baa1-Baa3 

CAPITAL ONE FINL. CORP  Finance Baa1-Baa3 

MOLSON COORS BREWING COM  Manufacturing Ba1-B3 

CONOCOPHILLIPS  Manufacturing A1-A3 

COSTCO WHOLESALE CORP  Retail Trade A1-A3 

COX COMMUNICATIONS INC  Transportation Baa1-Baa3 

CAMPBELL SOUP CO  Manufacturing A1-A3 

CREDIT SUISSE USA INC  Manufacturing Baa1-Baa3 

COMPUTER SCIENCES CORP  Services Baa1-Baa3 

CISCO SYSTEMS INC  Services A1-A3 

CSX CORP  Transportation Baa1-Baa3 

COOPER TIRE & RUBBER  Manufacturing Ba1-B3 

CENTURYTEL INC  Transportation Baa1-Baa3 

CENTEX CORP  Construction Ba1-B3 

CABLEVISION SYS CORP  Transportation Ba1-B3 

COVENTRY HLTH. CARE  Finance Ba1-B3 

CVS CAREMARK CORP  Retail Trade Baa1-Baa3 

CHEVRONTEXACO CAP.CO  Manufacturing Aaa-Aa3 

CYTEC INDUSTRIES INC  Manufacturing Baa1-Baa3 

CITIZENS COMMS.CO  Transportation Ba1-B3 

DOMINION RESOURCES INC  Transportation Baa1-Baa3 

DU PONT E.I. DE NEMO URS  Manufacturing A1-A3 

DEVELOPERS DIVR.REAL  Finance Baa1-Baa3 

DILLARDS INC  Retail Trade Ba1-B3 

DEERE & CO  Manufacturing A1-A3 

JOHN DEERE CAPITAL CORP  Manufacturing A1-A3 

DELL INC  Manufacturing No rating 

DEAN FOODS CO  Manufacturing A1-A3 

DR HORTON INC  Construction Ba1-B3 

DANAHER CORP  Manufacturing A1-A3 

WALT DISNEY CO/THE  Transportation A1-A3 

DELHAIZE AMERICA INC  Retail Trade Baa1-Baa3 

DELUXE CORP  Manufacturing Ba1-B3 

DIAMOND OFFSHORE DRL  Mining Baa1-Baa3 

DOVER CORP  Manufacturing A1-A3 

DOW CHEMICAL CO  Manufacturing Baa1-Baa3 

DPL INC  Transportation Baa1-Baa3 

DUKE REALTY LP  Finance Baa1-Baa3 

DARDEN RESTAURANTS INC  Retail Trade Baa1-Baa3 
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DTE ENERGY COMPANY  Transportation Baa1-Baa3 

DIRECTV HOLDINGS LLC  Transportation Ba1-B3 

DUKE ENRGY CAROLINAS  Transportation Baa1-Baa3 

SPECTRA ENERGY CAP.  Transportation No rating 

DEVON ENERGY CORP  Mining Baa1-Baa3 

CONSOLIDATED EDISON INC  Transportation A1-A3 

ELECTRONIC DATA SYS. CORP  Manufacturing A1-A3 

ENBRIDGE ENERGY LTD PSHP  Transportation Baa1-Baa3 

EASTMAN CHEMICAL CO  Manufacturing Baa1-Baa3 

EMERSON ELECTRIC CO  Manufacturing A1-A3 

EQUITY OFFICE PROPS. TST  Finance No rating 

EL PASO CORP  Transportation Ba1-B3 

ENTERPRISE PRDS.PTNS LP  Transportation No rating 

EMBARQ CORP  Transportation Baa1-Baa3 

EATON CORP  Manufacturing A1-A3 

ENTERGY CORP  Transportation Baa1-Baa3 

EXELON CORP  Transportation Baa1-Baa3 

EXPEDIA INC  Transportation Ba1-B3 

EXELON GENERATION CO LLC  Transportation Baa1-Baa3 

FORD MOTOR CO  Manufacturing Ba1-B3 

FELCOR LODGING LP  Finance Caa1-C 

MACY'S INCORPORATED  Retail Trade Ba1-B3 

FIRST DATA CORP  Services A1-A3 

FEDEX CORP  Transportation Baa1-Baa3 

FIRSTENERGY CORP  Transportation Baa1-Baa3 

FORD MOTOR CREDIT CO LLC  Manufacturing Ba1-B3 

FIRST INDUSTRIAL LP  Finance No rating 

FINANCIAL SCTY ASR INC  Finance A1-A3 

FREESCALE SEMICON INC  Manufacturing Ba1-B3 

FOREST OIL CORP  Mining Ba1-B3 

GANNETT CO INC  Manufacturing Baa1-Baa3 

GENERAL DYNAMICS CORP  Manufacturing A1-A3 

GENERAL ELEC.CAPITAL CORP  Manufacturing Aaa-Aa3 

GENERAL MILLS INC  Manufacturing Baa1-Baa3 

CORNING INC  Manufacturing Baa1-Baa3 

GMAC LLC  Finance Ba1-B3 

GENWORTH FINANCIAL INC  Finance Baa1-Baa3 

GEORGIA-PACIFIC GP.  Manufacturing Ba1-B3 

GRAPHIC PACK INTL INC  Manufacturing Ba1-B3 

GAP INC  Retail Trade Ba1-B3 

GOODRICH CORP  Manufacturing Baa1-Baa3 
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GOLDMAN SACHS GP INC  Finance A1-A3 

GLOBALSANTAFE CORP  Mining Baa1-Baa3 

GOODYEAR TIRE & RUB. CO  Manufacturing Ba1-B3 

HALLIBURTON CO  Mining A1-A3 

HASBRO INC  Manufacturing Baa1-Baa3 

HCA INC  Services Ba1-B3 

HEALTH CRE.PR.INVRS. INC  Finance Baa1-Baa3 

MANOR CARE INC  Services Baa1-Baa3 

HOME DEPOT INC  Retail Trade Baa1-Baa3 

HSBC Finance CORP  Finance A1-A3 

HARTFORD FINL.SVS.GP  Finance Baa1-Baa3 

HILTON HOTELS CORP  Services Caa1-C 

HEALTH MAN.ASSOCS. INC  Services Ba1-B3 

HOST HOTELS&RESORTS LP  Finance Ba1-B3 

HEINZ (HJ) CO  Manufacturing Baa1-Baa3 

HONEYWELL INTL.INC  Manufacturing A1-A3 

STARWOOD HTLS.& RSTS WWD  Services Ba1-B3 

K HOVNANIAN ENTS INC  Construction Caa1-C 

BLOCK FINANCIAL CORP  Services No rating 

HERSHEY FOODS CORP  Manufacturing A1-A3 

HUMANA INC  Finance Ba1-B3 

HUNTSMAN INTL LLC Manufacturing Ba1-B3 

HEWLETT-PACKARD CO  Manufacturing A1-A3 

INTL.BUS.MCHS.CORP  Services Aaa-Aa3 

INTERNATIONAL GAME TECH  Manufacturing Baa1-Baa3 

IKON OFFICE SLTN.INC  Services A1-A3 

INTERNATIONAL PAPER CO  Manufacturing Baa1-Baa3 

INTERPUBLIC GP.COS. INC  Services Ba1-B3 

IRON MOUNTAIN  Services Ba1-B3 

ILLINOIS TOOL WORKS INC  Manufacturing A1-A3 

JETBLUE AIRWAYS CORP  Transportation Caa1-C 

JOHNSON CONTROLS INC  Manufacturing Baa1-Baa3 

JC PENNEY CO  Retail Trade Ba1-B3 

JOHNSON & JOHNSON  Manufacturing Aaa-Aa3 

JONES APPAREL GP. INC  Manufacturing Ba1-B3 

JPMORGAN CHASE & CO  Finance A1-A3 

NORDSTROM INC  Retail Trade Baa1-Baa3 

KELLOGG CO  Manufacturing A1-A3 

KB HOME  Construction Ba1-B3 

KIMCO REALTY CORP  Finance Baa1-Baa3 

KIMBERLY-CLARK CORP  Manufacturing A1-A3 
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KERR-MCGEE CORP  Manufacturing Ba1-B3 

KINDER MORGAN ENERGY PRNS  Transportation Baa1-Baa3 

COCA-COLA CO  Manufacturing Aaa-Aa3 

KROGER CO  Retail Trade Baa1-Baa3 

MCCLATCHY CO.  Manufacturing Caa1-C 

KEYSPAN CORPORATION  Transportation Baa1-Baa3 

KOHLS CORP  Retail Trade Baa1-Baa3 

LENNAR CORP  Construction Ba1-B3 

LABORATORY CORP.OF AMER  Services Baa1-Baa3 

LIZ CLAIBORNE INC  Manufacturing Caa1-C 

L-3 COMMUNICATIONS CORP  Manufacturing Ba1-B3 

ELI LILLY & CO  Manufacturing A1-A3 

LOCKHEED MARTIN CORP  Manufacturing Baa1-Baa3 

LOUISIANA-PACIFIC CORP  Manufacturing Ba1-B3 

LTD BRANDS  Retail Trade Ba1-B3 

LOEWS CORP  Finance A1-A3 

ALCATEL-LUCENT USA INC  Manufacturing No rating 

SOUTHWEST AIRLINES  Transportation Baa1-Baa3 

LEVEL 3COMMS.INC  Transportation Caa1-C 

LOWES COMPANIES INC  Retail Trade A1-A3 

LUBRIZOL CORP  Manufacturing Baa1-Baa3 

MARRIOTT INTL.INC  Services Baa1-Baa3 

MASCO CORP  Manufacturing Ba1-B3 

MATTEL INC  Manufacturing Baa1-Baa3 

MACY'S RET HDG INCO  Retail Trade Ba1-B3 

MBIA INC  Finance Ba1-B3 

MBIA INSURANCE CORP  Finance Ba1-B3 

MCDONALD'S CORP  Retail Trade A1-A3 

MCKESSON CORP  Wholesale Trade Baa1-Baa3 

MDC HOLDINGS INC  Construction Baa1-Baa3 

MEDIACOM LLC  Construction Caa1-C 

MEDTRONIC INC  Manufacturing A1-A3 

MASSEY ENERGY CO  Mining Ba1-B3 

MERRILL LYNCH & CO. INC  Finance A1-A3 

METLIFE INC  Finance A1-A3 

MGM MIRAGE INC  Services Caa1-C 

MOHAWK INDUSTRIES INC  Manufacturing Ba1-B3 

MEDCO HEALTH SLTN. INC  Retail Trade Baa1-Baa3 

MIRANT NORTH AMERICA INC  Transportation Caa1-C 

MARTIN MARIETTA MATS INC  Mining Baa1-Baa3 

MARSH & MCLENNAN COS INC  Finance Baa1-Baa3 
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3M COMPANY  Manufacturing Aaa-Aa3 

MAGELLAN MDSTM PTNS LP  Transportation Baa1-Baa3 

ALTRIA GROUP INC  Manufacturing Baa1-Baa3 

MOSAIC GLOBAL HLDGS  Manufacturing Baa1-Baa3 

MOTOROLA INC  Manufacturing Baa1-Baa3 

MERCK & CO INC  Manufacturing A1-A3 

MARATHON OIL CORP  Manufacturing Baa1-Baa3 

MONSANTO CO  Manufacturing A1-A3 

MGIC INVESTMENT CORP  Finance Ba1-B3 

MERITAGE HOMES CORP  Construction Ba1-B3 

MURPHY OIL CORP  Manufacturing Baa1-Baa3 

MORGAN STANLEY GP. INC  Finance Aaa-Aa3 

MEADWESTVACO CORP  Manufacturing Ba1-B3 

NAVISTAR INTL.CORP  Manufacturing Ba1-B3 

ONEOK PARTNERS L.P.  Transportation Baa1-Baa3 

NABORS INDUSTRIES INC  Mining Baa1-Baa3 

NEWMONT MINING CORP  Mining Baa1-Baa3 

NISOURCE Finance CORP  Finance Baa1-Baa3 

NALCO CO  Manufacturing No rating 

NEIMAN-MARCUS GROUP INC  Retail Trade Ba1-B3 

NORTHROP GRUMMAN CORP  Manufacturing Baa1-Baa3 

NRG ENERGY INC  Transportation Caa1-C 

NORFOLK SOUTHERN CORP  Transportation Baa1-Baa3 

NORTHEAST UTILITIES  Transportation Baa1-Baa3 

NUCOR CORP  Manufacturing A1-A3 

NVR INCORPORATED  Construction Baa1-Baa3 

NEWELL RUBBERMAID INC  Manufacturing Baa1-Baa3 

THE NEW YORK TIMES CO.  Manufacturing Ba1-B3 

OMNICARE INC  Retail Trade Ba1-B3 

OFFICE DEPOT INC  Retail Trade Caa1-C 

OWENS-ILLINOIS INC  Manufacturing Ba1-B3 

ONEOK INC  Transportation Baa1-Baa3 

OLIN CORP  Manufacturing Ba1-B3 

OMNICOM GROUP  Services Baa1-Baa3 

ORACLE CORP  Finance A1-A3 

OCCIDENTAL PETROLEUM CORP  Mining A1-A3 

PEPSI BOTTLING GROUP INC  Manufacturing A1-A3 

PITNEY BOWES INC  Manufacturing A1-A3 

PPACIFIC GAS & ELEC CO  Transportation Baa1-Baa3 

PHELPS DODGE CORP  Manufacturing Baa1-Baa3 

PRIDE INTERNATIONAL INC  Mining Ba1-B3 
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PEPSICO INC  Manufacturing Aaa-Aa3 

PFIZER INC  Manufacturing A1-A3 

PRUDENTIAL FINANCIAL INC  Finance No rating 

PROCTER & GAMBLE CO  Manufacturing Aaa-Aa3 

PROGRESS ENERGY INC  Transportation Baa1-Baa3 

PULTE HOMES INC  Construction Ba1-B3 

PARKER DRILLING CO  Mining Ba1-B3 

PACK CORP OF AMERICA  Manufacturing Baa1-Baa3 

PROLOGIS TRUST  Finance Baa1-Baa3 

POLYONE CORP  Manufacturing Ba1-B3 

PEPCO HOLDINGS INC  Transportation Baa1-Baa3 

PPG INDUSTRIES INC  Manufacturing Baa1-Baa3 

PPL ENERGY SUPP.LLC  Transportation Baa1-Baa3 

PRIMEDIA INCO  Manufacturing Ba1-B3 

PACTIV CORPORATION  Manufacturing Caa1-C 

PRAXAIR INC  Manufacturing A1-A3 

PIONEER NATURAL RESC CO  Mining Ba1-B3 

QWEST COMMS INTL INC  Services Ba1-B3 

QWEST CAPITAL FDG. INC  Transportation Ba1-B3 

QWEST CORP  Transportation Ba1-B3 

RYDER SYSTEM INC  Services Baa1-Baa3 

RITE AID CORP  Retail Trade Caa1-C 

REALOGY CORPORATION  Transportation No rating 

ROYAL CRBN.CRUISES LTD  Transportation Ba1-B3 

RADIAN GROUP INC  Finance Ba1-B3 

TRANSOCEAN INC  Mining Baa1-Baa3 

ROCK-TENN CO  Manufacturing Ba1-B3 

RELIANT ENERGY  Transportation Caa1-C 

ROHM & HAAS CO  Manufacturing Baa1-Baa3 

RPM INTERNATIONAL INC  Manufacturing Baa1-Baa3 

RR DONNELLEY & SONS  Manufacturing Baa1-Baa3 

REPUBLIC SERVICES INC  Transportation Baa1-Baa3 

RADIOSHACK CORP  Retail Trade Ba1-B3 

RAYTHEON CO  Manufacturing Baa1-Baa3 

REYNOLDS AMERICAN INC  Manufacturing Baa1-Baa3 

RYLAND GROUP INC  Construction Ba1-B3 

AT&T INC.  Transportation A1-A3 

SINCLAIR BRDCT GP  Transportation Ba1-B3 

SCANA CORP  Transportation Baa1-Baa3 

SUNGARD DATA SYSTEMS  Services Ba1-B3 

SMITHFIELD FOODS INC  Manufacturing Caa1-C 
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ISTAR FINANCIAL INC  Finance Caa1-C 

SCHERING-PLOUGH CORP  Manufacturing A1-A3 

SHERWIN-WILLIAMS CO  Wholesale Trade A1-A3 

SAKS INC  Retail Trade Ba1-B3 

SARA LEE CORP  Retail Trade No rating 

SOLECTRON CORP Manufacturing Ba1-B3 

SOUTHERN CALI EDISON CO  Transportation Baa1-Baa3 

STANDARD PACIFIC CORP  Construction Ba1-B3 

SIMON PROPERTY GROUP INC  Finance A1-A3 

STAPLES INC  Wholesale Trade Baa1-Baa3 

SEMPRA ENERGY  Transportation Baa1-Baa3 

SERVICE CORP INTL  Finance Ba1-B3 

SOUTHERN COMPANY  Finance Baa1-Baa3 

SEAGATE TECH HDD HDG  Manufacturing No rating 

SOUTHERN UN CO  Transportation Baa1-Baa3 

SUNOCO INC  Manufacturing Baa1-Baa3 

SUN MICROSYSTEMS INC  Manufacturing Ba1-B3 

SERVICEMASTER CO.  Mining Caa1-C 

SUPERVALU INC  Retail Trade Ba1-B3 

STANLEY WORKS  Manufacturing Baa1-Baa3 

SAFEWAY INC  Retail Trade Baa1-Baa3 

SYSCO CORPORATION  Wholesale Trade A1-A3 

TECO ENERGY INC  Transportation Baa1-Baa3 

TARGET CORP  Retail Trade A1-A3 

TENET HEALTHCARE CORP  Services Caa1-C 

TEMPLE-INLAND INC  Manufacturing Ba1-B3 

TJX COMPANIES INC/ THE  Retail Trade A1-A3 

TIME WARNER ENTM CO LP  Services Baa1-Baa3 

TOLL BROTHERS INC  Construction Ba1-B3 

SUNCOM WIRELESS INC  Construction No rating 

TRW AUTOMOTIVE INC  Manufacturing Ba1-B3 

SABRE HOLDINGS CORP  Transportation Caa1-C 

TYSON FOODS INC  Manufacturing Ba1-B3 

TIME WARNER INC  Services Baa1-Baa3 

TEXAS INSTRUMENT INC  Manufacturing A1-A3 

TEXTRON INC  Manufacturing Baa1-Baa3 

TEXTRON FINANCIAL CORP  Manufacturing Baa1-Baa3 

TXU CORP  Transportation Ba1-B3 

TXU ENERGY CO LLC  Transportation Ba1-B3 

UNIVERSAL HEALTH SVS INC  Services Ba1-B3 

UNISYS CORP  Services Ba1-B3 
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UNITEDHEALTH GROUP INC  Finance Baa1-Baa3 

UNUM GROUP  Finance A1-A3 

UNION PACIFIC CORP  Transportation Baa1-Baa3 

UNITED PARCEL SER. INC  Transportation Aaa-Aa3 

UNITED RENTALS INC  Services Ba1-B3 

UST INC  Finance A1-A3 

UNITED TECHNOLOGIES CORP  Manufacturing A1-A3 

UNVL.CORP/RICHMND. VA  Manufacturing Ba1-B3 

UNIVISION COMM INC.  Transportation Ba1-B3 

VF CORP  Manufacturing A1-A3 

VIACOM INC  Transportation Baa1-Baa3 

VALERO ENERGY CORP  Manufacturing Baa1-Baa3 

VORNADO REALTY LP  Finance Baa1-Baa3 

VERIZON COMMS INC  Transportation A1-A3 

WISCONSIN ENERGY CORP  Transportation A1-A3 

WENDY'S INTL.INC  Retail Trade Caa1-C 

WELLS FARGO & CO  Finance A1-A3 

WEATHERFORD INTL.INC  Mining Baa1-Baa3 

WHIRLPOOL CORP  Manufacturing Baa1-Baa3 

WINDSTREAM COMMS  Transportation Ba1-B3 

WELLPOINT INC  Finance Baa1-Baa3 

WILLIAMS COS INC/THE  Transportation Baa1-Baa3 

WASTE MANAGEMENT INC  Transportation Baa1-Baa3 

WAL-MART STORES INC  Retail Trade Aaa-Aa3 

WESTERN UNION CO/THE  Services A1-A3 

WEYERHAEUSER CO  Manufacturing Ba1-B3 

WYETH  Manufacturing A1-A3 

UNITED STATES STEEL  Manufacturing Ba1-B3 

XCEL ENERGY INC  Transportation Baa1-Baa3 

EXXON MOBIL CORP  Manufacturing Aaa-Aa3 

XEROX CORP  Manufacturing Baa1-Baa3 

XTO ENERGY INC  Mining Aaa-Aa3 

YRC WORLDWIDE INC  Transportation Caa1-C 

YUM! BRANDS INC  Retail Trade Baa1-Baa3 
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Appendix D. List of defaults 

 

1. On December 31, 2008, GMAC LLC ("GMAC") announced that it has completed 

a debt restructuring in which cash, notes and preferred shares were exchanged for 

approximately $17.5 billion of old GMAC LLC notes and $3.7 billion of old 

Residential Capital, LLC . 

2. Beginning on December 3, 2008, Hovnanian Enterprises, Inc. ("Hovnanian") had 

been completing open market debt repurchases of its senior unsecured and senior 

subordinated notes at substantial discounts to par. On December 3, 2008, K. 

Hovnanian Enterprises. 

3. On April 6, 2009, Ford Motor Company (“Ford”) announced the results of its debt 

restructuring and exchange offers in which approximately $9.9 billion of 

outstanding debt was reduced. The transactions were funded with $2.4 billion in 

cash and 468 million. 

4. On June 25, 2009, The McClatchy Company (“McClatchy”) accepted for 

purchase at discount to par value about $103 million of its outstanding Senior 

Unsecured bonds of various maturities. Moody's believes the completion of the 

exchange offer to retire debt. 

5. In the second quarter of 2009, Beazer Homes USA, Inc. (“Beazer”) made a 

repurchase of $115.5 million face value of senior unsecured notes for an 

aggregate purchase price of $58.2 million.  

6. On December 30th 2009, YRC Worldwide Inc (“YRCW” or the company) 

completed a debt-for-equity exchange on substantial majority of the Senior Notes 

and Convertible notes issued by YRCW and its subsidiary - USF Corp. 
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