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Abstract 

Large operational losses are generally infrequent but potentially disastrous events 

that must be accounted for in the financial risk management framework of bank 

holding companies. Internal databases lack the observations necessary to implement 

any meaningful models for calculating necessary capital. We propose a scaling 

model that accounts for the heterogeneity of this risk all the while accounting for 

potential selection bias in the external data and possible changes in operational risk 

dynamics that may be attributed to the recent financial crisis. We find evidence of 

high and low regime periods in the data which, when properly accounted for using a 

regime-based method, ameliorate the effectiveness of the scaling mechanism we 

develop. We find proof that the scaled external losses stem from the same 

distribution as that of the internal bank holding company, and can thus be used in 

acquiring more internal data to elaborate a model for operational risk. 

 

 

Keywords: 

Operational risk, bank holding companies, scaling model, selection model, external 

data, Markov endogenous regime-switching. 

 

 

 

 

 

 

 

 

 



iv 
 

 

Sommaire 

Les grandes pertes opérationnelles sont généralement des évènements rarissimes, 

mais qui peuvent s’avérer désastreux d’où l’importance de bien les considérer dans 

l’élaboration des systèmes de gestion des risques financiers d’institutions bancaires. 

Les bases internes de ces institutions n’ont pas le nombre d’observations nécessaires 

pour développer un modèle fiable afin de calculer le capital à mettre de côté. On 

propose un modèle de normalisation qui prend en considération l’hétérogénéité de ce 

risque tout en traitant le biais de sélection potentiel lié aux pertes externes et la 

possibilité d’un changement dans la dynamique du processus de risque opérationnel 

qui pourrait être attribuable ou non à la crise financière récente. Nous constatons la 

présence de périodes de régime haut ou bas dans les données qui, lorsque bien 

incorporés dans un modèle à régimes, aident à améliorer l’efficacité de notre 

mécanisme de normalisation. On vérifie que les pertes externes normalisées 

proviennent de la même distribution que les pertes internes d’une institution bancaire 

et pourront être utilisées dans l’élaboration d’un modèle pour traiter le risque 

opérationnel.  

 

 

Mots-clés: 

Risque opérationnel, institutions bancaires, modèle de normalisation, modèle de 

sélection, données externes, changements endogènes de régimes Markoviens.  
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1. Introduction 

 

Regardless the sector in which it evolves, three particular types of risk emerge at the 

core of any financial institution: market, credit and operational. These institutions 

face the challenge of developing internal models to properly and objectively 

quantify, supervise and manage these risks. 

 

Due to extensive data and research, most financial institutions have satisfactory 

market and credit risk management departments. Over the past few years, the world 

has witnessed a plethora of mergers & acquisitions in the banking sector which have 

given form to massive entities of growing intricacy and risk that must be managed. 

Moreover, the extensive automation of services and e-commerce in general put 

additional strain on their integrated systems. For such reasons and due to recent 

events that have shone light on potential gargantuan mishaps, operational risk has 

grown exponentially in importance. This type of risk affects all departments, which 

we will here forth call “business lines” that the bank may have, but in possibly very 

different ways; that we will qualify as “risk types”. Rogue trading such as witnessed 

at Société Générale in 2008 which cost the French bank a whopping 4.9B€ is very 

different in nature to, say the failed transaction processing event at Wells Fargo Bank 

that cost it 150M$. One common denominator though, is the rarity and relative 

severity of these individual loss events. Their unequivocal heterogeneity is a 

testament to the inherent complexity of a potential model to predict them. 

 

In June 1999, regulatory authorities became involved with a mission to develop a 

framework incorporating operational risk. The ultimate goal such authorities aim to 

achieve through regulation is the realignment of capital requirements with the actual 

exposure to risk, which encompasses an integrated approach. This stipulates the 

inclusion of correlation effects between the bank’s different risks (as 

aforementioned). Still far from that reality, operational risk models are still in their 
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infancy, let alone at the stage of understanding how it relates to other risks. This 

master’s thesis will seek to continue on this path by proposing and developing an 

efficient model to predict the level of operational losses, conditional on there being a 

loss, allowing banks to estimate their value at risk (VaR) related to their exposure to 

operational risk and set appropriate capital aside for it. It is important to note that 

dedicating capital to cope with potential losses does not supersede the need to adapt 

their supervision and management techniques to account for operational risk.  

 

In 2001, the Basel Committee officially defined operational risk as the risk of loss 

resulting from inadequate or failed internal processes, people, and systems or from 

external events. It was inefficacious to collect data before a general definition such as 

this one was agreed upon and finally established within the banking community. An 

extensive database is required when trying to implement models, a privilege not yet 

conceivable. Internal data collection could still take a number of years more in order 

to observe enough high-impact losses that are of interest because they are unlikely 

occurrences. Resorting to the use of external data is therefore more than a simple 

viable option; it is an essential supplement that will allow for a more comprehensive 

outlook on tail events. One cannot simply combine the two and use the resulting 

distribution to model the loss patterns.  According to the Basel Committee on 

Banking and Supervision, the correct combination of internal and external loss data 

is thus an important step to be considered.  

 

Most operational risk research falls into the loss distribution approach (LDA) 

category. Ultimately, what is needed is a final aggregate loss distribution from which 

the capital requirement can be calculated; defined by the Basel Committee as being a 

one-year holding period with a confidence level of 99.9%. LDAs require extensive 

data and stipulate that the desired loss distribution that will be used to calculate the 

value-at-risk stems from a mathematical convolution between the two types of 

statistical distributions: the severity of the losses –defined as the amplitude of a loss 

conditional on there being one- and their frequency. VaR estimation precision will be 
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increased by modeling for the best parameters in order to exploit the multivariate 

nature of the distribution that is chosen for each of the two components. 

Conceptually, it is important to understand the role such variables play in 

differentiating the shape of the right-hand-side tail between two hypothetical bank 

entities having the same total operational loss amount; one displaying more high-

frequency low-severity losses as opposed to the other that more low-frequency but 

high-severity losses. For the same amount of aggregate loss, these two hypothetical 

banks share a very different exposure to operational risk. The sporadic nature and 

form of the data, showing a wide range of losses make it preferable to estimate each 

distribution separately to allow for more parameters and greater accuracy (Cummins 

et al., 1990; Frees and Valdez, 2008). 

 

On that note, the model we are developing comes from a relatively unexplored wing 

of operational risk research: scaling models. A scaling mechanism is essentially a 

normalization formula that can be used to combine an external database to an internal 

one by projecting an external loss from one institution onto another (the internal 

one). In order to integrate the external event into a more complete internal database, 

the level of control variables explaining the severity (or frequency) of operational 

losses determine how important the loss would be if the same loss observed in the 

external database were to happen in the institution we are studying.   

 

Building on a methodology previously elaborated by Dahen and Dionne (2010) to 

make better use of external data in order to predict the severity of potential 

operational losses, our ultimate goal is to incorporate new data related to the recent 

financial crisis. We  construct and test a scaling mechanism for the severity of 

operational losses using yearly and quarterly data on bank holding companies from 

the United States and an external database of operational losses from public sources 

spanning years 1994 until 2010. We cope with potential selection bias of our loss 

database due to its 1M$ minimum loss threshold by using a 2-step Heckman 

selection model. The first step is a model for the probability that a bank holding 
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company from our database suffers a minimum loss of 1M$. Conditional on there 

being a loss (severity), the second step consists of running a panel OLS regression 

that will provide us with the necessary coefficients that explain level of operational 

losses and will be used for our scaling mechanism. In order to account for the crisis 

and its effects, we will also look into a regime switching model to capture a possible 

change in the dynamics of operational risk during the crisis. A great advantage of this 

method is that these regimes need not be based on macroeconomic factors, but can be 

endogenous; defined by movement or changes in the dynamics of operational risk 

itself.  

 

We find proof that the potential selection bias related to our use of external data is 

not really cause for concern. Furthermore, regimes aid in explaining the operational 

loss process by capturing a change in dynamics post 2003, allowing us to use more 

scaling factors than were possible in Dahen and Dionne (2010) thus making the 

scaling mechanism more efficient.  

 

Provided the relatively young literature that exists on the topic of operational risk and 

the lack of internal data, to our knowledge this research is one of the first to use data 

of operational loss events that include the latest financial crisis, as well as to 

incorporate regime-switching.  

 

The thesis is organized as follows. The next section gives a brief overview of the 

literature surrounding the fundamental components that constitute the model: scaling 

mechanisms and regimes. Section 3 exposes the theory behind our model while 

section 4 gives an overall description of the data. We will elaborate on the 

methodology used to estimate the model in section 5. Section 6 exposes and analyzes 

our empirical findings, followed by a brief conclusion in section 7. 

 

 



5 
 

2. Literature review 

 

A popular branch of the literature falls into the extreme value theory (EVT) category; 

authors try to incorporate externally observed operational losses by assuming they all 

stem from a same distribution that represents the upper tail of a common loss 

distribution.  Papers such as Chavez-Demoulin et al. (2005) attempt to fit severity 

using distributions such as the Generalized Pareto or Lognormal families. The 

difficulty resides in identifying the unique threshold for each loss observed in a 

different risk control environment to be able to parameterize such distributions.  

They are working on stochastic methodology to find the threshold after which EVT 

asymptotics can be fitted. More on the basic theory behind EVT will be presented in 

the literature review.  

 

As mentioned previously, empirical and even theoretical literature surrounding 

operational risk is scarce; this statement holds doubly when we consider scaling 

models. This section will cover two papers on scaling models that deal with 

operational risk. The first is a short key article generally perceived to have influenced 

more sophisticated statistical models such as the second one, which elaborates a 

method with important implications relating to our own. As this is the first time 

endogenous regime-switching are incorporated in scaling models for operational risk, 

the literature review is extended to a research paper that deals with credit spreads.  

 

 

2.1 Scaling models 

2.1.1 Shih et al. (2000) 

To understand the basis of our scaling model, it is important to mention a research 

paper that, although simplistic by nature, paved the way for further work in the field. 

This is the case of Shih et al. (2000) who decided to test the somewhat intuitive 



6 
 

relationship expected to be observed between the size of a firm and the magnitude of 

its operational losses. Using proxies such as revenue, assets and the number of 

employees, and losses from the PriceWaterhouseCoopers OpVaR database, they 

found that the logarithm of revenues showed the best relationship of all 

combinations, thus concluding that the relationship is non-linear. Conceptually, this 

translates into a bank having twice the amount of revenues (the proxy for size) as 

another does not, on average, suffer twice the amount of losses.  

 

Having chosen the most relevant scale factor (log-revenues), they perform an OLS 

regression to explain log-losses. The results show    and adjusted    just over 5%, 

which is frankly quite low.  Noticing that their residuals plotted a funnel shape, 

which indicates a linear relationship between the variability of losses and their 

variable, they decided to run a GLS regression to deal with heteroskedasticity. They 

run what is called a weighted least square regression by dividing both sides of the 

equation by the log-revenues. This yielded strong t-statistics for the intercept and 

variable, but low    and adjusted    of just under 10%. The positive coefficient of 

log-revenues (0.7) tells the story of a diminishing relationship between losses and 

size. The only methodological problem relates to the nature of the data used. They do 

not account for potential selection bias due to the fact the minimum loss amount 

reported is $1 million in their database. 

 

The authors point out that other variables must surely be needed to explain the 

remaining 90% of loss variability, such as business line or the quality of the control 

environment. Yet the most important insight of their report was not so much the 

results as it was the last few lines where they suggest using this correlation to “scale-

adjust” external data to the size of the firm being analyzed. This intuition served as 

inspiration for more applied statistical models in the operational risk literature. Our 

work will include the natural logarithm of a size variable as suggested by this paper 

in our scaling mechanism.  
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The basis for a scaling model lies in the existence of what is called a power-law. The 

notion finds its roots in the field of theoretical physics, where it is hypothesized that 

physical laws governing the smallest increments of length scales can be used to 

derive the laws of larger ones through the existence of a mathematical relationship 

that binds them together using a scaling exponent. This self-similarity, where a 

smaller increment or function manifests itself proportionately is caused by a scale-

invariance property that can be observed empirically in many diverse fields.  

 

What interests us is that this also relates to mathematics, where scale-invariance may 

possibly be observed between probability distributions. A necessary condition for 

linking seemingly unrelated dynamics such as these is their mutual proximity to 

some critical point. They are said to share the same critical exponents (such as the   

in the aforementioned example), which allows them to display equivalent scaling 

behaviour. An example of a common critical point can be the ebullition threshold 

shared by     and     which may be used to explain the physical dynamics they 

share around this transition phase. Based on their proximity to some theoretical 

threshold separating a distribution with its upper-tail, researchers in extreme value 

theory explore the property of self-similarity to better model large and rare events 

that may be bound together by a power-law relationship, despite them being 

observed in different institutions as in our case.  

 

 

2.1.2 Shih (2001) 

Shih (2001) was the first article to suggest a theoretical structure for a scaling model 

that could incorporate external losses through a critical exponent based on a proxy 

for size. Although the author does not provide empirical evidence of this bold claim, 

he provides two very fruitful insights on how to go about applying it. He mentions 

that suitable scaling variables include a proxy for the size of the company or the 

business line, but also the risk control environment. Secondly, he assumes that 
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operational risk losses can be sectioned into two primary components: a common one 

that is identical to every bank or business line and an idiosyncratic one. This allows 

for an equal component between all banks or business lines that can be isolated, thus 

allowing losses to be compared between different institutions invoking the self-

similarity concept discussed earlier that we will examine in our work.  

 

2.1.3 Na et al. (2006) 

The article by Na et al. (2006), whose methodology influenced ours, takes these ideas 

one step further by testing them empirically. They wish to prove that through the use 

of this hypothetical common component, a power-law relationship can be established 

between losses and a variable, which in this case is the size of the business line. To 

do so, they lay out the theoretical foundation of a scaling model. They use internal 

data that include bank losses from different business units and external data from 

ABN-AMRO for operational losses in different business line for the year 2003. They 

decided to separate the data per week, in order to analyze the frequency of 

operational losses, and to be able to calculate an aggregate loss. Given the aberrant 

lack of data, instead of comparing loss distributions, they turned to a mathematical 

approach by testing out how several assumptions hold up once losses are scaled.   

 

The first assumption is that an operational loss from a given business line scales 

using an idiosyncratic component, in this case gross income    , and is affected by 

its two main components in the form of this power-law:   

        
                                  (a) 

where    is the operational loss per business line b=1, 2…, B,    is gross income of 

the business line from which the operational loss originates,   is the scaling exponent 

they hope remains constant for different business lines, and a constant  , common to 

all business lines.  

If this power-law represents the real relationship between operational losses, then 

internal losses should derive from the same distribution as scaled losses. Na et 
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al.(2006) test the validity of their proposed scaling mechanism by running a linear 

regression on the means and standard deviations of each business line and the 

aggregate standard one mentioned before. The two first moments should scale the 

same way (same  ) between losses per business line and scaled losses from other 

business lines. This comes from the logical theoretical construct derived from 

equation (a): 

  

     
 = 

  

     
 = … =       (b) 

This demonstrates the relationship between operational losses in different business 

lines that find their equivalency through a proportion based on their business line 

size    . Using the logarithm of equation (a), Na et al.(2006) run a linear regression 

on the means (and standard deviations) of losses and scaled losses between business 

lines and conclude that no power-law relationship could be concluded for the severity 

of operational losses since their scaling exponent ( ) is not statistically significant.  

 

The focus of our research being the severity distribution, those results may seem 

discouraging, but many factors must be considered. The main one is the lack of data 

and what it could mean. Another consideration is their scaling variable itself. Unlike 

what was advocated in Shih (2001), they do not go as far as to consider the effects of 

different control environments particular to each business line, something that we 

will test in our work. Despite all this, Equation (b) is fundamental if externally 

available data is to be merged with internal data using a proportion that can also be 

based on other variables to control for, and it is the fundamental basis of our study.  
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2.2 Regimes  

Since endogenous Markov regime-switching models have not been touched upon in 

operational risk literature, we turn to an innovative article that deals with explaining 

credit spreads in bonds. Please note that we will not explicit any of their theoretical 

point of views on variable selection or other specifics of credit spreads as it is not 

particularly relevant to our work in operational risk. Regime-switching models allow 

for greater flexibility in terms of the way explanatory variables interact with the 

dependant variable we wish to analyze.  

 

2.2.1 Maalaoui Chun, Dionne, and François (2010) 

What the authors in Maalaoui Chun, Dionne and François (2010) observed was that 

some research papers found different signs for coefficients that most experts would 

agree upon should be fundamentally obvious and could not quite grasp the cause. 

Worst of all was that the poor empirical results could not really be attributed to a lack 

of data or the quality of proxies used. This phenomenon has been dubbed the credit 

spread puzzle. Their paper attempts to explain such aberrations while improving the 

explanatory power of the overall model by exploring the presence of low and high 

regimes based on the mean and variance of the credit spreads.  

 

On one hand, they elaborate on what they call a single-regime model. This is simply 

a multivariate regression that includes a dummy variable for when the data is in a 

high regime from a Markov switching model that will be explained in full shortly. 

The models take this general form: 

        
 +    

    
 +    

              1.   (c) 

The single-regime model assumes the effects of the explanatory variables found in 

the    
  vector on the dependant variable     remain constant over the entire period 

                                                             
1 The annotations have been modified for simplicity and comparability purposes from those 
originally found in the article (they explicit and compare three mixes of variables). 
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analyzed. In other words, the coefficients do not change from one regime to the 

other.  

 

The regime-based model, as mentioned previously, allows for a greater flexibility of 

the explanatory variables’ effects on the dependent variable by adding interaction 

components between the two regimes. The general model takes this form: 

        
 +    

    
 +    

          +    
    

       
  

+    .  (d) 

The result of the estimation (     is dependent on the regime at time t: 

{
               

 ̂     
    

 ̂   

                 (   
 ̂      

 ̂)      
     

 ̂     
 ̂ 

    (e) 

The interaction coefficient    
 ̂ allows us to verify if the same variables that explained 

the dependent variable change in any way when the risk is in a high regime. The 

intuition is that perhaps the dynamics differ when the process in a higher mean, 

higher volatility environment. Certain coefficients from the single-regime model (d) 

may change signs, have their explanatory power increase or decrease, as well as lose 

or gain statistical significance. This method allowed the authors to double the 

explanatory power of most models in credit spread literature, which is why we will 

incorporate the technique to see if it will help us cope with the crisis periods in our 

database.  

 

2.2.2 Engel and Hamilton (1990) 

The theory behind the functioning of the Markov endogenous regime-switching 

model is exposed in Engel and Hamilton (1990). The regime is the result of a latent 

variable     that may take on the value 1 if it is found in a low regime or 2 if it is in a 

high one. The dynamics of our dependant variable    are hypothesized to change  

from one regime to the next follow a normal distribution: 

    (       
) , where   =1, 2    (f) 
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Furthermore, it is assumed the latent variable follows a two-order Markov chain for 

the states: 

      |             

      |               

      |               

      |             

The process for    depends on past realizations of y and s uniquely through      as 

shown by the Markov chain just presented. It is important to note that only two 

probabilities are needed to calculate the entire chain. 

 

We can summarize the probability law for    through 6 population parameters:  = 

(     ,     ,    ,    ) which are sufficient to describe the different information we 

need such as the distribution of    given   , the distribution of    given     , as well 

as the unconditional distribution of the state of the first observation: 

 ̂= 
       ̂

       ̂        ̂
 ,      (g) 

and p(  =2;  ) = 1-. All that is left is to estimate these parameters using maximum 

likelihood estimation. The joint probability distribution of our observed data given 

our sample (y1, …, yT) loss observations over T time intervals, and (s1, …, sT) 

matching states that could be high or low in each period looks like: 

                       

    |           |                   |               |            

    |                .    (h) 

The last term in equation (h) is the unconditional distribution of unobserved state of 

our first observation (g). The sample likelihood function is the summation of (h) over 

all possible values of the states vector: 

              ∑   
  

∑                      
 
  .  (i) 
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This would imply    summations for each possible value of the   parameters, which 

remain unknown to us. The authors decide to use the entire sample of ex post 

information in order to make an inference on the state that the process was in at some 

date t rather than just use past information and refer to it as being the smoothed 

inference:  

    |                (j) 

Equation (j) is the main difference between a mixture of normal distributions model, 

which supposed each draw to be independent, and the model put forth by Engel and 

Hamilton (1990).  

 

An advantage of their model is the flexibility it provides by not imposing any 

restrictions on the parameters that will result from the maximum likelihood 

estimation. Those parameters are simply the first-order conditions for the 

maximization of summation (i) with respect to  . The MLE  ̂ satisfy
2
: 

 ̂ =
∑    

 
    (    |          ̂)

∑  (    |          ̂) 
   

 , j=1, 2   (k) 

   ̂
 =

∑      ̂  
   

    (    |          ̂)

∑  (    |          ̂) 
   

 , j=1, 2   (l) 

    ̂=
∑  (           |          ̂) 

   

∑  (      |          ̂)  ̂  (    |          ̂) 
   

         (m) 

   ̂=
∑  (           |          ̂) 

   

∑  (      |          ̂)  ̂  (    |          ̂) 
   

   (n) 

This allows the data to dictate how the process moves. If (m) or (n) are large, regime 

switches will be less likely and frequent. The two first moments of the hypothesized 

distributions are pretty straightforward. If we could simply observe the state in which 

the process was in at each period, the probabilities in (k) and (l) would simply be 1 or 

0, and we would simply have the average and standard deviations of each distribution 

                                                             
2 As demonstrated thoroughly in Hamilton (1990) Appendix A. 
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separately. Instead, we have the smoothed probabilities that each observation is in 

one distribution based on our entire sample, which will be used to weight to construct 

an estimate of (k) and (l). Analyzing the Markov transition probabilities (m) and (n) 

in the same fashion, if the states could be observed, the probabilities being once 

again 1 or 0, we are simply left with, for a particular state, the number of times the 

process stayed in that same state as a fraction of the total number of times the process 

one period had been in that state one period before (    ). Formulae (m) and (n) 

account for the smoothed probabilities with the addition of a slight modification for 

the initial condition (g) in the denominator. 

 

Engel and Hamilton (1990) warn that singularities in the likelihood function arise 

when estimating the parameters for i.i.d. mixtures of normal distributions. An 

example they cite is when the mean of the first regime is assigned the value of the 

first realization in the sample (        and the variance of the regime is permitted 

to vanish (since we do not make any constraining assumptions). In this scenario, the 

likelihood function (i) diverges toward infinity
3
.  For this reason, the authors utilize 

an adaptation of the EM algorithm
4
 elaborated by Hamilton (1990)

5
 which includes 

Bayesian priors to solve for the   parameters. Their method calks the MLE as a 

special case where the diffuse priors ===0. Formulae (k) and (l) are thus 

replaced by: 

 ̂ =
∑    

 
    (    |          ̂)

 ∑  (    |          ̂) 
   

 , j=1, 2   (o) 

    ̂
 =

 (
 

 
) ∑ (    ̂ )

 
  

    (    |          ̂)  
 

 
     ̂  

 

  
 

 
  ∑  (    |          ̂) 

   
 , j=1, 2 (p) 

                                                             
3
 Everitt and Hand (1981) 

4 Dempster, Laird, and Rubin (1977) 
5 Two-state, first-order Markov process with no autoregressive dynamics example p.52 
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The point is to indirectly guide the MLE estimates towards concluding that there is 

no difference between the regimes. This is done by replacing our original likelihood 

formula (i) with this one that includes the priors: 

log p(          )-(    
 )/(2  

 )- log   
 - log  

 -/  
 --/  

  (q) 

The EM algorithm begins by setting initial values for the population parameters  . 

Using these parameters and the full sample of observations (        , calculate the 

smoothed probabilities using an iterative processing of the data
6
. These probabilities 

will then be used to calculate (o) for both distributions, which in turn will be used to 

calculate (p), (m), (n) and by default (g). With our new vector of parameters  , we 

can recalculate new smoothed probabilities utilizing the same algorithm as the first 

step. Each new iteration and recalculation of the weights will increase the value of 

the likelihood formula until a pre-determined convergence target specified in the 

code is reached, where we deem the marginal value added is negligible and the 

operation has reached the maxima.  

 

We will test this method of using the conditional expectations for the unobserved 

scores in the EM algorithm with Bayesian priors as done first in Engle and Hamilton 

(1990) but applied in the context of a two-regime model as seen in Dionne, François 

and Maalaoui Chun (2010) to see whether operational risk contains high and low 

regimes and if the dynamics of it change whether we are in one or the other of those 

regimes.  

 

 

 

 

 

 

                                                             
6Algorithm for calculating the smoothed probabilities is exposed in Appendix B of Hamilton (1990). 
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3. Model 

The model is above all a scaling mechanism allowing for the integration of external 

operational loss data that stem from other bank holding companies with 

heterogeneous control environments. The normalization formula used to scale the 

losses is identical to the one found in Dahen and Dionne (2010) with the exception 

that we include the effect of the specific low or high regime at each period. We 

basically explore the existence of a power-law relationship between the magnitude of 

operational losses and the size of the institution but include the bank’s specific 

control environment as suggested by Shih (2001). 

 

Similar to Equation (a) in Na et al. (2006), it is assumed that the loss amount can be 

broken down into two components: one that is common to all bank holding 

companies (in our case) as well as an idiosyncratic one. This implies that each 

operational loss from a particular bank at a given time can be decomposed in the 

following manner: 

       =            
             ,                                 (1)   

where   is the common component that remains constant for all time periods “t” and 

banks entities “i”. This can represent the aggregate effect of macroeconomic, 

geopolitical, and other broad factors such as these which affect the population of 

bank holding companies as suggested in Dahen and Dionne (2010). Its other 

component is variable and specific to the institution where the loss was observed. It 

is comprised of a variable for the institution’s size at the time of the loss and a 

function of   variables specific to the loss event as well as to the bank’s specific 

control environment with their relative scaling coefficients represented by the vector 

   The scaling exponent “ ” associated with a size proxy for the bank institution will 

serve as the indirect factor that links together a bank’s internal loss distribution with 

the one that can be fashioned from the external database with our normalization 

formula. We take the log-transformation of this equation to linearize it: 

             = Log (                                  ). (2) 
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From the idea that all banks share a common component in their operational losses 

comes a similar equality as the one observed in Equation (b), but in this case it is 

between losses from different bank institutions instead of business lines. This leads 

to the normalization formula that will be applied to external operational losses in 

order to find their internal equivalent if they were to happen to the bank we are 

analyzing. By isolating   in Equation (1), we find an equality between the 

hypothetical loss that would be found in the internal database called       and the 

one observed in the external database, called      :  

     

     
            

 = 
     

     
            

. 

Theoretically, this equality between our internal rescaled losses and any loss 

observed in the external database holds through the existence of a ratio, as described 

by the self-similarity property of power-laws. This ratio is found by simply isolating 

      in the last equation: 

      =         
     

 
     (    )

     
 
     (    )

.                                  (3) 

The coefficients necessary to implement the normalization formula (  , ) are 

calculated using the methodology explained in section 5.  
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4. Data    

4.1 Description of datasets 

This research analyzes data from Algo OpData provided by Algorithmics Inc. which 

collects public source information on operational loss events stemming from various 

categories of companies around the world. We utilize only events that fall into the 

“Business and Finance” category between the years 1994 and 2010, thus adding 7 

years of information to the empirical work done by Dahen and Dionne (2010). The 

inclusion of loss data from the financial crisis of mid-2007 is in itself an innovation 

over most of the current literature. Algo OpData more specifically reports losses in 

excess of 1M$ and provides additional information on each event such as the specific 

business lines implicated and the subsequent risk type (secondary and tertiary ones 

are disregarded in our model) following the standard categories put forth by the 

Basel Committee, a brief description of each event, the parent company as well as an 

array of information on the institution suffering the loss, such as the location, year, 

amount of assets, employees, revenues, etc. Most of that additional information about 

the company tends to be unreliable and will be disregarded in our analysis. 

 

The use of external data exposes this thesis to a multiple of potential biases. The first 

is that our sample of losses has a truncation point that might render it not 

representative of the population of operational losses. This potential selection bias 

must be accounted for. It is possible that some banks may not even be predisposed to 

have a loss of such amplitude, all the while having an operational loss nonetheless. 

To account for this, additional information on these institutions is necessary in order 

to create a sample selection model as described in Heckman (1979) and which will 

be further discussed in section 5. With that in mind, we restrict our analysis on the 

population of Bank Holding Companies (BHCs) from the United States with a 

minimum asset-base of $1 billion taken from the Federal Reserve of Chicago 

database. This gives us access to a plethora of variables on each institution. The full 

description of the variables retained for each econometric model is also included in 

section 6. 
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4.2 Unique challenges 

Combining the two databases came with a set of considerable challenges. The Algo 

dataset does not include a uniform matching variable such as the unique CUSIP code 

of each institution. The only way to correctly attribute the operational losses from the 

Algo OpData dataset to the BHCs that suffered them and whose idiosyncratic 

information is found in the Federal Bank of Chicago database is through the firm 

name, and since the Algo name variables did not seem to be standardized, there was 

no straightforward method to go about matching them. It required a more 

sophisticated tool. For the period between 1994 and 2010, the Federal Bank of 

Chicago database includes 1,137 different BHCs having over $1 Billion in total 

assets spanning 7,038 annual observations while the Algo OpData database has 4,557 

operational loss events of over $1 Million in the Business & Finance industry; an 

automated solution was needed. Compustat has developed a name-matching software 

based on an algorithm that finds equivalencies between abbreviations and other 

differences in spelling. One of its main advantages is an option that allows the user to 

adjust the degree of leniency of the exactitude of the match. The results were not 

convincing at any degree in our case.   

 

We developed a method that substitutes out problematic punctuations and 

abbreviations that caused these aberrations. Examples include points, commas, 

parentheses and all their contents to name a few. This was performed on both 

datasets in order to reduce the expressions to a bare minimum. A fail-safe method 

was then performed to make sure the losses were not attributed to another BHC due 

to the fact the reduction technique had created the same expression for different 

institutions. When a match was found, it tests to see if an identical expression that 

originated from a different starting firm name exists. This entire process was 

performed iteratively with different variations of removed expressions in order to 

find the optimal combination which resulted in the most matched operational losses 

to BHCs. The method retained removed 30 expressions in all. The matches were 
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reviewed manually because of a small margin for error and yielded 623 operational 

losses found. 

 

Another complication derived from the reporting methodology used by Algo OpData 

for operational loss events. When a merger or acquisition is recognized, the target 

company and all of its losses from its inception are retroactively introduced into the 

acquiring institution. Left alone, the use of our final database would overestimate the 

amount of losses suffered by parent companies while entirely underestimating the 

losses of target companies. Such rigour is especially important due to the panel 

nature of our data. Furthermore, target companies are generally smaller in size that 

their acquirers. These smaller companies are also the ones that would most probably 

be affected by a selection bias due to the $1 Million loss threshold, since they are the 

most likely not to be able to sustain a loss of such magnitude. The other risk is 

therefore that the procedure implemented by Algo OpData would overestimate 

selection bias risk if less operational losses are reported in smaller companies. An 

example of this problem is Merrill Lynch, an institution with a great deal of 

operational risk exposure being retroactively included under the parent name of Bank 

of America Corporation, with numerous loss events included falsely before their 

September 2008 merger date.  

 

The risk can be narrowed down to matched losses that may actually belong to the 

company that was the target of a merger or acquisition at a later date, thus  falsely 

leaving the BHC lossless when in fact a loss did occur, and adding a loss to the future 

parent company when there is none. To cope with this, we used the SDC Platinum 

database by Thomson Reuters which reports information on mergers and acquisitions 

as well as many other events globally such as syndicated loans, new issues, private 

equity, etc. By refining our search to mergers and acquisitions affecting bank holding 

companies in the United States for a period which spans until mid-2011 because that 

is the effective date our Algo OpData was assembled, which means a merger or 

acquisition even after our studied period can affect the data. Luckily, the SDC 
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Platinum database includes variables for CUSIP of both targets and acquirers. We 

then extracted the CUSIP of the BHCs that had matched losses (available on the 

Federal Reserve Bank of Chicago database) and cross-referenced them with the 

CUSIP of acquirers.  

 

4.3 Setup 

Two final databases will be considered in this study, an annual one ranging from 

1994 to 2010, and a quarterly one between 2001 and 2010. The choice of period for 

the quarterly database is based on the introduction of the Basel regulation. A 

reporting bias is evident in the data before that period; mainly a clustering of events 

on January 1
st
 and December 31

st
 of every year before 2001. This does not affect the 

annual regression, but would render a quarterly analysis quite flawed. The added 

observations are needed to increase the number of periods for the Markov regime-

switching algorithm, going from 16 annual periods to at least 40 acceptable quarterly 

ones. A key variable was reported cumulatively at each quarter and was annualized 

for regression purposes. We deal with real variables that were adjusted for inflation 

using the CPI-U less food and energy index
7
. 

 

4.4 Assumptions 

We ensure that the losses reported in the database are accurate and are not based on 

rumours or estimations. On the other hand, a debatably strong hypothesis is that it 

contains the entire population of losses in excess of $1 million. Some would argue 

that smaller operational losses may be easier to mask than large ones and may have 

eluded public exposure altogether thus resulting in an under-reporting bias. This also 

leads to saying that all types of losses are equally probable to be found in the data; 

that some categories of risk that may be more damageable to a company’s reputation 

are as likely to be found as another. It is also important to note that although this 

study does not cover a full approach for scaling as in Dahen and Dionne (2010), any 

                                                             
7 From the Bureau of Labor Statistics website : http://www.bls.gov/cpi/ 

http://www.bls.gov/cpi/
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further work to develop the frequency model would have to make the assumption 

that there is no correlation between the loss amount and the probability of it being 

reported such that the two distributions (frequency and severity) are independent. 
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5. Methodology 

The goal is to populate the values of our scaling exponents in Equation (3). We 

elaborate a two-step econometric model as proposed in Heckman (1979) to test for 

and deal with possible selection bias. The source of bias comes from the minimum 

loss reported of $1M in the Algo OpData database. Since our losses are not randomly 

selected from the population, we cannot simply base a model predicting operational 

losses from it without further consideration; it may create a rightward shift from the 

real mean of the data. Seen another way, our dependant variable        is censored 

therefore we may have an overconcentration of zeros which comes from the fact that 

some losses under $1M that may exist in the population of operational losses are 

instead not reported.  

 

5.1 Heckman first-stage 

The first step is to formulate a model for the probability that a bank holding company 

suffers a loss (which in our case is over 1M$) and is calculated using the entire 

sample of data. The second step then calculates the magnitude of the loss, conditional 

on there being one, calculated using only a subset of sample data. The selection 

equation takes this form: 

{
                  

   

                  
   

   , where    
  =    

   +   ,              

and the loss amount equation is estimated using GLS: 

{
       

                              

                            
 , where    

  =    
   +   .   

Z is the realization of a latent continuous variable    that follows a dynamic 

measuring its exposure to operational risk in a way that may help explain the 

presence of banks in the loss population (   
     The probit model used is estimated 

using STATA software. The logit model did not yield visibly different results 

(regression results available upon request). The Heckman model is a Tobit type II 

model, but we cannot use a generalized Tobit type II in our case since we deal with 
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loss amounts conditional on there being a loss (severity), and the tobit model does 

not exclude them. 

 

When a loss is observed,      is the observed realization of another latent variable    
 . 

The importance is that both error terms (         be normally distributed, independent 

with a zero mean. The errors are assumed to have a correlation  . It is also assumed 

that they are part of a bivariate normal density. From known results in theory of 

continuous multivariate distributions
8
, the inverse Mill’s ratio, which is a monotone 

decreasing function of the probability that an observation is selected in the sample, 

can be calculated using the latent dynamics from the probit on all the data. Including 

the inverse Mill’s ratio into the OLS regression helps produce non-biased estimates. 

If  =0, then OLS would have provided unbiased results to begin with. It is equivalent 

to saying that the inverse Mill’s ratio included in the OLS is not statistically different 

from zero.  

 

The variables we will include in the first-step probit are the same ones created from 

the BHC data in the Chicago Federal Reserve database found in Dahen and Dionne 

(2010).   The selection model includes three explanatory variables to help identify 

factors that may explain the probability of an institution having a loss of over 1M$.  

 Mean salary is calculated as the sum of salaries and employee benefits 

divided by the number of full-time employees. This is meant to grasp the 

level of sophistication of the institution. More so, it can be thought that higher 

average salaries may be related to higher quality employees, thus we expect it 

to have a negative impact on the probability of loss. The better quality of 

management argument may somewhat be counterbalanced by risk incentives 

underlying higher salaries.  

 Bank capitalization is calculated as the capital divided by total assets. This 

variable is a measure of the bank’s moral hazard. Banks that are more 

                                                             
8 See Johnson and Kotz (1972) 
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capitalized are probably covering the extra risk they are exposed to. We can 

therefore expect them to have more extreme losses. It should therefore have a 

positive effect on the probability as the ratio gets bigger.  

 We use annual growth of gross domestic product
9
 as a proxy for the 

macroeconomic environment. Chernobai et al. (2010) argue that more losses 

are observed in an economic downturn. One of the reasons cited are the fact it 

becomes harder to mask a loss as cash becomes scarcer in the company. 

Adding a size proxy would be quite a logical step in explaining the probability of a 

fixed-level minimum loss, but we opt not to do so because of correlation with the 

Inverse Mills ratio that is to be calculated from the residuals of this regression.  

 

A new variable explored will be a dichotomous one we created for when the 

operational risk process is deemed to be in a high regime (higher mean and variance) 

by the Markov endogenous regime-switching model described in section 2.  It is 

intuitive to think that if operational risk dynamics were in a higher mean and 

variance state there may be a larger probability of incurring a conditional loss of over 

1M$.  

 

The Markov endogenous regime-switching algorithm as described in section 2.2.2 is 

applied using the annual (1994-2010) and quarterly (2001-2010) datasets on the 

dynamics of our variable to be explained, the severity of operational risk losses per 

period (  ). These are determined as the mean value of the natural logarithm of all 

operational losses that occurred during each period since the process does not operate 

on the identity of each institution that incurs a loss but rather the time period in its 

entirety. We iterate the smoothed probabilities (j) in order to find the first-order 

conditions (m), (n), (o) and (p) that satisfy the maximum likelihood estimation of our 

generalized objective function (q) that include the Bayesian priors in order to avoid 

the singularity mentioned by Engle and Hamilton (1990). This is done using GAUSS 

                                                             
9 Found on the U.S. Bureau of Economic Analysis website: http://www.bea.gov/ 

http://www.bea.gov/
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software. When the MLE   ̂ parameters are found, we analyze the final smoothed 

probabilities (j) as provided by the algorithm and create a dichotomous variable for 

each period when that probability is equal to or greater than 0.5 ( (  |          ̂) 

  0.5), where state 1 (    is the high endogenous regime state.   

 

5.2 Heckman second-step 

Using the residuals from the Heckman (1979) first step probit regression, we create 

the Inverse Mills ratio that will be introduced in our second step regression. We 

create this variable manually using STATA rather than use an all-in-one Heckman 

process. The ratio is the fraction from the following property of the truncated normal 

distribution: 

   |        
 (

   

 
)

   (
   

 
)
 ,  

where   is a random variable,  is our constant truncation point (0),   and   are the 

two first moments of the normal distribution of our residuals.  

 

For the second step of the Heckman (1979), we wish to determine the coefficients of 

formula (2) as was done in Dahen and Dionne (2010) while incorporating the 

regime-based model format adopted by Dionne, François and Maalaoui Chun (2010) 

to see whether it helps explain the dynamics of operational risk while in a high or 

low regime. We can rewrite formula (2) as: 

             = Log (                      ∑          +∑           , (4) 

where vectors  ,   ,    are the vectors that will be used in the normalization formula 

(3) to scale external losses. We keep to the different variables covered in Dahen and 

Dionne (2010) to explain the variation in the logarithm of operational losses: 
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 Total Assets is the proxy used for size since it had the highest correlation with 

our dependant variable. This is very similar to the works of Shih (2001) or Na 

et al. (2006). 

 A dichotomous variable for each of the business lines has been included in 

the model. These are the standardized classes put forth by the Basel 

Committee: retail brokerage, trading and sales, commercial banking, retail 

banking, agency services, corporate finance, asset management as well as 

payment and settlement.  One will be excluded and used as reference to avoid 

a binary trap. The very different nature specific to each business line’s 

activities justify well their inclusion in the model. 

 Also in accordance with the Basel Committee’s standard definition, we 

include the different risk types that can be encountered in operational risk: 

damage to physical assets, clients/products/business practises, 

employment/practises/workplace safety, external fraud, internal fraud and 

execution/delivery/process management as well as business disruption/system 

failures, omitting one for the dummy trap.  

The difference with Dahen and Dionne (2010) is that we do not include dichotomous 

variables for time (years or quarters) because of collinearity issues that arise from the 

regime-based structure we employ. Equation (4) actually takes the shape of (d) with 

size, business lines, and risk types forming vector    
  and the coefficients for scaling 

depend on the operational loss process being in a high or low regime.  

 

 

 

5.3 Validation of the scaling mechanism 

The power-law relationship described in section 3 can be verified empirically once 

we scale the external losses to the level of one bank using formula (3). Due to 

parsimony of our sample data, we restrict the scaling to observations that fall in the 
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observed interval (maximum and minimum) of operational losses of the analyzed 

bank holding company.  

 

We will first use a one-sample Kolmogorov-Smirnov test
10

 to verify that the internal 

and normalized data do not reject a specific reference distribution. We then proceed 

with a two-sample Kolmogorov-Smirnov test to conclude that they do (or do not) 

statistically differ from each other, mainly in their moments. If we can show that the 

two distributions do not differ statistically from each other, then we can conclude 

with greater certainty than by using the method proposed in Na et al. (2006) exposed 

in section 2.1.3 that the scaling method is acceptable.  

 

A great advantage of the two-sample Kolmogorov-Smirnov test is that does not 

require a specific reference distribution to compare the two distributions. This is a 

very useful property since we are dealing with extreme value theory distributions and 

would rather like to verify, irrespective of a specific distribution, if the two are not 

statistically different. 

 

The method analyzes the data as an empirical distribution function (EDF) and creates 

a cumulative distribution function of n steps: 

       
                                   

 
 . 

These are individually compared to what the values should have been given the 

sample’s first moments at each of those steps, more specifically, the supremum (least 

element) at each step, and the equivalent steps from the cdf of the distribution it is 

being compared to.  The two-sample version of the test performs a similar process 

but uses the EDF distributions of both samples instead of the sample and a generated 

known type of cumulative distribution function.  

 

                                                             
10 See Kolmogorov (1933) for the theoretical founding of this particular test. 
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The tests will be done using SAS software because of its superior flexibility over the 

STATA version of the Kolmogorov-Smirnov test. The p-values generated by the 

software are based on statistical values for the maximum differences calculated and 

exposed in Smirnov (1948). 
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6. Empirical Analysis 

As briefly mentioned in section 5, we analyze a database of annual losses of bank 

holding companies between 1994 and 2010 as well as a quarterly database for added 

observations between 2001 and 2010. The bank holding companies included in the 

final databases are the ones with over 1B$ in total assets and values are in 2010 (or 

2010 fourth quarter) USD.  

 

6.1 Annual regression 

The data lead us to believe the distribution of losses has a large right tail (positive 

skew) and would probably fall under those generally found in extreme value theory. 

Table 1 demonstrates how diverse the data is with maximum values that are 

exponentially bigger than even the median of the variables for loss or total assets, 

consequentially giving us very large standard deviations and kurtosis.  

Table 1- Descriptive Statistics (1994-2010) 

 

 

 

 

 

 

 

 

 

 

 

 

 Total Assets Loss 

Number of observations 7037 623 

Average (M$) 79,651 102.74 

Standard Deviation (M$) 305,140 636.79 

Kurtosis 28.45 148.37 

Skewness 5.22 11.76 

Minimum (M$) 1,000 1.01 

25
th

 Percentile (M$) 1,691  2.81 

Median (M$) 3,222 7.81 

75
th

 Percentile (M$) 12,002 31.72 

Maximum (M$) 2,297,755 8624.64 
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The data give us an early indication that the probability of having a loss is fairly low, 

as only 125 banks of the 1,137 had losses over $1M between 1994 and 2010. The 

variables used in the first step probit regression are mean salary, real GDP growth, 

bank capitalization as well as the dichotomous variable created for the high regime. 

The first and last percentiles of mean salary were replaced by the inclusive value of 

the 1
st
 and 99

th
, 33 and 208 respectively. This makes 141 values of the 7037 that 

were changed. Although the average of mean salary was 68,000$ per year, some 

bank holding companies were displaying nonsensical values such as 1,000$ and 

3M$. Excluding them would have made us lose 19 of our 623 losses from JP 

Morgan, Goldman Sachs and Morgan Stanley. This is probably due to some bonus 

pay during the end of the crisis that was included in the salary and benefits variable 

used to calculate mean salary. We made sure to verify that this correction did not 

cause any major differences in the regression and have included an additional 

regression for comparative purposes in the Appendix. 

 

As depicted by the shaded area in Figure 1, the high regime found in the natural 

logarithm of the average operational losses per year starts in 2003 and continues until 

the very end of the period studied. It is easily observable that the level of losses 

conditional that there be any (the severity) have risen significantly as opposed to the 

1994-2001. Despite the fact we can see peak and trough dynamics with peaks easily 

distinguishable in 2005 and 2008, the level of losses have not since regressed back to 

the levels prior to 2001. Two vertical lines were included for the beginning and end 

of the last NBER recession (December 2007 until June 2009
11

). Dummy variables 

would have been too late to capture the rise in loss levels and would not have 

included the 2003-2007 rise, or the one visible at the end of the period; NBER 

announcements that came around a year later (December 2008 and September 2010) 

would have been even less precise.  

                                                             
11 As advocated on the website of the National Bureau of Economic Research: 
http://www.nber.org/cycles.html 

http://www.nber.org/cycles.html
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Table 2- Markov endogenous regime-switching parameters (Standard errors) 
 

Table 2 displays the parameters that populate the 

MLE  ̂ as a result of the Markov endogenous 

regime-switching algorithm. Since it was run on the 

natural logarithm of the mean of all annual 

operational loss events observed, the parameters are 

also in LN form, as is Figure 1. The  ̂ indicates the 

first observation probably came from the first 

distribution, which happens to be the lower mean 

and variance one that spans the period between 1994 

and 2003. The high     and     values testify to the 

reluctant behavior of the process to revert back to 

historical level of losses.  

Parameters  

    2.775 

(0.205) 
 

   4.488 

(0.420) 
 

   0.320 

(0.155) 
 

   1.205 

(0.607) 
 

    0.937 

(0.076) 
 

    0.932 

(0.083) 
 

  

 ̂     0.516 

Figure 1- Average Annual LN (operational losses) between 1994-2010 
Note: shaded area corresponds to the high endogenous regime while the two vertical lines 
correspond to the beginning of the latest NBER recession (Dec. 2007) and its end (June 2009) 
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As for the second step of the Hamilton (1979) model, the OLS will be comprised of 

the natural logarithm of assets, dichotomous variables for each business line and risk 

type, an interaction variable between the high regime and the business lines and risk 

types as well as the inverse mills ratio calculated from the probit residuals which is 

supposed to correct for potential selection bias.  

 

The retail banking business line accounts for 38% of all operational losses observed 

while commercial banking accounts for 20%. Those two categories also had the 

biggest increase of severity in losses during the 2008 crisis. Dahen and Dionne 

(2010) had chosen the Payment and Settlement business line as a reference category 

to omit since it had by far the highest average losses in their database, thus expecting 

negative coefficients for business lines in comparison. Although the average losses 

remain high in that category, the results are a lot more mitigated with the addition of 

new losses between 2004 and 2010 as seen in table 3. 

 

More than 51% of losses are of the clients, products and business practises risk type, 

which also accounts for 89% of almost all operational loss severity in our database. 

The losses are also on average a lot bigger when they stem from that type. Business 

disruptions have only been observed two times, and for minimal loss amounts. It will 

serve as our omitted category; we expect positive coefficients for the other 

categories. See statistics in table 4. 
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Table 3- Business Lines statistics (1994-2010) 
Note : Results are in M$ according to the business lines in which the operational losses occurred. These 
include RBr: Retail brokerage, PS: Payment and settlement, CF: Corporate finance AM: Asset management, 
TS: Trading and sales, AS: Agency services, CB: Commercial banking, RB: Retail banking 

 

Table 4- Risk Type statistics (1994-2010) 
Note : Results are in M$ according to risk types. These include DPA: Damage to physical assets, CPBF: Clients, 
products, and business practises, EPWS: Employment practises and workplace safety, EF: External fraud, IF: 
Internal Fraud, EDPM: Execution, delivery, and process management, BDSF: Business disruption and system 
failures. 

 

We created the interaction variables between the high endogenous regime and the 

business lines and risk types from the matching periods. The coefficients are to be 

added to the ones found in the low regime for those observations as shown in (e). 

 

Regression results for the 2-step Heckman (1979) process using the same variables as 

Dahen and Dionne (2010) are exposed in table 5 in order to get an idea of the 

marginal value added of our expanded dataset, which will be compared with our 

method exposed in table 6.  

 

LOSSES RBr PS CF AM TS AS CB RB 

Average 10.36 83.19 533.23 85.15 104.68 48.04 28.15 106.455 

Number 73 29 41 46 49 23 124 238 

Std. Dev.  17.92 105.39 1,477 149.82 212.62 94.94 56.29 792.63 

LOSSES DPA CPBP EPWS EF IF EDPM BDSF 

Average 44.44 177.22 13.61 23.14 21.23 43.73 4.22 

Number 3 216 19 60 73 32 2 

Std. Dev.  47.13 879.07 22.60 45.02 54.19 130.84 2.16 
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Table 5- Dahen and Dionne (2010) regression with new data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Coefficient (robust P-value) 

Probit       

Bank_capitalization -0.3954 
(0.375) 

Mean_salary 0.0131
*** 

(0.000) 

Real_GDP_growth 0.0285
** 

(0.008) 

Constant -2.3607
*** 

(0.000) 

Pseudo R
2
 0.0858 

Regression Equation  

Constant -0.7886 
(0.248) 

Log_assets 0.1748
*** 

(0.000) 

Retail Brokerage -1.7072
*** 

(0.000) 

Trading and sales -0.6566 
(0.106) 

Commercial banking -0.6212
** 

(0.017) 

Retail banking -0.8366
*** 

(0.009) 

Agency services -0.3865
 

(0.217) 

Corporate finance 0.3934
 

(0.277) 

Asset management -0.2045
 

(0.640) 

Damages to physical assets 0.4279 
(0.788) 

Clients, products, and business practices 1.7749
*** 

(0.000) 

Employment, practices and workplace safety 1.3202
***

 
(0.000) 

External fraud 1.4589
***

 
(0.000) 

Internal fraud 1.0000
***

 
(0.001) 

Execution, delivery, and process management 1.3370
***

 
(0.000) 
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(GLS second stage continued from table 5) 

 

 

 

 

 

 

 

 

Year_1995 0.2624 
(0.349) 

Year_1996 0.3250 
(0.222) 

Year_1997 0.1990 
(0.467) 

Year_1998 -0.0078 
(0.975) 

Year_1999 0.1562 
(0.560) 

Year_2000 0.1011 
(0.605) 

Year_2001 -0.2716 
(0.330) 

Year_2002 0.4163
*
 

(0.067) 

Year_2003 0.4981
**

 
(0.037) 

Year_2004 0.6696
***

 
 (0.001) 

Year_2005 0.0657 
 (0.814) 

Year_2006 -0.2223 
 (0.367) 

Year_2007 0.4330  
(0.123) 

Year_2008 0.8021
***

 
 (0.004) 

Year_2009 0.3591 
 (0.261) 

Year_2010 0.3452  
(0.212) 

Inverse Mills -0.0238 
(0.906) 

R
2
 22.31% 
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Table 6 – Our model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Coefficient (robust P-value) 

Probit       

High Regime -0.1713
***

 
(0.000) 

Mean_salary 0.0135
*** 

(0.000) 

Constant -2.2589
*** 

(0.000) 

Pseudo R
2
 0.0858 

Regression Equation  

Constant -0.8824 
(0.230) 

Log_assets 0.1720
*** 

(0.000) 

Retail Brokerage -2.6821
*** 

(0.000) 

Trading and sales -0.5010 
(0.540) 

Commercial banking -1.8942
*** 

(0.000) 

Retail banking -2.2585
*** 

(0.000) 

Agency services -1.3648
***

 
(0.001) 

Corporate finance -1.3648
***

 
(0.001) 

Asset management -1.1750
*
 

(0.071) 

Damages to physical assets 2.1324
**

 
(0.024) 

Clients, products, and business practices 3.0503
*** 

(0.000) 

Employment, practices and workplace safety 2.7590
***

 
(0.000) 

External fraud 2.9259
***

 
(0.000) 

Internal fraud 2.3471
***

 
(0.000) 

Execution, delivery, and process management 2.7520
***

 
(0.000) 
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(GLS second stage continued from table 6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Regime   Retail Brokerage 1.0827
**

 
(0.032) 

Regime   Trading and sales 0.0646 
(0.945) 

Regime   Commercial banking 1.6624
***

 
(0.000) 

Regime   Retail banking 2.0364
***

 
(0.000) 

Regime   Agency services 1.0864
**

 
(0.048) 

Regime   Corporate finance 2.8226
***

 
(0.000) 

Regime   Asset management 1.2279  
(0.122) 

Regime   Damages to physical assets -3.5635
***

 
(0.000) 

Regime   Clients, products, and business practices -1.2180
***

 
(0.003) 

Regime   Employment, practices and workplace 
safety 

-1.7415
**

 
 (0.013) 

Regime   External fraud -1.6736
***

 
 (0.000) 

Regime   Internal fraud -1.4076
***

 
 (0.000) 

Regime   Execution, delivery, and process 
management 

-1.4504
***

 
(0.004) 

Inverse Mills 0.0703 
 (0.682) 

R
2
 23.20% 
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Table 5 exposes the model put forth by Dahen and Dionne (2010) with the addition 

of 323 new losses and 3,387 new observations between 2004 and 2010 to best grasp 

the marginal effect of the database. The probit variable coefficients have the same 

signs, as would be expected. It is clearer that bank capitalization is not a very good 

indicator of the probability of incurring a loss in our database. As for the GLS 

random effects targeted around the bank identities with robust p-values, many 

interesting differences become evident as opposed to their original regression 

spanning the 1994-2003 period available in table 13 of Appendix A. 

 

The R
2
 diminishes although that is not disastrous since variable significance is the 

ultimate goal for the scaling mechanism. The log assets variable remains positive as 

expected and statistically significant at the 99% level, which is crucial since it is our 

main scaling variable. The business line results are a lot less appealing, going from 5 

statistically significant in the original article to only 3 in this regression. All their 

coefficients become lower, but that is to be expected since our reference category, 

payment and settlement is not necessarily the one with the largest average 

operational losses anymore as witnessed in table 3. The risk type variables become 

more significant, with 5 statistically significant variables versus 4 in the original 

article. This gives a final count of 10/14 variables available for the scaling formula as 

opposed to 9/14, which can be considered an amelioration. The inverse mills ratio is 

even less significant, thus concluding that selection bias is not really a problem for 

our regression.  

 

The dichotomous variables for the years, not useful in Dahen and Dionne (2010) 

have taken on meaning. Years 2002, 2003, 2004 and 2008 become statistically 

significant, and contribute positively in the determination of loss levels, which is 

intuitive since they correspond to easily visible peaks in Figure 1. This does not 

replace the regime variable we are analyzing in the regression found in table 6, since 

they do not allow us to test for a change in dynamics of the operational loss process. 
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It indirectly makes the assumption that the dynamics of operational risk remain 

constant throughout the entire period studied, despite the peaks and higher levels 

observed post 2002.  

 

Table 6 analyzes that possibility by using the interaction variables composed of the 

high regime dichotomous variable with the business lines and risk types. We do not 

include an interaction with log assets since we do not expect its effect to change from 

one regime to the other. The results are very pleasing when compared to those of 

table 5. The first thing we notice is that the real GDP growth and bank capitalization 

variables lose their statistical significance with the introduction of the dichotomous 

variable for when the process is in a higher regime, which is as statistically 

significant as mean salary. The mean salary variable remains positive and significant 

in explaining the probability of higher losses, possibly because of risk taking 

involved when large banks have a high relative percentage of qualified employees.  

 

Besides the problematic business line of trading and sales, all other business lines 

and risk types are statistically significant at the 90% confidence level which is the 

one retained by Dahen and Dionne (2010) to be used for the scaling mechanism and 

most even at the 99% level. We observe that business lines are all negative and risk 

types positive during the low regime, which is somewhat expected but reverse during 

times of high regime. The business line coefficients, when the interaction coefficients 

are added to the low regime ones in order to get the high regime coefficients show 

that their effects almost completely disappear.  

 

The business lines, although retaining their statistical significance quantitatively 

explain very little in the operational loss amounts when the process is in an 

endogenous high regime. The risk type coefficients also reverse, but on average 

remain positive in explaining the loss amounts during those same periods, making 

the drivers of explanatory power the log assets and risk types post 2002. Besides 
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explaining an additional 1% of loss amounts, the new model proposed allows us to 

utilize 13 of 14 potential scaling variables, which is a great deal better than the 9 

available from the regression in table 5. It is important to understand that the Markov 

endogenous regime-switching algorithm is based on alarmingly low amount of 

observations: 16 yearly periods that include the average of the natural logarithms of 

operational losses. Although it is difficult to defend the use of this iterative process 

on such a small sample, we expect the relatively large standard deviation exposed in 

table 1 to help in determining concrete differences between the two distributions. We 

also expect the precision of this method to increase as time passes and more data on 

operational losses are collected. It would also be interesting to see if levels will ever 

revert to where they were prior to 2001. Results of the same regression performed on 

annual data that exclude the 1
st
 and 99

th
 percentiles rather than replace them as was 

done here is included in the Appendix in table 17 to show that there was no great 

distortion in using this dataset in particular. Besides a slight decrease in R
2
, no large 

deviations in any of the variables can be observed. 

 

Given the importance of the scaling variables and the relatively small size of our 

conditional loss sample, we proceed by testing the robustness of our variables during 

the second stage GLS process that is used in the normalization formula. Results are 

exposed in table 7. We test, as Shih (2000) had done to see if the size proxy has a 

statistically significant relationship with the loss amounts, in our case log losses. 

Unlike they had done, we include the inverse mills ratio in case of selection bias 

from the reporting of our loss database.  
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Table 7- Robustness tests 

 

 

Regression Equation                        Model 1                         Model 2                    Model 3 

Constant 0.4933 
(0.484) 

-0.6867 
(0.287) 

-1.2587*** 
(0.032) 

Log_assets 0 .1911*** 

(0.000) 
0.1567*** 

(0.000) 
0.1696*** 

(0.000) 

RBr   -2.4947*** 

(0.000) 

TS    

CB   -1.7067*** 

(0.000) 

RB   -2.0737*** 

(0.000) 

AS   -1.1814** 
(0.016) 

CF   -1.7569
***

 
(0.003) 

AS   -0.9910* 
(0.232) 

DPA  1.3452 
(0.427) 

2.4300*** 
(0.009) 

CPBP  1.4261*** 

(0.000) 
3.2528*** 

(0.000) 

EPWS  0.6968*** 
(0.005) 

2.9618*** 
(0.000) 

EF  1.2298*** 
(0.000) 

3.1252*** 
(0.000) 

IF  0.6657*** 
(0.001) 

2.5363*** 
(0.000) 

EDPM  0.8669*** 
(0.004) 

2.9530*** 
(0.000) 

Reg   RBr   1.1891* 
(0.086) 

Reg   TS    

Reg   CB   1.7566*** 
(0.000) 

Reg   RB   2.1387*** 
(0.000) 

Reg   As   1.1906* 
(0.100) 

Reg   CF   2.9273*** 
(0.000) 

Reg   AM   1.3309  
(0.154) 

Reg   DPA  -2.6172 
(0.121) 

-3.7492*** 
(0.000) 

Reg   CPBP  0.5349** 
(0.020) 

-1.3178*** 
(0.006) 

Reg   EPWS  0.0026 
 (0.995) 

-1.8687*** 
 (0.001) 

Reg   EF  0.1771 
 (0.435) 

-1.7571*** 
 (0.000) 

Reg   IF  0.3413 
 (0.181) 

-1.4995*** 
 (0.001) 

Reg   EDPM  0.6069* 
(0.074) 

-1.5494*** 
(0.009) 

Inverse Mills -0.2689 
 (0.277) 

-0.1530 
 (0.530) 

0.0813  
(0.650) 

R2 6.16% 13.04% 23.01% 
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We see that log assets stays stable throughout the models studied. Model 1 shows us 

that taken alone, in concordance with the findings of Shih (2000), the size proxy does 

not explain a great deal of the conditional level of losses. Model 2 verifies how the 

inclusion of the risk type variables affect the regression. We see the explanatory 

value more than doubles while the log assets variable stays firm and maintains its 

high level of statistical significance. The low regime coefficients are evidently more 

stable than the interaction ones, although a couple remained significant even though 

more than half (348) of losses are found in the high regime. This could be caused by 

the large overconcentration of losses in the Clients, products, and business practices 

which is the most statistically significant regime interaction risk type variable as seen 

in table 3. This may explain why our model exposed in table 6, which includes the 

business lines that have much more evenly distributed losses, displays much more 

statistically significant results. Model 3 excludes the trading and sales business line 

as it had very inconclusive results as can be observed by the regressions in table 5 

and 6. The results are very convincing as all variables except the regime interaction 

variable for the asset management business line (which was not statistically 

significant in our table 6 regression) are significant at the 90% confidence level. It is 

important to note that the explanatory value for model 3 resembles the one put forth 

in table 6 and the inverse mills ratio remains non-significant for all models analyzed.  
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6.2 Quarterly regression 

As mentioned, we also analyze a regression using a quarterly database to get a better 

sense of the Markov endogenous regimes. Descriptive statistics of this subset of our 

database is found in the Appendix in tables 14, 15 and 16. Ideally, we would have 

had 68 observations, but as mentioned in section 4, there is an evident reporting bias 

prior to the Basel II and the official definition of operational risk. A great majority of 

losses were reported on January 1
st
 or December 31

st
 between 1994 and 2010. 

 

The quarterly average natural logarithm of losses graph in Figure 2 shows additional 

evidence that simply putting a dummy variable for the NBER recession would not 

suffice in capturing the movement in the data. It would not have explained the high 

regime found between the third quarter of 2004 and the first quarter of 2005 lasting 3 

periods as well as the apparent increase in average losses toward the end of the 

examined period which happens to be after the NBER recession ends.  

Figure 2- Average Quarterly LN (operational losses) between 2001-2010 

Note: shaded area corresponds to the high endogenous regime while the two vertical lines 
correspond to the beginning of the latest NBER recession (Dec. 2007) and its end (June 2009) 
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Although the added data should help in identifying regimes in a more precise manner 

and giving more credibility to the Markov regime-switching algorithm results (40 

observations), some new issues arise. It is evident by the multiple peaks and troughs 

of Figure 2 that there is a more intricate bias that continues past 2001; probably 

deeply rooted and associated with accounting methods, mainly with the second 

quarters that seem persistently low.  Losing the years associated with the low regime 

from the annual regression also remove any indication of the historically lower 

operational loss levels in the data. This is very evident by the results of the Markov 

regime-switching algorithm whose results are found in table 8. The means of the two 

theoretical distributions found are a lot closer to one another, which can be expected 

to mitigate the results of the overall regression.  

 

Table 8- Regime parameters  

 

Proof of these concerns is also evident in the regression 

results of table 9. The explanatory power is relatively 

higher (R
2
= 28.62%) than the annual regression but 

causality is mitigated by the loss of statistical 

significance of a few of the potential scaling variables.  

 

 

 

 

 

 

 

 

 

Parameters  

    4.934 

(0.681) 
 

   3.133 

(0.307) 
 

   2.121 

(0.891) 
 

   1.050 

(0.365) 
 

    0.810 

(0.219) 
 

    0.885 

(0.098) 
 

  

 ̂     0.377 
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Table 9 – Quarterly regression results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Coefficient (robust P-value) 

Probit       

High Regime 0.0512 
(0.244) 

Mean_salary 0.0099
*** 

(0.000) 

Constant -2.8183
*** 

(0.000) 

Pseudo R
2
 0.0858 

Regression Equation  

Constant -2.8980 
(0.008) 

Log_assets 0.1664
*** 

(0.000) 

Retail Brokerage -2.2330
*** 

(0.000) 

Trading and sales -1.9061
**

 
(0.010) 

Commercial banking -1.0618
*** 

(0.002) 

Retail banking -1.6019
*** 

(0.000) 

Agency services -0.1577 
(0.724) 

Corporate finance -1.5054
**

 
(0.023) 

Asset management -0.6275 
(0.148) 

Damages to physical assets 2.6451
**

 
(0.023) 

Clients, products, and business practices 4.0049
*** 

(0.000) 

Employment, practices and workplace safety 3.6638
***

 
(0.000) 

External fraud 4.0193
***

 
(0.000) 

Internal fraud 3.7973
***

 
(0.000) 

Execution, delivery, and process management 4.2087
***

 
(0.000) 
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(GLS second stage continued from table 8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Regime   Retail Brokerage 0.9529 
(0.221) 

Regime   Trading and sales 2.3052
***

 
(0.004) 

Regime   Commercial banking 1.2296
***

 
(0.020) 

Regime   Retail banking 2.2420
***

 
(0.000) 

Regime   Agency services -0.2945 
(0.708) 

Regime   Corporate finance 3.9780
***

 
(0.000) 

Regime   Asset management 1.0687 
(0.154) 

Regime   Damages to physical assets     (omitted) 

Regime   Clients, products, and business practices -0.8844 
(0.159) 

Regime   Employment, practices and workplace 
safety 

-1.6609
**

 
 (0.042) 

Regime   External fraud -1.4815
**

 
 (0.027) 

Regime   Internal fraud -2.1285
***

 
 (0.000) 

Regime   Execution, delivery, and process 
management 

-2.1077
***

 
(0.002) 

Inverse Mills 0.2490  
(0.326) 

R
2
 28.62% 
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6.3 Testing the scaling mechanism 

The log loss variable depicted in Figure 3 naturally takes the shape of what tends to 

look like a lognormal distribution. There is a large concentration of losses on the left 

side of the distribution, yet high losses, quite extreme in some cases (such as the 

>8B$ losses suffered by Citigroup Inc., Bank of America Corporation, and Wells 

Fargo & Company in 2008),  persist and cause the right tail to remain much larger 

than say a normal distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

Staying true to the comparison with the results found in Dahen and Dionne (2010), 

we analyze the scaling mechanism using US Bancorp as our reference bank holding 

company and test the goodness-of-fit of a lognormal distribution. Table 10 shows the 

statistics on the scaling that was performed. The coefficients used are the ones 

associated with our size proxy, business lines and risk types from Model 3 found in 

Figure 3 - Histogram of LN (losses) 1994-2010 
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table 7 that keeps only the statistically significant variables from our original Annual 

regression of table 6; recall that the coefficients differ depending on the regime.  

 

Table 10 - Statistics on Internal and Scaled Annual Losses 1994-2010 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although the averages and standard deviations of the datasets seem somewhat 

similar, it is easily visible that this does not hold true for the other moments when 

comparing the two datasets. US Bancorp has not incurred many more losses since 

2003 (19 vs. 15); period analyzed by Dahen and Dionne (2010).  

 

Using a one-sample Kolmogorov-Smirnov test on the scaled sample with the 

lognormal distribution as the reference distribution does not prove conclusive. The 

average and standard deviation of the lognormal distribution are estimated at 1.95 

  

Observed losses in 

US Bancorp 

Scaled losses 

within the same 

(Min-Max) interval 

as US Bancorp 

Average (M$) 15.45 17.22 

Median (M$) 6.25 8.40 

Standard Deviation (M$) 23.85 20.19 

Kurtosis 7.223 2.778 

Skewness 2.61 1.871 

Minimum (M$) 1.54 1.54 

Maximum (M$) 96.11 96.11 

Number of losses 19 224 
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and 1.41 respectively. We can see the results of the fitting as Group 2 in table 12. 

Group 1 is the internal data; hence the less evenly distributed histogram under the 

lognormal estimated curve that serves as the EDF. The internal data does not reject 

the lognormal distribution as a possibility, but a well-known flaw with the 

Kolmogorov-Smirnov test lies in its difficulty to reject the null hypothesis of the 

distributions being equal when there are a small number of data points. It rejects the 

lognormal distribution for the scaled data (p>0.5). The results of the one-sample test 

in Dahen and Dionne (2010) had a p-value over 15%. This can probably be explained 

by the relatively high changes in standard deviations of operational losses that 

happened with the inclusion of the late 2007 recession.  

 

Table 11 exposes the differences between the lognormal fitted distribution for the US 

Bancorp scaled losses and the theoretical EDF for the lognormal in greater detail, by 

analyzing steps at different quantiles. It is evident that the quantiles differ greatly 

toward the right tail. These results fall in line with the findings of Dahen et al. (2010) 

which empirically show that the lognormal right tail underestimates extreme losses 

as opposed to other extreme value theory distributions such as Pareto distribution. 
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Table 11- Quantile Analysis 

Percent Observed (Scaled data) Estimated (EDF) 

5.00 0.43186 0.44097 

10.00 0.43577 0.61521 

25.00 0.89268 1.00034 

50.00 1.83297 1.61761 

75.00 2.82430 2.52428 

90.00 3.98898 3.69869 

95.00 4.56554 4.62248 

99.00 4.56554 6.96691 

 

 

 

 

 

 

 

 

 

 

 

Table 12- Kolmogorov-Smirnov Lognormal EDF (using LN (losses) 
Group 1: External data normalized using US Bancorp’s Minimum and Maximum observed losses 
Group 2: Internal data of US Bancorp operational losses 
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As explained in section 5.3, this is not much cause for concern when it comes to 

assessing the pertinence of our scaling method. The two-sample test is much more 

important. Dahen and Dionne (2010) had found a p-value of 0.60 when comparing 

the internal distribution of US Bancorp and its 15 losses at the time with that of their 

scaled external dataset. In that respect, our results are very encouraging. We find a p-

value of 0.1093. Figure 4 shows us the cumulative distribution functions of our two 

samples, where the steps discernible correspond to the 19 observations of US 

Bancorp. This result indicates that the scaling method developed in this study is 

appropriate to use when estimating internal operational losses for a bank holding 

company.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 – CDF of both US Bancorp Samples used in two-sample Kolmogorov-Smirnov test 
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7. CONCLUSION 

It is important not to lose sight of the context of scaling models for the severity of 

operational losses. As these can be potentially devastating, it is crucial to assemble 

additional data to aid in the future development of operational loss models. The 

scaling model proposed in this study is meant to make external losses useful to the 

bank holding company in need of observations to populate an operational loss 

database allowing them to get a better estimate of the all-important tails. The 

normalization formula copes with the potential selection bias and heterogeneity of 

the control environment of the banks that actually incurred these losses in order to 

scale effectively. The addition of data as well as the inclusion of Markov endogenous 

regimes added to the statistical significance and credibility of the scaling mechanism 

in question.  

 

It is tempting to analyze the entirety of the data using a single regression since we 

have shown that there does not seem to be any danger of selection bias with the use 

of our external database. Doing so would result in explanatory power more than two 

times greater than those reported in table 6 (R
2   70%). Our ultimate goal in this 

study was to lay the foundation (via our extended database and introduction of 

regime-based models) for the continuation of research towards a final distribution on 

which a VaR can be determined. This can only be accomplished once a scaling 

model for the frequency using models such as zero-inflated Poisson or Negative 

binomial are developed. Only then will the no-loss observations be analyzed 

appropriately in order to combine the two distributions (severity and frequency), a 

mathematical convolution, to create that final operational loss distribution.  

 

There are surely distributions, popular in extreme value theory, that are much more 

representative of the nature of our data than the lognormal that we examined with a 

one-sample Kolmogorov-Smirnov test. The difficulty and mistake most make when 

applying such complex parametric distributions are violating or not even being able 
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to verify the very assumptions they are based on. These include distributions such as 

the Generalized-Pareto, G-and-H, GB2, Weibull, etc. 

 

There is much room for improvement. It is necessary to analyze scaled datasets for 

the severity of operational losses more in depth than what was done in this study. As 

we have seen, although a quarterly database adds observations, they are probably 

riddled with a new bias due to loss reporting. It will also be interesting to see what 

additional information on these losses time will provide. 

 

Despite the fact the high regime variables seem to help our scaling model greatly, 

there is a large nuance related to the normality assumption that is clearly violated in 

operational risk and many other processes that are based on the Markov regime-

switching model in academia. It would be interesting to look into regime-switching 

models based on other overlapping distributions.    

 

 

 

 

 

 

 

 

 

 

 

 



55 
 

Appendix A: Tables 

 

 

Table 13 - Original regression from Dahen and Dionne (2010) 

Variable Coefficient (robust P-value) 

Probit     

Bank_capitalization -1.2587 
(0.145) 

Mean_salary 0.0094
*** 

(0.000) 

Real_GDP_growth 0.0554
** 

(0.012) 

Constant -2.0068
*** 

(0.000) 

Pseudo R
2
 0.046 

Regression Equation  

Constant -0.1188 
(0.941) 

Log_assets 0.1482
*** 

(0.001) 

Retail Brokerage -2.5840
*** 

(0.000) 

Trading and sales -0.4807 
(0.604) 

Commercial banking -1.7850
*** 

(0.000) 

Retail banking -2.2250
*** 

(0.000) 

Agency services -1.3789
*** 

(0.005) 

Corporate finance -1.7572
*** 

(0.001) 

Asset management -1.0412
* 

(0.088) 

Damages to physical assets 1.3779
 

(0.365) 

Clients, products, and business practices 2.0372
** 

(0.018) 

Employment, practices and workplace safety 1.6798
*
 

(0.057) 

External fraud 1.8783
**

 
(0.030) 

Internal fraud 1.2612 
(0.137) 

Execution, delivery, and process management 1.8318
**

 
(0.040) 

Year_1995 0.2661 
(0.383) 

Year_1996 0.3410 
(0.240) 
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Notes:   
***

Coefficient significant at the 99% confidence level. 
                         ** 

Coefficient significant at the 95% confidence level. 
 * 

Coefficient significant at the 90% confidence level. 

Their model is adjusted for heteroskedasticity. Omitted categories due to avoid dummy trap in the 

OLS are Year 1994, Payment and Settlement (Business Line), and Business disruption and system 

failures (Risk Type). The Wald chi
2
(5) and log likelihood for the probit model are 94.01 and -989.92 

respectively. There are 3,650 observations used in the probit estimation and 300 conditional losses 

used in the OLS regression.   
     

 

 

 

 

 

 

 

 

 

 

 

 

 

Year_1997 0.2381 
(0.485) 

Year_1998 0.0211 
(0.940) 

Year_1999 0.1828 
(0.531) 

Year_2000 0.2611 
(0.382) 

Year_2001 -0.4454 
(0.146) 

Year_2002 0.3000 
(0.328) 

Year_2003 0.3740 
(0.236) 

Inverse Mills 0.1929 
(0.705) 

Wald chi2(23)   166.89 
(0.000) 

R
2
 29.58% 
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Table 14 - Descriptive Statistics from Quarterly database (2001-2010) 

 Asset Loss 

Number of observations 17,122 404 

Average (M$) 44,238 147.17 

Standard Deviation (M$) 209,675 788.53 

Kurtosis 66.30 95.55 

Skewness 7.72 9.47 

Minimum (M$) 1,000 1.01 

25
th

 Percentile (M$) 1,513  2.91 

Median (M$) 2,594 9.93 

75
th

 Percentile (M$) 8,205 44.74 

Maximum (M$) 2,479,088 8624.64 
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Table 15 - Quarterly database Business Lines 

 

 

 

 

 

Table 16 - Quarterly database Risk Types 

 

 

 

 

 

 

LOSSES RBr PS CF AM TS AS CB RB 

Average 9.54 77.84 624.73 92.31 110 60.04 29.46 179.82 

Number 48 28 35 39 45 13 64 132 

Std. Dev.  17.32 103.1 1,595 160.73 222.2 118.17 45 1,056 

LOSSES DPA CPBP EPWS EF IF EDPM BDSF 

Average 34.44 248.49 14.86 29.35 26.83 52.31 2.08 

Number 3 216 19 60 73 32 1 

Std. Dev.  47.13 1,064 25.24 57.61 65.21 145.81 - 
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Table 17- Our model excluding percentiles of Mean Salary 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Regression 
Equation 

                       Model 1 

Constant -0.6544 
(0.360) 

Log_assets 0.1654*** 

(0.000) 

RBr -2.6729*** 

(0.000) 

TS -0.5049 
(0.538) 

CB -1.9309*** 

(0.000) 

RB -2.2279*** 

(0.000) 

AS -1.3476*** 
(0.001) 

CF -1.9451*** 
(0.001) 

AS -1.1637* 
(0.076) 

DPA 2.1196** 
(0.025) 

CPBP 3.0628*** 

(0.000) 

EPWS 2.7542*** 
(0.000) 

EF 2.9491*** 
(0.000) 

IF 2.3477*** 
(0.000) 

EDPM 2.7660*** 
(0.000) 

Reg   RBr 1.1005** 
(0.034) 

Reg   TS 0.2640 
(0.788) 

Reg   CB 1.6949*** 
(0.000) 

Reg   RB 2.0315*** 
(0.001) 

Reg   As 1.0799** 
(0.053) 

Reg   CF 2.7721
***

 
(0.000) 

Reg   AM 1.2321  
(0.123) 

Reg   DPA -3.5219*** 
(0.000) 

Reg   CPBP -1.2278*** 
(0.003) 

Reg   EPWS -1.7706** 
 (0.015) 

Reg   EF -1.6941
***

 
 (0.001) 

Reg   IF -1.4186*** 
 (0.000) 

Reg   EDPM -1.5214*** 
(0.003) 

Inverse Mills -0.0268 
 (0.906) 

R2 22.78% 
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Table 18- Annual Loss breakdown 

Year Losses Total 
Loss 

1994 25 402.8 

1995 23 297.24 

1996 22 256.035 

1997 26 494.75 

1998 51 1004.4 

1999 37 571.7 

2000 35 617.6348 

2001 18 171.523 

2002 39 1525.347 

2003 24 684.4344 

2004 40 3708.72 

2005 46 7832.93 

2006 41 1267.95 

2007 39 3043.92 

2008 43 28433.06 

2009 57 4506.16 

2010 58 5551.8 

 

Table 19- Annual Business Line breakdown 

 

 

 

Year RBr TS CB RB AS CF AM PS 

1994 0 1 3 16 3 0 2 0 

1995 1 2 5 13 2 0 0 0 

1996 2 0 5 13 2 0 0 0 

1997 1 0 9 13 2 0 1 0 

1998 7 1 22 16 1 3 0 1 

1999 10 0 9 16 0 0 2 0 

2000 4 0 8 18 0 3 2 0 

2001 2 1 5 9 0 0 0 1 

2002 5 0 6 19 3 0 1 5 

2003 1 0 8 8 0 1 2 4 

2004 2 4 5 11 3 5 8 2 

2005 5 4 10 7 0 7 11 2 

2006 4 5 6 15 2 5 2 2 

2007 10 3 4 16 0 2 2 2 

2008 2 6 8 16 0 5 4 2 

2009 11 13 4 13 2 6 6 2 

2010 6 9 8 18 3 4 4 6 
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Table 20- Annual Risk Type breakdown 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year DPA CPBP EPWS EF IF EDPM BDSF 

1994 0 13 0 7 5 0 0 

1995 0 13 0 2 8 0 0 

1996 0 10 1 7 4 0 1 

1997 0 12 1 8 3 2 0 

1998 0 15 3 19 8 5 1 

1999 0 19 5 8 4 1 0 

2000 0 22 4 2 7 0 0 

2001 1 9 0 6 1 1 0 

2002 1 12 3 12 7 4 0 

2003 0 12 0 4 4 4 0 

2004 0 22 2 4 8 4 0 

2005 0 31 0 4 5 6 0 

2006 0 17 8 5 8 3 0 

2007 1 26 0 7 3 2 0 

2008 0 23 2 5 10 2 1 

2009 0 33 3 7 13 1 0 

2010 0 32 1 6 14 5 0 
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Table 21- Average Loss Business Line breakdown 

 

 

Table 22- Average loss Risk Type breakdown 

Year DPA CPBP EPWS EF IF EDPM BDSF 

1994 0.00 1.04 0.00 0.07 0.02 0.00 0.00 

1995 0.00 0.29 0.00 0.13 0.43 0.00 0.00 

1996 0.00 0.42 0.04 0.26 0.03 0.00 0.00 

1997 0.00 0.83 0.17 0.42 0.02 0.02 0.00 

1998 0.00 1.88 0.02 0.50 0.21 0.15 0.01 

1999 0.00 0.91 0.05 0.44 0.18 0.01 0.00 

2000 0.00 1.43 0.08 0.02 0.08 0.00 0.00 

2001 0.23 0.09 0.00 0.14 0.00 0.00 0.00 

2002 0.00 2.38 0.02 1.06 0.16 0.26 0.00 

2003 0.00 1.38 0.00 0.07 0.08 0.13 0.00 

2004 0.00 7.27 0.02 0.13 0.38 0.53 0.00 

2005 0.00 15.75 0.00 0.04 0.38 0.04 0.00 

2006 0.00 1.77 0.43 0.07 0.35 0.11 0.00 

2007 0.00 5.85 0.00 0.30 0.11 0.18 0.00 

2008 0.00 57.38 0.07 0.44 0.14 0.10 0.00 

2009 0.00 5.80 0.02 1.22 1.67 0.00 0.00 

2010 0.00 8.41 0.01 0.10 0.54 1.97 0.00 

Year RBr TS CB RB AS CF AM PS 

1994 0.00 0.01 0.05 0.12 0.49 0.00 0.45 0.00 

1995 0.09 0.40 0.16 0.17 0.04 0.00 0.00 0.00 

1996 0.22 0.00 0.22 0.24 0.05 0.00 0.00 0.00 
1997 0.09 0.00 0.40 0.88 0.04 0.00 0.05 0.00 

1998 0.16 0.01 1.41 0.57 0.05 0.06 0.00 0.52 

1999 0.06 0.00 1.09 0.28 0.00 0.00 0.15 0.00 

2000 0.04 0.00 0.18 1.18 0.00 0.19 0.02 0.00 
2001 0.01 0.03 0.06 0.13 0.00 0.00 0.00 0.23 

2002 0.04 0.00 1.10 0.89 0.15 0.00 0.28 1.41 

2003 0.02 0.00 0.44 0.13 0.00 0.06 0.08 0.92 

2004 0.07 0.25 0.22 0.54 0.24 6.15 0.80 0.06 
2005 0.06 0.12 0.16 0.42 0.00 13.10 2.35 0.01 

2006 0.23 0.06 0.41 0.35 0.99 0.11 0.02 0.55 

2007 0.23 0.06 0.19 4.18 0.00 0.04 1.34 0.41 

2008 0.07 3.33 0.12 34.64 0.00 19.14 0.43 0.41 
2009 0.12 3.88 0.70 1.11 0.09 2.13 0.63 0.05 

2010 0.06 1.91 0.45 4.97 0.07 1.73 1.36 0.48 
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