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ABSTRACT 
 

Supply chain management has grown tremendously in recent years and has become a 

crucial and competitive tool for companies in today’s fast-paced global economy. 

Companies try to improve their supply chain performance by employing new technologies 

and methods, and considering unpredictable behaviors and disruptions in order to survive 

in the competitive market. One of the most effective ways to tackle uncertainty in supply 

chain is to have a well-structured resilient network, which can encompass the fluctuations 

and uncertainties through design parameters and respond effectively to upcoming 

disruptions. 

This thesis addresses the problem of logistics network design in the case of uncertainty in 

design parameters. Demand, supply, transportation and operating costs, and capacity are 

among the main parameters that carry a stochastic behavior by nature and fluctuate for 

various reasons over the planning horizon. In this work, in order to measure the effect of 

uncertainty and variability in the design parameters, a two-stage stochastic optimization 

approach is applied to formulate the stochastic logistics network design problem. A 

heuristic scenario-based solution approach called sample average approximation is used in 

order to solve the stochastic model.  

The results from the stochastic approach and the classical deterministic approach are 

compared and analyzed through various sample instances in order to demonstrate the effect 

of the stochastic design parameters and their variability levels on the network design 

process.  
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          (Steve Jobs)  

“Here’s to the crazy ones. The misfits. The 

rebels. The troublemakers. The round pegs 

in the square holes. The ones who see 

things differently. They’re not fond of 

rules. And they have no respect for the 

status quo. You can quote them, disagree 

with them, glorify or vilify them. About the 

only thing you can’t do is ignore them. 

Because they change things. They push the 

human race forward. And while some may 

see them as the crazy ones, we see genius. 

Because the people who are crazy enough 

to think they can change the world, are the 

ones who do.”  
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CHAPTER 1 

Introduction 
 

1.1    General Overview 

 

A supply chain is a connected network of suppliers (S), manufacturing plants (P), 

distributors (D), and customers (C), in which materials move from suppliers to customers, 

and information flows in both directions (Figure 1.1). Logistics refers to the part of supply 

chain that plans, implements, and controls the effective and efficient flow of materials and 

information between points in order to satisfy customers’ demand. Different types of 

facilities in the supply chain are organized to acquire raw materials, convert them to 

finished products, and distribute these products to customers (Geoffrion and Powers, 

1995).  

 

Figure 1.1: An example of a basic supply chain network 
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Logistics network design refers to building an efficient supply chain network in order to 

satisfy customer needs in a cost-wise approach; this involves making decisions regarding: 

 the number, location, capacity and technology of manufacturing plants and 

warehouses 

 the selection of suppliers 

 the assignment of products and raw materials to plants and warehouses 

 the selection of distribution channels and transportation modes 

 the flow of materials through the network: raw materials, semi-finished goods, and 

finished goods. 

These decisions can be classified into three levels of planning due to their importance, 

impacts, and the planning horizon. The strategic level supply chain planning involves 

deciding the configuration of the network, i.e., the number, locations, capacity and 

technology of plants and warehouses with a long-term planning horizon. The tactical level 

planning of supply chain operations involves selecting suppliers, assigning materials to 

facilities, as well as selecting distribution channels and transportation modes, in a medium-

term planning horizon that can be revised every few months. Finally, the operational level 

planning of supply chain involves short-term planning of flows of materials through the 

network (Cordeau et al., 2006).  

The physical structure of the supply chain network has a significant impact on the 

performance of operational activities, such as production and distribution of materials and 

products, and it is very important to design an efficient supply chain to facilitate the 

movements of goods. Therefore, the total cost of the finished product, which incorporates 

the procurement, production, warehousing and distribution cost, is affected by supply chain 

network architecture.  

Today’s competitive fast-moving market forces companies to constantly emphasize 

productivity gains and customer satisfaction, which leaves no room for mistakes. 

Companies focus on satisfying customer demands while challenging on time, quality and 

price as the three important elements in the competitive market. They try to serve customers 

more rapidly with a higher level of quality while minimizing their total cost and the price 
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of the product. To this end, they need to precisely concentrate on supply chain design and 

planning process as a key factor in delivering products to customers competently. The 

globalization of economic activities together with fast developments in information 

technologies have led to shorter product life cycles, smaller lot sizes and very dynamic 

customer behaviour in terms of their preferences. These aspects result in growing customer 

demand uncertainty (Melo et al., 2009).   

Supply chain operations are inevitably faced with a wide range of uncertainties and 

variations in critical parameters such as customer demand, supply, inventory and 

transportation costs, and resource capacity. In fact, uncertainty rules the supply chain. Sales 

deviate from the forecast. Components are damaged in transit. Fabrication yields fail to 

meet the plan. Shipments are held up in customs. Therefore, these uncertainties may lead 

to delays and bottlenecks, and hamper the performance output of the supply chain. Hence, 

if the designed supply chain is not robust enough with respect to all these uncertainties and 

variations, the impact of operational inefficiencies such as delays and disruptions would be 

larger than necessary (Santoso et al., 2005).  

 

1.2    Problem Definition 

 

In order to take into account the effects of the uncertainty in supply chain design, this thesis 

addresses the Logistics Network Design Problem (LNDP) of a manufacturing firm in the 

presence of uncertainty. We consider uncertainty in certain design parameters such as 

customer demands, supplies, production and transportation costs, and capacities of plants 

and warehouses to design a reliable and responsive supply chain network. More precisely, 

the LNDP consists in answering the following: 
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 How many plants do we need? And where should we locate them? 

 How many warehouses and distribution centers do we need? And where to locate 

them? 

 How much should be the capacity of each plant and warehouse for each product? 

 From which supplier should we get each raw material? 

 In which plant and which warehouse should we produce and keep each product? 

 How to send materials and products through the network? With which mode? 

 How much each plant should produce and each warehouse should keep? 

 How much materials and product should be transported in the network to satisfy all 

customer demands? 

The objective of the problem is to minimize the total fixed and variable costs associated 

with configuration design, procurement, production, warehousing, and transportation, 

while satisfying customer demands and capacity constraints, and considering uncertainty 

in design parameters. The main purpose of our work is to analyze the impact of different 

types of uncertainty on the network design and quantify the benefits that can be achieved 

by taking uncertainty into account. 

 

1.3    Solution Methodology 

 

The problem we face in this study is a logistics network design with uncertainty in design 

parameters. In order to tackle this problem, a stochastic optimization approach is employed. 

A two-stage stochastic programming model with a recourse function is proposed, in which 

the first stage consists of deciding the configuration decision with binary variables, and the 

second stage consists of processing and transporting products from suppliers to customers 

in an optimal way based on the configuration and the realized uncertain scenario. The 

objective function of the problem is to minimize the total fixed cost of current investment 

and the expected future variable costs.  
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The exact approaches to tackle the problem of stochastic programming for supply chain 

design under uncertainty are suited for a very small number of scenarios. Consider a 

logistics network with only 50 facilities, each with an uncertain parameter. Now assume 

that the operating level for a facility can be one of only three possibilities and these are 

independent across facilities. Hence, the total number of scenarios would be 350 scenarios 

for the realization of the uncertainties, which is far more than what can be handled by 

existing exact methods to solve the problem. Therefore, heuristic approaches are often 

applied to tackle large-scale problems. In this study, we use a sampling strategy in order to 

repeatedly generate a moderate number of realized scenarios and solve the equivalent 

deterministic optimization problems. This approach is called Sample Average 

Approximation (SAA), and it can produce high quality solutions to stochastic problems 

(Verweij et al., 2003). In order to assess the performance of the proposed approach, an 

experimental study is performed to solve a realistic supply chain design problem. Several 

test problems and scenarios are generated and solved with CPLEX 12.5.1. The stochastic 

solution is obtained by applying the SAA method on the designed test problems. 

Furthermore, the deterministic solutions are obtained by taking average of the objective 

function values of the deterministic model for the designed test problems. Finally, the 

solutions of two approaches are compared and discussed. 

 

1.4    Thesis Outline 

 

This work is organized as follows. An introduction to supply chain planning, network 

design, and solution approaches to logistics network design is given in Chapter 1. A review 

of the relevant literature is then given in Chapter 2. Problem description, modeling and 

solution approaches are presented in Chapter 3. An experimental design and data analysis 

and results are presented in Chapter 4. Finally, conclusions and future research directions 

are presented in Chapter 5. 
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CHAPTER 2  

Literature Review 

 

This chapter provides a brief overview of the current state of the literature on several 

aspects of supply chain network modeling and optimization within the following research 

streams: 

 Supply chain management  
 Facility location models 
 Distribution network design  
 Logistics network design  
 Logistics network design in the presence of uncertainty 

 

2.1    Supply Chain Management  

 

A supply chain is a group of organizations performing various processes required to make 

a finished product. The chain begins with raw materials and ends with the finished product 

which is delivered to the customers. This chain includes suppliers, manufacturers, 

distributors, warehouses, distribution centers, retailers, and customers. Within each 

organization, the supply chain includes all functions involved in satisfying customer 

demand. Supply chain management (SCM) is defined as the set of approaches utilized to 

efficiently integrate suppliers, manufacturers, warehouses, and retailors so that the 

merchandize is produced in the right quantities, distributed to the right locations, and at the 

right time in order to minimize the total cost of the system while satisfying service level 

requirements and quality issues (Simchi-Levi et al., 2008). The Council of Supply Chain 

Management Professionals (2008) (CSCMP) defines supply chain management as follows: 
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“Supply chain management encompasses the planning and 

management of all activities involved in sourcing and procurement, 

conversion, and all logistics management activities. Importantly, it 

also includes coordination and collaboration with channel partners, 

which can be suppliers, intermediaries, third party service providers, 

and customers. In essence, supply chain management integrates supply 

and demand management within and across companies.”  

Generally speaking, SCM is the collection of practices that enable the efficient flow of 

materials, products, and information to meet customer demand.  

Logistics is a key component of supply chain management. It is defined by the Council of 

Logistics Management (2004) (CLM) as follows: 

“That part of the supply chain process that plans, implements, and 

controls the efficient, effective flow and storage of goods, services, and 

related information from point-of-origin to point-of-consumption in 

order to meet customers' requirements.” 

For a given supply chain structure, most of studies focused on identifying the best 

approaches to make the flows efficient. However, one essential criterion for these 

approaches to be successful is that there exists a well-designed supply chain structure. This 

underlying structure typically is called the logistics network and can be represented as a 

directed connected graph where each edge has a capacity and receives a flow. If a logistics 

network is not carefully designed, even the best SCM approaches will have limited 

efficiency.  

Supply chain network design is a critical and important decision. It comprises which 

products to manufacture, which markets to serve, which suppliers to select, which 

technologies to acquire, which transportation modes to utilize, which distribution channels 

to use, and where to locate plants, warehouses, distribution centers, and retailors in order 

to serve customers more efficiently while minimizing the total cost. The nature of these 

decisions may vary from very long term and strategic decisions which require large 
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investments, to tactical and operational decisions which involve medium and short term 

horizons, respectively, and require small investments. 

Simchi-Levi et al. (2008) classified supply chain decision phases into three categories 

based on the frequency with which they are made and the length of the planning horizon 

over which they have an impact: Strategic, tactical, and operational. Strategic decisions, 

which include decisions regarding location, capacity, and technology, would have effects 

on a firm over the next few years or even decades. They also involve huge investments, 

such as the cost of building a factory or acquiring a certain technology. Tactical decisions, 

which include supplier selection, product range assignment, inventory policies, distribution 

channel and transportation mode selection, may have an impact on a firm over the next 

three to twelve months. Finally, operational decisions such as routing materials and 

products through the network, and scheduling would affect very short term operations of a 

firm, and are usually made on a daily basis. Table 2.1 shows more examples of decisions 

in SCM in each category. This table is based on Ballou (2004).  

Decisions/Phases Strategic Tactical Operational 

Location 
Number of facilities, 

capacity, location 
Inventory level 

Routing, dispatching, 

expediting 

Transportation Mode selection 
Seasonal service 

mix 

Replenishment 

quantity and timing 

Order Processing 

Selecting and 

designing ordering 

system 

Priority rules for 

customer service 
Expediting orders 

Customer service Standard setting 
Pre-transaction 

and transaction 

setting 

Providing an 

appropriate service 

level 

Warehousing 
Layout and site 

selection 

Seasonal space 

choice 
Order fulfilment 

Purchasing Policies 
Contracting and 

supplier selection 
Order releasing 

Table 2.1 Examples of decisions in SCM 

Based on the definition of logistics given above and the examples of decision phases in 

Table 2.1, it is clear that two major issues in designing an efficient logistics network are 
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facility location and distribution. Management should decide how many plants and 

distribution centers to operate, where to locate them, which set of retailers to assign to each 

distribution center and which set of suppliers to feed each plant, and how often, in what 

quantities, by which mode, and in which path to deliver the material and product to all 

layers and units so that a satisfactory level of customer service is achieved at minimum 

total cost. These two decision areas (location and distribution) are interrelated in the sense 

that a change in the location or number of plants and distribution centers affects the routing 

and distribution procedures. Likewise, a change in distribution and routing plan affects 

assignment decisions and thereby may affect location decisions as well. Moreover, changes 

in either area would affect the customer service level of the company. 

In order to achieve a high performance supply chain, decisions in different phases must be 

optimized in an integrated manner. Most supply chain optimization models in the literature 

have thoroughly considered facility location problems and distribution problems separately 

as these two decisions are not dimensionally compatible. Decisions related to facility 

location are strategic decisions whereas those related to distribution and routing are tactical 

and operational (Peidro et al., 2009). Hence, the classical approach of tackling these 

problems separately leads to substantial excess costs because the supply chain is run sub-

optimally. Recently, different models proposed in the literature have integrated these two 

decision areas. Developing an integrated location-distribution supply chain network design 

model is the main motivation of this work. 

Another motivation of this research is that real world supply chain network problems are 

generally subject to uncertainty and disruptions. However, the majority of the research 

assumes that the operational characteristics of, and hence the design of parameters for, the 

supply chain are deterministic. Unfortunately, critical parameters such as customer 

demands, transportation costs, prices, and resource capacity are quite uncertain (Santoso et 

al., 2005). In this work, we study the design of an integrated supply chain network in an 

uncertain environment, in which demand, transportation costs, supply, and capacity are 

subject to change and may fluctuate over time. To this end, a stochastic optimization 

method is applied to model and solve the problem. The remainder of this chapter will 

present various models of locations problems, distributions problems, integrated network 
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design models, and finally the logistics network design models in the presence of 

uncertainty in the literature, and for each case, solution methodologies and related 

approaches will be discussed. 

 

2.2    Facility Location Models 

 

Francis et al. (1983) defined location problems as locating one or more new facilities, 

which may include fixed costs, transportation costs, constraints on the number of new 

facilities, upper bounds on distances between new and existing facilities, as well as 

determining the amounts to be shipped between new and existing facilities.  

There exists a wide literature related to location models, and since it is not possible to 

survey all of it, this review first categorizes these models and then explores the more 

relevant models to this work.  

 

2.2.1    Continuous Models 

Location models can be categorized into discrete and continuous forms based on the 

feasible solution space and decision variables. Continuous location models are 

characterized by two essential attributes: the solution space is continuous, which means it 

is feasible to locate facilities in every point in the plane, and distance is measured with a 

suitable metric. Typically, the Manhattan (right-angle distance) metric, or the Euclidian 

(straight line distance) metric, is employed to solve these problems (Klose and Drexl, 

2005).  

 

2.2.2    Discrete Models 

Discrete models are perhaps the most relevant ones in the context of logistics due to the 

incorporation of fixed costs and distribution costs (Francis et al., 1983). Discrete facility 

location problems cover a wide range of problems in which the goal is to locate a set of 

facilities in a distribution network while meeting several requirements. Unlike the 

continuous models, the solution space for discrete models consists of a finite set of sites 
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with nonnegative cost of opening corresponding to each. The need for a new facility 

location can arise from many sources. As an example, a newly formed organization must 

decide the location of its operating facilities. As another example, a power provider 

company must find the best possible location for a new power generating plant. The rest 

of this review will focus on discrete facility location models. 

 

2.2.2.1    Deterministic and Static Models 

One of the simplest location problems relates to a static and deterministic model in which 

p facilities are to be located in order to minimize the total distances or cost for supplying 

customer demands. This is the so-called p-median problem which was introduced by 

Hakimi (1964), and in which all candidate sites are equivalent in terms of fixed costs for 

locating new facilities. This problem minimizes the total weighted distance between the 

customers and the p located facilities.  

For some problems, selecting locations to minimize the average distance travelled would 

not be quite appropriate. For example in the problem of locating ambulances or fire 

stations, the key issue is maximizing the overall coverage. The demand is said to be covered 

if it can be served within a specified time or distance. The literature on covering problems 

is divided into two major segments; the location set covering problem and the maximal 

covering problem (Owen and Daskin, 1998). In the first case, the objective is to minimize 

the cost of facility location such that a specified coverage level is obtained. This allows us 

to examine how many facilities are needed to reach to a certain coverage level to all 

customers. The second case seeks to maximize the amount of demand covered within the 

acceptable service distance by locating a fixed number of facilities.  

The two problems mentioned above provide a strong foundation for much of the location 

theory but they do not consider the fixed cost of facility locations. In order to explicitly 

incorporate the location costs, the family of fixed charge facility location problems has 

been developed. One model in this set is the uncapacitated fixed charge facility location 

problem (UFLP) in which the objective function of the p-median problem is extended with 

a term for fixed facility location costs and as a result, the number of facilities to be 
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established typically becomes an endogenous decision variable (Melo et al., 2009). Dearing 

(1985) called this problem the problem of simple plant location problem (SPLP) which can 

be formulated as follows: 

Let the potential plant locations be indexed by 𝑖 = 1, … , 𝑝, and the customer demand 

locations by 𝑗 = 1, . . , 𝑑. If a plant is located at 𝑖, the variable 𝑦𝑖 = 1 and a fixed cost 𝑓𝑖 is 

incurred. Otherwise, 𝑦𝑖 = 0. The variable 𝑥𝑖𝑗 denotes the fraction of customer 𝑗’s demand 

shipped from plant 𝑖. The total cost to serve demand location 𝑗 from 𝑖 is 𝑐𝑖𝑗.  

The UFLP or SPLP can be written as follows: 

 

   Minimize 

∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗 + ∑ 𝑓𝑖𝑦𝑖

𝑝

𝑖=1

𝑑

𝑗=1

𝑝

𝑖=1

 

                     subject to: 

(2.1) 

                  ∑ 𝑥𝑖𝑗 = 1        ,         ∀  𝑗 

𝑝

𝑖=1

 

 

(2.2) 

           0 ≤ 𝑥𝑖𝑗 ≤ 𝑦𝑖      ,                 ∀ 𝑖 , 𝑗 

 

(2.3) 

            𝑦𝑖 ∈ {0,1}       ,                 ∀ 𝑖 (2.4) 

The objective function (2.1) represents the total fixed and variable costs of locating 𝑝 

facilities, whereas constraints (2.2) ensure that the demand at each customer zone is 

satisfied. Constraints (2.3) guarantee that customer demand can be produced and shipped 

only from locations where a facility is established, i.e., if 𝑦𝑖 = 1 , and in such a case the 

firm incurs the associated fixed cost. The weak formulation of UFLP uses a more compact 

formulation of these constraints by aggregating constraints (2.5) into a single set of 

constraints for each facility location 𝑖 as follows: 

                 ∑ 𝑥𝑖𝑗 ≤ 𝑑𝑦𝑖      ,          ∀ 𝑖

𝑗

 
(2.5) 
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Krarup and Pruzan (1983) extended this model and included the per unit cost of operations 

in facility 𝑖, by adding a 𝑝𝑖 parameter to 𝑐𝑖𝑗 in the objective function which considers 

production and administrative costs. The authors gave an excellent survey of SPLP and its 

relationships with packing, set covering, and set partitioning problems. According to 

Guignard and Spielberg (1977) : 

 “The SPLP is one of the simplest mixed integer problems which exhibit 

all the typical combinatorial difficulties of mixed (0,1) programming 

and at the same time has a structure that invites the application of 

various specialized techniques.”  

This problem was shown by Cornuéjols et al. (1991) to be NP-hard. There exist many exact 

and approximate methods in the literature to solve this problem. The very first exact 

approach has been proposed by Balinski and Wolfe (1963, 1988) who used a Benders 

decomposition technique. Efroymso and Ray (1966) solved the problem by using a branch-

and-bound algorithm. Their study proposed simplifications to the branch-and-bound 

algorithm that reduces the number of branches that have to be considered; thereby they 

reduced the necessary time to find solutions for problems with up to 50 potential warehouse 

locations and 200 demand nodes (retailers).  

Generally speaking, branch-and-bound algorithms for the UFLP use the fact that it is not 

necessary to require the variables 𝑥𝑖𝑗 to be integer. It is in fact sufficient to branch on the 

binary variables 𝑦𝑖. But these approaches are quite inappropriate even for medium-size 

UFLP instances. Hence, due to this complexity, most approaches to solve UFLP are 

heuristics. Feldman et al. (1966) proposed a greedy heuristic algorithm, DROP, which 

initially opens all the facilities and eventually closes them one by one. Manne (1964) 

proposed a local search procedure that moves from one solution to a neighbour which gives 

the greatest decrease in the total cost. Erlenkotter (1978) developed a method DUALOC 

based on a linear programming dual formulation to solve UFLP, which obtained and 

verified optimal solutions quickly with no branching required. Daskin (1995) proposed the 

most common Lagrangian relaxation method for UFLP which involves relaxing the 
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assignments constraints (2.2) in order to decompose the original problem into easier sub-

problems.  

The UFLP can be extended further in order to incorporate facility capacities. In this model 

which is called the capacitated plant location problem (CPLP), capacities are the total 

number of units each facility can serve. By adding a set of constraints to the UFLP 

formulation, we require that the sum of demands (𝐷𝑗) assigned to each facility not exceed 

the capacity (𝑆𝑖).  

The CPLP model can be written as follows: 

        Minimize 

                         ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗 + ∑ 𝑓𝑖𝑦𝑖

𝑝

𝑖=1

𝑑

𝑗=1

𝑝

𝑖=1

 

subject to: 

  (2.6) 

∑ 𝑥𝑖𝑗 = 1        ,                  ∀ 𝑗 

𝑝

𝑖=1

   (2.7) 

0 ≤ 𝑥𝑖𝑗 ≤ 𝑦𝑖             ,               ∀ 𝑖 , 𝑗   (2.8) 

∑ 𝐷𝑗𝑥𝑖𝑗 ≤ 𝑆𝑖𝑦𝑖      ,           ∀ 𝑖

𝑑

𝑗=1

   (2.9) 

𝑦𝑖 = 0,1             ,                   ∀ 𝑖 (2.10) 

In this formulation, constraints (2.9) are the capacity constraints which indicate that no 

facility can supply more than its capacity.  

The applications of the CPLP are not limited to plant location. For example, the same 

mathematical model is quite appropriate for making optimal lot sizing decisions in 

production planning ( Cornuéjols et al., 1991). Sankaran and Raghavan (1997) extended 

the classical CPLP model to incorporate the endogenous selection of facility sizes. 

Mukundan and Daskin (1991) considered a similar approach in modeling a profit 

maximization content. The CPLP is also NP-hard and it is difficult to solve for large size 

problems. Albareda-Sambola et al. (2011) studied the problem of capacity and distance 

constrained plant location problem (CDCPLP), which is an extension of the discrete 
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capacitated plant location problem, where the customers assigned to each plant have to be 

assigned to vehicles. This is a difficult combinatorial problem combining the CPLP and 

the bin packing problem. The authors presented several formulations for the problem and 

proposed different families of valid inequalities, and analyzed the results in order to find a 

general-purpose solver. Cornuéjols et al. (1991) applied several relaxation techniques to 

generate heuristic feasible solutions which are better than the classical greedy or 

interchangeable heuristics, both in computational time and the quality of the obtained 

solutions. Another interesting extension of CPLP is to consider several products in the 

model. This problem is called the multiproduct capacitated facility location (MPCFL) 

problem in which demand for a number of different product families must be supplied from 

a set of facility sites, and each site offers a choice of facility types having different 

capacities. Mazzola and Neebe (1999) modeled this problem as follows: 

          

 

 

 

 

 

 

 

 

 

 

 

 

Minimize     ∑ [∑ ∑ 𝑐𝑖𝑗𝑓𝑥𝑖𝑗𝑓 + ∑ 𝑒𝑖𝑓𝑦𝑖𝑓

𝑖∈𝐼𝑗∈𝐽𝑖∈𝐼

] + ∑ ∑ 𝑓𝑖𝑘𝑧𝑖𝑘

𝑖∈𝐼𝑘∈𝐾𝑓∈𝐹

 (2.11) 

       subject to ∶      ∑ 𝑥𝑖𝑗𝑓 = 1   ,   ∀ 𝑗 ∈ 𝐽 , 𝑓 ∈ 𝐹

𝑖∈𝐼

 (2.12) 

       𝑥𝑖𝑗𝑓 − 𝑦𝑖𝑓 ≤ 0    ,   ∀  𝑖 ∈ 𝐼 ,   𝑗 ∈ 𝐽  ,   𝑓 ∈ 𝐹 (2.13) 

∑ 𝑦𝑖𝑓𝐷𝑓 − ∑ 𝑧𝑖𝑘𝑆𝑘

𝑘∈𝐾

≤ 0   ,   ∀ 𝑖 ∈ 𝐼

𝑓∈𝐹

 (2.14) 

∑ 𝑧𝑖𝑘

𝑘∈𝐾

≤ 1 ,     ∀  𝑖 ∈ 𝐼 (2.15) 

𝑥𝑖𝑗𝑓 ≥ 0    ,    ∀ 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽   ,    𝑓 ∈ 𝐹 (2.16) 

𝑦𝑖𝑓 ∈ {0,1}  ,   ∀  𝑖 ∈ 𝐼  , 𝑓 ∈ 𝐹 (2.17) 

𝑧𝑖𝑘 ∈  {0,1}  , ∀  𝑖 ∈ 𝐼  , 𝑘 ∈ 𝐾 (2.18) 
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This model contains three sets of decision variables. For 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, and 𝑓 ∈ 𝐹, let 𝑥𝑖𝑗𝑓 

be the fraction of customer 𝑗’s demand for product 𝑓 that is shipped from a facility located 

at site 𝑖; also, let 𝑦𝑖𝑓 be a binary variable which indicates if the facility at site 𝑖 is supplying 

the product 𝑓, and 𝑧𝑖𝑘 is another binary variable which indicates if a facility of type 𝑘 is 

opened at site 𝑖.  

The objective function (2.11) minimizes the sum of variable costs which contains 

production and shipping costs, and the fixed costs. Constraints (2.12) ensure that all of 

customer 𝑗’s demand for each product is satisfied. Constraints (2.13) require that each 

facility site 𝑖 first be equipped to produce product 𝑓 in order for any of product 𝑓 to be 

shipped from it. Constraints (2.14) establish the finite capacity of the facility types at each 

site. Specifically, it is assumed that once a facility at location 𝑖 is equipped to supply 

product 𝑓, then all of the demand, 𝐷𝑓, for that product can be supplied from the site. These 

constraints then ensure that the total demand required to produce the corresponding 

families at each site 𝑖 does not exceed the total capacity of the facility types opened at that 

site. Constraints (2.15) provide for the selection of at most one facility type from among 

the set 𝐾 of facility types at each potential site. Constraints (2.16) allow for the inclusion 

of additional system configuration constraints involving the 𝑦 varibales. Finally, 

constraints (2.17) and (2.18) provide for non-negativity and integrality of decision 

variables. 

 

2.2.2.2     Dynamic Models 

The strategic nature of facility location problems brings the idea of optimization over time, 

which involves the problem of facility locations over an extended planning horizon. 

Indeed, decision makers must not only select robust locations, which will effectively serve 

changing demand over time, but also they must consider the timing of facility expansions 

and relocations over the long term. Ballou (1968) was the first to attempt locating a single 

warehouse so as to maximize the profits over a discrete but finite planning horizon. 

Wesolowsky (1975) examined another unconstrained version of single facility location 

over a finite planning horizon with explicit facility location costs. Drezner and 
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Wesolowsky (1991) studied locating a facility in a growing city with predictable 

population shifts, which means demand would change over time but in a deterministic 

manner. 

 

 2.2.2.3    Stochastic Models 

The models mentioned and discussed above all assume that input parameters have known 

values or they vary deterministically over time. In this section, several works are presented 

which address the stochastic nature of real world problems. Owen and Daskin (1998) 

categorized stochastic location problems into two main families: the probabilistic 

approach and the scenario planning approach.  

The probabilistic approach considers probability distributions associated with modeled 

random quantities. Some authors incorporate these distributions into standard 

mathematical programming, while others uses them within a queuing framework (Owen 

and Daskin, 1998). Uncertainty in demand, supply, facility availability, vehicle 

availability, traveling time, and capacity of facilities are probabilistic parameters that has 

been considered in the literature. 

Scenario planning is an approach in which decision makers capture uncertainty by 

introducing a number of possible future states. The objective is to find solutions that satisfy 

the scenarios and perform well under all scenarios (Mobasheri et al., 1989). In other words, 

this approach provides a set of scenarios which represent all possible realizations of 

unknown parameters. Owen and Daskin (1998) presented three approaches to incorporate 

scenario planning into location modeling as follows: 

1. Optimizing the expected performance over all scenarios,  

2. Optimizing the worst-case performance, and 

3. Minimizing the expected or worst-case regret across all scenarios. 

The regret in this case can be calculated by comparing the performance of optimal locations 

for the scenario with the performance of the compromise locations when the scenario is 
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realized. Ghosh and McLafferty (1982) applied scenario planning concepts to make retail 

location decisions in an uncertain environment.  

 

2.3    Distribution Network Design 

 

As defined earlier, SCM is the delivery of enhanced customer and economic value through 

synchronized management of flow of physical goods and information from sourcing to 

consumption. A further extension of the location problem is the two-echelon facility 

location problem. Here, deliveries are made from first-echelon facilities (such as plants) to 

second-echelon facilities (such as warehouses and distribution centres), and from there to 

customers (Jayaraman and Pirkul, 2001). The standard distribution problem as stated by 

Geoffrion and Powers (1995) is to find a minimal cost configuration of a company’s 

production and distribution network that satisfies product demands at specified customer 

service levels. Inputs for this problem consist of product lists and customer demands, 

facility locations and capacities, available transportation modes and their corresponding 

costs, and various possible policies such as shipment rules and customer service 

requirements. Desired outputs of this model include answering to such questions as 

follows:  

- How many distribution centers (DC) or consolidation centers are required, and 

where should they be located? 

- Should all DCs carry all products or should they be specialized by certain products? 

- Which customer should be served by each DC for each product? 

- What should each plant produce and how much? 

- Which supplier should be selected and at which level? 

- What should be the annual transportation flows through the system?  

Geoffrion and Graves (1974) proposed one of the first models for designing a distribution 

network that provides the optimal location of intermediate distribution facilities between 

plants and facilities and assignments of products and customers to these centers in a way 

to minimize the total cost of the system. They assumed there exist several commodities 

produced at several plants with given production capacities. There is also a known demand 
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for each commodity at each of a number of customer zones. This demand is satisfied by 

shipping the required goods and products via regional DCs, with each customer zone being 

assigned exclusively to a single DC. Each DC has a lower bound and an upper bound on 

the allowable total annual throughput which represents its capacity. The possible locations 

of DC are given, but the particular sites to be used are to be selected in a way that minimizes 

the total distribution costs. Hence, the problem is to determine which DC sites to select, 

what capacity to have at each selected site, what customer zone should be served by each 

DC, and what should be the pattern for flowing commodities through the network.  

The mathematical formulation of the problem uses the following notation: 

𝑝  index for plants, 

𝑓 index for commodities, 

𝑖 index for possible DC sites, 

𝑗 index for customer demand zones, 

𝑆𝑓𝑝 production capacity for commodity 𝑓 at plant 𝑝, 

𝐷𝑓𝑗 demand for commodity  𝑓 in customer zone 𝑙, 

𝑉𝑖 , 𝑉𝑖 minimum and maximum allowed total annual throughput for a DC at site 𝑖 , 

𝑓𝑖 fixed portion of the annual possession and operating costs for a DC at site 𝑖 , 

𝑣𝑖 variable unit cost of throughput for a DC at site 𝑖, 

𝑐𝑖𝑗𝑓𝑝 average unit cost of producing and shipping commodity 𝑓 from plant 𝑝 through 

DC 𝑖 to customer zone 𝑗, 

𝑥𝑖𝑗𝑓𝑝 a decision variable that identifies the amount of commodity 𝑓 shipped from plant 

𝑝 through DC 𝑖 to customer zone 𝑗, 

𝑦𝑖𝑗 a binary variable that identifies if DC 𝑖 serves customer zone 𝑗, 

𝑧𝑖 a binary variable that identifies if a DC is acquired at site 𝑖 .  

The problem can be formulated as the following mixed-integer linear program: 

 

 



20 
 

 

          Minimize 

 

 

 

          subject to: 

 

The objective (2.19) is to minimize the total cost of shipping and producing the 

commodities plus the total cost of having and running DCs. Constraints (2.20) are the 

supply constraints, and constraints (2.21) are set to satisfy all the demands. Constraints 

(2.22) specify that each customer zone must be served by a single DC. Constraints (2.23) 

imply that the total annual throughput for a DC when it is open should be between its upper 

bound and lower bound. Moreover these constraints enforce the correct logical relationship 

between the binary variables 𝑦 and 𝑧 (i.e., 𝑧𝑖 = 1 ↔  𝑦𝑖𝑗 = 1  for some 𝑗). Constraints 

(2.24) - (2.26) are non-negativity and binary conditions for decision variables in the model.   

∑ ∑ ∑ ∑ 𝑐𝑖𝑗𝑓𝑝𝑥𝑓𝑝𝑖𝑗 + ∑ [𝑓𝑖𝑧𝑖 + 𝑣𝑖 ∑ ∑ 𝐷𝑓𝑗𝑦𝑖𝑗

𝑗∈𝐽𝑓∈𝐹

]

𝑖∈𝐼𝑗∈𝐽𝑖∈𝐼𝑝∈𝑃𝑓∈𝐹

 

 

(2.19) 

∑ ∑ 𝑥𝑓𝑝𝑖𝑗

𝑗∈𝐽

≤ 𝑆𝑓𝑝           ,                ∀ 𝑓, 𝑝

𝑖∈𝐼

 
(2.20) 

∑ 𝑥𝑓𝑝𝑖𝑗

𝑝∈𝑃

= 𝐷𝑓𝑗𝑦𝑖𝑗             ,                  ∀ 𝑖, 𝑗, 𝑓 
(2.21) 

∑ 𝑦𝑖𝑗 = 1                  ,                   ∀ 𝑗

𝑖∈𝐼

 
(2.22) 

𝑉𝑖𝑧𝑖 ≤ ∑ ∑ 𝐷𝑓𝑗𝑦𝑖𝑗

𝑗∈𝐽𝑓∈𝐹

≤ 𝑉𝑖𝑧𝑖     ,   ∀  𝑖 (2.23) 

𝑥𝑓𝑝𝑖𝑗 ≥ 0   ,                                 ∀  𝑓, 𝑝, 𝑖, 𝑗 (2.24) 

𝑦𝑖𝑗 ∈ {0,1}     ,                    ∀  𝑖, 𝑗 (2.25) 

𝑧𝑖 ∈  {0,1}      ,               ∀ 𝑖 (2.26) 



21 
 

 

This problem can be solved by a Benders decomposition approach, a well-known 

partitioning procedure: in this case, the multi-commodity LP sub-problem decomposes into 

as many independent classical transportation problems as there are commodities. In other 

words, the decomposition separates the problem at each iteration into several easily solved 

LPs (one for each commodity). Thomas and Griffin (1996) remarked that the 

computational results show that the Benders decomposition approach of Geoffrion and 

Graves (1974) performs remarkably well on this class of problems.   

The model presented above (Geoffrion and Graves, 1974) does not choose among 

alternative plant sites and also does not incorporate any fixed cost for annual possession 

and operating cost for plants. Pirkul and Jayaraman (1996) extended this model in a way 

to minimize the sum of the fixed costs of establishing and operating the plants and DCs 

plus the variable cost of transporting units of commodities through the network, and costs 

for distributing multiple products from the DCs to the customers in order to satisfy the 

multiple demands of the customers. Both plants and warehouses are capacitated in their 

model. Hence, two key decisions have to be made; first, choosing 𝑊 out of 𝑀 possible 

DCs and assigning of customer demands for multiple products from the set of open DCs, 

and second, choosing 𝑈 out of 𝑁 possible location sites. Therefore, the constraints that 

these decisions must satisfy can be formulated as follows: 

 

∑ 𝑧𝑖 =

𝑀

𝑖=1

𝑊 , 
(2.27) 

∑ 𝑢𝑘 =

𝑁

𝑘=1

𝑈 

(2.28) 

where: 

𝑢𝑘 a binary variable which indicates if site 𝑘 is open, 

𝑈 the number of required plants to be located, 

𝑊 the number of required DCs to be located. 



22 
 

 

In this model, the number of open DCs and plants is fixed in advance. However, the model 

can be made more general by incorporating the number of open DCs and plants as decision 

variables. Pirkul and Jayaraman (1996) applied Lagrangian relaxation to the model, and 

also presented a heuristic to produce efficient feasible solutions for the problem. Jayaraman 

and Ross (2003) studied a class of distribution network design problems called PLOT 

(Production, Logistics, Outbound Transportation), which is characterized by multiproduct, 

a central manufacturing plant site, multiple distribution centers, and the customers zones 

which demand multiple units of several commodities. Therefore, they proposed two key 

stages in decision making; strategic, which incorporates selecting the best DCs to operate, 

and operational, which decides the required quantity of commodities need to be 

transhipped through the network. They used a simulated annealing (SA) methodology 

which performed well for solving strategic and operational planning problems.  

 

2.4    Logistics Network Design 

 

The two-echelon facility location problem can be further extended to incorporate the 

procurement process and supplier selection. One of the first efforts to integrate 

procurement, production and distribution decisions belongs to Cohen and Lee (1988) who 

presented a framework for linking decisions and performance through the supply chain. 

Goetschalckx et al. (2002) defined the logistics network design problem (LNDP) as 

follows: given a set of potential suppliers, potential manufacturing facilities, and 

distribution centers with multiple possible configurations, and customers with given 

demands, the process of determining the configuration of the production–distribution 

system such that customer demands and service requirements are met and the profit of the 

corporation is maximized. In other words, this approach is an integrated location, 

production, and distribution problem. A multi-period model for LNDP in a global context 

is proposed by Arntzen et al. (1995). Their proposed global supply chain model (GSCM) 

is a large mixed integer linear program that incorporates a global, multi-product bill of 

materials for supply chains with arbitrary echelon structure and comprehensive model of 

manufacturing and distribution decisions. A sophisticated solution methodology based on 

elastic constraints, row factorization, cascaded problem solution and constraint-branching 
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enumeration has been applied to solve the problem faced by Digital Equipment 

Corporation. Dogan and Goetschalckx (1999) studied the integrated design of strategic 

supply chain networks, and determination of tactical production-distribution allocation in 

the case of seasonal demand for customers. Their model is multi-period and integrates 

issues such as facility location and sizing, along with tactical decisions concerning 

production, inventory, and customer allocation. They used Benders decomposition 

approach in which the sub-problem separates into a set of network flow problems.  

Goetschalckx et al. (2002) introduced two models for the LNDP and presented associated 

solution methodologies. Their first model maximizes the total after tax profit of an 

international corporation by focusing on transfer pricing. They proposed an efficient 

heuristic iterative solution algorithm, which alternates between the optimization of the 

transfer prices and the material flows. In their second model, they focused on production 

and distribution allocation in a single country considering seasonal demand for customers. 

They developed an integrated design methodology based on primal decomposition 

methods for the mixed integer programming formulation. The primal decomposition 

allows a natural split of the production and transportation and provides a very efficient 

solution algorithm for this general class of large mixed integer programming models. 

Eskigun et al. (2005) considered the design of an outbound supply chain network 

considering lead times, location of distribution facilities and choice of transportation mode. 

They presented a Lagrangian heuristic which provided and excellent solution quality in 

reasonable computational time.  

Cordeau et al. (2006) presented a general integrated formulation of the LNDP for the 

deterministic, single-country, single period context. The formulation is flexible and can 

easily be adapted to handle multiple technology and capacity alternatives at any given 

location. The authors presented two solution approaches for the problem: a simplex-based 

branch-and-bound approach and a Benders decomposition approach. Moreover, the 

authors proposed valid inequalities to strengthen the LP relaxation of the model and 

improve both algorithms. The computational experiments show that their methods are 

competitive and that the Benders decomposition approach is slightly more advantageous 

on the more difficult problems. 
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2.5    Logistics Network Design in the Presence of Uncertainty 

 

Rosenhead et al. (1972) divided decision making environments into three categories: 

certainty, risk, and uncertainty. In certainty situations, all parameters are deterministic and 

known, whereas in risk situations, there are uncertain parameters whose values are ruled 

by probability distributions that are known by decision makers. In uncertainty situations, 

parameters are uncertain, and furthermore, no information about probabilities is known. 

Problems in risk situations are known as stochastic optimization problems in which a 

common goal is to optimize the expected value of the objective function. Problems under 

uncertainty are known as robust optimization problems and often attempt to optimize the 

worse-case performance of the system. The difference between uncertainty and risk may 

relate to the type of outcome that might be expected. According to Simangunsong et al. 

(2012), some researchers suggests that risk is only associated with issues that may lead to 

negative outcomes, whilst issues of uncertainty can have both negative and positive 

outcomes. For example, the risk associated with a natural disaster can only lead to supply 

chain problems; while uncertainty regarding customer demand can results in estimated 

demand being either better or worse. Van der Vorst and Beulens (2002)  define supply 

chain uncertainty as follows: 

“Supply chain uncertainty refers to decision making situations in the supply chain in which 

the decision maker does not know definitely what to decide as he [or she] is indistinct about 

the objectives; lacks information about (or understanding of) the supply chain or its 

environment; lacks information on processing capacities; is unable to accurately predict 

the impact of possible control actions on supply chain behaviour; or, lacks effective control 

actions (non-controllability).” 

In supply chain planning, critical parameters such as customer demands, supplies, and 

process/manufacturing are quite uncertain. Uncertainty in supply is caused by the 

variability brought by how the suppliers operate, as a result of the faults or delays in the 

suppliers’ deliveries. Uncertainty in the process is a result of the poorly reliable production 

process, for example a machine breakdown. Finally, uncertainty in demand, which is the 

most important factor according to Davis (1993), is defined as instability of demand or as 
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inexact forecasting of demands (Peidro et al., 2009). Therefore, unless the supply chain is 

designed to be robust with respect to uncertain operating conditions, the impact of 

operational inefficiencies such as delays and disruptions would be larger than necessary. 

Santoso et al. (2005) emphasized the importance of considering risk and uncertainty into 

SCM by giving a report about a company that announced a supply chain disruption, such 

as a production or shipment delay; it is shown that its stock prices can decrease significantly 

with an average decrease of 8.6% on the day of the announcement, and as much as 20% 

over the next six months. 

The significance of uncertainty has prompted a number of researchers to address stochastic 

parameters in their supply chain design and planning. Peidro et al. (2009) categorized four 

modeling approaches in the literature for supply chain planning problems as follows: 

- Analytical models: stochastic programming, robust optimization, game theory, 

linear programming, and parametric programming. 

- Artificial intelligence models: multi-agent systems, fuzzy multi-objective 

programming, fuzzy goal programming, reinforcement learning, evolutionary 

programming, and genetic algorithm. 

- Simulation models: discrete event simulation, and system dynamics. 

- Hybrid models: linear programming and simulation, model predictive control 

(MPC), stochastic dynamic programming and discrete event simulations, genetic 

algorithm and simulation and MILP and system dynamics. 

The rest of this chapter presents several recent studies on supply chain network design 

problems considering uncertain parameters, and for each case, the corresponding modeling 

approach and solution methodology are discussed.  

MirHassani et al. (2000) formulated a LNDP as a stochastic program with fixed recourse; 

the model contains a set of binary first-stage variables and continuous second-stage 

variables. The objective function coefficients are deterministic; uncertainty is only 

considered for the right-hand side of the recourse constraints, such as demands or 

capacities. The authors especially focused on parallel implementation issues for the 

Benders decomposition algorithm. Sabri and Beamon (2000) presented an integrated multi-
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objective supply chain model which facilitates simultaneous strategic and operational SC 

planning. Their model incorporates production, delivery, and demand uncertainty, and 

provides an appropriate performance measure by using a multi-objective analysis for the 

entire SC network. Tsiakis et al. (2001) studied  a multi-product, multi-echelon supply 

chain under scenario-based demand uncertainty. The goal is to choose middle-echelon 

facility locations and their corresponding capacities, transportation links, and flows to 

minimize the total expected cost. Transportation costs are assumed to be piecewise linear 

concave. The model is formulated as a large-scale MIP and solved using CPLEX. The 

authors presented a case study using a European supply chain network involving 14 

products, 18 customer locations, 6 distribution center locations, and 3 demand scenarios. 

Santoso et al. (2005) proposed a stochastic programming model and solution approach for 

solving supply chain network design problems of a realistic scale. The authors presented a 

two-stage stochastic program considering uncertainty in processing and transportation 

costs, demands, supplies, and capacities, in which they have known joint distribution. The 

design objective is to minimize the sum of current investment costs and expected future 

processing and transportation costs. Furthermore, an additional cost term has been 

considered in the model to penalize shortfall in satisfying demands. The authors formulated 

the two step stochastic optimization problem in a compact, matrix-based form as follows: 

min
𝑦

{𝑓(𝑦) ≔ 𝑐𝑇𝑦 + 𝐸[𝑄(𝑦, 𝜺)]} (2.42) 

𝑦 ∈ 𝑌 ⊆ {0,1}|𝑃| (2.43) 

Where 𝑄(𝑦, 𝜀) is the optimal value of the following problem: 

min
𝑥,𝑧

     𝑞𝑇𝑥 + ℎ𝑇𝑧 (2.44) 

𝑁𝑥 = 0 (2.45) 

𝐷𝑥 + 𝑧 ≥ 𝑑 (2.46) 

𝑆𝑥 ≤ 𝑠 (2.47) 
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𝑅𝑥 ≤ 𝑀𝑦 (2.48) 

𝑥 ∈ ℝ+
|𝐴|×|𝐾|

 (2.49) 

The above vectors 𝑐, 𝑞, 𝑑, 𝑠, and 𝑀 correspond to investment costs, processing and 

transportation costs, demands, supplies, and capacity respectively. The matrices 𝑁, 𝐷, 𝑆, 

and 𝑅 correspond to the summations on the left-hand-side of the constraints (2.45) – (2.48), 

respectively which are used for balancing, demand, supply, and capacity. Note that 𝜺 in 

(2.42) is a random vector corresponding to the uncertain processing or transportation costs, 

demands, supplies, and capacities, and the optimal value 𝑄(𝑦, 𝜀) of the second-stage 

problem (2.44) – (2.49) is a function of the first stage decision variable 𝑦 and a realization 

(or a scenario) 𝜀 = (𝑞, 𝑑, 𝑠, 𝑀) of the uncertain parameters. The expectation in (2.42) is 

taken with respect to the probability distribution of 𝜺 which is supposed to be known. The 

variable 𝑧 in constraint (2.46) and the cost component ℎ𝑇𝑧 in (2.44) correspond to the 

penalty incurred for failing to satisfy demand.  

In order to solve the above problem with continuous distributions for uncertain parameters, 

and hence an infinite number of scenarios, the authors integrated the sample average 

approximation (SAA) scheme with an accelerated Benders decomposition algorithm. They 

provided empirical results on a domestic and an international case for the design of realistic 

supply chain networks. 

Azaron et al. (2008) developed a multi-objective stochastic programming approach for 

supply chain design under uncertainty. The authors considered demand, supply, 

processing, transportation, storage and capacity expansion costs as the uncertain 

parameters. In order to develop a robust model, the authors added two additional objective 

functions into the traditional comprehensive LNDP objective function. This multi-

objective model includes: (i) the minimization of the sum of current investment costs and 

the expected future processing, transportation, shortage, and capacity expansion costs, (ii) 

the minimization of the variance of the total cost, and (iii) the minimization of the financial 

risk or the probability of not meeting a certain budget. They applied a goal programming 

approach in order to obtain the Pareto-optimal solutions.  
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A key difficulty in solving the stochastic problem (2.42) - (2.43) is in evaluating the 

expectation in the objective function (Santoso et al., 2005). The sample average 

approximation (SAA) method is an approach for solving stochastic optimization problem 

by using Monte Carlo simulation. In this technique, the expected objective function of the 

stochastic problem is approximated by a sample average estimate derived from a random 

sample. Then, the resulting sample average approximating problem is solved by 

deterministic optimization techniques. This process is repeated with different samples in 

order to obtain candidate solutions along with statistical estimates of their optimality gaps 

(Verweij et al., 2003). Kleywegt et al. (2001) gave a comprehensive study on the SAA and 

discussed convergence rates, stopping rules, and computational complexity of this 

approach. The authors presented a numerical study of the SAA for the stochastic knapsack 

problem.  

This approach has been widely applied in solving stochastic variants of location, routing, 

distribution, and network design problem. Verweij et al. (2003) presented a computational 

study of the application of SAA to solve stochastic routing problems, which involved an 

extremely large number of scenarios. The authors used decomposition and branch-and-cut 

to solve the approximation problem within the SAA scheme. Their results revealed the 

efficiency of the approximation method in handling up to 21694 scenarios within an 

estimated 1% optimality gap.  

Vila et al. (2009) studied the design of production-distribution networks for the lumber 

industry. The authors modeled the problem as a two-stage stochastic program with 

recourse, and proposed the SAA method based on Monte Carlo sampling techniques to 

solve the problem. It is shown in their study that this approach outperforms comparable 

deterministic models based on averages. 

Schutz et al. (2009) studied a stochastic, multi-commodity LNDP with a detailed 

description of operational consequences from the strategic decisions for the Norwegian 

meat industry. The authors formulated the problem as a two-stage stochastic program, in 

which the first stage decisions are strategic location decisions, while the second stage 

consists of operational decisions. In particular, their model emphasizes the importance of 
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operational flexibility when making strategic decisions. To this end, short-term uncertainty 

(within 1-2 weeks) is considered as well as long-term uncertainty (5-10 years). For solving 

the model, the authors combined SAA approach with dual decomposition.  

Bidhandi and Yusuff (2011) studied an integrated supply chain network design with 

uncertainty in operational costs, the customer demands, and capacity of the facilities. The 

authors proposed a modified solution method for solving the LNDP under uncertainty. In 

this approach, the SAA is integrated with an accelerated Benders decomposition approach 

to improve the mixed integer linear programming solution phase. An improved algorithm 

based on surrogate constraints is generated. The generated problem with the surrogate 

constraints is a valid relaxation of the main problem with binary variables.  

In this work, we study the problem of supply chain network design in an uncertain 

environment in which we have uncertainty in customer demands, supplies, capacities, and 

costs. This problem is modeled as a two-stage stochastic optimization problem, and the 

SAA technique is applied to solve the model. An experimental study is designed to verify 

the quality of solutions and compare them with the results from the deterministic case. 
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CHAPTER 3 

Mathematical Modeling 
 

This chapter presents a mathematical model to design logistics networks in the presence of 

uncertain parameters. The proposed model is a multi-product, multi-echelon supply chain 

which consists of suppliers, manufacturing facilities, finishing facilities, distribution 

centers, and customers as depicted in Figure 3.1. This model considers uncertainty in 

design parameters such as demand, supply, operating cost, and capacity. Thus, for different 

types of uncertainty and variability levels of parameters, the proposed model will be 

compared with classical deterministic models. In this chapter, first, the mathematical model 

related to the deterministic case is presented. Then the two-stage stochastic model is 

explained, and the application of this model on the problem of logistics network design is 

further studied.  

 

Figure 3.1. Supply chain network architecture  
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3.1    Mathematical Modeling: Deterministic Case  

 

The deterministic model in this study is based on the models proposed by Santoso et al. 

(2005) and Cordeau et al. (2006). The problem is to design a multi-echelon, multi-product, 

single-period integrated supply chain model. The manufacturing plants receive raw 

materials from the suppliers, and finishing facilities receive the intermediate products from 

the manufacturing plants. The finishing facilities send finished products to the warehouses, 

and the warehouses distribute them to the customers.  

The main assumptions of this model are the following: 

(AD1) All alternatives for the location of the facilities and suppliers are already 

defined and known. Hence, we have a fixed number of potential facility 

locations, and the fixed costs corresponding to each location of the facilities 

are known. 

(AD2) The structure of the supply chain is fixed. 

(AD3) There is a single period, a single mode of transportation, and multiple 

products. 

(AD4) The production processes are simple manufacturing processes with no 

assembly involved.  

(AD5) The production process is a linear production technology, where one input 

unit is transformed into one output unit. 

(AD6) The operational costs, capacities, supplies, and customer demands are known 

with certainty. 

(AD7) There is no backorder or order-on-hold if customer demands cannot be met, 

as this is a single period planning problem.  

(AD8) There are penalty costs of outsourcing in the model in case of insufficient 

internal supply or capacity.  

Let 𝐺 = (𝑉, 𝐴) be a connected graph, where 𝑉 is the set of vertices or nodes and 𝐴 is the 

set of arcs in the model. The set 𝑉 consists of the set of actual and potential locations for 

suppliers 𝐵, processing facilities 𝑃, and customers 𝐶, i.e., 𝑉 = 𝐵 ∪ 𝑃 ∪ 𝐶. The processing 

facilities include manufacturing centers 𝐻, and finishing facilities 𝐹, and warehouses and 



32 
 

 

distribution centers 𝑊, i.e., 𝑃 = 𝐻 ∪ 𝐹 ∪ 𝑊. Let 𝐾 be the set of commodities flowing 

through the supply chain network. For notational convenience, 𝑂 is defined as the set of 

origins i.e.,  𝑂 = 𝐵 ∪ 𝐻 ∪ 𝐹 ∪ 𝑊, and 𝐷 is defined as the set of destinations i.e.,  𝐷 = 𝐻 ∪

𝐹 ∪ 𝑊 ∪ 𝐶.  

The logistics network design problem consists of deciding which of the supplier to select, 

which of the processing centers to build (major configuration decisions), and which 

processing and finishing machines to procure (minor configuration decisions). A binary 

variable 𝑌𝑜 is associated to these decisions: 𝑌𝑜 = 1 if supplier 𝑜 is selected, or processing 

facility 𝑜 is built, or machine 𝑜 is procured, and 0 otherwise. There are two types of 

artificial variables in the model, 𝑣𝑜
𝑘 and 𝑔𝑑 , which represent the amount of outsourcing 

material for supply and capacity respectively. Furthermore, the unit costs associated to the 

artificial variables of supply and capacity are defined by 𝐴𝑠 and 𝐴𝑚 respectively.  The 

operational decisions consist of routing the flow of product 𝑘 ∈ 𝐾 from the suppliers to the 

customers. Let 𝑥𝑜𝑑
𝑘  be the flow of product 𝑘 from the origin 𝑜 to the destination 𝑑 in the 

network where (𝑜, 𝑑) ∈ 𝐸. The mathematical model for the deterministic logistics network 

design problem can be presented as follows: 

 

 

                       Minimize              ∑ 𝑐𝑜𝑌𝑜 + ∑ ∑ 𝑞𝑜𝑑
𝑘 𝑥𝑜𝑑

𝑘

(𝑜,𝑑)∈𝐴𝑘∈𝐾𝑜∈𝑂

+ 𝐴𝑠𝑣𝑜
𝑘 + 𝐴𝑚𝑔𝑑 

(3.1) 

                     subject to:         ∑ 𝑥𝑜𝑑
𝑘

𝑜∈{𝐵,𝐻,𝐹}

− ∑ 𝑥𝑑𝑙
𝑘

𝑙∈{𝐹,𝑊,𝐶}

= 0  ,   ∀ 𝑘 ∈ 𝐾 ;  𝑑 ∈ 𝑃 (3.2) 

                                    ∑ 𝑥𝑜𝑑
𝑘 = 𝑎𝑑

𝑘   ,             ∀ 𝑘 ∈ 𝐾   ;   𝑑 ∈ 𝐶

𝑜∈𝑊

 (3.3) 

                                              ∑ 𝑥𝑜𝑑
𝑘

𝑑∈𝐻

≤ 𝑠𝑜
𝑘𝑌𝑜 + 𝑣𝑜

𝑘      ,        ∀  𝑜 ∈ 𝑆   ;  𝑘 ∈ 𝐾  (3.4) 

                            ∑ 𝑟𝑑
𝑘 ( ∑ 𝑥𝑜𝑑

𝑘

𝑜∈{𝐵,𝐻,𝐹}

)

𝑘∈𝐾

≤ 𝑚𝑑𝑌𝑑 + 𝑔𝑑    ,         ∀  𝑑 ∈ 𝑃  (3.5) 
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                   𝑥𝑜𝑑
𝑘 ≥ 0,         𝑣𝑜

𝑘 ≥ 0, 𝑔𝑑 ≥ 0   ∀    𝑘 ∈ 𝐾  ; 𝑜 ∈ 𝑂 ;   𝑑 ∈ 𝐷  (3.6) 

                                                       𝑌𝑜 ∈ {0,1}  , ∀  𝑜 ∈ 𝑂  (3.7) 

 

In the above model, 𝑐𝑜 denotes the fixed cost of investment for selecting supplier 𝑜, or 

building facility 𝑜, or procuring machine 𝑜. The coefficient 𝑞𝑜𝑑
𝑘  denotes the total per-unit 

cost of procurement, production, processing and transhipment of commodity 𝑘 from the 

origin 𝑜 to the destination 𝑑. The coefficients 𝐴𝑠 and 𝐴𝑚 are the cost of outsourcing of 

material from an external supplier, and within the external capacity respectively. The 

objective function (3.1) consists of minimizing total investment, operational and 

outsourcing costs. Constraints (3.2) ensure that the total amount of commodity 𝑘 shipped 

to the facility 𝑑 should also leave that facility. Constraints (3.3) require that the total flow 

of product  𝑘 from all the available warehouses to the customer 𝑐, should meet the demand 

𝑎𝑐
𝑘 of that customer. Hence, it is assumed in this model that the demand of customers should 

only be satisfied from warehouses, and there is no direct link among customers and 

manufacturers. Constraints (3.4) require that the total flow of the raw material 𝑘 from the 

supplier 𝑠 should be less than the supply 𝑠𝑜
𝑘 of that supplier if the supplier is selected (𝑌𝑜 =

1) and the amount from an external supplier. Indeed, the artificial variable 𝑣𝑜
𝑘 is added to 

the model to make it be feasible for all the values of supply. Constraints (3.5) enforce 

capacity constraints of the processing facilities. Let 𝑟𝑑
𝑘 be the per-unit processing 

requirement for product 𝑘 at destination center 𝑑, then the equations (3.5) enforce that the 

total processing requirement of all products flowing into a processing center 𝑑 ∈ 𝑃 should 

be smaller than the capacity 𝑚𝑑 of facility 𝑑 if it is built (𝑌𝑑 = 1) and the external capacity. 

If facility 𝑑 is not built (𝑌𝑑 = 0) the constraints will force all flow variables 𝑥𝑜𝑑
𝑘 = 0 for 

all 𝑜 ∈ {𝑆, 𝑀, 𝐹}. Constraints (3.6) enforce the non-negativity of the flow variables from 

the origin 𝑜 to the destination 𝑑 for the commodity 𝑘 through the network. Finally, 

constraints (3.7) enforce the binary nature of the configuration and selection decisions for 

the facility 𝑜. The notations are summarized in Table (3.1) and (3.2). 

Model (3.1) – (3.7) can be extended in several ways to handle various additional realistic 

situations. It is worth mentioning that by adding a ratio of the amount of required raw 
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material for the semi-finished and finished product in constraints (3.2), the model can 

embrace production and assembly operations comprehensively. By reversing the inequality 

sign of constraints (3.4) and (3.5), lower limits on acquisition, production, storage, and 

transportation activities can be imposed. Such constraints can be used, for example, when 

a minimum amount of raw materials must be purchased from a supplier to obtain a quantity 

discount. They can also be used to model situations where a minimum amount of finished 

product must be manufactured for a plant to be economically viable.  

The model assumes a double manufacturing stage and a single distribution stage. It is also 

assumed that commodities move through the network from upstream (supplier) to 

downstream (customer), and level by level. Nevertheless, the model can easily be modified 

for the case of moving commodities backward and among the non-adjacent echelons, such 

as the case of failure or a rework needed, and even more to encompass the reverse logistics 

situation. These assumptions could be easily relaxed by extending the network structure 

and modifying constraints (3.2) - (3.4) accordingly.  

Different transportation modes can be considered in the model by defining variable 𝑥𝑜𝑑
𝑘𝑚, 

where 𝑚 denotes the mode of transportation applied for transhipping commodity 𝑘 from 

the origin 𝑜 to the destination 𝑑. Moreover, in the case of seasonal demand, several 

planning periods can be incorporated into the model by defining 𝑥𝑜𝑑
𝑘𝑚𝑡, where 𝑡 denotes the 

period number, and introducing additional end-of-period inventory variables.  

Demand in this model is considered to be met with the equality constraints (3.3). It is worth 

mentioning that by adding a planning horizon for serving the customers, service level, 

penalty cost of stockout, and holding cost of inventory, the model can encompass the 

inventory routing problem along with the logistics network design in order to minimize the 

total cost of location, distribution, inventory and stockout during the planning period to 

satisfy the certain amount of customers’ orders. 

Moreover, the model can be extended in order to consider the assignment of the 

commodity 𝑘 to the origin 𝑜 by adding binary variables 𝑉𝑜
𝑘 into the objective function, and 

updating the constraints (3.4) accordingly. 

It will be more convenient to work with the compact form for the model (3.1) – (3.7):  
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               Minimize         𝑐𝑇𝑦 + 𝑞𝑇𝑥 + 𝐴𝑠𝑣 + 𝐴𝑚𝑔   (3.8) 

                       subject to:               𝑁𝑥 = 0   (3.9) 

    𝐷𝑥 = 𝑑 (3.10) 

             𝑆𝑥 ≤ 𝑠𝑦 + 𝑣 (3.11) 

             𝑅𝑥 ≤ 𝑀𝑦 + 𝑔 (3.12) 

           𝑥, 𝑣 ∈ ℝ+
|𝐴|×|𝐾|

,         𝑔 ∈ ℝ+
|𝐴|

 (3.13) 

                                                         y ∈ {0,1}|𝒪| (3.14) 

 

Above, the vectors 𝑐, 𝑞, 𝑑 and 𝑠 correspond to investment costs, processing and 

transportation costs, demands, and supplies respectively. The matrixes 𝑁, 𝐷 and 𝑆 are 

appropriate matrices that correspond to summations of the left-hand-side of the constraints 

(3.2), (3.3), and (3.4) respectively. The notation 𝑅 corresponds to a matrix of 𝑟𝑑
𝑘 and the 

notation 𝑀 corresponds to a matrix with 𝑚𝑑 along the diagonal.  

Following tables present a summary of notations used in the deterministic model. 
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𝐶 Set of customers 

𝐷 Set of destinations 

𝐹 Set of finishing facility locations 

𝐾 Set of commodities 

𝐻 Set of potential manufacturing facility locations 

𝑂 Set of origins 

𝐵 Set of potential suppliers 

𝑊 Set of potential warehouse locations 

Table 3.1. Summary of notation for the sets in the deterministic model  

 

𝑎𝑑
𝑘 Demand of customer 𝑑 for product 𝑘 

𝑐𝑜 Fixed cost of selecting origin 𝑜 

𝑚𝑑 Total capacity of facility at destination 𝑑 in equivalent units 

𝑞𝑜𝑑
𝑘  

Unit cost for providing commodity 𝑘 from the origin 𝑜 to the 

destination 𝑑 

𝑠𝑜
𝑘 Supply of supplier 𝑜 for commodity 𝑘 

𝑟𝑑
𝑘 Per-unit processing requirement for product 𝑘 at destination center 𝑑 

𝐴𝑠 Unit cost of outsourcing of supply  

𝐴𝑚 Unit cost of outsourcing of capacity  

Table 3.2. Summary of notation for the parameters in the deterministic model 

 

𝑥𝑜𝑑
𝑘  Amount of commodity 𝑘 provided by the origin 𝑜 to the destination 𝑑  

𝑌𝑜 =1 if origin 𝑜 is selected, 0 otherwise 

𝑣𝑜
𝑘 Amount of external supply for the origin 𝑜  for product 𝑘 

𝑔𝑑 Amount of external capacity for the destination 𝑑 

Table 3.3. Summary of notation for the variables in the deterministic model 
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3.2    Mathematical Modeling: Stochastic Case  

 

The model presented in the previous section considers that all the parameters are 

deterministic and assumed to be known beforehand. However, in real-life situations, most 

operating parameters in supply chain design such as customer demands, supplies, prices, 

and resource capacities are often not known with complete certainty, or they might change 

along the planning horizon. The uncertainties are mostly found in the operational stage as 

most operational parameters are not fully known when the strategic decisions have to be 

made. These parameters will become known with more certainty after the supply chain is 

in operation. Since we deal with two stages of decisions, strategic and operational, a two-

stage stochastic programming approach can be applied to incorporate these uncertainties 

into the planning process. Next, a short introduction to two-stage stochastic programming 

is given, based on the work of Birge and Louveaux (1997), and then the logistics network 

design problem modeled by the stochastic programming approach is presented.  

 

3.2.1    Overview of Stochastic Programming 

A stochastic linear program is a linear program in which some parameters and data may 

be considered uncertain. These uncertain parameters can be represented in the form of 

random variables. Hence, an accurate probabilistic description of the random variables is 

assumed to be available, under the form of the probability distributions, densities or, more 

generally, probability measures. Furthermore, particular values of random variables are 

only known after realization of random sampling experiments. Uncertainty is represented 

in terms of random experiments with outcomes called as a realization and denoted by 𝜔. 

The set of all outcomes is represented by Ω. Therefore, the value of a random vector 𝜉  for 

a certain realization 𝜔 is denoted by 𝜉(𝜔). 

A recourse program is a program in which some decisions or recourse actions can be taken 

after uncertainty is realized. Therefore, the set of decisions in a stochastic program is 

divided into two stages: 
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 A number of decisions have to be taken before the experiments, which are called 

as the first-stage decisions. The period when these decisions are taken is called the 

first stage. 

 A number of decisions can be taken after the experiments, which are called as the 

second-stage decisions. The corresponding period is called the second stage.  

The first-stage decisions are represented by the vector 𝑦, while the second-stage decisions 

are represented by the vector 𝑥. The sequence of events and decisions can be summarized 

as follows: 

𝑦 → 𝜉(𝜔) → 𝑥(𝜔, 𝑦) 

These two-stage decisions form a two-stage stochastic linear program with a fixed 

recourse. This program can be formulated as follows: 

 

                           Minimize    𝑧 = 𝑐𝑇𝑦 + 𝐸𝜉[min 𝑞(𝜔)𝑇𝑥(𝜔)] (3.15) 

                            subject to:          𝑈𝑦 = 𝑏 (3.16) 

       𝑇(𝜔)𝑦 + 𝑊𝑥(𝜔) = ℎ(𝜔) (3.17) 

             𝑦 ≥ 0 (3.18) 

                                                               𝑥(𝜔) ≥ 0 (3.19) 

The first-stage decisions are represented by the 𝑛1 × 1 vector 𝑦. The first-stage vectors and 

matrices 𝑐, 𝑏 and 𝑈 of the sizes 𝑛1 × 1, 𝑚1 × 1, and 𝑚1 × 𝑛1 respectively are associated to 

𝑦. In the second stage, a number of random events 𝜔 ∈  Ω may realize. For a given 

realization 𝜔, the second-stage problem data 𝑞(𝜔), ℎ(𝜔) and 𝑇 (𝜔) become known, where 

𝑞(𝜔)is 𝑛2  ×  1, ℎ(𝜔) is 𝑚2 × 1, and 𝑇 (𝜔) is 𝑚2 × 𝑛1. 

Each component of 𝑞, 𝑇, and ℎ is a possible random variable. Let 𝑇𝑖(𝜔) be the 𝑖th row of 

 𝑇(𝜔). Piecing together the stochastic components of the second-stage data, we obtain a 
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vector 𝜉𝑇(𝜔) =  (𝑞(𝜔)𝑇 , ℎ(𝜔)𝑇 , 𝑇1(𝜔),···, 𝑇𝑚2(𝜔)), with potentially up to 𝑁 =  𝑛 2 +

 𝑚 2 +  (𝑚 2 ×  𝑛 1 ) components. As indicated before, a single random event 𝜔 

influences several random variables, here, all components of 𝜉. 

When the random event 𝜔 is realized, the second-stage problem data 𝑞, ℎ, and 𝑇 become 

known. Then, the second-stage decision 𝑥(𝜔) or (𝑥(𝜔, 𝑦)) must be taken. The objective 

function (3.15) contains a deterministic term 𝑐𝑇𝑦 and the expectation of the second-stage 

objective 𝑞(𝜔)𝑇𝑥(𝜔) taken over all realizations of the random event 𝜔. This second-stage 

term, 𝐸𝜉[min 𝑞(𝜔)𝑇𝑥(𝜔)], is the more difficult one because, for each 𝜔, the value 𝑥(𝜔) 

is the solution of a linear program. To properly present this fact, a deterministic equivalent 

program is often used. For a given realization 𝜔, let 

𝒬(𝑦, 𝜉(𝜔))  =  min
𝑥

  {𝑞(𝜔)𝑇 𝑥 | 𝑊𝑥 =  ℎ(𝜔) −  𝑇 (𝜔)𝑦,   𝑥 ≥  0}  (3.20) 

be the second-stage value function. Then, define the second stage value function as follows:  

 𝒬(𝑦) = 𝐸𝜉[𝒬(𝑦, 𝜉(𝜔)], (3.21) 

and the deterministic equivalent program (DEP) can be written as follows: 

         Minimize      𝑧 = 𝑐𝑇𝑦 + 𝒬(𝑦) (3.22) 

subject to:            𝑈𝑦 = 𝑏 (3.23) 

                                                                         𝑦 ≥ 0 (3.24) 

This representation of a stochastic program clearly illustrates that the major difference from 

a deterministic formulation is in the second-stage value function. If that function is given, 

then a stochastic program is just an ordinary nonlinear program. 
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3.2.2    Stochastic Modeling of Logistics Network Design Problem  

 

This section presents the mathematical model for the stochastic logistics network design 

problem considering uncertainty in demands, supplies, capacities, and operational costs 

which is based on the work of Santoso et al. (2005). The main assumptions of this model 

are quite similar to the deterministic case and are presented as follows:  

 

(AS1) All suppliers can supply their products to all plants and they are reliable 

during the planning horizon. 

(AS2) All transportation channels are ready to use and there is no failure during the 

planning horizon. 

(AS3) Production lead-times are fixed.  

(AS4) Operational costs, production costs, procurement costs, as well as 

transportation costs are stochastic with known probability distribution 

functions. 

(AS5) Customer demand, supply of suppliers, and capacity of the facilities are 

uncertain and it is assumed that their probability distribution functions are 

exactly known. 

(AS6) All stochastic parameters are normally distributed with mean equal to their 

deterministic parameters and standard deviation equal to the fraction of their 

mean. 

(AS7) The production process is fixed, simple and linear. 

(AS8) There are penalty costs of outsourcing in the model in case of insufficient 

amount of internal supply and capacity.  

 

In a stochastic logistics network design problem, we deal with several decisions which 

must be made through two stages. The first stage consists of decisions that need to be taken 

before the uncertainty is resolved. So, the decisions in the first-stage will be as follow: 

 The number and location of production facilities, finishing facilities, and 

distribution centers (variables 𝑌𝑜) 
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 Supplier selection (variables 𝑌𝑜) 

Thereafter, the decisions of the second stage are taken when the realization of uncertain 

parameters are known. Each realization of the uncertain parameters is called a scenario, 

and Ν is the set all possible scenarios. It is assumed that operational costs, demands, 

supplies, and capacities are stochastic parameters with known joint distribution. We denote 

by 𝝃 = (𝒒, 𝒅, 𝒔, 𝑴) a random variable (random vector) of the random parameters 

respectively, and by 𝜉 = (𝑞, 𝑑, 𝑠, 𝑀) a realization of the random vector for each scenario. 

Henceforth, we denote 𝑥𝑜𝑑𝑛
𝑘  the number of units of commodity 𝑘 transported from the 

origin 𝑜 to the destination 𝑑 under scenario 𝑛.  

The objective function of the stochastic problem is then to minimize the sum of current 

investment costs, expected future operational costs and the total cost of outsourcing.  In 

order to meet the demand which may vary due to its uncertain nature, and lack of sufficient 

internal supply and capacity, we may need to use external suppliers or external sources of 

capacity. In order to incorporate this outsourcing into the model, we consider two artificial 

variables in the supply and capacity constraints, and their corresponding cost of 

outsourcing in the objective function.  The formulation for the total fixed cost does not 

change with respect to the deterministic case as all the fixed costs are deterministic. 

However, the total variable costs change from a simple summation in the deterministic case 

to a calculation of the expected value.  

The mathematical formulation for the model in the compact format is as follows: 

min 
𝑦

𝑓(𝑦) ≔ 𝑐𝑇𝑦 + 𝔼[𝒬(𝑦, 𝜉)] (3.25) 

s. t .   𝑦 ∈ 𝑌 ⊆ {0,1}|𝒪| (3.26) 

where 𝒬(𝑦, 𝜉)is the optimal value of the following problem: 
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     Minimize 
𝑥,𝑣,𝑔

        𝑞𝑇𝑥 + 𝐴𝑠𝑣 + 𝐴𝑚𝑔 (3.27) 

                                  subject to:          𝑁𝑥 = 0 (3.28) 

              𝐷𝑥 = 𝑑 (3.29) 

              𝑆𝑥 ≤ 𝑠𝑦 + 𝑣 (3.30) 

            𝑅𝑥 ≤ 𝑀𝑦 + 𝑔 (3.31) 

             𝑥, 𝑣 ∈ ℝ+
|𝐴|×|𝐾|

, 𝑔 ∈ ℝ+
|𝐴|

 (3.32) 

The random vector 𝜉  in (3.25) corresponds to the uncertain operational costs, demands, 

supplies, and capacities. The optimal value 𝒬(𝑦, 𝜉) of the second-stage problem (3.27) – 

(3.32) is a function of the first-stage decision variable 𝑦 and a realization (or a scenario) 

𝜉 = (𝑞, 𝑑, 𝑠, 𝑀) of the uncertain parameters. The expectation function in (3.25) is taken 

with respect to the probability distribution of 𝝃, which is supposed to be known. The 

variables 𝑣 and 𝑔 in constraints (3.29) and (3.30) and the cost component 𝐴𝑠 and 𝐴𝑚 in 

(3.27) correspond to the cost of outsourcing of supply and capacity.  

Model (3.25) – (3.32) is a two-stage stochastic program. The first-stage consists of the 

deciding the configuration decisions 𝑦, and the second-stage consists of processing and 

transporting commodities from suppliers to customers in an optimal way based upon the 

configuration and the realized uncertain scenario. The objective is then to minimize current 

investment costs 𝑐𝑇𝑦, and the expected future operating costs 𝔼[𝒬(𝑦, 𝜉)]. The outsourcing 

penalty cost 𝐴𝑠𝑣 + 𝐴𝑚𝑔 guarantees that the model would be always feasible and  

𝒬(𝑦, 𝜉) < ∞  for all 𝑦 and 𝜉. Furthermore, we assume that possible realizations of the 

operating costs 𝑞, and the penalty costs 𝑙 are sufficiently high such that 𝒬(𝑦, 𝜉) > − ∞  for 

all 𝑦 and 𝜉, and hence 𝒬(𝑦, 𝜉) is finite valued for all 𝑦 ∈ 𝑌 and the possible realizations of 

the random data. We further assume that the expected value 𝔼[𝒬(𝑦, 𝜉)] is a well defined 

and finite value for the considered distribution of 𝜉. Consequently, problem (3.25) – (3.26) 

has a well-defined objective function 𝑓(𝑦) and possesses an optimal solution, since the set 

𝑌 is non-empty and finite. 
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The notation used in the stochastic model is presented in the following tables.  

 

𝐶 Set of customers 

𝐷 Set of destinations 

𝐹 Set of finishing facility locations 

𝐾 Set of commodities 

𝐻 Set of potential manufacturing facility locations 

Ν Set of scenarios, indexed by 𝑛 

𝑂 Set of origins 

𝐵 Set of potential suppliers 

𝑊 Set of potential warehouse locations 

Table 3.4. Summary of notation for the sets in the stochastic model  

 

𝑎𝑑𝑛
𝑘  Demand of customer 𝑑 for product 𝑘 under scenario 𝑛 

𝑐𝑜 Fixed cost of selecting origin 𝑜 

𝑚𝑑𝑛 
Total capacity of facility at destination 𝑑 in equivalent units under 

scenario 𝑛  

𝑝𝑛 Probability of scenario 𝑛 happening 

𝑞𝑜𝑑𝑛
𝑘  Unit cost for providing commodity 𝑘 from the origin 𝑜 to the 

destination 𝑑 under scenario 𝑛 

𝑠𝑜𝑛
𝑘  Supply of supplier 𝑜 for commodity 𝑘 under scenario 𝑛 

𝑟𝑑𝑛
𝑘  

Per-unit processing requirement for product 𝑘 at destination center 𝑑 

under scenario 𝑛 

𝐴𝑠 Unit cost of outsourcing of supply  

𝐴𝑚 Unit cost of outsourcing of capacity  

Table 3.5. Summary of notation for the parameters in the stochastic model 

𝑥𝑜𝑑𝑛
𝑘  Amount of commodity 𝑘 provided by the origin 𝑜 to the destination 𝑑 

under scenario 𝑛 

𝑌𝑜 =1 if origin 𝑜 is selected, 0 otherwise 

𝑣𝑜𝑛
𝑘  Amount of external supply for the origin 𝑜  for product 𝑘 under scenario 𝑛 

𝑔𝑑𝑛 Amount of external capacity for the destination 𝑑 under scenario 𝑛 

Table 3.6. Summary of notation for the variables in the stochastic model 
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The problem can then be modeled in an extensive form as follows: 

 

  

(3.33) 

 subject to:   ∑ 𝑥𝑜𝑑𝑛
𝑘

𝑜∈{𝐵,𝐻,𝐹}

− ∑ 𝑥𝑑𝑙𝑛
𝑘

𝑙∈{𝐹,𝑊,𝐶}

= 0  ,   ∀ 𝑘 ∈ 𝐾 ;  𝑑 ∈ 𝑃; 𝑛 ∈ Ν 
(3.34) 

                      ∑ 𝑥𝑜𝑑𝑛
𝑘 = 𝑎𝑑𝑛

𝑘    ,             ∀ 𝑘 ∈ 𝐾   ;   𝑑 ∈ 𝐶 ;   𝑛 ∈ Ν

𝑜∈𝑊

 
(3.35) 

           ∑ 𝑥𝑜𝑑𝑛
𝑘

𝑑∈𝐻

≤ 𝑠𝑜𝑛
𝑘 𝑌𝑜 +  𝑣𝑜𝑛

𝑘    ,        ∀  𝑜 ∈ 𝑆   ;  𝑘 ∈ 𝐾 ;   𝑛 ∈ Ν  (3.36) 

            ∑ 𝑟𝑑𝑛
𝑘 ( ∑ 𝑥𝑜𝑑𝑛

𝑘

𝑜∈{𝐵,𝐻,𝐹}

)

𝑘∈𝐾

≤ 𝑚𝑑𝑛𝑌𝑑 + 𝑔𝑑𝑛   ,      ∀  𝑑 ∈ 𝑃 ;  𝑘 ∈ 𝐾 ;  𝑛 ∈ Ν 

 

(3.37) 

    𝑥𝑜𝑑𝑛
𝑘 ≥ 0   , ∀    𝑘 ∈ 𝐾  ; 𝑜 ∈ 𝑂 ;   𝑑 ∈ 𝐷 ; 𝑛 ∈ Ν  (3.38) 

                            𝑌𝑜 ∈ {0,1}  , ∀  𝑜 ∈ 𝑂  (3.39) 

𝑣𝑜𝑛
𝑘 ≥ 0   , 𝑔𝑑𝑛 ≥ 0           ∀   𝑜 ∈ 𝑂  ;   𝑑 ∈ 𝐷 ; 𝑛 ∈ Ν  (3.40) 

 

 

  

              Minimize       ∑ 𝑐𝑜𝑌𝑜

𝑜∈𝑂

+ ∑ 𝑝𝑛 [∑ ∑ 𝑞𝑜𝑑𝑛
𝑘 𝑥𝑜𝑑𝑛

𝑘

(𝑜,𝑑)∈𝐴𝑘∈𝐾

+ ∑ ∑ 𝐴𝑠𝑣𝑜𝑛
𝑘

𝑘∈𝐾𝑐∈𝐶

+  + ∑ 𝐴𝑚𝑔𝑑𝑛

𝑑∈𝑃

]

𝑛∈Ν
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CHAPTER 4 

Solution Methodology 

 

This chapter presents details of the proposed algorithmic strategy for solving the stochastic 

logistics network design problem (3.25) – (3.32). The proposed methodology in this study 

is a scenario-based approximation method for solving the two-stage stochastic 

programming called Sample Average Approximation (SAA), Kleywegt et al. (2001). In the 

two-stage programming method, the first-stage decisions are made prior to the realization 

of the stochastic variables, and the second-stage decisions which are affected by the first-

stage decisions will be taken afterward. In this chapter, we give details about the algorithm 

in general based on the works of Verweij et al. (2003) and Lacasse-Guay (2003), and its 

application to the proposed problem.  

  

4.1   Overview of Sample Average Approximation 

 

The SAA method is a heuristics-based solution approach for stochastic optimization 

problems with a large number of scenarios. This approach gives an approximation of the 

expected objective function value using Monte Carlo simulation. The idea is to generate 

samples of the stochastic parameters to construct and solve the approximation instead of 

the exact values. In other words, this approach aims to solve the same stochastic problem 

for a number of different realized scenarios. This method reduces the dimension of the 

original problem and thus the problem becomes much easier to solve. Because of the 

statistical requirements, this process needs to be repeated many times with independent 

sample sets. At each replication, the candidate solution and the estimates of the sample 

upper bound and sample lower bound of the solution value are recorded. This heuristic 
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consists of two steps; sampling and solving stage, and evaluation stage, which can be 

explained as follows. 

In the SAA scheme, |𝑁| random sample scenarios 𝜉1, … , 𝜉|𝑁|are generated according to a 

probability distribution function 𝑃, and then the expected value function of total variable 

cost is approximated according to the realized scenario 𝜉𝑛 by the sample average function 

as follows. 

                                                               𝔼[𝒬(𝑦, 𝜉)] =
1

|𝑁|
∑ 𝒬(𝑦, 𝜉𝑛)

|𝑁|

𝑛=1

 (4.1) 

Where 𝒬(𝑦, 𝜉) is the total variable cost given decision 𝑦 of the first-stage, and |𝑁| is the 

total number of scenarios. Consequently, the stochastic problem (3.25) – (3.26) 

approximated by the above approach can be written as follows. 

                                                         min 
𝑦∈𝑌  

  {𝑓�̂�(𝑦) ≔ 𝑐𝑇𝑦 +
1

|𝑁|
∑ 𝒬(𝑦, 𝜉𝑛)

|𝑁|

𝑛=1

}  , (4.2) 

where 𝑐𝑇𝑦 is the total fixed cost and 𝑓�̂�(𝑦) is the expected total cost. 

4.2    The Proposed Algorithm 

The proposed algorithm which consists of two stages, sampling and evaluation can be 

described as follows. 

 

4.2.1    Sampling and Solving Stage 

In the SAA procedure, we first generate a random sample 𝜉1, … , 𝜉|𝑁| of |𝑁| realization 

(scenarios) of the random vector 𝜉, and then solve the stochastic problems with 

|𝑁|scenarios for 𝑀 times, i.e., (𝜉𝑗
1, … , 𝜉𝑗

𝑁) for 𝑗 = 1, … , 𝑀, to obtain a set of 𝑀 candidate 

solutions 𝑦|𝑁|
1 , … , 𝑦|𝑁|

𝑀  , and 𝑀 corresponding optimal objective function 

values 𝑣|𝑁|
1 , … , 𝑣|𝑁|

𝑀 . 
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The value for |𝑁| and |𝑀| should be statistically large enough while maintaining the 

trackability of the problems.  

In order to find the best solution out of the |𝑀| candidate solutions, the following 

evaluation approach is utilized.  

 

4.2.2    Evaluation Stage 

Let 𝜉1 , 𝜉2 , … , 𝜉𝑆 be a sample of size 𝑆, where 𝑆 ≫ |𝑁|. We select the candidate solution 

which minimizes the corresponding estimated objective function 𝑣𝑆(𝑦) where: 

                                                      𝑣𝑆(𝑦)  =  𝑐𝑇𝑦 +
1

𝑆
∑ 𝒬(𝑦, 𝜉𝑛)

𝑆

𝑛=1

   (4.3) 

We denote 𝑥𝑆 as the candidate solution with the least objective value of 𝑣𝑆(𝑦), which 

means: 

                                                     𝑥𝑆 ∈ arg min {𝑣𝑆(𝑦)|𝑦 ∈ {𝑦|𝑁|
1 , … , 𝑦|𝑁|

𝑀  }}   (4.4) 

Hence, for each of the 𝑀 candidate solutions obtained in the first step, we solve (4.3) and 

find the corresponding value of 𝑣𝑆
𝑀(𝑦). Then the best solution of the stochastic problem as 

it is shown by the Equation (4.4) corresponds to the 𝑥𝑆  which has the least objective value 

of (4.3). 

Kleywegt et al. (2001) showed that the quality of the final solution increases with the 

sample size |𝑁|. They found that the convergence rate depends on the conditioning of the 

problem, which in turn tends to become poorer with an increase in the number of decision 

variables. Furthermore, the SAA method has the advantage of ease of use in combination 

with existing techniques for solving deterministic optimization problems. Nevertheless, the 

main drawback of this method is the high amount of computation time necessary to solve 

𝑀 stochastic problems each with |𝑁| scenarios.  
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CHAPTER 5 

Results and Analysis 

 

In this chapter we describe computational experiments using the proposed methodology in 

order to solve the deterministic and stochastic LNDP (3.1) – (3.7) and (3.3) – (3.40), 

respectively. To this end, we first describe the characteristics of the test problems and data 

generation process in Section 5.1. Then, we present a summary of the computational results 

for the deterministic and stochastic problems for each instance based on the proposed 

methodology in Section 5.2, and finally we give an analysis and comments on the quality 

of the stochastic programming solutions compared to those obtained by the deterministic 

approach in Section 5.3. 

 

5.1    Description of Data    

 

The data and instances generated to test the proposed model are adapted from the works of 

Cordeau et al. (2006) and Santoso et al. (2005). The details of this process are as follows. 

We randomly generated a set of 75 instances according to assumptions that strike a balance 

between realism and ease of generation, solvability and reproducibility. Instances vary 

according to two main dimensions: scenarios of stochastic parameters and variability index 

in the stochastic parameters. The design parameters in this study, as introduced in Section 

3.2.2, are operating cost, demand, supply, and capacity which are defined in the form of a 

stochastic vector 𝝃 = (𝒒, 𝒅, 𝒔, 𝑴), and the realized value for this vector is represented 

by 𝜉 = (𝑞, 𝑑, 𝑠, 𝑀). In this study, we aim to measure the effect of uncertainty for each of 

these design parameters in the objective function value. To this end, we define instances 
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which encompass all the possible combination of one, two, three, and four of these 

stochastic parameters as shown in the Table 5.1. 

 

Number of stochastic 

parameters in each 

scenario 

Stochastic 

parameters 

1 

𝑞 
𝑑 
𝑠 
𝑀 

2 

𝑠𝑀 
𝑞𝑑 
𝑑𝑠 
𝑞𝑠 

𝑞𝑀 

𝑑𝑀 

3 

𝑞𝑑𝑠 
𝑑𝑠𝑀 
𝑞𝑑𝑀 

𝑞𝑠𝑀 

4 𝑞𝑑𝑠𝑀 

Table 5.1. Problem instances for scenarios of stochastic parameters 

The variability of instances is defined in the form of a relative standard deviation (RSD), 

which is expressed as the percentage of dispersion of a stochastic variable around its mean 

and can be calculated as the ratio of the standard deviation to the mean. In this problem, 

five levels of variability are considered for each of the 15 instances described above in 

order to identify the level of variability of the stochastic parameters. These variability 

levels are 10%, 20%, 30%, 40%, and 50%. 

The size of the problem is considered to be fixed for all the 75 instances and it is given by 

the number of suppliers (|𝐵|), the number of potential manufacturing plant locations (|𝐻|), 

the number of potential finishing facility locations (|𝐹|), the number of potential 

warehouse locations (|𝑊|), the number of customers (|𝐶|), the number of raw materials 

and finished products (|𝐾|). For an instance with |𝐶| = 30, we have set |𝐵| = |𝐻| = |𝐹| =

|𝑊| = 5 and |𝐾| = 10.  
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The cost structure is determined as follows. For each supplier 𝑏 ∈ 𝐵, a fixed cost of 

selection 𝑐𝑏 is chosen randomly in the interval [103, 104] according to a uniform 

distribution. For each manufacturing plant ℎ ∈ 𝐻, the fixed cost 𝑐ℎ is chosen randomly in 

the interval [105, 106] according to a uniform distribution. And finally, for each finishing 

facility and warehouse, the fixed cost 𝑐𝑓 and 𝑐𝑤 is chosen randomly in the interval 

[104, 105] according to a uniform distribution. The penalty costs of outsourcing for supply 

𝐴𝑠 and capacity 𝐴𝑚 are considered to be a randomly chosen from the intervals 

[2 × 104, 3 × 104] and [6 × 104, 8 × 104] respectively, which are technically large 

enough to satisfy the nature of artificial variables and big-M method.  

For every variable 𝑥𝑜𝑑
𝑘 , the variable cost 𝑞𝑜𝑑

𝑘  is a stochastic variable which is composed of 

two distinct terms: the unit transportation cost of commodity 𝑘 from the origin 𝑜 to the 

destination 𝑑, and the unit cost of procurement, production or warehousing of commodity 

𝑘 at the origin 𝑜. For every commodity 𝑘, every origin 𝑜 ∈  𝑂 and every destination 𝑑 ∈

 𝐷, an average unit transportation cost �̅�𝑜𝑑
𝑘  is first generated by multiplying the Euclidean 

distance between 𝑜 and 𝑑 by a random number chosen according to a normal distribution 

with a mean of 10. For every location, Euclidean coordinates are themselves chosen 

randomly in the unit square [0, 1]  × [0, 1]. Then, 𝑡𝑜𝑑
𝑘  is chosen from the interval 

[𝛼.  �̅�𝑜𝑑
𝑘  , 𝛽 �̅�𝑜𝑑

𝑘 ], where 𝛼 = 0.75 and 𝛽 = 1.25. Next, for every commodity 𝑘 ∈ 𝐾 and 

every origin 𝑜 ∈  𝑂 the unit cost of procurement, purchase, production, finishing or 

warehousing cost 𝑎𝑜
𝑘 is chosen randomly according to a normal distribution with a mean of 

10. Finally, the cost 𝑞𝑜𝑑
𝑘  is obtained by setting 𝑞𝑜𝑑

𝑘 = 𝑡𝑜𝑑
𝑘 + 𝑎𝑜

𝑘.  

For every product 𝑘 and every customer 𝑑, the demand 𝑎𝑑
𝑘 is considered as a stochastic 

variable with log-normal distribution with a normal mean of 10. Santoso et al. (2003) 

argued that the non-negativity of parameter values is preserved by using log-normal 

distributions.   

For every product 𝑘 and every supplier 𝑜, the supply 𝑠𝑜
𝑘 is considered as a stochastic 

variable with normal distribution with a mean of 10(
𝑁2

𝑁
). Note that the coefficient (

𝑁2

𝑁
)is 

multiplied to balance the overall supply and demand.  
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For the capacity constraint parameters, for every product 𝑘 and every customer 𝑑, in order 

to generate the processing requirement 𝑟𝑑
𝑘, �̅�𝑑 is first chosen randomly from the 

interval [0, 1], Then, 𝑟𝑑
𝑘 is chosen from the interval [𝛼. �̅�𝑑 , 𝛽. �̅�𝑑], where 𝛼 = 0.75 and 𝛽 =

1.25. Furthermore, 𝑀𝑑 , the total capacity of facility 𝑑, is considered to be a normal 

distribution with a mean of 10. 

It should be noted that, for the case of deterministic parameters, the value of each parameter 

is equal to the mean of the stochastic case. The standard deviations for the distributions are 

chosen as certain fractions of the mean value as the coefficient of variation in each instance.  

Recall from Chapter 4 that the SAA method calls for the solution of |𝑀| instances of the 

approximating stochastic program (3.25) – (3.32), each having |𝑁| sampled scenarios. 

Validation of candidate solution is then carried out by evaluating the objective function 

using|𝑆|sampled scenarios. In this study, we use |𝑁| =  5; |𝑀| = 3; and |𝑆| = 50. The 

small number of samples and replications is necessary because of the huge number of 

variables and constraints which make the problem difficult to solve. The size of 

deterministic and stochastic problems corresponding to the generated instances and data is 

presented in the Table 5.2. 

 

 
Constraints Variables 

Equality Inequality Binary Continuous 

Deterministic  450 200 20 2315 

Stochastic  2250 1000 20 13825 

Table 5.2. Size of the deterministic and the stochastic problems for |𝐶| = 30 

 

5.2    Computational Results 

 

In this study, we aim to measure and illustrate how much better we are doing by solving 

the stochastic problem instead of just solving the deterministic LNDP. Hence, we need to 

compare the obtained solutions of the deterministic case with the ones from the stochastic 

case for each instance. To this end, we need an evaluation mechanism to estimate the true 
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expected value of the objective function. Recall from Chapter 4 that the solutions obtained 

by solving the stochastic problem are evaluated on a set of scenarios |𝑆|=50, to estimate 

the expected value of the objective function for each case. These expected values are taken 

for comparison, and the value of the stochastic solution (VSS) is defined as a measure to 

identify how well the deterministic model solutions perform relative to solutions from the 

more complicated stochastic programs (Birge, 1982).  

The proposed algorithmic scheme was implemented in MATLAB R2013a with CPLEX 

12.5.0.1 for solving mixed-integer and linear programs. All computations were carried out 

on a 3.07 GHz PC running Linux.  

Table 5.3 and Figure 5.1 give a comparison of computation times for solving the problem 

with deterministic, stochastic and the proposed SAA approaches. The first column 

represents the average computation time of five instances with different levels of variability 

in the design parameters when solving a single problem with deterministic approach. The 

second column relates to the average computation time of solving the problem with 

stochastic programming approach with|𝑁| =  5 and|𝑀| =  1, and the last column 

represents the average computation time of solving the problem with the proposed SAA 

approach when|𝑁| =  5 and|𝑀| =  3. The results reveal that the stochastic problem 

requires significantly more computation time for a certain instance than the deterministic 

problem, and the SAA approach takes almost three times on average more than the 

stochastic programming approach (Figure 5.1). This gap is a result of the number of 

scenarios, variables and constraints between deterministic and stochastic approach, which 

is shown in Table 5.2.  The differences in computation time are also more notable for larger 

problems in terms of size or number of scenarios, in which the stochastic approach and the 

SAA will require a long computation time to solve the problem. For example, for an 

instance with |𝐶| = 100, and |𝐵| = |𝐻| = |𝐹| = |𝑊| = 10, and |𝐾| = 20, when |𝑁| =

 20; |𝑀| = 20; and |𝑆| = 100 the stochastic problem approach took 2064 minutes, while 

the deterministic problem approach took 347 minutes to reach to the optimal solution. As 

is shown with the given example, and due to the complexity of the problem, the 

computation time is highly affected by the size of the problem. 
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Instance 
Computation time (seconds) 

Deterministic Stochastic SAA 

1 

𝑞 3.265E+1 2.244E+2 6.945E+2 

𝑑 1.478E+1 2.524E+2 8.369E+2 

𝑠 1.090E+1 3.245E+2 7.150E+2 

𝑀 8.740E+0 1.773E+2 7.029E+2 

2 

𝑞𝑑 3.192E+1 3.520E+2 8.240E+2 

𝑑𝑠 2.520E+1 1.001E+2 8.070E+2 

𝑠𝑀 2.340E+1 3.126E+2 7.864E+2 

 𝑞𝑠 3.049E+1 4.200E+2 7.410E+2 

 𝑞𝑀 3.701E+1 1.640E+2 8.160E+2 

 𝑑𝑀 1.963E+1 9.800E+1 8.340E+2 

3 

𝑞𝑑𝑠 9.120E+0 1.884E+2 7.840E+2 

𝑑𝑠𝑀 1.870E+1 3.341E+2 7.820E+2 

𝑞𝑑𝑀 3.190E+1 1.670E+2 8.070E+2 

𝑞𝑠𝑀 3.265E+1 1.863E+2 6.860E+2 

4 𝑞𝑑𝑠𝑀 3.150E+1 3.300E+2 8.540E+2 

Average 2.391E+1 2.421E+2 7.780E+2 

Table 5.3. CPU time of deterministic and stochastic instances 
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Figure 5.1 Average CPU time of deterministic, stochastic, and SAA approaches for each 

instance 

 

The following tables present the results for the deterministic and the proposed stochastic 

approaches in solving LNDP, and the corresponding VSS for each instance. We note that, 

the stochastic solutions in the following tables relate to the results of the proposed 

stochastic approach, SAA when |𝑁| =  5 and|𝑀| =  3, which has been explained in 

Chapter 4. The instances are categorized based on the number of stochastic parameters in 

each as follows. The notations of 𝑆𝑃 and 𝑀𝑉𝐷𝑃 correspond to the solution of the stochastic 
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5.2.1    Computational Results of Instance with One Stochastic Parameter 

 

 

Instances  Deterministic 

solution 

Stochastic 

solution 
VSS 

VSS/Sto      

(%) Parameter Variability 

𝑞  
(Cost) 

10% 3.493E+6 3.494E+6 -1171 -0.03% 

20% 3.479E+6 3.478E+6 804 0.02% 

30% 3.465E+6 3.462E+6 2398 0.07% 

40% 3.447E+6 3.441E+6 5888 0.17% 

50% 3.436E+6 3.429E+6 6919 0.20% 

𝑑 
(Demand) 

10% 6.769E+6 6.711E+6 58327 0.869% 

20% 8.952E+6 8.029E+6 922944 11.496% 

30% 9.640E+6 8.737E+6 902562 10.330% 

40% 1.125E+7 1.009E+7 1156620 11.458% 

50% 1.235E+7 9.936E+6 2411432 24.270% 

𝑠 
(Supply) 

10% 3.937E+6 3.957E+6 -20252 -0.512% 

20% 4.464E+6 4.380E+6 83573 1.908% 

30% 4.980E+6 4.834E+6 146609 3.033% 

40% 5.464E+6 5.240E+6 224304 4.281% 

50% 5.866E+6 5.580E+6 286090 5.127% 

𝑀 
(Capacity) 

10% 6.109E+6 6.259E+6 -150028 -2.397% 

20% 8.558E+6 8.822E+6 -263446 -2.986% 

30% 1.234E+7 1.181E+7 534370 4.526% 

40% 1.562E+7 1.470E+7 924420 6.289% 

50% 1.857E+7 1.685E+7 1723330 10.230% 

  Mean of VSS/Sto (%)   4.422% 

Table 5.4. Value of deterministic and stochastic problem for the instances having one 

stochastic parameter 
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Figure 5.2 (a,b) Effect of variability on the total mean value of deterministic (MVDP) and 

stochastic (SP) problems for the instance of single stochastic parameter, demand (d), and 

capacity (M) 
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5.2.2    Computational Results of Instance with Two Stochastic Parameters 

 

Instances  Deterministic 

solution 

Stochastic 

solution 
VSS 

VSS/Sto      

(%) Parameter Variability 

(𝑞, 𝑑) 

10% 6.910E+6 6.308E+6 601585 9.536% 

20% 7.562E+6 7.143E+6 419353 5.871% 

30% 8.529E+6 8.071E+6 457911 5.674% 

40% 9.311E+6 9.090E+6 220496 2.426% 

50% 1.055E+7 1.010E+7 449440 4.448% 

(𝑑, 𝑠) 

10% 6.735E+6 6.785E+6 -50274 -0.741% 

20% 8.268E+6 8.275E+6 -7052 -0.085% 

30% 1.019E+7 9.639E+6 553209 5.739% 

40% 1.082E+7 1.009E+7 725040 7.185% 

50% 1.217E+7 1.104E+7 1130690 10.239% 

(𝑠, 𝑀) 

10% 6.821E+6 6.403E+6 417907 6.53% 

20% 9.980E+6 9.984E+6 -3964 -0.04% 

30% 1.354E+7 1.334E+7 202390 1.52% 

40% 1.612E+7 1.520E+7 923270 6.08% 

50% 2.108E+7 2.002E+7 1055960 5.27% 

 10% 3.893E+6 3.907E+6 -14525 -0.372% 

 20% 4.386E+6 4.315E+6 71683 1.661% 

(𝑞, 𝑠) 30% 4.707E+6 4.664E+6 42884 0.920% 

 40% 5.413E+6 5.008E+6 405032 8.087% 

 50% 5.913E+6 5.469E+6 443510 8.109% 

 10% 6.168E+6 6.082E+6 86291 1.419% 

 20% 9.053E+6 9.165E+6 -111555 -1.217% 

(𝑞, 𝑀) 30% 1.234E+7 1.158E+7 758360 6.551% 

 40% 1.368E+7 1.312E+7 555690 4.234% 

 50% 1.789E+7 1.706E+7 828560 4.857% 

 10% 7.610E+6 8.064E+6 -454313 -5.634% 

 20% 1.094E+7 1.117E+7 -227980 -2.041% 

(𝑑, 𝑀) 30% 1.503E+7 1.380E+7 1226920 8.888% 

 40% 1.623E+7 1.574E+7 498450 3.168% 

 50% 2.032E+7 1.897E+7 1347740 7.103% 

Mean of VSS/Sto (%)  3.854% 

Table 5.5. Value of deterministic and stochastic problem for the instances having two 

stochastic parameters  
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5.2.3    Computational Results of Instance with Three Stochastic Parameters 

 

Instances  Deterministic 

solution 

Stochastic 

solution 
VSS 

VSS/Sto      

(%) Parameter Variability 

(𝑞, 𝑑, 𝑠) 

10% 7.053E+6 6.812E+6 240885 3.536% 

20% 8.158E+6 8.054E+6 104208 1.294% 

30% 9.638E+6 9.167E+6 471594 5.145% 

40% 1.094E+7 9.270E+6 1666435 17.977% 

50% 1.343E+7 1.196E+7 1465450 12.253% 

(𝑑, 𝑠, 𝑀) 

10% 8.303E+6 8.128E+6 174886 2.152% 

20% 1.099E+7 1.088E+7 108710 0.999% 

30% 1.481E+7 1.416E+7 649830 4.589% 

40% 1.832E+7 1.774E+7 579130 3.265% 

50% 2.026E+7 1.956E+7 701440 3.587% 

 10% 7.987E+6 7.831E+6 155534 1.986% 

 20% 1.188E+7 1.125E+7 625130 5.556% 

(𝑞, 𝑑, 𝑀) 30% 1.381E+7 1.228E+7 1531840 12.473% 

 40% 1.640E+7 1.442E+7 1983840 13.759% 

 50% 1.927E+7 1.710E+7 2166380 12.669% 

 10% 6.656E+6 6.627E+6 29467 0.445% 

 20% 9.904E+6 9.785E+6 119154 1.218% 

(𝑞, 𝑠, 𝑀) 30% 1.410E+7 1.319E+7 913860 6.928% 

 40% 1.794E+7 1.654E+7 1400170 8.466% 

 50% 1.988E+7 1.834E+7 1539980 8.397% 

    Mean of VSS/Sto (%)   6.33% 

Table 5.6. Value of deterministic and stochastic problem for the instances having three 

stochastic parameters  
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5.2.4    Computational Results of Instance with Four Stochastic Parameters 

 

Instances  Deterministic 

solution 

Stochastic 

solution 
VSS 

VSS/Sto      

(%) Parameter Variability 

(𝑞, 𝑑, 𝑠, 𝑀) 

10% 7.708E+6 8.013E+6 -305347 -3.81% 

20% 1.162E+7 1.145E+7 167560 1.46% 

30% 1.580E+7 1.485E+7 950500 6.40% 

40% 1.892E+7 1.793E+7 994970 5.55% 

50% 2.198E+7 2.120E+7 783290 3.70% 

    Mean of VSS/Sto (%)   2.66% 

Table 5.7. Value of deterministic and stochastic problem for the instances having four 

stochastic parameters  

 

 
 

Figure 5.3 Effect of variability on the total cost of deterministic (MVDP) and stochastic 

(SP) problems for the instance of four stochastic parameters, cost-demand-supply-

capacity 
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5.3    Result Analysis  

 

The results presented in the above tables can be discussed and analyzed as follows. 

1. It is well known that the computation time of the instances solved by the stochastic 

problem are higher than the corresponding deterministic ones, due to the number 

of scenarios and replications involved in solving the stochastic problem (Table 5.3, 

and Figure 5.1). Although this difference (up to five times on average) for the 

considered instances may not reflect clearly the complexity and time issues in 

applying the stochastic programming approach, it gives us an insight on how each 

stochastic parameter effects on the computation time. For example, according to 

Figure 5.1, the instances which have the operating cost (𝑞) as the stochastic 

parameter mostly have more computation times than the others within the same 

category. This can be justified as an effect of the stochastic parameter in the 

objective function, and the size of the operating cost vector (𝑞𝑜𝑑𝑛
𝑘 ) which carries 

four dimensions.  

 

2. Stochastic optimization approach outperforms deterministic approach as it is shown 

in Tables 5.4 – 5.7 for different combinations of uncertainty in parameters. For 

slight uncertainty in parameters, the value of the stochastic solution (VSS), and the 

percentage rate of difference over the stochastic solution value (%
𝑉𝑆𝑆

𝑆𝑡𝑜
)  might be 

small and the two approaches perform quite the same, but by augmenting the 

variability we see a significant increase in the VSS. 

 

3. The results of the single uncertain parameter from Table 5.4 reveal that the 

operating cost (𝑞) has the least impact among the design parameters to uncertainty. 

In other words, the results from deterministic and stochastic approaches while the 

operating costs change do not have significant differences.  

 

4. By increasing the variability of the uncertain parameters, supply (𝑠), demand (𝑑), 

and capacity (𝑀) we see a significant increase in the objective function values of 

both deterministic and stochastic problems as it is shown in Tables 5.4 – 5.7. This 
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is a result of penalizing for outsourcing when we encounter high fluctuations and 

uncertainty in these parameters. In contrast, increasing the variability for the 

operating cost (𝑞) results in decreasing the objective function value. This trend is 

also consistent with the results of Santoso et al. (2003). As the operating costs only 

appear in the objective function, and there is no restricting constraint corresponding 

to that, the model can encompass fluctuations in costs to lower the objective 

function value. It is also clear that the stochastic solution is more resilient to the 

variability of the parameters than the deterministic approach. This resiliency could 

be improved by increasing the number of scenarios and replications in the SAA 

problem.  
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CHAPTER 6 

Conclusions and Remarks 
 

In this work, we aimed to apply the stochastic programming approach in designing logistics 

networks in the presence of uncertainty. Due to the uncertain nature of design parameters 

and their unpredictable behavior, we need to incorporate these effects into the design 

process to build a solid, resilient and robust network which can encompass reasonable 

amounts of fluctuations in parameters. There are several sources of uncertainty involved in 

network design, and in this study we have considered the uncertainty in operating costs, 

demand, supply, and capacity. To this end, a two-stage stochastic programming approach 

was used to formulate and model the problem, and a heuristic solution method called 

sample average approximation (SAA) was applied to solve the problem.   

The logistics network design problem (LNDP) considered in this study is a multi-echelon, 

multi-product, single-period integrated supply chain model with uncertainty in design 

parameters. A two-stage stochastic programming approach with a fixed recourse is applied 

to model this problem. The first-stage decision variables such as network configuration, 

and supplier selection are made prior to the realization of the uncertain parameters. The 

second-stage decisions such as flow of commodity through the network are made after the 

realization of uncertain parameters. 

The (SAA) technique generates samples of the stochastic parameters to construct and solve 

the approximation instead of the exact values. Besides, we have designed an evaluation 

mechanism in order to compare the results of the stochastic approach and deterministic 

approach.  
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Next, we have generated test instances for different combinations of stochastic parameters 

and levels of variability in order to measure the effect of variability on each of the uncertain 

parameters. Finally, the results of the stochastic programming and deterministic 

programing approach have been presented, compared and analyzed, and we have obtained 

the following insights: 

 Stochastic optimization approach outperforms deterministic approach in solving LNDP 

with uncertainty in design parameters. 

 The value of stochastic solution (VSS) increases with the uncertainty in parameters, 

which suggests to apply stochastic programming approach in highly uncertain 

environments.     

 The stochastic solutions are more resilient to the variability of parameters than 

deterministic solutions.  

 Increasing the variability of demand, supply and capacity increases the value of the 

objective function for both the deterministic and stochastic approaches. 

 Increasing the variability of operating cost results in decreasing the objective function 

value.  

In this thesis, we have limited our test problems to practically small instances with a small 

number of scenarios in order to make them solvable in a reasonable amount of time. Indeed, 

incorporating new approaches such as column generation and valid inequalities could 

improve the performance of the proposed method for larger instances. 
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